701
|
Mateos-Aierdi AJ, Goicoechea M, Aiastui A, Fernández-Torrón R, Garcia-Puga M, Matheu A, López de Munain A. Muscle wasting in myotonic dystrophies: a model of premature aging. Front Aging Neurosci 2015. [PMID: 26217220 PMCID: PMC4496580 DOI: 10.3389/fnagi.2015.00125] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1 or Steinert’s disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age-dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3′ untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9(CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA-binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.
Collapse
Affiliation(s)
- Alba Judith Mateos-Aierdi
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain
| | - Maria Goicoechea
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain
| | - Ana Aiastui
- CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Cell Culture Platform, Biodonostia Health Research Institute, San Sebastián Spain
| | - Roberto Fernández-Torrón
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Department of Neurology, Hospital Universitario Donostia, San Sebastián Spain
| | - Mikel Garcia-Puga
- Oncology Area, Biodonostia Health Research Institute San Sebastián, Spain
| | - Ander Matheu
- Oncology Area, Biodonostia Health Research Institute San Sebastián, Spain
| | - Adolfo López de Munain
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Department of Neurology, Hospital Universitario Donostia, San Sebastián Spain ; Department of Neuroscience, Universidad del País Vasco UPV-EHU San Sebastián, Spain
| |
Collapse
|
702
|
Dayanidhi S, Dykstra PB, Lyubasyuk V, McKay BR, Chambers HG, Lieber RL. Reduced satellite cell number in situ in muscular contractures from children with cerebral palsy. J Orthop Res 2015; 33:1039-45. [PMID: 25732238 DOI: 10.1002/jor.22860] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/08/2015] [Indexed: 02/04/2023]
Abstract
Satellite cells (SC) are quiescent adult muscle stem cells critical for postnatal development. Children with cerebral palsy have impaired muscular growth and develop contractures. While flow cytometry previously demonstrated a reduced SC population, extracellular matrix abnormalities may influence the cell isolation methods used, systematically isolating fewer cells from CP muscle and creating a biased result. Consequently, the purpose of this study was to use immunohistochemistry on serial muscle sections to quantify SC in situ. Serial cross-sections from human gracilis muscle biopsies (n = 11) were labeled with fluorescent antibodies for Pax7 (SC transcriptional marker), laminin (basal lamina), and 4',6-diamidino-2-phenylindole (nuclei). Fluorescence microscopy under high magnification was used to identify SC based on labeling and location. Mean SC/100 myofibers was reduced by ∼70% (p < 0.001) in children with CP (2.89 ± 0.39) compared to TD children (8.77 ± 0.79). Furthermore, SC distribution across fields was different (p < 0.05) with increased percentage of SC in fields being solitary cells (p < 0.01) in children with CP. Quantification of SC number in situ, without any other tissue manipulation confirms children with spastic CP have a reduced number. This stem cell loss may, in part, explain impaired muscle growth and apparent decreased responsiveness of CP muscle to exercise.
Collapse
Affiliation(s)
- Sudarshan Dayanidhi
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California.,Department of Veterans Affairs Medical Center, San Diego, California
| | - Peter B Dykstra
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Vera Lyubasyuk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Bryon R McKay
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Henry G Chambers
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California.,Department of Orthopaedics, Rady Children's Hospital, San Diego, La Jolla, California
| | - Richard L Lieber
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California.,Department of Veterans Affairs Medical Center, San Diego, California.,Department of Bioengineering, University of California, San Diego, California
| |
Collapse
|
703
|
Beavers KR, Nelson CE, Duvall CL. MiRNA inhibition in tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2015; 88:123-37. [PMID: 25553957 PMCID: PMC4485980 DOI: 10.1016/j.addr.2014.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/25/2014] [Accepted: 12/20/2014] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that provide an endogenous negative feedback mechanism for translation of messenger RNA (mRNA) into protein. Single miRNAs can regulate hundreds of mRNAs, enabling miRNAs to orchestrate robust biological responses by simultaneously impacting multiple gene networks. MiRNAs can act as master regulators of normal and pathological tissue development, homeostasis, and repair, which has motivated expanding efforts toward the development of technologies for therapeutically modulating miRNA activity for regenerative medicine and tissue engineering applications. This review highlights the tools currently available for miRNA inhibition and their recent therapeutic applications for improving tissue repair.
Collapse
Affiliation(s)
- Kelsey R Beavers
- Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Craig L Duvall
- Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
704
|
Skuk D, Tremblay JP. Cell therapy in muscular dystrophies: many promises in mice and dogs, few facts in patients. Expert Opin Biol Ther 2015; 15:1307-19. [PMID: 26076715 DOI: 10.1517/14712598.2015.1057564] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Muscular dystrophies (MDs) are genetic diseases that produce progressive loss of skeletal muscle fibers. Cell therapy (CT) is an experimental approach to treat MD. The first clinical trials of CT in MD conducted in the 1990s were based on myoblast transplantation (MT). Since they did not yield the expected results, several researchers sought to discover other cells with more advantageous properties than myoblasts whereas others sought to improve MT. AREAS COVERED We explain the properties that are required for a cell to be used in CT of MD. We briefly review most of the cells that were proposed for this CT, and to what extent these properties were met not only in laboratory animals but also in clinical trials. EXPERT OPINION Although the repertoire of cells proposed for CT of MD has been expanded since the 1990s, only myoblasts have currently demonstrated unequivocally to significantly engraft in humans. Indeed, MT for MD involves significant technical challenges that need be solved. While it would be ideal to find cells involving less technical challenges for CT of MD, there is so far no clinical evidence that this is possible and therefore the work to improve MT should continue.
Collapse
Affiliation(s)
- Daniel Skuk
- Axe Neurosciences, P-09300, Centre Hospitalier de l'Université Laval , 2705 boulevard Laurier, Québec (QC), G1V 4G2 , Canada +1 418 654 2186 ; +1 418 654 2207 ;
| | | |
Collapse
|
705
|
FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration. PLoS One 2015; 10:e0128094. [PMID: 26039259 PMCID: PMC4454513 DOI: 10.1371/journal.pone.0128094] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/23/2015] [Indexed: 01/07/2023] Open
Abstract
Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue.
Collapse
|
706
|
Sciorati C, Clementi E, Manfredi AA, Rovere-Querini P. Fat deposition and accumulation in the damaged and inflamed skeletal muscle: cellular and molecular players. Cell Mol Life Sci 2015; 72:2135-56. [PMID: 25854633 PMCID: PMC11113943 DOI: 10.1007/s00018-015-1857-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/16/2022]
Abstract
The skeletal muscle has the capacity to repair damage by the activation and differentiation of fiber sub-laminar satellite cells. Regeneration impairment due to reduced satellite cells number and/or functional capacity leads to fiber substitution with ectopic tissues including fat and fibrous tissue and to the loss of muscle functions. Muscle mesenchymal cells that in physiological conditions sustain or directly contribute to regeneration differentiate in adipocytes in patients with persistent damage and inflammation of the skeletal muscle. These cells comprise the fibro-adipogenic precursors, the PW1-expressing cells and some interstitial cells associated with vessels (pericytes, mesoangioblasts and myoendothelial cells). Resident fibroblasts that are responsible for collagen deposition and extracellular matrix remodeling during regeneration yield fibrotic tissue and can differentiate into adipose cells. Some authors have also proposed that satellite cells themselves could transdifferentiate into adipocytes, although recent results by lineage tracing techniques seem to put this theory to discussion. This review summarizes findings about muscle resident mesenchymal cell differentiation in adipocytes and recapitulates the molecular mediators involved in intramuscular adipose tissue deposition.
Collapse
Affiliation(s)
- Clara Sciorati
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, via Olgettina 58, 20132, Milan, Italy,
| | | | | | | |
Collapse
|
707
|
Fu X, Xiao J, Wei Y, Li S, Liu Y, Yin J, Sun K, Sun H, Wang H, Zhang Z, Zhang BT, Sheng C, Wang H, Hu P. Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Res 2015; 25:655-73. [PMID: 25976405 PMCID: PMC4456625 DOI: 10.1038/cr.2015.58] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/11/2022] Open
Abstract
Muscle stem cells (MuSCs, satellite cells) are the major contributor to muscle regeneration. Like most adult stem cells, long-term expansion of MuSCs in vitro is difficult. The in vivo muscle regeneration abilities of MuSCs are quickly lost after culturing in vitro, which prevents the potential applications of MuSCs in cell-based therapies. Here, we establish a system to serially expand MuSCs in vitro for over 20 passages by mimicking the endogenous microenvironment. We identified that the combination of four pro-inflammatory cytokines, IL-1α, IL-13, TNF-α, and IFN-γ, secreted by T cells was able to stimulate MuSC proliferation in vivo upon injury and promote serial expansion of MuSCs in vitro. The expanded MuSCs can replenish the endogenous stem cell pool and are capable of repairing multiple rounds of muscle injuries in vivo after a single transplantation. The establishment of the in vitro system provides us a powerful method to expand functional MuSCs to repair muscle injuries.
Collapse
Affiliation(s)
- Xin Fu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jun Xiao
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuning Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yueyang Road, Shanghai 200031, China
| | - Sheng Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jie Yin
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Kun Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zongkang Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Sheng
- Shanghai Normal University, Guilin Road, Shanghai 200234, China
| | - Hongyan Wang
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Hu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| |
Collapse
|
708
|
Ikemoto-Uezumi M, Uezumi A, Tsuchida K, Fukada SI, Yamamoto H, Yamamoto N, Shiomi K, Hashimoto N. Pro-Insulin-Like Growth Factor-II Ameliorates Age-Related Inefficient Regenerative Response by Orchestrating Self-Reinforcement Mechanism of Muscle Regeneration. Stem Cells 2015; 33:2456-68. [PMID: 25917344 DOI: 10.1002/stem.2045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/03/2015] [Accepted: 03/28/2015] [Indexed: 12/14/2022]
Abstract
Sarcopenia, age-related muscle weakness, increases the frequency of falls and fractures in elderly people, which can trigger severe muscle injury. Rapid and successful recovery from muscle injury is essential not to cause further frailty and loss of independence. In fact, we showed insufficient muscle regeneration in aged mice. Although the number of satellite cells, muscle stem cells, decreases with age, the remaining satellite cells maintain the myogenic capacity equivalent to young mice. Transplantation of young green fluorescent protein (GFP)-Tg mice-derived satellite cells into young and aged mice revealed that age-related deterioration of the muscle environment contributes to the decline in regenerative capacity of satellite cells. Thus, extrinsic changes rather than intrinsic changes in satellite cells appear to be a major determinant of inefficient muscle regeneration with age. Comprehensive protein expression analysis identified a decrease in insulin-like growth factor-II (IGF-II) level in regenerating muscle of aged mice. We found that pro- and big-IGF-II but not mature IGF-II specifically express during muscle regeneration and the expressions are not only delayed but also decreased in absolute quantity with age. Supplementation of pro-IGF-II in aged mice ameliorated the inefficient regenerative response by promoting proliferation of satellite cells, angiogenesis, and suppressing adipogenic differentiation of platelet derived growth factor receptor (PDGFR)α(+) mesenchymal progenitors. We further revealed that pro-IGF-II but not mature IGF-II specifically inhibits the pathological adipogenesis of PDGFRα(+) cells. Together, these results uncovered a distinctive pro-IGF-II-mediated self-reinforcement mechanism of muscle regeneration and suggest that supplementation of pro-IGF-II could be one of the most effective therapeutic approaches for muscle injury in elderly people.
Collapse
Affiliation(s)
- Madoka Ikemoto-Uezumi
- Department of Regenerative Medicine, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Akiyoshi Uezumi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - So-ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroshi Yamamoto
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Naoki Yamamoto
- Laboratory of Molecular Biology and Histochemistry, Fujita Health University Joint Research Laboratory, Aichi, Japan
| | - Kosuke Shiomi
- Department of Regenerative Medicine, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Naohiro Hashimoto
- Department of Regenerative Medicine, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| |
Collapse
|
709
|
Morrissey JB, Cheng RY, Davoudi S, Gilbert PM. Biomechanical Origins of Muscle Stem Cell Signal Transduction. J Mol Biol 2015; 428:1441-54. [PMID: 26004541 DOI: 10.1016/j.jmb.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/03/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Skeletal muscle, the most abundant and widespread tissue in the human body, contracts upon receiving electrochemical signals from the nervous system to support essential functions such as thermoregulation, limb movement, blinking, swallowing and breathing. Reconstruction of adult muscle tissue relies on a pool of mononucleate, resident muscle stem cells, known as "satellite cells", expressing the paired-box transcription factor Pax7 necessary for their specification during embryonic development and long-term maintenance during adult life. Satellite cells are located around the myofibres in a niche at the interface of the basal lamina and the host fibre plasma membrane (i.e., sarcolemma), at a very low frequency. Upon damage to the myofibres, quiescent satellite cells are activated and give rise to a population of transient amplifying myogenic progenitor cells, which eventually exit the cell cycle permanently and fuse to form new myofibres and regenerate the tissue. A subpopulation of satellite cells self-renew and repopulate the niche, poised to respond to future demands. Harnessing the potential of satellite cells relies on a complete understanding of the molecular mechanisms guiding their regulation in vivo. Over the past several decades, studies revealed many signal transduction pathways responsible for satellite cell fate decisions, but the niche cues driving the activation and silencing of these pathways are less clear. Here we explore the scintillating possibility that considering the dynamic changes in the biophysical properties of the skeletal muscle, namely stiffness, and the stretch and shear forces to which a myofibre can be subjected to may provide missing information necessary to gain a full understanding of satellite cell niche regulation.
Collapse
Affiliation(s)
- James B Morrissey
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Richard Y Cheng
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Sadegh Davoudi
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Penney M Gilbert
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1.
| |
Collapse
|
710
|
DiameterJ: A validated open source nanofiber diameter measurement tool. Biomaterials 2015; 61:327-38. [PMID: 26043061 DOI: 10.1016/j.biomaterials.2015.05.015] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/04/2015] [Accepted: 05/14/2015] [Indexed: 01/10/2023]
Abstract
Despite the growing use of nanofiber scaffolds for tissue engineering applications, there is not a validated, readily available, free solution for rapid, automated analysis of nanofiber diameter from scanning electron microscope (SEM) micrographs. Thus, the goal of this study was to create a user friendly ImageJ/FIJI plugin that would analyze SEM micrographs of nanofibers to determine nanofiber diameter on a desktop computer within 60 s. Additional design goals included 1) compatibility with a variety of existing segmentation algorithms, and 2) an open source code to enable further improvement of the plugin. Using existing algorithms for centerline determination, Euclidean distance transforms and a novel pixel transformation technique, a plugin called "DiameterJ" was created for ImageJ/FIJI. The plugin was validated using 1) digital synthetic images of white lines on a black background and 2) SEM images of nominally monodispersed steel wires of known diameters. DiameterJ analyzed SEM micrographs in 20 s, produced diameters not statistically different from known values, was over 10-times closer to known diameter values than other open source software, provided hundreds of times the sampling of manual measurement, and was hundreds of times faster than manual assessment of nanofiber diameter. DiameterJ enables users to rapidly and thoroughly determine the structural features of nanofiber scaffolds and could potentially allow new insights to be formed into fiber diameter distribution and cell response.
Collapse
|
711
|
Muscle stem cells contribute to myofibres in sedentary adult mice. Nat Commun 2015; 6:7087. [PMID: 25971691 PMCID: PMC4435732 DOI: 10.1038/ncomms8087] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/31/2015] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is essential for mobility, stability, and whole body metabolism, and muscle loss, for instance during sarcopenia, has profound consequences. Satellite cells (muscle stem cells) have been hypothesized, but not yet demonstrated, to contribute to muscle homeostasis and a decline in their contribution to myofiber homeostasis to play a part in sarcopenia. To test their role in muscle maintenance, we genetically labeled and ablated satellite cells in adult sedentary mice. We demonstrate via genetic lineage experiments that even in the absence of injury, satellite cells contribute to myofibers in all adult muscles, although the extent and timing differs. However, genetic ablation experiments showed that satellite cells are not globally required to maintain myofiber cross-sectional area of uninjured adult muscle.
Collapse
|
712
|
Kollu S, Abou-Khalil R, Shen C, Brack AS. The Spindle Assembly Checkpoint Safeguards Genomic Integrity of Skeletal Muscle Satellite Cells. Stem Cell Reports 2015; 4:1061-74. [PMID: 25960061 PMCID: PMC4471836 DOI: 10.1016/j.stemcr.2015.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/29/2023] Open
Abstract
To ensure accurate genomic segregation, cells evolved the spindle assembly checkpoint (SAC), whose role in adult stem cells remains unknown. Inducible perturbation of a SAC kinase, Mps1, and its downstream effector, Mad2, in skeletal muscle stem cells shows the SAC to be critical for normal muscle growth, repair, and self-renewal of the stem cell pool. SAC-deficient muscle stem cells arrest in G1 phase of the cell cycle with elevated aneuploidy, resisting differentiation even under inductive conditions. p21(CIP1) is responsible for these SAC-deficient phenotypes. Despite aneuploidy's correlation with aging, we find that aged proliferating muscle stem cells display robust SAC activity without elevated aneuploidy. Thus, muscle stem cells have a two-step mechanism to safeguard their genomic integrity. The SAC prevents chromosome missegregation and, if it fails, p21(CIP1)-dependent G1 arrest limits cellular propagation and tissue integration. These mechanisms ensure that muscle stem cells with compromised genomes do not contribute to tissue homeostasis.
Collapse
Affiliation(s)
- Swapna Kollu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Rana Abou-Khalil
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Carl Shen
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Andrew S Brack
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
713
|
Kutchuk L, Laitala A, Soueid-Bomgarten S, Shentzer P, Rosendahl AH, Eilot S, Grossman M, Sagi I, Sormunen R, Myllyharju J, Mäki JM, Hasson P. Muscle composition is regulated by a Lox-TGFβ feedback loop. Development 2015; 142:983-93. [PMID: 25715398 DOI: 10.1242/dev.113449] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Muscle is an integrated tissue composed of distinct cell types and extracellular matrix. While much emphasis has been placed on the factors required for the specification of the cells that comprise muscle, little is known about the crosstalk between them that enables the development of a patterned and functional tissue. We find in mice that deletion of lysyl oxidase (Lox), an extracellular enzyme regulating collagen maturation and organization, uncouples the balance between the amount of myofibers and that of muscle connective tissue (MCT). We show that Lox secreted from the myofibers attenuates TGFβ signaling, an inhibitor of myofiber differentiation and promoter of MCT development. We further demonstrate that a TGFβ-Lox feedback loop between the MCT and myofibers maintains the dynamic developmental homeostasis between muscle components while also regulating MCT organization. Our results allow a better understanding of diseases such as Duchenne muscular dystrophy, in which LOX and TGFβ signaling have been implicated and the balance between muscle constituents is disturbed.
Collapse
Affiliation(s)
- Liora Kutchuk
- The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Anu Laitala
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90220, Finland
| | - Sharon Soueid-Bomgarten
- The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Pessia Shentzer
- The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Ann-Helen Rosendahl
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90220, Finland
| | - Shelly Eilot
- The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Moran Grossman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Irit Sagi
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raija Sormunen
- Biocenter Oulu and Department of Pathology, University of Oulu and Oulu University Hospital, Oulu 90220, Finland
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90220, Finland
| | - Joni M Mäki
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90220, Finland
| | - Peleg Hasson
- The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
714
|
Lee JD, Fry CS, Mula J, Kirby TJ, Jackson JR, Liu F, Yang L, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Aged Muscle Demonstrates Fiber-Type Adaptations in Response to Mechanical Overload, in the Absence of Myofiber Hypertrophy, Independent of Satellite Cell Abundance. J Gerontol A Biol Sci Med Sci 2015; 71:461-7. [PMID: 25878030 PMCID: PMC5175449 DOI: 10.1093/gerona/glv033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/09/2015] [Indexed: 12/25/2022] Open
Abstract
Although sarcopenia, age-associated loss of muscle mass and strength, is neither accelerated nor exacerbated by depletion of muscle stem cells, satellite cells, we hypothesized that adaptation in sarcopenic muscle would be compromised. To test this hypothesis, we depleted satellite cells with tamoxifen treatment of Pax7(CreER)-DTA mice at 4 months of age, and 20 months later subjected the plantaris muscle to 2 weeks of mechanical overload. We found myofiber hypertrophy was impaired in aged mice regardless of satellite cell content. Even in the absence of growth, vehicle-treated mice mounted a regenerative response, not apparent in tamoxifen-treated mice. Further, myonuclear accretion occurred in the absence of growth, which was prevented by satellite cell depletion, demonstrating that myonuclear addition is insufficient to drive myofiber hypertrophy. Satellite cell depletion increased extracellular matrix content of aged muscle that was exacerbated by overload, potentially limiting myofiber growth. These results support the idea that satellite cells regulate the muscle environment, and that their loss during aging may contribute to fibrosis, particularly during periods of remodeling. Overload induced a fiber-type composition improvement, independent of satellite cells, suggesting that aged muscle is very responsive to exercise-induced enhancement in oxidative capacity, even with an impaired hypertrophic response.
Collapse
Affiliation(s)
- Jonah D Lee
- Department of Rehabilitation Sciences, College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington. Department of Molecular and Integrative Physiology, Medical School, University of Michigan, Ann Arbor
| | - Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston
| | - Jyothi Mula
- Department of Rehabilitation Sciences, College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington
| | - Tyler J Kirby
- Center for Muscle Biology, University of Kentucky, Lexington. Department of Physiology, College of Medicine, University of Kentucky, Lexington
| | - Janna R Jackson
- Department of Rehabilitation Sciences, College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington
| | - Fujun Liu
- Department of Biomedical Engineering, University of Florida, Gainesville
| | - Lin Yang
- Department of Biomedical Engineering, University of Florida, Gainesville
| | - Esther E Dupont-Versteegden
- Department of Rehabilitation Sciences, College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington. Department of Physiology, College of Medicine, University of Kentucky, Lexington
| | - Charlotte A Peterson
- Department of Rehabilitation Sciences, College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington. Department of Physiology, College of Medicine, University of Kentucky, Lexington.
| |
Collapse
|
715
|
Klingler W, Velders M, Hoppe K, Pedro M, Schleip R. Clinical relevance of fascial tissue and dysfunctions. Curr Pain Headache Rep 2015; 18:439. [PMID: 24962403 DOI: 10.1007/s11916-014-0439-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fascia is composed of collagenous connective tissue surrounding and interpenetrating skeletal muscle, joints, organs, nerves, and vascular beds. Fascial tissue forms a whole-body, continuous three-dimensional viscoelastic matrix of structural support. The classical concept of its mere passive role in force transmission has recently been disproven. Fascial tissue contains contractile elements enabling a modulating role in force generation and also mechanosensory fine-tuning. This hypothesis is supported by in vitro studies demonstrating an autonomous contraction of human lumbar fascia and a pharmacological induction of temporary contraction in rat fascial tissue. The ability of spontaneous regulation of fascial stiffness over a time period ranging from minutes to hours contributes more actively to musculoskeletal dynamics. Imbalance of this regulatory mechanism results in increased or decreased myofascial tonus, or diminished neuromuscular coordination, which are key contributors to the pathomechanisms of several musculoskeletal pathologies and pain syndromes. Here, we summarize anatomical and biomechanical properties of fascial tissue with a special focus on fascial dysfunctions and resulting clinical manifestations. Finally, we discuss current and future potential treatment options that can influence clinical manifestations of pain syndromes associated with fascial tissues.
Collapse
Affiliation(s)
- W Klingler
- Fascia Research Group, Division of Neurophysiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | | | | | | | | |
Collapse
|
716
|
Sohn J, Lu A, Tang Y, Wang B, Huard J. Activation of non-myogenic mesenchymal stem cells during the disease progression in dystrophic dystrophin/utrophin knockout mice. Hum Mol Genet 2015; 24:3814-29. [PMID: 25859011 DOI: 10.1093/hmg/ddv125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022] Open
Abstract
Ectopic calcification as well as fatty and fibrotic tissue accumulation occurs in skeletal muscle during the disease progression of Duchenne muscular dystrophy (DMD), a degenerative muscle disorder caused by mutations in the dystrophin gene. The cellular origin and the environmental cues responsible for this ectopic calcification, fatty and fibrotic infiltration during the disease progression, however, remain unknown. Based on a previously published preplate technique, we isolated two distinct populations of muscle-derived cells from skeletal muscle: (i) a rapidly adhering cell population, which is non-myogenic, Pax7(-) and express the mesenchymal stem cell (MSC) marker platelet-derived growth factor receptor alpha; hence, we termed this population of cells non-myogenic MSCs (nmMSCs); and (ii) a slowly adhering cell population which is Pax7(+) and highly myogenic, termed muscle progenitor cells (MPCs). Previously, we demonstrated that the rapid progression of skeletal muscle histopathologies in dystrophin/utrophin knockout (dys(-/-) utro(-/-) dKO) mice is closely associated with a rapid depletion of the MPC population pool. In the current study, we showed that in contrast to the MPCs, the nmMSCs become activated during the disease progression in dKO mice, displaying increased proliferation and differentiation potentials (adipogenesis, osteogenesis and fibrogenesis). We also found that after co-culturing the dKO-nmMSCs with dKO-MPCs, the myogenic differentiation potential of the dKO-MPCs was reduced. This effect was found to be potentially mediated by the secretion of secreted frizzled-related protein 1 by the dKO-nmMSCs. We therefore posit that the rapid occurrence of fibrosis, ectopic calcification and fat accumulation, in dKO mice, is not only attributable to the rapid depletion of the MPC pool, but is also the consequence of nmMSC activation. Results from this study suggest that approaches to alleviate muscle weakness and wasting in DMD patients should not only target the myogenic MPCs but should also attempt to prevent the activation of the nmMSCs.
Collapse
Affiliation(s)
- Jihee Sohn
- Stem Cell Research Center, Department of Orthopaedic Surgery and
| | - Aiping Lu
- Stem Cell Research Center, Department of Orthopaedic Surgery and
| | - Ying Tang
- Stem Cell Research Center, Department of Orthopaedic Surgery and
| | - Bing Wang
- Stem Cell Research Center, Department of Orthopaedic Surgery and
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
717
|
Cezar CA, Mooney DJ. Biomaterial-based delivery for skeletal muscle repair. Adv Drug Deliv Rev 2015; 84:188-97. [PMID: 25271446 DOI: 10.1016/j.addr.2014.09.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/26/2014] [Accepted: 09/19/2014] [Indexed: 12/22/2022]
Abstract
Skeletal muscle possesses a remarkable capacity for regeneration in response to minor damage, but severe injury resulting in a volumetric muscle loss can lead to extensive and irreversible fibrosis, scarring, and loss of muscle function. In early clinical trials, the intramuscular injection of cultured myoblasts was proven to be a safe but ineffective cell therapy, likely due to rapid death, poor migration, and immune rejection of the injected cells. In recent years, appropriate therapeutic cell types and culturing techniques have improved progenitor cell engraftment upon transplantation. Importantly, the identification of several key biophysical and biochemical cues that synergistically regulate satellite cell fate has paved the way for the development of cell-instructive biomaterials that serve as delivery vehicles for cells to promote in vivo regeneration. Material carriers designed to spatially and temporally mimic the satellite cell niche may be of particular importance for the complete regeneration of severely damaged skeletal muscle.
Collapse
|
718
|
McCullagh KJA, Perlingeiro RCR. Coaxing stem cells for skeletal muscle repair. Adv Drug Deliv Rev 2015; 84:198-207. [PMID: 25049085 PMCID: PMC4295015 DOI: 10.1016/j.addr.2014.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
Skeletal muscle has a tremendous ability to regenerate, attributed to a well-defined population of muscle stem cells called satellite cells. However, this ability to regenerate diminishes with age and can also be dramatically affected by multiple types of muscle diseases, or injury. Extrinsic and/or intrinsic defects in the regulation of satellite cells are considered to be major determinants for the diminished regenerative capacity. Maintenance and replenishment of the satellite cell pool is one focus for muscle regenerative medicine, which will be discussed. There are other sources of progenitor cells with myogenic capacity, which may also support skeletal muscle repair. However, all of these myogenic cell populations have inherent difficulties and challenges in maintaining or coaxing their derivation for therapeutic purpose. This review will highlight recent reported attributes of these cells and new bioengineering approaches to creating a supply of myogenic stem cells or implants applicable for acute and/or chronic muscle disorders.
Collapse
Affiliation(s)
- Karl J A McCullagh
- Department of Physiology, School of Medicine and Regenerative Medicine Institute, National University of Ireland Galway, Ireland
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
719
|
Hyldahl RD, Nelson B, Xin L, Welling T, Groscost L, Hubal MJ, Chipkin S, Clarkson PM, Parcell AC. Extracellular matrix remodeling and its contribution to protective adaptation following lengthening contractions in human muscle. FASEB J 2015; 29:2894-904. [PMID: 25808538 DOI: 10.1096/fj.14-266668] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/09/2015] [Indexed: 11/11/2022]
Abstract
This study determined the contribution of extracellular matrix (ECM) remodeling to the protective adaptation of human skeletal muscle known as the repeated-bout effect (RBE). Muscle biopsies were obtained 3 hours, 2 days, and 27 days following an initial bout (B1) of lengthening contractions (LCs) and 2 days following a repeated bout (B2) in 2 separate studies. Biopsies from the nonexercised legs served as controls. In the first study, global transcriptomic analysis indicated widespread changes in ECM structural, deadhesive, and signaling transcripts, 3 hours following LC. To determine if ECM remodeling is involved in the RBE, we conducted a second study by use of a repeated-bout paradigm. TNC immunoreactivity increased 10.8-fold following B1, was attenuated following B2, and positively correlated with LC-induced strength loss (r(2) = 0.45; P = 0.009). Expression of collagen I, III, and IV (COL1A1, COL3A1, COL4A1) transcripts was unchanged early but increased 5.7 ± 2.5-, 3.2 ± 0.9-, and 2.1 ± 0.4-fold (P < 0.05), respectively, 27 days post-B1 and were unaffected by B2. Likewise, TGF-β signaling demonstrated a delayed response following LC. Satellite cell content increased 80% (P < 0.05) 2 days post-B1 (P < 0.05), remained elevated 27 days post-B1, and was unaffected by B2. Collectively, the data suggest sequential ECM remodeling characterized by early deadhesion and delayed reconstructive activity that appear to contribute to the RBE.
Collapse
Affiliation(s)
- Robert D Hyldahl
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Brad Nelson
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Ling Xin
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Tyson Welling
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Logan Groscost
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Monica J Hubal
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Stuart Chipkin
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Priscilla M Clarkson
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Allen C Parcell
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| |
Collapse
|
720
|
Brzoska E, Kowalski K, Markowska-Zagrajek A, Kowalewska M, Archacki R, Plaskota I, Stremińska W, Jańczyk-Ilach K, Ciemerych MA. Sdf-1 (CXCL12) induces CD9 expression in stem cells engaged in muscle regeneration. Stem Cell Res Ther 2015; 6:46. [PMID: 25890097 PMCID: PMC4445299 DOI: 10.1186/s13287-015-0041-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/31/2014] [Accepted: 03/05/2015] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Understanding the mechanism of stem cell mobilization into injured skeletal muscles is a prerequisite step for the development of muscle disease therapies. Many of the currently studied stem cell types present myogenic potential; however, when introduced either into the blood stream or directly into the tissue, they are not able to efficiently engraft injured muscle. For this reason their use in therapy is still limited. Previously, we have shown that stromal-derived factor-1 (Sdf-1) caused the mobilization of endogenous (not transplanted) stem cells into injured skeletal muscle improving regeneration. Here, we demonstrate that the beneficial effect of Sdf-1 relies on the upregulation of the tetraspanin CD9 expression in stem cells. METHODS The expression pattern of adhesion proteins, including CD9, was analysed after Sdf-1 treatment during regeneration of rat skeletal muscles and mouse Pax7-/- skeletal muscles, that are characterized by the decreased number of satellite cells. Next, we examined the changes in CD9 level in satellite cells-derived myoblasts, bone marrow-derived mesenchymal stem cells, and embryonic stem cells after Sdf-1 treatment or silencing expression of CXCR4 and CXCR7. Finally, we examined the potential of stem cells to fuse with myoblasts after Sdf-1 treatment. RESULTS In vivo analyses of Pax7-/- mice strongly suggest that Sdf-1-mediates increase in CD9 levels also in mobilized stem cells. In the absence of CXCR4 receptor the effect of Sdf-1 on CD9 expression is blocked. Next, in vitro studies show that Sdf-1 increases the level of CD9 not only in satellite cell-derived myoblasts but also in bone marrow derived mesenchymal stem cells, as well as embryonic stem cells. Importantly, the Sdf-1 treated cells migrate and fuse with myoblasts more effectively. CONCLUSIONS We suggest that Sdf-1 binding CXCR4 receptor improves skeletal muscle regeneration by upregulating expression of CD9 and thus, impacting at stem cells mobilization to the injured muscles.
Collapse
Affiliation(s)
- Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Kamil Kowalski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | | | - Magdalena Kowalewska
- Department of Molecular and Translational Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland. .,Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.
| | - Rafał Archacki
- Departament of Systems Biology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland.
| | - Izabela Plaskota
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Władysława Stremińska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Katarzyna Jańczyk-Ilach
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
721
|
Qazi TH, Mooney DJ, Pumberger M, Geissler S, Duda GN. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 2015; 53:502-21. [PMID: 25890747 DOI: 10.1016/j.biomaterials.2015.02.110] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany.
| | - David J Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, USA.
| | - Matthias Pumberger
- Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Center for Musculoskeletal Surgery, Charitè - Universitätsmedizin Berlin, Germany.
| | - Sven Geissler
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
| |
Collapse
|
722
|
Kostallari E, Baba-Amer Y, Alonso-Martin S, Ngoh P, Relaix F, Lafuste P, Gherardi RK. Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence. Development 2015; 142:1242-53. [PMID: 25742797 DOI: 10.1242/dev.115386] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The satellite cells, which serve as adult muscle stem cells, are both located beneath myofiber basement membranes and closely associated with capillary endothelial cells. We observed that 90% of capillaries were associated with pericytes in adult mouse and human muscle. During post-natal growth, newly formed vessels with their neuroglial 2 proteoglycan (NG2)-positive pericytes became progressively associated with the post-natal muscle stem cells, as myofibers increased in size and satellite cells entered into quiescence. In vitro, human muscle-derived pericytes promoted myogenic cell differentiation through insulin-like growth factor 1 (IGF1) and myogenic cell quiescence through angiopoietin 1 (ANGPT1). Diphtheria toxin-induced ablation of muscle pericytes in growing mice led both to myofiber hypotrophy and to impaired establishment of stem cells quiescence. Similar effects were observed following conditional in vivo deletion of pericyte Igf1 and Angpt1 genes, respectively. Our data therefore demonstrate that, by promoting post-natal myogenesis and stem cell quiescence, pericytes play a key role in the microvascular niche of satellite cells.
Collapse
Affiliation(s)
- Enis Kostallari
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est, 5 boulevard Descartes, Marne-la-Vallée cedex 2 F-77454, France
| | - Yasmine Baba-Amer
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est Créteil, 62 avenue du Général de Gaulle, Créteil F-94000, France
| | - Sonia Alonso-Martin
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est Créteil, 62 avenue du Général de Gaulle, Créteil F-94000, France
| | - Pamela Ngoh
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université d'Evry-Val d'Essonne, Boulevard François Mitterrand, Evry F-91000, France
| | - Frederic Relaix
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est Créteil, 62 avenue du Général de Gaulle, Créteil F-94000, France Etablissement Français du Sang, Créteil 94017, France Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort 94700, France Hôpital Henri Mondor, Département de Pathologie, 51 avenue du Maréchal de Lattre de Tassigny, Créteil F-94010, France
| | - Peggy Lafuste
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est Créteil, 62 avenue du Général de Gaulle, Créteil F-94000, France
| | - Romain K Gherardi
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est Créteil, 62 avenue du Général de Gaulle, Créteil F-94000, France Hôpital Henri Mondor, Département de Pathologie, 51 avenue du Maréchal de Lattre de Tassigny, Créteil F-94010, France
| |
Collapse
|
723
|
Martin KS, Blemker SS, Peirce SM. Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy. J Appl Physiol (1985) 2015; 118:1299-309. [PMID: 25722379 DOI: 10.1152/japplphysiol.01150.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/20/2015] [Indexed: 01/27/2023] Open
Abstract
Skeletal muscle is highly responsive to use. In particular, muscle atrophy attributable to decreased activity is a common problem among the elderly and injured/immobile. However, each muscle does not respond the same way. We developed an agent-based model that generates a tissue-level skeletal muscle response to disuse/immobilization. The model incorporates tissue-specific muscle fiber architecture parameters and simulates changes in muscle fiber size as a result of disuse-induced atrophy that are consistent with published experiments. We created simulations of 49 forelimb and hindlimb muscles of the rat by incorporating eight fiber-type and size parameters to explore how these parameters, which vary widely across muscles, influence sensitivity to disuse-induced atrophy. Of the 49 muscles modeled, the soleus exhibited the greatest atrophy after 14 days of simulated immobilization (51% decrease in fiber size), whereas the extensor digitorum communis atrophied the least (32%). Analysis of these simulations revealed that both fiber-type distribution and fiber-size distribution influence the sensitivity to disuse atrophy even though no single tissue architecture parameter correlated with atrophy rate. Additionally, software agents representing fibroblasts were incorporated into the model to investigate cellular interactions during atrophy. Sensitivity analyses revealed that fibroblast agents have the potential to affect disuse-induced atrophy, albeit with a lesser effect than fiber type and size. In particular, muscle atrophy elevated slightly with increased initial fibroblast population and increased production of TNF-α. Overall, the agent-based model provides a novel framework for investigating both tissue adaptations and cellular interactions in skeletal muscle during atrophy.
Collapse
Affiliation(s)
- Kyle S Martin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Silvia S Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia; Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia; Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia;
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia; Department of Ophthalmology, University of Virginia, Charlottesville, Virginia; Department of Plastic Surgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
724
|
Westerman KA. Myospheres are composed of two cell types: one that is myogenic and a second that is mesenchymal. PLoS One 2015; 10:e0116956. [PMID: 25706128 PMCID: PMC4338034 DOI: 10.1371/journal.pone.0116956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/15/2014] [Indexed: 02/06/2023] Open
Abstract
Previously, in an attempt to isolate stem cells that would be capable of regenerating injured skeletal muscle, we cultured cells derived from muscle, non-adherently, in serum-free media. As a result of the culture conditions used, these cells formed spheres, and thus were referred to as myospheres. It was found that myosphere-derived cells expressed Sca-1, a marker that is not typically associated with myogenic cells, and as a result has generated some questions as to the origin of these cells. The goal of this study was to clearly determine the origin of myosphere-derived cells, and in particular to answer the question of whether myospheres contain myogenic cells. To determine if myospheres were composed of myogenic cells without altering the structure of myospheres or the culture conditions used to maintain myospheres, I isolated these cells from yellow fluorescent protein (YFP)-Myf5, YFP-MyoD, and ZsGreen-Pax7 lineage-tracing mice and monitored their growth over time. I found that myospheres do contain myogenic cells, but that these cells are gradually lost over time (within 2 months). Additionally, the use of the lineage-tracing mice gave an interesting perspective into the composition of myospheres. I found that myospheres were composed of two distinct cell types, one that is myogenic (α7 integrin+) and contains cells expressing Myf5, MyoD, and Pax7, and a second that is non-myogenic (α7 integrin-) expressing platelet-derived growth factor receptor alpha (PDGFRα) and Sca-1, both of which have been associated with fibro/adipocyte mesenchymal cells.
Collapse
Affiliation(s)
- Karen A. Westerman
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
725
|
Parker MH. The altered fate of aging satellite cells is determined by signaling and epigenetic changes. Front Genet 2015; 6:59. [PMID: 25750654 PMCID: PMC4335604 DOI: 10.3389/fgene.2015.00059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/07/2015] [Indexed: 01/11/2023] Open
Abstract
Skeletal muscle is a striated tissue composed of multinucleated fibers that contract under the control of the somatic nervous system to direct movement. The stem cells of skeletal muscle, known as satellite cells, are responsible for muscle fiber growth, turnover, and regeneration. Satellite cells are activated and proliferate in response to stimuli, and simplistically, have two main fates—to repopulate the satellite cell niche, or differentiate to regenerate or repair muscle fibers. However, the ability to regenerate muscle and replace lost myofibers declines with age. This loss of function may be a result of extrinsic changes in the niche, such as alterations in signaling or modifications to the extracellular matrix. However, intrinsic epigenetic changes within satellite cells may also affect cell fate and cause a decline in regenerative capacity. This review will describe the mechanisms that regulate cell fate decisions in adult skeletal muscle, and how changes during aging affect muscle fiber turnover and regeneration.
Collapse
Affiliation(s)
- Maura H Parker
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, WA, USA
| |
Collapse
|
726
|
Hurd SA, Bhatti NM, Walker AM, Kasukonis BM, Wolchok JC. Development of a biological scaffold engineered using the extracellular matrix secreted by skeletal muscle cells. Biomaterials 2015; 49:9-17. [PMID: 25725550 DOI: 10.1016/j.biomaterials.2015.01.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/17/2014] [Accepted: 01/20/2015] [Indexed: 01/08/2023]
Abstract
The performance of implantable biomaterials derived from decellularized tissue, including encouraging results with skeletal muscle, suggests that the extracellular matrix (ECM) derived from native tissue has promising regenerative potential. Yet, the supply of biomaterials derived from donated tissue will always be limited, which is why the in-vitro fabrication of ECM biomaterials that mimic the properties of tissue is an attractive alternative. Towards this end, our group has utilized a novel method to collect the ECM that skeletal muscle myoblasts secrete and form it into implantable scaffolds. The cell derived ECM contained several matrix constituents, including collagen and fibronectin that were also identified within skeletal muscle samples. The ECM was organized into a porous network that could be formed with the elongated and aligned architecture observed within muscle samples. The ECM material supported the attachment and in-vitro proliferation of cells, suggesting effectiveness for cell transplantation, and was well tolerated by the host when examined in-vivo. The results suggest that the ECM collection approach can be used to produce biomaterials with compositions and structures that are similar to muscle samples, and while the physical properties may not yet match muscle values, the in-vitro and in-vivo results indicate it may be a suitable first generation alternative to tissue derived biomaterials.
Collapse
Affiliation(s)
- Shiloh A Hurd
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, USA
| | - Nadia M Bhatti
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, USA
| | - Addison M Walker
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, USA
| | - Ben M Kasukonis
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, USA
| | - Jeffrey C Wolchok
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, USA.
| |
Collapse
|
727
|
Anitua E, Pelacho B, Prado R, Aguirre JJ, Sánchez M, Padilla S, Aranguren XL, Abizanda G, Collantes M, Hernandez M, Perez-Ruiz A, Peñuelas I, Orive G, Prosper F. Infiltration of plasma rich in growth factors enhances in vivo angiogenesis and improves reperfusion and tissue remodeling after severe hind limb ischemia. J Control Release 2015; 202:31-9. [PMID: 25626084 DOI: 10.1016/j.jconrel.2015.01.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 01/03/2023]
Abstract
PRGF is a platelet concentrate within a plasma suspension that forms an in situ-generated fibrin-matrix delivery system, releasing multiple growth factors and other bioactive molecules that play key roles in tissue regeneration. This study was aimed at exploring the angiogenic and myogenic effects of PRGF on in vitro endothelial cells (HUVEC) and skeletal myoblasts (hSkMb) as well as on in vivo mouse subcutaneously implanted matrigel and on limb muscles after a severe ischemia. Human PRGF was prepared and characterized. Both proliferative and anti-apoptotic responses to PRGF were assessed in vitro in HUVEC and hSkMb. In vivo murine matrigel plug assay was conducted to determine the angiogenic capacity of PRGF, whereas in vivo ischemic hind limb model was carried out to demonstrate PRGF-driven vascular and myogenic regeneration. Primary HUVEC and hSkMb incubated with PRGF showed a dose dependent proliferative and anti-apoptotic effect and the PRGF matrigel plugs triggered an early and significant sustained angiogenesis compared with the control group. Moreover, mice treated with PRGF intramuscular infiltrations displayed a substantial reperfusion enhancement at day 28 associated with a fibrotic tissue reduction. These findings suggest that PRGF-induced angiogenesis is functionally effective at expanding the perfusion capacity of the new vasculature and attenuating the endogenous tissue fibrosis after a severe-induced skeletal muscle ischemia.
Collapse
Affiliation(s)
- Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
| | - Beatriz Pelacho
- Cell Therapy Program, Foundation for Applied Medical Research, University of Navarra, Spain
| | | | | | - Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas San Jose, Vitoria, Spain
| | - Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI - Biotechnology Institute, Vitoria, Spain
| | - Xabier L Aranguren
- Cell Therapy Program, Foundation for Applied Medical Research, University of Navarra, Spain
| | - Gloria Abizanda
- Cell Therapy Program, Foundation for Applied Medical Research, University of Navarra, Spain
| | - María Collantes
- Department of Nuclear Medicine, MicroPET Research Unit CIMA-CUN, Clínica Universitaria, University of Navarra, Spain
| | - Milagros Hernandez
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra, University of Navarra, Spain
| | - Ana Perez-Ruiz
- Cell Therapy Program, Foundation for Applied Medical Research, University of Navarra, Spain
| | - Ivan Peñuelas
- Department of Nuclear Medicine, MicroPET Research Unit CIMA-CUN, Clínica Universitaria, University of Navarra, Spain
| | - Gorka Orive
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain.
| | - Felipe Prosper
- Cell Therapy Program, Foundation for Applied Medical Research, University of Navarra, Spain; Hematology and Cell Therapy Department, Clínica Universidad de Navarra, University of Navarra, Spain.
| |
Collapse
|
728
|
Agley CC, Rowlerson AM, Velloso CP, Lazarus NL, Harridge SDR. Isolation and quantitative immunocytochemical characterization of primary myogenic cells and fibroblasts from human skeletal muscle. J Vis Exp 2015:52049. [PMID: 25650991 PMCID: PMC4354531 DOI: 10.3791/52049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The repair and regeneration of skeletal muscle requires the action of satellite cells, which are the resident muscle stem cells. These can be isolated from human muscle biopsy samples using enzymatic digestion and their myogenic properties studied in culture. Quantitatively, the two main adherent cell types obtained from enzymatic digestion are: (i) the satellite cells (termed myogenic cells or muscle precursor cells), identified initially as CD56(+) and later as CD56(+)/desmin(+) cells and (ii) muscle-derived fibroblasts, identified as CD56(-) and TE-7(+). Fibroblasts proliferate very efficiently in culture and in mixed cell populations these cells may overrun myogenic cells to dominate the culture. The isolation and purification of different cell types from human muscle is thus an important methodological consideration when trying to investigate the innate behavior of either cell type in culture. Here we describe a system of sorting based on the gentle enzymatic digestion of cells using collagenase and dispase followed by magnetic activated cell sorting (MACS) which gives both a high purity (>95% myogenic cells) and good yield (~2.8 x 10(6) ± 8.87 x 10(5) cells/g tissue after 7 days in vitro) for experiments in culture. This approach is based on incubating the mixed muscle-derived cell population with magnetic microbeads beads conjugated to an antibody against CD56 and then passing cells though a magnetic field. CD56(+) cells bound to microbeads are retained by the field whereas CD56(-) cells pass unimpeded through the column. Cell suspensions from any stage of the sorting process can be plated and cultured. Following a given intervention, cell morphology, and the expression and localization of proteins including nuclear transcription factors can be quantified using immunofluorescent labeling with specific antibodies and an image processing and analysis package.
Collapse
Affiliation(s)
- Chibeza C Agley
- Centre of Human and Aerospace Physiological Sciences, King's College London; Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute;
| | - Anthea M Rowlerson
- Centre of Human and Aerospace Physiological Sciences, King's College London
| | | | - Norman L Lazarus
- Centre of Human and Aerospace Physiological Sciences, King's College London
| | | |
Collapse
|
729
|
Zhuang L, Hulin JA, Gromova A, Tran Nguyen TD, Yu RT, Liddle C, Downes M, Evans RM, Makarenkova HP, Meech R. Barx2 and Pax7 have antagonistic functions in regulation of wnt signaling and satellite cell differentiation. Stem Cells 2015; 32:1661-73. [PMID: 24753152 DOI: 10.1002/stem.1674] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 12/16/2013] [Accepted: 01/16/2012] [Indexed: 11/05/2022]
Abstract
The canonical Wnt signaling pathway is critical for myogenesis and can induce muscle progenitors to switch from proliferation to differentiation; how Wnt signals integrate with muscle-specific regulatory factors in this process is poorly understood. We previously demonstrated that the Barx2 homeobox protein promotes differentiation in cooperation with the muscle regulatory factor (MRF) MyoD. Pax7, another important muscle homeobox factor, represses differentiation. We now identify Barx2, MyoD, and Pax7 as novel components of the Wnt effector complex, providing a new molecular pathway for regulation of muscle progenitor differentiation. Canonical Wnt signaling induces Barx2 expression in muscle progenitors and perturbation of Barx2 leads to misregulation of Wnt target genes. Barx2 activates two endogenous Wnt target promoters as well as the Wnt reporter gene TOPflash, the latter synergistically with MyoD. Moreover, Barx2 interacts with the core Wnt effectors β-catenin and T cell-factor 4 (TCF4), is recruited to TCF/lymphoid enhancer factor sites, and promotes recruitment of β-catenin. In contrast, Pax7 represses the Wnt reporter gene and antagonizes the activating effect of Barx2. Pax7 also binds β-catenin suggesting that Barx2 and Pax7 may compete for interaction with the core Wnt effector complex. Overall, the data show for the first time that Barx2, Pax7, and MRFs can act as direct transcriptional effectors of Wnt signals in myoblasts and that Barx2 and Wnt signaling participate in a regulatory loop. We propose that antagonism between Barx2 and Pax7 in regulation of Wnt signaling may help mediate the switch from myoblast proliferation to differentiation.
Collapse
Affiliation(s)
- Lizhe Zhuang
- Department of Clinical Pharmacology, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
730
|
Abstract
Skeletal muscles in vertebrates have a phenomenal regenerative capacity. A muscle that has been crushed can regenerate fully both structurally and functionally within a month. Remarkably, efficient regeneration continues to occur following repeated injuries. Thousands of muscle precursor cells are needed to accomplish regeneration following acute injury. The differentiated muscle cells, the multinucleated contractile myofibers, are terminally withdrawn from mitosis. The source of the regenerative precursors is the skeletal muscle stem cells-the mononucleated cells closely associated with myofibers, which are known as satellite cells. Satellite cells are mitotically quiescent or slow-cycling, committed to myogenesis, but undifferentiated. Disruption of the niche after muscle damage results in their exit from quiescence and progression towards commitment. They eventually arrest proliferation, differentiate, and fuse to damaged myofibers or make de novo myofibers. Satellite cells are one of the well-studied adult tissue-specific stem cells and have served as an excellent model for investigating adult stem cells. They have also emerged as an important standard in the field of ageing and stem cells. Several recent reviews have highlighted the importance of these cells as a model to understand stem cell biology. This chapter begins with the discovery of satellite cells as skeletal muscle stem cells and their developmental origin. We discuss transcription factors and signalling cues governing stem cell function of satellite cells and heterogeneity in the satellite cell pool. Apart from satellite cells, a number of other stem cells have been shown to make muscle and are being considered as candidate stem cells for amelioration of muscle degenerative diseases. We discuss these "offbeat" muscle stem cells and their status as adult skeletal muscle stem cells vis-a-vis satellite cells. The ageing context is highlighted in the concluding section.
Collapse
Affiliation(s)
- Ramkumar Sambasivan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK, Bellary Road, Bangalore, 560065, India,
| | | |
Collapse
|
731
|
Wotton KR, Schubert FR, Dietrich S. Hypaxial muscle: controversial classification and controversial data? Results Probl Cell Differ 2015; 56:25-48. [PMID: 25344665 DOI: 10.1007/978-3-662-44608-9_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypaxial muscle is the anatomical term commonly used when referring to all the ventrally located musculature in the body of vertebrates, including muscles of the body wall and the limbs. Yet these muscles had very humble beginnings when vertebrates evolved from their chordate ancestors, and complex anatomical changes and changes in underlying gene regulatory networks occurred. This review summarises the current knowledge and controversies regarding the development and evolution of hypaxial muscles.
Collapse
Affiliation(s)
- Karl R Wotton
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
| | | | | |
Collapse
|
732
|
Exercise and Regulation of Bone and Collagen Tissue Biology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:259-91. [DOI: 10.1016/bs.pmbts.2015.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
733
|
Liu N, Bassel-Duby R. Regulation of skeletal muscle development and disease by microRNAs. Results Probl Cell Differ 2015; 56:165-90. [PMID: 25344671 DOI: 10.1007/978-3-662-44608-9_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of microRNAs (miRNA) in vertebrates has uncovered new mechanisms regulating skeletal muscle development and disease. miRNAs are inhibitors and act by silencing specific mRNAs or by repressing protein translation. In many cases, miRNAs are involved in physiological or pathological stress, suggesting they function to exacerbate or protect the organism during stress or disease. Although many skeletal muscle diseases differ in clinical and pathological manifestations, they all have a common feature of dysregulation of miRNA expression. In particular, analysis of miRNA expression patterns in skeletal muscle diseases reveals miRNA signatures, showing many miRNAs are dysregulated during disease. Emerging identification of miRNA targets and involvement in genetic regulatory networks serve to reveal new regulatory pathways in skeletal muscle biology. This chapter features the findings pertaining to skeletal muscle miRNAs in skeletal muscle development and disease and highlights therapeutic applications of miRNA-based technology in diagnosis and treatment of skeletal muscle myopathies.
Collapse
Affiliation(s)
- Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA,
| | | |
Collapse
|
734
|
Gurevich D, Siegel A, Currie PD. Skeletal myogenesis in the zebrafish and its implications for muscle disease modelling. Results Probl Cell Differ 2015; 56:49-76. [PMID: 25344666 DOI: 10.1007/978-3-662-44608-9_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Current evidence indicates that post-embryonic muscle growth and regeneration in amniotes is mediated almost entirely by stem cells derived from muscle progenitor cells (MPCs), known as satellite cells. Exhaustion and impairment of satellite cell activity is involved in the severe muscle loss associated with degenerative muscle diseases such as Muscular Dystrophies and is the main cause of age-associated muscle wasting. Understanding the molecular and cellular basis of satellite cell function in muscle generation and regeneration (myogenesis) is critical to the broader goal of developing treatments that may ameliorate such conditions. Considerable knowledge exists regarding the embryonic stages of amniote myogenesis. Much less is known about how post-embryonic amniote myogenesis proceeds, how adult myogenesis relates to embryonic myogenesis on a cellular or genetic level. Of the studies focusing on post-embryonic amniote myogenesis, most are post-mortem and in vitro analyses, precluding the understanding of cellular behaviours and genetic mechanisms in an undisturbed in vivo setting. Zebrafish are optically clear throughout much of their post-embryonic development, facilitating their use in live imaging of cellular processes. Zebrafish also possess a compartment of MPCs, which appear similar to satellite cells and persist throughout the post-embryonic development of the fish, permitting their use in examining the contribution of these cells to muscle tissue growth and regeneration.
Collapse
Affiliation(s)
- David Gurevich
- Australian Regenerative Medicine Institute, Monash University, Level 1, Building 75, Wellington Road, Clayton, VIC, 3800, Australia
| | | | | |
Collapse
|
735
|
Syverud BC, Lee JD, VanDusen KW, Larkin LM. Isolation and Purification of Satellite Cells for Skeletal Muscle Tissue Engineering. ACTA ACUST UNITED AC 2015; 3. [PMID: 26413555 DOI: 10.4172/2325-9620.1000117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Engineered skeletal muscle holds promise as a source of graft tissue for the repair of traumatic injuries such as volumetric muscle loss. The resident skeletal muscle stem cell, the satellite cell, has been identified as an ideal progenitor for tissue engineering due to its role as an essential player in the potent skeletal muscle regeneration mechanism. A significant challenge facing tissue engineers, however, is the isolation of sufficiently large satellite cell populations with high purity. The two common isolation techniques, single fiber explant culture and enzymatic dissociation, can yield either a highly pure satellite cell population or a suitably large number or cells but fail to do both simultaneously. As a result, it is often necessary to use a purification technique such as pre-plating or cell sorting to enrich the satellite cell population post-isolation. Furthermore, the absence of complex chemical and biophysical cues influencing the in vivo satellite cell "niche" complicates the culture of isolated satellite cells. Techniques under investigation to maximize myogenic proliferation and differentiation in vitro are described in this article, along with current methods for isolating and purifying satellite cells.
Collapse
Affiliation(s)
- Brian C Syverud
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jonah D Lee
- Department of Molecular and Integrated Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Keith W VanDusen
- Department of Molecular and Integrated Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lisa M Larkin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA ; Department of Molecular and Integrated Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
736
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond) 2015; 128:81-93. [PMID: 25236972 PMCID: PMC4200531 DOI: 10.1042/cs20140278] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Perivascular multipotent cells, pericytes, contribute to the generation and repair of various tissues in response to injury. They are heterogeneous in their morphology, distribution, origin and markers, and elucidating their molecular and cellular differences may inform novel treatments for disorders in which tissue regeneration is either impaired or excessive. Moreover, these discoveries offer novel cellular targets for therapeutic approaches to many diseases. This review discusses recent studies that support the concept that pericyte subtypes play a distinctive role in myogenesis, neurogenesis, adipogenesis, fibrogenesis and angiogenesis.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
- Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Maria Laura Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Akiva Mintz
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
- Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| |
Collapse
|
737
|
Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu F, Yang L, Mendias CL, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 2015; 21:76-80. [PMID: 25501907 PMCID: PMC4289085 DOI: 10.1038/nm.3710] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/04/2014] [Indexed: 12/15/2022]
Abstract
A key determinant of geriatric frailty is sarcopenia, the age-associated loss of skeletal muscle mass and strength. Although the etiology of sarcopenia is unknown, the correlation during aging between the loss of activity of satellite cells, which are endogenous muscle stem cells, and impaired muscle regenerative capacity has led to the hypothesis that the loss of satellite cell activity is also a cause of sarcopenia. We tested this hypothesis in male sedentary mice by experimentally depleting satellite cells in young adult animals to a degree sufficient to impair regeneration throughout the rest of their lives. A detailed analysis of multiple muscles harvested at various time points during aging in different cohorts of these mice showed that the muscles were of normal size, despite low regenerative capacity, but did have increased fibrosis. These results suggest that lifelong reduction of satellite cells neither accelerated nor exacerbated sarcopenia and that satellite cells did not contribute to the maintenance of muscle size or fiber type composition during aging, but that their loss may contribute to age-related muscle fibrosis.
Collapse
Affiliation(s)
- Christopher S. Fry
- Department of Rehabilitation Sciences, College of Health Sciences University of Kentucky, Lexington, Kentucky 40536, USA
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
| | - Jonah D. Lee
- Department of Rehabilitation Sciences, College of Health Sciences University of Kentucky, Lexington, Kentucky 40536, USA
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
| | - Jyothi Mula
- Department of Rehabilitation Sciences, College of Health Sciences University of Kentucky, Lexington, Kentucky 40536, USA
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
| | - Tyler J. Kirby
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Physiology, College of Medicine University of Kentucky, Lexington, Kentucky 40536, USA
| | - Janna R. Jackson
- Department of Rehabilitation Sciences, College of Health Sciences University of Kentucky, Lexington, Kentucky 40536, USA
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
| | - Fujun Liu
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Biostatistics, College of Public Health University of Kentucky, Lexington, Kentucky 40536, USA
| | - Lin Yang
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Biostatistics, College of Public Health University of Kentucky, Lexington, Kentucky 40536, USA
| | | | - Esther E. Dupont-Versteegden
- Department of Rehabilitation Sciences, College of Health Sciences University of Kentucky, Lexington, Kentucky 40536, USA
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
| | - John J. McCarthy
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Physiology, College of Medicine University of Kentucky, Lexington, Kentucky 40536, USA
| | - Charlotte A. Peterson
- Department of Rehabilitation Sciences, College of Health Sciences University of Kentucky, Lexington, Kentucky 40536, USA
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Physiology, College of Medicine University of Kentucky, Lexington, Kentucky 40536, USA
| |
Collapse
|
738
|
Dayanidhi S, Lieber RL. Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve 2014; 50:723-32. [PMID: 25186345 DOI: 10.1002/mus.24441] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 12/15/2022]
Abstract
Satellite cells (SCs) are the muscle stem cells responsible for longitudinal and cross-sectional postnatal growth and repair after injury and which provide new myonuclei when needed. We review their morphology and contribution to development and their role in sarcomere and myonuclear addition. SCs, similar to other tissue stem cells, cycle through different states, such as quiescence, activation, and self-renewal, and thus we consider the signaling mechanisms involved in maintenance of these states. The role of the SC niche and their interactions with other cells, such as fibroblasts and the extracellular matrix, are all emerging as major factors that affect aging and disease. Interestingly, children with cerebral palsy appear to have a reduced SC number, which could play a role in their reduced muscular development and even in muscular contracture formation. Finally, we review the current information on SC dysfunction in children with muscular dystrophy and emerging therapies that target promotion of myogenesis and reduction of fibrosis.
Collapse
Affiliation(s)
- Sudarshan Dayanidhi
- Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Drive, Mail Code 0863, La Jolla, California, 92093-0863, USA; Department of Veterans Affairs Medical Center, San Diego, California, USA
| | | |
Collapse
|
739
|
|
740
|
Abstract
Two recent studies have reinvigorated the conversation regarding the role of Pax7 in adult satellite. Studies by Gunther et al (Cell Stem Cell 13:590–601, 2013) and Von Maltzhen et al (Proc Natl Acad Sci U S A 110:16474–16479) show that Pax7 is critical for adult satellite cell function and their contribution to muscle repair. Previously, Lepper et al (Nature 460:627–631, 2009) demonstrated that Pax7 was dispensable for adult muscle repair. In this commentary I have summarized the results from these studies, focusing on the differences in experimental paradigms that led the authors to different conclusions. I also take this opportunity to discuss the potential limitations and hurdles of Cre-lox technology that are responsible for the discrepant results.
Collapse
Affiliation(s)
- Andrew S Brack
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114 USA ; Harvard Stem Cell Institute (HSCI), Boston, MA 02114 USA ; Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
741
|
Van Mater D, Añó L, Blum JM, Webster MT, Huang W, Williams N, Ma Y, Cardona DM, Fan CM, Kirsch DG. Acute tissue injury activates satellite cells and promotes sarcoma formation via the HGF/c-MET signaling pathway. Cancer Res 2014; 75:605-14. [PMID: 25503558 DOI: 10.1158/0008-5472.can-14-2527] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Some patients with soft-tissue sarcoma (STS) report a history of injury at the site of their tumor. Although this phenomenon is widely reported, there are relatively few experimental systems that have directly assessed the role of injury in sarcoma formation. We recently described a mouse model of STS whereby p53 is deleted and oncogenic Kras is activated in muscle satellite cells via a Pax7(CreER) driver following intraperitoneal injection with tamoxifen. Here, we report that after systemic injection of tamoxifen, the vast majority of Pax7-expressing cells remain quiescent despite mutation of p53 and Kras. The fate of these muscle progenitors is dramatically altered by tissue injury, which leads to faster kinetics of sarcoma formation. In adult muscle, quiescent satellite cells will transition into an active state in response to hepatocyte growth factor (HGF). We show that modulating satellite cell quiescence via intramuscular injection of HGF increases the penetrance of sarcoma formation at the site of injection, which is dependent on its cognate receptor c-MET. Unexpectedly, the tumor-promoting effect of tissue injury also requires c-Met. These results reveal a mechanism by which HGF/c-MET signaling promotes tumor formation after tissue injury in a mouse model of primary STS, and they may explain why some patients develop a STS at the site of injury.
Collapse
Affiliation(s)
- David Van Mater
- Department of Pediatrics, Division of Hematology-Oncology, Duke University Medical Center, Durham, North Carolina
| | - Leonor Añó
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Jordan M Blum
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Micah T Webster
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| | - WeiQiao Huang
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Nerissa Williams
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Diana M Cardona
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| | - David G Kirsch
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina. Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
742
|
Hyldahl RD, Olson T, Welling T, Groscost L, Parcell AC. Satellite cell activity is differentially affected by contraction mode in human muscle following a work-matched bout of exercise. Front Physiol 2014; 5:485. [PMID: 25566087 PMCID: PMC4263080 DOI: 10.3389/fphys.2014.00485] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/25/2014] [Indexed: 12/02/2022] Open
Abstract
Optimal repair and adaptation of skeletal muscle is facilitated by resident stem cells (satellite cells). To understand how different exercise modes influence satellite cell dynamics, we measured satellite cell activity in conjunction with markers of muscle damage and inflammation in human skeletal muscle following a single work- and intensity-matched bout of eccentric (ECC) or concentric contractions (CON). Participants completed a single bout of ECC (n = 7) or CON (n = 7) of the knee extensors. A muscle biopsy was obtained before and 24 h after exercise. Functional measures and immunohistochemical analyses were used to determine the extent of muscle damage and indices of satellite cell activity. Cytokine concentrations were measured using a multiplexed magnetic bead assay. Isokinetic peak torque decreased following ECC (p < 0.05) but not CON. Greater histological staining of the damage marker Xin was observed in muscle samples of ECC vs. CON. Tenasin C immunoreactivity increased 15 fold (p < 0.01) following ECC and was unchanged following CON. The inflammatory cytokines interferon gamma-induced protein 10 (IP-10) and monocyte chemotactic protein 1 (MCP-1) increased pre- to post-ECC (4.26 ± 1.4 vs. 10.49 ± 5.8 pg/ml, and 3.06 ± 0.7 vs. 6.25 ± 4.6 pg/ml, respectively; p < 0.05). There was no change in any cytokine post-CON. Satellite cell content increased 27% pre- to post-ECC (0.10 ± 0.031 vs. 0.127 ± 0.041, respectively; p < 0.05). There was no change in satellite cell number in CON (0.099 ± 0.027 vs. 0.102 ± 0.029, respectively). There was no fiber type-specific satellite cell response following either exercise mode. ECC but not CON resulted in an increase in MyoD positive nuclei per myofiber pre- to post-exercise (p < 0.05), but there was no change in MyoD DNA binding activity in either condition. In conclusion, ECC but not CON results in functional and histological evidence of muscle damage that is accompanied by increased satellite cell activity 24 h post-exercise.
Collapse
Affiliation(s)
- Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University Provo, UT, USA
| | - Ty Olson
- Department of Exercise Sciences, Brigham Young University Provo, UT, USA
| | - Tyson Welling
- Department of Exercise Sciences, Brigham Young University Provo, UT, USA
| | - Logan Groscost
- Department of Exercise Sciences, Brigham Young University Provo, UT, USA
| | - Allen C Parcell
- Department of Exercise Sciences, Brigham Young University Provo, UT, USA
| |
Collapse
|
743
|
Anatomical and histological study of human deep fasciae development. Surg Radiol Anat 2014; 37:571-8. [PMID: 25424155 DOI: 10.1007/s00276-014-1396-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 11/15/2014] [Indexed: 12/14/2022]
Abstract
PURPOSE To characterize the connective tissue found between the subcutaneous adipose tissue and the underlying muscle tissue in different regions and at different stages of human fetal development. We aim to identify its structural similarities to adult deep fascia, and to establish its role in myofascial development. METHODS Samples from the arm, forearm, low back and thigh regions (from sites topographically homologous to the adult deep fascia) of five fetus body donors were obtained to perform gross anatomy dissection and histologic sections. Sections were stained with hematoxylin-eosin and Masson trichrome stain to observe their overall structure. Antiserum to protein S100 was used to analyze the presence and distribution of nerve fibers, and immunohistochemistry processing with Tcf4 marker was used to ensure fibroblast activity. RESULTS Gross anatomy and histological sections of fetal samples showed the presence of connective tissue topographically and morphologically equivalent to adult deep fasciae. Developing blood vessels and nerves were found evenly distributed within the connective tissue during early development and in the portion adjacent to the muscle at later stages. The presence of Tcf4+ fibroblasts was confirmed in all analyzed mesenchymal connective tissue. CONCLUSIONS Deep fascia is present from week 21 of human development in the lower back and upper and lower limbs. Blood vessels and nerves develop parallel to it and occasionally cross it from the deep to superficial plane. The presence of Tcf4+ fibroblasts in the deep fascia suggests a crucial role for this structure in muscle morphogenesis.
Collapse
|
744
|
Alway SE, Bennett BT, Wilson JC, Sperringer J, Mohamed JS, Edens NK, Pereira SL. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats. J Appl Physiol (1985) 2014; 118:319-30. [PMID: 25414242 DOI: 10.1152/japplphysiol.00674.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (-24.8% vs. -10.7%, P < 0.05) and tetanic force (-43.7% vs. -25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (-25.2% vs. -16.0%, P < 0.05) and force (-45.7 vs. -34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (-39.9% vs. -23.9%, P < 0.05) and soleus (-37.2% vs. -17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (-45.6% vs. -21.5%, P <0.05) and soleus muscle fiber cross-sectional area (-38.7% vs. -10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is by itself insufficient to improve muscle recovery following a period of atrophy in old rats.
Collapse
Affiliation(s)
- Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; West Virginia Center for Clinical and Translational Science Institute, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Brian T Bennett
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Joseph C Wilson
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Justin Sperringer
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Junaith S Mohamed
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | | | | |
Collapse
|
745
|
Zhang J, Xiao Z, Qu C, Cui W, Wang X, Du J. CD8 T cells are involved in skeletal muscle regeneration through facilitating MCP-1 secretion and Gr1(high) macrophage infiltration. THE JOURNAL OF IMMUNOLOGY 2014; 193:5149-60. [PMID: 25339660 DOI: 10.4049/jimmunol.1303486] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inflammatory microenvironments play a key role in skeletal muscle regeneration. The infiltration of CD8 T cells into injured muscle has been reported. However, the role of CD8 T cells during skeletal muscle regeneration remains unclear. In this study, we used cardiotoxin-induced mouse skeletal muscle injury/regeneration model to investigate the role of CD8 T cells. Muscle regeneration was impaired and matrix deposit was increased in CD8α-deficient mice compared with wild-type (WT) mice whose CD8 T cells were infiltrated into damaged muscle after cardiotoxin injection. Adoptive transfer of CD8 T cells to CD8α-deficient mice improved muscle regeneration and inhibited matrix remodeling. Compared with WT mice, CD8α deficiency limited the recruitment of Gr1(high) macrophages (MPs) into muscle, resulting in the reduction of satellite cell number. The expression of MCP-1 (MCP-1/CCL2), which regulates the migration of Gr1(high) MPs, was reduced in CD8α-deficient mice compared with WT mice. Coculture CD8 T cells with MPs promoted MCP-1 secretion. The i.m. injection of MCP-1 markedly promoted the recruitment of Gr1(high) MPs and improved muscle regeneration in CD8α-deficient mice. We conclude that CD8 T cells are involved in skeletal muscle regeneration by regulating the secretion of MCP-1 to recruit Gr1(high) MPs, which facilitate myoblast proliferation.
Collapse
Affiliation(s)
- Jing Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing 100029, China; and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Zhicheng Xiao
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing 100029, China; and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Chao Qu
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing 100029, China; and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Wei Cui
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing 100029, China; and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Xiaonan Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing 100029, China; and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing 100029, China; and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
746
|
Hicks MR, Cao TV, Standley PR. Biomechanical strain vehicles for fibroblast-directed skeletal myoblast differentiation and myotube functionality in a novel coculture. Am J Physiol Cell Physiol 2014; 307:C671-83. [PMID: 25122874 DOI: 10.1152/ajpcell.00335.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscle functionality is governed by multiple stimuli, including cytokines and biomechanical strain. Fibroblasts embedded within muscle connective tissue respond to biomechanical strain by secreting cytokines that induce myoblast differentiation and, we hypothesize, regulate myotube function. A coculture was established to allow cross talk between fibroblasts in Bioflex wells and myoblasts on nondeformable coverslips situated above Bioflex wells. Cyclic short-duration strain (CSDS) modeling repetitive stress/injury, acyclic long-duration strain (ALDS) modeling manipulative therapy, and combined strain paradigms (CSDS + ALDS) were applied to fibroblasts. Nonstrained myoblasts in uniculture and coculture served as controls. After fibroblasts had induced myoblast differentiation, myotube contraction was assessed by perfusion of ACh (10(-11)-10(-3) M). CSDS-treated fibroblasts increased myotube contractile sensitivity vs. uniculture (P < 0.05). As contraction is dependent on ACh binding, expression and clustering of nicotinic ACh receptors (nAChRs) were measured. CSDS-treated fibroblasts increased nAChR expression (P < 0.05), which correlated with myotube contraction. ALDS-treated fibroblasts did not significantly affect contraction or nAChR expression. Agrin-treated myotubes were then used to design a computer algorithm to identify α-bungarotoxin-stained nAChR clusters. ALDS-treated fibroblasts increased nAChR clustering (P < 0.05), while CSDS-treated fibroblasts disrupted cluster formation. CSDS-treated fibroblasts produced nAChRs preferentially located in nonclustered regions (P < 0.05). Strain-activated fibroblasts mediate myotube differentiation with multiple functional phenotypes. Similar to muscle injury, CSDS-treated fibroblasts disrupted nAChR clusters and hypersensitized myotube contraction, while ALDS-treated fibroblasts aggregated nAChRs in large clusters, which may have important clinical implications. Cellular strategies aimed at improving muscle functionality, such as through biomechanical strain vehicles that activate fibroblasts to stabilize postsynaptic nAChRs on nearby skeletal muscle, may serve as novel targets in neuromuscular disorders.
Collapse
Affiliation(s)
- Michael R Hicks
- The University of Arizona College of Medicine-Phoenix, Phoenix, Arizona; and School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Thanh V Cao
- The University of Arizona College of Medicine-Phoenix, Phoenix, Arizona; and
| | - Paul R Standley
- The University of Arizona College of Medicine-Phoenix, Phoenix, Arizona; and
| |
Collapse
|
747
|
Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med 2014; 20:870-80. [PMID: 25100532 DOI: 10.1038/nm.3651] [Citation(s) in RCA: 542] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/09/2014] [Indexed: 12/14/2022]
Abstract
Aging tissues experience a progressive decline in homeostatic and regenerative capacities, which has been attributed to degenerative changes in tissue-specific stem cells, stem cell niches and systemic cues that regulate stem cell activity. Understanding the molecular pathways involved in this age-dependent deterioration of stem cell function will be critical for developing new therapies for diseases of aging that target the specific causes of age-related functional decline. Here we explore key molecular pathways that are commonly perturbed as tissues and stem cells age and degenerate. We further consider experimental evidence both supporting and refuting the notion that modulation of these pathways per se can reverse aging phenotypes. Finally, we ask whether stem cell aging establishes an epigenetic 'memory' that is indelibly written or one that can be reset.
Collapse
|
748
|
Abstract
Muscle stem cells facilitate the long-term regenerative capacity of skeletal muscle. This self-renewing population of satellite cells has only recently been defined through genetic and transplantation experiments. Although muscle stem cells remain in a dormant quiescent state in uninjured muscle, they are poised to activate and produce committed progeny. Unlike committed myogenic progenitor cells, the self-renewal capacity gives muscle stem cells the ability to engraft as satellite cells and capitulate long-term regeneration. Similar to other adult stem cells, understanding the molecular regulation of muscle stem cells has significant implications towards the development of pharmacological or cell-based therapies for muscle disorders. This Cell Science at a Glance article and accompanying poster will review satellite cell characteristics and therapeutic potential, and provide an overview of the muscle stem cell hallmarks: quiescence, self-renewal and commitment.
Collapse
Affiliation(s)
- Yu Xin Wang
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nicolas A Dumont
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
749
|
Sánchez M, Anitua E, Delgado D, Sánchez P, Orive G, Padilla S. Muscle repair: platelet-rich plasma derivates as a bridge from spontaneity to intervention. Injury 2014; 45 Suppl 4:S7-14. [PMID: 25384475 DOI: 10.1016/s0020-1383(14)70004-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Muscle injuries account for between 10% and 55% of all sporting injuries. Although the skeletal muscle is a plastic organ capable of responding efficiently to environmental changes, the appropriate treatment of muscle injuries remains a daunting clinical challenge in sports medicine. There is considerable evidence to indicate that growth factors, such as transforming growth factor-β (TGFβ), hepatocyte growth factor (HGF) or insulin-like growth factor (IGF), and fibrin matrix are key in cellular events required for muscle repair and regeneration, namely myogenesis, angiogenesis and fibrogenesis. An innovative biological approach to the treatment of muscle injuries is the application of Plasma Rich in Growth Factors (PRGF) in intramuscular infiltrations. PRGF delivers growth factors, cytokines and adhesive proteins present in platelets and plasma, as well as other biologically-active proteins conveyed by the plasma, such as fibrinogen, prothrombin and fibronectin. This autologous, mimetic biomaterial embedded with a pool of growth factors acts as a smart dynamic scaffold, and should be applied taking into account a biological approach. A clinical trial is required to assess the functional repair outcome of PRGF infiltrations in muscle injuries.
Collapse
Affiliation(s)
- Mikel Sánchez
- Arthroscopic Surgery Unit (ASU). Hospital Vithas San Jose. C/Beato Tomás de Zumárraga 10, 01008 Vitoria-Gasteiz, Spain; ASU Research AIE. Hospital Vithas San Jose. C/Beato Tomás de Zumárraga 10, 01008 Vitoria-Gasteiz, Spain
| | - Eduardo Anitua
- Biotechnology Institute (BTI) Vitoria, Vitoria-Gasteiz, Spain; Foundation Eduardo Anitua. C/José María Cagigal 19, 01007 Vitoria-Gasteiz, Spain
| | - Diego Delgado
- ASU Research AIE. Hospital Vithas San Jose. C/Beato Tomás de Zumárraga 10, 01008 Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- ASU Research AIE. Hospital Vithas San Jose. C/Beato Tomás de Zumárraga 10, 01008 Vitoria-Gasteiz, Spain
| | - Gorka Orive
- Foundation Eduardo Anitua. C/José María Cagigal 19, 01007 Vitoria-Gasteiz, Spain
| | - Sabino Padilla
- Biotechnology Institute (BTI) Vitoria, Vitoria-Gasteiz, Spain; Foundation Eduardo Anitua. C/José María Cagigal 19, 01007 Vitoria-Gasteiz, Spain.
| |
Collapse
|
750
|
Pereira MG, Silva MT, Carlassara EOC, Gonçalves DA, Abrahamsohn PA, Kettelhut IC, Moriscot AS, Aoki MS, Miyabara EH. Leucine supplementation accelerates connective tissue repair of injured tibialis anterior muscle. Nutrients 2014; 6:3981-4001. [PMID: 25268835 PMCID: PMC4210903 DOI: 10.3390/nu6103981] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/22/2014] [Accepted: 09/05/2014] [Indexed: 11/30/2022] Open
Abstract
This study investigated the effect of leucine supplementation on the skeletal muscle regenerative process, focusing on the remodeling of connective tissue of the fast twitch muscle tibialis anterior (TA). Young male Wistar rats were supplemented with leucine (1.35 g/kg per day); then, TA muscles from the left hind limb were cryolesioned and examined after 10 days. Although leucine supplementation induced increased protein synthesis, it was not sufficient to promote an increase in the cross-sectional area (CSA) of regenerating myofibers (p > 0.05) from TA muscles. However, leucine supplementation reduced the amount of collagen and the activation of phosphorylated transforming growth factor-β receptor type I (TβR-I) and Smad2/3 in regenerating muscles (p < 0.05). Leucine also reduced neonatal myosin heavy chain (MyHC-n) (p < 0.05), increased adult MyHC-II expression (p < 0.05) and prevented the decrease in maximum tetanic strength in regenerating TA muscles (p < 0.05). Our results suggest that leucine supplementation accelerates connective tissue repair and consequent function of regenerating TA through the attenuation of TβR-I and Smad2/3 activation. Therefore, future studies are warranted to investigate leucine supplementation as a nutritional strategy to prevent or attenuate muscle fibrosis in patients with several muscle diseases.
Collapse
Affiliation(s)
- Marcelo G Pereira
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Prof. Lineu Prestes Av. 2415, Sao Paulo, SP 05508-000, Brazil.
| | - Meiricris T Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Prof. Lineu Prestes Av. 2415, Sao Paulo, SP 05508-000, Brazil.
| | - Eduardo O C Carlassara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Prof. Lineu Prestes Av. 2415, Sao Paulo, SP 05508-000, Brazil.
| | - Dawit A Gonçalves
- Department of Physiology and Biochemistry/Immunology, School of Medicine, University of Sao Paulo, Bandeirantes Av. 3900, Ribeirao Preto, SP 14049-900, Brazil.
| | - Paulo A Abrahamsohn
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Prof. Lineu Prestes Av. 1524, Sao Paulo, SP 05508-000, Brazil.
| | - Isis C Kettelhut
- Department of Physiology and Biochemistry/Immunology, School of Medicine, University of Sao Paulo, Bandeirantes Av. 3900, Ribeirao Preto, SP 14049-900, Brazil.
| | - Anselmo S Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Prof. Lineu Prestes Av. 2415, Sao Paulo, SP 05508-000, Brazil.
| | - Marcelo S Aoki
- School of Arts, Sciences and Humanities, University of Sao Paulo, Arlindo Bettio Av. 1000, Sao Paulo, SP 03828-000, Brazil.
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Prof. Lineu Prestes Av. 2415, Sao Paulo, SP 05508-000, Brazil.
| |
Collapse
|