651
|
Giralt M, Penkowa M, Hernández J, Molinero A, Carrasco J, Lago N, Camats J, Campbell IL, Hidalgo J. Metallothionein-1+2 deficiency increases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin 6. Neurobiol Dis 2002; 9:319-38. [PMID: 11950277 DOI: 10.1006/nbdi.2002.0480] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Transgenic expression of IL-6 under the control of the GFAP gene promoter (GFAP-IL6 mice) in the CNS causes significant damage and alters the expression of many genes, including the metallothionein (MT) family, especially in the cerebellum. The crossing of GFAP-IL6 mice with MT-1+2 knock out (MTKO) mice provided evidence that the increased MT-1+2 expression normally observed in the GFAP-IL6 mice is an important mechanism for coping with brain damage. Thus, the GFAP-IL6xMTKO mice showed a decreased body weight gain and an impaired performance in the rota-rod test, as well as a higher upregulation of cytokines such as IL-6, IL-1alpha,beta, and TNFalpha and recruitment and activation of macrophages and T cells throughout the CNS but mainly in the cerebellum. Clear symptoms of increased oxidative stress and apoptotic cell death caused by MT-1+2 deficiency were observed in the GFAP-IL6xMTKO mice. Interestingly, MT-1+2 deficiency also altered the expected frequency of the offspring genotypes, suggesting a role of these proteins during development. Overall, the results suggest that the MT-1+2 proteins are valuable factors against cytokine-induced CNS injury.
Collapse
Affiliation(s)
- Mercedes Giralt
- Instituto de Neurociencías and Departamento de Biologia Celular, de Fisiología y de Immunología, Unidad de Fisiología Animal, Facultad de Ciencias, Universidad Autónoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
652
|
Loh JK, Hwang SL, Lieu AS, Huang TY, Howng SL. The alteration of prostaglandin E2 levels in patients with brain tumors before and after tumor removal. J Neurooncol 2002; 57:147-50. [PMID: 12125976 DOI: 10.1023/a:1015782809966] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Both experimental and human tumors often synthesize high levels of prostaglandins, most notably prostaglandin E2 (PGE2). This compound may play an important role in tumor growth and immunosuppression. Little is known of the production of PGE2 by brain tumors. The present study was designed to investigate the levels of PGE2 in the plasma of human brain tumors before and after tumor removal. METHODS The plasma PGE2 levels of brain tumors before and after tumor removal were measured by high-performance liquid chromatography (HPLC). RESULTS There is a significantly high concentration of PGE2 in malignant brain tumor before tumor removal. Significantly decrease of PGE2 concentration after total removal of the tumor was found both in the malignant and benign brain tumor groups (P = 0.0001 and P = 0.0039 respectively). However, compared to the control group, only malignant brain tumor showed a significant decrease of PGE2 concentration after tumor removal (P = 0.0009). CONCLUSION Our study demonstrates the malignant brain tumor synthesized higher relative proportions of PGE2 and surgical removal of the brain tumor can reduce the production of PGE2.
Collapse
Affiliation(s)
- Joon-Khim Loh
- Department of Surgery, Kaohsiung Medical University Hospital, Taiwan, ROC
| | | | | | | | | |
Collapse
|
653
|
Penkowa M, Giralt M, Camats J, Hidalgo J. Metallothionein 1+2 protect the CNS during neuroglial degeneration induced by 6-aminonicotinamide. J Comp Neurol 2002; 444:174-89. [PMID: 11835189 DOI: 10.1002/cne.10149] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
6-Aminonicotinamide (6-AN) is a niacin antagonist, which leads to degeneration of gray matter astrocytes. Metallothionein 1+2 (MT-1+2) are neuroprotective factors in the central nervous system (CNS), and to determine the roles for MT after 6-AN, we have examined transgenic mice overexpressing MT-1 (TgMTI* mice) after an i.p. injection with 6-AN. In control mice injected with 6-AN, astrocytes in specific gray matter areas of the brainstem showed degeneration. Reactive astrocytes surrounded the degenerated areas, which were heavily infiltrated by macrophages and T lymphocytes. MT-1+2 expression was significantly decreased in the damaged brainstem areas, but it increased in reactive astrocytes surrounding these areas and also in infiltrating macrophages. The levels of oxidative stress, as determined by immunoreactivity for inducible nitric-oxide synthase (iNOS), malondialdehyde (MDA), and nitrotyrosine (NITT), and the number of terminal deoxynucleotidyl transferase [TdT]-mediated deoxyuridine triphosphate [dUTP]-digoxigenin nick end labeling-positive (TUNEL+), caspase-3+ apoptotic cells were significantly increased in the brainstem of normal mice after 6-AN. In the TgMTI* mice, the 6-AN-induced tissue damage was decreased in comparison to control mice, and they showed significantly reduced numbers of recruited macrophages and T lymphocytes, and a drastic reduction of oxidative stress and apoptotic cell death. In addition, the accompanying reactive astrogliosis was increased in the transgenic mice. To further study the potential protective role of MT, we administered intraperitoneally Zn-MT-2 to 6-AN-injected normal mice and found essentially the same results as those obtained in TgMTI* mice. Thus, we hereby report that endogenous MT-1 overexpression and exogenous MT-2 treatment have significant neuroprotective roles during CNS pathological conditions.
Collapse
Affiliation(s)
- Milena Penkowa
- Institute of Medical Anatomy, The Panum Institute, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | | | | | | |
Collapse
|
654
|
Lukaszevicz AC, Sampaïo N, Guégan C, Benchoua A, Couriaud C, Chevalier E, Sola B, Lacombe P, Onténiente B. High sensitivity of protoplasmic cortical astroglia to focal ischemia. J Cereb Blood Flow Metab 2002; 22:289-98. [PMID: 11891434 DOI: 10.1097/00004647-200203000-00006] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The generally accepted concept that astrocytes are highly resistant to hypoxic/ischemic conditions has been challenged by an increasing amount of data. Considering the differences in functional implications of protoplasmic versus fibrous astrocytes, the authors have investigated the possibility that those discrepancies come from specific behaviors of the two cell types. The reactivity and fate of protoplasmic and fibrous astrocytes were observed after permanent occlusion of the medial cerebral artery in mice. A specific loss of glial fibrillary acidic protein (GFAP) immunolabeling in protoplasmic astrocytes occurred within minutes in the area with total depletion of regional CBF (rCBF) levels, whereas "classical" astrogliosis was observed in areas with remaining rCBF. Severe disturbance of cell function, as suggested by decreased GFAP content and increased permeability of the blood-brain barrier to macromolecules, was rapidly followed by necrotic cell death, as assessed by ultrastructure and by the lack of activation of the apoptotic protease caspase-3. In contrast to the response of protoplasmic astrocytes, fibrous astrocytes located at the brain surface and in deep cortical layers displayed a transient and limited hypertrophy, with no conspicuous cell death. These results point to a differential sensitivity of protoplasmic versus fibrous cortical astrocytes to blood deprivation, with a rapid demise of the former, adding to the suggestion that protoplasmic astrocytes play a crucial role in the pathogenesis of ischemic injury.
Collapse
Affiliation(s)
- Anne-Claire Lukaszevicz
- Institut National de la Santé et de la Recherche Médicale, Université Paris XII, Créteil, France
| | | | | | | | | | | | | | | | | |
Collapse
|
655
|
Kong GY, Kristensson K, Bentivoglio M. Reaction of mouse brain oligodendrocytes and their precursors, astrocytes and microglia, to proinflammatory mediators circulating in the cerebrospinal fluid. Glia 2002; 37:191-205. [PMID: 11857678 DOI: 10.1002/glia.10030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The response of glial cells to the acute intracerebroventricular administration of interferon-gamma, and of this cytokine combined with the endotoxin lipopolysaccharide or with tumor necrosis factor-alpha, was investigated in the brain of adult mice over a time course of 1 week. Oligodendrocytes were identified by immunocytochemistry, using O4 to label their precursors and 2',3'-cyclic nucleotide 3'-phosphohydrolase as marker of mature cells. Astrocytes were labeled by glial fibrillary acidic protein immunoreactivity and microglial cells by tomato lectin histochemistry. Compared with ovalbumin-injected control cases, all cytokine treatments caused a marked decrease of immunostained mature oligodendrocytes in the brain since 1 day postinjection. O4+ oligodendrocyte precursors increased instead progressively from 2 to 7 days. Astrocytes, markedly activated by cytokine treatments, also exhibited a progressive quantitative increase from 2 days onward. Activation and proliferation of microglial cells were instead most evident at 24 h postinjection. Such glial responses to interferon-gamma injections were especially marked in the periventricular brain parenchyma and were enhanced by coadministration of lipopolysaccharide or tumor necrosis factor-alpha. The findings show that a pulse of proinflammatory mediators in the cerebrospinal fluid affects mature oligodendrocytes, concomitantly with the early appearance of activated microglia, and that such reactions are rapidly followed by an increase of oligodendrocyte precursors paralleled by astrocytic activation. The data, which allowed dissecting the events elicited in glial cell populations by inflammatory mediators via the cerebrospinal fluid, indicate that these molecules elicit in vivo a toxic effect on mature oligodendrocytes and a stimulation of their precursors in the adult brain.
Collapse
Affiliation(s)
- Guo-Ying Kong
- Department of Morphological and Biomedical Sciences, University of Verona, Verona, Italy
| | | | | |
Collapse
|
656
|
Koyama Y. [Functional alterations of astroglia on brain pathologies and their intracellular mechanisms]. Nihon Yakurigaku Zasshi 2002; 119:135-43. [PMID: 11915515 DOI: 10.1254/fpj.119.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A phenotypic alteration of astroglia, "astroglial activation", is a common phenomenon observed on brain pathologies. The hypertrophy/hyperplasia of activated astroglia causes a glial scar, which prevents synaptic re-generation. In contrast, many neurotrophic substances are produced by the activated astroglia. Thus, the functional alteration of astroglia is important in tissue repair processes of the damaged CNS. Endothelins (ETs) are involved in the pathophysiological responses of the CNS. We found that injection of ETs into rat brain induced activated astroglia. A selective ETB-receptor antagonist attenuated the induction of activated astroglia. In cultured astroglia, ETs reproduce the functional alterations characterizing activated astroglia; i.e., increases in proliferation, morphological changes and stimulation of several gene transcriptions. ETs re-organized astroglial cytoskeletal actin through a small GTP-binding protein, rho, which may underlie the astroglial hypertrophy. Analysis of gene expression showed that transcriptions of neurotrophic factors (GDNF and BDNF) were stimulated by ETs. ETs stimulated astroglial proliferation by both adhesion-dependent and -independent mechanisms, where FAK and ERK plays key roles, respectively. These findings suggest important roles of ETs in the regulation of astroglial functions.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Science, Osaka University, Yamada-Oka, Suita 565-0871, Japan.
| |
Collapse
|
657
|
Johansson S, Strömberg I. Guidance of dopaminergic neuritic growth by immature astrocytes in organotypic cultures of rat fetal ventral mesencephalon. J Comp Neurol 2002; 443:237-49. [PMID: 11807834 DOI: 10.1002/cne.10119] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Astrocytes, with their many functions in producing and controlling the environment in the brain, are of great interest when it comes to studying regeneration after injury and neurodegenerative diseases such as in grafting in Parkinson's disease. This study was performed to investigate astrocytic guidance of growth derived from dopaminergic neurons using organotypic cultures of rat fetal ventral mesencephalon. Primary cultures were studied at different time points starting from 3 days up to 28 days. Cultures were treated with either interleukin-1 beta (IL-1 beta), which has stimulating effects on astrocytic proliferation, or the astrocytic inhibitor cytosine arabinoside (Ara-C). Tyrosine hydroxylase (TH)-immunohistochemistry was used to visualize dopaminergic neurons, and antibodies against glial fibrillary acidic protein (GFAP) and S100 beta were used to label astrocytes. The results revealed that a robust TH-positive nerve fiber production was seen already at 3 days in vitro. These neurites had disappeared by 5 days. This early nerve fiber outgrowth was not guided by direct interactions with glial cells. Later, at 7 days in vitro, a second wave of TH-positive neuritic outgrowth was clearly observed. GFAP-positive astrocytic processes guided these neurites. TH-positive neurites arborized overlying S100 beta-positive astrocytes in an area distal to the GFAP-positive astrocytic processes. Treatment with IL-1 beta resulted in an increased area of TH-positive nerve fiber network. In cultures treated with Ara-C, neither astrocytes nor outgrowth of dopaminergic neurites were observed. In conclusion, this study shows that astrocytes play a major role in long-term dopaminergic outgrowth, both in axonal elongation and branching of neurites. The long-term nerve fiber growth is preceded by an early transient outgrowth of dopamine neurites.
Collapse
Affiliation(s)
- Saga Johansson
- Department of Neuroscience, Karolinska Institutet, S 171 77 Stockholm, Sweden
| | | |
Collapse
|
658
|
Bush TG. Enteric glial cells. An upstream target for induction of necrotizing enterocolitis and Crohn's disease? Bioessays 2002; 24:130-40. [PMID: 11835277 DOI: 10.1002/bies.10039] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a direct consequence of the sophisticated arrangement of its intrinsic neurons, the gastrointestinal tract is unique among peripheral organs, in its ability to mediate its own reflexes. Neurons of the enteric nervous system are intimately associated with enteric glial cells. These supporting cells do not resemble Schwann cells, the glial cell found in all other parts of the peripheral nervous system, but share many similarities with astrocytes of the central nervous system. Ablation of enteric glial cells in adult transgenic mice has demonstrated that these cells are essential to maintain the integrity of the small intestine. Acute loss of enteric glial cells induces massive pathological changes with similarities to necrotizing enterocolitis (NEC) and early Crohn's disease. These human conditions share some mechanistic similarities. Identification of enteric glial cell dysfunction/loss as sufficient to induce necrotic/inflammatory bowel disease may be important to understand the pathogenesis of both NEC and Crohn's disease.
Collapse
Affiliation(s)
- Toby G Bush
- Department of Physiology & Cell Biology and Department of Pharmacology, University of Nevada, School of Medicine, Anderson Medical Building, MS 352, Reno NV 89557-0046, USA.
| |
Collapse
|
659
|
Satoh K, Hata M, Yokota H. A novel member of the leucine-rich repeat superfamily induced in rat astrocytes by beta-amyloid. Biochem Biophys Res Commun 2002; 290:756-62. [PMID: 11785964 DOI: 10.1006/bbrc.2001.6272] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
beta-Amyloid (Abeta) deposition and senile plaque-associated astrocytes are common neuropathological features of Alzheimer's disease (AD). Although the molecular mechanisms by which Abeta contributes to the progression of neuropathologic changes have not been established entirely, there is little doubt that the association of Abeta with astrocytes, the predominant cell type in brain, has significant influence on exacerbation of the disease. In an effort to identify key molecules involved in AD, we investigated Abeta-responsive genes using rat astrocytes. In this study, we identified a novel Abeta-induced rat gene, designated as Lib, encoding a type I transmembrane protein with an extracellular domain that contains fifteen leucine-rich repeats (LRRs). Human counterpart of rat Lib is located on chromosome 3q29 and human Lib mRNA found in particularly placenta. Lib mRNA levels in rat C6 astrocytoma cells can be increased by pro-inflammatory cytokines and the rat Lib-transfected cells express Lib protein on the cell surfaces. Lib appears to be a member of the LRR superfamily which is involved in cell-cell and/or -extracellular matrix interactions including adhesion or target recognition in neuroinflammatory states.
Collapse
Affiliation(s)
- Kazuki Satoh
- Discovery Research Laboratory, Daiichi Pharmaceutical Company, Ltd., Tokyo R&D Center, 1-16-13 Kitakasai, Edogawa-Ku, Tokyo, 134-8630, Japan.
| | | | | |
Collapse
|
660
|
Martínez-Contreras A, Huerta M, Lopez-Perez S, García-Estrada J, Luquín S, Beas Zárate C. Astrocytic and microglia cells reactivity induced by neonatal administration of glutamate in cerebral cortex of the adult rats. J Neurosci Res 2002; 67:200-10. [PMID: 11782964 DOI: 10.1002/jnr.10093] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent studies confirm that astrocytes and neurons are associated with the synaptic transmission, particularly with the regulation of glutamate (Glu) levels. Therefore, they have the capacity to modulate the Glu released from neurons into the extracellular space. It has also been demonstrated an intense astrocytic and microglia response to physical or chemical lesions of the central nervous system. However, the persistence of the response of the glial cells in adult brain had not been previously reported, after the excitotoxic damage caused by neonatal dosage of monosodium glutamate (MSG) to newborn rats. In this study, 4 mg/g body weight of MSG were administered to newborn rats at 1, 3, 5, and 7 days after birth, at the age of 60 days the astrocytes and the microglia cells were analyzed with immunohistochemical methods in the fronto-parietal cortex. Double labeling to glial fibrillary acidic protein (GFAP) and BrdU, or isolectin-B(4) and BrdU identified astrocytes or microglia cells that proliferated; immunoblotting and immunoreactivity to vimentin served for assess immaturity of astrocytic intermediate filaments. The results show that the neonatal administration of MSG-induced reactivity of astrocytes and microglia cells in the fronto-parietal cortex, which was characterized by hyperplasia; an increased number of astrocytes and microglia cells that proliferated, hypertrophy; increased complexity of the cytoplasm extension of both glial cells and expression of RNAm to vimentin, with the presence of vimentin-positive astrocytes. This glial response to neuroexcitotoxic stimulus of Glu on the immature brain, which persisted to adulthood, suggests that the neurotransmitter Glu could trigger neuro-degenerative illnesses.
Collapse
|
661
|
Martins RN, Taddei K, Kendall C, Evin G, Bates KA, Harvey AR. Altered expression of apolipoprotein E, amyloid precursor protein and presenilin-1 is associated with chronic reactive gliosis in rat cortical tissue. Neuroscience 2002; 106:557-69. [PMID: 11591456 DOI: 10.1016/s0306-4522(01)00289-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A major characteristic feature of Alzheimer's disease is the formation of compact, extracellular deposits of beta-amyloid (senile plaques). These deposits are surrounded by reactive astrocytes, microglia and dystrophic neurites. Mutations in three genes have been implicated in early-onset familial Alzheimer's disease. However, inflammatory changes and astrogliosis are also believed to play a role in Alzheimer's pathology. What is unclear is the extent to which these factors initiate or contribute to the disease progression. Previous rat studies demonstrated that heterotopic transplantation of foetal cortical tissue onto the midbrain of neonatal hosts resulted in sustained glial reactivity for many months. Similar changes were not seen in cortex-to-cortex grafts. Using this model of chronic cortical gliosis, we have now measured reactive changes in the levels of the key Alzheimer's disease proteins, namely the amyloid precursor protein, apolipoprotein E and presenilin-1. These changes were visualised immunohistochemically and were quantified by western blot analysis. We report here that chronic cortical gliosis in the rat results in a sustained increase in the levels of apolipoprotein E and total amyloid precursor protein. Reactive astrocytes in heterotopic cortical grafts were immunopositive for both of these proteins. Using a panel of amyloid precursor protein antibodies we demonstrate that chronic reactive gliosis is associated with alternative cleavage of the peptide. No significant changes in apolipoprotein E or amyloid precursor protein expression were seen in non-gliotic cortex-to-cortex transplants. Compared to host cortex, the levels of both N-terminal and C-terminal fragments of presenilin-1 were significantly lower in gliotic heterotopic grafts.The changes described here largely mirror those seen in the cerebral cortex of humans with Alzheimer's disease and are consistent with the proposal that astrogliosis may be an important factor in the pathogenesis of this disease.
Collapse
Affiliation(s)
- R N Martins
- Sir James McCusker Alzheimer Research Unit and University Department of Surgery, The University of Western Australia, Nedlands, Austalia.
| | | | | | | | | | | |
Collapse
|
662
|
Blin M, Crusio WE, Hévor T, Cloix JF. Chronic inhibition of glutamine synthetase is not associated with impairment of learning and memory in mice. Brain Res Bull 2002; 57:11-5. [PMID: 11827732 DOI: 10.1016/s0361-9230(01)00631-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The convulsant methionine sulfoximine (MSO) is a byproduct of the agenized flour commonly used for feeding domestic animals decades ago. MSO is a powerful glycogenic and epileptogenic agent, and it is an irreversible inhibitor of glutamine synthetase. This latter effect was hypothesized to be responsible for the increase in the incidence of some neuropathologies in humans, such as Alzheimer's disease or Parkinson's disease. In order to test this hypothesis, we chronically administered MSO to two inbred strains of mice, C57BL/6J and BALB/cJ, and analyzed possible alterations in learning and memory features of these mice. Mice were given 20 mg/kg of MSO three times a week for 10 weeks. Spatial learning capabilities assessed with a radial maze were not affected by the long-term MSO treatment, although activity was significantly decreased in BALB/cJ mice. Thus, our data suggest that long-term administration of non-convulsive and non-glycogenic doses of MSO do not alter the spatial memory of mice. Our results do not support the hypothesis that chronic treatment with MSO influences hippocampus-dependent learning abilities in mice.
Collapse
Affiliation(s)
- Marion Blin
- Métabolisme Cérébral et Neuropathologies, UPRES EA 2633, Université d'Orléans, Orléans Cedex 2, France
| | | | | | | |
Collapse
|
663
|
Mollace V, Salvemini D, Riley DP, Muscoli C, Iannone M, Granato T, Masuelli L, Modesti A, Rotiroti D, Nisticó R, Bertoli A, Perno C, Aquaro S. The contribution of oxidative stress in apoptosis of human‐cultured astroglial cells induced by supernatants of HIV‐1‐infected macrophages. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.1.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Vincenzo Mollace
- Faculty of Pharmacy, University of Catanzaro “Magna Graecia”, Roccelletta di Borgia, Italy
| | | | | | - Carolina Muscoli
- Faculty of Pharmacy, University of Catanzaro “Magna Graecia”, Roccelletta di Borgia, Italy
| | | | | | - Laura Masuelli
- Department of Experimental Medicine and Biochemical Sciences, University of Rome ‘Tor Vergata’, Italy
| | - Andrea Modesti
- Department of Experimental Medicine and Biochemical Sciences, University of Rome ‘Tor Vergata’, Italy
| | | | - Robert Nisticó
- Department of Experimental Medicine and Biochemical Sciences, University of Rome ‘Tor Vergata’, Italy
| | | | - Carlo‐Federico Perno
- Department of Experimental Medicine and Biochemical Sciences, University of Rome ‘Tor Vergata’, Italy
- IRCCS “L. Spallanzani”, Rome, Italy
| | - Stefano Aquaro
- Department of Experimental Medicine and Biochemical Sciences, University of Rome ‘Tor Vergata’, Italy
| |
Collapse
|
664
|
|
665
|
Giralt M, Penkowa M, Lago N, Molinero A, Hidalgo J. Metallothionein-1+2 protect the CNS after a focal brain injury. Exp Neurol 2002; 173:114-28. [PMID: 11771944 DOI: 10.1006/exnr.2001.7772] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have evaluated the physiological relevance of metallothionein-1+2 (MT-1+2) in the CNS following damage caused by a focal cryolesion onto the cortex. In comparison to normal mice, transgenic mice overexpressing the MT-1 isoform (TgMTI* mice) showed a significant decrease of the number of activated microglia/macrophage and of CD3+ T lymphocytes in the area surrounding the lesion, while astrocytosis was increased. The TgMTI* mice showed a diminished peripheral macrophage but not CD3 T cell response to the cryolesion. This altered inflammatory response produced a decreased expression of the proinflammatory cytokines IL-1beta, IL-6, and TNF-alpha and an increased expression of the growth factors bFGF, TGFbeta1, and VEGF in the TgMTI* mice relative to control mice, which might be related to the increased angiogenesis and regeneration of the parenchyma of the former mice. The overexpression of MT-1 dramatically reduced the cryolesion-induced oxidative stress and neuronal apoptosis. Remarkably, these effects were also obtained by the intraperitoneal administration of MT-2 to both normal and MT-1+2 knock-out mice. These results fully support the notion that MT-1+2 are essential in the CNS for coping with focal brain injury and suggest a potential therapeutic use of these proteins.
Collapse
Affiliation(s)
- Mercedes Giralt
- Departamento de Biología Celular, de Fisiología y de Inmunología, Unidad de Fisiología Animal, Facultad de Ciencias, Universidad Autónoma de Barcelona, Bellaterra, Barcelona, Spain 08193
| | | | | | | | | |
Collapse
|
666
|
Cassina P, Peluffo H, Pehar M, Martinez-Palma L, Ressia A, Beckman JS, Estévez AG, Barbeito L. Peroxynitrite triggers a phenotypic transformation in spinal cord astrocytes that induces motor neuron apoptosis. J Neurosci Res 2002; 67:21-9. [PMID: 11754077 DOI: 10.1002/jnr.10107] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oxidative stress mediated by nitric oxide (NO) and its toxic metabolite peroxynitrite has previously been associated with motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Degenerating spinal motor neurons in familial and sporadic ALS are typically surrounded by reactive astrocytes expressing the inducible form of NO synthase (iNOS), suggesting that astroglia may have a pathogenic role in ALS. We report here that a brief exposure of spinal cord astrocyte monolayers to peroxynitrite (0.25-1 mM) provoked long-lasting reactive morphological changes characterized by process-bearing cells displaying intense glial fibrillary acidic protein and iNOS immunoreactivity. Furthermore, peroxynitrite caused astrocytes to promote apoptosis of embryonic motor neurons subsequently plated on the monolayers. Neuronal death occurred within 24 hr after plating, as evidenced by the presence of degenerating motor neurons positively stained for activated caspase-3 and nitrotyrosine. Motor neuron death was largely prevented by NOS inhibitors and peroxynitrite scavengers but not by trophic factors that otherwise will support motor neuron survival in the absence of astrocytes. The bacterial lipopolysaccharide, a well-known inflammatory stimulus that induces iNOS expression in astrocytes, provoked the same effects on astrocytes as peroxynitrite. Thus, spinal cord astrocytes respond to extracellular peroxynitrite by adopting a phenotype that is cytotoxic to motor neurons through peroxynitrite-dependent mechanisms.
Collapse
Affiliation(s)
- Patricia Cassina
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
667
|
Albrecht PJ, Dahl JP, Stoltzfus OK, Levenson R, Levison SW. Ciliary neurotrophic factor activates spinal cord astrocytes, stimulating their production and release of fibroblast growth factor-2, to increase motor neuron survival. Exp Neurol 2002; 173:46-62. [PMID: 11771938 DOI: 10.1006/exnr.2001.7834] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At focal CNS injury sites, several cytokines accumulate, including ciliary neurotrophic factor (CNTF) and interleukin-1beta (IL-1beta). Additionally, the CNTF alpha receptor is induced on astrocytes, establishing an autocrine/paracrine loop. How astrocyte function is altered as a result of CNTF stimulation remains incompletely characterized. Here, we demonstrate that direct injection of CNTF into the spinal cord increases GFAP expression and astroglial size and that primary cultures of spinal cord astrocytes treated with CNTF, IL-1beta, or leukemia inhibitory factor exhibit nuclear hypertrophy comparable to that observed in vivo. Using a coculture bioassay, we further demonstrate that CNTF treatment of astrocytes increases their ability to support ChAT(+) ventral spinal cord neurons (presumably motor neurons) more than twofold compared with untreated astrocytes. Also, the complexity of neurites was significantly increased in neurons cultured with CNTF-treated astrocytes compared with untreated astrocytes. RT-PCR analysis demonstrated that CNTF increased levels of FGF-2 and nerve growth factor (NGF) mRNA and that IL-1beta increased NGF and hepatocyte growth factor mRNA levels. Furthermore, both CNTF and IL-1beta stimulated the release of FGF-2 from cultured spinal cord astrocytes. These findings demonstrate that cytokine-activated astrocytes better support CNS neuron survival via the production of neurotrophic molecules. We also show that CNTF synergizes with FGF-2, but not epidermal growth factor, to promote DNA synthesis in spinal cord astrocyte cultures. The significance of these findings is discussed by presenting a new model depicting the sequential activation of astrocytes by cytokines and growth factors in the context of CNS injury and repair.
Collapse
Affiliation(s)
- Phillip J Albrecht
- Department of Neuroscience and Anatomy, Milton S. Hershey College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
668
|
Affiliation(s)
- Maria Luisa Cotrina
- Department of Anatomy and Cell Biology, New York Medical College, Valhalla, NY 10595, USA
| | | |
Collapse
|
669
|
Puro DG. Diabetes-induced dysfunction of retinal Müller cells. TRANSACTIONS OF THE AMERICAN OPHTHALMOLOGICAL SOCIETY 2002; 100:339-52. [PMID: 12545700 PMCID: PMC1358969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
PURPOSE This study tested the hypothesis that the function of the glutamate transporter in retinal Müller cells is compromised early in the course of diabetes by a mechanism involving oxidation. Dysfunction of this transporter, which removes glutamate from the extracellular space, may play a critical role in the disruption of glutamate homeostasis that occurs in the diabetic retina. Because glutamate is toxic to retinal neurons and is likely to exacerbate oxidative stress, elucidation of the mechanisms by which diabetes elevates the concentration of this amino acid may help to better understand the pathogenesis of diabetic retinopathy. METHODS Müller cells were freshly isolated from normal rats and those made diabetic by streptozotocin injection. The activity of the Müller cell glutamate transporter, which is electrogenic, was monitored via the perforated-patch configuration of the patch-clamp technique. RESULTS Four weeks after the onset of hyperglycemia, dysfunction of the Müller cell glutamate transporter was detected (P = .005). After 13 weeks of streptozotocin-induced diabetes, the activity of this transporter was decreased by 67% (P = .001). Consistent with oxidation causing this dysfunction, exposure to a disulfide-reducing agent rapidly restored the activity of this transporter in Müller cells from diabetic retinas. CONCLUSIONS Soon after the onset of experimental diabetes, the function of the glutamate transporter in Müller cells is decreased by a mechanism that is likely to involve oxidation. The demonstration that the activity of this transporter can be rapidly restored raises the possibility that targeting this molecule for therapeutic intervention may restore glutamate homeostasis and, thereby, ameliorate sight-threatening complications of diabetic retinopathy.
Collapse
Affiliation(s)
- Donald G Puro
- Departments of Ophthalmology and Visual Sciences and Physiology, University of Michigan, Ann Arbor, USA
| |
Collapse
|
670
|
Goddard DR, Berry M, Kirvell SL, Butt AM. Fibroblast growth factor-2 induces astroglial and microglial reactivity in vivo. J Anat 2002; 200:57-67. [PMID: 11833655 PMCID: PMC1570884 DOI: 10.1046/j.0021-8782.2001.00002.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A role for fibroblast growth factor-2 (FGF-2) has been proposed in mediating the glial response to injury in the central nervous system (CNS). We have tested this possibility in vivo, by injecting FGF-2 into the cerebrospinal fluid (CSF) of the brain ventricles of young rats and analysing glial cells in the anterior medullary velum (AMV), which partly roofs the IVth ventricle. FGF-2 was administered at two different doses, low FGF-2 (500 ng mL(-1) CSF) and high FGF-2 (10 microg mL(-1) CSF), and saline vehicle was injected in controls. Injections were performed twice daily for three days, commencing at postnatal day (P) 6, and AMV were analysed at P9, using immunohistochemistry and Western blotting. Glial cells were unaffected by treatment with saline or low FGF-2, whereas high FGF-2 induced reactive changes in glial cell types: (1) there was increased GFAP expression in astrocytes, demonstrated by Western blot and immunohistochemistry, and astrocytes appeared hypertrophic, with increased process thickness and number; (2) the number of ED1 labelled microglia/macrophages was doubled, from 47 +/- 6 to 114 +/- 17 cells per field (0.75 mm2; values are mean +/- SEM), and microglia appeared activated, with a multipolar and granular appearance; (3) NG2 positive glial cells appeared more fibrous and there was increased density of processes, although there was no significant increase in their number; (4) oligodendrocyte somata were enlarged and there was a loss of myelin sheaths. The results show that at high CSF titres of FGF-2 induce glial reactivity in vivo and support a role for FGF-2 in the pathology of CNS injury and EAE.
Collapse
|
671
|
Hantaz-Ambroise D, Jacque C, Aït Ikhlef A, Parmentier C, Leclerc P, Cambier D, Zadigue G, Rieger F. Specific features of chronic astrocyte gliosis after experimental central nervous system (CNS) xenografting and in Wobbler neurological mutant CNS. Differentiation 2001; 69:100-7. [PMID: 11798064 DOI: 10.1046/j.1432-0436.2001.690204.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study sets out to compare and contrast the astrocyte reaction in two unrelated experimental designs both resulting in marked chronic astrogliosis and natural motoneuron death in the wobbler mutant mouse and brain damage in the context of transplantation of xenogeneic embryonic CNS tissue into the striatum of newborn mice. The combined use of GFAP-labeling and confocal imaging allows the morphological comparison between these two different types of astrogliosis. Our findings demonstrate that, in mice, after tissue transplantation in the striatum, gliosis is not restricted to the regions of damage: it occurs not only near the site of transplantation, the striatum, but also in more distant regions of the CNS and particularly in the spinal cord. In the wobbler mutant mouse, a strong gliosis is observed in the spinal cord, site of motoneuronal cell loss. However, moderate astrocytic reaction (increased GFAP-immunoreactivity) can also be found in other wobbler CNS regions, remote from the spinal cord. In the wobbler ventral horn, where neurons degenerate, the hypertrophied reactive astrocytes exhibit a dramatic increase of glial fibrils and surround the motoneuron cell bodies, occupying most of the motoneuron environment. The striking and specific presence of hypertrophic astrocytes in wobbler mice accompanied by a dramatic increase of glial fibrils located in the vicinity of motoneuron cell bodies suggests that short astrogliosis fills the space left by degenerating motoneurons and interferes with their survival. In the spinal cord of xenografted mice, chronic astrogliosis is also observed, but only glial processes without hypertrophied cell bodies are found in the neuronal micro-environment. It is tempting to speculate that gliosis in the wobbler spinal cord, the local accumulation of astrocyte cell bodies, and high density of astrocytic processes may interfere with the diffusion of neuroactive substances in gliotic tissue, some of which are neurotoxic, and cooperate or even trigger neuronal death.
Collapse
|
672
|
Cornet A, Savidge TC, Cabarrocas J, Deng WL, Colombel JF, Lassmann H, Desreumaux P, Liblau RS. Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn's disease? Proc Natl Acad Sci U S A 2001; 98:13306-11. [PMID: 11687633 PMCID: PMC60866 DOI: 10.1073/pnas.231474098] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Early pathological manifestations of Crohn's disease (CD) include vascular disruption, T cell infiltration of nerve plexi, neuronal degeneration, and induction of T helper 1 cytokine responses. This study demonstrates that disruption of the enteric glial cell network in CD patients represents another early pathological feature that may be modeled after CD8(+) T cell-mediated autoimmune targeting of enteric glia in double transgenic mice. Mice expressing a viral neoself antigen in astrocytes and enteric glia were crossed with specific T cell receptor transgenic mice, resulting in apoptotic depletion of enteric glia to levels comparable in CD patients. Intestinal and mesenteric T cell infiltration, vasculitis, T helper 1 cytokine production, and fulminant bowel inflammation were characteristic hallmarks of disease progression. Immune-mediated damage to enteric glia therefore may participate in the initiation and/or the progression of human inflammatory bowel disease.
Collapse
Affiliation(s)
- A Cornet
- Institut National de la Santé et de la Recherche Médicale U546 and Immunology Laboratory, Pitié-Salpêtrière Hospital, Paris 75013, France
| | | | | | | | | | | | | | | |
Collapse
|
673
|
Feeney SJ, McKelvie PA, Austin L, Jean-Francois MJ, Kapsa R, Tombs SM, Byrne E. Presymptomatic motor neuron loss and reactive astrocytosis in the SOD1 mouse model of amyotrophic lateral sclerosis. Muscle Nerve 2001; 24:1510-9. [PMID: 11745954 DOI: 10.1002/mus.1176] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In familial amyotrophic lateral sclerosis (fALS), there is a need to establish more precisely the progression of the disease, particularly whether there is gradual presymptomatic neuronal loss or an abrupt loss coinciding with the symptomatic stage. To elucidate this, we investigated the progression of motor neuron loss through morphological techniques, reactive astrocytosis, and expression of ubiquitin and neurofilament proteins, by immunohistochemistry, in SOD1 G93A mice with a protracted disease course and control mice. Loss of motor neurons in SOD1 G93A mice followed a biphasic progression, with an initial loss at 126 days of age, followed by a gradual loss from onset of symptoms through to end-stage disease. Reactive astrocytosis was first observed at 70 days of age and showed a gradual increase through to end-stage disease. This suggests that there is a need for early detection of fALS cases, and potential therapeutic treatments may be more beneficial if administered at an early stage.
Collapse
Affiliation(s)
- S J Feeney
- Melbourne Neuromuscular Research Institute, St. Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | |
Collapse
|
674
|
Jamin N, Junier MP, Grannec G, Cadusseau J. Two temporal stages of oligodendroglial response to excitotoxic lesion in the gray matter of the adult rat brain. Exp Neurol 2001; 172:17-28. [PMID: 11681837 DOI: 10.1006/exnr.2001.7752] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Excitotoxic lesions in the gray matter induce profuse demyelination of passage and afferent fibers in areas of neuronal loss, independent of Wallerian degeneration. The time course of this phenomenon, which extends over weeks after the excitotoxin injection, suggests that demyelination is not related only to a direct effect of the toxin. In order to define mechanisms at work, a parallel study of myelin and oligodendrocytes was carried out following kainate injections into the adult rat thalamus. Within the 1st day postlesion, myelin alteration appeared throughout the area exhibiting neuronal loss, while the number of oligodendrocytes fell by 45%. No apoptotic oligodendrocytes were identified at that time. Over the following 2 days, there was no further loss of myelin and oligodendrocytes, but there was an increase in the number of oligodendrocytes displaying typical signs of apoptosis as revealed with TUNEL-end-labeled nuclei, Hoechst-labeled condensed chromatin bodies, or bax immunoreactivity. This resulted in a second, progressive loss of both myelin and oligodendrocytes leading to their almost complete disappearance 2 weeks postlesion. These results demonstrate two temporal stages of oligodendroglial cell death. The excitotoxin injection resulted in the rapid destruction of a first oligodendroglial population, most probably by necrosis. A second population died in a delayed manner from apoptosis. This second wave of death coincided with an activated microglia/macrophage invasion of the lesion, suggesting that delayed oligodendroglial death results from toxic microglia/macrophage effects. In addition, the longest surviving oligodendrocytes were located next to reactive astrocytes, suggesting the existence of trophic interactions between these two glial populations.
Collapse
Affiliation(s)
- N Jamin
- Faculté de Médecine, INSERM U421, 8 Rue du Général Sarrail, 94010 Créteil Cedex, France
| | | | | | | |
Collapse
|
675
|
Ray SK, Matzelle DD, Wilford GG, Hogan EL, Banik NL. Inhibition of calpain-mediated apoptosis by E-64 d-reduced immediate early gene (IEG) expression and reactive astrogliosis in the lesion and penumbra following spinal cord injury in rats. Brain Res 2001; 916:115-26. [PMID: 11597598 DOI: 10.1016/s0006-8993(01)02874-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Upregulation of calpain, a Ca(2+)-activated cysteine protease, has been implicated in apoptosis and tissue degeneration in spinal cord injury (SCI) that over time spreads from the site of injury to the surrounding regions. We examined calpain content and activity, regulation of immediate early genes (IEGs) such as c-jun and c-fos, reactive astrogliosis as the expression of glial fibrillary acidic protein (GFAP), and apoptosis-related features such as caspase-3 mRNA expression and internucleosomal DNA fragmentation in 1-cm long spinal cord segments (S1, distant rostral; S2, adjacent rostral; S3, lesion or injury; S4, adjacent caudal; and S5, distant caudal) following SCI in rats. Calpain content and production of 150 kD calpain-cleaved alpha-fodrin fragment, expression of IEGs, reactive astrogliosis, and apoptotic features were highly increased in the lesion (S3), moderately in adjacent areas (S2 and S4), and slightly in distant areas (S1 and S5) in SCI rats when compared to sham animals. Administration of the calpain-specific inhibitor E-64-d (1 mg/kg) to SCI rats continuously for 24 h inhibited calpain activity and other factors contributing to apoptosis in the lesion and surrounding areas, indicating that calpain played a key role in the pathophysiology of SCI. The results obtained from this animal model of SCI suggest that calpain inhibitor can provide neuroprotection in patients with SCI.
Collapse
Affiliation(s)
- S K Ray
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309, P.O. Box 250606, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
676
|
Funk JL, Trout CR, Wei H, Stafford G, Reichlin S. Parathyroid hormone-related protein (PTHrP) induction in reactive astrocytes following brain injury: a possible mediator of CNS inflammation. Brain Res 2001; 915:195-209. [PMID: 11595209 DOI: 10.1016/s0006-8993(01)02850-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PTHrP, a peptide induced in parenchymal organs during endotoxemia and in the synovium in rheumatoid arthritis, has recently been shown to be expressed in immature or transformed human astrocytes, but not in normal cells. This finding has led us to postulate that PTHrP might also be induced in reactive astrocytes in inflamed brain and, thus, act as a mediator of CNS inflammation. To test this hypothesis, PTHrP expression was examined following cortical stab wound injury in rats, a classical model of reactive gliosis. To determine whether PTHrP was induced in glia by TNF-alpha, a known mediator of inflammation in brain and of PTHrP induction in peripheral tissues, and to determine whether PTHrP, in turn, mediated inflammatory changes in glia, in vitro studies with rat astrocytes and glial-enriched mixed brain cells were also undertaken. Consistent with previous reports of PTHrP expression in normal brain, neurons were the primary site of immunoreactive PTHrP expression in the injured cortex 1 day after stab wound injury. Over the subsequent 3 days, specific immunostaining for PTHrP and for GFAP, a marker of reactive astrocytes, appeared in reactive astrocytes at the wound edge and in perivascular astrocytes, reaching a maximum level of expression at the last time point examined (day 4). TNF-alpha induced PTHrP expression in astrocyte and glial-enriched brain cells in vitro, suggesting that this pro-inflammatory peptide was a possible mediator of PTHrP expression in CNS inflammation. PTHrP(1-34) acted in an additive fashion with TNF-alpha to induced astrocyte expression of IL-6, a cytokine with demonstrated neuroprotective effects. Astrocyte proliferation was inhibited by PTHrP(1-34) and PTHrP(1-141), acting via a PTH/PTHrP receptor cAMP signaling pathway. These studies suggest that PTHrP, analogous to its regulatory functions in other non-CNS models of inflammation, may be an important mediator of the inflammatory response in brain.
Collapse
Affiliation(s)
- J L Funk
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | | | |
Collapse
|
677
|
Ajtai BM, Kálmán M. Reactive glia support and guide axon growth in the rat thalamus during the first postnatal week. A sharply timed transition from permissive to non-permissive stage. Int J Dev Neurosci 2001; 19:589-97. [PMID: 11600320 DOI: 10.1016/s0736-5748(01)00038-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The present study demonstrates a supportive and guiding effect of the reactive glia on the postlesional axon growth in vivo, and offers a model system to compare permissive and non-permissive forms of the glial reaction. After stab wounds in early postnatal (P2-P9) rats, the reactive glia and the nerve fibers were detected by the immunohistochemical staining of glial fibrillary acidic protein (GFAP) and neurofilament protein, respectively. In the thalamus of the animals lesioned at P5 or earlier, an extraordinary bundle of fibers immunoreactive to neurofilament protein was found, corresponding to the lesion track marked by reactive glia. This bundle persisted up to 2 months, as shown by electron microscopy. When the animals were lesioned at P7 or later, the lesion track was immunonegative to neurofilament protein. Following P6 lesions, an intermediate situation was found, the strip of immunoreactive neurofilament protein was missing, or short and weak. GFAP immunostaining demonstrated a typical reactive glia in every case. As a result of the same operation, reactive glia plus a deficiency of neurofilament protein immunostaining was found in every animal in the cortex and the corpus callosum, independently from the age at lesion. The results demonstrate that the permissive nature of the glial reaction depends on the lesioned area as well, and changes to a non-permissive effect in a short time interval.
Collapse
Affiliation(s)
- B M Ajtai
- Department of Anatomy, Histology and Embryology, Semmelweis University of Medicine, Tüzoltó 58, H-1450, Budapest, Hungary
| | | |
Collapse
|
678
|
Safavi-Abbasi S, Wolff JR, Missler M. Rapid morphological changes in astrocytes are accompanied by redistribution but not by quantitative changes of cytoskeletal proteins. Glia 2001; 36:102-15. [PMID: 11571788 DOI: 10.1002/glia.1099] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Astrocytes have the potential to acquire very different morphologies, depending on their regional location in the CNS and on their functional interactions with other cell types. Morphological changes between a flat or a fibroblast-like and a stellate or process-bearing appearance, and vice versa, can occur rapidly, but very little is known as to whether morphological transformations are based on quantitative changes of cytoskeletal proteins in microfilaments, intermediate filaments, and/or microtubules. Using a cell culture of selective type 1 astrocytes, we compared the distribution and protein amounts of a number of cytoskeletal proteins both during primary process growth induced by specific media conditions and after secondary transformations induced by dBcAMP. Our data presented in this report support the idea that astrocytes can undergo dramatic changes in their morphology requiring subcellular redistribution of most cytoskeletal proteins but no quantitative modifications of the amount of the respective proteins. After pharmacological treatment with lysophosphatic acid and genistein we show that astrocytes can acquire intermediate morphologies reminiscent of both fibroblast and stellate-like cells. These experiments demonstrate that the recently described RhoA-mediated signaling cascade between the cell surface and cytoskeletal proteins is only one of several signaling pathways acting on the astrocytic cytoskeleton.
Collapse
Affiliation(s)
- S Safavi-Abbasi
- Department of Anatomy and Developmental Neurobiology, University of Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
679
|
Penkowa M, Espejo C, Martínez-Cáceres EM, Poulsen CB, Montalban X, Hidalgo J. Altered inflammatory response and increased neurodegeneration in metallothionein I+II deficient mice during experimental autoimmune encephalomyelitis. J Neuroimmunol 2001; 119:248-60. [PMID: 11585628 DOI: 10.1016/s0165-5728(01)00357-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metallothionein-I+II (MT-I+II) are antioxidant, neuroprotective proteins, and in this report we have examined their roles during experimental autoimmune encephalomyelitis (EAE) by comparing MT-I+II-knock-out (MTKO) and wild-type mice. We herewith show that EAE susceptibility is higher in MTKO mice relatively to wild-type mice, and that the inflammatory responses elicited by EAE in the central nervous system (CNS) are significantly altered by MT-I+II deficiency. Thus, during EAE the MTKO mice showed increased macrophage and T-lymphocytes infiltration in the CNS, while their reactive astrogliosis was significantly decreased. In addition, the expression of the proinflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha elicited by EAE was further increased in the MTKO mice, and oxidative stress and apoptosis were also significantly increased in MTKO mice compared to normal mice. The present results strongly suggest that MT-I+II are major factors involved in the inflammatory response of the CNS during EAE and that they play a neuroprotective role in this scenario.
Collapse
Affiliation(s)
- M Penkowa
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
680
|
Salvador-Silva M, Ricard CS, Agapova OA, Yang P, Hernandez MR. Expression of small heat shock proteins and intermediate filaments in the human optic nerve head astrocytes exposed to elevated hydrostatic pressure in vitro. J Neurosci Res 2001; 66:59-73. [PMID: 11599002 DOI: 10.1002/jnr.1197] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The small heat shock proteins (sHSP), alpha B-crystallin and Hsp27 are chaperone molecules that maintain the integrity of intermediate filament (IF) network and prevent unfolding of cellular proteins induced by stress. In the optic nerve head (ONH) of eyes with glaucoma, reactive astrocytes expressed Hsp27, perhaps in response to stress related to elevated intraocular pressure. In this study, we determined the effect of elevated hydrostatic pressure (HP) in the synthesis, distribution and co-localization of alpha B-crystallin and Hsp27 with IF in cultured ONH astrocytes. Astrocyte monolayers were pressurized to 60 mm Hg (92% air 8% CO(2)) and incubated at 37 degrees C for 6, 24 or 48 hr. Controls were exposed to ambient pressure. Cells were analyzed by immunocytochemistry, Western blot and immunoprecipitation using antibodies to Hsp27, alpha B-crystallin, vimentin or GFAP. Control astrocytes seemed flat, polygonal with short processes. alpha B-crystallin appeared granular in the perinuclear area and filamentous in the cell periphery. Fine granular Hsp27 was distributed throughout the cytoplasm. GFAP and vimentin co-localized with Hsp27 in the cytoplasm. Astrocytes exposed to HP were star-shaped with long processes. Hsp27 was condensed in large granules around the nucleus. GFAP and vimentin co-localized with Hsp27 and alpha B-crystallin in the perinuclear area. Western blot and metabolic labeling detected increased synthesis of Hsp27, GFAP and vimentin but no change in alpha B-crystallin. These results indicated that GFAP and vimentin associate with Hsp27 and alpha B-crystallin in ONH astrocytes. HP affected the integrity of the cytoskeleton consistent with morphological changes. Small HSP may reinforce and maintain IF integrity in response to HP.
Collapse
Affiliation(s)
- M Salvador-Silva
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
681
|
Ricard CS, Agapova OA, Salvador-Silva M, Kaufman PL, Hernandez MR. Expression of myocilin/TIGR in normal and glaucomatous primate optic nerves. Exp Eye Res 2001; 73:433-47. [PMID: 11825016 DOI: 10.1006/exer.2001.1063] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocilin/TIGR was the first molecule discovered to be linked with primary open angle glaucoma (POAG), a blinding disease characterized by progressive loss of retinal ganglion cells. Mutations in myocilin/TIGR have been associated with age of disease onset and severity. The function of myocilin/TIGR and its role in glaucoma is unknown. Myocilin/TIGR has been studied in the trabecular meshwork to determine a role in regulation of intraocular pressure. The site of damage to the axons of the retinal ganglion cells is the optic nerve head (ONH). The myocilin/TIGR expression was examined in fetal through adult human optic nerve as well as in POAG. Myocilin/TIGR was expressed in the myelinated optic nerve of children and normal adults but not in the fetal optic nerve before myelination. Also examined was the expression in monkeys with experimental glaucoma. The results demonstrate that optic nerve head astrocytes constitutively express myocilin/TIGR in vivo in primates. Nevertheless, myocilin/TIGR is apparently reduced in glaucomatous ONH. The colocalization of myocilin/TIGR to the myelin suggests a role of myocilin/TIGR in the myelinated optic nerve.
Collapse
Affiliation(s)
- C S Ricard
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
682
|
Teunissen CE, Steinbusch HW, Angevaren M, Appels M, de Bruijn C, Prickaerts J, de Vente J. Behavioural correlates of striatal glial fibrillary acidic protein in the 3-nitropropionic acid rat model: disturbed walking pattern and spatial orientation. Neuroscience 2001; 105:153-67. [PMID: 11483309 DOI: 10.1016/s0306-4522(01)00164-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The 3-nitropropionic acid animal model is a model where excitotoxicity, mitochondrial dysfunction and oxidative stress, mechanisms common to various neurodegenerative diseases, are involved. The present study investigated whether behavioural alterations in this model were related to striatal damage. Wistar and Lewis rats were exposed to 3-nitropropionic acid and their behavioural performance (open field, walking pattern and Morris Water Maze task) was tested after the injections and after a recovery period of 3 weeks. No changes in activity were found in the open field test. Altered walking pattern was observed in the footprint analysis, although a different response was observed in the Wistar rats compared to the Lewis rats. Initially increased latency times were observed during visual discrimination learning in the Morris Water Maze task in 3-nitropropionic acid-treated Wistar rats compared to Wistar controls. During spatial discrimination learning (invisible platform) in the Morris Water Maze task the swimming velocity was decreased in both rat strains as a result of 3-nitropropionic acid treatment. Increased striatal glial fibrillary acidic protein concentration in Wistar rats correlated with several parameters of the footprint analysis and with the latency and distance in visual as well as spatial discrimination learning in the Morris Water Maze. It is concluded that measurement of walking pattern and spatial orientation performance are sensitive indicators to monitor behavioural changes in relation to striatal degeneration in the 3-nitropropionic acid animal model. In addition, Lewis rats are less sensitive towards 3-nitropropionic acid treatment than Wistar rats.
Collapse
Affiliation(s)
- C E Teunissen
- European Graduate School of Neuroscience (Euron), Universiteit Maastricht, Department of Psychiatry and Neuropsychology, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
683
|
Giménez y Ribotta M, Menet V, Privat A. The role of astrocytes in axonal regeneration in the mammalian CNS. PROGRESS IN BRAIN RESEARCH 2001; 132:587-610. [PMID: 11545022 DOI: 10.1016/s0079-6123(01)32105-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- M Giménez y Ribotta
- INSERM U336, Université Montpellier II, Place E. Bataillon, B.P. 106, 34095 Montpellier, France
| | | | | |
Collapse
|
684
|
Pekny M. Astrocytic intermediate filaments: lessons from GFAP and vimentin knock-out mice. PROGRESS IN BRAIN RESEARCH 2001; 132:23-30. [PMID: 11544992 DOI: 10.1016/s0079-6123(01)32062-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- M Pekny
- Department of Medical Biochemistry, University of Göteborg, Box 440, 405 30 Göteborg, Sweden.
| |
Collapse
|
685
|
Bezzi P, Domercq M, Vesce S, Volterra A. Neuron-astrocyte cross-talk during synaptic transmission: physiological and neuropathological implications. PROGRESS IN BRAIN RESEARCH 2001; 132:255-65. [PMID: 11544994 DOI: 10.1016/s0079-6123(01)32081-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- P Bezzi
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | |
Collapse
|
686
|
Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 2001. [PMID: 11517237 DOI: 10.1523/jneurosci.21-17-06480.2001] [Citation(s) in RCA: 499] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glia undergo inflammatory activation in most CNS pathologies and are capable of killing cocultured neurons. We investigated the mechanisms of this inflammatory neurodegeneration using a mixed culture of neurons, microglia, and astrocytes, either when the astrocytes were activated directly with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) or LPS/IFN-gamma-activated microglia were added to mixed neuronal cultures. In either case, activated glia caused 75-100% necrotic cell death within 48 hr, which was completely prevented by inhibitors of inducible nitric oxide synthase (iNOS) (aminoguanidine or 1400W). Activated astrocytes or microglia produced nitric oxide (NO) (steady-state level approximately 0.5 microm), which immediately inhibited the cellular respiration of cocultured neurons, as did authentic NO. NO donors also decreased ATP levels and stimulated lactate production by neurons, consistent with NO-induced respiratory inhibition. NO donors or a specific respiratory inhibitor caused rapid (<1 min) release of glutamate from neuronal and neuronal-astrocytic cultures and subsequent neuronal death that was blocked by an antagonist of NMDA receptor (MK-801). MK-801 also blocked neuronal death induced by activated glia. High oxygen also prevented NO-induced neuronal death, consistent with death being induced by NO inhibition of cytochrome c oxidation in competition with oxygen. Thus activated glia kill neurons via NO from iNOS, which inhibits neuronal respiration resulting in glutamate release and subsequent excitotoxicity. This may contribute to neuronal cell death in inflammatory, infectious, ischemic, and neurodegenerative diseases.
Collapse
|
687
|
Fiedorowicz A, Figiel I, Kamińska B, Zaremba M, Wilk S, Oderfeld-Nowak B. Dentate granule neuron apoptosis and glia activation in murine hippocampus induced by trimethyltin exposure. Brain Res 2001; 912:116-27. [PMID: 11532427 DOI: 10.1016/s0006-8993(01)02675-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the effect of trimethyltin (TMT), a well-known neurotoxicant, on murine hippocampal neurons and glial cells. Three days following intraperitoneal (i.p.) injection of TMT into 1-month-old Balb/c mice at a dose of 2.5 mg/kg body weight we detected damage of the dentate gyrus granular neurons. The dying cells displayed chromatin condensation and internucleosomal DNA fragmentation, which are the most characteristic features of apoptosis. To study, if prolyl oligopeptidase is engaged in neuronal apoptosis following TMT administration, we pretreated mice with the specific inhibitor--Fmoc-Pro-ProCN in doses of 5 and 10 mg/kg body weight (i.p. injection). Three days following injection we did not observe any attenuation of neurotoxic damage, regardless of inhibitor dose, indicating the lack of prolyl oligopeptidase contribution to neuronal injury caused by TMT. The neurodegeneration was associated with reactive astrogliosis in whole hippocampus, but particularly in injured dentate gyrus. The reactive astrocytes showed an increased nerve growth factor (NGF) expression in ventral as well as dorsal hippocampal parts. NGF immunoreactivity was also augmented in neurons of CA3/CA4 areas, which were almost totally spared after TMT intoxication. It suggested a role for this neurotrophin in protection of pyramidal cells from loss of connection between CA3/CA4 and dentate gyrus fields. The granule neurons' death was accompanied by increased histochemical staining with isolectin B4, a marker of microglia, in the region of neurodegeneration. The microglial cells displayed ramified and ameboid morphology, characteristic of their reactive forms. Activated microglia were the main source of interleukin 1beta (IL-1beta). It is possible that this cytokine may participate in neurodegeneration of granule cells. Alternatively, IL-1beta elaborated by microglia could play a role in increasing NGF expression, both in astroglia and in CA3/CA4 neurons.
Collapse
Affiliation(s)
- A Fiedorowicz
- Laboratory of Neurochemistry, Department of Neurophysiology, Nencki Institute of Experimental Biology, Pasteura 3 Street, 02-093, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
688
|
Abstract
Astrocytes, the most abundant glial cell type in the brain, are considered to have physiological and pathological roles in neuronal activities. We found that reperfusion of cultured astrocytes after Ca2+ depletion causes Ca2+ overload followed by delayed cell death and the Na(+)-Ca2+ exchanger in the reverse mode is responsible for this Ca(2+)-mediated cell injury (Ca2+ paradox injury). The Ca2+ paradox injury of cultured astrocytes is considered to be an in vitro model of ischemia/reperfusion injury, since a similar paradoxical change in extracellular Ca2+ concentration is reported in ischemic brain tissue. This review summarizes the mechanisms underlying the Ca(2+)-mediated injury of astrocytes and the protective effects of drugs against Ca2+ reperfusion injury. This study shows that Ca2+ reperfusion injury of astrocytes is accompanied by apoptosis as evidenced by DNA fragmentation and nuclear condensation. Calpain, reactive oxygen species, calcineurin, caspase-3, and NF-kappa B are involved in Ca2+ reperfusion-induced delayed apoptosis of astrocytes. Several drugs including CV-2619, T-588 and ibudilast protect astrocytes against the delayed apoptosis. CV-2619 prevents astrocytes from the delayed apoptosis by production of nerve growth factor, resulting in an activation of mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3 (PI3) kinase signal pathways. The protective effect of T-588 is mainly mediated by an activation of MAP/ERK signal cascade. Moreover, ibudilast prevents the Ca2+ reperfusion-induced delayed apoptosis of astrocytes via cyclic GMP signaling pathway. Further studies in this system will contribute to the development of new drugs that attenuate ischemia/reperfusion injury via modulation of astrocytes.
Collapse
Affiliation(s)
- K Takuma
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| |
Collapse
|
689
|
Bal-Price A, Brown GC. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 2001; 21:6480-91. [PMID: 11517237 PMCID: PMC6763071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
Glia undergo inflammatory activation in most CNS pathologies and are capable of killing cocultured neurons. We investigated the mechanisms of this inflammatory neurodegeneration using a mixed culture of neurons, microglia, and astrocytes, either when the astrocytes were activated directly with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) or LPS/IFN-gamma-activated microglia were added to mixed neuronal cultures. In either case, activated glia caused 75-100% necrotic cell death within 48 hr, which was completely prevented by inhibitors of inducible nitric oxide synthase (iNOS) (aminoguanidine or 1400W). Activated astrocytes or microglia produced nitric oxide (NO) (steady-state level approximately 0.5 microm), which immediately inhibited the cellular respiration of cocultured neurons, as did authentic NO. NO donors also decreased ATP levels and stimulated lactate production by neurons, consistent with NO-induced respiratory inhibition. NO donors or a specific respiratory inhibitor caused rapid (<1 min) release of glutamate from neuronal and neuronal-astrocytic cultures and subsequent neuronal death that was blocked by an antagonist of NMDA receptor (MK-801). MK-801 also blocked neuronal death induced by activated glia. High oxygen also prevented NO-induced neuronal death, consistent with death being induced by NO inhibition of cytochrome c oxidation in competition with oxygen. Thus activated glia kill neurons via NO from iNOS, which inhibits neuronal respiration resulting in glutamate release and subsequent excitotoxicity. This may contribute to neuronal cell death in inflammatory, infectious, ischemic, and neurodegenerative diseases.
Collapse
Affiliation(s)
- A Bal-Price
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, United Kingdom.
| | | |
Collapse
|
690
|
Belmadani A, Zou JY, Schipma MJ, Neafsey EJ, Collins MA. Ethanol pre-exposure suppresses HIV-1 glycoprotein 120-induced neuronal degeneration by abrogating endogenous glutamate/Ca2+-mediated neurotoxicity. Neuroscience 2001; 104:769-81. [PMID: 11440808 DOI: 10.1016/s0306-4522(01)00139-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neurotoxic mechanism of HIV-1 envelope glycoprotein 120 (gp120) involves glutamatergic (NMDA) receptor/Ca2+-dependent excitotoxicity, mediated in part via glia. Pro-inflammatory cytokines also may have roles. We have reported that pre-exposure of brain cultures to 'physiological' ethanol concentrations (20-30 mM) protects against neuronal damage from HIV-1 gp120, but not from the direct receptor agonist, NMDA. Using lactate dehydrogenase assays and propidium iodide staining of rat organotypic hippocampal-entorhinal cortical slice cultures we determined that ethanol's suppression of gp120 neurotoxicity required at least 4 days of pretreatment. The gp120-induced neurotoxicity was accompanied by interleukin-6 elevations that were not affected by the pretreatment. However, gp120 induced substantial, early increases in extracellular glutamate levels that were blocked by ethanol pretreatment, conceivably abrogating excitotoxicity. Consistent with abrogation of excitotoxic pathways, fura-2 imaging showed selective deficits in gp120-dependent intracellular Ca2+ responses in ethanol-pretreated slices. Gp120 is believed to increase glutamate levels by both stimulating release and inhibiting (re)uptake. Results with a labeled glutamate analog, D-[3H]aspartate, revealed that gp120's inhibition of glutamate uptake, rather than its stimulation of release, was abolished after ethanol. Further studies indicated that two converging effects of ethanol pretreatment may underlie the abolishment of gp120-mediated glutamate uptake inhibition: (a) blockade of gp120-induced release (ostensibly from glia) of arachidonic acid, an inhibitor of astroglial glutamate reuptake, and (b) modest proliferation and activation of astroglia upon gp120 stimulation--which are likely to augment glutamate transporters. Thus, as with gp120 itself, glia and glutamate/arachidonic acid regulation appear to be important targets for ethanol. Since moderate ethanol consumption is as common among HIV-infected individuals as in the general population, this newly recognized neuroprotective (and apparently anti-excitotoxic) effect of ethanol withdrawal in vitro could be important, but it requires further study before its significance, if any, is understood.
Collapse
Affiliation(s)
- A Belmadani
- Department of Cell Biology, Neurobiology and Anatomy, Loyola University Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
691
|
Vila M, Jackson-Lewis V, Guégan C, Wu DC, Teismann P, Choi DK, Tieu K, Przedborski S. The role of glial cells in Parkinson's disease. Curr Opin Neurol 2001; 14:483-9. [PMID: 11470965 DOI: 10.1097/00019052-200108000-00009] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Parkinson's disease is a common neurodegenerative disorder characterized by the progressive loss of the dopaminergic neurons in the substantia nigra pars compacta. The loss of these neurons is associated with a glial response composed mainly of activated microglial cells and, to a lesser extent, of reactive astrocytes. This glial response may be the source of trophic factors and can protect against reactive oxygen species and glutamate. Aside from these beneficial effects, the glial response can mediate a variety of deleterious events related to the production of reactive species, and pro-inflammatory prostaglandin and cytokines. This article reviews the potential protective and deleterious effects of glial cells in the substantia nigra pars compacta of Parkinson's disease.
Collapse
Affiliation(s)
- M Vila
- Department of Neurology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
692
|
Cotter DR, Pariante CM, Everall IP. Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 2001; 55:585-95. [PMID: 11576755 DOI: 10.1016/s0361-9230(01)00527-5] [Citation(s) in RCA: 299] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recent quantitative post-mortem investigations of the cerebral cortex have convincingly demonstrated cortical glial cell loss in subjects with major depression. Evidence is also mounting that glial cell loss may also be a feature of schizophrenia. These findings coincide with a re-evaluation of the importance of glial cells in normal cortical function. In addition to their traditional roles in neuronal migration and inflammatory processes, glia are now accepted to have roles in providing trophic support to neurons, neuronal metabolism, and the formation of synapses and neurotransmission. Consequently, reduced cortical glial cell numbers could be responsible for some of the pathological changes in schizophrenia and depression, including reduced neuronal size, reduced levels of synaptic proteins, and abnormalities of cortical neurotransmission. Additionally, as astrocytes provide the energy requirements of neurons, deficient astrocyte function could account for aspects of the functional magnetic imaging abnormalities found in these disorders. We discuss the possible basis of glial cell loss in these disorders and suggest that elevated levels of glucocorticoids, due to illness-related stress or to hyperactivity of the hypothalamic-pituitary-adrenal may down-regulate glial activity and so predispose to, or exacerbate psychiatric illness through enhanced excitotoxicity. The potential therapeutic impact of agents which up-regulate glial activity or normalise glial cell numbers is also discussed.
Collapse
Affiliation(s)
- D R Cotter
- Section of Experimental Neuropathology and Psychiatry, Institute of Psychiatry, King's College London, DeCrespigny Park, London, UK.
| | | | | |
Collapse
|
693
|
Alonso G. Proliferation of progenitor cells in the adult rat brain correlates with the presence of vimentin-expressing astrocytes. Glia 2001; 34:253-66. [PMID: 11360298 DOI: 10.1002/glia.1059] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It is well established that proliferation of progenitor cells persists within the hippocampal dentate gyrus (DG) and the subventricular zone of the lateral ventricle (SVZ) in the adult brain. The aim of the present study was to determine whether the rate of cell proliferation within these germinative zones could be correlated to the occurrence of a particular glial environment. The cell proliferation marker bromodeoxyuridine (BrdU) was administrated to rats under different physiological and experimental conditions known to modify the rate of progenitor cell proliferation. Within both germinative zones, BrdU-labeled nuclei were associated with cell bodies immunostained for the neuronal marker polysialylated neural cell adhesion molecule, but not for the glial markers glial fibrillary acidic protein (GFAP) or vimentin (VIM). In all the rats examined, however, proliferating (BrdU-labeled) cells always exhibited close relationships with immature-like astrocytes that expressed both GFAP and VIM. There was a dramatic decrease of cell proliferation in the DG from both the aged rats and the corticosterone-treated adult rats that was correlated with a decreased expression of vimentin by the astrocytes present in this region. In contrast, both cell proliferation and vimentin expression were only slightly affected in the SVZ from these two treatment groups. Conversely, after either adrenalectomy or a surgical lesion through the lateral hippocampus, the increase in cell proliferation observed in the DG was correlated to the occurrence of an increased number of GFAP and VIM double immunostained structures in these regions. All together, these data suggest that immature-like astrocytes present in the germinative zones may provide a microenvironment involved in sustaining the proliferation of progenitor cells.
Collapse
Affiliation(s)
- G Alonso
- CNRS-UMR 5101, CCIPE, Montpellier, France.
| |
Collapse
|
694
|
Abstract
We studied the role of glutamate excitotoxicity in motor neuron degeneration in the wobbler mouse (wr/wr), a model of amyotrophic lateral sclerosis and spinal muscular atrophies. Choline acetyltransferase (ChAT) activity was decreased in the cervical spinal cord and in the muscles innervated by nerves originating in this region of wobbler mice, but no differences were found in the lumbar spinal cord and in the hindleg muscles. Glial fibrillar acid protein (GFAP), a marker of reactive gliosis, was significantly higher in the cervical spinal cord of wobbler mice aged 4 weeks than in controls and the differences were more marked at 12 weeks; no differences were found in the lumbar spinal cord. In spite of this selective degeneration of motor neurons (resulting in strong decrease in the neuronal glutamate transporter EAAC1) and reactive gliosis in the cervical spinal cord, the levels of the glial glutamate transporter proteins GLT-1 and GLAST were similar in wobbler and control mice. Plasma concentrations of excitatory amino acids were no different at any time examined. Our results exclude the involvement of decrease in glutamate GLT 1 transporter in the motor neuron degeneration in wobbler mice.
Collapse
Affiliation(s)
- P Bigini
- Laboratory of Receptor Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Via Eritrea 62, 20157 Milano, Italy
| | | | | |
Collapse
|
695
|
Beas-Zárate C, Rivera-Huizar SV, Martinez-Contreras A, Feria-Velasco A, Armendariz-Borunda J. Changes in NMDA-receptor gene expression are associated with neurotoxicity induced neonatally by glutamate in the rat brain. Neurochem Int 2001; 39:1-10. [PMID: 11311443 DOI: 10.1016/s0197-0186(01)00008-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The N-methyl-D-aspartate receptor (NMDA-R) is fully functional in the rat early in embryogenesis, and diverse neuronal plasticity events are regulated through its activation later in postnatal development. On the other hand, systemic administration of glutamate (Glu) to rats at birth induces neuronal degeneration in glutamatergic central nervous system regions via Glu receptor activation. However, it is not known whether an increase in neonatal Glu levels modifies the gene expression of NMDA-R subunits, or if these putative changes are related to gamma-aminobutyric acid-mediated (GABAergic) neurotransmission. We measured, by means of semi-quantitative reverse transcriptase polymerase chain reaction, changes in gene expression of the NMDA-R subunits: NMDA-R1, NMDA-R 2A and NMDA-R 2B in cerebral cortex (CC), striatum (ST) and hippocampus (HP) in the brains of rats treated neonatally with monosodium L-glutamate (MSG). These studies were supported by histological and quantitative analysis of the glia. Our results showed histological evidence of neuronal damage, and increased glial cell number and activity were detected. This was seen mainly in the ST and HP of MSG-treated animals. Significant increases in NMDA-R1, 2A and 2B subunits gene expression was also observed in ST and HP but not in CC, where only NMDA-R 2B was increased in MSG-treated rats. Our data suggest that increases in Glu levels and activation of Glu-receptors after neonatal administration of MSG induce an increase in glial cell reactivity and important changes in NMDA-R molecular composition, with signs of neuronal damage.
Collapse
Affiliation(s)
- C Beas-Zárate
- Lab. de Neuroquimica, Div. Neurociencias, C.I.B.O., IMSS, Depto. de Biol. Cel. y Molec. C.U.C.B.A., U. de G., APDO, Postal No. 4-160, 44421, Jalisco, Guadalajara, Mexico.
| | | | | | | | | |
Collapse
|
696
|
Galiano M, Liu ZQ, Kalla R, Bohatschek M, Koppius A, Gschwendtner A, Xu S, Werner A, Kloss CU, Jones LL, Bluethmann H, Raivich G. Interleukin-6 (IL6) and cellular response to facial nerve injury: effects on lymphocyte recruitment, early microglial activation and axonal outgrowth in IL6-deficient mice. Eur J Neurosci 2001; 14:327-41. [PMID: 11553283 DOI: 10.1046/j.0953-816x.2001.01647.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nerve injury triggers numerous changes in the injured neurons and surrounding non-neuronal cells. Of particular interest are molecular signals that play a role in the overall orchestration of this multifaceted cellular response. Here we investigated the function of interleukin-6 (IL6), a multifunctional neurotrophin and cytokine rapidly expressed in the injured nervous system, using the facial axotomy model in IL6-deficient mice and wild-type controls. Transgenic deletion of IL6 caused a massive decrease in the recruitment of CD3-positive T-lymphocytes and early microglial activation during the first 4 days after injury in the axotomized facial nucleus. This was accompanied by a more moderate reduction in peripheral regeneration at day 4, lymphocyte recruitment (day 14) and enhanced perikaryal sprouting (day 14). Motoneuron cell death, phagocytosis by microglial cells and recruitment of granulocytes and macrophages into injured peripheral nerve were not affected. In summary, IL6 lead to a variety of effects on the cellular response to neural trauma. However, the particularly strong actions on lymphocytes and microglia suggest that this cytokine plays a central role in the initiation of immune surveillance in the injured central nervous system.
Collapse
Affiliation(s)
- M Galiano
- Department of Neuromorphology, Max-Planck Institute for Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
697
|
Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J Neurosci 2001. [PMID: 11331375 DOI: 10.1523/jneurosci.21-10-03457.2001] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Delivery of neurotrophic factors to the injured spinal cord has been shown to stimulate neuronal survival and regeneration. This indicates that a lack of sufficient trophic support is one factor contributing to the absence of spontaneous regeneration in the mammalian spinal cord. Regulation of the expression of neurotrophic factors and receptors after spinal cord injury has not been studied in detail. We investigated levels of mRNA-encoding neurotrophins, glial cell line-derived neurotrophic factor (GDNF) family members and related receptors, ciliary neurotrophic factor (CNTF), and c-fos in normal and injured spinal cord. Injuries in adult rats included weight-drop, transection, and excitotoxic kainic acid delivery; in newborn rats, partial transection was performed. The regulation of expression patterns in the adult spinal cord was compared with that in the PNS and the neonate spinal cord. After mechanical injury of the adult rat spinal cord, upregulations of NGF and GDNF mRNA occurred in meningeal cells adjacent to the lesion. BDNF and p75 mRNA increased in neurons, GDNF mRNA increased in astrocytes close to the lesion, and GFRalpha-1 and truncated TrkB mRNA increased in astrocytes of degenerating white matter. The relatively limited upregulation of neurotrophic factors in the spinal cord contrasted with the response of affected nerve roots, in which marked increases of NGF and GDNF mRNA levels were observed in Schwann cells. The difference between the ability of the PNS and CNS to provide trophic support correlates with their different abilities to regenerate. Kainic acid delivery led to only weak upregulations of BDNF and CNTF mRNA. Compared with several brain regions, the overall response of the spinal cord tissue to kainic acid was weak. The relative sparseness of upregulations of endogenous neurotrophic factors after injury strengthens the hypothesis that lack of regeneration in the spinal cord is attributable at least partly to lack of trophic support.
Collapse
|
698
|
Won JS, Choi MR, Suh HW. Stimulation of astrocyte-enriched culture with C2 ceramide increases proenkephalin mRNA: involvement of cAMP-response element binding protein and mitogen activated protein kinases. Brain Res 2001; 903:207-15. [PMID: 11382404 DOI: 10.1016/s0006-8993(01)02452-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In rat astrocyte-enriched culture, C2 ceramide dose- and time-dependently increased proenkephalin (proENK) mRNA; the significant increase began at 6 h after 30 microM C2 ceramide treatment (about 13-fold) and at 12 h after treatment (about 21-fold). In addition, C2 ceramide also increased AP-1 proteins, such as Fra-1, c-Jun, JunB and JunD, and phosphorylation of CREB. The blocking of protein synthesis by cycloheximide (CHX) evokes a further increase of C2 ceramide-induced proENK mRNA and phospho-CREB level, while C2 ceramide-induced increases of AP-1 protein levels were reduced by CHX. The C2 ceramide-induced proENK mRNA expression was not changed significantly by the pretreatment with H89 (a PKA inhibitor), KN62 (a calcium/calmodulin-dependent protein kinase II inhibitor), and PD98059 (an ERK pathway inhibitor). However, calphostin C (a PKC inhibitor) and or SB203580 (a p38 inhibitor) partially but significantly reduced C2 ceramide-induced proENK mRNA expression as well as phospho-CREB level. These results suggest that, in the rat astrocyte-enriched culture, C2 ceramide increases proENK mRNA expression via phosphorylation of CREB rather than the increases of AP-1 protein levels. Additionally, the activations of PKC and p38, but not PKA, calcium/calmodulin-dependent protein kinase II, and ERK, by C2 ceramide play important regulatory roles in C2 ceramide-induced proENK mRNA expression via activating the CREB.
Collapse
Affiliation(s)
- J S Won
- Department of Pharmacology, College of Medicine, Hallym University, 1 Okchun-Dong, Chunchon, Kangwon-Do 200-702, South Korea
| | | | | |
Collapse
|
699
|
Abstract
Oligodendrocytes are glial cells devoted to the production of myelin sheaths. Myelination of the CNS occurs essentially after birth. To delineate both the times of oligodendrocyte proliferation and myelination, as well as to study the consequence of dysmyelination in vivo, a model of inducible dysmyelination was developed. To achieve oligodendrocyte ablation, transgenic animals were generated that express the herpes virus 1 thymidine kinase (HSV1-TK) gene under the control of the myelin basic protein (MBP) gene promoter. The expression of the MBP-TK transgene in oligodendrocytes is not toxic on its own; however, toxicity can be selectively induced by the systemic injection of animals with nucleoside analogs, such as FIAU [1-(2-deoxy-2-fluoro-beta-delta-arabinofuranosyl)-5-iodouracil]. This system allows us to control the precise duration of the toxic insult and the degree of ablation of oligodendrocytes in vivo. We show that chronic treatment of MBP-TK mice with FIAU during the first 3 postnatal weeks triggers almost a total depletion of oligodendrocytes in the CNS. These effects are accompanied by a behavioral phenotype characterized by tremors, seizures, retarded growth, and premature animal death. We identify the period of highest oligodendrocytes division in the first 9 postnatal days. Delaying the beginning of FIAU treatments results in different degrees of dysmyelination. Dysmyelination in MBP-TK mice is always accompanied by astrocytosis. Thus, this transgenic line provides a model to study the events occurring during dysmyelination of various intensities. It also represents an invaluable tool to investigate remyelination in vivo.
Collapse
|
700
|
A novel role for protein tyrosine phosphatase shp1 in controlling glial activation in the normal and injured nervous system. J Neurosci 2001. [PMID: 11157073 DOI: 10.1523/jneurosci.21-03-00865.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tyrosine phosphorylation regulated by protein tyrosine kinases and phosphatases plays an important role in the activation of glial cells. Here we examined the expression of intracellular protein tyrosine phosphatase SHP1 in the normal and injured adult rat and mouse CNS. Our study showed that in the intact CNS, SHP1 was expressed in astrocytes as well as in pyramidal cells in hippocampus and cortex. Axotomy of peripheral nerves and direct cortical lesion led to a massive upregulation of SHP1 in activated microglia and astrocytes, whereas the neuronal expression of SHP1 was not affected. In vitro experiments revealed that in astrocytes, SHP1 associates with epidermal growth factor (EGF)-receptor, whereas in microglia, SHP1 associates with colony-stimulating factor (CSF)-1-receptor. In postnatal and adult moth-eaten viable (me(v)/me(v)) mice, which are characterized by reduced SHP1 activity, a strong increase in reactive astrocytes, defined by GFAP immunoreactivity, was observed throughout the intact CNS, whereas neither the morphology nor the number of microglial cells appeared modified. Absence of (3)[H]-thymidine-labeled nuclei indicated that astrocytic proliferation does not occur. In response to injury, cell number as well as proliferation of microglia were reduced in me(v)/me(v) mice, whereas the posttraumatic astrocytic reaction did not differ from wild-type littermates. The majority of activated microglia in mutant mice showed rounded and ameboid morphology. However, the regeneration rate after facial nerve injury in me(v)/me(v) mice was similar to that in wild-type littermates. These results emphasize that SHP1 as a part of different signaling pathways plays an important role in the global regulation of astrocytic and microglial activation in the normal and injured CNS.
Collapse
|