601
|
Kendall SL, Movahedzadeh F, Rison SCG, Wernisch L, Parish T, Duncan K, Betts JC, Stoker NG. The Mycobacterium tuberculosis dosRS two-component system is induced by multiple stresses. Tuberculosis (Edinb) 2004; 84:247-55. [PMID: 15207494 DOI: 10.1016/j.tube.2003.12.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2003] [Indexed: 11/24/2022]
Abstract
Induction of the Mycobacterium tuberculosis dosR gene, which is known to respond to hypoxia, was measured using RTq-PCR following exposure to different stresses. Increased expression was seen after exposure to S-nitrosoglutathione (GSNO), ethanol and (to a lesser extent) H2O2, but not heat- or cold-shock. We also demonstrated that hspX, which is dependent on dosR for expression, is induced when cultures are left standing for 30 min, while significant but minor induction was seen following a 10 min centrifugation. Microarray analysis was used to compare gene expression in wild-type and deltadosR strains following 30 min standing. Fifty-two genes were significantly up-regulated, and 19 genes were down-regulated. These included genes that had previously been reported as being part of the dosR regulon, and also some novel ones.
Collapse
Affiliation(s)
- S L Kendall
- Department of Pathology and Infectious Diseases, Royal Veterinary College, London NW1 0TU, UK
| | | | | | | | | | | | | | | |
Collapse
|
602
|
Voskuil MI. Mycobacterium tuberculosis gene expression during environmental conditions associated with latency. Tuberculosis (Edinb) 2004; 84:138-43. [PMID: 15207483 DOI: 10.1016/j.tube.2003.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2003] [Indexed: 11/16/2022]
Affiliation(s)
- Martin I Voskuil
- Department of Microbiology, B175 SOM Bldg, Room 4616, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Denver 80262, USA.
| |
Collapse
|
603
|
Sareen D, Newton GL, Fahey RC, Buchmeier NA. Mycothiol is essential for growth of Mycobacterium tuberculosis Erdman. J Bacteriol 2003; 185:6736-40. [PMID: 14594852 PMCID: PMC262099 DOI: 10.1128/jb.185.22.6736-6740.2003] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycothiol (MSH) is the major low-molecular-mass thiol in mycobacteria and is associated with the protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics. The biosynthesis of MSH is a multistep process, with the enzymatic reaction designated MshC being the ligase step in MSH production. A targeted disruption of the native mshC gene in M. tuberculosis Erdman produced no viable clones possessing either a disrupted mshC gene or reduced levels of MSH. However, when a second copy of the mshC gene was incorporated into the chromosome prior to the targeted disruption, multiple clones having the native gene disrupted and the second copy of mshC intact were obtained. These clones produced normal levels of MSH. These results demonstrate that the mshC gene and, more generally, the production of MSH are essential for the growth of M. tuberculosis Erdman under laboratory conditions.
Collapse
Affiliation(s)
- Dipti Sareen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
604
|
Sohaskey CD, Wayne LG. Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J Bacteriol 2003; 185:7247-56. [PMID: 14645286 PMCID: PMC296237 DOI: 10.1128/jb.185.24.7247-7256.2003] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2003] [Accepted: 09/25/2003] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis is one of the strongest reducers of nitrate in the genus Mycobacterium: Under microaerobic conditions, whole cells exhibit upregulation of activity, producing approximately eightfold more nitrite than those of aerobic cultures of the same age. Assays of cell extracts from aerobic cultures and hypoxic cultures yielded comparable nitrate reductase activities. Mycobacterium bovis produced only low levels of nitrite, and this activity was not induced by hypoxia. M. tuberculosis has two sets of genes, narGHJI and narX of the narK2X operon, that exhibit some degree of homology to prokaryotic dissimilatory nitrate reductases. Each of these were knocked out by insertional inactivation. The narG mutant showed no nitrate reductase activity in whole culture or in cell-free assays, while the narX mutant showed wild-type levels in both assays. A knockout of the putative nitrite transporter narK2 gene produced a strain that had aerobic levels of nitrate reductase activity but failed to show hypoxic upregulation. Insertion of the M. tuberculosis narGHJI into a nitrate reductase Escherichia coli mutant allowed anaerobic growth in the presence of nitrate. Under aerobic and hypoxic conditions, transcription of narGHJI was constitutive, while the narK2X operon was induced under hypoxia, as measured with a lacZ reporter system and by quantitative real-time reverse PCR. This indicates that nitrate reductase activity in M. tuberculosis is due to the narGHJI locus with no detectable contribution from narX and that the hypoxic upregulation of activity is associated with the induction of the nitrate and nitrite transport gene narK2.
Collapse
Affiliation(s)
- Charles D Sohaskey
- Department of Veterans Affairs Medical Center, Long Beach,and Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, USA.
| | | |
Collapse
|
605
|
Dawes SS, Warner DF, Tsenova L, Timm J, McKinney JD, Kaplan G, Rubin H, Mizrahi V. Ribonucleotide reduction in Mycobacterium tuberculosis: function and expression of genes encoding class Ib and class II ribonucleotide reductases. Infect Immun 2003; 71:6124-31. [PMID: 14573627 PMCID: PMC219568 DOI: 10.1128/iai.71.11.6124-6131.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, possesses a class Ib ribonucleotide reductase (RNR), encoded by the nrdE and nrdF2 genes, in addition to a putative class II RNR, encoded by nrdZ. In this study we probed the relative contributions of these RNRs to the growth and persistence of M. tuberculosis. We found that targeted knockout of the nrdF2 gene could be achieved only in the presence of a complementing allele, confirming that this gene is essential under normal, in vitro growth conditions. This observation also implied that the alternate class Ib small subunit encoded by the nrdF1 gene is unable to substitute for nrdF2 and that the class II RNR, NrdZ, cannot substitute for the class Ib enzyme, NrdEF2. Conversely, a DeltanrdZ null mutant of M. tuberculosis was readily obtained by allelic exchange mutagenesis. Quantification of levels of nrdE, nrdF2, nrdF1, and nrdZ gene expression by real-time, quantitative reverse transcription-PCR with molecular beacons by using mRNA from aerobic and O(2)-limited cultures showed that nrdZ was significantly induced under microaerophilic conditions, in contrast to the other genes, whose expression was reduced by O(2) restriction. However, survival of the DeltanrdZ mutant strain was not impaired under hypoxic conditions in vitro. Moreover, the lungs of B6D2/F(1) mice infected with the DeltanrdZ mutant had bacterial loads comparable to those of lungs infected with the parental wild-type strain, which argues against the hypothesis that nrdZ plays a significant role in the virulence of M. tuberculosis in this mouse model.
Collapse
Affiliation(s)
- Stephanie S Dawes
- School of Pathology of the National Health Laboratory Service and Department of Molecular Medicine and Hematology, University of the Witwatersrand Medical School, Johannesburg 2000, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
606
|
Abstract
Corynebacterium glutamicum is an aerobic bacterium that requires oxygen as exogenous electron acceptor for respiration. Recent molecular and biochemical analyses together with information obtained from the genome sequence showed that C. glutamicum possesses a branched electron transport chain to oxygen with some remarkable features. Reducing equivalents obtained by the oxidation of various substrates are transferred to menaquinone via at least eight different dehydrogenases, i.e. NADH dehydrogenase, succinate dehydrogenase, malate:quinone oxidoreductase, pyruvate:quinone oxidoreductase, D-lactate dehydrogenase, L-lactate dehydrogenase, glycerol-3-phosphate dehydrogenase and L-proline dehydrogenase. All these enzymes contain a flavin cofactor and, except succinate dehydrogenase, are single subunit peripheral membrane proteins located inside the cell. From menaquinol, the electrons are passed either via the cytochrome bc(1) complex to the aa(3)-type cytochrome c oxidase with low oxygen affinity, or to the cytochrome bd-type menaquinol oxidase with high oxygen affinity. The former branch is exceptional, in that it does not involve a separate cytochrome c for electron transfer from cytochrome c(1) to the Cu(A) center in subunit II of cytochrome aa(3). Rather, cytochrome c(1) contains two covalently bound heme groups, one of which presumably takes over the function of a separate cytochrome c. The bc(1) complex and cytochrome aa(3) oxidase form a supercomplex in C. glutamicum. The phenotype of defined mutants revealed that the bc(1)-aa(3) branch, but not the bd branch, is of major importance for aerobic growth in minimal medium. Changes of the efficiency of oxidative phosphorylation caused by qualitative changes of the respiratory chain or by a defective F(1)F(0)-ATP synthase were found to have strong effects on metabolism and amino acid production. Therefore, the system of oxidative phosphorylation represents an attractive target for improving amino acid productivity of C. glutamicum by metabolic engineering.
Collapse
Affiliation(s)
- Michael Bott
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | | |
Collapse
|
607
|
Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 2003; 198:705-13. [PMID: 12953092 PMCID: PMC2194188 DOI: 10.1084/jem.20030205] [Citation(s) in RCA: 736] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An estimated two billion persons are latently infected with Mycobacterium tuberculosis. The host factors that initiate and maintain this latent state and the mechanisms by which M. tuberculosis survives within latent lesions are compelling but unanswered questions. One such host factor may be nitric oxide (NO), a product of activated macrophages that exhibits antimycobacterial properties. Evidence for the possible significance of NO comes from murine models of tuberculosis showing progressive infection in animals unable to produce the inducible isoform of NO synthase and in animals treated with a NO synthase inhibitor. Here, we show that O2 and low, nontoxic concentrations of NO competitively modulate the expression of a 48-gene regulon, which is expressed in vivo and prepares bacilli for survival during long periods of in vitro dormancy. NO was found to reversibly inhibit aerobic respiration and growth. A heme-containing enzyme, possibly the terminal oxidase in the respiratory pathway, likely senses and integrates NO and O2 levels and signals the regulon. These data lead to a model postulating that, within granulomas, inhibition of respiration by NO production and O2 limitation constrains M. tuberculosis replication rates in persons with latent tuberculosis.
Collapse
Affiliation(s)
- Martin I Voskuil
- Beckman Center, Rm. 241, Stanford Medical School, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
608
|
Florczyk MA, McCue LA, Purkayastha A, Currenti E, Wolin MJ, McDonough KA. A family of acr-coregulated Mycobacterium tuberculosis genes shares a common DNA motif and requires Rv3133c (dosR or devR) for expression. Infect Immun 2003; 71:5332-43. [PMID: 12933881 PMCID: PMC187371 DOI: 10.1128/iai.71.9.5332-5343.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work has shown that the divergently transcribed Mycobacterium tuberculosis genes acr (hspX, Rv2031c) and acg (Rv2032) are induced under conditions of shallow standing culture and low oxygen and intracellularly within macrophages. We used a combination of computational and experimental methods to identify promoters for eight additional genes that are regulated in a similar manner and that comprise an acr-coregulated promoter (ACP) family. Transcriptional regulation of these ACP family members was evaluated by using a plasmid-based promoter-green fluorescent protein fusion system and flow cytometry. All promoters showed increased expression in shallow standing versus shaking cultures, in low- versus high-oxygen conditions, and intracellularly within macrophages versus extracellularly in tissue culture medium. However, there were quantitative differences in expression among promoters and among conditions for each promoter. A conserved 18-bp palindromic sequence motif was identified in all ACPs by Gibbs sampling-based computational analyses. Two such motifs overlap regions in the acr and acg promoters that were previously shown to be required for their expression. In addition, we found that 5% carbon dioxide was required for growth of Mycobacterium bovis BCG under microaerophilic (1.3% O(2)) culture conditions and fully prevented the growth cessation typically associated with rapid removal of oxygen. These findings are likely to be relevant to the in vivo environment and will contribute to our understanding of the pathogenesis of tuberculosis infection.
Collapse
Affiliation(s)
- Matthew A Florczyk
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, USA
| | | | | | | | | | | |
Collapse
|
609
|
Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK. Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. J Exp Med 2003; 198:693-704. [PMID: 12953091 PMCID: PMC2194186 DOI: 10.1084/jem.20030846] [Citation(s) in RCA: 1107] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Little is known about the biochemical environment in phagosomes harboring an infectious agent. To assess the state of this organelle we captured the transcriptional responses of Mycobacterium tuberculosis (MTB) in macrophages from wild-type and nitric oxide (NO) synthase 2-deficient mice before and after immunologic activation. The intraphagosomal transcriptome was compared with the transcriptome of MTB in standard broth culture and during growth in diverse conditions designed to simulate features of the phagosomal environment. Genes expressed differentially as a consequence of intraphagosomal residence included an interferon gamma- and NO-induced response that intensifies an iron-scavenging program, converts the microbe from aerobic to anaerobic respiration, and induces a dormancy regulon. Induction of genes involved in the activation and beta-oxidation of fatty acids indicated that fatty acids furnish carbon and energy. Induction of sigmaE-dependent, sodium dodecyl sulfate-regulated genes and genes involved in mycolic acid modification pointed to damage and repair of the cell envelope. Sentinel genes within the intraphagosomal transcriptome were induced similarly by MTB in the lungs of mice. The microbial transcriptome thus served as a bioprobe of the MTB phagosomal environment, showing it to be nitrosative, oxidative, functionally hypoxic, carbohydrate poor, and capable of perturbing the pathogen's cell envelope.
Collapse
Affiliation(s)
- Dirk Schnappinger
- Department of Microbiology and Immunology, Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
610
|
Bagchi G, Tyagi JS. Hypoxia-responsive expression of Mycobacterium tuberculosis Rv3134c and devR promoters in Mycobacterium smegmatis. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2303-5. [PMID: 12949157 DOI: 10.1099/mic.0.c0120-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Gargi Bagchi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | | |
Collapse
|
611
|
Abstract
Mycobacterium tuberculosis expresses universal stress proteins (USPs) when its growth is retarded by oxygen depletion. This class of proteins is emerging as being important in the resistance of bacteria to stress and prolonged growth arrest. Here we assess the properties of USPs and their relevance to mycobacteria.
Collapse
Affiliation(s)
- Ronan O'Toole
- Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK.
| | | |
Collapse
|
612
|
Parish T, Smith DA, Roberts G, Betts J, Stoker NG. The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1423-1435. [PMID: 12777483 DOI: 10.1099/mic.0.26245-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Two-component regulatory systems have been widely implicated in bacterial virulence. To investigate the role of one such system in Mycobacterium tuberculosis, a strain was constructed in which the senX3-regX3 system was deleted by homologous recombination. The mutant strain (Tame15) showed a growth defect after infection of macrophages and was attenuated in both immunodeficient and immunocompetent mice. Competitive hybridization of total RNA from the wild-type and mutant strains to a whole-genome microarray was used to identify changes in gene expression resulting from the deletion. One operon was highly up-regulated in the mutant, indicating that regX3 probably has a role as a repressor of this operon. Other genes which were up- or down-regulated were also identified. Many of the genes showing down-regulation are involved in normal growth of the bacterium, indicating that the mutant strain is subject to some type of growth slow-down or stress. Genes showing differential expression were further grouped according to their pattern of gene expression under other stress conditions. From this analysis 50 genes were identified which are the most likely to be controlled by RegX3. Most of these genes are of unknown function and no obvious motifs were found upstream of the genes identified. Thus, it has been demonstrated that the senX3-regX3 two-component system is involved in the virulence of M. tuberculosis and a number of genes controlled by this system have been identified.
Collapse
Affiliation(s)
- Tanya Parish
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Department of Medical Microbiology, Barts and the London, Queen Mary's School of Medicine and Dentistry, Turner Street, London E1 2AD, UK
| | - Debbie A Smith
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Gretta Roberts
- Department of Medical Microbiology, Barts and the London, Queen Mary's School of Medicine and Dentistry, Turner Street, London E1 2AD, UK
| | - Joanna Betts
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Neil G Stoker
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
613
|
Roop RM, Gee JM, Robertson GT, Richardson JM, Ng WL, Winkler ME. Brucella stationary-phase gene expression and virulence. Annu Rev Microbiol 2003; 57:57-76. [PMID: 12730323 DOI: 10.1146/annurev.micro.57.030502.090803] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The capacity of the Brucella spp. to establish and maintain long-term residence in the phagosomal compartment of host macrophages is critical to their ability to produce chronic infections in their mammalian hosts. The RNA binding protein host factor I (HF-I) encoded by the hfq gene is required for the efficient translation of the stationary-phase sigma factor RpoS in many bacteria, and a Brucella abortus hfq mutant displays a phenotype in vitro, which suggests that it has a generalized defect in stationary-phase physiology. The inability of the B. abortus hfq mutant to survive and replicate in a wild-type manner in cultured murine macrophages, and the profound attenuation displayed by this strain and its B. melitensis counterpart in experimentally infected animals indicate that stationary-phase physiology plays an essential role in the capacity of the brucellae to establish and maintain long-term intracellular residence in host macrophages. The nature of the Brucella HF-I-regulated genes that have been identified to date suggests that the corresponding gene products contribute to the remarkable capacity of the brucellae to resist the harsh environmental conditions they encounter during their prolonged residence in the phagosomal compartment.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, North Carolina 27858-4354, USA.
| | | | | | | | | | | |
Collapse
|
614
|
Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, Tompa M, Schoolnik GK, Sherman DR. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 2003; 48:833-43. [PMID: 12694625 PMCID: PMC1992516 DOI: 10.1046/j.1365-2958.2003.03474.x] [Citation(s) in RCA: 560] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Unlike many pathogens that are overtly harmful to their hosts, Mycobacterium tuberculosis can persist for years within humans in a clinically latent state. Latency is often linked to hypoxic conditions within the host. Among M. tuberculosis genes induced by hypoxia is a putative transcription factor, Rv3133c/DosR. We performed targeted disruption of this locus followed by transcriptome analysis of wild-type and mutant bacilli. Nearly all the genes powerfully regulated by hypoxia require Rv3133c/DosR for their induction. Computer analysis identified a consensus motif, a variant of which is located upstream of nearly all M. tuberculosis genes rapidly induced by hypoxia. Further, Rv3133c/DosR binds to the two copies of this motif upstream of the hypoxic response gene alpha-crystallin. Mutations within the binding sites abolish both Rv3133c/DosR binding as well as hypoxic induction of a downstream reporter gene. Also, mutation experiments with Rv3133c/DosR confirmed sequence-based predictions that the C-terminus is responsible for DNA binding and that the aspartate at position 54 is essential for function. Together, these results demonstrate that Rv3133c/DosR is a transcription factor of the two-component response regulator class, and that it is the primary mediator of a hypoxic signal within M. tuberculosis.
Collapse
Affiliation(s)
- Heui-Dong Park
- Department of Pathobiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
615
|
O'Toole R, Smeulders MJ, Blokpoel MC, Kay EJ, Lougheed K, Williams HD. A two-component regulator of universal stress protein expression and adaptation to oxygen starvation in Mycobacterium smegmatis. J Bacteriol 2003; 185:1543-54. [PMID: 12591871 PMCID: PMC148059 DOI: 10.1128/jb.185.5.1543-1554.2003] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified a response regulator in Mycobacterium smegmatis which plays an important role in adaptation to oxygen-starved stationary phase. The regulator exhibits strong sequence similarity to DevR/Rv3133c of M. tuberculosis. The structural gene is present on a multigene locus, which also encodes a sensor kinase. A devR mutant of M. smegmatis was adept at surviving growth arrest initiated by either carbon or nitrogen starvation. However, its culturability decreased several orders of magnitude below that of the wild type under oxygen-starved stationary-phase conditions. Two-dimensional gel analysis revealed that a number of oxygen starvation-inducible proteins were not expressed in the devR mutant. Three of these proteins are universal stress proteins, one of which is encoded directly upstream of devR. Another protein closely resembles a proposed nitroreductase, while a fifth protein corresponds to the alpha-crystallin (HspX) orthologue of M. smegmatis. None of the three universal stress proteins or nitroreductase, and a considerably lower amount of HspX was detected in carbon-starved wild-type cultures. A fusion of the hspX promoter to gfp demonstrated that DevR directs gene expression when M. smegmatis enters stationary phase brought about, in particular, by oxygen starvation. To our knowledge, this is the first time a role for a two-component response regulator in the control of universal stress protein expression has been shown. Notably, the devR mutant was 10(4)-fold more sensitive than wild type to heat stress. We conclude that DevR is a stationary-phase regulator required for adaptation to oxygen starvation and resistance to heat stress in M. smegmatis.
Collapse
Affiliation(s)
- Ronan O'Toole
- Department of Biological Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
616
|
Abstract
Establishing persistent infection and resisting elimination by the host's immune system are key factors contributing to latent infection by Mycobacterium tuberculosis. Recently, bacterial determinants regulating these processes have been identified. Here, we review molecular mechanisms regulating persistent infection and discuss the highly dynamic interaction of M. tuberculosis with the host.
Collapse
Affiliation(s)
- Thomas C Zahrt
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, PO Box 26509, Milwaukee, WI 53226-0509, USA
| |
Collapse
|
617
|
Durbach SI, Springer B, Machowski EE, North RJ, Papavinasasundaram KG, Colston MJ, Böttger EC, Mizrahi V. DNA alkylation damage as a sensor of nitrosative stress in Mycobacterium tuberculosis. Infect Immun 2003; 71:997-1000. [PMID: 12540583 PMCID: PMC145403 DOI: 10.1128/iai.71.2.997-1000.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the cellular consequences of nitrosative stress is alkylation damage to DNA. To assess whether nitrosative stress is registered on the genome of Mycobacterium tuberculosis, mutants lacking an alkylation damage repair and reversal operon were constructed. Although hypersensitive to the genotoxic effects of N-methyl-N'-nitro-N-nitrosoguanidine in vitro, the mutants displayed no phenotype in vivo, suggesting that permeation of nitrosative stress to the level of cytotoxic DNA damage is restricted.
Collapse
Affiliation(s)
- Steven I Durbach
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, School of Pathology, University of the Witwatersrand, and National Health Laboratory Service, Johannesburg, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
618
|
Smith CV, Huang CC, Miczak A, Russell DG, Sacchettini JC, Höner zu Bentrup K. Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis. J Biol Chem 2003; 278:1735-43. [PMID: 12393860 DOI: 10.1074/jbc.m209248200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Establishment or maintenance of a persistent infection by Mycobacterium tuberculosis requires the glyoxylate pathway. This is a bypass of the tricarboxylic acid cycle in which isocitrate lyase and malate synthase (GlcB) catalyze the net incorporation of carbon during growth of microorganisms on acetate or fatty acids as the primary carbon source. The glcB gene from M. tuberculosis, which encodes malate synthase, was cloned, and GlcB was expressed in Escherichia coli. The influence of media conditions on expression in M. tuberculosis indicated that this enzyme is regulated differentially to isocitrate lyase. Purified GlcB had K(m) values of 57 and 30 microm for its substrates glyoxylate and acetyl coenzyme A, respectively, and was inhibited by bromopyruvate, oxalate, and phosphoenolpyruvate. The GlcB structure was solved to 2.1-A resolution in the presence of glyoxylate and magnesium. We also report the structure of GlcB in complex with the products of the reaction, coenzyme A and malate, solved to 2.7-A resolution. Coenzyme A binds in a bent conformation, and the details of its interactions are described, together with implications on the enzyme mechanism.
Collapse
Affiliation(s)
- Clare V Smith
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas 77843-2128, USA
| | | | | | | | | | | |
Collapse
|
619
|
Shi L, Jung YJ, Tyagi S, Gennaro ML, North RJ. Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc Natl Acad Sci U S A 2003; 100:241-6. [PMID: 12506197 PMCID: PMC140939 DOI: 10.1073/pnas.0136863100] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lung is the primary target of infection with Mycobacterium tuberculosis. It is well established that, in mouse lung, expression of adaptive, Th1-mediated host immunity inhibits further multiplication of M. tuberculosis. Here, real-time RT-PCR was used to define the pattern of expression against time of lung infection of key genes involved in Th1-mediated immunity and of selected genes of M. tuberculosis. Inhibition of bacterial multiplication was preceded by increased mRNA synthesis for IFN-gamma and inducible NO synthase (NOS2) and by NOS2 protein synthesis in infected macrophages. Concurrently, the pattern of transcription of bacterial genes underwent dramatic changes. mRNA synthesis increased for alpha-crystallin (acr), rv2626c, and rv2623 and decreased for superoxide dismutase C (sodC), sodA, and fibronectin-binding protein B (fbpB). This pattern of M. tuberculosis transcription is characteristic of the nonreplicating persistence [Wayne, L. G. & Sohaskey, C. D. (2001) Annu. Rev. Microbiol. 55, 139-163] associated with adaptation of tubercle bacilli to hypoxia in vitro. Based on this similarity, we infer that host immunity induces bacterial growth arrest. In IFN-gamma gene-deleted mice, bacterial growth was not controlled; NOS2 protein was not detected in macrophages; sodC, sodA, and fbpB transcription showed no decrease; and acr, rv2626c, and rv2623 transcription increased only at the terminal stages of lung pathology. These findings define the transcription signature of M. tuberculosis as it transitions from growth to persistence in the mouse lung. The bacterial transcription changes measured at onset of Th1-mediated immunity are likely induced, directly or indirectly, by nitric oxide generated by infected macrophages.
Collapse
Affiliation(s)
- Lanbo Shi
- Public Health Research Institute, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
620
|
Mukamolova GV, Kaprelyants AS, Kell DB, Young M. Adoption of the transiently non-culturable state — a bacterial survival strategy? Adv Microb Physiol 2003; 47:65-129. [PMID: 14560663 DOI: 10.1016/s0065-2911(03)47002-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microbial culturability can be ephemeral. Cells are not merely either dead or alive but can adopt physiological states in which they appear to be (transiently) non-culturable under conditions in which they are known normally to be able to grow and divide. The reacquisition of culturability from such states is referred to as resuscitation. We here develop the idea that this "transient non-culturability" is a consequence of a special survival strategy, and summarise the morphological, physiological and genetic evidence underpinning such behaviour and its adaptive significance.
Collapse
Affiliation(s)
- Galina V Mukamolova
- Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigion SY23 3DD, UK
| | | | | | | |
Collapse
|
621
|
Abstract
Obligately aerobic tubercle bacilli are capable of adapting to survive hypoxia by developing into a nonreplicating or dormant form. Dormant bacilli maintain viability for extended periods. Furthermore, they are resistant to antimycobacterials, and hence, dormancy might play a role in the persistence of tuberculosis infection despite prolonged chemotherapy. Previously, we have grown dormant Mycobacterium bovis BCG in an oxygen-limited Wayne culture system and subjected the bacilli to proteome analysis. This work revealed the upregulation of the response regulator Rv3133c and three other polypeptides (alpha-crystallin and two "conserved hypothetical" proteins) upon entry into dormancy. Here, we replaced the coding sequence of the response regulator with a kanamycin resistance cassette and demonstrated that the loss-of-function mutant died after oxygen starvation-induced termination of growth. Thus, the disruption of this dormancy-induced transcription factor resulted in loss of the ability of BCG to adapt to survival of hypoxia. Two-dimensional gel electrophoresis of protein extracts from the gene-disrupted strain showed that the genetic loss of the response regulator caused loss of the induction of the other three dormancy proteins. Thus, the upregulation of these dormancy proteins requires the response regulator. Based on these two functions, dormancy survival and regulation, we named the Rv3133c gene dosR for dormancy survival regulator. Our results provide conclusive evidence that DosR is a key regulator in the oxygen starvation-induced mycobacterial dormancy response.
Collapse
Affiliation(s)
- Calvin Boon
- Mycobacterium Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 117609, Republic of Singapore
| | | |
Collapse
|
622
|
Mukamolova GV, Turapov OA, Young DI, Kaprelyants AS, Kell DB, Young M. A family of autocrine growth factors in Mycobacterium tuberculosis. Mol Microbiol 2002; 46:623-35. [PMID: 12410821 DOI: 10.1046/j.1365-2958.2002.03184.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacterium tuberculosis and its close relative, Mycobacterium bovis (BCG) contain five genes whose predicted products resemble Rpf from Micrococcus luteus. Rpf is a secreted growth factor, active at picomolar concentrations, which is required for the growth of vegetative cells in minimal media at very low inoculum densities, as well as the resuscitation of dormant cells. We show here that the five cognate proteins from M. tuberculosis have very similar characteristics and properties to those of Rpf. They too stimulate bacterial growth at picomolar (and in some cases, subpicomolar) concentrations. Several lines of evidence indicate that they exert their activity from an extra-cytoplasmic location, suggesting that they are also involved in intercellular signalling. The five M. tuberculosis proteins show cross-species activity against M. luteus, Mycobacterium smegmatis and M. bovis (BCG). Actively growing cells of M. bovis (BCG) do not respond to these proteins, whereas bacteria exposed to a prolonged stationary phase do. Affinity-purified antibodies inhibit bacterial growth in vitro, suggesting that sequestration of these proteins at the cell surface might provide a means to limit or even prevent bacterial multiplication in vivo. The Rpf family of bacterial growth factors may therefore provide novel opportunities for preventing and controlling mycobacterial infections.
Collapse
Affiliation(s)
- Galina V Mukamolova
- Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigion SY23 3 DD, UK
| | | | | | | | | | | |
Collapse
|
623
|
Fenhalls G, Stevens L, Moses L, Bezuidenhout J, Betts JC, Helden Pv PV, Lukey PT, Duncan K. In situ detection of Mycobacterium tuberculosis transcripts in human lung granulomas reveals differential gene expression in necrotic lesions. Infect Immun 2002; 70:6330-8. [PMID: 12379712 PMCID: PMC130373 DOI: 10.1128/iai.70.11.6330-6338.2002] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2002] [Revised: 06/17/2002] [Accepted: 07/28/2002] [Indexed: 11/20/2022] Open
Abstract
We have used RNA-RNA in situ hybridization to detect the expression of several Mycobacterium tuberculosis genes in tuberculous granulomas in lung tissue sections from tuberculosis patients. The M. tuberculosis genes chosen fall into two classes. Four genes (icl, narX, and Rv2557 and Rv2558) have been implicated in the persistence of the bacterium in the host, and two genes (iniB and kasA) are upregulated in response to isoniazid exposure. Both necrotic and nonnecrotic granulomas were identified in all of the patients. Necrotic granulomas were divided into three zones: an outer lymphocyte cuff containing lymphocytes and macrophages, a transition zone consisting of necrotic material interspersed with macrophages, and a central acellular necrotic region. Transcripts of all of the genes studied were found in nonnecrotic granulomas and in the lymphocyte cuff of necrotic granulomas. Mycobacterial gene expression was associated with CD68-positive myeloid cells. Rv2557 and/or its homologue Rv2558, kasA, and iniB were expressed within the transition zone of necrotic granulomas, whereas icl and narX transcripts were absent from this area. There was no evidence of transcription of any of the genes examined in the central necrotic region, although mycobacterial DNA was present. The differential expression of genes within granulomas demonstrates that M. tuberculosis exists in a variety of metabolic states and may be indicative of the response to different microenvironments. These observations confirm that genes identified in models of persistence or in response to drug treatment in vitro are expressed in the human host.
Collapse
MESH Headings
- Adolescent
- Adult
- Antigens, CD/analysis
- Antigens, Differentiation, Myelomonocytic/analysis
- Female
- Gene Expression Profiling
- Granuloma, Respiratory Tract/metabolism
- Granuloma, Respiratory Tract/microbiology
- Granuloma, Respiratory Tract/pathology
- Humans
- In Situ Hybridization
- Male
- Mycobacterium tuberculosis/genetics
- Necrosis
- RNA, Messenger/analysis
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
Collapse
Affiliation(s)
- Gael Fenhalls
- MRC Center for Molecular and Cellular Biology, Department of Medical Biochemistry, University of Stellenbosch Medical School, Cape Town, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
624
|
Abstract
Some bacterial pathogens can establish life-long chronic infections in their hosts. Persistence is normally established after an acute infection period involving activation of both the innate and acquired immune systems. Bacteria have evolved specific pathogenic mechanisms and harbor sets of genes that contribute to the establishment of a persistent lifestyle that leads to chronic infection. Persistent bacterial infection may involve occupation of a particular tissue type or organ or modification of the intracellular environment within eukaryotic cells. Bacteria appear to adapt their immediate environment to favor survival and may hijack essential immunoregulatory mechanisms designed to minimize immune pathology or the inappropriate activation of immune effectors.
Collapse
Affiliation(s)
- Douglas Young
- Centre for Molecular Microbiology and Infection, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK.
| | | | | |
Collapse
|
625
|
Coates A, Hu Y, Bax R, Page C. The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov 2002; 1:895-910. [PMID: 12415249 DOI: 10.1038/nrd940] [Citation(s) in RCA: 432] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The emergence of resistance to antibacterial agents is a pressing concern for human health. New drugs to combat this problem are therefore in great demand, but as past experience indicates, the time for resistance to new drugs to develop is often short. Conventionally, antibacterial drugs have been developed on the basis of their ability to inhibit bacterial multiplication, and this remains at the core of most approaches to discover new antibacterial drugs. Here, we focus primarily on an alternative novel strategy for antibacterial drug development that could potentially alleviate the current situation of drug resistance--targeting non-multiplying latent bacteria, which prolong the duration of antimicrobial chemotherapy and so might increase the rate of development of resistance.
Collapse
Affiliation(s)
- Anthony Coates
- Department of Medical Microbiology, St George's Hospital Medical School, Cranmer Terrace, London SW17 ORE, UK.
| | | | | | | |
Collapse
|
626
|
Feng Z, Cáceres NE, Sarath G, Barletta RG. Mycobacterium smegmatis L-alanine dehydrogenase (Ald) is required for proficient utilization of alanine as a sole nitrogen source and sustained anaerobic growth. J Bacteriol 2002; 184:5001-10. [PMID: 12193615 PMCID: PMC135311 DOI: 10.1128/jb.184.18.5001-5010.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NAD(H)-dependent L-alanine dehydrogenase (EC 1.4.1.1) (Ald) catalyzes the oxidative deamination of L-alanine and the reductive amination of pyruvate. To assess the physiological role of Ald in Mycobacterium smegmatis, we cloned the ald gene, identified its promoter, determined the protein expression levels, and analyzed the combined effects of nutrient supplementation, oxygen availability, and growth stage on enzyme activity. High Ald activities were observed in cells grown in the presence of L- or D-alanine regardless of the oxygen availability and growth stage. In exponentially growing cells under aerobic conditions, supplementation with alanine resulted in a 25- to 50-fold increase in the enzyme activity. In the absence of alanine supplementation, 23-fold-higher Ald activities were observed in cells grown exponentially under anaerobic conditions. Furthermore, M. smegmatis ald null mutants were constructed by targeted disruption and were shown to lack any detectable Ald activity. In contrast, the glycine dehydrogenase (EC 1.4.1.10) (Gdh) activity in mutant cells remained at wild-type levels, indicating that another enzyme protein is responsible for the physiologically relevant reductive amination of glyoxylate. The ald mutants grew poorly in minimal medium with L-alanine as the sole nitrogen source, reaching a saturation density 100-fold less than that of the wild-type strain. Likewise, mutants grew to a saturation density 10-fold less than that of the wild-type strain under anaerobic conditions. In summary, the phenotypes displayed by the M. smegmatis ald mutants suggest that Ald plays an important role in both alanine utilization and anaerobic growth.
Collapse
Affiliation(s)
- Zhengyu Feng
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583-0905, USA
| | | | | | | |
Collapse
|
627
|
Beaucher J, Rodrigue S, Jacques PE, Smith I, Brzezinski R, Gaudreau L. Novel Mycobacterium tuberculosis anti-sigma factor antagonists control sigmaF activity by distinct mechanisms. Mol Microbiol 2002; 45:1527-40. [PMID: 12354223 DOI: 10.1046/j.1365-2958.2002.03135.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aetiological agent of tuberculosis, Mycobacterium tuberculosis, encodes 13 sigma factors, as well as several putative anti-, and anti-anti- sigma factors. Here we show that a sigma factor that has been previously shown to be involved in virulence and persistence processes, sigmaF, can be specifically inhibited by the anti-sigma factor UsfX. Importantly, the inhibitory activity of UsfX, in turn, can be negatively regulated by two novel anti-anti-sigma factors. The first anti-anti-sigma factor seems to be regulated by redox potential, and the second may be regulated by phosphorylation as it is rendered non-functional by the introduction of a mutation that is believed to mimic phosphorylation of the anti-anti-sigma factor. These results suggest that sigmaF activity might be post-translationally modulated by at least two distinct pathways in response to different possible physiological cues, the outcome being consistent with the bacteria's ability to adapt to diverse host environments during disease progression, latency and reactivation.
Collapse
Affiliation(s)
- Jocelyn Beaucher
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Québec, Canada
| | | | | | | | | | | |
Collapse
|
628
|
Bagchi G, Das TK, Tyagi JS. Molecular analysis of the dormancy response in Mycobacterium smegmatis: expression analysis of genes encoding the DevR-DevS two-component system, Rv3134c and chaperone alpha-crystallin homologues. FEMS Microbiol Lett 2002; 211:231-7. [PMID: 12076818 DOI: 10.1111/j.1574-6968.2002.tb11230.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycobacteria adapt to a decrease in oxygen tension by entry into a non-replicative persistent phase. It was shown earlier that the two-component system, DevR-DevS, was induced in Mycobacterium tuberculosis and Mycobacterium bovis BCG cultures during hypoxia, suggesting that it may play a regulatory role in their adaptation to oxygen limitation. The presence of a homologous genetic system in Mycobacterium smegmatis was predicted by scanning its unfinished genome sequence with devR and devS genes of M. tuberculosis. Rv3134c, which is cotranscribed with devR-devS in M. tuberculosis, was also present in M. smegmatis at a similar location upstream from devR. The expression of all three genes was induced at the RNA and protein levels in M. smegmatis cultures grown under microaerobic and anaerobic conditions. The M. smegmatis genome also contained the hspX gene, encoding chaperone alpha-crystallin, Acr, that was induced during hypoxia. The similarity in sequences and hypoxia-responsive behaviour of devR-devS, Rv3134c and hspX genes in M. smegmatis and M. tuberculosis suggests that the molecular mechanisms involved in the dormancy response are likely conserved in these two species. M. smegmatis could therefore serve as a useful model for the delineation of the hypoxia response in general and DevR-DevS regulated pathways in particular.
Collapse
|
629
|
Shleeva MO, Bagramyan K, Telkov MV, Mukamolova GV, Young M, Kell DB, Kaprelyants AS. Formation and resuscitation of "non-culturable" cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1581-1591. [PMID: 11988533 DOI: 10.1099/00221287-148-5-1581] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
After growth of Rhodococcus rhodochrous in Sauton's medium, and further incubation for about 60 h in stationary phase, there was a transient (up to 5 log) decrease in the c.f.u. count, whereas the total count remained similar to its initial value. At the point of minimal viability, the most probable number (MPN) count was 10 times greater than the c.f.u. count. This difference was further magnified by 3-4 logs (giving values close to the total count) by incorporating supernatant taken from growing cultures. A small protein similar to Rpf (resuscitation-promoting factor of Micrococcus luteus) appeared to be responsible for some of the activity in the culture supernatant. The formation of "non-culturable" cells of the "Academia" strain of Mycobacterium tuberculosis was similarly observed following growth in Sauton's medium containing Tween 80 in sealed culture vessels, and further incubation for an extended stationary phase. This resulted in the formation, 4-5 months post-inoculation, of a homogeneous population of ostensibly "non-culturable" cells (zero c.f.u.). Remarkably, the MPN count for these cultures was 10(5) organisms ml(-1), and this value was further increased by one log using supernatant from an actively growing culture. Populations of "non-culturable" cells of Mycobacterium tuberculosis were also obtained by the filtration of "clumpy" cultures, which were grown in the absence of Tween 80. These small cells could only be grown in liquid medium (MPN) and their viability was enhanced by the addition of culture supernatant or Rpf. The "non-culturable" cells that accumulated during prolonged stationary phase in both the R. rhodochrous and the Mycobacterium tuberculosis cultures were small ovoid and coccoid forms with an intact permeability barrier, but with undetectable respiratory activity. The authors consider these non-culturable bacteria to be dormant. The observed activity of culture supernatants and Rpf with "non-culturable" bacterial suspensions invites the speculation that one, or more, of the cognate Mycobacterium tuberculosis Rpf-like molecule(s) could be involved in mechanisms of latency and reactivation of tuberculosis in vivo.
Collapse
Affiliation(s)
- M O Shleeva
- Bakh Institute of Biochemistry, Moscow, Russia1
| | - K Bagramyan
- Bakh Institute of Biochemistry, Moscow, Russia1
| | - M V Telkov
- Bakh Institute of Biochemistry, Moscow, Russia1
| | - G V Mukamolova
- Institute of Biological Sciences, University of Wales, Aberystwyth, UK2
- Bakh Institute of Biochemistry, Moscow, Russia1
| | - M Young
- Institute of Biological Sciences, University of Wales, Aberystwyth, UK2
| | - D B Kell
- Institute of Biological Sciences, University of Wales, Aberystwyth, UK2
| | | |
Collapse
|
630
|
Chan K, Knaak T, Satkamp L, Humbert O, Falkow S, Ramakrishnan L. Complex pattern of Mycobacterium marinum gene expression during long-term granulomatous infection. Proc Natl Acad Sci U S A 2002; 99:3920-5. [PMID: 11891270 PMCID: PMC122624 DOI: 10.1073/pnas.002024599] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During latent infection of humans with Mycobacterium tuberculosis, bacteria persist in the asymptomatic host within granulomas, organized collections of differentiated macrophages, and other immune cells. The mechanisms for persistence remain poorly understood, as is the metabolic and replicative state of the microbes within granulomas. We analyzed the gene expression profile of Mycobacterium marinum, the cause of fish and amphibian tuberculosis, during its persistence in granulomas. We identified genes expressed specifically when M. marinum persists within granulomas. These granuloma-activated genes were not activated in vitro in response to various conditions postulated to be operant in tuberculous granulomas, suggesting that their granuloma-specific activation was caused by complex conditions that could not be mimicked in vitro. In addition to the granuloma-activated genes, the bacteria resident in granulomas expressed a wide range of metabolic and synthetic genes that are expressed during logarithmic growth in laboratory medium. Our results suggest a dynamic host-pathogen interaction in the granuloma, where metabolically active bacteria are kept in check by the host immune system and where the products of granuloma-specific bacterial genes may thwart the host's attempt to completely eradicate the bacteria.
Collapse
Affiliation(s)
- Kaman Chan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
631
|
|
632
|
Abstract
Mycobacterium tuberculosis is a bacterial pathogen that can persist within an infected individual for extended periods of time without causing overt, clinical disease, in a state normally referred to as latent or chronic tuberculosis. Although the replicative state of the bacterium during this period is a matter of some conjecture, recent developments have indicated that the bacterium requires the regulated expression of a set of genes and metabolic pathways to maintain a persistent infection in an immunocompetent host. The characterization of these gene products and their role in bacterial metabolism and physiology is starting to provide insights into the mechanisms that M. tuberculosis has evolved to adopt its highly successful mode of pathogenicity.
Collapse
Affiliation(s)
- K Höner zu Bentrup
- Dept of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
633
|
Desjardin LE, Hayes LG, Sohaskey CD, Wayne LG, Eisenach KD. Microaerophilic induction of the alpha-crystallin chaperone protein homologue (hspX) mRNA of Mycobacterium tuberculosis. J Bacteriol 2001; 183:5311-6. [PMID: 11514514 PMCID: PMC95413 DOI: 10.1128/jb.183.18.5311-5316.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Among the products that are expressed when Mycobacterium tuberculosis undergoes hypoxic shiftdown to nonreplicating persistence (NRP) is the alpha-crystallin chaperone protein homologue (Acr). This expression coincides with the previously reported appearance of a respiratory type of nitrate reductase activity, the increase in glycine dehydrogenase activity, and the production of a unique antigen, URB-1. In a timed sampling study, using a slowly stirred oxygen depletion culture model, we have demonstrated that the hspX mRNA that codes for Acr protein as well as the protein itself is induced just as the bacilli enter the microaerophilic NRP stage 1 (NRP-1). In contrast to the induction observed for hspX mRNA, levels of 16S rRNA, fbpB mRNA (encoding the 85B alpha antigen), and aroB mRNA (encoding dehydroquinate synthase) demonstrate relatively small to no change upon entering NRP-1. Acr protein was shown to be identical to URB-1 by Western analysis with anti-URB-1 antibody. The fact that antibody to Acr is found in a high percentage of tuberculosis patients suggests that the hypoxic shiftdown of tubercle bacilli to the NRP state that occurs in vitro, resulting in production of the alpha-crystallin protein, occurs in vivo as well. Simultaneous abrupt increases in hspX mRNA and Acr protein suggest that Acr protein expression is controlled at the level of transcription.
Collapse
Affiliation(s)
- L E Desjardin
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | | | |
Collapse
|