51
|
Wang X, Yuan Y, Charrier L, Deng Z, Geisler M, Deng XW, Chen H. Light-stabilized GIL1 suppresses PIN3 activity to inhibit hypocotyl gravitropism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1886-1897. [PMID: 38990128 DOI: 10.1111/jipb.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024]
Abstract
Light and gravity coordinately regulate the directional growth of plants. Arabidopsis Gravitropic in the Light 1 (GIL1) inhibits the negative gravitropism of hypocotyls in red and far-red light, but the underlying molecular mechanisms remain elusive. Our study found that GIL1 is a plasma membrane-localized protein. In endodermal cells of the upper part of hypocotyls, GIL1 controls the negative gravitropism of hypocotyls. GIL1 directly interacts with PIN3 and inhibits the auxin transport activity of PIN3. Mutation of PIN3 suppresses the abnormal gravitropic response of gil1 mutant. The GIL1 protein is unstable in darkness but it is stabilized by red and far-red light. Together, our data suggest that light-stabilized GIL1 inhibits the negative gravitropism of hypocotyls by suppressing the activity of the auxin transporter PIN3, thereby enhancing the emergence of young seedlings from the soil.
Collapse
Affiliation(s)
- Xiaolian Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yanfang Yuan
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Laurence Charrier
- Department of Biology, University of Fribourg, Fribourg, 1700, Switzerland
| | - Zhaoguo Deng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, 1700, Switzerland
| | - Xing Wang Deng
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Haodong Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
52
|
Guan H, Yu C, Zeng Z, Hu H, Lin Y, Wu C, Yao Y, Xia R, Li Z, Ma C, Chen R, Huang B, Hao Y. SlHB8 Is a Novel Factor in Enhancing Cold Resistance in Tomato Anthers by Modulating Tapetal Cell Death. Int J Mol Sci 2024; 25:9336. [PMID: 39273285 PMCID: PMC11395002 DOI: 10.3390/ijms25179336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Tomato plants favor warmth, making them particularly susceptible to cold conditions, especially their reproductive development. Therefore, understanding how pollen reacts to cold stress is vital for selecting and improving cold-resistant tomato varieties. The programmed cell death (PCD) in the tapetum is particularly susceptible to cold temperatures which could hinder the degradation of the tapetal layer in the anthers, thus affecting pollen development. However, it is not clear yet how genes integral to tapetal degradation respond to cold stress. Here, we report that SlHB8, working upstream of the conserved genetic module DYT1-TDF1-AMS-MYB80, is crucial for regulating cold tolerance in tomato anthers. SlHB8 expression increases in the tapetum when exposed to low temperatures. CRISPR/Cas9-generated SlHB8-knockout mutants exhibit improved pollen cold tolerance due to the reduced temperature sensitivity of the tapetum. SlHB8 directly upregulates SlDYT1 and SlMYB80 by binding to their promoters. In normal anthers, cold treatment boosts SlHB8 levels, which then elevates the expression of genes like SlDYT1, SlTDF1, SlAMS, and SlMYB80; however, slhb8 mutants do not show this gene activation during cold stress, leading to a complete blockage of delayed tapetal programmed cell death (PCD). Furthermore, we found that SlHB8 can interact with both SlTDF1 and SlMYB80, suggesting the possibility that SlHB8 might regulate tapetal PCD at the protein level. This study sheds light on molecular mechanisms of anther adaptation to temperature fluctuations.
Collapse
Affiliation(s)
- Hongling Guan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (C.Y.); (Z.Z.); (H.H.); (Y.L.); (C.W.); (Y.Y.); (R.X.); (R.C.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China;
| | - Canye Yu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (C.Y.); (Z.Z.); (H.H.); (Y.L.); (C.W.); (Y.Y.); (R.X.); (R.C.)
| | - Zaohai Zeng
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (C.Y.); (Z.Z.); (H.H.); (Y.L.); (C.W.); (Y.Y.); (R.X.); (R.C.)
| | - Huimin Hu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (C.Y.); (Z.Z.); (H.H.); (Y.L.); (C.W.); (Y.Y.); (R.X.); (R.C.)
| | - Yuxiang Lin
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (C.Y.); (Z.Z.); (H.H.); (Y.L.); (C.W.); (Y.Y.); (R.X.); (R.C.)
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China;
| | - Caiyu Wu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (C.Y.); (Z.Z.); (H.H.); (Y.L.); (C.W.); (Y.Y.); (R.X.); (R.C.)
| | - Yiwen Yao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (C.Y.); (Z.Z.); (H.H.); (Y.L.); (C.W.); (Y.Y.); (R.X.); (R.C.)
| | - Rui Xia
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (C.Y.); (Z.Z.); (H.H.); (Y.L.); (C.W.); (Y.Y.); (R.X.); (R.C.)
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China;
| | - Chongjian Ma
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China;
| | - Riyuan Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (C.Y.); (Z.Z.); (H.H.); (Y.L.); (C.W.); (Y.Y.); (R.X.); (R.C.)
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China;
| | - Yanwei Hao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (C.Y.); (Z.Z.); (H.H.); (Y.L.); (C.W.); (Y.Y.); (R.X.); (R.C.)
| |
Collapse
|
53
|
Hu MX, Guo W, Song XQ, Liu YL, Xue Y, Cao Y, Hu JJ, Lu MZ, Zhao ST. PagJAZ5 regulates cambium activity through coordinately modulating cytokinin concentration and signaling in poplar. THE NEW PHYTOLOGIST 2024; 243:1455-1471. [PMID: 38874377 DOI: 10.1111/nph.19912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Wood is resulted from the radial growth paced by the division and differentiation of vascular cambium cells in woody plants, and phytohormones play important roles in cambium activity. Here, we identified that PagJAZ5, a key negative regulator of jasmonate (JA) signaling, plays important roles in enhancing cambium cell division and differentiation by mediating cytokinin signaling in poplar 84K (Populus alba × Populus glandulosa). PagJAZ5 is preferentially expressed in developing phloem and cambium, weakly in developing xylem cells. Overexpression (OE) of PagJAZ5m (insensitive to JA) increased cambium activity and xylem differentiation, while jaz mutants showed opposite results. Transcriptome analyses revealed that cytokinin oxidase/dehydrogenase (CKXs) and type-A response regulators (RRs) were downregulated in PagJAZ5m OE plants. The bioactive cytokinins were significantly increased in PagJAZ5m overexpressing plants and decreased in jaz5 mutants, compared with that in 84K plants. The PagJAZ5 directly interact with PagMYC2a/b and PagWOX4b. Further, we found that the PagRR5 is regulated by PagMYC2a and PagWOX4b and involved in the regulation of xylem development. Our results showed that PagJAZ5 can increase cambium activity and promote xylem differentiation through modulating cytokinin level and type-A RR during wood formation in poplar.
Collapse
Affiliation(s)
- Meng-Xuan Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Taian, 271000, China
| | - Xue-Qin Song
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ying-Li Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuan Xue
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jian-Jun Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Shu-Tang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| |
Collapse
|
54
|
Cao Y, Zhang Q, Liu Y, Yan T, Ding L, Yang Y, Meng Y, Shan W. The RXLR effector PpE18 of Phytophthora parasitica is a virulence factor and suppresses peroxisome membrane-associated ascorbate peroxidase NbAPX3-1-mediated plant immunity. THE NEW PHYTOLOGIST 2024; 243:1472-1489. [PMID: 38877698 DOI: 10.1111/nph.19902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Phytophthora parasitica causes diseases on a broad range of host plants. It secretes numerous effectors to suppress plant immunity. However, only a few virulence effectors in P. parasitica have been characterized. Here, we highlight that PpE18, a conserved RXLR effector in P. parasitica, was a virulence factor and suppresses Nicotiana benthamiana immunity. Utilizing luciferase complementation, co-immunoprecipitation, and GST pull-down assays, we determined that PpE18 targeted NbAPX3-1, a peroxisome membrane-associated ascorbate peroxidase with reactive oxygen species (ROS)-scavenging activity and positively regulates plant immunity in N. benthamiana. We show that the ROS-scavenging activity of NbAPX3-1 was critical for its immune function and was hindered by the binding of PpE18. The interaction between PpE18 and NbAPX3-1 resulted in an elevation of ROS levels in the peroxisome. Moreover, we discovered that the ankyrin repeat-containing protein NbANKr2 acted as a positive immune regulator, interacting with both NbAPX3-1 and PpE18. NbANKr2 was required for NbAPX3-1-mediated disease resistance. PpE18 competitively interfered with the interaction between NbAPX3-1 and NbANKr2, thereby weakening plant resistance. Our results reveal an effective counter-defense mechanism by which P. parasitica employed effector PpE18 to suppress host cellular defense, by suppressing biochemical activity and disturbing immune function of NbAPX3-1 during infection.
Collapse
Affiliation(s)
- Yimeng Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tiantian Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liwen Ding
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuling Meng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weixing Shan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
55
|
Wu T, Yang S, Fang J, Ye Y, Zhang Y, Gao J, Leng J, Zhang Z, Tang K, Bhat JA, Feng X. MutL homolog 1 participates in interference-sensitive meiotic crossover formation in soybean. PLANT PHYSIOLOGY 2024; 195:2579-2595. [PMID: 38492234 PMCID: PMC11288737 DOI: 10.1093/plphys/kiae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
MutL homolog 1 (MLH1), a member of the MutL homolog family, is required for normal recombination in most organisms. However, its role in soybean (Glycine max) remains unclear to date. Here, we characterized the Glycine max female and male sterility 1 (Gmfms1) mutation that reduces pollen grain viability and increases embryo sac abortion in soybean. Map-based cloning revealed that the causal gene of Gmfms1 is Glycine max MutL homolog 1 (GmMLH1), and CRISPR/Cas9 knockout approach further validated that disruption of GmMLH1 confers the female-male sterility phenotype in soybean. Loss of GmMLH1 function disrupted bivalent formation, leading to univalent mis-segregation during meiosis and ultimately to female-male sterility. The Gmmlh1 mutant showed about a 78.16% decrease in meiotic crossover frequency compared to the wild type. The residual chiasmata followed a Poisson distribution, suggesting that interference-sensitive crossover formation was affected in the Gmmlh1 mutant. Furthermore, GmMLH1 could interact with GmMLH3A and GmMLH3B both in vivo and in vitro. Overall, our work demonstrates that GmMLH1 participates in interference-sensitive crossover formation in soybean, and provides additional information about the conserved functions of MLH1 across plant species.
Collapse
Affiliation(s)
- Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Fang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yongheng Ye
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaohua Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jinshan Gao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jiantian Leng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Zhirui Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | | | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Zhejiang Lab, Hangzhou 311121, China
| |
Collapse
|
56
|
Shen J, Jiang Y, Pan J, Sun L, Li Q, He W, Sun P, Zhao B, Zhao H, Ke X, Guo Y, Yang T, Li Z. The GRAS transcription factor CsTL regulates tendril formation in cucumber. THE PLANT CELL 2024; 36:2818-2833. [PMID: 38630900 PMCID: PMC11289639 DOI: 10.1093/plcell/koae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/19/2024]
Abstract
Cucumber (Cucumis sativus, Cs) tendrils are slender vegetative organs that typically require manual removal to ensure orderly growth during greenhouse cultivation. Here, we identified cucumber tendril-less (tl), a Tnt1 retrotransposon-induced insertion mutant lacking tendrils. Map-based cloning identified the mutated gene, CsaV3_3G003590, which we designated as CsTL, which is homologous to Arabidopsis thaliana LATERAL SUPPRESSOR (AtLAS). Knocking out CsTL repressed tendril formation but did not affect branch initiation, whereas overexpression (OE) of CsTL resulted in the formation of two or more tendrils in one leaf axil. Although expression of two cucumber genes regulating tendril formation, Tendril (CsTEN) and Unusual Floral Organs (CsUFO), was significantly decreased in CsTL knockout lines, these two genes were not direct downstream targets of CsTL. Instead, CsTL physically interacted with CsTEN, an interaction that further enhanced CsTEN-mediated expression of CsUFO. In Arabidopsis, the CsTL homolog AtLAS acts upstream of REVOLUTA (REV) to regulate branch initiation. Knocking out cucumber CsREV inhibited branch formation without affecting tendril initiation. Furthermore, genomic regions containing CsTL and AtLAS were not syntenic between the cucumber and Arabidopsis genomes, whereas REV orthologs were found on a shared syntenic block. Our results revealed not only that cucumber CsTL possesses a divergent function in promoting tendril formation but also that CsREV retains its conserved function in shoot branching.
Collapse
Affiliation(s)
- Junjun Shen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanxin Jiang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Pan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Linhan Sun
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Qingqing Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjing He
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Piaoyun Sun
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bosi Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongjiao Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xubo Ke
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yalu Guo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongwen Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
57
|
Hu Y, Li P, Yao X, He Y, Tang H, Zhao Q, Lu L. Zinc Treatment of Tea Plants Improves the Synthesis of Trihydroxylated Catechins via Regulation of the Zinc-Sensitive Protein CsHIPP3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14887-14898. [PMID: 38886187 DOI: 10.1021/acs.jafc.4c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The tea plant (Camellia sinensis [L.] O. Kussntze) is a global economic crop. Zinc treatment of tea plants can enhance catechin biosynthesis. However, the underlying molecular mechanism behind catechin formation through zinc regulation remains unclear. This study identified a zinc-responsive protein, C. sinensis heavy metal-associated isoprenylated plant protein 3 (CsHIPP3), from zinc-treated tea seedlings. CsHIPP3 expression was positively correlated with trihydroxylated catechin (TRIC) content. CsF3'5'H1 is a crucial regulator of the TRIC synthesis pathway. The interaction between CsHIPP3 and CsF3'5'H1 was assessed using bimolecular fluorescence complementation, firefly luciferase complementation imaging, and pulldown experiments. CsHIPP3 knockdown using virus-induced gene silencing technology decreased the content of each component of TRICs. Compared with the control, the relative catechin content was reduced by 40.12-55.39%. Co-overexpression of CsHIPP3 and CsF3'5'H1 significantly elevated the TRIC content in tea leaves and calli. Moreover, the TRIC content in transient co-overexpression leaves was 1.44-fold higher than that of the control group, and tea callus was 50.83% higher in transient co-overexpression than in the wild type. Thus, zinc-regulated TRIC synthesis in a zinc-rich environment was mediated by binding CsHIPP3 with CsF3'5'H1 to promote TRIC synthesis and accumulation.
Collapse
Affiliation(s)
- Yilan Hu
- College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Pingping Li
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Yumei He
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Hu Tang
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Qi Zhao
- College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Litang Lu
- College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
58
|
Zheng L, Li B, Zhang G, Zhou Y, Gao F. Jasmonate enhances cold acclimation in jojoba by promoting flavonol synthesis. HORTICULTURE RESEARCH 2024; 11:uhae125. [PMID: 38966867 PMCID: PMC11220180 DOI: 10.1093/hr/uhae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/22/2024] [Indexed: 07/06/2024]
Abstract
Jojoba is an industrial oil crop planted in tropical arid areas, and its low-temperature sensitivity prevents its introduction into temperate areas. Studying the molecular mechanisms associated with cold acclimation in jojoba is advantageous for developing breeds with enhanced cold tolerance. In this study, metabolomic analysis revealed that various flavonols accumulate in jojoba during cold acclimation. Time-course transcriptomic analysis and weighted correlation network analysis (WGCNA) demonstrated that flavonol biosynthesis and jasmonates (JAs) signaling pathways played crucial roles in cold acclimation. Combining the biochemical and genetic analyses showed that ScMYB12 directly activated flavonol synthase gene (ScFLS). The interaction between ScMYB12 and transparent testa 8 (ScTT8) promoted the expression of ScFLS, but the negative regulator ScJAZ13 in the JA signaling pathway interacted with ScTT8 to attenuate the transcriptional activity of the ScTT8 and ScMYB12 complex, leading to the downregulation of ScFLS. Cold acclimation stimulated the production of JA in jojoba leaves, promoted the degradation of ScJAZ13, and activated the transcriptional activity of ScTT8 and ScMYB12 complexes, leading to the accumulation of flavonols. Our findings reveal the molecular mechanism of JA-mediated flavonol biosynthesis during cold acclimation in jojoba and highlight the JA pathway as a promising means for enhancing cold tolerance in breeding efforts.
Collapse
Affiliation(s)
- Lamei Zheng
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Bojing Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Genfa Zhang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yijun Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei Gao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
59
|
Li W, Li P, Deng Y, Zhang Z, Situ J, Huang J, Li M, Xi P, Jiang Z, Kong G. Litchi aspartic protease LcAP1 enhances plant resistance via suppressing cell death triggered by the pectate lyase PlPeL8 from Peronophythora litchii. THE NEW PHYTOLOGIST 2024; 242:2682-2701. [PMID: 38622771 DOI: 10.1111/nph.19755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Plant cell death is regulated in plant-pathogen interactions. While some aspartic proteases (APs) participate in regulating programmed cell death or defense responses, the defense functions of most APs remain largely unknown. Here, we report on a virulence factor, PlPeL8, which is a pectate lyase found in the hemibiotrophic pathogen Peronophythora litchii. Through in vivo and in vitro assays, we confirmed the interaction between PlPeL8 and LcAP1 from litchi, and identified LcAP1 as a positive regulator of plant immunity. PlPeL8 induced cell death associated with NbSOBIR1 and NbMEK2. The 11 conserved residues of PlPeL8 were essential for inducing cell death and enhancing plant susceptibility. Twenty-three LcAPs suppressed cell death induced by PlPeL8 in Nicotiana benthamiana depending on their interaction with PlPeL8. The N-terminus of LcAP1 was required for inhibiting PlPeL8-triggered cell death and susceptibility. Furthermore, PlPeL8 led to higher susceptibility in NbAPs-silenced N. benthamiana than the GUS-control. Our results indicate the crucial roles of LcAP1 and its homologs in enhancing plant resistance via suppression of cell death triggered by PlPeL8, and LcAP1 represents a promising target for engineering disease resistance. Our study provides new insights into the role of plant cell death in the arms race between plants and hemibiotrophic pathogens.
Collapse
Affiliation(s)
- Wen Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Zijing Zhang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Junjian Situ
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Ji Huang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Minhui Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Pinggen Xi
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Zide Jiang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Guanghui Kong
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
60
|
Li W, Li S, Tang C, Klosterman SJ, Wang Y. Kss1 of Verticillium dahliae regulates virulence, microsclerotia formation, and nitrogen metabolism. Microbiol Res 2024; 281:127608. [PMID: 38241914 DOI: 10.1016/j.micres.2024.127608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Verticillium dahliae causes destructive vascular wilt diseases on more than 200 plant species, including economically important crops and ornamental trees worldwide. The melanized microsclerotia (MS) enable V. dahliae to survive for years in soil, thus the fungus is especially difficult to control once it has become established. Previously, we found that the mitogen activated protein kinase VdSte11 (MAPKKK) plays key roles in MS formation, penetration, and virulence in V. dahliae. In this study, two MAPK homologs of the yeast Ste7p and Kss1p were identified and characterized in V. dahliae. Deletion of VdSte7 or VdKss1 reuslted in severe defects in melaninized MS formation and virulence. Furthermore, phosphorylation assays demonstrated that VdSte11 and VdSte7 can phosphorylate VdKss1 in V. dahliae. Proteomic analysis revealed a significant change in sterol biosynthesis with a fold change of ≥ 1.2 after the deletion of VdKss1. In addition, phosphoproteomic analysis showed that VdKss1 was involved in the regulation of nitrogen metabolism. Finally, we identified VdRlm1 as a potentially downstream target of VdKss1, which is involved in regulating ammonium nitrogen utilization. This study sheds light on the network of regulatory proteins in V. dahliae that affect MS formation and nitrogen metabolism.
Collapse
Affiliation(s)
- Wenwen Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Sa Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chen Tang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, USA
| | - Yonglin Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.
| |
Collapse
|
61
|
Garg R, Mahato H, Choudhury U, Thakur RS, Debnath P, Ansari NG, Sane VA, Sane AP. The tomato EAR-motif repressor, SlERF36, accelerates growth transitions and reduces plant life cycle by regulating GA levels and responses. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:848-862. [PMID: 38127946 PMCID: PMC10955490 DOI: 10.1111/pbi.14228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
Faster vegetative growth and early maturity/harvest reduce plant life cycle time and are important agricultural traits facilitating early crop rotation. GA is a key hormone governing developmental transitions that determine growth speed in plants. An EAR-motif repressor, SlERF36 that regulates various growth transitions, partly through regulation of the GA pathway and GA levels, was identified in tomato. Suppression of SlERF36 delayed germination, slowed down organ growth and delayed the onset of flowering time, fruit harvest and whole-plant senescence by 10-15 days. Its over-expression promoted faster growth by accelerating all these transitions besides increasing organ expansion and plant height substantially. The plant life cycle and fruit harvest were completed 20-30 days earlier than control without affecting yield, in glasshouse as well as net-house conditions, across seasons and generations. These changes in life cycle were associated with reciprocal changes in expression of GA pathway genes and basal GA levels between suppression and over-expression lines. SlERF36 interacted with the promoters of two GA2 oxidase genes, SlGA2ox3 and SlGA2ox4, and the DELLA gene, SlDELLA, reducing their transcription and causing a 3-5-fold increase in basal GA3/GA4 levels. Its suppression increased SlGA2ox3/4 transcript levels and reduced GA3/GA4 levels by 30%-50%. SlERF36 is conserved across families making it an important candidate in agricultural and horticultural crops for manipulation of plant growth and developmental transitions to reduce life cycles for faster harvest.
Collapse
Affiliation(s)
- Rashmi Garg
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Hrishikesh Mahato
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Upasana Choudhury
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ravindra S. Thakur
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Analytical Chemistry Laboratory, Regulatory Toxicology GroupCSIR‐Indian Institute of Toxicology Research (CSIR‐IITR)LucknowIndia
| | - Pratima Debnath
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Nasreen G. Ansari
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Analytical Chemistry Laboratory, Regulatory Toxicology GroupCSIR‐Indian Institute of Toxicology Research (CSIR‐IITR)LucknowIndia
| | - Vidhu A. Sane
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Aniruddha P. Sane
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
62
|
Diao Z, Yang R, Wang Y, Cui J, Li J, Wu Q, Zhang Y, Yu X, Gong B, Huang Y, Yu G, Yao H, Guo J, Zhang H, Shen J, Gust AA, Cai Y. Functional screening of the Arabidopsis 2C protein phosphatases family identifies PP2C15 as a negative regulator of plant immunity by targeting BRI1-associated receptor kinase 1. MOLECULAR PLANT PATHOLOGY 2024; 25:e13447. [PMID: 38561315 PMCID: PMC10984862 DOI: 10.1111/mpp.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Genetic engineering using negative regulators of plant immunity has the potential to provide a huge impetus in agricultural biotechnology to achieve a higher degree of disease resistance without reducing yield. Type 2C protein phosphatases (PP2Cs) represent the largest group of protein phosphatases in plants, with a high potential for negative regulatory functions by blocking the transmission of defence signals through dephosphorylation. Here, we established a PP2C functional protoplast screen using pFRK1::luciferase as a reporter and found that 14 of 56 PP2Cs significantly inhibited the immune response induced by flg22. To verify the reliability of the system, a previously reported MAPK3/4/6-interacting protein phosphatase, PP2C5, was used; it was confirmed to be a negative regulator of PAMP-triggered immunity (PTI). We further identified PP2C15 as an interacting partner of BRI1-associated receptor kinase 1 (BAK1), which is the most well-known co-receptor of plasma membrane-localized pattern recognition receptors (PRRs), and a central component of PTI. PP2C15 dephosphorylates BAK1 and negatively regulates BAK1-mediated PTI responses such as MAPK3/4/6 activation, defence gene expression, reactive oxygen species bursts, stomatal immunity, callose deposition, and pathogen resistance. Although plant growth and 1000-seed weight of pp2c15 mutants were reduced compared to those of wild-type plants, pp2c5 mutants did not show any adverse effects. Thus, our findings strengthen the understanding of the mechanism by which PP2C family members negatively regulate plant immunity at multiple levels and indicate a possible approach to enhance plant resistance by eliminating specific PP2Cs without affecting plant growth and yield.
Collapse
Affiliation(s)
- Zhihong Diao
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Rongqian Yang
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Yizhu Wang
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Junmei Cui
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Junhao Li
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Qiqi Wu
- Chengdu Lusyno Biotechnology Co., Ltd.ChengduChina
| | - Yaxin Zhang
- Chengdu Lusyno Biotechnology Co., Ltd.ChengduChina
| | - Xiaosong Yu
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Benqiang Gong
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yan Huang
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Guozhi Yu
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Huipeng Yao
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Jinya Guo
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Huaiyu Zhang
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Jinbo Shen
- Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and BiotechnologyZhejiang A&F UniversityZhejiangHangzhouChina
| | - Andrea A. Gust
- Department of the Centre for Plant Molecular Biology, Plant BiochemistryEberhard Karls University of TübingenTübingenGermany
| | - Yi Cai
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| |
Collapse
|
63
|
Watkins JM, Montes C, Clark NM, Song G, Oliveira CC, Mishra B, Brachova L, Seifert CM, Mitchell MS, Yang J, Braga Dos Reis PA, Urano D, Muktar MS, Walley JW, Jones AM. Phosphorylation Dynamics in a flg22-Induced, G Protein-Dependent Network Reveals the AtRGS1 Phosphatase. Mol Cell Proteomics 2024; 23:100705. [PMID: 38135118 PMCID: PMC10837098 DOI: 10.1016/j.mcpro.2023.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023] Open
Abstract
The microbe-associated molecular pattern flg22 is recognized in a flagellin-sensitive 2-dependent manner in root tip cells. Here, we show a rapid and massive change in protein abundance and phosphorylation state of the Arabidopsis root cell proteome in WT and a mutant deficient in heterotrimeric G-protein-coupled signaling. flg22-induced changes fall on proteins comprising a subset of this proteome, the heterotrimeric G protein interactome, and on highly-populated hubs of the immunity network. Approximately 95% of the phosphorylation changes in the heterotrimeric G-protein interactome depend, at least partially, on a functional G protein complex. One member of this interactome is ATBα, a substrate-recognition subunit of a protein phosphatase 2A complex and an interactor to Arabidopsis thaliana Regulator of G Signaling 1 protein (AtRGS1), a flg22-phosphorylated, 7-transmembrane spanning modulator of the nucleotide-binding state of the core G-protein complex. A null mutation of ATBα strongly increases basal endocytosis of AtRGS1. AtRGS1 steady-state protein level is lower in the atbα mutant in a proteasome-dependent manner. We propose that phosphorylation-dependent endocytosis of AtRGS1 is part of the mechanism to degrade AtRGS1, thus sustaining activation of the heterotrimeric G protein complex required for the regulation of system dynamics in innate immunity. The PP2A(ATBα) complex is a critical regulator of this signaling pathway.
Collapse
Affiliation(s)
- Justin M Watkins
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christian Montes
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Natalie M Clark
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Gaoyuan Song
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Celio Cabral Oliveira
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Biochemistry and Molecular Biology/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Bharat Mishra
- Department of Biology, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | - Libuse Brachova
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Clara M Seifert
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Malek S Mitchell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jing Yang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Daisuke Urano
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - M Shahid Muktar
- Department of Biology, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA.
| | - Alan M Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
64
|
Liu L, Chen J, Gu C, Wang S, Xue Y, Wang Z, Han L, Song W, Liu X, Zhang J, Li M, Li C, Wang L, Zhang X, Zhou Z. The exocyst subunit CsExo70B promotes both fruit length and disease resistance via regulating receptor kinase abundance at plasma membrane in cucumber. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:347-362. [PMID: 37795910 PMCID: PMC10826989 DOI: 10.1111/pbi.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Plant defence against pathogens generally occurs at the expense of growth and yield. Uncoupling the inverse relationship between growth and defence is of great importance for crop breeding, while the underlying genes and regulatory mechanisms remain largely elusive. The exocytosis complex was shown to play an important role in the trafficking of receptor kinases (RKs) to the plasma membrane (PM). Here, we found a Cucumis sativus exocytosis subunit Exo70B (CsExo70B) regulates the abundance of both development and defence RKs at the PM to promote fruit elongation and disease resistance in cucumber. Knockout of CsExo70B resulted in shorter fruit and susceptibility to pathogens. Mechanistically, CsExo70B associates with the developmental RK CsERECTA, which promotes fruit longitudinal growth in cucumber, and contributes to its accumulation at the PM. On the other side, CsExo70B confers to the spectrum resistance to pathogens in cucumber via a similar regulatory module of defence RKs. Moreover, CsExo70B overexpression lines showed an increased fruit yield as well as disease resistance. Collectively, our work reveals a regulatory mechanism that CsExo70B promotes both fruit elongation and disease resistance by maintaining appropriate RK levels at the PM and thus provides a possible strategy for superior cucumber breeding with high yield and robust pathogen resistance.
Collapse
Affiliation(s)
- Liu Liu
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Jiacai Chen
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Chaoheng Gu
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Shaoyun Wang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Yufan Xue
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Lijie Han
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Weiyuan Song
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Jiahao Zhang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Min Li
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Chuang Li
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
- Sanya lnstitute of China Agricultural UniversitySanyaChina
| | - Liming Wang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
- Sanya lnstitute of China Agricultural UniversitySanyaChina
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
- Sanya lnstitute of China Agricultural UniversitySanyaChina
| |
Collapse
|
65
|
Cui C, Wan H, Li Z, Ai N, Zhou B. Long noncoding RNA TRABA suppresses β-glucosidase-encoding BGLU24 to promote salt tolerance in cotton. PLANT PHYSIOLOGY 2024; 194:1120-1138. [PMID: 37801620 DOI: 10.1093/plphys/kiad530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/08/2023]
Abstract
Salt stress severely damages the growth and yield of crops. Recently, long noncoding RNAs (lncRNAs) were demonstrated to regulate various biological processes and responses to environmental stresses. However, the regulatory mechanisms of lncRNAs in cotton (Gossypium hirsutum) response to salt stress are still poorly understood. Here, we observed that a lncRNA, trans acting of BGLU24 by lncRNA (TRABA), was highly expressed while GhBGLU24-A was weakly expressed in a salt-tolerant cotton accession (DM37) compared to a salt-sensitive accession (TM-1). Using TRABA as an effector and proGhBGLU24-A-driven GUS as a reporter, we showed that TRABA suppressed GhBGLU24-A promoter activity in double transgenic Arabidopsis (Arabidopsis thaliana), which explained why GhBGLU24-A was weakly expressed in the salt-tolerant accession compared to the salt-sensitive accession. GhBGLU24-A encodes an endoplasmic reticulum (ER)-localized β-glucosidase that responds to salt stress. Further investigation revealed that GhBGLU24-A interacted with RING-type E3 ubiquitin ligase (GhRUBL). Virus-induced gene silencing (VIGS) and transgenic Arabidopsis studies revealed that both GhBGLU24-A and GhRUBL diminish plant tolerance to salt stress and ER stress. Based on its substantial effect on ER-related degradation (ERAD)-associated gene expression, GhBGLU24-A mediates ER stress likely through the ERAD pathway. These findings provide insights into the regulatory role of the lncRNA TRABA in modulating salt and ER stresses in cotton and have potential implications for developing more resilient crops.
Collapse
Affiliation(s)
- Changjiang Cui
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Hui Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Zhu Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Nijiang Ai
- Shihezi Agricultural Science Research Institute, Shihezi, 832000 Xinjiang, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| |
Collapse
|
66
|
Sun C, Li Y, Zhao T, Bi W, Song Y, Liang X, Wang X, Dou D, Xu G. Potato calcium sensor modules StCBL3-StCIPK7 and StCBL3-StCIPK24 negatively regulate plant immunity. BMC PLANT BIOLOGY 2024; 24:30. [PMID: 38182981 PMCID: PMC10768403 DOI: 10.1186/s12870-023-04713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Potato late blight, caused by Phytophthora infestans, is the most devastating disease on potato. Dissecting critical immune components in potato will be supportive for engineering P. infestans resistance. Upon pathogens attack, plant Ca2+ signature is generated and decoded by an array of Ca2+ sensors, among which calcineurin B-like proteins (CBLs) coupled with plant specific CBL-interacting protein kinases (CIPKs) are much less explored in plant immunity. RESULTS In this study, we identified that two differential potato CBL-CIPK modules regulate plant defense responses against Phytophthora and ROS production, respectively. By deploying virus-induced gene silencing (VIGS) system-based pathogen inoculation assays, StCBL3 was shown to negatively regulate Phytophthora resistance. Consistently, StCBL3 was further found to negatively regulate PTI and ETI responses in Nicotiana benthamiana. Furthermore, StCIPK7 was identified to act together with StCBL3 to negatively regulate Phytophthora resistance. StCIPK7 physically interacts with StCBL3 and phosphorylates StCBL3 in a Ca2+-dependent manner. StCBL3 promotes StCIPK7 kinase activity. On the other hand, another StCBL3-interacting kinase StCIPK24 negatively modulating flg22-triggered accumulation of reactive oxygen species (ROS) by interacting with StRBOHB. CONCLUSIONS Together, these findings demonstrate that the StCBL3-StCIPK7 complex negatively modulates Phytophthora resistance and StCBL3-StCIPK24 complex negatively regulate ROS production. Our results offer new insights into the roles of potato CBL-CIPK in plant immunity and provide valuable gene resources to engineer the disease resistance potato in the future.
Collapse
Affiliation(s)
- Congcong Sun
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yuanyuan Li
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Tingting Zhao
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Weishuai Bi
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yingying Song
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiangxiu Liang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaodan Wang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Daolong Dou
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangyuan Xu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
67
|
Piao Y, Li S, Chen Y, Zhao S, Piao Z, Wang H. A Ca 2+ sensor BraCBL1.2 involves in BraCRa-mediated clubroot resistance in Chinese cabbage. HORTICULTURE RESEARCH 2024; 11:uhad261. [PMID: 38298901 PMCID: PMC10828780 DOI: 10.1093/hr/uhad261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/26/2023] [Indexed: 02/02/2024]
Abstract
Clubroot disease caused by Plasmodiophora brassicae (P. brassicae) severely threatens the cultivation of Cruciferous plants, especially Chinese cabbage. Recently, resistance genes in plants have been reported to encode for a Ca2+-permeable channel in the plasma membrane, which can mediate the cytosolic Ca2+ increase in plant cells upon pathogen attack. However, the downstream Ca2+ sensor and decoder are still unknown. In this study, we identified the virulent and avirulent P. brassicae isolates (Pbs) of two near isogenic lines, CR 3-2 and CS 3-2, with CR 3-2 harboring clubroot resistant gene BraCRa. The transcriptomic analysis was then conducted with CR 3-2 after inoculating with virulent isolate PbE and avirulent isolate Pb4. From the differentially expressed genes of transcriptomic data, we identified a Ca2+-sensor encoding gene, BraCBL1.2, that was highly induced in CR 3-2 during infection by Pb4 but not by PbE. Moreover, GUS histochemical staining and subcellular localization analysis revealed that BraCBL1.2 was specifically expressed in the root hair cells of Arabidopsis and encoded a putative Ca2+ sensor localized in the plasma membrane. We also developed an assay to investigate the BraCRa-mediated hypersensitive response (HR) in tobacco leaves. The results suggest that BraCBL1.2 is involved in the BraCRa-mediated plant ETI immune response against P. brassicae. In addition, we verified that overexpression of BraCBL1.2 enhanced clubroot resistance in Arabidopsis. Collectively, our data identified the involvement of a Ca2+ sensor in BraCRa-mediated clubroot resistance in Chinese cabbage, providing a theoretical basis for further research on the resistance of Chinese cabbage to P. brassicae.
Collapse
Affiliation(s)
- Yinglan Piao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shizhen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiduo Chen
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, Münster 48143, Germany
| | - Sisi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Haiping Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
68
|
Fousek J, Dušek J, Hoffmeisterová H, Čeřovská N, Kundu JK, Moravec T. Quantitative Estimation of Promoter Activity in Cannabis sativa Using Agroinfiltration-Based Transient Gene Expression. Methods Mol Biol 2024; 2787:245-253. [PMID: 38656494 DOI: 10.1007/978-1-0716-3778-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
To properly assess promoter activity, which is critical for understanding biosynthetic pathways in different plant species, we use agroinfiltration-based transient gene expression assay. We compare the activity of several known promoters in Nicotiana benthamiana with their activity in Cannabis sativa (both hemp and medicinal cannabis), which has attracted much attention in recent years for its industrial, medicinal, and recreational properties. Here we describe an optimized protocol for transient expression in Cannabis combined with a ratiometric GUS reporter system that allows more accurate evaluation of promoter activity and reduces the effects of variable infiltration efficiency.
Collapse
Affiliation(s)
- Jan Fousek
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Dušek
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Hoffmeisterová
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Noemi Čeřovská
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiban Kumar Kundu
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, Prague, Czech Republic
| | - Tomáš Moravec
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
69
|
Tiwari R, Garg K, Senthil-Kumar M, Bisht NC. XLG2 and CORI3 function additively to regulate plant defense against the necrotrophic pathogen Sclerotinia sclerotiorum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:616-631. [PMID: 37910396 DOI: 10.1111/tpj.16518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/01/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
The membrane-bound heterotrimeric G-proteins in plants play a crucial role in defending against a broad range of pathogens. This study emphasizes the significance of Extra-large Gα protein 2 (XLG2), a plant-specific G-protein, in mediating the plant response to Sclerotinia sclerotiorum, which infects over 600 plant species worldwide. Our analysis of Arabidopsis G-protein mutants showed that loss of XLG2 function increased susceptibility to S. sclerotiorum, accompanied by compromised accumulation of jasmonic acid (JA) during pathogen infection. Overexpression of the XLG2 gene in xlg2 mutant plants resulted in higher resistance and increased JA accumulation during S. sclerotiorum infection. Co-immunoprecipitation (co-IP) analysis on S. sclerotiorum infected Col-0 samples, using two different approaches, identified 201 XLG2-interacting proteins. The identified JA-biosynthetic and JA-responsive proteins had compromised transcript expression in the xlg2 mutant during pathogen infection. XLG2 was found to interact physically with a JA-responsive protein, Coronatine induced 1 (CORI3) in Co-IP, and confirmed using split firefly luciferase complementation and bimolecular fluorescent complementation assays. Additionally, genetic analysis revealed an additive effect of XLG2 and CORI3 on resistance against S. sclerotiorum, JA accumulation, and expression of the defense marker genes. Overall, our study reveals two independent pathways involving XLG2 and CORI3 in contributing resistance against S. sclerotiorum.
Collapse
Affiliation(s)
- Ruchi Tiwari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kajal Garg
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
70
|
Simoni EB, Oliveira CC. The Split-Luciferase Complementation Assay to Detect and Quantify Protein-Protein Interactions in Planta. Methods Mol Biol 2024; 2724:247-255. [PMID: 37987911 DOI: 10.1007/978-1-0716-3485-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Protein-protein interactions play a critical role in plant viral infection and defense responses against pathogens. This protocol provides a detailed and reliable methodology for investigating protein-protein interactions using a luciferase-based complementation assay that includes easy luminescence-based normalization within a single plate. The protocol includes step-by-step procedures, reagent lists, and considerations for data interpretation, ensuring robust and reproducible results. By following this protocol, researchers can advance on understanding of the crucial role of protein-protein interactions in plant viral infection and defense responses to other pathogen attacks.
Collapse
Affiliation(s)
- Eduardo Bassi Simoni
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Molecular Biology/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Célio Cabral Oliveira
- Brazilian Center for Research in Energy and Materials, Brazilian Biorenewables National Laboratory, Campinas, SP, Brazil.
| |
Collapse
|
71
|
Huang H, Yang X, Zheng M, Lü S, Zhao H. Fine-tuning the activities of β-KETOACYL-COA SYNTHASE 3 (KCS3) and KCS12 in Arabidopsis is essential for maintaining cuticle integrity. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6575-6587. [PMID: 37615538 DOI: 10.1093/jxb/erad337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
The plant cuticle, consisting of wax and cutin, is involved in adaptations to various environments. β-Ketoacyl-CoA synthases (KCSs) usually serve as a component of the fatty acid elongation complex that participates in the production of very long-chain fatty acids and provides precursors for the synthesis of various lipids, including wax; however, we recently reported that KCS3 and KCS12 negatively regulate wax biosynthesis. In this current study, we observed that unlike KCS3-overexpressing (OE) lines, KCS12-OE lines had fused floral organs because of abnormal cuticle biosynthesis. This prompted us to compare the functions of KCS3 and KCS12 during cuticle formation. Mutation of KCS3 caused greater effects on wax production, whereas mutation of KCS12 exerted more severe effects on cutin synthesis. The double-mutant kcs3 kcs12 had significantly increased wax and cutin contents compared to either single-mutant, suggesting that KCS12 and KCS3 have additive effects on cuticle biosynthesis. Cuticle permeability was greater for the double-mutant than for the single mutants, which ultimately led to increased susceptibility to drought stress and floral-organ fusion. Taken together, our results demonstrate the regulatory roles of KCS3 and KCS12 during cuticle biosynthesis, and show that maintaining KCS3 and KCS12 expression at certain levels is essential for the formation of a functional cuticle layer.
Collapse
Affiliation(s)
- Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Minglü Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
72
|
Jiang L, Lv J, Li K, Zhai L, Wu Y, Wu T, Zhang X, Han Z, Wang Y. MdGRF11-MdARF19-2 module acts as a positive regulator of drought resistance in apple rootstock. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111782. [PMID: 37406680 DOI: 10.1016/j.plantsci.2023.111782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
14-3-3 proteins play an important role in the response of plants to drought resistance. In this study, 14-3-3 protein MdGRF11 was cloned from Malus xiaojinensis, and its positive regulation of drought resistance was verified using Orin calli and M. xiaojinensis plants. The transcription factor MdARF19-2 was further screened for interaction with this protein in vitro and in vivo. We also conducted experiments using Orin calli and found that the overexpression of MdARF19-2 decreased the level of reactive oxygen species (ROS) and increased the activity of enzymes that scavenge ROS in plant materials. This indicates that MdARF19-2 is a positive regulator in the drought resistance of plants. The drought tolerance was further improved by the overexpression of both MdGRF11 and MdARF19-2 in the calli. In addition, we examined several genes related to ROS scavenging with auxin response factor binding elements in their promoters and found that their level of expression was regulated by the MdGRF11-MdARF19-2 module. In conclusion, the enhancement of plant drought resistance by MdGRF11 could be owing to its accumulation at the protein level in response to drought, which then combined with MdARF19-2, affecting the expression of MdARF19-2 downstream genes. Thus, it scavenges ROS, which ultimately improves the resistance of plant to drought stress.
Collapse
Affiliation(s)
- Lizhong Jiang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Jiahong Lv
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Keting Li
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yue Wu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
73
|
Zhao Y, Zheng X, Zhang X, Wang W, Cai G, Bi G, Chen S, Sun C, Zhou JM. PIF3 is phosphorylated by MAPK to modulate plant immunity. THE NEW PHYTOLOGIST 2023; 240:372-381. [PMID: 37475167 DOI: 10.1111/nph.19139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
Surface-localized pattern recognition receptors perceive pathogen-associated molecular patterns (PAMPs) to activate pattern-triggered immunity (PTI). Activation of mitogen-activated protein kinases (MAPKs) represents a major PTI response. Here, we report that Arabidopsis thaliana PIF3 negatively regulates plant defense gene expression and resistance to Pseudomonas syringae DC3000. PAMPs trigger phosphorylation of PIF3. Further study reveals that PIF3 interacts with and is phosphorylated by MPK3/6. By mass spectrometry and site-directed mutagenesis, we identified the corresponding phosphorylation sites which fit for SP motif. We further show that a phospho-mimicking PIF3 variant (PIF36D /pifq) conferred increased susceptibility to P. syringae DC3000 and caused lower levels of defense gene expression in plants. Together, this study reveals that PIF3 is phosphorylated by MPK3/6 and phosphorylation of the SP motif residues is required for its negative regulation on plant immunity.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Xiaojuan Zheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gaihong Cai
- National Institute of Biological Sciences, Beijing, 100101, China
| | - Guozhi Bi
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 100101, China
| | - Chuanqing Sun
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| |
Collapse
|
74
|
Chen X, Liu Y, Zhang X, Zheng B, Han Y, Zhang RX. PpARF6 acts as an integrator of auxin and ethylene signaling to promote fruit ripening in peach. HORTICULTURE RESEARCH 2023; 10:uhad158. [PMID: 37719277 PMCID: PMC10500152 DOI: 10.1093/hr/uhad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/27/2023] [Indexed: 09/19/2023]
Abstract
Although auxin is known to induce ethylene biosynthesis in some Rosaceae fruit crops, the mechanisms underlying the auxin-ethylene interaction during fruit ripening remain largely unknown. Here, the regulatory role of an auxin response factor, PpARF6, in fruit ripening was investigated in peach. Peach fruits showed accelerated ripening after treatment with auxin and PpARF6 was found to be significantly induced. PpARF6 not only could induce ethylene synthesis by directly activating the transcription of ethylene biosynthetic genes, but also competed with EIN3-binding F-box proteins PpEBF1/2 for binding to ethylene-insensitive3-like proteins PpEIL2/3, thereby keeping PpEIL2/3 active. Moreover, PpARF6 showed an interaction with PpEIL2/3 to enhance the PpEIL2/3-activated transcription of ethylene biosynthetic genes. Additionally, ectopic overexpression of PpARF6 in tomato accelerated fruit ripening by promoting the expression of genes involved in ethylene synthesis and fruit texture. In summary, our results revealed a positive regulatory role of PpARF6 in peach fruit ripening via integrating auxin and ethylene signaling.
Collapse
Affiliation(s)
- Xiaomei Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Yudi Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Xian Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Beibei Zheng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ruo-Xi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
75
|
Tang C, Wang P, Zhu X, Qi K, Xie Z, Zhang H, Li X, Gao H, Gu T, Gu C, Li S, de Graaf BHJ, Zhang S, Wu J. Acetylation of inorganic pyrophosphatase by S-RNase signaling induces pollen tube tip swelling by repressing pectin methylesterase. THE PLANT CELL 2023; 35:3544-3565. [PMID: 37306489 PMCID: PMC10473231 DOI: 10.1093/plcell/koad162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Self-incompatibility (SI) is a widespread genetically determined system in flowering plants that prevents self-fertilization to promote gene flow and limit inbreeding. S-RNase-based SI is characterized by the arrest of pollen tube growth through the pistil. Arrested pollen tubes show disrupted polarized growth and swollen tips, but the underlying molecular mechanism is largely unknown. Here, we demonstrate that the swelling at the tips of incompatible pollen tubes in pear (Pyrus bretschneideri [Pbr]) is mediated by the SI-induced acetylation of the soluble inorganic pyrophosphatase (PPA) PbrPPA5. Acetylation at Lys-42 of PbrPPA5 by the acetyltransferase GCN5-related N-acetyltransferase 1 (GNAT1) drives accumulation of PbrPPA5 in the nucleus, where it binds to the transcription factor PbrbZIP77, forming a transcriptional repression complex that inhibits the expression of the pectin methylesterase (PME) gene PbrPME44. The function of PbrPPA5 as a transcriptional repressor does not require its PPA activity. Downregulating PbrPME44 resulted in increased levels of methyl-esterified pectins in growing pollen tubes, leading to swelling at their tips. These observations suggest a mechanism for PbrPPA5-driven swelling at the tips of pollen tubes during the SI response. The targets of PbrPPA5 include genes encoding cell wall-modifying enzymes, which are essential for building a continuous sustainable mechanical structure for pollen tube growth.
Collapse
Affiliation(s)
- Chao Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Xiaoxuan Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Hao Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Xiaoqiang Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Hongru Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Tingting Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Shan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Shaoling Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
76
|
Zhao J, Bo K, Pan Y, Li Y, Yu D, Li C, Chang J, Wu S, Wang Z, Zhang X, Gu X, Weng Y. Phytochrome-interacting factor PIF3 integrates phytochrome B and UV-B signaling pathways to regulate gibberellin- and auxin-dependent growth in cucumber hypocotyls. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4520-4539. [PMID: 37201922 DOI: 10.1093/jxb/erad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, the photoreceptors phytochrome B (PhyB) and UV-B resistance 8 (UVR8) mediate light responses that play a major role in regulating photomorphogenic hypocotyl growth, but how they crosstalk to coordinate this process is not well understood. Here we report map-based cloning and functional characterization of an ultraviolet (UV)-B-insensitive, long-hypocotyl mutant, lh1, and a wild-type-like mutant, lh2, in cucumber (Cucumis sativus), which show defective CsPhyB and GA oxidase2 (CsGA20ox-2), a key gibberellic acid (GA) biosynthesis enzyme, respectively. The lh2 mutation was epistatic to lh1 and partly suppressed the long-hypocotyl phenotype in the lh1lh2 double mutant. We identified phytochrome interacting factor (PIF) CsPIF3 as playing a critical role in integrating the red/far-red and UV-B light responses for hypocotyl growth. We show that two modules, CsPhyB-CsPIF3-CsGA20ox-2-DELLA and CsPIF3-auxin response factor 18 (CsARF18), mediate CsPhyB-regulated hypocotyl elongation through GA and auxin pathways, respectively, in which CsPIF3 binds to the G/E-box motifs in the promoters of CsGA20ox-2 and CsARF18 to regulate their expression. We also identified a new physical interaction between CsPIF3 and CsUVR8 mediating CsPhyB-dependent, UV-B-induced hypocotyl growth inhibition. Our work suggests that hypocotyl growth in cucumber involves a complex interplay of multiple photoreceptor- and phytohormone-mediated signaling pathways that show both conservation with and divergence from those in Arabidopsis.
Collapse
Affiliation(s)
- Jianyu Zhao
- Horticulture Department, University of Wisconsin, Madison WI 53706, USA
| | - Kailiang Bo
- Horticulture Department, University of Wisconsin, Madison WI 53706, USA
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yupeng Pan
- Horticulture Department, University of Wisconsin, Madison WI 53706, USA
- College of Horticulture, Northwest A& F University, Yangling 712100, China
| | - Yuhong Li
- College of Horticulture, Northwest A& F University, Yangling 712100, China
| | - Daoliang Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Chang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongyi Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaolan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingfang Gu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison WI 53706, USA
- USDA-ARS Vegetable Crops Research Unit, Madison, WI 53705, USA
| |
Collapse
|
77
|
Shi W, Stolze SC, Nakagami H, Misas Villamil JC, Saur IML, Doehlemann G. Combination of in vivo proximity labeling and co-immunoprecipitation identifies the host target network of a tumor-inducing effector in the fungal maize pathogen Ustilago maydis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4736-4750. [PMID: 37225161 PMCID: PMC10433927 DOI: 10.1093/jxb/erad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Plant pathogens secrete effectors, which target host proteins to facilitate infection. The Ustilago maydis effector UmSee1 is required for tumor formation in the leaf during infection of maize. UmSee1 interacts with maize SGT1 (suppressor of G2 allele of skp1) and blocks its phosphorylation in vivo. In the absence of UmSee1, U. maydis cannot trigger tumor formation in the bundle sheath. However, it remains unclear which host processes are manipulated by UmSee1 and the UmSee1-SGT1 interaction to cause the observed phenotype. Proximity-dependent protein labeling involving the turbo biotin ligase tag (TurboID) for proximal labeling of proteins is a powerful tool for identifying the protein interactome. We have generated transgenic U. maydis that secretes biotin ligase-fused See1 effector (UmSee1-TurboID-3HA) directly into maize cells. This approach, in combination with conventional co-immunoprecipitation, allowed the identification of additional UmSee1 interactors in maize cells. Collectively, our data identified three ubiquitin-proteasome pathway-related proteins (ZmSIP1, ZmSIP2, and ZmSIP3) that either interact with or are close to UmSee1 during host infection of maize with U. maydis. ZmSIP3 represents a cell cycle regulator whose degradation appears to be promoted in the presence of UmSee1. Our data provide a possible explanation of the requirement for UmSee1 in tumor formation during U. maydis-Zea mays interaction.
Collapse
Affiliation(s)
- Wei Shi
- Institute for Plant Sciences University of Cologne, D-50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Germany
| | - Sara C Stolze
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Hirofumi Nakagami
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Johana C Misas Villamil
- Institute for Plant Sciences University of Cologne, D-50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Germany
| | - Isabel M L Saur
- Institute for Plant Sciences University of Cologne, D-50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences University of Cologne, D-50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Germany
| |
Collapse
|
78
|
Bai J, Zhou Y, Sun J, Chen K, Han Y, Wang R, Zou Y, Du M, Lu D. BIK1 protein homeostasis is maintained by the interplay of different ubiquitin ligases in immune signaling. Nat Commun 2023; 14:4624. [PMID: 37532719 PMCID: PMC10397244 DOI: 10.1038/s41467-023-40364-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Pathogen-associated molecular patterns (PAMPs) trigger plant innate immunity that acts as the first line of inducible defense against pathogen infection. A receptor-like cytoplasmic kinase BOTRYTIS-INDUCED KINASE 1 (BIK1) functions as a signaling hub immediately downstream of multiple pattern recognition receptors (PRRs). It is known that PLANT U-BOX PROTEIN 25 (PUB25) and PUB26 ubiquitinate BIK1 and mediate BIK1 degradation. However, how BIK1 homeostasis is maintained is not fully understood. Here, we show that two closely related ubiquitin ligases, RING DOMAIN LIGASE 1 (RGLG1) and RGLG2, preferentially associate with the hypo-phosphorylated BIK1 and promote the association of BIK1 with the co-receptor for several PRRs, BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1). PUB25 interacts with RGLG2 and mediates its degradation. In turn, RGLG2 represses the ubiquitin ligase activity of PUB25. RGLG1/2 suppress PUB25-mediated BIK1 degradation, promote BIK1 protein accumulation, and positively regulate immune signaling in a ubiquitin ligase activity-dependent manner. Our work reveals how BIK1 homeostasis is maintained by the interplay of different ubiquitin ligases.
Collapse
Affiliation(s)
- Jiaojiao Bai
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, Jiangxi, 332000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Zhou
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhang Sun
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kexin Chen
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufang Han
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ranran Wang
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanmin Zou
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
| | - Mingshuo Du
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongping Lu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
79
|
Huang Y, Yang R, Luo H, Yuan Y, Diao Z, Li J, Gong S, Yu G, Yao H, Zhang H, Cai Y. Arabidopsis Protein Phosphatase PIA1 Impairs Plant Drought Tolerance by Serving as a Common Negative Regulator in ABA Signaling Pathway. PLANTS (BASEL, SWITZERLAND) 2023; 12:2716. [PMID: 37514328 PMCID: PMC10384177 DOI: 10.3390/plants12142716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Reversible phosphorylation of proteins is a ubiquitous regulatory mechanism in vivo that can respond to external changes, and plays an extremely important role in cell signal transduction. Protein phosphatase 2C is the largest protein phosphatase family in higher plants. Recently, it has been found that some clade A members can negatively regulate ABA signaling pathways. However, the functions of several subgroups of Arabidopsis PP2C other than clade A have not been reported, and whether other members of the PP2C family also participate in the regulation of ABA signaling pathways remains to be studied. In this study, based on the previous screening and identification work of PP2C involved in the ABA pathway, the clade F member PIA1 encoding a gene of the PP2C family, which was down-regulated after ABA treatment during the screening, was selected as the target. Overexpression of PIA1 significantly down-regulated the expression of ABA marker gene RD29A in Arabidopsis protoplasts, and ABA-responsive elements have been found in the cis-regulatory elements of PIA1 by promoter analysis. When compared to Col-0, transgenic plants overexpressing PIA1 were less sensitive to ABA, whereas pia1 showed the opposite trait in seed germination, root growth, and stomatal opening experiments. Under drought stress, SOD, POD, CAT, and APX activities of PIA1 overexpression lines were lower than Col-0 and pia1, while the content of H2O2 was higher, leading to its lowest survival rate in test plants, which were consistent with the significant inhibition of the expression of ABA-dependent stress-responsive genes RD29B, ABI5, ABF3, and ABF4 in the PIA1 transgenic background after ABA treatment. Using yeast two-hybrid and luciferase complementation assays, PIA1 was found to interact with multiple ABA key signaling elements, including 2 RCARs and 6 SnRK2s. Our results indicate that PIA1 may reduce plant drought tolerance by functioning as a common negative regulator involved in ABA signaling pathway.
Collapse
Affiliation(s)
- Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Rongqian Yang
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Huiling Luo
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Yuan Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Zhihong Diao
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Junhao Li
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Shihe Gong
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Guozhi Yu
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Huaiyu Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| |
Collapse
|
80
|
Liu J, Wu X, Fang Y, Liu Y, Bello EO, Li Y, Xiong R, Li Y, Fu ZQ, Wang A, Cheng X. A plant RNA virus inhibits NPR1 sumoylation and subverts NPR1-mediated plant immunity. Nat Commun 2023; 14:3580. [PMID: 37328517 PMCID: PMC10275998 DOI: 10.1038/s41467-023-39254-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1) is the master regulator of salicylic acid-mediated basal and systemic acquired resistance in plants. Here, we report that NPR1 plays a pivotal role in restricting compatible infection by turnip mosaic virus, a member of the largest plant RNA virus genus Potyvirus, and that such resistance is counteracted by NUCLEAR INCLUSION B (NIb), the viral RNA-dependent RNA polymerase. We demonstrate that NIb binds to the SUMO-interacting motif 3 (SIM3) of NPR1 to prevent SUMO3 interaction and sumoylation, while sumoylation of NIb by SUMO3 is not essential but can intensify the NIb-NPR1 interaction. We discover that the interaction also impedes the phosphorylation of NPR1 at Ser11/Ser15. Moreover, we show that targeting NPR1 SIM3 is a conserved ability of NIb from diverse potyviruses. These data reveal a molecular "arms race" by which potyviruses deploy NIb to suppress NPR1-mediated resistance through disrupting NPR1 sumoylation.
Collapse
Affiliation(s)
- Jiahui Liu
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Xiaoyun Wu
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Yue Fang
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Ye Liu
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Esther Oreofe Bello
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Yong Li
- College of Life Science, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Ruyi Xiong
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, N5V 4T3, ON, Canada
- A&L Canada Laboratories Lnc., London, N5V 3P5, ON, Canada
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, N5V 4T3, ON, Canada
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, N5V 4T3, ON, Canada
| | - Xiaofei Cheng
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China.
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China.
| |
Collapse
|
81
|
Huang H, Yang X, Zheng M, Chen Z, Yang Z, Wu P, Jenks MA, Wang G, Feng T, Liu L, Yang P, Lü S, Zhao H. An ancestral role for 3-KETOACYL-COA SYNTHASE3 as a negative regulator of plant cuticular wax synthesis. THE PLANT CELL 2023; 35:2251-2270. [PMID: 36807983 PMCID: PMC10226574 DOI: 10.1093/plcell/koad051] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 05/30/2023]
Abstract
The plant cuticle, a structure primarily composed of wax and cutin, forms a continuous coating over most aerial plant surfaces. The cuticle plays important roles in plant tolerance to environmental stress, including stress imposed by drought. Some members of the 3-KETOACYL-COA SYNTHASE (KCS) family are known to act as metabolic enzymes involved in cuticular wax production. Here we report that Arabidopsis (Arabidopsis thaliana) KCS3, which was previously shown to lack canonical catalytic activity, instead functions as a negative regulator of wax metabolism by reducing the enzymatic activity of KCS6, a key KCS involved in wax production. We demonstrate that the role of KCS3 in regulating KCS6 activity involves physical interactions between specific subunits of the fatty acid elongation complex and is essential for maintaining wax homeostasis. We also show that the role of the KCS3-KCS6 module in regulating wax synthesis is highly conserved across diverse plant taxa from Arabidopsis to the moss Physcomitrium patens, pointing to a critical ancient and basal function of this module in finely regulating wax synthesis.
Collapse
Affiliation(s)
- Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Minglü Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zexi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhuo Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Matthew A Jenks
- School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Guangchao Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Tao Feng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
82
|
Wang G, Guo L, Guo Z, Guan SL, Zhu N, Qi K, Gu C, Zhang S. The involvement of Ein3-binding F-box protein PbrEBF3 in regulating ethylene signaling during Cuiguan pear fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111600. [PMID: 36682586 DOI: 10.1016/j.plantsci.2023.111600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Ein3-binding F-box (EBF) proteins have been determined to modulate ethylene response processes by regulating EIN3/EIL protein degradation in Arabidopsis and tomato. However, the function of pear PbrEBFs in ethylene-dependent responses during fruit ripening remains unclear. In this study, PbrEBF1, PbrEBF2, and PbrEBF3 display contrasting expression patterns in response to ethylene and 1-MCP treatment. PbrEBF3 displayed potential fruit ripening-associated function in a transient expression experiment. Yeast two-hybrid (Y2H) and Firefly luciferase complementation imaging (LCI) assays indicated that PbrEBF3 interacts with PbrEIL1, PbrEIL2, and PbrEIL3 proteins. In turn, the transcription of PbrEBF3 is directly regulated by PbrEILs via a feedback loop. PbrEILs trigger a transcriptional cascade of PbrERF24 and finally affect ethylene synthesis. Overall, PbrEBF3 plays a central role in pear fruit ripening through mediation of the ethylene signaling pathway.
Collapse
Affiliation(s)
- Guoming Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lei Guo
- College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, United States
| | - Zhihua Guo
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Sophia Lee Guan
- College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, United States
| | - Nan Zhu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Gu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
83
|
Yang S, Li J, Lu J, Wang L, Min F, Guo M, Wei Q, Wang W, Dong X, Mao Y, Hu L, Wang X. Potato calcineurin B-like protein CBL4, interacting with calcineurin B-like protein-interacting protein kinase CIPK2, positively regulates plant resistance to stem canker caused by Rhizoctonia solani. Front Microbiol 2023; 13:1032900. [PMID: 36687567 PMCID: PMC9845770 DOI: 10.3389/fmicb.2022.1032900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/17/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Calcium sensor calcineurin B-like proteins (CBLs) and their interacting partners, CBL-interacting protein kinases (CIPKs), have emerged as a complex network in response to abiotic and biotic stress perception. However, little is known about how CBL-CIPK complexes function in potatoes. Methods In this study, we identified the components of one potato signaling complex, StCBL4-StCIPK2, and characterized its function in defense against Rhizoctonia solani causing stem canker in potato. Results Expressions of both StCBL4 and StCIPK2 from potato were coordinately induced upon R. solani infection and following exposure to the defense genes. Furthermore, transient overexpression of StCBL4 and StCIPK2 individually and synergistically increased the tolerance of potato plants to R. solani in Nicotiana benthamiana. Additionally, the transgenic potato has also been shown to enhance resistance significantly. In contrast, susceptibility to R. solani was exhibited in N. benthamiana following virus-induced gene silencing of NbCBL and NbCIPK2. Evidence revealed that StCBL4 could interact in yeast and in planta with StCIPK2. StCBL4 and StCIPK2 transcription was induced upon R. solani infection and this expression in response to the pathogen was enhanced in StCBL4- and StCIPK2-transgenic potato. Moreover, accumulated expression of pathogenesis-related (PR) genes and reactive oxygen species (ROS) was significantly upregulated and enhanced in both StCBL4- and StCIPK2- transgenic potato. Discussion Accordingly, StCBL4 and StCIPK2 were involved in regulating the immune response to defend the potato plant against R. solani. Together, our data demonstrate that StCBL4 functions in concert with StCIPK2, as positive regulators of immunity, contributing to combating stem canker disease in potato.
Collapse
Affiliation(s)
- Shuai Yang
- Institute of Industrial Crop, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jie Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Lu
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ling Wang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Fanxiang Min
- Institute of Industrial Crop, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Mei Guo
- Institute of Industrial Crop, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qi Wei
- Institute of Industrial Crop, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Wenzhong Wang
- Institute of Industrial Crop, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xuezhi Dong
- Institute of Industrial Crop, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yanzhi Mao
- Institute of Industrial Crop, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Linshuang Hu
- Institute of Industrial Crop, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xiaodan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China,*Correspondence: Xiaodan Wang,
| |
Collapse
|
84
|
Schulze S, Yu L, Hua C, Zhang L, Kolb D, Weber H, Ehinger A, Saile SC, Stahl M, Franz-Wachtel M, Li L, El Kasmi F, Nürnberger T, Cevik V, Kemmerling B. The Arabidopsis TIR-NBS-LRR protein CSA1 guards BAK1-BIR3 homeostasis and mediates convergence of pattern- and effector-induced immune responses. Cell Host Microbe 2022; 30:1717-1731.e6. [PMID: 36446350 DOI: 10.1016/j.chom.2022.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/14/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022]
Abstract
Arabidopsis BAK1/SERK3, a co-receptor of leucine-rich repeat pattern recognition receptors (PRRs), mediates pattern-triggered immunity (PTI). Genetic inactivation of BAK1 or BAK1-interacting receptor-like kinases (BIRs) causes cell death, but the direct mechanisms leading to such deregulation remains unclear. Here, we found that the TIR-NBS-LRR protein CONSTITUTIVE SHADE AVOIDANCE 1 (CSA1) physically interacts with BIR3, but not with BAK1. CSA1 mediates cell death in bak1-4 and bak1-4 bir3-2 mutants via components of effector-triggered immunity-(ETI) pathways. Effector HopB1-mediated perturbation of BAK1 also results in CSA1-dependent cell death. Likewise, microbial pattern pg23-induced cell death, but not PTI responses, requires CSA1. Thus, we show that CSA1 guards BIR3 BAK1 homeostasis and integrates pattern- and effector-mediated cell death pathways downstream of BAK1. De-repression of CSA1 in the absence of intact BAK1 and BIR3 triggers ETI cell death. This suggests that PTI and ETI pathways are activated downstream of BAK1 for efficient plant immunity.
Collapse
Affiliation(s)
- Sarina Schulze
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Liping Yu
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Chenlei Hua
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Lisha Zhang
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Dagmar Kolb
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Hannah Weber
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Alexandra Ehinger
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Svenja C Saile
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Mark Stahl
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Mirita Franz-Wachtel
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, 72076 Tübingen, Germany
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Farid El Kasmi
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Thorsten Nürnberger
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany; Department of Biochemistry, University of Johannesburg, Johannesburg 2001, South Africa
| | - Volkan Cevik
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Birgit Kemmerling
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
85
|
Xiang YH, Yu JJ, Liao B, Shan JX, Ye WW, Dong NQ, Guo T, Kan Y, Zhang H, Yang YB, Li YC, Zhao HY, Yu HX, Lu ZQ, Lin HX. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice. MOLECULAR PLANT 2022; 15:1908-1930. [PMID: 36303433 DOI: 10.1016/j.molp.2022.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/09/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Ongoing soil salinization drastically threatens crop growth, development, and yield worldwide. It is therefore crucial that we improve salt tolerance in rice by exploiting natural genetic variation. However, many salt-responsive genes confer undesirable phenotypes and therefore cannot be effectively applied to practical agricultural production. In this study, we identified a quantitative trait locus for salt tolerance from the African rice species Oryza glaberrima and named it as Salt Tolerance and Heading Date 1 (STH1). We found that STH1 regulates fatty acid metabolic homeostasis, probably by catalyzing the hydrolytic degradation of fatty acids, which contributes to salt tolerance. Meanwhile, we demonstrated that STH1 forms a protein complex with D3 and a vital regulatory factor in salt tolerance, OsHAL3, to regulate the protein abundance of OsHAL3 via the 26S proteasome pathway. Furthermore, we revealed that STH1 also serves as a co-activator with the floral integrator gene Heading date 1 to balance the expression of the florigen gene Heading date 3a under different circumstances, thus coordinating the regulation of salt tolerance and heading date. Notably, the allele of STH1 associated with enhanced salt tolerance and high yield is found in some African rice accessions but barely in Asian cultivars. Introgression of the STH1HP46 allele from African rice into modern rice cultivars is a desirable approach for boosting grain yield under salt stress. Collectively, our discoveries not only provide conceptual advances on the mechanisms of salt tolerance and synergetic regulation between salt tolerance and flowering time but also offer potential strategies to overcome the challenges resulted from increasingly serious soil salinization that many crops are facing.
Collapse
Affiliation(s)
- You-Huang Xiang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Jun Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ben Liao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hai Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi-Bing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Chao Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huai-Yu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xiao Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; University of the Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
86
|
Wang N, Yin Z, Zhao Y, Wang J, Pei Y, Ji P, Daly P, Li Z, Dou D, Wei L. An F-box protein attenuates fungal xylanase-triggered immunity by destabilizing LRR-RLP NbEIX2 in a SOBIR1-dependent manner. THE NEW PHYTOLOGIST 2022; 236:2202-2215. [PMID: 36151918 DOI: 10.1111/nph.18509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Receptor-like proteins (RLPs) lacking the cytoplasmic kinase domain play crucial roles in plant growth, development and immunity. However, what remains largely elusive is whether RLP protein levels are fine-tuned by E3 ubiquitin ligases, which are employed by receptor-like kinases for signaling attenuation. Nicotiana benthamiana NbEIX2 is a leucine-rich repeat RLP (LRR-RLP) that mediates fungal xylanase-triggered immunity. Here we show that NbEIX2 associates with an F-box protein NbPFB1, which promotes NbEIX2 degradation likely by forming an SCF E3 ubiquitin ligase complex, and negatively regulates NbEIX2-mediated immune responses. NbEIX2 undergoes ubiquitination and proteasomal degradation in planta. Interestingly, NbEIX2 without its cytoplasmic tail is still associated with and destabilized by NbPFB1. In addition, NbPFB1 also associates with and destabilizes NbSOBIR1, a co-receptor of LRR-RLPs, and fails to promote NbEIX2 degradation in the sobir1 mutant. Our findings reveal a distinct model of NbEIX2 degradation, in which an F-box protein destabilizes NbEIX2 indirectly in a SOBIR1-dependent manner.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Zhiyuan Yin
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yaning Zhao
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jinghao Wang
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Yong Pei
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peiyun Ji
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Paul Daly
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Zhengpeng Li
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, 223300, Huaian, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| |
Collapse
|
87
|
Guo X, Zhang D, Wang Z, Xu S, Batistič O, Steinhorst L, Li H, Weng Y, Ren D, Kudla J, Xu Y, Chong K. Cold-induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice. EMBO J 2022; 42:e110518. [PMID: 36341575 PMCID: PMC9811624 DOI: 10.15252/embj.2021110518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait. Here, we report that Oryza sativa Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL-interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of OsCRT3 knock-out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B-like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold-sensing mechanism that simultaneously conveys cold-induced protein conformational change, enhances kinase activity, and Ca2+ signal generation to facilitate chilling tolerance in rice.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Dajian Zhang
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Zhongliang Wang
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Shujuan Xu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Oliver Batistič
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms‐UniversitätMünsterGermany
| | - Leonie Steinhorst
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms‐UniversitätMünsterGermany
| | - Hao Li
- Laboratory of Soft Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms‐UniversitätMünsterGermany
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Kang Chong
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
88
|
Zhang Z, Yang S, Wang Q, Yu H, Zhao B, Wu T, Tang K, Ma J, Yang X, Feng X. Soybean GmHY2a encodes a phytochromobilin synthase that regulates internode length and flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6646-6662. [PMID: 35946571 PMCID: PMC9629791 DOI: 10.1093/jxb/erac318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Plant height and flowering time are important agronomic traits that directly affect soybean [Glycine max (L.) Merr.] adaptability and yield. Here, the Glycine max long internode 1 (Gmlin1) mutant was selected from an ethyl methyl sulfonate (EMS)-mutated Williams 82 population due to its long internodes and early flowering. Using bulked segregant analysis (BSA), the Gmlin1 locus was mapped to Glyma.02G304700, a homologue of the Arabidopsis HY2 gene, which encodes a phytochromobilin (PΦB) synthase involved in phytochrome chromophore synthesis. Mutation of GmHY2a results in failure of the de-etiolation response under both red and far-red light. The Gmlin1 mutant exhibits a constitutive shade avoidance response under normal light, and the mutations influence the auxin and gibberellin pathways to promote internode elongation. The Gmlin1 mutant also exhibits decreased photoperiod sensitivity. In addition, the soybean photoperiod repressor gene E1 is down-regulated in the Gmlin1 mutant, resulting in accelerated flowering. The nuclear import of phytochrome A (GmphyA) and GmphyB following light treatment is decreased in Gmlin1 protoplasts, indicating that the weak light response of the Gmlin1 mutant is caused by a decrease in functional phytochrome. Together, these results indicate that GmHY2a plays an important role in soybean phytochrome biosynthesis and provide insights into the adaptability of the soybean plant.
Collapse
Affiliation(s)
- Zhirui Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Qiushi Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Beifang Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Jingjing Ma
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Xinjing Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
89
|
Martin R, Liu F, Staskawicz B. Isolation of Protein Complexes from Tobacco Leaves by a Two-Step Tandem Affinity Purification. Curr Protoc 2022; 2:e572. [PMID: 36205456 DOI: 10.1002/cpz1.572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein purification is an essential method for understanding protein function, as many biochemical and structural techniques require a high concentration of isolated protein for analysis. Yet, many studies of protein complexes are hampered by our inability to express them recombinantly in model systems, generally due to poor expression or aggregation. When studying a protein complex that requires its host cellular environment for proper expression and folding, endogenous purification is typically required. Depending on the protein of interest, however, endogenous purification can be challenging because of low expression levels in the host and lack of knowledge working with a non-model expression system, resulting in yields that are too low for subsequent analysis. Here, we describe a protocol for the purification of protein complexes endogenous to Nicotiana benthamiana directly from leaf tissue, with yields that enable structural and biochemical characterization. The protein complex is overexpressed in Nicotiana benthamiana leaves via agroinfiltration, and the protein-packed leaves are then mechanically ground to release the complex from the cells. The protein complex is finally purified by a simple two-step tandem affinity purification using distinct affinity tags for each complex member, to ensure purification of the assembled complex. Our method yields enough protein for various biochemical or structural studies. We have previously used this protocol to purify the complex formed by an innate immune receptor native to tobacco, ROQ1, and the Xanthomonas effector XopQ, and to solve its structure by single-particle cryo-electron microscopy-we use this example to illustrate the approach. This protocol may serve as a template for the purification of proteins from N. benthamiana that require the plant's cellular environment and are expressed at low levels. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Expression of the protein complex in leaf tissue Basic Protocol 2: Tandem affinity purification of the ROQ1-XopQ complex.
Collapse
Affiliation(s)
- Raoul Martin
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Furong Liu
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Brian Staskawicz
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
90
|
Hu Y, Su C, Zhang Y, Li Y, Chen X, Shang H, Hu X. A Puccinia striiformis f. sp. tritici effector inhibits high-temperature seedling-plant resistance in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:249-267. [PMID: 35960661 DOI: 10.1111/tpj.15945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Resistance to Pseudomonas syringae pv. maculicola 1 (RPM1)-induced protein kinase (RIPK) in Arabidopsis belongs to the receptor-like cytoplasmic kinase (RLCK) family and plays a vital role in immunity. However, the role of RLCKs in the high-temperature seedling-plant (HTSP) resistance of wheat (Triticum aestivum) to Puccinia striiformis f. sp. tritici (Pst), the stripe rust pathogen, remains unclear. Here, we identified a homologous gene of RIPK in wheat, namely TaRIPK. Expression of TaRIPK was induced by Pst inoculation and high temperatures. Silencing of TaRIPK reduced the expression level of TaRPM1, resulting in weaker HTSP resistance. Moreover, TaRIPK interacts with and phosphorylates papain-like cysteine protease 1 (TaPLCP1). Meanwhile, we found that the Pst-secreted protein PSTG_01766 targets TaPLCP1. Transient expression of PSTG_01766 inhibited basal immunity in tobacco (Nicotiana benthamiana) and wheat. The role of PSTG_01766 as an effector involved in HTSP resistance was further supported by host-induced gene silencing and bacterial type three secretion system-mediated delivery into wheat. PSTG_01766 inhibited the TaRIPK-induced phosphorylation of TaPLCP1. Furthermore, PSTG_01766 has the potential to influence the subcellular localization of TaPLCP1. Overall, we suggest that the TaRIPK-TaPLCP1-TaRPM1 module fits the guard model for disease resistance, participating in HTSP resistance. PSTG_01766 decreases HTSP resistance via targeting TaPLCP1. Guarded by wheat and attacked by Pst, TaPLCP1 may serve as a central hub of the defense response. Our findings improve the understanding of the molecular mechanism of wheat HTSP resistance, which may be an important strategy for controlling stripe rust in the face of global warming.
Collapse
Affiliation(s)
- Yangshan Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chang Su
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuxiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xianming Chen
- Agricultural Research Service, United States Department of Agriculture and Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Hongsheng Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
91
|
Feng J, Deng Q, Lu H, Wei D, Wang Z, Tang Q. Brassica juncea BRC1-1 induced by SD negatively regulates flowering by directly interacting with BjuFT and BjuFUL promoter. FRONTIERS IN PLANT SCIENCE 2022; 13:986811. [PMID: 36247593 PMCID: PMC9561848 DOI: 10.3389/fpls.2022.986811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/12/2022] [Indexed: 06/01/2023]
Abstract
Flowering is crucial for sexual reproductive success in angiosperms. The core regulatory factors, such as FT, FUL, and SOC1, are responsible for promoting flowering. BRANCHED 1 (BRC1) is a TCP transcription factor gene that plays an important role in the regulation of branching and flowering in diverse plant species. However, the functions of BjuBRC1 in Brassica juncea are largely unknown. In this study, four homologs of BjuBRC1 were identified and the mechanism by which BjuBRC1 may function in the regulation of flowering time was investigated. Amino acid sequence analysis showed that BjuBRC1 contained a conserved TCP domain with two nuclear localization signals. A subcellular localization assay verified the nuclear localization of BjuBRC1. Expression analysis revealed that BjuBRC1-1 was induced by short days and was expressed abundantly in the leaf, flower, and floral bud but not in the root and stem in B. juncea. Overexpression of BjuBRC1-1 in the Arabidopsis brc1 mutant showed that BjuBRC1-1 delayed flowering time. Bimolecular fluorescent complementary and luciferase complementation assays showed that four BjuBRC1 proteins could interact with BjuFT in vivo. Notably, BjuBRC1 proteins formed heterodimers in vivo that may impact on their function of negatively regulating flowering time. Yeast one-hybrid, dual-luciferase reporter, and luciferase activity assays showed that BjuBRC1-1 could directly bind to the promoter of BjuFUL, but not BjuFT or BjuSOC1, to repress its expression. These results were supported by the reduced expression of AtFUL in transgenic Arabidopsis overexpressing BjuBRC1-1. Taken together, the results indicate that BjuBRC1 genes likely have a conserved function in the negative regulation of flowering in B. juncea.
Collapse
Affiliation(s)
- Junjie Feng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Qinlin Deng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Huanhuan Lu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| |
Collapse
|
92
|
Sun J, Zhang G, Cui Z, Kong X, Yu X, Gui R, Han Y, Li Z, Lang H, Hua Y, Zhang X, Xu Q, Tang L, Xu Z, Ma D, Chen W. Regain flood adaptation in rice through a 14-3-3 protein OsGF14h. Nat Commun 2022; 13:5664. [PMID: 36175427 PMCID: PMC9522936 DOI: 10.1038/s41467-022-33320-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Contemporary climatic stress seriously affects rice production. Unfortunately, long-term domestication and improvement modified the phytohormones network to achieve the production needs of cultivated rice, thus leading to a decrease in adaptation. Here, we identify a 14-3-3 protein-coding gene OsGF14h in weedy rice that confers anaerobic germination and anaerobic seedling development tolerance. OsGF14h acts as a signal switch to balance ABA signaling and GA biosynthesis by interacting with the transcription factors OsHOX3 and OsVP1, thereby boosting the seeding rate from 13.5% to 60.5% for anaerobic sensitive variety under flooded direct-seeded conditions. Meanwhile, OsGF14h co-inheritance with the Rc (red pericarp gene) promotes divergence between temperate japonica cultivated rice and temperate japonica weedy rice through artificial and natural selection. Our study retrieves a superior allele that has been lost during modern japonica rice improvement and provides a fine-tuning tool to improve flood adaptation for elite rice varieties.
Collapse
Affiliation(s)
- Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Guangchen Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhibo Cui
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ximan Kong
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoyu Yu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rui Gui
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuqing Han
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhuan Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hong Lang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuchen Hua
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xuemin Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Liang Tang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhengjin Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
93
|
Cui X, Lv M, Cao Y, Li Z, Liu Y, Ren Z, Zhang H. NUA and ESD4 negatively regulate ABA signaling during seed germination. STRESS BIOLOGY 2022; 2:38. [PMID: 37676575 PMCID: PMC10442006 DOI: 10.1007/s44154-022-00062-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 09/08/2023]
Abstract
The phytohormone abscisic acid (ABA) plays important roles in plant growth, development and adaptative responses to abiotic stresses. SNF1-related protein kinase 2s (SnRK2) are key components that activate the ABA core signaling pathway. NUCLEAR PORE ANCHOR (NUA) is a component of the nuclear pore complex (NPC) that involves in deSUMOylation through physically interacting with the EARLY IN SHORT DAYS 4 (ESD4) SUMO protease. However, it is not clear how NUA functions with SnRK2 and ESD4 to regulate ABA signaling. In our study, we found that nua loss-of-function mutants exhibited pleiotropic ABA-hypersensitive phenotype. We also found that ABA-responsive genes remarkably up-regulated in nua by exogenous ABA. The nua snrk2.2 snrk2.3 triple mutant and nua abi5 double mutant partially rescued the ABA-hypersensitive phenotype of nua, thereby suggesting that NUA is epistatic to SnRK2s. Additionally, we observed that esd4-3 mutant was also ABA-hypersensitive. NUA and ESD4 were further demonstrated to physically interact with SnRK2s and negatively regulate ABA signaling by reducing SnRK2s stability. Taken together, our findings uncover a new regulatory mechanism that can modulate ABA signaling.
Collapse
Affiliation(s)
- Xiaona Cui
- College of Life sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengyang Lv
- College of Life sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuanyuan Cao
- College of Life sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ziwen Li
- College of Life sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yan Liu
- College of Life sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhenzhen Ren
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hairong Zhang
- College of Life sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
94
|
Gao X, Dang X, Yan F, Li Y, Xu J, Tian S, Li Y, Huang K, Lin W, Lin D, Wang Z, Wang A. ANGUSTIFOLIA negatively regulates resistance to Sclerotinia sclerotiorum via modulation of PTI and JA signalling pathways in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2022; 23:1091-1106. [PMID: 35426480 PMCID: PMC9276947 DOI: 10.1111/mpp.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Sclerotinia sclerotiorum is a devastating pathogen that infects a broad range of host plants. The mechanism underlying plant defence against fungal invasion is still not well characterized. Here, we report that ANGUSTIFOLIA (AN), a CtBP family member, plays a role in the defence against S. sclerotiorum attack. Arabidopsis an mutants exhibited stronger resistance to S. sclerotiorum at the early stage of infection than wild-type plants. Accordingly, an mutants exhibited stronger activation of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses, including mitogen-activated protein kinase activation, reactive oxygen species accumulation, callose deposition, and the expression of PTI-responsive genes, upon treatment with PAMPs/microbe-associated molecular patterns. Moreover, Arabidopsis lines overexpressing AN were more susceptible to S. sclerotiorum and showed defective PTI responses. Our luminometry, bimolecular fluorescence complementation, coimmunoprecipitation, and in vitro pull-down assays indicate that AN interacts with allene oxide cyclases (AOC), essential enzymes involved in jasmonic acid (JA) biosynthesis, negatively regulating JA biosynthesis in response to S. sclerotiorum infection. This work reveals AN is a negative regulator of the AOC-mediated JA signalling pathway and PTI activation.
Collapse
Affiliation(s)
- Xiuqin Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xie Dang
- Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fengting Yan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuhua Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jing Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shifu Tian
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yaling Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Kun Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wenwei Lin
- Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Deshu Lin
- Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Marine and Agricultural Biotechnology CenterInstitute of OceanographyMinjiang UniversityFuzhouChina
| | - Airong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
95
|
Zheng X, Fang A, Qiu S, Zhao G, Wang J, Wang S, Wei J, Gao H, Yang J, Mou B, Cui F, Zhang J, Liu J, Sun W. Ustilaginoidea virens secretes a family of phosphatases that stabilize the negative immune regulator OsMPK6 and suppress plant immunity. THE PLANT CELL 2022; 34:3088-3109. [PMID: 35639755 PMCID: PMC9338817 DOI: 10.1093/plcell/koac154] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 05/16/2023]
Abstract
Rice false smut caused by Ustilaginoidea virens is emerging as a devastating disease of rice (Oryza sativa) worldwide; however, the molecular mechanisms underlying U. virens virulence and pathogenicity remain largely unknown. Here we demonstrate that the small cysteine-rich secreted protein SCRE6 in U. virens is translocated into host cells during infection as a virulence factor. Knockout of SCRE6 leads to attenuated U. virens virulence to rice. SCRE6 and its homologs in U. virens function as a novel family of mitogen-activated protein kinase phosphatases harboring no canonical phosphatase motif. SCRE6 interacts with and dephosphorylates the negative immune regulator OsMPK6 in rice, thus enhancing its stability and suppressing plant immunity. Ectopic expression of SCRE6 in transgenic rice promotes pathogen infection by suppressing the host immune responses. Our results reveal a previously unidentified fungal infection strategy in which the pathogen deploys a family of tyrosine phosphatases to stabilize a negative immune regulator in the host plant to facilitate its infection.
Collapse
Affiliation(s)
- Xinhang Zheng
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Anfei Fang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
- College of Plant Protection, Southwest University, Chongqing, China
| | - Shanshan Qiu
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Guosheng Zhao
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiyang Wang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Shanzhi Wang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Junjun Wei
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Han Gao
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiyun Yang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Baohui Mou
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Fuhao Cui
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jie Zhang
- Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Jun Liu
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | | |
Collapse
|
96
|
Wang X, He M, Liu H, Ding H, Liu K, Li Y, Cheng P, Li Q, Wang B. Functional Characterization of the M36 Metalloprotease FgFly1 in Fusarium graminearum. J Fungi (Basel) 2022; 8:jof8070726. [PMID: 35887481 PMCID: PMC9316299 DOI: 10.3390/jof8070726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
Fungalysin metallopeptidase (M36), a hydrolase, catalyzes the hydrolysis of alanine, glycine, etc. Normally, it is considered to play an important role in the progress of fungal infection. However, the function of fungalysin metallopeptidase (M36) in Fusarium graminearum has not been reported. In this study, we explored the biological functions of FgFly1, a fungalysin metallopeptidase (M36) of F. graminearum. We found that ΔFgFly1 did not affect the ability to produce DON toxin, although it inhibited spore germination during asexual reproduction and reduction in pathogenicity compared with PH-1. Therefore, we speculated that FgFly1 affects the pathogenicity of F.graminearum by affecting pathways related to wheat disease resistance. Target protein TaCAMTA (calmodulin-binding transcription activator) was selected by a yeast two-hybrid (Y2H) system. Then, the interaction between FgFly1 and TaCAMTA was verified by bimolecular fluorescent complimentary (BiFC) and luciferase complementation assay (LCA). Furthermore, compared with wild-type Arabidopsis thaliana, the morbidity level of ΔAtCAMTA was increased after infection with F.graminearum, and the expression level of NPR1 was significantly reduced. Based on the above results, we concluded that FgFly1 regulated F. graminearum pathogenicity by interacting with host cell CAMTA protein.
Collapse
|
97
|
Zhang Q, Chen S, Bao Y, Wang D, Wang W, Chen R, Li Y, Xu G, Feng X, Liang X, Dou D. Functional Diversification Analysis of Soybean Malectin/Malectin-Like Domain-Containing Receptor-Like Kinases in Immunity by Transient Expression Assays. FRONTIERS IN PLANT SCIENCE 2022; 13:938876. [PMID: 35812924 PMCID: PMC9260666 DOI: 10.3389/fpls.2022.938876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Plants have responded to microbial pathogens by evolving a two-tiered immune system, involving pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). Malectin/malectin-like domain-containing receptor-like kinases (MRLKs) have been reported to participate in many biological functions in plant including immunity and resistance. However, little is known regarding the role of MRLKs in soybean immunity. This is a crucial question to address because soybean is an important source of oil and plant proteins, and its production is threatened by various pathogens. Here, we systematically identified 72 Glycine max MRLKs (GmMRLKs) and demonstrated that many of them are transcriptionally induced or suppressed in response to infection with microbial pathogens. Next, we successfully cloned 60 GmMRLKs and subsequently characterized their roles in plant immunity by transiently expressing them in Nicotiana benthamiana, a model plant widely used to study host-pathogen interactions. Specifically, we examined the effect of GmMRLKs on PTI responses and noticed that a number of GmMRLKs negatively regulated the reactive oxygen species burst induced by flg22 and chitin, and cell death triggered by XEG1 and INF1. We also analyzed the microbial effectors AvrB- and XopQ-induced hypersensitivity response and identified several GmMRLKs that suppressed ETI activation. We further showed that GmMRLKs regulate immunity probably by coupling to the immune receptor complexes. Furthermore, transient expression of several selected GmMRLKs in soybean hairy roots conferred reduced resistance to soybean pathogen Phytophthora sojae. In summary, we revealed the common and specific roles of GmMRLKs in soybean immunity and identified a number of GmMRLKs as candidate susceptible genes that may be useful for improving soybean resistance.
Collapse
Affiliation(s)
- Qian Zhang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuxian Chen
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yazhou Bao
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Dongmei Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Weijie Wang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Rubin Chen
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yixin Li
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Guangyuan Xu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Xiangxiu Liang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Daolong Dou
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
98
|
Li J, Deng F, Wang H, Qiang X, Meng Y, Shan W. The Raf-like kinase Raf36 negatively regulates plant resistance against the oomycete pathogen Phytophthora parasitica by targeting MKK2. MOLECULAR PLANT PATHOLOGY 2022; 23:530-542. [PMID: 34935273 PMCID: PMC8916217 DOI: 10.1111/mpp.13176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 05/16/2023]
Abstract
Oomycetes represent a unique group of plant pathogens that are phylogenetically distant from true fungi and cause significant crop losses and environmental damage. Understanding of the genetic basis of host plant susceptibility facilitates the development of novel disease resistance strategies. In this study, we report the identification of an Arabidopsis thaliana T-DNA mutant with enhanced resistance to Phytophthora parasitica with an insertion in the Raf-like mitogen-activated protein kinase kinase kinase gene Raf36. We generated additional raf36 mutants by CRISPR/Cas9 technology as well as Raf36 complementation and overexpression transformants, with consistent results of infection assays showing that Raf36 mediates Arabidopsis susceptibility to P. parasitica. Using a virus-induced gene silencing assay, we silenced Raf36 homologous genes in Nicotiana benthamiana and demonstrated by infection assays the conserved immune function of Raf36. Mutagenesis analyses indicated that the kinase activity of Raf36 is important for its immune function and interaction with MKK2, a MAPK kinase. By generating and analysing mkk2 mutants and MKK2 complementation and overexpression transformants, we found that MKK2 is a positive immune regulator in the response to P. parasitica infection. Furthermore, infection assay on mkk2 raf36 double mutant plants indicated that MKK2 is required for the raf36-conferred resistance to P. parasitica. Taken together, we identified a Raf-like kinase Raf36 as a novel plant susceptibility factor that functions upstream of MKK2 and directly targets it to negatively regulate plant resistance to P. parasitica.
Collapse
Affiliation(s)
- Jinfang Li
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Fengyan Deng
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Hongmei Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Xiaoyu Qiang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of AgronomyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
99
|
Feng T, Wang L, Li L, Liu Y, Chong K, Theißen G, Meng Z. OsMADS14 and NF-YB1 cooperate in the direct activation of OsAGPL2 and Waxy during starch synthesis in rice endosperm. THE NEW PHYTOLOGIST 2022; 234:77-92. [PMID: 35067957 DOI: 10.1111/nph.17990] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/03/2022] [Indexed: 05/02/2023]
Abstract
Starch synthesis makes a dramatic contribution to the yield and nutritional value of cereal crops. Although several starch synthesis enzymes and related regulators have been reported, the underlying regulatory mechanisms of starch synthesis remain largely unknown. OsMADS14 is a FRUITFULL (FUL)-like MADS-box gene in rice (Oryza sativa). Here we show that two null mutations of OsMADS14 result in a shrunken and chalky grain phenotype. It is caused by obviously defective compound starch granules and a significantly reduced content of both total starch and amylose in the endosperm. Transcriptomic profiling analyses revealed that the loss-of-function of OsMADS14 leads to significantly downregulated expression of many core starch synthesis genes, including OsAGPL2 and Waxy. Both in vitro and in vivo assays demonstrate that the OsMADS14 protein directly binds to stretches of DNA with a CArG-box consensus in the putative regulatory regions of OsAGPL2 and Waxy. Protein-protein interaction experiments also suggest that OsMADS14 interacts with nuclear factor NF-YB1 to promote the transcription of OsAGPL2 and Waxy. Our study thus demonstrates that OsMADS14 plays an essential role in the synthesis of storage starch and provides novel insights into the underlying molecular mechanism that may be used to improve rice cultivars by molecular breeding.
Collapse
Affiliation(s)
- Tingting Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Laiyun Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, D-07743, Germany
| | - Zheng Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
100
|
Zhao Y, Shi Y, Jiang G, Wu Y, Ma M, Zhang X, Liang X, Zhou JM. Rice extra-large G proteins play pivotal roles in controlling disease resistance and yield-related traits. THE NEW PHYTOLOGIST 2022; 234:607-617. [PMID: 35090194 DOI: 10.1111/nph.17997] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
To better explore the potential of rice extra-large G (XLG) proteins in future breeding, we characterised the function of OsXLG1, OsXLG2 and OsXLG3 in disease resistance. Loss-of-function Osxlg2 and Osxlg3 mutants showed reduced resistance to the fungal pathogen Magnaporthe oryzae, whereas Osxlg1 mutants were specifically compromised in resistance to the bacterial pathogen Xanthomonas oryzae pv oryzae. Consistent with their effects on rice blast resistance, mutations in OsXLG2 and OsXLG3 caused greater defects than did mutations in OsXLG1 for chitin-induced defence responses. All three OsXLGs interacted with components of a surface immune receptor complex composed of OsCERK1, OsRLCK176 and OsRLCK185. Further characterisation of yield-related traits showed that the Osxlg3 mutants displayed reduced plant height, panicle length and 1000grain weight, whereas Osxlg1 mutants exhibited increased plant height, panicle length and 1000-grain weight. Together the study shows the differential contributions of the three OsXLG proteins to disease resistance to fungal and bacterial pathogens, their yield-related traits and provides insights for future improvement of rice production.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiyun Shi
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guanghuai Jiang
- Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yufeng Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Miaomiao Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|