701
|
Safina DR, Rafieva LM, Koval' AV, Shkurina EE, Dmitrieva VG, Raevskaia NM, Gasanov EV, Demidiuk IV, Kostrov SV. [Oligomeric organization of recombinant human neurotrophins expressed in Escherichia coli cells]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:327-32. [PMID: 18672680 DOI: 10.1134/s1068162008030072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Genes of human neurotrophins NGF, BDNF, NT-3 were cloned, and the corresponding proteins and their fragments were expressed in Escherichia coli BL-21 (DE3lambda) cells. Their intracellular localization was determined. The conditions for isolation and purification of the target recombinant proteins and for folding of BDNF and NT-3 precursors were selected. The recombinant proprecursors of human neurotrophines have been shown to possess complex oligomeric structure.
Collapse
|
702
|
Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S. New insights into brain BDNF function in normal aging and Alzheimer disease. ACTA ACUST UNITED AC 2008; 59:201-20. [PMID: 18708092 DOI: 10.1016/j.brainresrev.2008.07.007] [Citation(s) in RCA: 429] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 01/13/2023]
Abstract
The decline observed during aging involves multiple factors that influence several systems. It is the case for learning and memory processes which are severely reduced with aging. It is admitted that these cognitive effects result from impaired neuronal plasticity, which is altered in normal aging but mainly in Alzheimer disease. Neurotrophins and their receptors, notably BDNF, are expressed in brain areas exhibiting a high degree of plasticity (i.e. the hippocampus, cerebral cortex) and are considered as genuine molecular mediators of functional and morphological synaptic plasticity. Modification of BDNF and/or the expression of its receptors (TrkB.FL, TrkB.T1 and TrkB.T2) have been described during normal aging and Alzheimer disease. Interestingly, recent findings show that some physiologic or pathologic age-associated changes in the central nervous system could be offset by administration of exogenous BDNF and/or by stimulating its receptor expression. These molecules may thus represent a physiological reserve which could determine physiological or pathological aging. These data suggest that boosting the expression or activity of these endogenous protective systems may be a promising therapeutic alternative to enhance healthy aging.
Collapse
|
703
|
Teng FYH, Tang BL. Nogo-A and Nogo-66 receptor in amyotrophic lateral sclerosis. J Cell Mol Med 2008; 12:1199-204. [PMID: 18419791 PMCID: PMC3865663 DOI: 10.1111/j.1582-4934.2008.00351.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 04/09/2008] [Indexed: 12/11/2022] Open
Abstract
Nogo/reticulon (RTN)-4 has been strongly implicated as a disease marker for the motor neuron disease amyotrophic lateral sclerosis (ALS). Nogo isoforms, including Nogo-A, are ectopically expressed in the skeletal muscle of ALS mouse models and patients and their levels correlate with the disease severity. The notion of a direct involvement of Nogo-A in ALS aetiology is supported by the findings that Nogo-A deletion in mice reduces muscle denervation and prolongs survival, whereas overexpression of Nogo-A destabilizes motor nerve terminals and promotes denervation. Another intriguing, and somewhat paradoxical, recent finding revealed that binding of the Nogo-66 receptor (NgR) by either agonistic or antagonistic Nogo-66-derived peptides protects against p75 neurotrophin receptor (p75(NTR))-dependent motor neuron death. Ligand binding by NgR could result in subsequent engagement of p75(NTR), and this association could preclude pro-apoptotic signalling by the latter. Understanding the intricate interplay among Nogo isoforms, NgR and p75(NTR) in ALS disease progression may provide important, therapeutically exploitable information.
Collapse
Affiliation(s)
- Felicia Yu Hsuan Teng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| |
Collapse
|
704
|
Identification and kainic acid-induced up-regulation of low-affinity p75 neurotrophin receptor (p75NTR) in the nigral dopamine neurons of adult rats. Neurochem Int 2008; 53:56-62. [PMID: 18639597 DOI: 10.1016/j.neuint.2008.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 06/09/2008] [Accepted: 06/11/2008] [Indexed: 11/24/2022]
Abstract
Parkinson's disease is a common and severe debilitating neurological disease that results from massive and progressive degenerative death of dopamine neurons in the substantia nigra, but the mechanisms of neuronal degeneration and disease progression remains largely obscure. We are interested in possible implications of low-affinity p75 neurotrophin receptor (p75NTR), which may mediate neuronal apoptosis in the central nervous system, in triggering cell death of the nigral dopamine neurons. The RT-PCR and immunohistochemistry were carried out to detect if p75NTR is expressed in these nigral neurons and up-regulated by kainic acid (KA) insult in adult rats. It revealed p75NTR-positive immunoreactivity in the substantia nigra, and co-localization of p75NTR and tyrosine hydroxylase (TH) was found in a large number of substantia nigra neurons beside confirmation of p75NTR in the choline acetyltransferase (ChAT)-positive forebrain neurons. Cell count data further indicated that about 47-100% of TH-positive nigral neurons and 98-100% of ChAT-positive forebrain neurons express p75NTR. More interestingly, significant increasing in both p75NTR mRNA and p75NTR-positive neurons occurred rapidly following KA insult in the substantia nigra of animal model. The present study has provided first evidence on p75NTR expression and KA-inducing p75NTR up-regulation in substantia nigra neurons in rodent animals. Taken together with previous data on p75NTR functions in neuronal apoptosis, this study also suggests that p75NTR may play important roles in neuronal cell survival or excitotoxic degeneration of dopamine neurons in the substantia nigra in pathogenesis of Parkinson's disease in human beings.
Collapse
|
705
|
Status epilepticus induces a TrkB to p75 neurotrophin receptor switch and increases brain-derived neurotrophic factor interaction with p75 neurotrophin receptor: An initial event in neuronal injury induction. Neuroscience 2008; 154:978-93. [DOI: 10.1016/j.neuroscience.2008.04.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 01/12/2023]
|
706
|
Rantamäki T, Castrén E. Targeting TrkB neurotrophin receptor to treat depression. Expert Opin Ther Targets 2008; 12:705-15. [DOI: 10.1517/14728222.12.6.705] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
707
|
Fan YJ, Wu LLY, Li HY, Wang YJ, Zhou XF. Differential effects of pro-BDNF on sensory neurons after sciatic nerve transection in neonatal rats. Eur J Neurosci 2008; 27:2380-90. [DOI: 10.1111/j.1460-9568.2008.06215.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
708
|
Ariga M, Nedachi T, Katagiri H, Kanzaki M. Functional role of sortilin in myogenesis and development of insulin-responsive glucose transport system in C2C12 myocytes. J Biol Chem 2008; 283:10208-20. [PMID: 18258592 DOI: 10.1074/jbc.m710604200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Sortilin has been implicated in the formation of insulin-responsive GLUT4 storage vesicles in adipocytes by regulating sorting events between the trans-Golgi-network and endosomes. We herein show that sortilin serves as a potent myogenic differentiation stimulator for C2C12 myocytes by cooperatively functioning with p75NTR, which subsequently further contributes to development of the insulin-responsive glucose transport system in C2C12 myotubes. Sortilin expression was up-regulated upon C2C12 differentiation, and overexpression of sortilin in C2C12 cells significantly stimulated myogenic differentiation, a response that was completely abolished by either anti-p75NTR- or anti-nerve growth factor (NGF)-neutralizing antibodies. Importantly, small interference RNA-mediated suppression of endogenous sortilin significantly inhibited C2C12 differentiation, indicating the physiological significance of sortilin expression in the process of myogenesis. Although sortilin overexpression in C2C12 myotubes improved insulin-induced 2-deoxyglucose uptake, as previously reported, this effect apparently resulted from a decrease in the cellular content of GLUT1 and an increase in GLUT4 via differentiation-dependent alterations at both the gene transcriptional and the post-translational level. In addition, cellular contents of Ubc9 and SUMO-modified proteins appeared to be increased by sortilin overexpression. Taken together, these data demonstrate that sortilin is involved not only in development of the insulin-responsive glucose transport system in myocytes, but is also directly involved in muscle differentiation via modulation of proNGF-p75NTR.
Collapse
Affiliation(s)
- Miyako Ariga
- 21st Century COE program Comprehensive Research and Education Center for Planning of Drug Development and Clinical Evaluation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
709
|
Zuccato C, Marullo M, Conforti P, MacDonald ME, Tartari M, Cattaneo E. Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington's disease. Brain Pathol 2008; 18:225-38. [PMID: 18093249 PMCID: PMC8095509 DOI: 10.1111/j.1750-3639.2007.00111.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/26/2007] [Accepted: 10/02/2007] [Indexed: 01/17/2023] Open
Abstract
One cardinal feature of Huntington's disease (HD) is the degeneration of striatal neurons, whose survival greatly depends on the binding of cortical brain-derived neurotrophic factor (BDNF) with high-affinity (TrkB) and low-affinity neurotrophin receptors [p75 pan-neurotrophin receptor (p75(NTR))]. With a few exceptions, results obtained in HD mouse models demonstrate a reduction in cortical BDNF mRNA and protein, although autopsy data from a limited number of human HD cortices are conflicting. These studies indicate the presence of defects in cortical BDNF gene transcription and transport to striatum. We provide new evidence indicating a significant reduction in BDNF mRNA and protein in the cortex of 20 HD subjects in comparison with 17 controls, which supports the hypothesis of impaired BDNF production in human HD cortex. Analyses of the BDNF isoforms show that transcription from BDNF promoter II and IV is down-regulated in human HD cortex from an early symptomatic stage. We also found that TrkB mRNA levels are reduced in caudate tissue but not in the cortex, whereas the mRNA levels of T-Shc (a truncated TrkB isoform) and p75(NTR) are increased in the caudate. This indicates that, in addition to the reduction in BDNF mRNA, there is also unbalanced neurotrophic receptor signaling in HD.
Collapse
Affiliation(s)
- Chiara Zuccato
- Department of Pharmacological Sciences and Center for Stem Cell Research, University of Milan, Milan, Italy
| | - Manuela Marullo
- Department of Pharmacological Sciences and Center for Stem Cell Research, University of Milan, Milan, Italy
| | - Paola Conforti
- Department of Pharmacological Sciences and Center for Stem Cell Research, University of Milan, Milan, Italy
| | - Marcy E MacDonald
- Center for Human Genetic Research, Massachusetts General Hospital, Richard B. Simches Research Center, Boston, Mass
| | - Marzia Tartari
- Department of Pharmacological Sciences and Center for Stem Cell Research, University of Milan, Milan, Italy
| | - Elena Cattaneo
- Department of Pharmacological Sciences and Center for Stem Cell Research, University of Milan, Milan, Italy
| |
Collapse
|
710
|
|
711
|
Paiardini A, Caputo V. Insights into the interaction of sortilin with proneurotrophins: a computational approach. Neuropeptides 2008; 42:205-14. [PMID: 18191449 DOI: 10.1016/j.npep.2007.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/29/2007] [Accepted: 11/22/2007] [Indexed: 12/22/2022]
Abstract
Sortilin is a member of the recently discovered family of type-1 transmembrane Vps10p-domain receptors, which are expressed in several tissues, including brain and spinal chord. It has been recently demonstrated that the interaction between sortilin and the N-terminal portion of the precursor forms of the nerve growth factor (pro-NGF) and the brain-derived neurotrophic factor (pro-BDNF) represents a key event in the process that controls neurotrophins-mediated cell survival and death in developing neuronal tissue and post-traumatic neuronal apoptosis. Moreover, it is known that the cleavage of the N-terminal propeptide of sortilin is required for full functional activity of the receptor. The propeptide, indeed, hinders ligands from accessing the binding site of sortilin. However, to date, the molecular mechanism underlying the interaction between sortilin and pro-NGF/pro-BDNF remains unknown. By means of computational approaches, we suggest that the N-terminal Vps10p domain of sortilin, which is responsible for the interaction with the neurotrophins, adopts a beta-propeller fold, and that the N-terminal regions of sortilin, pro-NGF and pro-BDNF are mainly intrinsically disordered regions (IDRs). The following mechanism is therefore proposed: the Vps10p-domain of sortilin is a beta-propeller able to bind its own IDR and the IDRs of neurotrophins. The excision of its N-terminal disordered peptide allows the interaction with the intrinsically disordered N-terminus of pro-BDNF and pro-NGF, possibly through a disorder-to-order transition behaviour.
Collapse
Affiliation(s)
- Alessandro Paiardini
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Università di Roma La Sapienza, Piazzale Aldo Moro 5, Via degli Apuli 9, 00185 Rome, Italy.
| | | |
Collapse
|
712
|
Schrott LM, Franklin L'TM, Serrano PA. Prenatal opiate exposure impairs radial arm maze performance and reduces levels of BDNF precursor following training. Brain Res 2008; 1198:132-40. [PMID: 18262500 PMCID: PMC2696491 DOI: 10.1016/j.brainres.2008.01.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 02/07/2023]
Abstract
Prenatal exposure to opiates, which is invariably followed by postnatal withdrawal, can affect cognitive performance. To further characterize these effects, we examined radial 8-arm maze performance and expression of brain derived neurotrophic factor (BDNF) in male rats prenatally exposed to the opiate l-alpha-acetylmethadol (LAAM). Female rats received 1.0 mg/kg/day LAAM or water via daily oral gavage for 28 days prior to breeding, during breeding, and throughout pregnancy. Pups were fostered to non-treated lactating dams at birth and underwent neonatal opiate withdrawal. At 5-6 months, prenatal water- and LAAM-exposed males (n=6 each; non-littermates) received radial arm maze training consisting of ten trials a day for five days and three retention trials on day six. Rats prenatally exposed to LAAM had poorer maze performance, decreased percent correct responding and more reference and working memory errors than prenatal water-treated controls. However, they were able to acquire the task by the end of training. There were no differences between the groups on retention 24 h after testing. Following retention testing, hippocampi were removed and protein extracted from cytosol and synaptic fractions. Western blots were used to measure levels of mature and precursor BDNF protein, as well as the BDNF receptor TrkB. BDNF precursor protein was significantly decreased in the synaptic fraction of trained prenatal LAAM-treated rats compared to prenatal water-treated trained controls. No effects were found for the full-length or truncated TrkB receptor. In untrained rats, prenatal treatment did not affect any of the measures. These data suggest that prenatal opiate exposure and/or postnatal withdrawal compromise expression of proteins involved in the neural plasticity underlying learning.
Collapse
Affiliation(s)
- Lisa M Schrott
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | | | | |
Collapse
|
713
|
Up-regulation of pro-nerve growth factor, neurotrophin receptor p75, and sortilin is associated with retrovirus-induced spongiform encephalomyelopathy. Brain Res 2008; 1208:204-16. [PMID: 18395188 DOI: 10.1016/j.brainres.2008.02.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/15/2008] [Accepted: 02/24/2008] [Indexed: 11/24/2022]
Abstract
The progressive spongiform encephalomyelopathy caused by ts1, a neuropathogenic temperature-sensitive mutant of Moloney murine leukemia virus (MoMuLV-ts1), results in motor neuronal loss without direct neuronal infection. We have previously reported that ts1-mediated neuronal degeneration in mice has a multifactorial pathogenesis. Here, we report that in the ts1-infected central nervous system (CNS) activated neural cells showed intense immunoreactivity for pro-nerve growth factor (proNGF), neurotrophin receptor p75 (p75(NTR)), and sortilin in the areas showing spongiform changes. Since recent studies suggested that proNGF is more active than mature NGF in inducing neuronal death after binding to co-receptors p75(NTR)/sortilin, we hypothesized that overexpression of proNGF, sortilin and p75(NTR) play a role in ts1-induced neurodegeneration. We found that proNGF and p75(NTR), but not sortilin, mRNA and protein were significantly elevated in ts1-infected brainstem compared to non-infected control tissue. There was extensive tyrosine phosphorylation of p75(NTR), a marker for its activation, in ts1-infected brainstem with abundance in degenerating neurons. We explored whether the increase in the in vivo proNGF expression also occurs in cultured immortalized C1 astrocytes infected by ts1 virus. The proNGF level was significantly increased in infected C1 cells compared to control cells only after addition of fibroblast growth factor (FGF-1). We also showed increased expression of FGF-1 in the CNS of ts1-infected mice. Our findings suggest that the FGF-1 signaling pathway may be responsible for the overexpression of proNGF in neural cells during pathogenesis of ts1-induced neurodegeneration. This study provides new in vivo insights into the possible role of proNGF and its receptors in ts1-induced neurodegeneration.
Collapse
|
714
|
Nielsen MS, Keat SJ, Hamati JW, Madsen P, Gutzmann JJ, Engelsberg A, Pedersen KM, Gustafsen C, Nykjaer A, Gliemann J, Hermans-Borgmeyer I, Kuhl D, Petersen CM, Hermey G. Different motifs regulate trafficking of SorCS1 isoforms. Traffic 2008; 9:980-94. [PMID: 18315530 DOI: 10.1111/j.1600-0854.2008.00731.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The type I transmembrane protein SorCS1 is a member of the Vps10p-domain receptor family comprised of Sortilin, SorLA and SorCS1, -2 and -3. Current information indicates that Sortilin and SorLA mediate intracellular protein trafficking and sorting, but little is known about the cellular functions of the SorCS subgroup. SorCS1 binds platelet-derived growth factor-BB (PDGF-BB) and is expressed in isoforms differing only in their cytoplasmic domains. Here, we identify two novel isoforms of mouse SorCS1 designated m-SorCS1c and -d. In situ hybridization revealed a combinatorial expression pattern of the variants in brain and embryonic tissues. We demonstrate that among the mouse variants, only SorCS1c mediates internalization and that the highly conserved SorCS1c is internalized through a canonical tyrosine-based motif. In contrast, human SorCS1a, whose cytoplasmic domain is completely different from mouse SorCS1a, is internalized through a DXXLL motif. We report that the human SorCS1a cytoplasmic domain interacts with the alphaC/sigma2 subunits of the adaptor protein (AP)-2 complex, and internalization of human SorCS1a and -c is mediated by AP-2. Our results suggest that the endocytic isoforms target internalized cargo to lysosomes but are not engaged in Golgi-endosomal transport to a significant degree.
Collapse
Affiliation(s)
- Morten S Nielsen
- MIND center, Department of Medical Biochemistry, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
715
|
Gray K, Ellis V. Activation of pro-BDNF by the pericellular serine protease plasmin. FEBS Lett 2008; 582:907-10. [DOI: 10.1016/j.febslet.2008.02.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 02/08/2008] [Accepted: 02/11/2008] [Indexed: 12/01/2022]
|
716
|
Yaghoobi MM, Mahani MT. NGF and BDNF expression drop off in neurally differentiated bone marrow stromal stem cells. Brain Res 2008; 1203:26-31. [PMID: 18313646 DOI: 10.1016/j.brainres.2008.01.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 12/30/2007] [Accepted: 01/23/2008] [Indexed: 01/01/2023]
Abstract
Bone marrow stromal stem cells (BMSC) express two neurotrophins nerve growth factor (NGF) and brain derived growth factor (BDNF) constitutively and can be differentiated into neuronal-like cells and used to treat neural injuries and diseases. The neurotrophins are required for repair of neural tissues. However, it is not evident whether these cells supply the sufficient amounts of the functional growth factors following neuronal differentiation. This study investigates the expression of NGF, BDNF and their processing enzymes Prohormone convertases (PC) Furin, PC5 and PC6 by Real-time RT-PCR during neural differentiation of rat BMSC. The results showed that all inspected processing enzymes are expressed in the cells. The expression of NGF, BDNF and PC5 decreases following differentiation. In addition, BMSCs express Survivin, an anti-apoptotic gene; however, the differentiated cells reduce its expression similar to two neurotrophins, which could make them susceptible to apoptotic death.
Collapse
Affiliation(s)
- Mohammad Mehdi Yaghoobi
- Department of Biotechnology, Research Institute of Environmental Sciences, International Centre for Science, High Technology & Environmental Sciences, Kerman, Iran.
| | | |
Collapse
|
717
|
Matsumoto T, Rauskolb S, Polack M, Klose J, Kolbeck R, Korte M, Barde YA. Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nat Neurosci 2008; 11:131-3. [PMID: 18204444 DOI: 10.1038/nn2038] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 12/12/2007] [Indexed: 02/07/2023]
Abstract
Pro- and mature BDNF activate very different receptors and intracellular pathways, potentially leading to either neuronal death or survival. Here we examined the biochemistry of endogenous BDNF in mouse neurons using sensitive reagents and found that pro-BDNF is rapidly converted intracellularly to mature BDNF, the latter being stored and released by excitatory input.
Collapse
Affiliation(s)
- Tomoya Matsumoto
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
718
|
Cragnolini AB, Friedman WJ. The function of p75NTR in glia. Trends Neurosci 2008; 31:99-104. [PMID: 18199491 DOI: 10.1016/j.tins.2007.11.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 11/20/2007] [Accepted: 11/21/2007] [Indexed: 11/19/2022]
Abstract
The p75 neurotrophin receptor (p75(NTR)) is expressed on many cell types and can influence a variety of cellular functions. This receptor can mediate cell survival or cell death, can promote or inhibit axonal growth and can facilitate or attenuate proliferation, depending on the cell context. The emerging picture regarding p75(NTR) indicates that it can partner with different coreceptors to dictate specific responses. It then signals by recruiting intracellular binding proteins to activate different signaling pathways. The function of p75(NTR) has mainly been studied in neurons; however, it is also expressed in a variety of glial populations, especially during development and after injury, where its roles have been poorly defined. In this review, we will examine the potential roles for p75(NTR) in glial function.
Collapse
Affiliation(s)
- Andrea B Cragnolini
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | | |
Collapse
|
719
|
Immonen T, Alakuijala A, Hytönen M, Sainio K, Poteryaev D, Saarma M, Pasternack M, Sariola H. A proGDNF-related peptide BEP increases synaptic excitation in rat hippocampus. Exp Neurol 2008; 210:793-6. [PMID: 18280470 DOI: 10.1016/j.expneurol.2007.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 12/07/2007] [Accepted: 12/15/2007] [Indexed: 12/01/2022]
Abstract
The glial cell-derived neurotrophic factor (GDNF) precursor contains several putative sites for prohormone convertase-mediated excision of short peptides. Here, we show that one of the predicted peptides, named BEP (brain excitatory peptide), induces a substantial increase in the synaptic excitability in rat CA1 pyramidal neurons. The excitation is sensitive to N-ethylmaleimide, suggesting involvement of a G-protein-coupled receptor.
Collapse
Affiliation(s)
- Tiina Immonen
- Department of Medical Biochemistry and Developmental Biology, Institute of Biomedicine, Biomedicum Helsinki, P.O.Box 63, FI-00014 University of Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
720
|
Abstract
The 'neurotrophin hypothesis of depression' is based largely on correlations between stress or antidepressant treatment and down- or upregulation, respectively, of brain-derived neurotrophic factor (BDNF). Genetic disruption of the signaling pathways involving BDNF and its receptor, the tyrosine kinase TrkB, does not seem to cause depressive behaviors, but does hamper the effect of antidepressant drugs. Thus, BDNF may be a target of antidepressants, but not the sole mediator of depression or anxiety. Advances in BDNF cell biology, including its transcription through multiple promoters, trafficking and secretion, may provide new insights into its role in mood disorders. Moreover, as the precursor proBDNF and the mature protein mBDNF can elicit opposite effects on cellular functions, the impact of proBDNF and its cleavage on mood should be considered. Opposing influences of mBDNF and proBDNF on long-term potentiation and long-term depression might contribute to the dichotomy of BDNF actions on behaviors mediated by the brain stress and reward systems.
Collapse
Affiliation(s)
- Keri Martinowich
- Mood and Anxiety Program, National Institute of Mental Health, Building 35, Room 1C1004, 35 Convent Drive, MSC 3714, Bethesda, Maryland 20892-3714, USA
| | | | | |
Collapse
|
721
|
Bronfman FC. Metalloproteases and gamma-secretase: new membrane partners regulating p75 neurotrophin receptor signaling? J Neurochem 2008; 103 Suppl 1:91-100. [PMID: 17986144 DOI: 10.1111/j.1471-4159.2007.04781.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Signaling by the p75 neurotrophin receptor (p75) has been implicated in diverse neuronal responses, including the control of neuronal survival versus death and axonal regeneration and growth cone collapse, involving p75 in different neuropathological conditions. There are different levels of complexity regulating p75-mediated signaling. First, p75 can interact with different ligands and co-receptors in the plasma membrane, forming tripartite complexes, whose activation result in different cellular outcomes. Moreover, it was recently described that trafficking capacities of p75 in neurons are regulating, in addition to p75 downstream interactions, also the sequential cleavage of p75. The proteolytical processing of p75 involves, first, a shedding event that releases a membrane-bound carboxiterminal fragment (p75-CTF), followed by a gamma-secretase mediated cleavage, generating a soluble intracellular domain (p75-ICD) with signaling capabilities. The first shedding event, generating a p75-CTF, is the key step to regulating the production of p75-ICD, and although the generation of p75-ICD is important for both p75-mediated control of neuronal survival and the control of neurite outgrowth, little is known how both cleavage events are regulated. In this review, we argue that both sheddases and gamma-secretase are key membrane components regulating p75-mediated signaling transduction; therefore, further attention should be paid to their roles as p75 signaling regulators.
Collapse
Affiliation(s)
- Francisca C Bronfman
- Center for Cellular Regulation and Pathology Joaquin V. Luco, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Alameda 340, Santiago, Chile.
| |
Collapse
|
722
|
Chen ZY, Bath K, McEwen B, Hempstead B, Lee F. Impact of genetic variant BDNF (Val66Met) on brain structure and function. NOVARTIS FOUNDATION SYMPOSIUM 2008; 289:180-8; discussion 188-95. [PMID: 18497103 PMCID: PMC2735856 DOI: 10.1002/9780470751251.ch14] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A common single-nucleotide polymorphism in the human brain-derived neurotrophic factor (BDNF) gene, a methionine (Met) substitution for valine (Val) at codon 66 (Val66Met), is associated with alterations in brain anatomy and memory, but its relevance to clinical disorders is unclear. We generated a variant BDNF mouse (BDNF(MET/Met)) that reproduces the phenotypic hallmarks in humans with the variant allele. Variant BDNF(Met) was expressed in brain at normal levels, but its secretion from neurons was defective. In this context, the BDNF(Met/Met) mouse represents a unique model that directly links altered activity-dependent release of BDNF to a defined set of in vivo consequences. Our subsequent analyses of these mice elucidated a phenotype that had not been established in human carriers: increased anxiety. When placed in conflict settings, BDNF(Met/Met) mice display increased anxiety-related behaviours that were not normalized by the antidepressant, fluoxetine. A genetic variant BDNF may thus play a key role in genetic predispositions to anxiety and depressive disorders.
Collapse
Affiliation(s)
- Zhe-Yu Chen
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
723
|
Abstract
Brain-derived neurotrophic factor (BDNF) and serotonin (5-hydroxytryptamine, 5-HT) are two seemingly distinct signaling systems that play regulatory roles in many neuronal functions including survival, neurogenesis, and synaptic plasticity. A common feature of the two systems is their ability to regulate the development and plasticity of neural circuits involved in mood disorders such as depression and anxiety. BDNF promotes the survival and differentiation of 5-HT neurons. Conversely, administration of antidepressant selective serotonin reuptake inhibitors (SSRIs) enhances BDNF gene expression. There is also evidence for synergism between the two systems in affective behaviors and genetic epitasis between BDNF and the serotonin transporter genes.
Collapse
Affiliation(s)
- Keri Martinowich
- Mood and Anxiety Disorders Program (MAP), NIMH, National Institutes of Health, Bethesda, MD 20892-3714, USA
| | | |
Collapse
|
724
|
Lu B, Martinowich K. Cell biology of BDNF and its relevance to schizophrenia. NOVARTIS FOUNDATION SYMPOSIUM 2008; 289:119-29; discussion 129-35, 193-5. [PMID: 18497099 PMCID: PMC3096549 DOI: 10.1002/9780470751251.ch10] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BDNF is a key regulator of synaptic plasticity and hence is thought to be uniquely important for various cognitive functions. While correlations of schizophrenia with polymorphisms in the BDNF gene and changes in BDNF mRNA levels have been reported, specific links remain to be established. Cell biology studies may provide clues as to how BDNF signalling impacts schizophrenia aetiology and pathogenesis: (1) the Val-Met polymorphism in the pro-domain affects activity-dependent BDNF secretion and short-term, hippocampus-mediated episodic memory. (2) pro-BDNF and mBDNF, by interacting with their respective p75(NTR) and TrkB receptors, facilitate long-term depression (LTD) and long-term potentiation (LTP), two common forms of synaptic plasticity working in opposing directions. (3) BDNF transcription is controlled by four promoters, which drive expression of four BDNF-encoding transcripts in different brain regions, cell types and subcellular compartments (dendrites, cell body, etc.), and each is regulated by different genetic and environmental factors. A role for BDNF in early- and late-phase LTP and short- and long-term, hippocampal-dependent memory has been firmly established. Extending these studies to synaptic plasticity in other areas of the brain may help us to better understand how altered BDNF signalling could contribute to intermediate phenotypes associated with schizophrenia.
Collapse
Affiliation(s)
- Bai Lu
- Genes, Cognition and Psychosis Program (GCAP), NIMH and Section on Neural Development & Plasticity, NICHD, National Institutes of Health, Bethesda, MD 20892-3714, USA
| | | |
Collapse
|
725
|
Abstract
The effects of neurotrophins during the middle and late stages of development are well known. It was previously thought that neurotrophins had no role during early development, but this is not the case and is the subject of this review article. The earliest neurotrophin receptor expressed is that for neurotrophin-3 (NT-3). TrkC is detected in the neural plate and is present in the neural tube. Initially, the distribution of TrkC is homogenous, but it becomes localized to specific regions of the neural tube as the neural tube differentiates. The receptor for brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5), TrkB, is detected somewhat later than TrkC in the neural tube where it is also differentially localized. In contrast, the NGF receptor, TrkA, was not detected during early development. Both NT-3 and BDNF have been shown to have effects in vitro during early development. NT-3 caused an increase in neurite outgrowth and apoptosis in neural plate explants, and promoted differentiation of progenitors into motoneurons. BDNF increased the number of motoneurons in neural tube explants. These data suggest that NT-3 and BDNF may play a role during early development in vivo.
Collapse
Affiliation(s)
- Paulette Bernd
- Department of Anatomy and Cell Biology, State University of New York, Brooklyn, NY, USA.
| |
Collapse
|
726
|
Flavell SW, Greenberg ME. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci 2008; 31:563-90. [PMID: 18558867 PMCID: PMC2728073 DOI: 10.1146/annurev.neuro.31.060407.125631] [Citation(s) in RCA: 662] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sensory experience and the resulting synaptic activity within the brain are critical for the proper development of neural circuits. Experience-driven synaptic activity causes membrane depolarization and calcium influx into select neurons within a neural circuit, which in turn trigger a wide variety of cellular changes that alter the synaptic connectivity within the neural circuit. One way in which calcium influx leads to the remodeling of synapses made by neurons is through the activation of new gene transcription. Recent studies have identified many of the signaling pathways that link neuronal activity to transcription, revealing both the transcription factors that mediate this process and the neuronal activity-regulated genes. These studies indicate that neuronal activity regulates a complex program of gene expression involved in many aspects of neuronal development, including dendritic branching, synapse maturation, and synapse elimination. Genetic mutations in several key regulators of activity-dependent transcription give rise to neurological disorders in humans, suggesting that future studies of this gene expression program will likely provide insight into the mechanisms by which the disruption of proper synapse development can give rise to a variety of neurological disorders.
Collapse
Affiliation(s)
- Steven W. Flavell
- F.M. Kirby Neurobiology Center, Children’s Hospital Boston, and Departments of Neurology and Neurobiology, Harvard Medical School, Boston, Massachusetts 02115; ,
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| | - Michael E. Greenberg
- F.M. Kirby Neurobiology Center, Children’s Hospital Boston, and Departments of Neurology and Neurobiology, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|
727
|
Chiaruttini C, Sonego M, Baj G, Simonato M, Tongiorgi E. BDNF mRNA splice variants display activity-dependent targeting to distinct hippocampal laminae. Mol Cell Neurosci 2008; 37:11-9. [DOI: 10.1016/j.mcn.2007.08.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 08/06/2007] [Accepted: 08/16/2007] [Indexed: 12/29/2022] Open
|
728
|
Lauterborn JC, Rex CS, Kramár E, Chen LY, Pandyarajan V, Lynch G, Gall CM. Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X syndrome. J Neurosci 2007; 27:10685-94. [PMID: 17913902 PMCID: PMC6672822 DOI: 10.1523/jneurosci.2624-07.2007] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mice lacking expression of the fragile X mental retardation 1 (Fmr1) gene have deficits in types of learning that are dependent on the hippocampus. Here, we report that long-term potentiation (LTP) elicited by threshold levels of theta burst afferent stimulation (TBS) is severely impaired in hippocampal field CA1 of young adult Fmr1 knock-out mice. The deficit was not associated with changes in postsynaptic responses to TBS, NMDA receptor activation, or levels of punctate glutamic acid decarboxylase-65/67 immunoreactivity. TBS-induced actin polymerization within dendritic spines was also normal. The LTP impairment was evident within 5 min of induction and, thus, may not be secondary to defects in activity-initiated protein synthesis. Protein levels for both brain-derived neurotrophic factor (BDNF), a neurotrophin that activates pathways involved in spine cytoskeletal reorganization, and its TrkB receptor were comparable between genotypes. BDNF infusion had no effect on baseline transmission or on postsynaptic responses to theta burst stimulation, but nonetheless fully restored LTP in slices from fragile X mice. These results indicate that the fragile X mutation produces a highly selective impairment to LTP, possibly at a step downstream of actin filament assembly, and suggest a means for overcoming this deficit. The possibility of a pharmacological therapy based on these results is discussed.
Collapse
Affiliation(s)
- Julie C Lauterborn
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4292, USA.
| | | | | | | | | | | | | |
Collapse
|
729
|
Fumagalli F, Di Pasquale L, Caffino L, Racagni G, Riva MA. Repeated exposure to cocaine differently modulates BDNF mRNA and protein levels in rat striatum and prefrontal cortex. Eur J Neurosci 2007; 26:2756-63. [DOI: 10.1111/j.1460-9568.2007.05918.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
730
|
Jansen P, Giehl K, Nyengaard JR, Teng K, Lioubinski O, Sjoegaard SS, Breiderhoff T, Gotthardt M, Lin F, Eilers A, Petersen CM, Lewin GR, Hempstead BL, Willnow TE, Nykjaer A. Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat Neurosci 2007; 10:1449-57. [PMID: 17934455 DOI: 10.1038/nn2000] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 09/24/2007] [Indexed: 01/16/2023]
Abstract
Neurotrophins are essential for development and maintenance of the vertebrate nervous system. Paradoxically, although mature neurotrophins promote neuronal survival by binding to tropomyosin receptor kinases and p75 neurotrophin receptor (p75(NTR)), pro-neurotrophins induce apoptosis in cultured neurons by engaging sortilin and p75(NTR) in a death-signaling receptor complex. Substantial amounts of neurotrophins are secreted in pro-form in vivo, yet their physiological significance remains unclear. We generated a sortilin-deficient mouse to examine the contribution of the p75(NTR)/sortilin receptor complex to neuronal viability. In the developing retina, Sortilin 1 (Sort1)(-/-) mice showed reduced neuronal apoptosis that was indistinguishable from that observed in p75(NTR)-deficient (Ngfr(-/-)) mice. To our surprise, although sortilin deficiency did not affect developmentally regulated apoptosis of sympathetic neurons, it did prevent their age-dependent degeneration. Furthermore, in an injury protocol, lesioned corticospinal neurons in Sort1(-/-) mice were protected from death. Thus, the sortilin pathway has distinct roles in pro-neurotrophin-induced apoptotic signaling in pathological conditions, but also in specific stages of neuronal development and aging.
Collapse
Affiliation(s)
- Pernille Jansen
- MIND Center, Department of Medical Biochemistry, Ole Worms Allé 1170, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
731
|
Neurotrophin receptors expression and JNK pathway activation in human astrocytomas. BMC Cancer 2007; 7:202. [PMID: 17971243 PMCID: PMC2180182 DOI: 10.1186/1471-2407-7-202] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 10/31/2007] [Indexed: 11/19/2022] Open
Abstract
Background Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75NTR, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Methods Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75NTR and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined. Results Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75NTR receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor grade-dependent manner (p < 0.05). Interestingly, a statistically significant (p < 0.05) reverse relationship between Trk receptors LIs and pc-Jun/pJNK LIs was noted in some glioblastomas multiforme. Conclusion In the context of astrocytomas, Trk receptors (TrkA, TrkB, TrkC) expression may promote tumor growth independently of grade. Furthermore, activation of JNK pathway may contribute to progression towards malignancy. Considering the fact that regional tumor heterogeneity may be a limiting factor for immunohistochemical studies, the significance of the reverse relationship between Trk receptors and pc-Jun/pJNK LIs with respect to biological behavior of human astrocytomas requires further evaluation.
Collapse
|
732
|
Wei Y, Wang N, Lu Q, Zhang N, Zheng D, Li J. Enhanced protein expressions of sortilin and p75NTR in retina of rat following elevated intraocular pressure-induced retinal ischemia. Neurosci Lett 2007; 429:169-74. [PMID: 17997040 DOI: 10.1016/j.neulet.2007.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/18/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
Abstract
Elevated introcular pressure (IOP)-induced retinal neuron ischemic death includes an early phase of necrosis and prolonged phase of apoptosis. We used this ischemic model to observe the changes of sortilin and p75(NTR) protein expressions in rat retina. The results of Western blot analysis showed the expression of p75(NTR) at the band of 75 (mature form), 60 (non-glycosylated pieces) and 50 kDa (ectodomain shedding pieces), and the expression of sortilin at the 95 and 90 kDa (the mature form). The protein expressions of p75(NTR) (60 and 50 kDa pieces) and sortilin (90 kDa) increased significantly (p < 0.05) at days 3, 5 and 7 after retinal ischemia. This effect was also confirmed by immunofluorescence staining. Sortilin was primarily present in cell membrane of the ganglion cells layer (GCL) and large ganglion cell bodies by immunofluorescence labeling. There was little expression of p75(NTR) in the normal retina, while expression increased extensively in GCL, inner plexiform layer (IPL) and inner nuclear layer (INL) after retinal ischemia. p75(NTR) was shown to co-localize with neurofilament in the axons of neuronal cells by double-labeling. These results suggested that the protein expressions of 60 and 50 kDa forms of p75(NTR), and the 90 kDa mature form of sortilin increased in ischemia-induced retinal neuron of rats.
Collapse
Affiliation(s)
- Yong Wei
- Beijing TongRen Eye Center, Beijing Tongren Hospital; Vision Science Laboratory, School of Ophthalmology, Capital Medical University, Beijing 100730, China
| | | | | | | | | | | |
Collapse
|
733
|
Dicou E. Peptides other than the neurotrophins that can be cleaved from proneurotrophins: a neglected story. Arch Physiol Biochem 2007; 113:228-33. [PMID: 17917853 DOI: 10.1080/13813450701531250] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The members of the family of neurotrophic factors known as neurotrophins, NGF, BDNF, NT-3 and NT4/5 are known to be cleaved intracellularly from immature precursors, the proneurotrophins. NGF and the other neurotrophins regulate neurite outgrowth and neuronal survival during development via binding to Trk receptor tyrosine kinases and the p75 neurotrophin receptor. Surprisingly, the proneurotrophins were shown to be also biologically active ligands. ProNGF and proBDNF induce neuronal apoptosis via binding to a complex of p75 and sortilin. Therefore, life and death seems to be a delicate interplay between 'cleavage' or 'not cleavage' of the proneurotrophins. However, there is a third aspect to this story. In general, peptide-hormone precursors are known to give rise to several biologically active peptides from one precursor molecule. The paradox with the proneurotrophins is that although they have several additional potential cleavage sites that would necessarily give rise to other peptides besides the neurotrophins and thus new members in the neurotrophin family, this aspect has been largely neglected. This article aims to review evidence for biologically active peptides other than the NGF and NT-3 that can be generated from the proNGF and proNT-3.
Collapse
Affiliation(s)
- E Dicou
- Institut de Pharmacologie Moléculaire et Cellulaire du CNRS, 660 route des Lucioles, Valbonne, France.
| |
Collapse
|
734
|
Pietropaolo S, Paterna JC, Büeler H, Feldon J, Yee BK. Bidirectional changes in water-maze learning following recombinant adenovirus-associated viral vector (rAAV)-mediated brain-derived neurotrophic factor expression in the rat hippocampus. Behav Pharmacol 2007; 18:533-47. [PMID: 17762522 DOI: 10.1097/fbp.0b013e3282da0bf6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alterations in hippocampal brain-derived neurotrophic factor (BDNF) expression have been implicated in the pathogenesis of emotional and cognitive dysfunction. Here, we induced BDNF overexpression in the rat hippocampus using recombinant adenovirus-associated viral (rAAV) vectors, and studied its long-term (2 months postinduction) effects on anxiety-related behaviour, exploration in the open field, and spatial learning in the water maze. Although the treatment successfully led to substantial elevation of hippocampal BDNF levels, its effect on spatial learning was bidirectional: a subset of rAAV-induced BDNF-overexpressing rats performed well above control level, whereas the rest were clearly impaired. This behavioural distinction corresponded to two markedly different levels of BDNF overexpression. The increase in dorsal hippocampal BDNF content achieved in the 'water-maze-impaired' subgroup was twice that attained in the 'water-maze-improved' rats. Although neither subgroup of rAAV-induced BDNF-overexpressing rats differed from controls in the open field, the 'water-maze-impaired' subgroup also showed a significant anxiolytic effect. Our results suggest that hippocampal BDNF elevation significantly affects cognitive and emotional behaviours, but the direction and magnitude of the effects critically depend on the precise levels of overexpression. This factor must be taken into account in future studies examining the functional consequences of hippocampal BDNF overexpression.
Collapse
|
735
|
Deinhardt K, Reversi A, Berninghausen O, Hopkins CR, Schiavo G. Neurotrophins Redirect p75NTRfrom a Clathrin‐Independent to a Clathrin‐Dependent Endocytic Pathway Coupled to Axonal Transport. Traffic 2007; 8:1736-1749. [PMID: 17897318 DOI: 10.1111/j.1600-0854.2007.00645.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The p75 neurotrophin receptor (p75(NTR)) plays multiple roles in neuronal physiology through interactions with many ligands and coreceptors. However, its intracellular neuronal trafficking prior to and after neurotrophin activation is still poorly characterized. We have previously shown that in response to nerve growth factor (NGF), p75(NTR) is retrogradely transported along the axons of motor neurons (MNs) in carriers shared with NGF, brain-derived neurotrophic factor and the tyrosine kinase receptor TrkB. Here, we report that NGF does not enhance the internalization or degradation of p75(NTR), which undergoes a rapid dynamin-dependent and clathrin-independent recycling process in MNs. Instead, incubation of cells with NGF leads to the redirection of a pool of plasma membrane p75(NTR) into clathrin-coated pits. The subsequent internalization of p75(NTR) via clathrin-mediated endocytosis, as well as the activity of Rab5, are essential for the sorting of the p75(NTR)-containing endosomes to the axonal retrograde transport pathway and for the delivery of p75(NTR) to the soma. Our findings suggest that the spatial regulation of p75(NTR) signalling is controlled by these ligand-driven routes of endocytosis.
Collapse
Affiliation(s)
- Katrin Deinhardt
- Molecular Neuropathobiology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, WC2A 3PX, London, UK
- Current address: Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Alessandra Reversi
- Molecular Neuropathobiology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, WC2A 3PX, London, UK
| | - Otto Berninghausen
- Department of Biological Sciences, Imperial College London, SW7 2AZ, London, UK
- Current address: LMU Gene Center, University of Munich, Feodor-Lynen-Str 25, 81377 Muenchen, Germany
| | - Colin R Hopkins
- Department of Biological Sciences, Imperial College London, SW7 2AZ, London, UK
| | - Giampietro Schiavo
- Molecular Neuropathobiology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, WC2A 3PX, London, UK
| |
Collapse
|
736
|
Freund-Michel V, Frossard N. The nerve growth factor and its receptors in airway inflammatory diseases. Pharmacol Ther 2007; 117:52-76. [PMID: 17915332 DOI: 10.1016/j.pharmthera.2007.07.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 11/16/2022]
Abstract
The nerve growth factor (NGF) belongs to the neurotrophin family and induces its effects through activation of 2 distinct receptor types: the tropomyosin-related kinase A (TrkA) receptor, carrying an intrinsic tyrosine kinase activity in its intracellular domain, and the receptor p75 for neurotrophins (p75NTR), belonging to the death receptor family. Through activation of its TrkA receptor, NGF activates signalling pathways, including phospholipase Cgamma (PLCgamma), phosphatidyl-inositol 3-kinase (PI3K), the small G protein Ras, and mitogen-activated protein kinases (MAPK). Through its p75NTR receptor, NGF activates proapoptotic signalling pathways including the MAPK c-Jun N-terminal kinase (JNK), ceramides, and the small G protein Rac, but also activates pathways promoting cell survival through the transcription factor nuclear factor-kappaB (NF-kappaB). NGF was first described by Rita Levi-Montalcini and collaborators as an important factor involved in nerve differentiation and survival. Another role for NGF has since been established in inflammation, in particular of the airways, with increased NGF levels in chronic inflammatory diseases. In this review, we will first describe NGF structure and synthesis and NGF receptors and their signalling pathways. We will then provide information about NGF in the airways, describing its expression and regulation, as well as pointing out its potential role in inflammation, hyperresponsiveness, and remodelling process observed in airway inflammatory diseases, in particular in asthma.
Collapse
Affiliation(s)
- V Freund-Michel
- EA 3771 Inflammation and Environment in Asthma, University Louis Pasteur-Strasbourg I, Faculty of Pharmacy, Illkirch, France.
| | | |
Collapse
|
737
|
Lippmann M, Bress A, Nemeroff CB, Plotsky PM, Monteggia LM. Long-term behavioural and molecular alterations associated with maternal separation in rats. Eur J Neurosci 2007; 25:3091-8. [PMID: 17561822 DOI: 10.1111/j.1460-9568.2007.05522.x] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study we addressed whether certain behavioural measures, endocrine levels and specific stress-related proteins exhibit long-term alterations in adult rats following repeated postnatal maternal separation. Rats were subjected to daily maternal separation for 15 min (HMS15) or 180 min (HMS180) from postnatal day 2-14. Adult HMS180 animals were hypoactive and had increased levels of stereotypy compared to HMS15 and normal animal facility-reared (AFR) animals. HMS180 animals also had augmented plasma adrenocorticotropin (ACTH) and corticosterone (CORT) concentrations following an acute stressor, compared to the other two groups. We assessed persistent changes in proteins regulated by stress in hippocampus, cortex, ventral tegmental area, nucleus accumbens, striatum and amygdala. Western blotting analysis revealed a decrease in the levels of mature brain-derived neurotrophic factor (BDNF) in hippocampus and striatum, but an increase in the ventral tegmental area in the HMS180 rats. Levels of pro-BDNF were significantly increased in the ventral tegmental area of HMS180 animals but were unchanged in other brain regions compared to the other two groups. Levels of the transcription factors cAMP response element binding protein (CREB) and DeltaFosB were unchanged in all of the brain regions studied in the maternally separated rats. These data show that maternal separation induces long-term changes in BDNF expression, and more specifically the processing of BDNF, in the hippocampus, striatum and ventral tegmental area. Recognition of these adaptations begins to define the brain regions, and neural circuitry, associated with persistent alterations induced by early life stressors and the development of mood disorders.
Collapse
Affiliation(s)
- Melanie Lippmann
- Department of Psychiatry, The University of Texas South-western Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9070, USA
| | | | | | | | | |
Collapse
|
738
|
Hauburger A, Kliemannel M, Madsen P, Rudolph R, Schwarz E. Oxidative folding of nerve growth factor can be mediated by the pro-peptide of neurotrophin-3. FEBS Lett 2007; 581:4159-64. [PMID: 17698064 DOI: 10.1016/j.febslet.2007.07.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 07/13/2007] [Accepted: 07/18/2007] [Indexed: 10/23/2022]
Abstract
We have previously shown that the pro-peptide of human nerve growth factor (NGF) facilitates oxidative folding of the mature part. For the analysis of functional specificities of the pro-peptides of NGF and the related neurotrophin-3 (NT-3) with respect to structure formation, chimeric proteins with swapped pro-peptides were generated. Neither the structure nor the stability of the mature domains was influenced by the heterologous pro-peptides. For the pro-peptide of NT-3 fused to the mature part of NGF, stabilization of the pro-peptide moiety by the NGF part was observed. Folding kinetics and renaturation yields of this chimeric protein were comparable to those of proNGF. Our results demonstrate functional interchangeability between the pro-peptides of NGF and NT-3 with respect to their role in assisting oxidative folding of the mature part.
Collapse
Affiliation(s)
- Anja Hauburger
- Institut für Biotechnologie der Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle, Germany
| | | | | | | | | |
Collapse
|
739
|
Nakamura K, Namekata K, Harada C, Harada T. Intracellular sortilin expression pattern regulates proNGF-induced naturally occurring cell death during development. Cell Death Differ 2007; 14:1552-4. [PMID: 17541425 DOI: 10.1038/sj.cdd.4402173] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
740
|
Ou LC, Gean PW. Transcriptional regulation of brain-derived neurotrophic factor in the amygdala during consolidation of fear memory. Mol Pharmacol 2007; 72:350-8. [PMID: 17456785 DOI: 10.1124/mol.107.034934] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have demonstrated previously that brain-derived neurotrophic factor (BDNF) signaling in the amygdala is required for the consolidation of fear memory. This study is designed to characterize the signal cascades by which fear conditioning modulates transcriptional and translational expression of BDNF. Real-time reverse transcription-coupled polymerase chain reaction showed a significant increase in BDNF exon I- and III-containing mRNA in the amygdala of fear-conditioned rats, indicating that fear conditioning was capable of up-regulating BDNF mRNA. Bilateral administration of actinomycin D or anisomycin to the amygdala attenuated conditioning-induced increase in BDNF protein. Inhibitors for N-methyl-d-aspartate (NMDA) receptor, L-type voltage-dependent calcium channel (L-VDCC), adenylyl cyclase, cAMP-dependent protein kinase (PKA), and calcium/calmodulin-dependent kinase IV (CaMKIV) significantly reduced the increase. Moreover, DNA affinity precipitation and chromatin immunoprecipitation assays showed that phosphorylated cAMP response element-binding protein (p-CREB) binding activity in the proximal region of BDNF promoter I and III was significantly increased after fear conditioning. Intra-amygdala administration of cAMP response element decoy DNA before training impaired fear learning. Taken together, these results suggest that calcium influx through NMDA receptors and L-VDCCs during fear conditioning activates PKA and CaMKIV resulting in CREB phosphorylation. The phosphorylated CREB binds to BDNF promoter and up-regulates the expression of BDNF in the amygdala, which helps the consolidation of fear memory.
Collapse
Affiliation(s)
- Li-Chin Ou
- Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan, Taiwan
| | | |
Collapse
|
741
|
McGregor S, Strauss J, Bulgin N, De Luca V, George CJ, Kovacs M, Kennedy JL. p75(NTR) gene and suicide attempts in young adults with a history of childhood-onset mood disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:696-700. [PMID: 17357149 DOI: 10.1002/ajmg.b.30418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, evidence has accumulated for the role of neurotrophic processes in mood disorders. Neurotrophins operate on receptors, one of which is the p75 neurotrophin receptor (p75(NTR)). We examined three p75(NTR) markers at the p75(NTR) gene, including a missense polymorphism that changes serine to leucine (S205L), for association with suicide attempt (SA) in 203 childhood-onset mood disorder (COMD) cases. There was no difference between COMD suicide attempters and COMD non-attempters with logistic regression models for any of the three markers. We also compared the three polymorphisms between 192 COMD cases and 192 matched healthy controls and found no significant differences between COMD and healthy controls. Our results do not support an association of the p75(NTR) S205L polymorphism with risk for COMD or SA in COMD.
Collapse
Affiliation(s)
- S McGregor
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
742
|
Arancio O, Chao MV. Neurotrophins, synaptic plasticity and dementia. Curr Opin Neurobiol 2007; 17:325-30. [PMID: 17419049 DOI: 10.1016/j.conb.2007.03.013] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 03/28/2007] [Indexed: 01/08/2023]
Abstract
The growing realization that neurotrophins, such as brain-derived neurotrophic factor (BDNF), are crucial in modulating synaptic plasticity has broadened the spectrum of their trophic actions. At the same time, it has become clear that Abeta peptides derived from amyloid precursor protein (APP) have dramatic effects on synaptic transmission before the onset of the neurodegenerative disease. Because neurotrophins and Abeta are responsible for affecting both synaptic and cognitive function, it is likely that their mechanisms of action will be related and might even intersect. This review highlights several recent findings that suggest trophic factors and APP use similar pathways to control neuronal activity.
Collapse
Affiliation(s)
- Ottavio Arancio
- Department of Pathology and Taub Institute, Columbia University College of Physicians and Surgeons, 630 W168th Street, New York, NY 10032, USA
| | | |
Collapse
|
743
|
Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T. Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res 2007; 85:525-35. [PMID: 17149751 PMCID: PMC1878509 DOI: 10.1002/jnr.21139] [Citation(s) in RCA: 765] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has important functions in the development of the nervous system and in brain plasticity-related processes such as memory, learning, and drug addiction. Despite the fact that the function and regulation of rodent BDNF gene expression have received close attention during the last decade, knowledge of the structural organization of mouse and rat BDNF gene has remained incomplete. We have identified and characterized several mouse and rat BDNF transcripts containing novel 5' untranslated exons and introduced a new numbering system for mouse and rat BDNF exons. According to our results both mouse and rat BDNF gene consist of eight 5' untranslated exons and one protein coding 3' exon. Transcription of the gene results in BDNF transcripts containing one of the eight 5' exons spliced to the protein coding exon and in a transcript containing only 5' extended protein coding exon. We also report the distinct tissue-specific expression profiles of each of the mouse and rat 5' exon-specific transcripts in different brain regions and nonneural tissues. In addition, we show that kainic acid-induced seizures that lead to changes in cellular Ca(2+) levels as well as inhibition of DNA methylation and histone deacetylation contribute to the differential regulation of the expression of BDNF transcripts. Finally, we confirm that mouse and rat BDNF gene loci do not encode antisense mRNA transcripts, suggesting that mechanisms of regulation for rodent and human BDNF genes differ substantially.
Collapse
Affiliation(s)
| | | | | | | | - Tõnis Timmusk
- *Correspondence to: Tõnis Timmusk, Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 19086 Tallinn, Estonia. E-mail:
| |
Collapse
|
744
|
Nomoto H, Takaiwa M, Mouri A, Furukawa S. Pro-region of neurotrophins determines the processing efficiency. Biochem Biophys Res Commun 2007; 356:919-24. [PMID: 17395157 DOI: 10.1016/j.bbrc.2007.03.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 03/10/2007] [Indexed: 11/20/2022]
Abstract
Neurotrophins are synthesized as precursors called pro-neurotrophins and then mature neurotrophins are formed proteolytically from them. Recent findings revealed that pro- and mature neurotrophins elicit opposite functional effects on cell survival, highlighting the importance of this processing step. Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) belong to the neurotrophin family and are mutually homologous, but BDNF is less efficiently processed. In order to find the reason for this, we examined some possibilities by using PC12 cells, and found that the pro-region, especially the last half of it, affected very much the processing efficiency of these neurotrophins.
Collapse
Affiliation(s)
- Hiroshi Nomoto
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu 502-8585, Japan.
| | | | | | | |
Collapse
|
745
|
Kumar A, Sinha RA, Tiwari M, Singh R, Koji T, Manhas N, Rastogi L, Pal L, Shrivastava A, Sahu RP, Godbole MM. Hyperthyroidism induces apoptosis in rat liver through activation of death receptor-mediated pathways. J Hepatol 2007; 46:888-898. [PMID: 17321637 DOI: 10.1016/j.jhep.2006.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 11/30/2006] [Accepted: 12/03/2006] [Indexed: 01/24/2023]
Abstract
BACKGROUND/AIMS The molecular basis of hepatic dysfunction in thyrotoxicosis is not fully understood. Here, we investigated the effect of altered thyroidal status on death receptor pathways including p75 neurotrophin receptor (p75NTR), a member of tumor necrosis factor (TNF) receptor superfamily, in rat liver. METHODS Hyperthyroidism was induced in Sprague-Dawley rats by daily injections of triiodothyronine in a dose of 12.5 microg/100 g body weight for 10 days. RESULTS Terminal deoxynucleotide-transferase-mediated dUTP nick end labeling assay and caspase-3 activation data confirmed apoptosis in hyperthyroid rat liver. We observed the elevated levels of death ligands, TNF-alpha, Fas ligand and their cognate receptors, TNF-receptor-1 and Fas, and 8-fold increase in caspase-8 activation in hyperthyroid rat liver (p<0.001). We demonstrated for the first time that hyperthyroidism elevates p75NTR levels and its ligands, pro-nerve growth factor and pro-brain-derived neurotrophic factor, in rat liver. Further we showed that most of the apoptotic cells in hyperthyroid liver express p75NTR. We also demonstrated that triiodothyronine administration to rats causes NF-kappaB activation, but persistent exposure (10 days) to triiodothyronine deactivates NF-kappaB leading to sustained c-Jun N-terminal kinase (JNK) activation. CONCLUSIONS This study showed that hyperthyroidism-induced apoptosis in rat liver involves the activation of death receptor-mediated pathways, including p75NTR.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226 014, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
746
|
Harada T, Harada C, Parada LF. Molecular regulation of visual system development: more than meets the eye. Genes Dev 2007; 21:367-78. [PMID: 17322396 DOI: 10.1101/gad.1504307] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vertebrate eye development has been an excellent model system to investigate basic concepts of developmental biology ranging from mechanisms of tissue induction to the complex patterning and bidimensional orientation of the highly specialized retina. Recent advances have shed light on the interplay between numerous transcriptional networks and growth factors that are involved in the specific stages of retinogenesis, optic nerve formation, and topographic mapping. In this review, we summarize this recent progress on the molecular mechanisms underlying the development of the eye, visual system, and embryonic tumors that arise in the optic system.
Collapse
Affiliation(s)
- Takayuki Harada
- Department of Developmental Biology, Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | |
Collapse
|
747
|
Marandi M, Mowla SJ, Tavallaei M, Yaghoobi MM, Jafarnejad SM. Proprotein convertases 1 and 2 (PC1 and PC2) are expressed in neurally differentiated rat bone marrow stromal stem cells (BMSCs). Neurosci Lett 2007; 420:198-203. [PMID: 17556096 DOI: 10.1016/j.neulet.2007.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/09/2007] [Accepted: 04/19/2007] [Indexed: 01/19/2023]
Abstract
Neural-like cells derived from bone marrow stromal stem cells (BMSCs) have potential usefulness in cell therapy of degenerative or traumatic diseases of the central nervous system (CNS). The functional recovery mediated by these cells, however, depends on the secretion of neurotrophins (NTs) and their cognate receptors, as the main regulators of neural survival and death. The function of NTs is further modulated by proprotein convertase (PC) enzymes which function in converting proproteins (including proNTs) into their functional end products. Accordingly, failure in converting proprotein forms of NTs into their mature forms may lead to neuronal cell death. In the present study, we have investigated the expression profile of PCs before and during neural differentiation of rat BMSCs by RT-PCR. Our results show that major members of the PC family functioning in the constitutive secretory pathway (furin, PACE4 and PC7/LPC) are highly expressed in both undifferentiated and neurally differentiated BMSCs. In contrast, while PC1/PC3 and PC2 (specific to neural and endocrine cells) are absent in undifferentiated BMSCs, their expression is initiated upon the induction of differentiation. In conclusion, our results suggest that neurally differentiated BMSCs have acquired the functional machinery to process the precursor forms of proteins in both the constitutive and regulated pathways.
Collapse
Affiliation(s)
- Mohammad Marandi
- Department of Cellular and Molecular Biology, Imam Hossein University, Tehran, Iran
| | | | | | | | | |
Collapse
|
748
|
Takuma K, Matsuo A, Himeno Y, Hoshina Y, Ohno Y, Funatsu Y, Arai S, Kamei H, Mizoguchi H, Nagai T, Koike K, Inoue M, Yamada K. 17beta-estradiol attenuates hippocampal neuronal loss and cognitive dysfunction induced by chronic restraint stress in ovariectomized rats. Neuroscience 2007; 146:60-8. [PMID: 17320294 DOI: 10.1016/j.neuroscience.2007.01.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 01/03/2007] [Accepted: 01/13/2007] [Indexed: 10/23/2022]
Abstract
Several lines of evidence suggest that hormonal changes after menopause may play an important role in the incidence of cognitive dysfunction, and also in the development of Alzheimer's disease. In this study, we investigated the effect of estrogen on cognitive function in rats under different stress environment. Female rats were divided into four groups: two groups were ovariectomized (OVX) and two were sham-operated. One group each of OVX and sham rats was kept in a normal environment, and the other groups were assigned to a daily restraint stress (6 h/day) for 21 days from 2 months after the operation. Following the stress period, subjects were tested for performance in novel object recognition test and then used for morphological and neurochemical analyses. The OVX plus stress (OVX/stress) group showed a significant impairment of recognition of novel objects, compared with the other groups. The OVX/stress group also showed a marked decrease in the number of pyramidal cells of the CA3 region and levels of brain-derived neurotrophic factor mRNA in the hippocampus. We further examined the effect of estrogen against cognitive dysfunction and hippocampal changes of OVX/stress rats. Vehicle or 17beta-estradiol (E2) at 20 microg/day was s.c. administered to OVX/stress rats from 2 days before the stress period to the end of behavioral analysis through an implantable osmotic pump. Chronic E2 treatment decreased stress response and improved the cognitive and morphological impairments relative to vehicle group. These data have important implications for cognition enhancing effect of estrogen treatment in postmenopausal women.
Collapse
Affiliation(s)
- K Takuma
- Laboratory of Neuropsychopharmacology, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
749
|
Domeniconi M, Hempstead BL, Chao MV. Pro-NGF secreted by astrocytes promotes motor neuron cell death. Mol Cell Neurosci 2007; 34:271-9. [PMID: 17188890 PMCID: PMC2570110 DOI: 10.1016/j.mcn.2006.11.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 10/23/2006] [Accepted: 11/10/2006] [Indexed: 11/25/2022] Open
Abstract
It is well established that motor neurons depend for their survival on many trophic factors. In this study, we show that the precursor form of NGF (pro-NGF) can induce the death of motor neurons via engagement of the p75 neurotrophin receptor. The pro-apoptotic activity was dependent upon the presence of sortilin, a p75 co-receptor expressed on motor neurons. One potential source of pro-NGF is reactive astrocytes, which up-regulate the levels of pro-NGF in response to peroxynitrite, an oxidant and producer of free radicals. Indeed, motor neuron viability was sensitive to conditioned media from cultured astrocytes treated with peroxynitrite and this effect could be reversed using a specific antibody against the pro-domain of pro-NGF. These results are consistent with a role for activated astrocytes and pro-NGF in the induction of motor neuron death and suggest a possible therapeutic target for the treatment of motor neuron disease.
Collapse
Affiliation(s)
- Marco Domeniconi
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
750
|
Abstract
Neurotrophins provide trophic and tropic support for different neuronal subpopulations in the developing and adult nervous systems. Expression of the neurotrophins and their receptors can be altered in several different disease or injury states that impact upon the functions in the central and peripheral nervous systems. The intracellular signals used by the neurotrophins are triggered by ligand binding to the cell surface Trk and p75NTR receptors. In general, signals emanating from Trk receptors support survival, growth and synaptic strengthening, while those emanating from p75NTR induce apoptosis, attenuate growth and weaken synaptic signaling. Mature neurotrophins are the preferred ligand for Trk proteins while p75NTR binds preferentially to the proneurotrophins and serves as a signaling component of the receptor complex for growth inhibitory molecules of central nervous system myelin [ie, myelin-associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgP) and Nogo]. The functional antagonism between Trk and p75NTR signaling may significantly impact the pathogenesis of human neurodevelopmental and neurodegenerative diseases and further complicate therapeutic uses of exogenous neurotrophins. The potential for each is discussed in this review.
Collapse
Affiliation(s)
- Jeffery L Twiss
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803, USA.
| | | | | |
Collapse
|