901
|
|
902
|
Trotta R, Col JD, Yu J, Ciarlariello D, Thomas B, Zhang X, Allard J, Wei M, Mao H, Byrd JC, Perrotti D, Caligiuri MA. TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:3784-92. [PMID: 18768831 PMCID: PMC2924753 DOI: 10.4049/jimmunol.181.6.3784] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TGF-beta can be a potent suppressor of lymphocyte effector cell functions and can mediate these effects via distinct molecular pathways. The role of TGF-beta in regulating CD16-mediated NK cell IFN-gamma production and antibody-dependent cellular cytotoxicity (ADCC) is unclear, as are the signaling pathways that may be utilized. Treatment of primary human NK cells with TGF-beta inhibited IFN-gamma production induced by CD16 activation with or without IL-12 or IL-2, and it did so without affecting the phosphorylation/activation of MAP kinases ERK and p38, as well as STAT4. TGF-beta treatment induced SMAD3 phosphorylation, and ectopic overexpression of SMAD3 resulted in a significant decrease in IFN-gamma gene expression following CD16 activation with or without IL-12 or IL-2. Likewise, NK cells obtained from smad3(-/-) mice produced more IFN-gamma in response to CD16 activation plus IL-12 when compared with NK cells obtained from wild-type mice. Coactivation of human NK cells via CD16 and IL-12 induced expression of T-BET, the positive regulator of IFN-gamma, and T-BET was suppressed by TGF-beta and by SMAD3 overexpression. An extended treatment of primary NK cells with TGF-beta was required to inhibit ADCC, and it did so by inhibiting granzyme A and granzyme B expression. This effect was accentuated in cells overexpressing SMAD3. Collectively, our results indicate that TGF-beta inhibits CD16-mediated human NK cell IFN-gamma production and ADCC, and these effects are mediated via SMAD3.
Collapse
Affiliation(s)
- Rossana Trotta
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Jessica Dal Col
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Jianhua Yu
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - David Ciarlariello
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Brittany Thomas
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Xiaoli Zhang
- The Center for Biostatistics, The Ohio State University, Columbus, OH 43210
| | - Jeffrey Allard
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Min Wei
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Hsiaoyin Mao
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - John C. Byrd
- The Division of Hematology/Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
- The Department of Medical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Danilo Perrotti
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Michael A. Caligiuri
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
- The Division of Hematology/Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
903
|
Abstract
A functional adaptive immune system depends on a diverse and self-tolerant population of T lymphocytes that are generated in the thymus and maintained in the peripheral lymphoid organs. Recent studies have defined the cytokine transforming growth factor-beta (TGF-beta) as a critical regulator of thymic T cell development as well as a crucial player in peripheral T cell homeostasis, tolerance to self antigens, and T cell differentiation during the immune response. The unique mechanism of TGF-beta activation and the plasticity of TGF-beta signaling create a stage for TGF-beta to integrate signals from multiple cell types and environmental cues to regulate T cells.
Collapse
Affiliation(s)
- Ming O. Li
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
904
|
Abstract
The transforming growth factor beta (TGFbeta) signaling pathway is a key player in metazoan biology, and its misregulation can result in tumor development. The regulatory cytokine TGFbeta exerts tumor-suppressive effects that cancer cells must elude for malignant evolution. Yet, paradoxically, TGFbeta also modulates processes such as cell invasion, immune regulation, and microenvironment modification that cancer cells may exploit to their advantage. Consequently, the output of a TGFbeta response is highly contextual throughout development, across different tissues, and also in cancer. The mechanistic basis and clinical relevance of TGFbeta's role in cancer is becoming increasingly clear, paving the way for a better understanding of the complexity and therapeutic potential of this pathway.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
905
|
Pei Z, Lin D, Song X, Li H, Yao H. TLR4 signaling promotes the expression of VEGF and TGFbeta1 in human prostate epithelial PC3 cells induced by lipopolysaccharide. Cell Immunol 2008; 254:20-7. [PMID: 18649875 DOI: 10.1016/j.cellimm.2008.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 06/08/2008] [Accepted: 06/10/2008] [Indexed: 01/13/2023]
Abstract
Chronic inflammation promotes tumor development and progression, and Toll-like receptors (TLRs) may play an important role in this process. In this study, we found that human prostate epithelial PC3 cells constitutively express TLR4 in mRNA and protein level. lipopolysaccharide (LPS) promotes the expression and secretion of immunosuppressive cytokine TGFbeta(1) and proangiogenic factor VEGF in human prostate epithelial PC3 cells. We further elucidated that functionally activation of TLR4 is essential for the increased VEGF and TGFbeta(1) mRNA expression in the cells. In addition, after LPS stimulation, the increased expression of NF-(K)B p65 protein was also detected in human PC3 cells. Our results demonstrate that TLR4 expressed on human PC3 cells is functionally active, and may play important roles in promoting prostate cancer immune escape, survival, progression, and metastasis by inducing immunosuppressive and proangiogenic cytokines.
Collapse
Affiliation(s)
- Zengyang Pei
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
906
|
Hsiao YW, Liao KW, Chung TF, Liu CH, Hsu CD, Chu RM. Interactions of host IL-6 and IFN-gamma and cancer-derived TGF-beta1 on MHC molecule expression during tumor spontaneous regression. Cancer Immunol Immunother 2008; 57:1091-104. [PMID: 18259750 PMCID: PMC11029876 DOI: 10.1007/s00262-007-0446-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 12/18/2007] [Indexed: 12/18/2022]
Abstract
Many tumors down-regulate major histocompatibility complex (MHC) antigen expression to evade host immune surveillance. However, there are very few in vivo models to study MHC antigen expression during tumor spontaneous regression. In addition, the roles of transforming growth factor betal (TGF-beta1), interferon gamma (IFN-gamma), and interleukin (IL)-6 in modulating MHC antigen expression are ill understood. We previously reported that tumor infiltrating lymphocyte (TIL)-derived IL-6 inhibits TGF-beta1 and restores natural killing (NK) activity. Using an in vivo canine-transmissible venereal tumor (CTVT) tumor model, we presently assessed IL-6 and TGF-beta involvement associated with the MHC antigen expression that is commonly suppressed in cancers. IL-6, IFN-gamma, and TGF-beta1, closely interacted with each other and modulated MHC antigen expression. In the presence of tumor-derived TGF-beta1, host IFN-gamma from TIL was not active and, therefore, there was low expression of MHC antigen during tumor progression. TGF-beta1-neutralizing antibody restored IFN-gamma-activated MHC antigen expression on tumor cells. The addition of exogenous IL-6 that has potent anti-TGF-beta1 activity restored IFN-gamma activity and promoted MHC antigen expression. IFN-gamma and IL-6 in combination acted synergistically to enhance the expression of MHC antigen. Thus, the three cytokines, IL-6, TGF-beta1, and IFN-gamma, closely interacted to modulate the MHC antigen expression. Furthermore, transcription factors, including STAT-1, STAT-3, IRF-1, NF-kappaB, and CREB, were significantly elevated after IL-6 and IFN-gamma treatment. We conclude that the host IL-6 derived from TIL works in combination with host IFN-gamma to enhance MHC molecule expression formerly inhibited by TGF-beta1, driving the tumor toward regression. It is suggested that the treatment of cancer cells that constitutively secrete TGF-beta1 should incorporate anti-TGF-beta activity. The findings in this in vivo tumor regression model have potential applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Ya-Wen Hsiao
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, ROC
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Kuang-Wen Liao
- Department of the Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan, ROC
| | - Tien-Fu Chung
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Chen-Hsuan Liu
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Chia-Da Hsu
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Rea-Min Chu
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, ROC
- Department of Veterinary Medicine, Animal Cancer Research Center, 1 Roosevelt Road, Section 4, Taipei, 106 Taiwan, ROC
| |
Collapse
|
907
|
Willimsky G, Czéh M, Loddenkemper C, Gellermann J, Schmidt K, Wust P, Stein H, Blankenstein T. Immunogenicity of premalignant lesions is the primary cause of general cytotoxic T lymphocyte unresponsiveness. ACTA ACUST UNITED AC 2008; 205:1687-700. [PMID: 18573907 PMCID: PMC2442645 DOI: 10.1084/jem.20072016] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cancer is sporadic in nature, characterized by an initial clonal oncogenic event and usually a long latency. When and how it subverts the immune system is unknown. We show, in a model of sporadic immunogenic cancer, that tumor-specific tolerance closely coincides with the first tumor antigen recognition by B cells. During the subsequent latency period until tumors progress, the mice acquire general cytotoxic T lymphocyte (CTL) unresponsiveness, which is associated with high transforming growth factor (TGF) beta1 levels and expansion of immature myeloid cells (iMCs). In mice with large nonimmunogenic tumors, iMCs expand but TGF-beta1 serum levels are normal, and unrelated CTL responses are undiminished. We conclude that (a) tolerance to the tumor antigen occurs at the premalignant stage, (b) tumor latency is unlikely caused by CTL control, and (c) a persistent immunogenic tumor antigen causes general CTL unresponsiveness but tumor burden and iMCs per se do not.
Collapse
Affiliation(s)
- Gerald Willimsky
- Institute of Immunology, Charité Campus Benjamin Franklin, 12200 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
908
|
Wallace A, Kapoor V, Sun J, Mrass P, Weninger W, Heitjan DF, June C, Kaiser LR, Ling LE, Albelda SM. Transforming growth factor-beta receptor blockade augments the effectiveness of adoptive T-cell therapy of established solid cancers. Clin Cancer Res 2008; 14:3966-74. [PMID: 18559619 PMCID: PMC2491721 DOI: 10.1158/1078-0432.ccr-08-0356] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Adoptive cellular immunotherapy is a promising approach to eradicate established tumors. However, a significant hurdle in the success of cellular immunotherapy involves recently identified mechanisms of immune suppression on cytotoxic T cells at the effector phase. Transforming growth factor-beta (TGF-beta) is one of the most important of these immunosuppressive factors because it affects both T-cell and macrophage functions. We thus hypothesized that systemic blockade of TGF-beta signaling combined with adoptive T-cell transfer would enhance the effectiveness of the therapy. EXPERIMENTAL DESIGN Flank tumors were generated in mice using the chicken ovalbumin-expressing thymoma cell line, EG7. Splenocytes from transgenic OT-1 mice (whose CD8 T cells recognize an immunodominant peptide in chicken ovalbumin) were activated in vitro and adoptively transferred into mice bearing large tumors in the presence or absence of an orally available TGF-beta receptor-I kinase blocker (SM16). RESULTS We observed markedly smaller tumors in the group receiving the combination of SM16 chow and adoptive transfer. Additional investigation revealed that TGF-beta receptor blockade increased the persistence of adoptively transferred T cells in the spleen and lymph nodes, increased numbers of adoptively transferred T cells within tumors, increased activation of these infiltrating T cells, and altered the tumor microenvironment with a significant increase in tumor necrosis factor-alpha and decrease in arginase mRNA expression. CONCLUSIONS We found that systemic blockade of TGF-beta receptor activity augmented the antitumor activity of adoptively transferred T cells and may thus be a useful adjunct in future clinical trials.
Collapse
Affiliation(s)
- Africa Wallace
- Thoracic Oncology Research Laboratory, University of Pennsylvania, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
909
|
Markel G, Seidman R, Cohen Y, Besser MJ, Sinai TC, Treves AJ, Orenstein A, Berger R, Schachter J. Dynamic expression of protective CEACAM1 on melanoma cells during specific immune attack. Immunology 2008; 126:186-200. [PMID: 18557789 DOI: 10.1111/j.1365-2567.2008.02888.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An efficient immune response against tumours depends on a well-orchestrated function of integrated components, but is finally exerted by effector tumour-infiltrating lymphocytes (TIL). We have previously reported that homophilic CEACAM1 interactions inhibit the specific killing and interferon-gamma (IFN-gamma) release activities of natural killer cells and TIL. In this study a model for the investigation of melanoma cells surviving long coincubation with antigen-specific TIL is reported. It is demonstrated that the surviving melanoma cells increase their surface CEACAM1 expression, which in turn confers enhanced resistance against fresh TIL. Furthermore, it is shown that this is an active process, driven by specific immune recognition and is at least partially mediated by lymphocyte-derived IFN-gamma. Similar results were observed with antigen-restricted TIL, either autologous or allogeneic, as well as with natural killer cells. The enhanced CEACAM1 expression depends, however, on the presence of IFN-gamma and sharply drops within 48 hr. This may be a mechanism that allows tumour cells to transiently develop a more resistant phenotype upon recognition by specific lymphocytes. Therefore, this work substantiates the melanoma-promoting role of CEACAM1 and marks it as an attractive target for novel immunotherapeutic interventions.
Collapse
Affiliation(s)
- Gal Markel
- The Ella Institute of Melanoma, Sheba Cancer Research Centre, Sheba Medical Centre, Tel Hashomer, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
910
|
Nam JS, Terabe M, Kang MJ, Chae H, Voong N, Yang YA, Laurence A, Michalowska A, Mamura M, Lonning S, Berzofsky JA, Wakefield LM. Transforming growth factor beta subverts the immune system into directly promoting tumor growth through interleukin-17. Cancer Res 2008; 68:3915-23. [PMID: 18483277 PMCID: PMC2586596 DOI: 10.1158/0008-5472.can-08-0206] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Overexpression of the immunosuppressive cytokine transforming growth factor beta (TGF-beta) is one strategy that tumors have developed to evade effective immunesurveillance. Using transplantable models of breast and colon cancer, we made the unexpected finding that CD8+ cells in tumor-bearing animals can directly promote tumorigenesis, by a mechanism that is dependent on TGF-beta. We showed that CD8+ splenocytes from tumor-bearing mice expressed elevated interleukin (IL)-17 when compared with naive mice, and that CD8+ T cells could be induced to make IL-17 on addition of TGF-beta and IL-6 in vitro. Treatment of mice with anti-TGF-beta antibodies in vivo reduced IL-17 expression both in the tumor and the locoregional lymph nodes. Although IL-17 has not previously been shown to act as a survival factor for epithelial cells, we found that IL-17 suppressed apoptosis of several tumor cell lines in vitro, suggesting that this altered T-cell polarization has the potential to promote tumorigenesis directly, rather than indirectly through inflammatory sequelae. Consistent with this hypothesis, knockdown of the IL-17 receptor in 4T1 mouse mammary cancer cells enhanced apoptosis and decreased tumor growth in vivo. Thus, in addition to suppressing immune surveillance, tumor-induced TGF-beta may actively subvert the CD8+ arm of the immune system into directly promoting tumor growth by an IL-17-dependent mechanism.
Collapse
Affiliation(s)
- Jeong-Seok Nam
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon 406-840, Korea
- Lab of Cancer Biology and Genetics, Bethesda MD, USA
| | - Masaki Terabe
- Vaccine Branch, National Cancer Institute, Bethesda MD, USA
| | - Mi-Jin Kang
- Lab of Cancer Biology and Genetics, Bethesda MD, USA
| | - Helen Chae
- Lab of Cancer Biology and Genetics, Bethesda MD, USA
| | - Nga Voong
- Lab of Cancer Biology and Genetics, Bethesda MD, USA
| | - Yu-an Yang
- Lab of Cancer Biology and Genetics, Bethesda MD, USA
| | - Arian Laurence
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | | | - Mizuko Mamura
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon 406-840, Korea
- Lab of Cancer Biology and Genetics, Bethesda MD, USA
| | | | | | | |
Collapse
|
911
|
Walshe TE, D'Amore PA. The role of hypoxia in vascular injury and repair. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 3:615-43. [PMID: 18039132 DOI: 10.1146/annurev.pathmechdis.3.121806.151501] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the terms ischemia and hypoxia are often used interchangeably, they represent distinct processes that result in different modulatory effects at the cellular level. Hypoxia is a reduction in oxygen delivery below tissue demand, whereas ischemia is a lack of perfusion, characterized not only by hypoxia but also by insufficient nutrient supply. Hypoxia can be either acute or chronic, and both are centrally regulated by hypoxia-inducible factor, a transcription factor that governs the expression of key response genes such as vascular endothelial growth factor and erythropoietin. Whereas severe chronic hypoxia can cause cell death, less-severe hypoxia can protect against subsequent damage, a phenomenon known as hypoxic conditioning. Several important processes are characterized by hypoxia, including ischemia-reperfusion, tumor growth and progression, inflammation, myocardial ischemia, and a number of ocular pathologies.
Collapse
Affiliation(s)
- Tony E Walshe
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
912
|
Fichtner-Feigl S, Terabe M, Kitani A, Young CA, Fuss I, Geissler EK, Schlitt HJ, Berzofsky JA, Strober W. Restoration of tumor immunosurveillance via targeting of interleukin-13 receptor-alpha 2. Cancer Res 2008; 68:3467-75. [PMID: 18451175 PMCID: PMC2746996 DOI: 10.1158/0008-5472.can-07-5301] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In previous studies, we described a "counter-immunosurveillance" mechanism initiated by tumor-activated, interleukin-13 (IL-13)-producing natural killer T cells that signal Gr-1(+) cells to produce transforming growth factor-beta(1) (TGF-beta(1)), a cytokine that suppresses the activity of tumor-inhibiting cytolytic CD8(+) T cells. Here, we show that in two tumor models (the CT-26 metastatic colon cancer and the 15-12RM fibrosarcoma regressor models), this counter-surveillance mechanism requires the expression of a novel IL-13 receptor, IL-13R alpha(2), on Gr-1(intermediate) cells, because down-regulation of IL-13R alpha(2) expression or the activator protein-1 signal generated by the receptor via in vivo administration of specific small interfering RNA or decoy oligonucleotides leads to loss of TGF-beta(1) production. Furthermore, acting on prior studies showing that IL-13R alpha(2) expression is induced (in part) by tumor necrosis factor-alpha (TNF-alpha), we show that receptor expression and TGF-beta(1) production is inhibited by administration of a TNF-alpha-neutralizing substance, TNF-alpha R-Fc (etanercept). Taking advantage of this latter fact, we then show in the CT-26 model that counter-immunosurveillance can be inhibited, anti-CT-26-specific CD8(+) cytolytic activity can be restored, and CT-26 metastatic tumor nodules can be greatly decreased by administration of TNF-alpha R-Fc. Corroborative data were obtained using the 15-12RM fibrosarcoma model. These studies point to the prevention of metastatic cancer with an available agent with already known clinically acceptable adverse effects and toxicity.
Collapse
|
913
|
Vicent S, Luis-Ravelo D, Antón I, García-Tuñón I, Borrás-Cuesta F, Dotor J, De Las Rivas J, Lecanda F. A novel lung cancer signature mediates metastatic bone colonization by a dual mechanism. Cancer Res 2008; 68:2275-85. [PMID: 18381434 DOI: 10.1158/0008-5472.can-07-6493] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and a dismal prognosis. To identify and functionally characterize genes involved in the mechanisms of osseous metastasis, we developed a murine lung cancer model. Comparative transcriptomic analysis identified genes encoding signaling molecules (such as TCF4 and PRKD3) and cell anchorage-related proteins (MCAM and SUSD5), some of which were basally modulated by transforming growth factor-beta (TGF-beta) in tumor cells and in conditions mimicking tumor-stromal interactions. Triple gene combinations induced not only high osteoclastogenic activity but also a marked enhancement of global metalloproteolytic activities in vitro. These effects were strongly associated with robust bone colonization in vivo, whereas this gene subset was ineffective in promoting local tumor growth and cell homing activity to bone. Interestingly, global inhibition of metalloproteolytic activities and simultaneous TGF-beta blockade in vivo led to increased survival and a remarkable attenuation of bone tumor burden and osteolytic metastasis. Thus, this metastatic gene signature mediates bone matrix degradation by a dual mechanism of induction of TGF-beta-dependent osteoclastogenic bone resorption and enhancement of stroma-dependent metalloproteolytic activities. Our findings suggest the cooperative contribution of host-derived and cell autonomous effects directed by a small subset of genes in mediating aggressive osseous colonization.
Collapse
Affiliation(s)
- Silvestre Vicent
- Division of Oncology, Adhesion and Metastasis Laboratory, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
914
|
Pittet MJ, Mempel TR. Regulation of T-cell migration and effector functions: insights from in vivo imaging studies. Immunol Rev 2008; 221:107-29. [PMID: 18275478 DOI: 10.1111/j.1600-065x.2008.00584.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies of the immune system are providing us with ever more detailed information on the cellular and molecular mechanisms that underlie our evolutionarily conserved ability to fend off infectious pathogens. Progress has probably been fastest at two levels: the various basic biological functions of isolated cells on one side and the significance of individual molecules or cells to the organism as a whole on the other. In both cases, direct phenomenological observation has been an invaluable methodological approach. Where we know least is the middle ground, i.e. how immune functions are integrated through the dynamic interplay of immune cell subsets within the organism. Most of our knowledge in this area has been obtained through inference from static snapshots of dynamic processes, such as histological sections, or from surrogate cell co-culture models. The latter are employed under the assumption that an in vivo equivalent exists for each type of cellular contact artificially enforced in absence of anatomical compartmentalization. In this review, we summarize recent insights on migration and effector functions of T cells, focusing on observations gained from their dynamic microscopic visualization in physiological tissue environments.
Collapse
Affiliation(s)
- Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston, MA 02129, USA
| | | |
Collapse
|
915
|
Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL, De Marzo A, Anders R, Netto G, Getnet D, Bruno TC, Goldberg MV, Pardoll DM, Drake CG. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 2008; 117:3383-92. [PMID: 17932562 DOI: 10.1172/jci31184] [Citation(s) in RCA: 421] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 07/25/2007] [Indexed: 01/29/2023] Open
Abstract
Lymphocyte activation gene-3 (LAG-3) is a cell-surface molecule with diverse biologic effects on T cell function. We recently showed that LAG-3 signaling is important in CD4+ regulatory T cell suppression of autoimmune responses. Here, we demonstrate that LAG-3 maintains tolerance to self and tumor antigens via direct effects on CD8+ T cells using 2 murine systems. Naive CD8+ T cells express low levels of LAG-3, and expression increases upon antigen stimulation. Our data show increased levels of LAG-3 protein on antigen-specific CD8+ T cells within antigen-expressing organs or tumors. In vivo antibody blockade of LAG-3 or genetic ablation of the Lag-3 gene resulted in increased accumulation and effector function of antigen-specific CD8+ T cells within organs and tumors that express their cognate antigen. Most notably, combining LAG-3 blockade with specific antitumor vaccination resulted in a significant increase in activated CD8+ T cells in the tumor and disruption of the tumor parenchyma. A major component of this effect was CD4 independent and required LAG-3 expression by CD8+ T cells. Taken together, these data demonstrate a direct role for LAG-3 on CD8+ T cells and suggest that LAG-3 blockade may be a potential cancer treatment.
Collapse
Affiliation(s)
- Joseph F Grosso
- Sidney Kimmel Comprehensive Cancer Center and Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
916
|
Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL, De Marzo A, Anders R, Netto G, Getnet D, Bruno TC, Goldberg MV, Pardoll DM, Drake CG. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 2008. [PMID: 17932562 DOI: 10.1172/jci31184ds1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lymphocyte activation gene-3 (LAG-3) is a cell-surface molecule with diverse biologic effects on T cell function. We recently showed that LAG-3 signaling is important in CD4+ regulatory T cell suppression of autoimmune responses. Here, we demonstrate that LAG-3 maintains tolerance to self and tumor antigens via direct effects on CD8+ T cells using 2 murine systems. Naive CD8+ T cells express low levels of LAG-3, and expression increases upon antigen stimulation. Our data show increased levels of LAG-3 protein on antigen-specific CD8+ T cells within antigen-expressing organs or tumors. In vivo antibody blockade of LAG-3 or genetic ablation of the Lag-3 gene resulted in increased accumulation and effector function of antigen-specific CD8+ T cells within organs and tumors that express their cognate antigen. Most notably, combining LAG-3 blockade with specific antitumor vaccination resulted in a significant increase in activated CD8+ T cells in the tumor and disruption of the tumor parenchyma. A major component of this effect was CD4 independent and required LAG-3 expression by CD8+ T cells. Taken together, these data demonstrate a direct role for LAG-3 on CD8+ T cells and suggest that LAG-3 blockade may be a potential cancer treatment.
Collapse
Affiliation(s)
- Joseph F Grosso
- Sidney Kimmel Comprehensive Cancer Center and Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
917
|
Baker K, Raut P, Jass JR. Colorectal cancer cells express functional cell surface-bound TGFbeta. Int J Cancer 2008; 122:1695-700. [PMID: 18076044 DOI: 10.1002/ijc.23312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Disruptions to the TGFbeta signaling pathway have been implicated in most human adenocarcinomas. In addition to its role in cancer cell migration and metastasis, TGFbeta has been implicated in tumor-mediated immunosuppression. Membrane-bound TGFbeta has previously been reported to be expressed on a subset of regulatory T cells and was shown to be critical to their immune suppressive function. In the present study, we document expression of a signaling competent, endogenously derived form of cell surface-bound TGFbeta on colorectal cancer cells. While antibodies against only the mature form of TGFbeta failed to label cells, surface-bound TGFbeta was clearly detected by antibodies specific for both the latent and mature forms of the cytokine. Confirming the notion that the surface TGFbeta was in latent form, brief acid pulsing of the cells increased the amount of detectable membrane-associated TGFbeta. In coculture assays, this cell-bound TGFbeta could be activated and utilized in a paracrine fashion both by other cancer cells and by CD8+ intraepithelial lymphocytes. This effect was abrogated by the use of a furin inhibitor which decreased the membranous expression of TGFbeta on the tumor cells. Signaling competent membrane-bound TGFbeta on cancer cells is thus likely to be a key player in regulating tumor cell interactions with each other as well as with other cells in their microenvironment.
Collapse
Affiliation(s)
- Kristi Baker
- Department of Pathology, McGill University, Montréal, Québec, Canada.
| | | | | |
Collapse
|
918
|
Kronik N, Kogan Y, Vainstein V, Agur Z. Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol Immunother 2008; 57:425-39. [PMID: 17823798 PMCID: PMC11030586 DOI: 10.1007/s00262-007-0387-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 08/07/2007] [Indexed: 11/30/2022]
Abstract
Glioblastoma (GBM), a highly aggressive (WHO grade IV) primary brain tumor, is refractory to traditional treatments, such as surgery, radiation or chemotherapy. This study aims at aiding in the design of more efficacious GBM therapies. We constructed a mathematical model for glioma and the immune system interactions, that may ensue upon direct intra-tumoral administration of ex vivo activated alloreactive cytotoxic-T-lymphocytes (aCTL). Our model encompasses considerations of the interactive dynamics of aCTL, tumor cells, major histocompatibility complex (MHC) class I and MHC class II molecules, as well as cytokines, such as TGF-beta and IFN-gamma, which dampen or increase the pro-inflammatory environment, respectively. Computer simulations were used for model verification and for retrieving putative treatment scenarios. The mathematical model successfully retrieved clinical trial results of efficacious aCTL immunotherapy for recurrent anaplastic oligodendroglioma and anaplastic astrocytoma (WHO grade III). It predicted that cellular adoptive immunotherapy failed in GBM because the administered dose was 20-fold lower than required for therapeutic efficacy. Model analysis suggests that GBM may be eradicated by new dose-intensive strategies, e.g., 3 x 10(8) aCTL every 4 days for small tumor burden, or 2 x 10(9) aCTL, infused every 5 days for larger tumor burden. Further analysis pinpoints crucial bio-markers relating to tumor growth rate, tumor size, and tumor sensitivity to the immune system, whose estimation enables regimen personalization. We propose that adoptive cellular immunotherapy was prematurely abandoned. It may prove efficacious for GBM, if dose intensity is augmented, as prescribed by the mathematical model. Re-initiation of clinical trials, using calculated individualized regimens for grade III-IV malignant glioma, is suggested.
Collapse
Affiliation(s)
- Natalie Kronik
- Institute for Medical BioMathematics (IMBM), 10 Hate'ena St., PO Box 282, Bene Ataroth 60991, Israel.
| | | | | | | |
Collapse
|
919
|
Kim YJ, Han MK, Broxmeyer HE. 4-1BB regulates NKG2D costimulation in human cord blood CD8+ T cells. Blood 2008; 111:1378-86. [PMID: 18024793 PMCID: PMC2214739 DOI: 10.1182/blood-2007-01-069450] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 10/20/2007] [Indexed: 12/12/2022] Open
Abstract
Ligation of NKG2D, a potent costimulatory receptor, can be either beneficial or detrimental to CD8(+) cytotoxic T cell (CTL) responses. Factors for these diverse NKG2D effects remain elusive. In this study, we demonstrate that 4-1BB, another costimulatory receptor, is an essential regulator of NKG2D in CD8(+) T cells. Costimulation of NKG2D caused down-modulation of NKG2D, but induced 4-1BB expression on the cell surface, even in the presence of TGF-beta1, which inhibits 4-1BB expression. Resulting NKG2D(-)4-1BB(+) cells were activated but still in an immature state with low cytotoxic activity. However, subsequent 4-1BB costimulation induced cytotoxic activity and restored down-modulated NKG2D. The cytotoxic activity and NKG2D expression induced by 4-1BB on NKG2D(+)4-1BB(+) cells were refractory to TGF-beta1 down-modulation. Such 4-1BB effects were enhanced by IL-12. In contrast, in the presence of IL-4, 4-1BB effects were abolished because IL-4 down-modulated NKG2D and 4-1BB expression in cooperation with TGF-beta1, generating another CD8(+) T-cell type lacking both NKG2D and 4-1BB. These NKG2D(-)4-1BB(-) cells were inert and unable to gain cytotoxic activity. Our results suggest that 4-1BB plays a critical role in protecting NKG2D from TGF-beta1-mediated down-modulation. Co-expression of NKG2D and 4-1BB may represent an important biomarker for defining competency of tumor infiltrating CD8(+) T cells.
Collapse
Affiliation(s)
- Young-June Kim
- Department of Microbiology and Immunology, Indiana University School of Medicine; 2 Walther Oncology Center, Indianapolis, IN 46202-5181, USA.
| | | | | |
Collapse
|
920
|
Abstract
Most of the current experimental cancer models do not reflect the pathophysiology of real-life cancer. Cancer usually occurs sporadically and is clonal in origin. Between tumor initiation and progression, clinically unapparent pre-malignant cells may persist for years or decades in humans. Recently, mouse models of sporadic cancer have been developed. The mouse germ-line can be engineered with high precision so that defined genes can be switched on and off in the adult organism in a targeted manner. Analysis of the immune response against sporadic tumors requires the knowledge of a tumor antigen. Ideally, a silent oncogene, for which the mice are not tolerant, is stochastically activated in individual cells. This approach offers the opportunity to analyze the adaptive immune response throughout the long process of malignant transformation and most closely resembles cancer in humans. In such a model with the highly immunogenic SV40 large T antigen as a dormant oncogene, we discovered that sporadic cancer is recognized by the adaptive immune system at the pre-malignant stage, concomitant with the induction of tumor antigen-specific tolerance. These results demonstrated that even highly immunogenic sporadic tumors are unable to induce functional cytotoxic T lymphocytes. Based on this model, we conclude that immunosurveillance plays little or no role against sporadic cancer and that tumors must not escape immune recognition or destruction.
Collapse
Affiliation(s)
- Gerald Willimsky
- Institute of Immunology, Charité Campus Benjamin Franklin, Berlin, Germany
| | | |
Collapse
|
921
|
Kottke T, Sanchez-Perez L, Diaz RM, Thompson J, Chong H, Harrington K, Calderwood SK, Pulido J, Georgopoulos N, Selby P, Melcher A, Vile R. Induction of hsp70-mediated Th17 autoimmunity can be exploited as immunotherapy for metastatic prostate cancer. Cancer Res 2008; 67:11970-9. [PMID: 18089828 DOI: 10.1158/0008-5472.can-07-2259] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A close connectivity between autoimmune and tumor rejection responses is known to exist in the case of melanoma immunotherapy. However, relatively little is known about self-antigens on other types of normal cells, their relation to the development of autoimmune disease, and their possible coexistence as potential tumor rejection antigens on associated tumors. In the current study, we induced inflammatory killing of normal prostate tissue in situ using a fusogenic membrane glycoprotein along with the immune adjuvant hsp70. We show here that, in the prostate, hsp70 induces interleukin (IL)-6, which triggers a CD4- and CD8-dependent progressive autoimmune reactivity, associated with IL-17 expression. This autoimmune response was also able to induce the rejection of established prostate tumors, but not other histologic types of tumors, growing elsewhere in the animal. These data show that the intimate connectivity between autoimmune and tumor rejection responses extends beyond the classic melanoma paradigm and may be clinically valuable for the treatment of established metastatic disease of the prostate.
Collapse
Affiliation(s)
- Timothy Kottke
- Molecular Medicine Program, Mayo Clinic, Rochester, Minnesota 55902, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
922
|
Diaz-Chavez J, Hernandez-Pando R, Lambert PF, Gariglio P. Down-regulation of transforming growth factor-beta type II receptor (TGF-betaRII) protein and mRNA expression in cervical cancer. Mol Cancer 2008; 7:3. [PMID: 18184435 PMCID: PMC2248208 DOI: 10.1186/1476-4598-7-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 01/09/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cervical carcinogenesis is a multistep process initiated by "high risk" human papillomaviruses (HR-HPV), most commonly HPV16. The infection per se is, however, not sufficient to induce malignant conversion. Transforming Growth Factor beta (TGF-beta) inhibits epithelial proliferation and altered expression of TGF-beta or its receptors may be important in carcinogenesis. One cofactor candidate to initiate neoplasia in cervical cancer is the prolonged exposure to sex hormones. Interestingly, previous studies demonstrated that estrogens suppress TGF-beta induced gene expression. To examine the expression of TGF-beta2, TGF-betaRII, p15 and c-myc we used in situ RT-PCR, real-time PCR and immunohistochemistry in transgenic mice expressing the oncogene E7 of HPV16 under control of the human Keratin-14 promoter (K14-E7 transgenic mice) and nontransgenic control mice treated for 6 months with slow release pellets of 17beta-estradiol. RESULTS Estrogen-induced carcinogenesis was accompanied by an increase in the incidence and distribution of proliferating cells solely within the cervical and vaginal squamous epithelium of K14-E7 mice. TGF-beta2 mRNA and protein levels increased in K14-E7 transgenic mice as compared with nontransgenic mice and further increased after hormone-treatment in both nontransgenic and transgenic mice. In contrast, TGF-betaRII mRNA and protein levels were decreased in K14-E7 transgenic mice compared to nontransgenic mice and these levels were further decreased after hormone treatment in transgenic mice. We also observed that c-myc mRNA levels were high in K14-E7 mice irrespective of estrogen treatment and were increased in estrogen-treated nontransgenic mice. Finally we found that p15 mRNA levels were not increased in K14-E7 mice. CONCLUSION These results suggest that the synergy between estrogen and E7 in inducing cervical cancer may in part reflect the ability of both factors to modulate TGF-beta signal transduction.
Collapse
Affiliation(s)
- Jose Diaz-Chavez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, México D.F. 07000, México
| | - Rogelio Hernandez-Pando
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F. 14000, México
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, México D.F. 07000, México
| |
Collapse
|
923
|
Carr TM, Adair SJ, Fink MJ, Hogan KT. Immunological profiling of a panel of human ovarian cancer cell lines. Cancer Immunol Immunother 2008; 57:31-42. [PMID: 17579858 PMCID: PMC11031052 DOI: 10.1007/s00262-007-0347-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 05/23/2007] [Indexed: 11/30/2022]
Abstract
PURPOSE The efficient identification of peptide antigens recognized by ovarian cancer-specific cytotoxic T lymphocytes (CTL) requires the use of well-characterized ovarian cancer cell lines. To develop such a panel of cell lines, 11 ovarian cancer cell lines were characterized for the expression of class I and class II major histocompatibility complex (MHC)-encoded molecules, 15 tumor antigens, and immunosuppressive cytokines [transforming growth factor beta (TGF-beta) and IL-10]. METHODS Class I MHC gene expression was determined by polymerase chain reaction (PCR), and class I and class II MHC protein expression was determined by flow cytometry. Tumor antigen expression was determined by a combination of polymerase chain reaction (PCR) and flow cytometry. Cytokine expression was determined by ELISA. RESULTS Each of the ovarian cancer cell lines expresses cytokeratins, although each cell line does not express the same cytokeratins. One of the lines expresses CD90, which is associated with a fibroblast lineage. Each of the cell lines expresses low to moderate amounts of class I MHC molecules, and several of them express low to moderate amounts of class II MHC molecules. Using a combination of PCR and flow cytometry, it was determined that each cell line expressed between six and thirteen of fifteen antigens tested. Little to no TGF-beta3 was produced by any of the cell lines, TGF-beta1 was produced by three of the cell lines, TGF-beta2 was produced by all of the cell lines, with four of the cell lines producing large amounts of the latent form of the molecule, and IL-10 was produced by one of the cell lines. CONCLUSIONS Each of the 11 ovarian cancer lines is characterized by a unique expression pattern of epithelial/fibroblast markers, MHC molecules, tumor antigens, and immunosuppressive cytokines. Knowledge of these unique expression patterns will increase the usefulness of these cell lines in identifying the antigens recognized by ovarian cancer-specific CTL.
Collapse
Affiliation(s)
- Tiffany M. Carr
- Department of Surgery and the Human Immune Therapy Center, University of Virginia, Box 801359, Charlottesville, VA 22908 USA
| | - Sara J. Adair
- Department of Surgery and the Human Immune Therapy Center, University of Virginia, Box 801359, Charlottesville, VA 22908 USA
| | - Mitsú J. Fink
- Department of Surgery and the Human Immune Therapy Center, University of Virginia, Box 801359, Charlottesville, VA 22908 USA
| | - Kevin T. Hogan
- Department of Surgery and the Human Immune Therapy Center, University of Virginia, Box 801359, Charlottesville, VA 22908 USA
| |
Collapse
|
924
|
Bhagat G, Naiyer AJ, Shah JG, Harper J, Jabri B, Wang TC, Green PH, Manavalan JS. Small intestinal CD8+TCRgammadelta+NKG2A+ intraepithelial lymphocytes have attributes of regulatory cells in patients with celiac disease. J Clin Invest 2008; 118:281-93. [PMID: 18064301 PMCID: PMC2117760 DOI: 10.1172/jci30989] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 10/17/2007] [Indexed: 01/03/2023] Open
Abstract
Intraepithelial lymphocytes (IELs) bearing the gammadelta TCR are more abundant in the small intestinal mucosa of patients with celiac disease (CD) compared with healthy individuals. However, their role in disease pathogenesis is not well understood. Here, we investigated the functional attributes of TCRgammadelta+ IELs isolated from intestinal biopsies of patients with either active celiac disease (ACD) or those on a gluten-free diet (GFD). We found that compared with individuals with ACD, individuals on GFD have a higher frequency of CD8+TCRgammadelta+ IELs that express the inhibitory NK receptor NKG2A and intracellular TGF-beta1. TCR triggering as well as cross-linking of NKG2A increased both TGF-beta1 intracellular expression and secretion in vitro. Coculture of sorted TCRgammadelta+NKG2A+ IELs, IL-15-stimulated TCRalphabeta+ IELs, and HLA-E+ enterocytes resulted in a decreased percentage of cytotoxic CD8+TCRalphabeta+ IELs expressing intracellular IFN-gamma and granzyme-B and surface NKG2D. This inhibition was partially abrogated by blocking either TGF-beta alone or both NKG2A and HLA-E. Thus, our data indicate that suppression was at least partially mediated by TGF-beta secretion as a result of engagement of NKG2A with its ligand, HLA-E, on enterocytes and/or TCRalphabeta+ IELs. These findings demonstrate that human small intestinal CD8+TCRgammadelta+ IELs may have regulatory potential in celiac disease.
Collapse
Affiliation(s)
- Govind Bhagat
- Department of Pathology and
Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Departments of Pathology, Medicine, and Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Afzal J. Naiyer
- Department of Pathology and
Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Departments of Pathology, Medicine, and Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Jayesh G. Shah
- Department of Pathology and
Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Departments of Pathology, Medicine, and Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Jason Harper
- Department of Pathology and
Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Departments of Pathology, Medicine, and Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Bana Jabri
- Department of Pathology and
Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Departments of Pathology, Medicine, and Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Timothy C. Wang
- Department of Pathology and
Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Departments of Pathology, Medicine, and Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Peter H.R. Green
- Department of Pathology and
Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Departments of Pathology, Medicine, and Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - John S. Manavalan
- Department of Pathology and
Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Departments of Pathology, Medicine, and Pediatrics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
925
|
Binamé F, Lassus P, Hibner U. Transforming growth factor beta controls the directional migration of hepatocyte cohorts by modulating their adhesion to fibronectin. Mol Biol Cell 2007; 19:945-56. [PMID: 18094041 DOI: 10.1091/mbc.e07-09-0967] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transforming growth factor beta (TGF-beta) has a strong impact on liver development and physiopathology, exercised through its pleiotropic effects on growth, differentiation, survival, and migration. When exposed to TGF-beta, the mhAT3F cells, immortalized, highly differentiated hepatocytes, maintained their epithelial morphology and underwent dramatic alterations of adhesion, leading to partial or complete detachment from a culture plate, followed by readhesion and spreading. These alterations of adhesive behavior were caused by sequential changes in expression of the alpha5beta1 integrin and of its ligand, the fibronectin. The altered specificity of anchorage to the extracellular matrix gave rise to changes in cells' collective motility: cohorts adhering to fibronectin maintained a persistent, directional motility, with ezrin-rich pathfinder cells protruding from the tips of the cohorts. The absence of adhesion to fibronectin prevented the appearance of polarized pathfinders and lead to random, oscillatory motility. Our data suggest a novel role for TGF-beta in the control of collective migration of epithelial cohorts.
Collapse
Affiliation(s)
- Fabien Binamé
- University of Montpellier, Centre National de la Recherche Scientifique, Institut de Génétique Moléculaire de Montpellier, 34293 Montpellier Cedex 5, France
| | | | | |
Collapse
|
926
|
Wrzesinski SH, Wan YY, Flavell RA. Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res 2007; 13:5262-70. [PMID: 17875754 DOI: 10.1158/1078-0432.ccr-07-1157] [Citation(s) in RCA: 342] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immune homeostasis is a delicate balance between the immune defense against foreign pathogens and suppression of the immune system to maintain self-tolerance and prevent autoimmune disease. Maintenance of this balance involves several crucial networks of cytokines and various cell types. Among these regulators, transforming growth factor-beta (TGF-beta) is a potent cytokine with diverse effects on hematopoietic cells. Its pivotal function within the immune system is to maintain tolerance via the regulation of lymphocyte proliferation, differentiation, and survival. In addition, TGF-beta controls the initiation and resolution of inflammatory responses through the regulation of chemotaxis and activation of leukocytes in the periphery, including lymphocytes, natural killer cells, dendritic cells, macrophages, mast cells, and granulocytes. Through its pleiotropic effects on these immune cells, TGF-beta prevents the development of autoimmune diseases without compromising immune responses to pathogens. However, overactivation of this pathway can lead to several immunopathologies under physiologic conditions including cancer progression, making it an attractive target for antitumor therapies. This review discusses the biological functions of TGF-beta and its effects on the immune system and addresses how immunosuppression by this cytokine can promote tumorigenesis, providing the rationale for evaluating the immune-enhancing and antitumor effects of inhibiting TGF-beta in cancer patients.
Collapse
Affiliation(s)
- Stephen H Wrzesinski
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
927
|
Qiao J, Kottke T, Willmon C, Galivo F, Wongthida P, Diaz RM, Thompson J, Ryno P, Barber GN, Chester J, Selby P, Harrington K, Melcher A, Vile RG. Purging metastases in lymphoid organs using a combination of antigen-nonspecific adoptive T cell therapy, oncolytic virotherapy and immunotherapy. Nat Med 2007; 14:37-44. [PMID: 18066076 DOI: 10.1038/nm1681] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 10/11/2007] [Indexed: 11/09/2022]
Abstract
In many common cancers, dissemination of secondary tumors via the lymph nodes poses the most significant threat to the affected individual. Metastatic cells often reach the lymph nodes by mimicking the molecular mechanisms used by hematopoietic cells to traffic to peripheral lymphoid organs. Therefore, we exploited naive T cell trafficking in order to chaperone an oncolytic virus to lymphoid organs harboring metastatic cells. Metastatic burden was initially reduced by viral oncolysis and was then eradicated, as tumor cell killing in the lymph node and spleen generated protective antitumor immunity. Lymph node purging of tumor cells was possible even in virus-immune mice. Adoptive transfer of normal T cells loaded with oncolytic virus into individuals with cancer would be technically easy to implement both to reduce the distribution of metastases and to vaccinate the affected individual in situ against micrometastatic disease. As such, this adoptive transfer could have a great therapeutic impact, in the adjuvant setting, on many different cancer types.
Collapse
Affiliation(s)
- Jian Qiao
- Molecular Medicine Program, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
928
|
Abstract
Transforming growth factor-beta (TGF-beta) and forkhead box p3-expressing T-regulatory (Treg) cells are critical in maintaining self-tolerance and immune homeostasis. The immune suppressive functions of TGF-beta and Treg cells are widely acknowledged and extensively studied. Nonetheless, recent studies revealed the positive roles of TGF-beta and Treg cells in shaping the immune system and the inflammatory responses. This review discusses our and other's efforts in understanding the negative (Yin) as well as the positive (Yang) roles for TGF-beta and Treg cells in immune regulation.
Collapse
Affiliation(s)
- Yisong Y. Wan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, New Haven, CT, USA
| |
Collapse
|
929
|
Zhu B, Fukada K, Zhu H, Kyprianou N. Prohibitin and cofilin are intracellular effectors of transforming growth factor beta signaling in human prostate cancer cells. Cancer Res 2007; 66:8640-7. [PMID: 16951178 DOI: 10.1158/0008-5472.can-06-1443] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A proteomic analysis was pursued to identify new signaling effectors of transforming growth factor beta1 (TGF-beta1) that serve as potential intracellular effectors of its apoptotic action in human prostate cancer cells. The androgen-sensitive and TGF-beta-responsive human prostate cancer cells, LNCaP T beta RII, were used as in vitro model. In response to TGF-beta, significant posttranslational changes in two proteins temporally preceded apoptotic cell death. TGF-beta mediated the nuclear export of prohibitin, a protein involved in androgen-regulated prostate growth, to the cytosol in the LNCaP T beta RII cells. Cofilin, a protein involved in actin depolymerization, cell motility, and apoptosis, was found to undergo mitochondrial translocation in response to TGF-beta before cytochrome c release. Loss-of-function approaches (small interfering RNA) to silence prohibitin expression revealed a modest decrease in the apoptotic response to TGF-beta and a significant suppression in TGF-beta-induced cell migration. Silencing Smad4 showed that the cellular localization changes associated with prohibitin and cofilin action in response to TGF-beta are independent of Smad4 intracellular signaling.
Collapse
Affiliation(s)
- Beibei Zhu
- Division of Urology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | | | |
Collapse
|
930
|
Abstract
Multiple myeloma is a malignant tumour of plasma cells that remains incurable for the vast majority of patients, with a median survival of 2-3 years. It is characterized by the patchy accumulation of tumour cells within bone marrow leading to variable anaemia, bone destruction, hypercalcaemia, renal failure and infections. Immune dysfunction is an important feature of the disease and leads to infections that are both a major cause of morbidity and mortality and may promote tumour growth and resistance to chemotherapy. Numerous defects of the immune system have been described in multiple myeloma although the relative clinical importance of these remains elusive. There has been considerable interest in the identification of an autologous response against myeloma. Although T cells and humoral responses directed against myeloma-associated antigens have been described, it is uncertain if the immune system plays a role in preventing or controlling myeloma cell growth. There is increasing interest in the potential role of immunotherapy but the success of these interventions is likely to be modified by the immunologically hostile environment associated with multiple myeloma. This review attempts to summarize the current knowledge relating to the immune defects found in multiple myeloma.
Collapse
Affiliation(s)
- Guy Pratt
- CRUK Institute for Cancer Studies, University of Birmingham, Birmingham, UK.
| | | | | |
Collapse
|
931
|
SØRENSEN MARIARATHMANN, THOMSEN ALLANRANDRUP. Virus-based immunotherapy of cancer: what do we know and where are we going? APMIS 2007; 115:1177-93. [DOI: 10.1111/j.1600-0643.2007.00802.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
932
|
Colombo MP, Piconese S. Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer 2007; 7:880-7. [PMID: 17957190 DOI: 10.1038/nrc2250] [Citation(s) in RCA: 313] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumour-induced expansion of regulatory T (T(Reg)) cells is an obstacle to successful cancer immunotherapy. The potential benefit of T(Reg)-cell depletion through the interleukin-2 receptor is lost by the concurrent elimination of activated effector lymphocytes and possibly by the de novo induction of T(Reg)-cell replenishment. In theory, the functional inactivation of T(Reg) cells will maintain them at high numbers in tumours and avoid their replenishment from the peripheral lymphocyte pool, which has the capacity to further suppress the effector lymphocyte anti-tumour response.
Collapse
MESH Headings
- Adenosine/physiology
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Cell Differentiation/drug effects
- Cell Division
- Forkhead Transcription Factors/analysis
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Interleukin-2 Receptor alpha Subunit/drug effects
- Interleukin-2 Receptor alpha Subunit/immunology
- Lymphocyte Depletion
- Mice
- Models, Immunological
- Neoplasms/immunology
- Neoplasms/therapy
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- Receptors, OX40/agonists
- Receptors, OX40/immunology
- Self Tolerance
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Mario P Colombo
- Fondazione IRCCS Istituto Nazionale Tumori Experimental Oncology, Via G. Venezian 1, Milan, 20133 Italy.
| | | |
Collapse
|
933
|
Strictly Target Cell-dependent Activation of T Cells by Bispecific Single-chain Antibody Constructs of the BiTE Class. J Immunother 2007; 30:798-807. [DOI: 10.1097/cji.0b013e318156750c] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
934
|
Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR, Ley TJ. Granzyme B and Perforin Are Important for Regulatory T Cell-Mediated Suppression of Tumor Clearance. Immunity 2007; 27:635-46. [DOI: 10.1016/j.immuni.2007.08.014] [Citation(s) in RCA: 563] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 07/12/2007] [Accepted: 08/15/2007] [Indexed: 12/13/2022]
|
935
|
Aigner L, Bogdahn U. TGF-beta in neural stem cells and in tumors of the central nervous system. Cell Tissue Res 2007; 331:225-41. [PMID: 17710437 DOI: 10.1007/s00441-007-0466-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/04/2007] [Indexed: 10/22/2022]
Abstract
Mechanisms that regulate neural stem cell activity in the adult brain are tightly coordinated. They provide new neurons and glia in regions associated with high cellular and functional plasticity, after injury, or during neurodegeneration. Because of the proliferative and plastic potential of neural stem cells, they are currently thought to escape their physiological control mechanisms and transform to cancer stem cells. Signals provided by proteins of the transforming growth factor (TGF)-beta family might represent a system by which neural stem cells are controlled under physiological conditions but released from this control after transformation to cancer stem cells. TGF-beta is a multifunctional cytokine involved in various physiological and patho-physiological processes of the brain. It is induced in the adult brain after injury or hypoxia and during neurodegeneration when it modulates and dampens inflammatory responses. After injury, although TGF-beta is neuroprotective, it may limit the self-repair of the brain by inhibiting neural stem cell proliferation. Similar to its effect on neural stem cells, TGF-beta reveals anti-proliferative control on most cell types; however, paradoxically, many brain tumors escape from TGF-beta control. Moreover, brain tumors develop mechanisms that change the anti-proliferative influence of TGF-beta into oncogenic cues, mainly by orchestrating a multitude of TGF-beta-mediated effects upon matrix, migration and invasion, angiogenesis, and, most importantly, immune escape mechanisms. Thus, TGF-beta is involved in tumor progression. This review focuses on TGF-beta and its role in the regulation and control of neural and of brain-cancer stem cells.
Collapse
Affiliation(s)
- Ludwig Aigner
- Department of Neurology, University of Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany.
| | | |
Collapse
|
936
|
Abstract
1. Surgery, radiotherapy and chemotherapy are the most widely used and well-established modalities for treating malignant diseases. Surgery is used to excise solid tumours and radiotherapy/chemotherapy are used for the treatment of liquid tumours and for solid tumours where there is a risk of micrometastases. A major drawback for both radiotherapy and chemotherapy is their lack of specificity for tumour cells. Both these treatments can destroy normal bone marrow cells and result in severe side-effects. 2. The impairment of haemapoiesis due to bone marrow destruction combined with the use of toxins in chemotherapy that inhibit the proliferation of immune cells leaves many patients immunocompromised. This complicates the development of prophylactic (vaccine) strategies for tumours where patients are undergoing conventional therapy. 3. An alternative approach is to expand and activate tumour-specific immune cells in vitro that can then be adoptively transferred back in large numbers. This is defined as adoptive immunotherapy and has the advantage of potentially bypassing the immuno-inhibitory effects of conventional therapies. 4. Transferred immune cells have been shown to mediate tumour regression in patients by both direct and indirect mechanisms. The immune cells used include tumour reactive T lymphocytes and dendritic cells, which elicit tumour specific responses. 5. Many novel cell-based immunotherapeutic strategies developed in murine tumour models are now being applied in human clinical trials. The malignancies targeted include melanoma, chronic myelogenous leukaemia and breast, ovarian, colon and kidney cancers. In the present review, we discuss these novel cell-based strategies and the implications they have for the future treatment of human malignancies.
Collapse
Affiliation(s)
- P A Macary
- Immunology Program and Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
937
|
Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 2007; 25:2546-53. [PMID: 17577033 DOI: 10.1200/jco.2006.08.5829] [Citation(s) in RCA: 520] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Phenotypic and functional features of myeloid suppressor cells (MSC), which are known to serve as critical regulators of antitumor T-cell responses in tumor-bearing mice, are still poorly defined in human cancers. Here, we analyzed myeloid subsets with suppressive activity present in peripheral blood of metastatic melanoma patients and evaluated their modulation by a granulocyte-macrophage colony-stimulating factor (GM-CSF)--based antitumor vaccine. PATIENTS AND METHODS Stage IV metastatic melanoma patients (n = 16) vaccinated with autologous tumor-derived heat shock protein peptide complex gp96 (HSPPC-96) and low-dose GM-CSF provided pre- and post-treatment whole blood specimens. Peripheral-blood mononuclear cells (PBMCs) were analyzed by flow cytometry, separated into cellular subsets, and used for in vitro proliferation assays. PBMCs from stage-matched metastatic melanoma patients (n = 12) treated with non-GM-CSF-based vaccines (ie, HSPPC-96 alone or interferon alfa/melanoma-derived peptides) or sex- and age-matched healthy donors (n = 16) were also analyzed for comparison. RESULTS The lack of or low HLA-DR expression was found to identify a CD14+ cell subset highly suppressive of lymphocyte functions. CD14+HLA-DR-/lo cells were significantly expanded in all metastatic melanoma patients, whereas they were undetectable in healthy donors. Suppressive activity was mediated by transforming growth factor beta (TGF-beta), whereas no involvement of the arginase and inducible nitric oxide synthase pathways could be detected. CD14+HLA-DR-/lo cells, as well as spontaneous ex vivo release and plasma levels of TGF-beta, were augmented after administration of the HSPPC-96/GM-CSF vaccine. No enhancement of the CD14+-mediated suppressive activity was found in patients receiving non-GM-CSF-based vaccines. CONCLUSION CD14+HLA-DR-/lo cells exerting TGF-beta-mediated immune suppression represent a new subset of MSC potentially expandable by the administration of GM-CSF-based vaccines in metastatic melanoma patients.
Collapse
Affiliation(s)
- Paola Filipazzi
- Unit of Immunotherapy of Human Tumors and Unit of Medical Statistics and Biometry, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
938
|
Pan D, Schomber T, Kalberer CP, Terracciano LM, Hafen K, Krenger W, Hao-Shen H, Deng C, Skoda RC. Normal erythropoiesis but severe polyposis and bleeding anemia in Smad4-deficient mice. Blood 2007; 110:3049-55. [PMID: 17638848 DOI: 10.1182/blood-2007-02-074393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The tumor suppressor Smad4 mediates signaling by the transforming growth factor beta (TGF-beta) superfamily of ligands. Previous studies showed that several TGF-beta family members exert important functions in hematopoiesis. Here, we studied the role of Smad4 in adult murine hematopoiesis using the inducible Mx-Cre/loxP system. Mice with homozygous Smad4 deletion (Smad4(Delta/Delta)) developed severe anemia 6 to 8 weeks after induction (mean hemoglobin level 70 g/L). The anemia was not transplantable, as wild-type mice reconstituted with Smad4(Delta/Delta) bone marrow cells had normal peripheral blood counts. These mice did not develop an inflammatory disease typical for mice deficient in TGF-beta receptors I and II, suggesting that the suppression of inflammation by TGF-beta is Smad4 independent. The same results were obtained when Smad4 alleles were deleted selectively in hematopoietic cells using the VavCre transgenic mice. In contrast, lethally irradiated Smad4(Delta/Delta) mice that received wild-type bone marrow cells developed anemia similar to Smad4(Delta/Delta) mice that did not receive a transplant. Liver iron stores were decreased and blood was present in stool, indicating that the anemia was due to blood loss. Multiple polyps in stomach and colon represent a likely source of the bleeding. We conclude that Smad4 is not required for adult erythropoiesis and that anemia is solely the consequence of blood loss.
Collapse
Affiliation(s)
- Dejing Pan
- Department of Research, Experimental Hematology, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
939
|
Rubtsov YP, Rudensky AY. TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat Rev Immunol 2007; 7:443-53. [PMID: 17525753 DOI: 10.1038/nri2095] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the immune system, transforming growth factor-beta (TGFbeta) affects multiple cell lineages by either promoting or opposing their differentiation, survival and proliferation. Understanding the cellular mechanisms of TGFbeta-mediated regulation is complicated due to a broad distribution of TGFbeta receptors on the surface of different immune-cell types. Recent studies using in vivo genetic approaches revealed a critical role for TGFbeta signalling in T cells in restraining fatal autoimmune lesions. Here, we review recent advances in our understanding of a role for TGFbeta signalling in the regulation of T-cell differentiation in the thymus and in the periphery, with a particular emphasis on TGFbeta-mediated control of self-reactive T cells.
Collapse
Affiliation(s)
- Yuri P Rubtsov
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | |
Collapse
|
940
|
Gomez GG, Kruse CA. Cellular and functional characterization of immunoresistant human glioma cell clones selected with alloreactive cytotoxic T lymphocytes reveals their up-regulated synthesis of biologically active TGF-beta. J Immunother 2007; 30:261-73. [PMID: 17414317 PMCID: PMC1894900 DOI: 10.1097/01.cji.0000211339.81211.25] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two immunoresistant (IR) glioma cell variants, 13-06-IR29 and 13-06-IR30, were cloned from 13-06-MG glioma cell populations after receiving continuous immunoselective pressure from multiple alloreactive cytotoxic T lymphocyte (aCTL) preparations. Reapplication of aCTL immunoselective pressure to the IR clones, displaying a partial regain in sensitivity to aCTL after removal of the selective pressure, restored the resistance. The IR variants exhibited cross-resistance to non-human leukocyte antigen (HLA)-restricted effector cells and gamma-irradiation, but not to carmustine. The IR clones were characterized for factors that might contribute to the immunoresistance. The aCTL adhesion to extracellular matrix extracts derived from either the IR clones or the parental cells was similar and not impaired. Furthermore, aCTL binding to parental cells and IR clones was equal. Down-regulation of the cell recognition molecules, class I HLA or intercellular adhesion molecule-1 (ICAM-1), that would inhibit their recognition by aCTL was not observed on the IR clones. The down-regulation of Fas by the IR clones correlated with their resistance to FasL-induced apoptosis. HLA-G or FasL that might provide an immunotolerant environment or provide a means of counterattack to aCTL, respectively, were not associated with the IR phenotype. The aCTL, coincubated with the IR clones and parental cells, displayed up-regulation of multiple secreted cytokines. A significant up-regulation of bioactive transforming growth factor (TGF)-beta was observed in the IR clones compared with the parental cells. These data suggest that increased secretion of bioactive TGF-beta may inhibit aCTL lysis of the IR clones. Disruption of the TGF-beta signaling pathway may circumvent the resistance.
Collapse
Affiliation(s)
- German G. Gomez
- Department of Pathology, University of Colorado Health Sciences Center, Denver, CO
| | - Carol A. Kruse
- Division of Cancer Biology and Brain Tumor Research Program, The La Jolla Institute for Molecular Medicine, San Diego, CA
| |
Collapse
|
941
|
Berhanu A, Huang J, Watkins SC, Okada H, Storkus WJ. Treatment-enhanced CD4+Foxp3+ glucocorticoid-induced TNF receptor family related high regulatory tumor-infiltrating T cells limit the effectiveness of cytokine-based immunotherapy. THE JOURNAL OF IMMUNOLOGY 2007; 178:3400-8. [PMID: 17339434 DOI: 10.4049/jimmunol.178.6.3400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regulatory T cells can suppress activated CD4+ and CD8+ T effector cells and may serve as an impediment to spontaneous or therapeutic type 1 antitumor immunity. In a previous study, we observed minimal therapeutic impact, but significantly enhanced T cell cross-priming and lesional infiltration of tumor-reactive CD8+ T cells into established CMS4 sarcomas after combined treatment of BALB/c mice with rFLt3 ligand (rFL) and recombinant GM-CSF (rGM-CSF). In this study, we show that this cytokine regimen also results in the profound enhancement of CD4+ tumor-infiltrating lymphocytes (TIL) expressing FoxP3, IL-10, and TGF-beta mRNA, with 50 or 90% of CD4+ TIL coexpressing the CD25 and glucocorticoid-induced TNFR family related molecules, respectively. Intracellular staining for Foxp3 protein revealed that combined treatment with rFL plus rGM-CSF results in a significant increase in CD4+Foxp3+ T cells in the spleen of both control and tumor-bearing mice, and that nearly half of CD4+ TIL expressed this marker. In addition, CD4+ TIL cells were of an activated/memory (ICOS(high)CD62L(low)CD45RB(low)) phenotype and were capable of suppressing allospecific T cell proliferation and IFN-gamma production from (in vivo cross-primed) anti-CMS4 CD8+ T cells in vitro, via a mechanism at least partially dependent on IL-10 and TGF-beta. Importantly, in vivo depletion of CD4+ T cells resulted in the ability of previously ineffective, rFL plus rGM-CSF therapy-induced CD8+ T cells to now mediate tumor regression.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cytokines/immunology
- Cytokines/therapeutic use
- Forkhead Transcription Factors/immunology
- Glucocorticoid-Induced TNFR-Related Protein/immunology
- Immunologic Memory/drug effects
- Immunotherapy
- Inducible T-Cell Co-Stimulator Protein
- Lymphocyte Activation/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Membrane Proteins/immunology
- Membrane Proteins/therapeutic use
- Mice
- Mice, Inbred BALB C
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory
Collapse
Affiliation(s)
- Aklile Berhanu
- Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
942
|
Classen S, Zander T, Eggle D, Chemnitz JM, Brors B, Büchmann I, Popov A, Beyer M, Eils R, Debey S, Schultze JL. Human Resting CD4+ T Cells Are Constitutively Inhibited by TGFβ under Steady-State Conditions. THE JOURNAL OF IMMUNOLOGY 2007; 178:6931-40. [PMID: 17513742 DOI: 10.4049/jimmunol.178.11.6931] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Based on studies in knockout mice, several inhibitory factors such as TGFbeta, IL-10, or CTLA-4 have been implicated as gate keepers of adaptive immune responses. Lack of these inhibitory molecules leads to massive inflammatory responses mainly mediated by activated T cells. In humans, the integration of these inhibitory signals for keeping T cells at a resting state is less well understood. To elucidate this regulatory network, we assessed early genome-wide transcriptional changes during serum deprivation in human mature CD4(+) T cells. The most striking observation was a "TGFbeta loss signature" defined by down-regulation of many known TGFbeta target genes. Moreover, numerous novel TGFbeta target genes were identified that are under the suppressive control of TGFbeta. Expression of these genes was up-regulated once TGFbeta signaling was lost during serum deprivation and again suppressed upon TGFbeta reconstitution. Constitutive TGFbeta signaling was corroborated by demonstrating phosphorylated SMAD2/3 in resting human CD4(+) T cells in situ, which were dephosphorylated during serum deprivation and rephosphorylated by minute amounts of TGFbeta. Loss of TGFbeta signaling was particularly important for T cell proliferation induced by low-level TCR and costimulatory signals. We suggest TGFbeta to be the most prominent factor actively keeping human CD4(+) T cells at a resting state.
Collapse
Affiliation(s)
- Sabine Classen
- Department of Internal Medicine I, Molecular Tumor Biology and Tumor Immunology, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
943
|
Liu SJ, Tsai JP, Shen CR, Sher YP, Hsieh CL, Yeh YC, Chou AH, Chang SR, Hsiao KN, Yu FW, Chen HW. Induction of a distinct CD8 Tnc17 subset by transforming growth factor-beta and interleukin-6. J Leukoc Biol 2007; 82:354-60. [PMID: 17505023 DOI: 10.1189/jlb.0207111] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cross-talk between TGF-beta and IL-6 has been shown to direct the differentiation of CD4(+) cells into special IL-17-secreting cells, which are termed Th17 cells. In this study, we demonstrated that TGF-beta and IL-6 could stimulate CD8(+) cells to differentiate into noncytotoxic, IL-17-producing cells in MLC. These IL-17-producing CD8(+) cells exhibit a unique granzyme B(-)IFN-gamma(-)IL-10(-) phenotype. The mRNA level of Th2/T cytotoxic 2 (Tc2) transcription factors GATA3 and Th1/Tc1 transcription factors T-box expressed in T cell (T-bet) as well as its target H2.O-like homeobox (Hlx) is decreased in CD8(+) cells from TGF-beta- and IL-6-treated MLC. In addition, these CD8(+) cells display a marked up-regulation of retinoic acid-related orphan receptor-gammat, a key IL-17 transcription factor. These results demonstrate that the existence of an IL-17-producing CD8(+) subset belongs to neither the Tc1 nor the Tc2 subset and can be categorized as a T noncytotoxic 17 (Tnc17) subset.
Collapse
Affiliation(s)
- Shih-Jen Liu
- Vaccine Research and Development Center, National Health Research Institutes, Miaoli, Taiwan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
944
|
Sanchez-Perez L, Gough M, Qiao J, Thanarajasingam U, Kottke T, Ahmed A, Thompson JM, Maria Diaz R, Vile RG. Synergy of adoptive T-cell therapy and intratumoral suicide gene therapy is mediated by host NK cells. Gene Ther 2007; 14:998-1009. [PMID: 17443216 DOI: 10.1038/sj.gt.3302935] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In situ tumor cell killing by the herpes simplex virus thymidine kinase (HSVtk) gene can effectively prime antitumor T-cell responses, at least in part through local induction of a pro-inflammatory environment. Therefore, we reasoned that tumor-associated HSVtk expression would significantly enhance the efficacy of adoptive T-cell transfer (ACT) of (tumor) antigen-specific T cells into tumor-bearing hosts. When B16ovaHSVtk tumors were treated with ganciclovir (GCV), along with suboptimal numbers of activated OT-1T cells, complete tumor regressions were observed where GCV, or ACT, alone was completely ineffective. To our surprise, analysis of regressing tumors showed no increases in intratumoral OT-1T cell trafficking. However, the intratumoral percentages of both OT-1 and endogenous natural killer (NK) cells were substantially increased over controls. Depletion of endogenous NK cells abrogated the efficacy of the combination therapy and reduced the percentages of interferon-gamma(IFNgamma)-secreting OT-1T cells in mice that received combined therapy to levels similar to those of control mice. These data suggest that even relatively low levels of gene transfer of suicide genes into tumors may have therapeutic value as an adjuvant for other T-cell therapies, by providing immunological signals that support T-cell activation and expansion in vivo.
Collapse
Affiliation(s)
- L Sanchez-Perez
- Molecular Medicine Program, Mayo Clinic, Rochester, MN 55902, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
945
|
Koehler H, Kofler D, Hombach A, Abken H. CD28 costimulation overcomes transforming growth factor-beta-mediated repression of proliferation of redirected human CD4+ and CD8+ T cells in an antitumor cell attack. Cancer Res 2007; 67:2265-73. [PMID: 17332357 DOI: 10.1158/0008-5472.can-06-2098] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The T-cell-mediated antitumor immune response is frequently repressed in the tumor environment by an immunologic barrier, the predominant mediators of which are thought to be interleukin-10 (IL-10) and transforming growth factor-beta (TGF-beta). We explored the effect of these cytokines on the individual T-cell effector functions on antigen engagement during an antitumor cell attack. Isolated CD4+ and CD8+ T cells were antigen-specifically redirected toward carcinoembryonic antigen (CEA)-positive tumor cells by expression of a recombinant T-cell receptor (immunoreceptor), which triggers T-cell activation via CD3zeta on binding to CEA. Immunoreceptor-activated T cells secrete IFN-gamma, proliferate, and lyse CEA+ but not CEA- tumor cells. Whereas IL-10 has no direct effect on immunoreceptor-triggered effector functions, TGF-beta represses proliferation of both CD4+ and CD8+ T cells but neither IFN-gamma secretion nor specific cytolytic activities. CD28 costimulation, however, overcomes TGF-beta-mediated repression in T-cell proliferation. Consequently, T cells redirected by a combined CD28-CD3zeta signaling immunoreceptor are largely resistant to TGF-beta-mediated repression. This is reflected in vivo by a more pronounced antitumor activity of T cells against TGF-beta-secreting tumors when redirected by a costimulatory CD28-CD3zeta than by a CD3zeta signaling immunoreceptor.
Collapse
Affiliation(s)
- Heike Koehler
- Tumorgenetik, Klinik I für Innere Medizin and Zentrum für Molekulare Medizin Köln, Universität zu Köln, Kerpener Strasse 62, D-50924 Köln, Germany
| | | | | | | |
Collapse
|
946
|
Daroqui CM, Ilarregui JM, Rubinstein N, Salatino M, Toscano MA, Vazquez P, Bakin A, Puricelli L, Bal de Kier Joffé E, Rabinovich GA. Regulation of galectin-1 expression by transforming growth factor beta1 in metastatic mammary adenocarcinoma cells: implications for tumor-immune escape. Cancer Immunol Immunother 2007; 56:491-9. [PMID: 16900348 PMCID: PMC11030564 DOI: 10.1007/s00262-006-0208-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/14/2006] [Indexed: 12/31/2022]
Abstract
Tumors escape from immune surveillance by producing immunosuppressive cytokines and proapototic factors, including TGF-beta and galectin-1 (Gal-1). Since immunosuppressive mechanisms might act in concert to confer tumor-immune privilege, we investigated the potential cross talk between TGF-beta and Gal-1 in highly metastatic mammary adenocarcinoma (LM3) cells. While Gal-1 treatment was not capable of regulating TGF-beta synthesis, a pronounced and dose-dependent increase in Gal-1 expression was observed when tumor cells were treated with TGF-beta(1. )This effect was also observed in the murine lung adenocarcinoma LP07 and in the human breast adenocarcinoma MCF-7 cell lines. TGF-beta1-mediated upregulation of Gal-1 expression was specifically mediated by TbetaRI and TbetaRII, since it was abrogated when LM3 cells were infected with retroviral vectors expressing the dominant negative forms of these receptors. In addition, gal-1 gene sequence analysis revealed the presence of three putative binding sites for Smad4 and Smad3 transcription factors, consistent with the ability of TGF-beta(1) to trigger a Smad-dependent signaling pathway in these cells. Thus, TGF-beta(1) may trigger a Smad-dependent pathway to control Gal-1 expression, suggesting that distinct mechanisms might cooperate in tilting the balance toward an immunosuppressive environment at the tumor site.
Collapse
Affiliation(s)
- Cecilia M. Daroqui
- Research Area, Institute of Oncology “Angel H. Roffo”, University of Buenos Aires, San Martin Avenue 5481, Buenos Aires, Argentina
- Present Address: Department of Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, NY USA
| | - Juan M. Ilarregui
- Division of Immunogenetics, Hospital de Clínicas “José de San Martín”, Faculty of Medicine, University of Buenos Aires, Avenue Córdoba 2351. 3er Piso. (1120) Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Rubinstein
- Division of Immunogenetics, Hospital de Clínicas “José de San Martín”, Faculty of Medicine, University of Buenos Aires, Avenue Córdoba 2351. 3er Piso. (1120) Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Salatino
- Division of Immunogenetics, Hospital de Clínicas “José de San Martín”, Faculty of Medicine, University of Buenos Aires, Avenue Córdoba 2351. 3er Piso. (1120) Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Marta A. Toscano
- Division of Immunogenetics, Hospital de Clínicas “José de San Martín”, Faculty of Medicine, University of Buenos Aires, Avenue Córdoba 2351. 3er Piso. (1120) Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Vazquez
- Research Area, Institute of Oncology “Angel H. Roffo”, University of Buenos Aires, San Martin Avenue 5481, Buenos Aires, Argentina
| | - Andrei Bakin
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263 USA
| | - Lydia Puricelli
- Research Area, Institute of Oncology “Angel H. Roffo”, University of Buenos Aires, San Martin Avenue 5481, Buenos Aires, Argentina
| | - Elisa Bal de Kier Joffé
- Research Area, Institute of Oncology “Angel H. Roffo”, University of Buenos Aires, San Martin Avenue 5481, Buenos Aires, Argentina
| | - Gabriel A. Rabinovich
- Division of Immunogenetics, Hospital de Clínicas “José de San Martín”, Faculty of Medicine, University of Buenos Aires, Avenue Córdoba 2351. 3er Piso. (1120) Ciudad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
947
|
Takaoka M, Kim SH, Okawa T, Michaylira CZ, Stairs DB, Johnstone CN, Andl CD, Rhoades B, Lee JJ, Klein-Szanto AJ, El-Deiry WS, Nakagawa H. IGFBP-3 regulates esophageal tumor growth through IGF-dependent and independent mechanisms. Cancer Biol Ther 2007; 6:534-40. [PMID: 17457048 PMCID: PMC2993006 DOI: 10.4161/cbt.6.4.3832] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Insulin-like growth factor binding protein (IGFBP)-3 exerts either proapoptotic or growth stimulatory effects depending upon the cellular context. IGFBP-3 is overexpressed frequently in esophageal cancer. Yet, the role of IGFBP-3 in esophageal tumor biology remains elusive. To delineate the functional consequences of IGFBP-3 overexpression, we stably transduced Ha-Ras(V12)-transformed human esophageal cells with either wild-type or mutant IGFBP-3, the latter incapable of binding Insulin-like growth factor (IGFs) as a result of substitution of amino-terminal Ile56, Leu80, and Leu81 residues with Glycine residues. Wild-type, but not mutant, IGFBP-3 prevented IGF-1 from activating the IGF-1 receptor and AKT, and suppressed anchorage-independent cell growth. When xenografted in nude mice, in vivo bioluminescence imaging demonstrated that wild-type, but not mutant IGFBP-3, abrogated tumor formation by the Ras-transformed cells with concurrent induction of apoptosis, implying a prosurvival effect of IGF in cancer cell adaptation to the microenvironment. Moreover, there was more aggressive tumor growth by mutant IGFBP-3 overexpressing cells than control cell tumors, without detectable caspase-3 cleavage in tumor tissues, indicating an IGF-independent growth stimulatory effect of mutant IGFBP-3. In aggregate, these data suggest that IGFBP-3 contributes to esophageal tumor development and progression through IGF-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Munenori Takaoka
- Gastroengerology Division, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Department of Medicine, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
| | - Seok-Hyun Kim
- Hematology/Oncology Division, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Laboratory of Molecular Oncology and Cell Cycle Regulation, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Department of Medicine, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Department of Genetics, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Department of Pharmacology, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
| | - Takaomi Okawa
- Gastroengerology Division, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Department of Medicine, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
| | - Carmen Z. Michaylira
- Gastroengerology Division, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Department of Medicine, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
| | - Douglas B. Stairs
- Gastroengerology Division, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Department of Medicine, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
| | - Cameron N. Johnstone
- Gastroengerology Division, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Department of Medicine, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
| | - Claudia D. Andl
- Gastroengerology Division, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Department of Medicine, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
| | - Ben Rhoades
- Gastroengerology Division, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Department of Medicine, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
| | - James J. Lee
- Gastroengerology Division, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Department of Medicine, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
| | | | - Wafik S. El-Deiry
- Hematology/Oncology Division, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Laboratory of Molecular Oncology and Cell Cycle Regulation, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Department of Medicine, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Department of Genetics, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Department of Pharmacology, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
| | - Hiroshi Nakagawa
- Gastroengerology Division, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Department of Medicine, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
- Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania USA
| |
Collapse
|
948
|
Seth P, Wang ZG, Pister A, Zafar MB, Kim S, Guise T, Wakefield L. Development of oncolytic adenovirus armed with a fusion of soluble transforming growth factor-beta receptor II and human immunoglobulin Fc for breast cancer therapy. Hum Gene Ther 2007; 17:1152-60. [PMID: 17032151 DOI: 10.1089/hum.2006.17.1152] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have developed an approach to cancer gene therapy in which the oncolytic effects of an adenoviral vector have been combined with selective expression of a soluble form of transforming growth factor (TGF)-beta receptor II fused with Fc (sTGFbetaRIIFc). We chose to use adenoviral dl01/07 mutant because it can replicate in all cancer cells regardless of their genetic defects. An oncolytic adenovirus expressing sTGFbetaRIIFc (Ad.sT- betaRFc) was constructed by homologous recombination. Infection of MDA-MB-231 and MCF-7 human breast cancer cells with Ad.sTbetaRFc produced sTGFbetaRIIFc, which was released into the media. The conditioned media containing sTGFbetaRIIFc could bind with TGF-beta 1 and inhibited TGF-beta-dependent transcription in target cells. Infection of MDA-MB-231, MCF-7, and 76NE human breast cancer cells with Ad.sTbetaRFc resulted in high levels of viral replication, comparable to that of a wild-type dl309 virus. Although some viral replication was observed in actively dividing normal human lung fibroblasts, there was no replication in nonproliferating normal cells. Direct injection of Ad.sTbetaRFc into MDA-MB-231 human breast xenograft tumors grown in nude mice resulted in a significant inhibition of tumor growth, causing tumor regression in more than 85% of the animals. These results indicate that it is possible to construct an oncolytic virus expressing sTGFbetaRIIFc in which both viral replication and transgene expression remain intact, and the recombinant adenovirus is oncolytic in a human tumor xenograft model. On the basis of these results we believe that it may be feasible to develop a cancer gene therapy approach using Ad.sTbetaRFc as an antitumor agent.
Collapse
Affiliation(s)
- Prem Seth
- Gene Therapy Program, Evanston Northwestern Healthcare Research Institute and Department of Medicine, Evanston Hospital, Northwestern University, Evanston, IL 60201, USA.
| | | | | | | | | | | | | |
Collapse
|
949
|
Suzuki E, Kim S, Cheung HK, Corbley MJ, Zhang X, Sun L, Shan F, Singh J, Lee WC, Albelda SM, Ling LE. A Novel Small-Molecule Inhibitor of Transforming Growth Factor β Type I Receptor Kinase (SM16) Inhibits Murine Mesothelioma Tumor Growth In vivo and Prevents Tumor Recurrence after Surgical Resection. Cancer Res 2007; 67:2351-9. [PMID: 17332368 DOI: 10.1158/0008-5472.can-06-2389] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant mesothelioma is an aggressive and lethal pleural cancer that overexpresses transforming growth factor beta (TGFbeta). We investigated the efficacy of a novel small-molecule TGFbeta type I receptor (ALK5) kinase inhibitor, SM16, in the AB12 syngeneic model of malignant mesothelioma. SM16 inhibited TGFbeta signaling seen as decreased phosphorylated Smad2/3 levels in cultured AB12 cells (IC(50), approximately 200 nmol/L). SM16 penetrated tumor cells in vivo, suppressing tumor phosphorylated Smad2/3 levels for at least 3 h following treatment of tumor-bearing mice with a single i.p. bolus of 20 mg/kg SM16. The growth of established AB12 tumors was significantly inhibited by 5 mg/kg/d SM16 (P < 0.001) delivered via s.c. miniosmotic pumps over 28 days. The efficacy of SM16 was a result of a CD8+ antitumor response because (a) the antitumor effects were markedly diminished in severe combined immunodeficient mice and (b) CD8+ T cells isolated from spleens of mice treated with SM16 showed strong antitumor cytolytic effects whereas CD8+ T cells isolated from spleens of tumor-bearing mice treated with control vehicle showed minimal activity. Treatment of mice bearing large tumors with 5 mg/kg/d SM16 after debulking surgery reduced the extent of tumor recurrence from 80% to <20% (P < 0.05). SM16 was also highly effective in blocking and regressing tumors when given p.o. at doses of 0.45 or 0.65 g/kg in mouse chow. Thus, SM16 shows potent activity against established AB12 malignant mesothelioma tumors using an immune-mediated mechanism and can significantly prevent tumor recurrence after resection of bulky AB12 malignant mesothelioma tumors. These data suggest that ALK5 inhibitors, such as SM16, offer significant potential for the treatment of malignant mesothelioma and possibly other cancers.
Collapse
Affiliation(s)
- Eiji Suzuki
- Thoracic Oncology Research Laboratory, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
950
|
Galliher AJ, Neil JR, Schiemann WP. Role of transforming growth factor-beta in cancer progression. Future Oncol 2007; 2:743-63. [PMID: 17155901 DOI: 10.2217/14796694.2.6.743] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Invasion and metastasis are the most lethal characteristics of cancer and the leading causes of cancer-related death. Transforming growth factor (TGF)-beta is a multifunctional cytokine that normally functions to prevent the uncontrolled proliferation of epithelial, endothelial and hematopoietic cells. Quite dichotomously, however, aberrant genetic or epigenetic events often negate the cytostatic function of TGF-beta in these cells, leading to tumor formation. Once freed from the growth-inhibitory effects of TGF-beta, cancer cells acquire the ability to proliferate, invade and metastasize when stimulated by TGF-beta. A thorough understanding of the molecular mechanisms underlying these paradoxical functions of TGF-beta remains elusive. Here, the authors review the tumor-suppressing and -promoting activities of TGF-beta and discuss the potential use and targeting of the TGF-beta-signaling system to prevent the progression and acquisition of metastatic phenotypes by human malignancies.
Collapse
Affiliation(s)
- Amy J Galliher
- University of Colorado Health Sciences Center, Department of Pharmacology, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|