651
|
Mei L, Tang Y, Li M, Yang P, Liu Z, Yuan J, Zheng P. Co-Administration of Cholesterol-Lowering Probiotics and Anthraquinone from Cassia obtusifolia L. Ameliorate Non-Alcoholic Fatty Liver. PLoS One 2015; 10:e0138078. [PMID: 26375281 PMCID: PMC4573521 DOI: 10.1371/journal.pone.0138078] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/26/2015] [Indexed: 12/25/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a common liver disease in recent decades. No effective treatment is currently available. Probiotics and natural functional food may be promising therapeutic approaches to this disease. The present study aims to investigate the efficiency of the anthraquinone from Cassia obtusifolia L. (AC) together with cholesterol-lowering probiotics (P) to improve high-fat diet (HFD)-induced NAFLD in rat models and elucidate the underlying mechanism. Cholesterol-lowering probiotics were screened out by MRS-cholesterol broth with ammonium ferric sulfate method. Male Sprague-Dawley rats were fed with HFD and subsequently administered with AC and/or P. Lipid metabolism parameters and fat synthesis related genes in rat liver, as well as the diversity of gut microbiota were evaluated. The results demonstrated that, compared with the NAFLD rat, the serum lipid levels of treated rats were reduced effectively. Besides, cholesterol 7α-hydroxylase (CYP7A1), low density lipoprotein receptor (LDL-R) and farnesoid X receptor (FXR) were up-regulated while the expression of 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR) was reduced. The expression of peroxisome proliferator activated receptor (PPAR)-α protein was significantly increased while the expression of PPAR-γ and sterol regulatory element binding protein-1c (SREBP-1c) was down-regulated. In addition, compared with HFD group, in AC, P and AC+P group, the expression of intestinal tight-junction protein occludin and zonula occluden-1 (ZO-1) were up-regulated. Furthermore, altered gut microbiota diversity after the treatment of probiotics and AC were analysed. The combination of cholesterol-lowering probiotics and AC possesses a therapeutic effect on NAFLD in rats by up-regulating CYP7A1, LDL-R, FXR mRNA and PPAR-α protein produced in the process of fat metabolism while down-regulating the expression of HMGCR, PPAR-γ and SREBP-1c, and through normalizing the intestinal dysbiosis and improving the intestinal mucosal barrier function.
Collapse
Affiliation(s)
- Lu Mei
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Youcai Tang
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming Li
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Pingchang Yang
- Department of Pathology&Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhiqiang Liu
- Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen, China
| | - Jieli Yuan
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, Dalian, China
- * E-mail: (PYZ); (JLY)
| | - Pengyuan Zheng
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Medical Microecology and Clinical Nutrition Research Institute of Zhengzhou University, Zhengzhou, China
- * E-mail: (PYZ); (JLY)
| |
Collapse
|
652
|
Abstract
A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly influenced by the composition of fat in the diet. We review findings that certain fats (for example, long-chain saturated fatty acids) are associated with dysbiosis, impairment of intestinal barrier function, and metabolic endotoxemia. In contrast, other fatty acids, including short-chain and certain unsaturated fatty acids, protect against dysbiosis and impairment of barrier function caused by other dietary fats. These fats may promote insulin sensitivity by inhibiting metabolic endotoxemia and dysbiosis-driven inflammation. During dysbiosis, the modulation of metabolism by diet and microbiota may represent an adaptive process that compensates for the increased fuel demands of an activated immune system.
Collapse
Affiliation(s)
- Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, New Mexico, 87131-0001, USA
| | - Henry C Lin
- Division of Gastroenterology, New Mexico VA Health Care System, Albuquerque, New Mexico, 87108, USA; Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, 87131-0001, USA
| |
Collapse
|
653
|
Ussar S, Griffin NW, Bezy O, Fujisaka S, Vienberg S, Softic S, Deng L, Bry L, Gordon JI, Kahn CR. Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome. Cell Metab 2015; 22:516-530. [PMID: 26299453 PMCID: PMC4570502 DOI: 10.1016/j.cmet.2015.07.007] [Citation(s) in RCA: 405] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/03/2015] [Accepted: 07/06/2015] [Indexed: 12/12/2022]
Abstract
Obesity, diabetes, and metabolic syndrome result from complex interactions between genetic and environmental factors, including the gut microbiota. To dissect these interactions, we utilized three commonly used inbred strains of mice-obesity/diabetes-prone C57Bl/6J mice, obesity/diabetes-resistant 129S1/SvImJ from Jackson Laboratory, and obesity-prone but diabetes-resistant 129S6/SvEvTac from Taconic-plus three derivative lines generated by breeding these strains in a new, common environment. Analysis of metabolic parameters and gut microbiota in all strains and their environmentally normalized derivatives revealed strong interactions between microbiota, diet, breeding site, and metabolic phenotype. Strain-dependent and strain-independent correlations were found between specific microbiota and phenotypes, some of which could be transferred to germ-free recipient animals by fecal transplantation. Environmental reprogramming of microbiota resulted in 129S6/SvEvTac becoming obesity resistant. Thus, development of obesity/metabolic syndrome is the result of interactions between gut microbiota, host genetics, and diet. In permissive genetic backgrounds, environmental reprograming of microbiota can ameliorate development of metabolic syndrome.
Collapse
Affiliation(s)
- Siegfried Ussar
- Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Munich, 85764, Germany
| | - Nicholas W. Griffin
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63108
| | - Olivier Bezy
- Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215
| | - Shiho Fujisaka
- Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215
| | - Sara Vienberg
- Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215
| | - Samir Softic
- Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215
| | - Luxue Deng
- Center for Clinical and Translational Metagenomics, Department of Pathology, Brigham & Women's Hospital Harvard Medical School, Boston, MA, 021115
| | - Lynn Bry
- Center for Clinical and Translational Metagenomics, Department of Pathology, Brigham & Women's Hospital Harvard Medical School, Boston, MA, 021115
| | - Jeffrey I. Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63108
| | - C. Ronald Kahn
- Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215
| |
Collapse
|
654
|
Malnick S, Melzer E. Human microbiome: From the bathroom to the bedside. World J Gastrointest Pathophysiol 2015; 6:79-85. [PMID: 26301122 PMCID: PMC4540710 DOI: 10.4291/wjgp.v6.i3.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/01/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023] Open
Abstract
The human gut contains trillions of bacteria, the major phylae of which include Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria. Fecal microbial transplantation (FMT) has been known of for many years but only recently has been subjected to rigorous examination. We review the evidence regarding FMT for recurrent Clostridium difficile infection which has resulted in it being an approved treatment. In addition there is some evidence for its use in both irritable bowel syndrome and inflammatory bowel disease. Further research is needed in order to define the indications for FMT and the most appropriate method of administration.
Collapse
|
655
|
de Medeiros IC, de Lima JG. Is nonalcoholic fatty liver disease an endogenous alcoholic fatty liver disease? – A mechanistic hypothesis. Med Hypotheses 2015; 85:148-52. [DOI: 10.1016/j.mehy.2015.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/11/2015] [Accepted: 04/21/2015] [Indexed: 02/07/2023]
|
656
|
Kirpich IA, Marsano LS, McClain CJ. Gut-liver axis, nutrition, and non-alcoholic fatty liver disease. Clin Biochem 2015; 48:923-30. [PMID: 26151226 DOI: 10.1016/j.clinbiochem.2015.06.023] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 06/22/2015] [Accepted: 06/27/2015] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of diseases involving hepatic fat accumulation, inflammation with the potential progression to fibrosis and cirrhosis over time. NAFLD is often associated with obesity, insulin resistance, and diabetes. The interactions between the liver and the gut, the so-called "gut-liver axis", play a critical role in NAFLD onset and progression. Compelling evidence links the gut microbiome, intestinal barrier integrity, and NAFLD. The dietary factors may alter the gut microbiota and intestinal barrier function, favoring the occurrence of metabolic endotoxemia and low grade inflammation, thereby contributing to the development of obesity and obesity-associated fatty liver disease. Therapeutic manipulations with prebiotics and probiotics to modulate the gut microbiota and maintain intestinal barrier integrity are potential agents for NAFLD management. This review summarizes the current knowledge regarding the complex interplay between the gut microbiota, intestinal barrier, and dietary factors in NAFLD pathogenesis. The concepts addressed in this review have important clinical implications, although more work needs to be done to understand how dietary factors affect the gut barrier and microbiota, and to comprehend how microbe-derived components may interfere with the host's metabolism contributing to NAFLD development.
Collapse
Affiliation(s)
- Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, 40202, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, 40202, Louisville, KY, USA.
| | - Luis S Marsano
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, 40202, Louisville, KY, USA.
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, 40202, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, 40202, Louisville, KY, USA; Robley Rex Veterans Medical Center, 40202, Louisville, KY, USA.
| |
Collapse
|
657
|
Abdul-Hai A, Abdallah A, Malnick SD. Influence of gut bacteria on development and progression of non-alcoholic fatty liver disease. World J Hepatol 2015; 7:1679-1684. [PMID: 26140087 PMCID: PMC4483549 DOI: 10.4254/wjh.v7.i12.1679] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/08/2015] [Accepted: 04/16/2015] [Indexed: 02/06/2023] Open
Abstract
The intestine of the human contains a dynamic population of microbes that have a symbiotic relationship with the host. In addition, there is an effect of the intestinal microbiota on metabolism and digestion. Non-alcoholic fatty liver disease (NAFLD) is a common cause worldwide of hepatic pathology and is thought to be the hepatic manifestation of the metabolic syndrome. In this review we examine the effect of the human microbiome on the components and pathogenesis of the metabolic syndrome. We are now on the threshold of therapeutic interventions on the human microbiome in order to effect human disease including NAFLD.
Collapse
Affiliation(s)
- Ali Abdul-Hai
- Ali Abdul-Hai, Ali Abdallah, Stephen DH Malnick, Division of Internal Medicine, Kaplan Medical Center, Affiliated to the Hebrew University, Rehovot 76100, Israel
| | - Ali Abdallah
- Ali Abdul-Hai, Ali Abdallah, Stephen DH Malnick, Division of Internal Medicine, Kaplan Medical Center, Affiliated to the Hebrew University, Rehovot 76100, Israel
| | - Stephen Dh Malnick
- Ali Abdul-Hai, Ali Abdallah, Stephen DH Malnick, Division of Internal Medicine, Kaplan Medical Center, Affiliated to the Hebrew University, Rehovot 76100, Israel
| |
Collapse
|
658
|
Joshi-Barve S, Kirpich I, Cave MC, Marsano LS, McClain CJ. Alcoholic, Nonalcoholic, and Toxicant-Associated Steatohepatitis: Mechanistic Similarities and Differences. Cell Mol Gastroenterol Hepatol 2015; 1:356-367. [PMID: 28210688 PMCID: PMC5301292 DOI: 10.1016/j.jcmgh.2015.05.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/27/2015] [Indexed: 12/12/2022]
Abstract
Hepatic steatosis and steatohepatitis are common histologic findings that can be caused by multiple etiologies. The three most frequent causes for steatosis/steatohepatitis are alcohol (alcoholic steatohepatitis, ASH), obesity/metabolic syndrome (nonalcoholic steatohepatitis, NASH), and environmental toxicants (toxicant-associated steatohepatitis, TASH). Hepatic steatosis is an early occurrence in all three forms of liver disease, and they often share common pathways to disease progression/severity. Disease progression is a result of both direct effects on the liver as well as indirect alterations in other organs/tissues such as intestine, adipose tissue, and the immune system. Although the three liver diseases (ASH, NASH, and TASH) share many common pathogenic mechanisms, they also exhibit distinct differences. Both shared and divergent mechanisms can be potential therapeutic targets. This review provides an overview of selected important mechanistic similarities and differences in ASH, NASH, and TASH.
Collapse
Key Words
- ALD, alcoholic liver disease
- ALT, alanine aminotransferase
- ASH, alcoholic steatohepatitis
- AST, aspartate transaminase
- Alcoholic Steatohepatitis
- BMI, body mass index
- CYP2E1, cytochrome P450 isoform 2E1
- ECM, extracellular matrix
- ER, endoplasmic reticulum
- HCC, hepatocellular carcinoma
- HDAC, histone deacetylase
- HSC, hepatic stellate cell
- IL, interleukin
- LA, linoleic acid
- LPS, lipopolysaccharide
- Mechanisms
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- NK, natural killer
- NKT, natural killer T
- Nonalcoholic Steatohepatitis
- OXLAM, oxidized linoleic acid metabolite
- PAI-1, plasminogen activator inhibitor-1
- PCB153, 2,2′,4,4′,5,5′-hexachlorobiphenyl
- PPAR, peroxisome proliferator-activated receptor
- RNS, reactive nitrogen species
- SNP, single-nucleotide polymorphism
- TAFLD, toxicant-associated fatty liver disease
- TASH, toxicant-associated steatohepatitis
- TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin
- TH, helper T cell
- TLR, Toll-like receptor
- TNF, tumor necrosis factor
- Toxicant-Associated Steatohepatitis
- VA, U.S. Department of Veterans Affairs/Veterans Administration
- miR, microRNA
Collapse
Affiliation(s)
- Swati Joshi-Barve
- Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Louisville, Louisville, Kentucky,Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky,Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Irina Kirpich
- Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Louisville, Louisville, Kentucky,Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky,Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Matthew C. Cave
- Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Louisville, Louisville, Kentucky,Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky,Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky,Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky
| | - Luis S. Marsano
- Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Louisville, Louisville, Kentucky,Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky,Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky
| | - Craig J. McClain
- Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Louisville, Louisville, Kentucky,Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky,Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky,Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky,Correspondence Address correspondence to: Craig J. McClain, MD, University of Louisville, 505 South Hancock Street, Louisville, Kentucky 40292. fax: (502) 852-8927.
| |
Collapse
|
659
|
Carr RM, Correnti J. Insulin resistance in clinical and experimental alcoholic liver disease. Ann N Y Acad Sci 2015; 1353:1-20. [PMID: 25998863 DOI: 10.1111/nyas.12787] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcoholic liver disease (ALD) is the number one cause of liver failure worldwide; its management costs billions of healthcare dollars annually. Since the advent of the obesity epidemic, insulin resistance (IR) and diabetes have become common clinical findings in patients with ALD; and the development of IR predicts the progression from simple steatosis to cirrhosis in ALD patients. Both clinical and experimental data implicate the impairment of several mediators of insulin signaling in ALD, and experimental data suggest that insulin-sensitizing therapies improve liver histology. This review explores the contribution of impaired insulin signaling in ALD and summarizes the current understanding of the synergistic relationship between alcohol and nutrient excess in promoting hepatic inflammation and disease.
Collapse
Affiliation(s)
- Rotonya M Carr
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason Correnti
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
660
|
Gut Microbiota: Association with NAFLD and Metabolic Disturbances. BIOMED RESEARCH INTERNATIONAL 2015; 2015:979515. [PMID: 26090468 PMCID: PMC4452311 DOI: 10.1155/2015/979515] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease is the hepatic expression of metabolic syndrome, being frequently associated with obesity, insulin resistance, and dyslipidemia. Recent lines of evidence have demonstrated a role of gut microbiota in insulin resistance, obesity, and associated metabolic disturbances, raising the interest in its relationship with NAFLD pathogenesis. Therefore, intestinal microbiota has emerged as a potential factor involved in NAFLD, through different pathways, including its influence in energy storage, lipid and choline metabolism, ethanol production, immune balance, and inflammation. The main objective of this review is to address the pathogenic association of gut microbiota to NAFLD. This comprehension may allow the development of integrated strategies to modulate intestinal microbiota in order to treat NAFLD.
Collapse
|
661
|
Dietary trans-10, cis-12-conjugated linoleic acid alters fatty acid metabolism and microbiota composition in mice. Br J Nutr 2015; 113:728-38. [PMID: 25697178 DOI: 10.1017/s0007114514004206] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The main aim of the present study was to investigate the effects of dietary trans-10, cis-12-conjugated linoleic acid (t10c12-CLA) on intestinal microbiota composition and SCFA production. C57BL/6 mice (n 8 per group) were fed a standard diet either supplemented with t10c12-CLA (0·5 %, w/w) (intervention) or with no supplementation (control), daily for 8 weeks. Metabolic markers (serum glucose, leptin, insulin and TAG, and liver TAG) were assessed by ELISA commercial kits, tissue long-chain fatty acids and caecal SCFA by GC, and microbial composition by 16S rRNA pyrosequencing. Dietary t10c12-CLA significantly decreased visceral fat mass (P< 0·001), but did not affect body weight (intervention), when compared with no supplementation (control). Additionally, lipid mass and composition were affected by t10c12-CLA intake. Caecal acetate, propionate and isobutyrate concentrations were higher (P< 0·05) in the t10c12-CLA-supplemented group than in the control group. The analysis of the microbiota composition following 8 weeks of t10c12-CLA supplementation revealed lower proportions of Firmicutes (P= 0·003) and higher proportions of Bacteroidetes (P= 0·027) compared with no supplementation. Furthermore, t10c12-CLA supplementation for 8 weeks significantly altered the gut microbiota composition, harbouring higher proportions of Bacteroidetes, including Porphyromonadaceae bacteria previously linked with negative effects on lipid metabolism and induction of hepatic steatosis. These results indicate that the mechanism of dietary t10c12-CLA on lipid metabolism in mice may be, at least, partially mediated by alterations in gut microbiota composition and functionality.
Collapse
|
662
|
Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M, Pot B, Tsakalidou E. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol 2015; 6:58. [PMID: 25741323 PMCID: PMC4330916 DOI: 10.3389/fmicb.2015.00058] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/17/2015] [Indexed: 12/13/2022] Open
Abstract
Over the past decades the food industry has been revolutionized toward the production of functional foods due to an increasing awareness of the consumers on the positive role of food in wellbeing and health. By definition probiotic foods must contain live microorganisms in adequate amounts so as to be beneficial for the consumer’s health. There are numerous probiotic foods marketed today and many probiotic strains are commercially available. However, the question that arises is how to determine the real probiotic potential of microorganisms. This is becoming increasingly important, as even a superficial search of the relevant literature reveals that the number of proclaimed probiotics is growing fast. While the vast majority of probiotic microorganisms are food-related or commensal bacteria that are often regarded as safe, probiotics from other sources are increasingly being reported raising possible regulatory and safety issues. Potential probiotics are selected after in vitro or in vivo assays by evaluating simple traits such as resistance to the acidic conditions of the stomach or bile resistance, or by assessing their impact on complicated host functions such as immune development, metabolic function or gut–brain interaction. While final human clinical trials are considered mandatory for communicating health benefits, rather few strains with positive studies have been able to convince legal authorities with these health claims. Consequently, concern has been raised about the validity of the workflows currently used to characterize probiotics. In this review we will present an overview of the most common assays employed in screening for probiotics, highlighting the potential strengths and limitations of these approaches. Furthermore, we will focus on how the advent of omics technologies has reshaped our understanding of the biology of probiotics, allowing the exploration of novel routes for screening and studying such microorganisms.
Collapse
Affiliation(s)
- Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Georgia Zoumpopoulou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Benoit Foligné
- Bactéries Lactiques et Immunité des Muqueuses, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Université Lille Nord de France, CNRS UMR8204, Lille France
| | - Voula Alexandraki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Bruno Pot
- Bactéries Lactiques et Immunité des Muqueuses, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Université Lille Nord de France, CNRS UMR8204, Lille France
| | - Effie Tsakalidou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| |
Collapse
|
663
|
Jiang W, Wu N, Wang X, Chi Y, Zhang Y, Qiu X, Hu Y, Li J, Liu Y. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep 2015; 5:8096. [PMID: 25644696 PMCID: PMC4314632 DOI: 10.1038/srep08096] [Citation(s) in RCA: 441] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/06/2015] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently been considered to be under the influence of the gut microbiota, which might exert toxic effects on the human host after intestinal absorption and delivery to the liver via the portal vein. In this study, the composition of the gut microbiota in NAFLD patients and healthy subjects was determined via 16S ribosomal RNA Illumina next-generation sequencing. Among those taxa displaying greater than 0.1% average abundance in all samples, five genera, including Alistipes and Prevotella, were significantly more abundant in the gut microbiota of healthy subjects compared to NAFLD patients. Alternatively, Escherichia, Anaerobacter, Lactobacillus and Streptococcus were increased in the gut microbiota of NAFLD patients compared to healthy subjects. In addition, decreased numbers of CD4+ and CD8+ T lymphocytes and increased levels of TNF-α, IL-6 and IFN-γ were detected in the NAFLD group compared to the healthy group. Furthermore, irregularly arranged microvilli and widened tight junctions were observed in the gut mucosa of the NAFLD patients via transmission electron microscopy. We postulate that aside from dysbiosis of the gut microbiota, gut microbiota-mediated inflammation of the intestinal mucosa and the related impairment in mucosal immune function play an important role in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Weiwei Jiang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Na Wu
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Xuemei Wang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Yujing Chi
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Yuanyuan Zhang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Xinyun Qiu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Ying Hu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Jing Li
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
664
|
Affiliation(s)
- Jerome Boursier
- Service d’Hépato-Gastroentérologie, Centre Hospitalier Universitaire d’Angers, Angers, France
- HIFIH, UPRES 3859, SFR 4208, Université LUNAM, Angers, France
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
665
|
Tomita K, Hokari R. [Gut Microbiota and Internal Diseases: Update Information. Topics: III. NASH/NAFLD and gut microbiota]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2015; 104:48-56. [PMID: 26571774 DOI: 10.2169/naika.104.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
666
|
Bieghs V, Trautwein C. Innate immune signaling and gut-liver interactions in non-alcoholic fatty liver disease. Hepatobiliary Surg Nutr 2015; 3:377-85. [PMID: 25568861 DOI: 10.3978/j.issn.2304-3881.2014.12.04] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/05/2014] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome and covers a disease spectrum ranging from steatosis to inflammation, fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The innate immune response in the liver plays an important role during NAFLD progression. In addition, changes in the intestinal microbial balance and bacterial translocation can further affect disease progression. Immune cells in the liver recognize cell damage or pathogen invasion with intracellular or surface-expressed pattern recognition receptors (PRRs), subsequently initiating signaling cascades that trigger the release of factors promoting the inflammatory response during NAFLD progression. Therefore, mechanisms by which cells of the immune system are activated and recruited into the liver and how these cells cause injury and stress are important for understanding the inflammatory response during NAFLD.
Collapse
Affiliation(s)
- Veerle Bieghs
- Department of Internal Medicine III, University Hospital, RWTH-Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital, RWTH-Aachen, Germany
| |
Collapse
|
667
|
Xu MQ, Cao HL, Wang WQ, Wang S, Cao XC, Yan F, Wang BM. Fecal microbiota transplantation broadening its application beyond intestinal disorders. World J Gastroenterol 2015; 21:102-111. [PMID: 25574083 PMCID: PMC4284325 DOI: 10.3748/wjg.v21.i1.102] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/30/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
Intestinal dysbiosis is now known to be a complication in a myriad of diseases. Fecal microbiota transplantation (FMT), as a microbiota-target therapy, is arguably very effective for curing Clostridium difficile infection and has good outcomes in other intestinal diseases. New insights have raised an interest in FMT for the management of extra-intestinal disorders associated with gut microbiota. This review shows that it is an exciting time in the burgeoning science of FMT application in previously unexpected areas, including metabolic diseases, neuropsychiatric disorders, autoimmune diseases, allergic disorders, and tumors. A randomized controlled trial was conducted on FMT in metabolic syndrome by infusing microbiota from lean donors or from self-collected feces, with the resultant findings showing that the lean donor feces group displayed increased insulin sensitivity, along with increased levels of butyrate-producing intestinal microbiota. Case reports of FMT have also shown favorable outcomes in Parkinson’s disease, multiple sclerosis, myoclonus dystonia, chronic fatigue syndrome, and idiopathic thrombocytopenic purpura. FMT is a promising approach in the manipulation of the intestinal microbiota and has potential applications in a variety of extra-intestinal conditions associated with intestinal dysbiosis.
Collapse
|
668
|
Burcelin R, Courtney M, Amar J. Gut Microbiota and Metabolic Diseases: From Pathogenesis to Therapeutic Perspective. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2015:199-234. [DOI: 10.1007/978-1-4471-6539-2_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
669
|
Jiang C, Xie C, Li F, Zhang L, Nichols RG, Krausz KW, Cai J, Qi Y, Fang ZZ, Takahashi S, Tanaka N, Desai D, Amin SG, Albert I, Patterson AD, Gonzalez FJ. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest 2015; 125:386-402. [PMID: 25500885 PMCID: PMC4382255 DOI: 10.1172/jci76738] [Citation(s) in RCA: 507] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/06/2014] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major worldwide health problem. Recent studies suggest that the gut microbiota influences NAFLD pathogenesis. Here, a murine model of high-fat diet-induced (HFD-induced) NAFLD was used, and the effects of alterations in the gut microbiota on NAFLD were determined. Mice treated with antibiotics or tempol exhibited altered bile acid composition, with a notable increase in conjugated bile acid metabolites that inhibited intestinal farnesoid X receptor (FXR) signaling. Compared with control mice, animals with intestine-specific Fxr disruption had reduced hepatic triglyceride accumulation in response to a HFD. The decrease in hepatic triglyceride accumulation was mainly due to fewer circulating ceramides, which was in part the result of lower expression of ceramide synthesis genes. The reduction of ceramide levels in the ileum and serum in tempol- or antibiotic-treated mice fed a HFD resulted in downregulation of hepatic SREBP1C and decreased de novo lipogenesis. Administration of C16:0 ceramide to antibiotic-treated mice fed a HFD reversed hepatic steatosis. These studies demonstrate that inhibition of an intestinal FXR/ceramide axis mediates gut microbiota-associated NAFLD development, linking the microbiome, nuclear receptor signaling, and NAFLD. This work suggests that inhibition of intestinal FXR is a potential therapeutic target for NAFLD treatment.
Collapse
Affiliation(s)
- Changtao Jiang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Fei Li
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Limin Zhang
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Robert G. Nichols
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristopher W. Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yunpeng Qi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Zhong-Ze Fang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Dhimant Desai
- Department of Pharmacology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Shantu G. Amin
- Department of Pharmacology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Istvan Albert
- Bioinformatics Consulting Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| |
Collapse
|
670
|
Michail S, Lin M, Frey MR, Fanter R, Paliy O, Hilbush B, Reo NV. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiol Ecol 2014; 91:1-9. [PMID: 25764541 DOI: 10.1093/femsec/fiu002] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obesity is becoming the new pediatric epidemic. Non-alcoholic fatty liver disease (NAFLD) is frequently associated with obesity and has become the most common cause of pediatric liver disease. The gut microbiome is the major metabolic organ and determines how calories are processed, serving as a caloric gate and contributing towards the pathogenesis of NAFLD. The goal of this study is to examine gut microbial profiles in children with NAFLD using phylogenetic, metabolomic, metagenomic and proteomic approaches. Fecal samples were obtained from obese children with or without NAFLD and healthy lean children. Stool specimens were subjected to 16S rRNA gene microarray, shotgun sequencing, mass spectroscopy for proteomics and NMR spectroscopy for metabolite analysis. Children with NAFLD had more abundant Gammaproteobacteria and Prevotella and significantly higher levels of ethanol, with differential effects on short chain fatty acids. This group also had increased genomic and protein abundance for energy production with a reduction in carbohydrate and amino acid metabolism and urea cycle and urea transport systems. The metaproteome and metagenome showed similar findings. The gut microbiome in pediatric NAFLD is distinct from lean healthy children with more alcohol production and pathways allocated to energy metabolism over carbohydrate and amino acid metabolism, which would contribute to development of disease.
Collapse
Affiliation(s)
- Sonia Michail
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition at Children's Hospital Los Angeles, 4650 Sunset Blvd. MS#78, Los Angeles, CA 90027, USA Keck School of Medicine at the University of Southern California, Los Angeles, CA 90089, USA
| | - Malinda Lin
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition at Children's Hospital Los Angeles, 4650 Sunset Blvd. MS#78, Los Angeles, CA 90027, USA Keck School of Medicine at the University of Southern California, Los Angeles, CA 90089, USA
| | - Mark R Frey
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition at Children's Hospital Los Angeles, 4650 Sunset Blvd. MS#78, Los Angeles, CA 90027, USA Keck School of Medicine at the University of Southern California, Los Angeles, CA 90089, USA
| | - Rob Fanter
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition at Children's Hospital Los Angeles, 4650 Sunset Blvd. MS#78, Los Angeles, CA 90027, USA Childrens Hospital Los Angeles Proteomics Core, 4650 Sunset Blvd. MS#78, Los Angeles, CA 90027, USA
| | - Oleg Paliy
- Department of Biochemistry & Molecular Biology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| | - Brian Hilbush
- Real time Genomics, 999 Bayhill Dr #101, San Bruno, CA 94066, USA
| | - Nicholas V Reo
- Department of Biochemistry & Molecular Biology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| |
Collapse
|
671
|
The role of intestinal bacteria overgrowth in obesity-related nonalcoholic fatty liver disease. Nutrients 2014; 6:5583-99. [PMID: 25479248 PMCID: PMC4276985 DOI: 10.3390/nu6125583] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. It is a progressive disorder involving a spectrum of conditions that include pure steatosis without inflammation, nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis. The key factor in the pathophysiology of NAFLD is insulin resistance that determines lipid accumulation in the hepatocytes, which may be followed by lipid peroxidation, production of reactive oxygen species and consequent inflammation. Recent studies suggest that the characteristics of the gut microbiota are altered in NAFLD, and also, that small intestinal bacterial overgrowth (SIBO) contributes to the pathogenesis of this condition. This review presents the chief findings from all the controlled studies that evaluated SIBO, gut permeability and endotoxemia in human NAFLD. We also discuss the possible mechanisms involving SIBO, lipid accumulation and development of NASH. The understanding of these mechanisms may allow the development of new targets for NASH treatment in the future.
Collapse
|
672
|
Ha CWY, Lam YY, Holmes AJ. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World J Gastroenterol 2014; 20:16498-16517. [PMID: 25469018 PMCID: PMC4248193 DOI: 10.3748/wjg.v20.i44.16498] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 06/26/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging.
Collapse
|
673
|
Festi D, Schiumerini R, Eusebi LH, Marasco G, Taddia M, Colecchia A. Gut microbiota and metabolic syndrome. World J Gastroenterol 2014; 20:16079-16094. [PMID: 25473159 PMCID: PMC4239493 DOI: 10.3748/wjg.v20.i43.16079] [Citation(s) in RCA: 343] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/20/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal “superorganism” seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host’s immune system could culminate in the intestinal translocation of bacterial fragments and the development of “metabolic endotoxemia”, leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use.
Collapse
|
674
|
Koppe SWP. Obesity and the liver: nonalcoholic fatty liver disease. Transl Res 2014; 164:312-22. [PMID: 25028077 DOI: 10.1016/j.trsl.2014.06.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 02/08/2023]
Abstract
The increasing prevalence of nonalcoholic fatty liver disease (NAFLD) parallels the rise of obesity and its complications. NAFLD is a common cause of cirrhosis and a leading indication for liver transplant. Genetic susceptibility, dietary composition, and exercise habits influence the development of NAFLD, and insulin resistance results in widespread metabolic perturbations with a net effect of triglyceride accumulation in the liver. Some patients will develop hepatocyte cellular injury and fibrosis of the liver, which can progress to cirrhosis and require liver transplant. Treatments targeting the pathophysiological mechanisms of NAFLD exist, but carry some potential risk and are not universally effective. Weight loss and lifestyle changes remain the most effective and safest approach, but sustainable change is difficult for most patients to achieve. Future work will continue to focus on developing effective and safe interventions to prevent the development of advanced liver disease, whereas efforts in the public health domain continue to combat obesity.
Collapse
Affiliation(s)
- Sean W P Koppe
- Division of Gastroenterology and Hepatology, Northwestern University, Chicago, Ill.
| |
Collapse
|
675
|
Staufer K, Halilbasic E, Trauner M, Kazemi-Shirazi L. Cystic fibrosis related liver disease--another black box in hepatology. Int J Mol Sci 2014; 15:13529-49. [PMID: 25093717 PMCID: PMC4159809 DOI: 10.3390/ijms150813529] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/10/2014] [Accepted: 07/16/2014] [Indexed: 02/07/2023] Open
Abstract
Due to improved medical care, life expectancy in patients with cystic fibrosis (CF) has veritably improved over the last decades. Importantly, cystic fibrosis related liver disease (CFLD) has become one of the leading causes of morbidity and mortality in CF patients. However, CFLD might be largely underdiagnosed and diagnostic criteria need to be refined. The underlying pathomechanisms are largely unknown, and treatment strategies with proven efficacy are lacking. This review focuses on current invasive and non-invasive diagnostic standards, the current knowledge on the pathophysiology of CFLD, treatment strategies, and possible future developments.
Collapse
Affiliation(s)
- Katharina Staufer
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Emina Halilbasic
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Lili Kazemi-Shirazi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
676
|
Hidalgo M, Prieto I, Abriouel H, Cobo A, Benomar N, Gálvez A, Martínez-Cañamero M. Effect of virgin and refined olive oil consumption on gut microbiota. Comparison to butter. Food Res Int 2014; 64:553-559. [PMID: 30011688 DOI: 10.1016/j.foodres.2014.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/12/2014] [Accepted: 07/20/2014] [Indexed: 12/20/2022]
Abstract
There is increasing evidence of the health benefits of olive oil consumption in the diet. Some authors have studied the effect of high fat/high calorie diets and have detected changes on the microbiota. However, these studies are mainly based on saturated fats. Here we present a study on the specific effect on gut bacterial populations of extra virgin olive oil, rich in monounsaturated fatty acids and phenolic compounds, in comparison to refined olive oil, rich in monounsaturated fatty acids but low in phenolic compounds, and to butter, rich in saturated fatty acids and cholesterol. Four groups of animals were studied: one group of mice received a standard chow diet, and the other received three high fat diets, rich in extra virgin olive oil, refined olive oil or butter. Evolution of symbiont population in feces was studied using culture-dependent and culture-independent methods. In the latter, the V3 region of 16S rDNA was amplified and separated by denaturing gradient gel electrophoresis; followed by sequencing of the most representative bands. Culture-dependent studies and comparison of the different DGGE profiles throughout the experiment demonstrated that different dietary fats had different effects on gut microbial composition. Butter-induced changes in the microbial counts resembled those previously described in obese individuals. Interestingly, a different behavior between extra virgin and refined olive oil was also observed, extra virgin olive oil being most different from butter. To our knowledge, no studies have analyzed gut microbiota depending on diets with different fatty acid saturations including different types of olive oil. This may offer new data supporting the benefits for health of extra virgin olive oil, so important in the Mediterranean diet.
Collapse
Affiliation(s)
- M Hidalgo
- Área de Microbiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Spain
| | - I Prieto
- Área de Fisiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Spain
| | - H Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Spain
| | - A Cobo
- Área de Microbiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Spain
| | - N Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Spain
| | - A Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Spain
| | - M Martínez-Cañamero
- Área de Microbiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Spain.
| |
Collapse
|
677
|
Palmitoleic acid (n-7) attenuates the immunometabolic disturbances caused by a high-fat diet independently of PPARα. Mediators Inflamm 2014; 2014:582197. [PMID: 25147439 PMCID: PMC4131426 DOI: 10.1155/2014/582197] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 12/30/2022] Open
Abstract
Palmitoleic acid (PMA) has anti-inflammatory and antidiabetic activities. Here we tested whether these effects of PMA on glucose homeostasis and liver inflammation, in mice fed with high-fat diet (HFD), are PPAR-α dependent. C57BL6 wild-type (WT) and PPAR-α-knockout (KO) mice fed with a standard diet (SD) or HFD for 12 weeks were treated after the 10th week with oleic acid (OLA, 300 mg/kg of b.w.) or PMA 300 mg/kg of b.w. Steatosis induced by HFD was associated with liver inflammation only in the KO mice, as shown by the increased hepatic levels of IL1-beta, IL-12, and TNF-α; however, the HFD increased the expression of TLR4 and decreased the expression of IL1-Ra in both genotypes. Treatment with palmitoleate markedly attenuated the insulin resistance induced by the HFD, increased glucose uptake and incorporation into muscle in vitro, reduced the serum levels of AST in WT mice, decreased the hepatic levels of IL1-beta and IL-12 in KO mice, reduced the expression of TLR-4 and increased the expression of IL-1Ra in WT mice, and reduced the phosphorylation of NF 𝜅B (p65) in the livers of KO mice. We conclude that palmitoleate attenuates diet-induced insulin resistance, liver inflammation, and damage through mechanisms that do not depend on PPAR-α.
Collapse
|
678
|
Models matter: the search for an effective Staphylococcus aureus vaccine. Nat Rev Microbiol 2014; 12:585-91. [PMID: 24998740 DOI: 10.1038/nrmicro3308] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Staphylococcus aureus is a highly successful bacterial pathogen owing to its abundance of cell surface and secreted virulence factors. It is estimated that 30% of the population is colonized with S. aureus, usually on mucosal surfaces, and methicillin-resistant S. aureus is a major public health concern. There have been multiple attempts to develop an S. aureus vaccine using one or more cell surface virulence factors as antigens; all of these vaccine trials have failed. In this Opinion article, we suggest that an over-reliance on rodent models and a focus on targeting cell surface components have been major contributing factors to this failure.
Collapse
|
679
|
Clavel T, Desmarchelier C, Haller D, Gérard P, Rohn S, Lepage P, Daniel H. Intestinal microbiota in metabolic diseases: from bacterial community structure and functions to species of pathophysiological relevance. Gut Microbes 2014; 5:544-51. [PMID: 25003516 DOI: 10.4161/gmic.29331] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The trillions of bacterial cells that colonize the mammalian digestive tract influence both host physiology and the fate of dietary compounds. Gnotobionts and fecal transplantation have been instrumental in revealing the causal role of intestinal bacteria in energy homeostasis and metabolic dysfunctions such as type-2 diabetes. However, the exact contribution of gut bacterial metabolism to host energy balance is still unclear and knowledge about underlying molecular mechanisms is scant. We have previously characterized cecal bacterial community functions and host responses in diet-induced obese mice using omics approaches. Based on these studies, we here discuss issues on the relevance of mouse models, give evidence that the metabolism of cholesterol-derived compounds by gut bacteria is of particular importance in the context of metabolic disorders and that dominant species of the family Coriobacteriaceae are good models to study these functions.
Collapse
Affiliation(s)
- Thomas Clavel
- Junior Research Group Intestinal Microbiome; ZIEL-Research Center for Nutrition and Food Sciences; Technische Universität München; Freising-Weihenstephan, Germany
| | - Charles Desmarchelier
- Molecular Nutrition Unit; ZIEL-Research Center for Nutrition and Food Sciences; Technische Universität München; Freising-Weihenstephan, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology; Biofunctionality Unit; ZIEL-Research Center for Nutrition and Food Sciences; Technische Universität München; Freising-Weihenstephan, Germany
| | - Philippe Gérard
- INRA / AgroParisTech; Micalis UMR1319; Jouy-en-Josas, France
| | - Sascha Rohn
- Institute of Food Chemistry; Hamburg School of Food Science; University of Hamburg; Hamburg, Germany
| | - Patricia Lepage
- INRA / AgroParisTech; Micalis UMR1319; Jouy-en-Josas, France
| | - Hannelore Daniel
- Molecular Nutrition Unit; ZIEL-Research Center for Nutrition and Food Sciences; Technische Universität München; Freising-Weihenstephan, Germany
| |
Collapse
|
680
|
Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME JOURNAL 2014; 9:1-15. [PMID: 24936764 PMCID: PMC4274436 DOI: 10.1038/ismej.2014.99] [Citation(s) in RCA: 531] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 03/15/2014] [Accepted: 05/13/2014] [Indexed: 12/17/2022]
Abstract
Structural disruption of gut microbiota and associated inflammation are considered important etiological factors in high fat diet (HFD)-induced metabolic syndrome (MS). Three candidate probiotic strains, Lactobacillus paracasei CNCM I-4270 (LC), L. rhamnosus I-3690 (LR) and Bifidobacterium animalis subsp. lactis I-2494 (BA), were individually administered to HFD-fed mice (108 cells day−1) for 12 weeks. Each strain attenuated weight gain and macrophage infiltration into epididymal adipose tissue and markedly improved glucose–insulin homeostasis and hepatic steatosis. Weighted UniFrac principal coordinate analysis based on 454 pyrosequencing of fecal bacterial 16S rRNA genes showed that the probiotic strains shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean mice fed a normal (chow) diet. Redundancy analysis revealed that abundances of 83 operational taxonomic units (OTUs) were altered by probiotics. Forty-nine altered OTUs were significantly correlated with one or more host MS parameters and were designated ‘functionally relevant phylotypes'. Thirteen of the 15 functionally relevant OTUs that were negatively correlated with MS phenotypes were promoted, and 26 of the 34 functionally relevant OTUs that were positively correlated with MS were reduced by at least one of the probiotics, but each strain changed a distinct set of functionally relevant OTUs. LC and LR increased cecal acetate but did not affect circulating lipopolysaccharide-binding protein; in contrast, BA did not increase acetate but significantly decreased adipose and hepatic tumor necrosis factor-α gene expression. These results suggest that Lactobacillus and Bifidobacterium differentially attenuate obesity comorbidities in part through strain-specific impacts on MS-associated phylotypes of gut microbiota in mice.
Collapse
|
681
|
Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. mBio 2014; 5:e01011-14. [PMID: 24917595 PMCID: PMC4056549 DOI: 10.1128/mbio.01011-14] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Growing evidence shows that gut microbes are key factors involved in the regulation of energy homeostasis, metabolic inflammation, lipid metabolism, and glucose metabolism. Therefore, gut microbiota modulations caused by selectively fermented oligosaccharides or probiotic bacteria constitute an interesting target in the physiopathology of obesity. However, to date, no probiotic yeast has been investigated in this context. Therefore, our study aimed to evaluate the impact of the most-studied probiotic yeast (i.e., Saccharomyces boulardii Biocodex) on obesity and associated metabolic features, such as fat mass development, hepatic steatosis, and low-grade inflammation, in obese mice. S. boulardii was administered daily by oral gavage to leptin-resistant obese and type 2 diabetic mice (db/db) for 4 weeks. We found that S. boulardii-treated mice exhibited reduced body weight, fat mass, hepatic steatosis, and inflammatory tone. Interestingly, these effects of S. boulardii on host metabolism were associated with local effects in the intestine. S. boulardii increased cecum weight and cecum tissue weight but also induced dramatic changes in the gut microbial composition at the phylum, family, and genus levels. These gut microbiota changes in response to S. boulardii may also be correlated with the host metabolism response. In conclusion, this study demonstrates for the first time that S. boulardii may act as a beneficial probiotic treatment in the context of obesity and type 2 diabetes. To date, no probiotic yeast have been investigated in the context of obesity and type 2 diabetes. Here we found that type 2 diabetic and obese mice (db/db) treated with Saccharomyces boulardii exhibited reduced body weight, fat mass, hepatic steatosis, and inflammatory tone. These effects on host metabolism were associated with local effects in the intestine. Importantly, by using pyrosequencing, we found that S. boulardii treatment induces changes of the gut microbiota composition at the phylum, family, and genus levels. Moreover, we found that gut microbiota changes in response to S. boulardii were correlated with several host metabolism responses.
Collapse
|
682
|
Tu T, Budzinska MA, Maczurek AE, Cheng R, Di Bartolomeo A, Warner FJ, McCaughan GW, McLennan SV, Shackel NA. Novel aspects of the liver microenvironment in hepatocellular carcinoma pathogenesis and development. Int J Mol Sci 2014; 15:9422-58. [PMID: 24871369 PMCID: PMC4100103 DOI: 10.3390/ijms15069422] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer that is derived from hepatocytes and is characterised by high mortality rate and poor prognosis. While HCC is driven by cumulative changes in the hepatocyte genome, it is increasingly recognised that the liver microenvironment plays a pivotal role in HCC propensity, progression and treatment response. The microenvironmental stimuli that have been recognised as being involved in HCC pathogenesis are diverse and include intrahepatic cell subpopulations, such as immune and stellate cells, pathogens, such as hepatitis viruses, and non-cellular factors, such as abnormal extracellular matrix (ECM) and tissue hypoxia. Recently, a number of novel environmental influences have been shown to have an equally dramatic, but previously unrecognized, role in HCC progression. Novel aspects, including diet, gastrointestinal tract (GIT) microflora and circulating microvesicles, are now being recognized as increasingly important in HCC pathogenesis. This review will outline aspects of the HCC microenvironment, including the potential role of GIT microflora and microvesicles, in providing new insights into tumourigenesis and identifying potential novel targets in the treatment of HCC.
Collapse
Affiliation(s)
- Thomas Tu
- Liver Cell Biology, Centenary Institute, Sydney, NSW 2050, Australia.
| | | | | | - Robert Cheng
- Liver Cell Biology, Centenary Institute, Sydney, NSW 2050, Australia.
| | - Anna Di Bartolomeo
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Fiona J Warner
- Liver Cell Biology, Centenary Institute, Sydney, NSW 2050, Australia.
| | | | - Susan V McLennan
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
683
|
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. Approved therapies for this disorder, however, are still lacking. In the last decade, pathophysiological insights into this disease have been tremendous. Various aspects, such as insulin resistance, innate immunity, metabolic inflammation and the microbiota, have been characterized as major players. Indeed, at least 1 in 10 sufferers will have the disease escalate toward its inflammatory phenotype, non-alcoholic steatohepatitis (NASH). These pathways currently represent the most attractive treatment targets. Furthermore, interference with insulin resistance has shown some efficacy in the past, although more focused therapies, which also act anti-inflammatory, are needed. AREAS COVERED In this review, the authors highlight the current most promising treatment strategies in NASH/NAFLD. EXPERT OPINION Treatment of NAFLD is still in its infancy, although large controlled studies have demonstrated some efficacy for pioglitazone or vitamin E. The natural course of this disease demands long-term treatments besides diet and lifestyle changes. Based on the current view of NAFLD pathophysiology, effective therapies have to target metabolic inflammation, glucose and lipid metabolism. The search for agents interfering with all of these pathways has recently generated promising candidates for the treatment of NAFLD such as farnesoid X receptor, peroxisome proliferator-activated receptor-α/δ agonists or AdipoR small-molecule agonists.
Collapse
Affiliation(s)
- Herbert Tilg
- Medical University Innsbruck, Department of Internal Medicine I, Endocrinology, Gastroenterology and Metabolism , Innsbruck , Austria +43 512 504 23539 ; +43 512 504 23538 ;
| | | |
Collapse
|
684
|
Asai A, Chou PM, Bu HF, Wang X, Rao MS, Jiang A, DiDonato CJ, Tan XD. Dissociation of hepatic insulin resistance from susceptibility of nonalcoholic fatty liver disease induced by a high-fat and high-carbohydrate diet in mice. Am J Physiol Gastrointest Liver Physiol 2014; 306:G496-504. [PMID: 24436353 PMCID: PMC3949024 DOI: 10.1152/ajpgi.00291.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver steatosis in nonalcoholic fatty liver disease is affected by genetics and diet. It is associated with insulin resistance (IR) in hepatic and peripheral tissues. Here, we aimed to characterize the severity of diet-induced steatosis, obesity, and IR in two phylogenetically distant mouse strains, C57BL/6J and DBA/2J. To this end, mice (male, 8 wk old) were fed a high-fat and high-carbohydrate (HFHC) or control diet for 16 wk followed by the application of a combination of classic physiological, biochemical, and pathological studies to determine obesity and hepatic steatosis. Peripheral IR was characterized by measuring blood glucose level, serum insulin level, homeostasis model assessment of IR, glucose intolerance, insulin intolerance, and AKT phosphorylation in adipose tissues, whereas the level of hepatic IR was determined by measuring insulin-triggered hepatic AKT phosphorylation. We discovered that both C57BL/6J and DBA/2J mice developed obesity to a similar degree without the feature of liver inflammation after being fed an HFHC diet for 16 wk. C57BL/6J mice in the HFHC diet group exhibited severe pan-lobular steatosis, a marked increase in hepatic triglyceride levels, and profound peripheral IR. In contrast, DBA/2J mice in the HFHC diet group developed only a mild degree of pericentrilobular hepatic steatosis that was associated with moderate changes in peripheral IR. Interestingly, both C57BL/6J and DBA/2J developed severe hepatic IR after HFHC diet treatment. Collectively, these data suggest that the severity of diet-induced hepatic steatosis is correlated to the level of peripheral IR, not with the severity of obesity and hepatic IR. Peripheral rather than hepatic IR is a dominant factor of pathophysiology in nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Akihiro Asai
- 1Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children's Hospital of Chicago Research Center and ,2Departments of Pediatrics and
| | - Pauline M. Chou
- 3Pathology, Feinberg School of Medicine, Northwestern University, Chicago; and
| | - Heng-Fu Bu
- 1Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children's Hospital of Chicago Research Center and ,2Departments of Pediatrics and
| | - Xiao Wang
- 1Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children's Hospital of Chicago Research Center and ,2Departments of Pediatrics and
| | - M. Sambasiva Rao
- 3Pathology, Feinberg School of Medicine, Northwestern University, Chicago; and
| | - Anthony Jiang
- 1Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children's Hospital of Chicago Research Center and
| | | | - Xiao-Di Tan
- 1Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children's Hospital of Chicago Research Center and ,2Departments of Pediatrics and ,3Pathology, Feinberg School of Medicine, Northwestern University, Chicago; and ,4Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
685
|
Ritze Y, Bárdos G, Claus A, Ehrmann V, Bergheim I, Schwiertz A, Bischoff SC. Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice. PLoS One 2014; 9:e80169. [PMID: 24475018 PMCID: PMC3903470 DOI: 10.1371/journal.pone.0080169] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 10/08/2013] [Indexed: 11/29/2022] Open
Abstract
Objective Experimental evidence revealed that obesity-associated non-alcoholic fatty liver disease (NAFLD) is linked to changes in intestinal permeability and translocation of bacterial products to the liver. Hitherto, no reliable therapy is available except for weight reduction. Within this study, we examined the possible effect of the probiotic bacterial strain Lactobacillus rhamnosus GG (LGG) as protective agent against experimental NAFLD in a mouse model. Methods Experimental NAFLD was induced by a high-fructose diet over eight weeks in C57BL/J6 mice. Fructose was administered via the drinking water containing 30% fructose with or without LGG at a concentration resulting in approximately 5×107 colony forming units/g body weight. Mice were examined for changes in small intestinal microbiota, gut barrier function, lipopolysaccharide (LPS) concentrations in the portal vein, liver inflammation and fat accumulation in the liver. Results LGG increased beneficial bacteria in the distal small intestine. Moreover, LGG reduced duodenal IκB protein levels and restored the duodenal tight junction protein concentration. Portal LPS (P≤0.05) was reduced and tended to attenuate TNF-α, IL-8R and IL-1β mRNA expression in the liver feeding a high-fructose diet supplemented with LGG. Furthermore liver fat accumulation and portal alanine-aminotransferase concentrations (P≤0.05) were attenuated in mice fed the high-fructose diet and LGG. Conclusions We show for the first time that LGG protects mice from NAFLD induced by a high-fructose diet. The underlying mechanisms of protection likely involve an increase of beneficial bacteria, restoration of gut barrier function and subsequent attenuation of liver inflammation and steatosis.
Collapse
Affiliation(s)
- Yvonne Ritze
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Gyöngyi Bárdos
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Anke Claus
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Veronika Ehrmann
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Ina Bergheim
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
- Department of Nutritional Science, Friedrich-Schiller-University, Jena, Germany
| | | | - Stephan C. Bischoff
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
686
|
Meta-omic platforms to assist in the understanding of NAFLD gut microbiota alterations: tools and applications. Int J Mol Sci 2014; 15:684-711. [PMID: 24402126 PMCID: PMC3907832 DOI: 10.3390/ijms15010684] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 12/29/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide as a result of the increasing prevalence of obesity, starting from early life stages. It is characterized by a spectrum of liver diseases ranging from simple fatty liver (NAFL) to steatohepatitis (NASH), with a possible progression to fibrosis, thus increasing liver-related morbidity and mortality. NAFLD development is driven by the co-action of several risk factors, including obesity and metabolic syndrome, which may be both genetically induced and diet-related. Recently, particular attention has been paid to the gut-liver axis, which may play a physio-pathological role in the onset and progression of the disease. The gut microbiota is intended to act as a bioreactor that can guarantee autonomous metabolic and immunological functions and that can drive functional strategies within the environment of the body in response to external stimuli. The complexity of the gut microbiota suggests that it behaves as an organ. Therefore, the concept of the gut-liver axis must be complemented with the gut-microbiota-liver network due to the high intricacy of the microbiota components and metabolic activities; these activities form the active diet-driven power plant of the host. Such complexity can only be revealed using systems biology, which can integrate clinical phenomics and gut microbiota data.
Collapse
|
687
|
Brumbaugh DE, Friedman JE. Developmental origins of nonalcoholic fatty liver disease. Pediatr Res 2014; 75:140-7. [PMID: 24192698 PMCID: PMC4081536 DOI: 10.1038/pr.2013.193] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/06/2013] [Indexed: 02/07/2023]
Abstract
Obese pregnant women may transmit their metabolic phenotype to offspring, leading to a cycle of obesity and diabetes over generations. Early childhood obesity predicts nonalcoholic fatty liver disease (NAFLD), the most common chronic human liver disease. The fetus may be vulnerable to steatosis because immature fetal adipose depots are not available to buffer the excess transplacental lipid delivery in maternal obesity. In animal models, in utero high-fat diet exposure results in an increase in the accumulation of liver triglycerides in offspring and increased hepatic oxidative stress and apoptosis, perhaps priming the liver for later development of NAFLD. Innate immune dysfunction and necroinflammatory changes have been observed in postnatal offspring liver of animals born to high-fat-fed dams. Postweaning, livers of offspring exposed to maternal high-fat feeding in utero share pathophysiologic features with human NAFLD, including increased de novo lipogenesis and decreased free fatty acid oxidation. Human studies using magnetic resonance imaging have shown that maternal BMI predicts infant intrahepatocellular lipid storage, as seen in animal models. The generational transfer of NAFLD may occur via epigenetic changes in offspring liver. Transmission of microbiota from mother to infant may impact energy retention and immune function that contribute to a predisposition to NAFLD.
Collapse
Affiliation(s)
- David E. Brumbaugh
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Jacob E. Friedman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado,Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
688
|
Caron AZ, He X, Mottawea W, Seifert EL, Jardine K, Dewar-Darch D, Cron GO, Harper ME, Stintzi A, McBurney MW. The SIRT1 deacetylase protects mice against the symptoms of metabolic syndrome. FASEB J 2013; 28:1306-16. [PMID: 24297700 DOI: 10.1096/fj.13-243568] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes, hepatic steatosis, and gut dysbiosis are pathophysiological consequences of obesity. Sirtuin (SIRT)-1 is a protein deacetylase implicated in the regulation of metabolic activity. We set out to determine whether the catalytic activity of SIRT1 plays a role in the development of metabolic syndrome, hepatic steatosis, and the distribution of gut microbiota. We challenged with a high-fat diet (HFD) a strain of mice homozygous for a Sirt1 allele carrying a point mutation that ablates the deacetylase activity of SIRT1. When compared to wild-type animals, mice lacking SIRT1 catalytic activity rapidly accumulated excessive hepatic lipid while fed the HFD, an effect evident within 2 wk of HFD feeding. Both white and brown adipose depots became hypertrophic, and the animals developed insulin resistance. The ratio of the major phyla of gut microbiota (Firmicutes and Bacteroidetes) increased rapidly in the SIRT1-deficient mice after HFD challenge. We conclude that the deacetylase activity of SIRT1 plays an important role in regulating glucose and hepatic lipid homeostasis. In addition, the composition of gut microbiota is influenced by both the animals' Sirt1 genotype and diet composition.
Collapse
Affiliation(s)
- Annabelle Z Caron
- 1Program in Cancer Therapeutics, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Box 926, 501 Smyth Road, Ottawa, ON, Canada K1H 8L6.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
689
|
Abstract
The mechanisms that drive non-alcoholic fatty liver disease (NAFLD) progression from simple steatosis to non-alcoholic steatohepatitis (NASH) and NASH-fibrosis and/or cirrhosis are complex. Recent studies suggest that the liver progenitor cell (ie liver stem cell) population expands during chronic liver injury, and is an essential component of the repair process. Hedgehog (Hh) is a developmental morphogen that has an important role in the adult tissue repair (and progenitor) response. Accumulating data in mice and human show that resurrection of the Hh pathway occurs during progressive NAFLD, and that activity of this pathway correlates with NASH-fibrosis stage. Importantly, Hh ligands secreted by dying (or stressed) hepatocytes, hepatic stellate cells (i.e. myofibroblasts), cholangiocytes and recruited immune cells can act on neighbouring cells to perpetuate the fibrogenic response. Intriguingly, Hh ligands can also stimulate cholangiocytes to secrete chemokines that recruit immune cell subsets (such as natural killer T cells), which could explain why fibrosis generally occurs in the context of chronic inflammation (i.e. fibrosis-associated inflammatory response). Finally, the administration of Hh inhibitors led to reduced fibrosis in a model of NASH. Future studies are needed to evaluate the utility of these inhibitors in other models of chronic liver disease. If successful, this could pave the way for the development of new therapy for patients with NASH, because Hh pathway inhibitors have now been licensed for use in patients with advanced basal cell carcinoma.
Collapse
Affiliation(s)
- Wing-Kin Syn
- The Institute of Hepatology, Foundation for Liver Research, London UK
| |
Collapse
|
690
|
Fukuda S, Ohno H. Gut microbiome and metabolic diseases. Semin Immunopathol 2013; 36:103-14. [PMID: 24196453 DOI: 10.1007/s00281-013-0399-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/13/2013] [Indexed: 02/06/2023]
Abstract
The prevalence of obesity and obesity-related disorders is increasing worldwide. In the last decade, the gut microbiota has emerged as an important factor in the development of obesity and metabolic syndrome, through its interactions with dietary, environmental, and host genetic factors. Various studies have shown that alteration of the gut microbiota, shifting it toward increased energy harvest, is associated with an obese phenotype. However, the molecular mechanisms by which the gut microbiota affects host metabolism are still obscure. In this review, we discuss the complexity of the gut microbiota and its relationship to obesity and obesity-related diseases. Furthermore, we discuss the anti-obesity potential of probiotics and prebiotics.
Collapse
Affiliation(s)
- Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | | |
Collapse
|
691
|
Moschen AR, Kaser S, Tilg H. Non-alcoholic steatohepatitis: a microbiota-driven disease. Trends Endocrinol Metab 2013; 24:537-45. [PMID: 23827477 DOI: 10.1016/j.tem.2013.05.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a major health problem worldwide. Whereas overnutrition and obesity are crucially involved in the development of a simple fatty liver, it remains unclear why approximately 10% of all affected individuals develop the 'inflammatory' phenotype so-called non-alcoholic steatohepatitis (NASH). A link between the intestinal microbiota and the development of obesity and its metabolic consequences including NAFLD is becoming clearer. First clinical, but especially experimental, studies are suggesting that microbiotal factors are driving forces of hepatic steatosis and inflammation that involve Toll-like receptors and proinflammatory cytokines such as tumor necrosis factor-α (TNFα). Future studies focused on deciphering how manipulation of the gut microbiota might prove beneficial for patients with NAFLD are warranted.
Collapse
Affiliation(s)
- Alexander R Moschen
- Department of Internal Medicine I, Endocrinology, Gastroenterology, and Metabolism, Medical University Innsbruck, Austria
| | | | | |
Collapse
|
692
|
Abstract
Despite skeletal muscle being considered by many as the source of insulin resistance, physiology tells us that the liver is a central and cardinal regulator of glucose homeostasis. This is sometimes underestimated because, in contrast with muscle, investigations of liver function are technically very difficult. Nevertheless, recent experimental and clinical research has demonstrated clearly that, due in part to its anatomic position, the liver is exquisitely sensitive to insulin and other hormonal and neural factors, either by direct intrahepatic mechanisms or indirectly by organ cross-talk with muscle or adipose tissue. Because the liver receives absorbed nutrients, these have a direct impact on liver function, whether via a caloric excess or via the nature of food components (eg, fructose, many lipids, and trans fatty acids). An emerging observation with a possibly great future is the increase in intestinal permeability observed as a consequence of high fat intake or bacterial modifications in microbiota, whereby substances normally not crossing the gut gain access to the liver, where inflammation, oxidative stress, and lipid accumulation leads to fatty liver, a situation observed very early in the development of diabetes. The visceral adipose tissue located nearby is another main source of inflammatory substances and oxidative stress, and also acts on hepatocytes and Kupffer cells, resulting in stimulation of macrophages. Liberation of these substances, in particular triglycerides and inflammation factors, into the circulation leads to ectopic fat deposition and vascular damage. Therefore, the liver is directly involved in the development of the prediabetic cardiometabolic syndrome. Treatments are mainly metformin, and possibly statins and vitamin D. A very promising avenue is treatment of the leaky gut, which appears increasingly to be an important causal factor in hepatic insulin resistance and steatosis.
Collapse
Affiliation(s)
- Nicolas Wiernsperger
- INSERM French Institute of Health and Medical Research, U1060, National Institute of Applied Sciences, Lyon, University of Lyon, Villeurbanne, France
| |
Collapse
|
693
|
Nascimbeni F, Pais R, Bellentani S, Day CP, Ratziu V, Loria P, Lonardo A. From NAFLD in clinical practice to answers from guidelines. J Hepatol 2013; 59:859-871. [PMID: 23751754 DOI: 10.1016/j.jhep.2013.05.044] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/09/2013] [Accepted: 05/21/2013] [Indexed: 02/06/2023]
Abstract
This review of the literature consists of three sections. First, papers concerning non-alcoholic fatty liver disease (NAFLD) awareness among the general population, general practitioners, and liver and non-liver specialists were retrieved and analyzed to highlight the perception of disease, verify knowledge of current recommendations, and identify the main difficulties experienced in clinical practice. Next, position papers and clinical practice guidelines issued by International and National Hepatological Scientific Societies were identified and critically assessed in order to pinpoint the areas of convergence/difference. Finally, practical suggestions on NAFLD diagnosis and management in daily practice are provided and the open questions highlighted.
Collapse
|
694
|
Henao-Mejia J, Elinav E, Thaiss CA, Licona-Limon P, Flavell RA. Role of the intestinal microbiome in liver disease. J Autoimmun 2013; 46:66-73. [PMID: 24075647 DOI: 10.1016/j.jaut.2013.07.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 02/06/2023]
Abstract
The liver integrates metabolic outcomes with nutrient intake while preventing harmful signals derived from the gut to spread throughout the body. Direct blood influx from the gastrointestinal tract through the portal vein makes the liver a critical firewall equipped with a broad array of immune cells and innate immune receptors that recognize microbial-derived products, microorganisms, toxins and food antigens that have breached the intestinal barrier. An overwhelming amount of evidence obtained in the last decade indicates that the intestinal microbiota is a key component of a wide variety of physiological processes, and alterations in the delicate balance that represents the intestinal bacterial communities are now considered important determinants of metabolic syndrome and immunopathologies. Moreover, it is now evident that the interaction between the innate immune system and the intestinal microbiota during obesity or autoimmunity promotes chronic liver disease progression and therefore it might lead to novel and individualized therapeutic approaches. In this review, we discuss a growing body of evidence that highlights the central relationship between the immune system, the microbiome, and chronic liver disease initiation and progression.
Collapse
Affiliation(s)
- Jorge Henao-Mejia
- Department of Immunobiology, Yale University School of Medicine, CT 06520, USA
| | | | | | | | | |
Collapse
|
695
|
Dhurandhar NV, Geurts L, Atkinson RL, Casteilla L, Clement K, Gerard P, Vijay-Kumar M, Nam JH, Nieuwdorp M, Trovato G, Sørensen TIA, Vidal-Puig A, Cani PD. Harnessing the beneficial properties of adipogenic microbes for improving human health. Obes Rev 2013; 14:721-35. [PMID: 23663746 DOI: 10.1111/obr.12045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/15/2022]
Abstract
Obesity is associated with numerous metabolic comorbidities. Weight loss is an effective measure for alleviating many of these metabolic abnormalities. However, considering the limited success of most medical weight-management approaches in producing a sustained weight loss, approaches that improve obesity-related metabolic abnormalities independent of weight loss would be extremely attractive and of practical benefit. Metabolically healthy obesity supports the notion that a better metabolic profile is possible despite obesity. Moreover, adequate expansion of adipose tissue appears to confer protection from obesity-induced metabolic comorbidities. To this end, the 10th Stock conference examined new approaches to improve metabolic comorbidities independent of weight loss. In particular, human adenovirus 36 (Ad36) and specific gut microbes were examined for their potential to influence lipid and glucose homeostasis in animals and humans. While these microbes possess some undesirable properties, research has identified attributes of adenovirus Ad36 and gut microbes that may be selectively harnessed to improve metabolic profile without the obligatory weight loss. Furthermore, identifying the host signalling pathways that these microbes recruit to improve the metabolic profile may offer new templates and targets, which may facilitate the development of novel treatment strategies for obesity-related metabolic conditions.
Collapse
Affiliation(s)
- N V Dhurandhar
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
696
|
Abstract
Immune and inflammatory pathways have a central role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Both the innate and adaptive immune systems contribute to the development of NAFLD. Pathogen-associated molecular patterns and danger-associated molecular patterns are known to activate a variety of pattern-recognition receptors that result in inflammation. The key features of the immune system and inflammatory pathways in the development of NAFLD are discussed in this review.
Collapse
Affiliation(s)
- Michal Ganz
- Department of Medicine, University of Massachusetts Medical School, LRB208, 364 Plantation Street, Worcester, MA 01605 USA
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, LRB208, 364 Plantation Street, Worcester, MA 01605 USA
| |
Collapse
|
697
|
Obese humans with nonalcoholic fatty liver disease display alterations in fecal microbiota and volatile organic compounds. Clin Gastroenterol Hepatol 2013; 11:876-8. [PMID: 23628504 DOI: 10.1016/j.cgh.2013.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 02/07/2023]
|
698
|
Ross AB, Godin JP, Minehira K, Kirwan JP. Increasing whole grain intake as part of prevention and treatment of nonalcoholic Fatty liver disease. Int J Endocrinol 2013; 2013:585876. [PMID: 23762052 PMCID: PMC3670556 DOI: 10.1155/2013/585876] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/03/2013] [Indexed: 02/06/2023] Open
Abstract
In conjunction with the rise in rates of obesity, there has been an increase in the rate of nonalcoholic fatty liver disease (NAFLD). While NAFLD at least partially originates from poor diet, there is a lack of nutritional recommendations for patients with suspected or confirmed diagnosis of NAFLD, beyond eating a healthy diet, increasing physical activity, and emphasising weight loss. The limited current literature suggests that there may be opportunities to provide more tailored dietary advice for people diagnosed with or at risk of NAFLD. Epidemiological studies consistently find associations between whole grain intake and a reduced risk of obesity and related diseases, yet no work has been done on the potential of whole grains to prevent and/or be a part of the treatment for fatty liver diseases. In this review, we examine the potential and the current evidence for whole grains having an impact on NAFLD. Due to their nutrient and phytochemical composition, switching from consuming mainly refined grains to whole grains should be considered as part of the nutritional guidelines for patients diagnosed with or at risk for fatty liver disease.
Collapse
Affiliation(s)
- Alastair B. Ross
- Nestlé Research Center, Vers chez les Blanc, 1000 Lausanne 26, Switzerland
- Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | | | - Kaori Minehira
- Nestlé Research Center, Vers chez les Blanc, 1000 Lausanne 26, Switzerland
| | - John P. Kirwan
- Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue Cleveland, OH 44195, USA
| |
Collapse
|
699
|
The Primary Research on the Gut Microbes in KKAy Mice. Indian J Microbiol 2013; 54:12-9. [PMID: 24426161 DOI: 10.1007/s12088-013-0410-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/12/2013] [Indexed: 01/22/2023] Open
Abstract
In the first part of this paper, gut microbial difference of two genotypes mice was researched. The gut microbial community of type 2 diabetes animal model KKAy mice and normal C57BL/6J mice had clear distinctions in DGGE (denaturing gradient gel electrophoresis) profiles. The pairwise similarity coefficient (C s ) was only 26-44 % between KKAy and C57BL/6J, but C s was 82-100 % among same genotypes mice. Thirteen dominant bands were cloned from DGGE profiles to exhibit difference on gut microbial structure further. In the second part of this paper, the influence of hypoglycemic drug Pioglitazone on the gut microbes in KKAy mice was researched by gut microbial diversity analysis and principal component analysis (PCA). The results showed that Pioglitazone reduced the gut microbial diversity slightly and changed gut microbial structure of KKAy mice to that of normal C57BL/6J mice.
Collapse
|
700
|
Ettinger G, Burton JP, Reid G. If microbial ecosystem therapy can change your life, what's the problem? Bioessays 2013; 35:508-12. [PMID: 23575749 DOI: 10.1002/bies.201300015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The increased incidence of morbidity and mortality due to Clostridium difficile infection, had led to the emergence of fecal microbial transplantation (FMT) as a highly successful treatment. From this, a 32 strain stool substitute has been derived, and successfully tested in a pilot human study. These approaches could revolutionize not only medical care of infectious diseases, but potentially many other conditions linked to the human microbiome. But a second revolution may be needed in order for regulatory agencies, society and medical practitioners to accept and utilize these interventions, monitor their long term effects, have a degree of control over their use, or at a minimum provide guidelines for donors and recipients.
Collapse
Affiliation(s)
- Grace Ettinger
- Human Microbiology and Probiotics, Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|