51
|
Nakano M, Kawaguchi T, Nakamoto S, Kawaguchi A, Kanda T, Imazeki F, Kuromatsu R, Sumie S, Satani M, Yamada S, Torimura T, Kakuma T, Yokosuka O, Sata M. Effect of occult hepatitis B virus infection on the early-onset of hepatocellular carcinoma in patients with hepatitis C virus infection. Oncol Rep 2013; 30:2049-55. [PMID: 23982634 DOI: 10.3892/or.2013.2700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 08/02/2013] [Indexed: 11/05/2022] Open
Abstract
Although overt hepatitis B virus (HBV) infection promotes the onset of hepatocellular carcinoma (HCC) in hepatitis C virus (HCV)-infected patients, the effect of occult HBV infection remains unclear. The aim of this study was to investigate the effect of occult HBV infection on the early-onset of HCC in HCV-infected patients. A total of 173 HCC patients with HCV infection were enrolled and classified into 2 groups according to the median age of HCC onset: the early-onset group (n=91; 61.1±5.6 years) and the late-onset group (n=82; 73.8±3.7 years). Independent factors associated with the early-onset of HCC were assessed by multivariate analysis. In the overall analysis, independent risk factors for the early-onset of HCC were the white blood cell count and alanine aminotransferase level, but not the presence of HBV DNA. In a stratification analysis according to albumin levels of ≥3.5 g/dl, the presence of HBV DNA was a significant independent risk factor for the early-onset of HCC (OR 145.18, 95% CI 1.38-15296.61, P=0.036), whereas the presence of antibodies against hepatitis B core antigen was not found to be a risk factor. The presence of HBV DNA was not a risk factor for the early-onset of HCC in the overall analysis. However, its presence was an independent factor for the early-onset of HCC in HCV-infected patients with an albumin level of ≥3.5 g/dl. Thus, occult HBV infection may accelerate hepatocarcino-genesis in HCV-infected patients with relatively low carcinogenic potential.
Collapse
Affiliation(s)
- Masahito Nakano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Iwama T, Horie K, Yoshikawa T, Nobuoka D, Shimomura M, Sawada Y, Nakatsura T. Identification of an H2-Kb or H2-Db restricted and glypican-3-derived cytotoxic T-lymphocyte epitope peptide. Int J Oncol 2013; 42:831-8. [PMID: 23354275 PMCID: PMC3597455 DOI: 10.3892/ijo.2013.1793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/28/2012] [Indexed: 01/30/2023] Open
Abstract
Glypican-3 (GPC3) is overexpressed in human hepatocellular carcinoma (HCC) but not expressed in normal tissues except for placenta and fetal liver and therefore is an ideal target for cancer immunotherapy. In this study, we identified an H2-Kb or H2-Db restricted and murine GPC3 (mGPC3)-derived cytotoxic T-lymphocyte (CTL) epitope peptide in C57BL/6 (B6) mice, which can be used in the design of preclinical studies of various therapies with GPC3-target immunotherapy in vivo. First, 11 types of 9- to 10-mer peptides predicted to bind with H2-Kb or H2-Db were selected from the mGPC3 amino acid sequence based on the binding score as calculated by the BIMAS software. We evaluated the peptide-binding affinity and confirmed that all peptides were able to bind to H2-Kb or H2-Db by in vitro cellular binding assay. Subsequently, a mixed peptide vaccine and single peptide vaccine were given to B6 mice to evaluate immunogenic potential of the 11 selected peptides. Using the splenocytes from peptide-vaccinated mice, interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) assays showed that mGPC3-1127–136 (AMFKNNYPSL) peptide was the most efficient for inducing CTLs among the 11 peptides. Next, we demonstrated that the mGPC3-1 peptide-specific CTL line could recognize mGPC3-expressing cancer cells, suggesting that mGPC3-1 peptide was an endogenously presented peptide. In conclusion, we identified mGPC3-1 as an H2-Kb or H2-Db restricted, mGPC3-derived CTL epitope peptide.
Collapse
Affiliation(s)
- Tatsuaki Iwama
- Division of Cancer Immunotherapy, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
53
|
Liu W, Chen JR, Hsu CH, Li YH, Chen YM, Lin CY, Huang SJ, Chang ZK, Chen YC, Lin CH, Gong HY, Lin CC, Kawakami K, Wu JL. A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver. Hepatology 2012; 56:2268-76. [PMID: 22729936 DOI: 10.1002/hep.25914] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 06/09/2012] [Indexed: 12/25/2022]
Abstract
UNLABELLED The mechanisms that mediate the initiation and development of intrahepatic cholangiocarcinoma (ICC) associated with hepatitis B and C virus (HBV and HCV, respectively) infection remain largely unclear. In this study we conditionally coexpressed hepatitis B virus X (HBx) and hepatitis C virus core (HCP) proteins in zebrafish livers, which caused fibrosis and consequently contributed to ICC formation at the age of 3 months. Suppressing the transgene expression by doxycycline (Dox) treatment resulted in the loss of ICC formation. The biomarker networks of zebrafish ICC identified by transcriptome sequencing and analysis were also frequently involved in the development of human neoplasms. The profiles of potential biomarker genes of zebrafish ICC were similar to those of human cholangiocarcinoma. Our data also showed that the pSmad3L oncogenic pathway was activated in HBx and HCP-induced ICC and included phosphorylation of p38 mitogen-activated proteinbase (MAPK) and p44/42 mitogen-activated protein kinase (ERK1/2), indicating the association with transforming growth factor beta 1 (TGF-β1) signaling pathway in ICC. Bile duct proliferation, fibrosis, and ICC were markedly reduced by knockdown of TGF-β1 by in vivo morpholinos injections. CONCLUSION These results reveal that TGF-β1 plays an important role in HBx- and HCP-induced ICC development. This in vivo model is a potential approach to study the molecular events of fibrosis and ICC occurring in HBV and HCV infection.
Collapse
Affiliation(s)
- Wangta Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Altered binding site selection of p53 transcription cassettes by hepatitis B virus X protein. Mol Cell Biol 2012; 33:485-97. [PMID: 23149944 DOI: 10.1128/mcb.01189-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The key cellular regulator p53 is a common target of viral oncoproteins. However, the mechanism by which p53 transcription regulation is modulated by hepatitis B virus X protein (HBx), a transcription cofactor implicated in hepatitis B virus-associated hepatocellular carcinoma (HCC), is poorly understood. By integrating p53 chromatin immunoprecipitation (ChIP)-on-chip and expression profiling of an HBx-expressing cell culture system, we report that HBx alters p53 binding site selectivity in the regulatory regions of genes, and this is associated with their aberrant expression. Using an HBx-deregulated gene, p53AIP1, as a model, we show that HBx aberrantly increases p53AIP1 expression by conferring p53 selectivity for a more conserved binding site in its regulatory region. We further demonstrate that HBx-deregulated increased p53AIP1 expression is relevant in HCC livers and define a functional role for p53AIP1 in mediating HBx-induced apoptosis in vitro. Significantly, we provide evidence that specific p53-associated transcription cofactors and coregulators are differentially recruited in the presence of HBx, effecting a PCAF-mediated "p53 Lys320 acetylation switch" that results in altered binding site selection of distinct p53 transcription cassettes. The findings here clarify the role of HBx in modulating p53 transcription regulation and provide a novel mechanistic insight into this deregulation.
Collapse
|
55
|
Rawat S, Clippinger AJ, Bouchard MJ. Modulation of apoptotic signaling by the hepatitis B virus X protein. Viruses 2012; 4:2945-72. [PMID: 23202511 PMCID: PMC3509679 DOI: 10.3390/v4112945] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/23/2012] [Accepted: 10/31/2012] [Indexed: 12/18/2022] Open
Abstract
Worldwide, an estimated 350 million people are chronically infected with the Hepatitis B Virus (HBV); chronic infection with HBV is associated with the development of severe liver diseases including hepatitis and cirrhosis. Individuals who are chronically infected with HBV also have a significantly higher risk of developing hepatocellular carcinoma (HCC) than uninfected individuals. The HBV X protein (HBx) is a key regulatory HBV protein that is important for HBV replication, and likely plays a cofactor role in the development of HCC in chronically HBV-infected individuals. Although some of the functions of HBx that may contribute to the development of HCC have been characterized, many HBx activities, and their putative roles during the development of HBV-associated HCC, remain incompletely understood. HBx is a multifunctional protein that localizes to the cytoplasm, nucleus, and mitochondria of HBV‑infected hepatocytes. HBx regulates numerous cellular signal transduction pathways and transcription factors as well as cell cycle progression and apoptosis. In this review, we will summarize reports in which the impact of HBx expression on cellular apoptotic pathways has been analyzed. Although various effects of HBx on apoptotic pathways have been observed in different model systems, studies of HBx activities in biologically relevant hepatocyte systems have begun to clarify apoptotic effects of HBx and suggest mechanisms that could link HBx modulation of apoptotic pathways to the development of HBV-associated HCC.
Collapse
Affiliation(s)
- Siddhartha Rawat
- Graduate Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19102, USA;
| | - Amy J. Clippinger
- Department of Cancer Biology, Abramson Family Cancer Research Institute, School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA;
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
56
|
Smolle E, Zöhrer E, Bettermann K, Haybaeck J. Viral hepatitis induces hepatocellular cancer: what can we learn from epidemiology comparing iran and worldwide findings? HEPATITIS MONTHLY 2012; 12:e7879. [PMID: 23233866 PMCID: PMC3517808 DOI: 10.5812/hepatmon.7879] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/01/2012] [Accepted: 09/25/2012] [Indexed: 02/07/2023]
Abstract
CONTEXT Several risk factors play the role in the development of hepatocellular carcinoma (HCC) from which chronic hepatitis B and C infections are the most important ones. DNA integration of hepatitis viruses alters the function of critical genes promoting malignant transformation of virus-infected liver cells. EVIDENCE ACQUISITION There are remarkable geographic differences in prevalence of chronic viral hepatitis and incidence of HCC. Middle Eastern countries are characterized by a moderate to high prevalence rate of chronic viral hepatitis in the population. This review discusses about epidemiologic findings of hepatitis B and C infections, and HCC, as well as focuses on Middle East countries, particularly Iran. We provide an overview about risk factors, prevention and treatment, and bring up the role of HCC induced by chronic viral hepatitis. RESULTS Vaccination against hepatitis B virus (HBV) in the early childhood is highly effective to lower infection rates, substantially. For hepatitis C, adequate hygiene when dealing with human blood and screening programs for blood donors can mainly reduce infection rates. As HCC is strongly associated with chronic viral hepatitis, prevention against the infection is crucial for preventing against HCC too. CONCLUSIONS Although prevention and treatment of chronic hepatitis B and C have improved within the last decades even in high-risk countries, effective and sustainable reduction of these infections still needs more actions.
Collapse
Affiliation(s)
| | - Evelyn Zöhrer
- Institute of Pathology, Medical University Graz, Graz, Austria
| | - Kira Bettermann
- Institute of Pathology, Medical University Graz, Graz, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Medical University Graz, Graz, Austria
- Corresponding author: Johannes Haybaeck, Institute of Pathology, Medical University Graz, Graz, Austria. Tel.: +43-31638580594, Fax: +43-316384329, E-mail:
| |
Collapse
|
57
|
Xie C, Song LB, Wu JH, Li J, Yun JP, Lai JM, Xie DY, Lin BL, Yuan YF, Li M, Gao ZL. Upregulator of cell proliferation predicts poor prognosis in hepatocellular carcinoma and contributes to hepatocarcinogenesis by downregulating FOXO3a. PLoS One 2012; 7:e40607. [PMID: 22815774 PMCID: PMC3398045 DOI: 10.1371/journal.pone.0040607] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/11/2012] [Indexed: 12/31/2022] Open
Abstract
Objective The goal of the present study was to investigate the potential correlation between the expression level of upregulator of cell proliferation (URGCP/URG4) and the prognosis of hepatocellular carcinoma (HCC), and to examine the biological function of URGCP/URG4 in the progression of HCC, to better understand its underlying molecular mechanism in hepatic tumorigenesis. Design URGCP/URG4 expression was analyzed in 15 HCC cell lines, in 278 archived paraffin-embedded HCC sections, and in 10 pairs of fresh HCC tumor and para-tumor non-cancerous tissues using immunohistochemistry (IHC) and Western blotting analysis (WB). The effect of URGCP/URG4 on cell proliferation and tumorigenesis was examined in vitro and in vivo. WB and luciferase reporter analyses were performed to identify the effects of URGCP/URG4-overexpression or -knockdown on expression of cell cycle regulators and transcriptional activity of FOXO3a. Results IHC results revealed an upregulation of URGCP/URG4 in all HCC cell lines and fresh HCC samples as compared with normal liver cells and para-tumor tissues, respectively. URGCP/URG4 was also expressed at a high level in 122 of the 278 (43.8%) archived HCC specimens. The expression level of URGCP/URG4 was significantly correlated with clinical staging and poor patient survival of HCC in the study cohort, and in various clinical subgroups. Strikingly, ectopic expression of URGCP/URG4 induced proliferation and anchorage-independent growth of HCC cells, while silencing of URGCP/URG4 had the opposite effect. Furthermore, URGCP/URG4 overexpression in HCC cells increased cellular entry into the G1/S transitional phase, associated with downregulation of p27Kip1 and p21Cip1 and upregulation of cyclin D1. These effects were accompanied by enhanced Akt activity and reduced FOXO3a transcriptional activity. Conclusions URGCP/URG4 plays an important role in promoting proliferation and tumorigenesis of HCC and may represent a novel prognostic biomarker and therapeutic target for this disease.
Collapse
Affiliation(s)
- Chan Xie
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Li-bing Song
- Department of Experimental Research, Sun Yat-sen University, Guangzhou, China
| | - Jue-heng Wu
- Department of Microbiology, Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Jing-ping Yun
- Department of Pathology, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Jia-ming Lai
- Department of hepatobiliary surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Dong-ying Xie
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Bing-liang Lin
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yun-fei Yuan
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengfeng Li
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- * E-mail: (ZG); (ML)
| | - Zhi-liang Gao
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- * E-mail: (ZG); (ML)
| |
Collapse
|
58
|
Vrancken K, Paeshuyse J, Liekens S. Angiogenic activity of hepatitis B and C viruses. Antivir Chem Chemother 2012; 22:159-70. [PMID: 22182803 DOI: 10.3851/imp1987] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2011] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. The limited treatment options and poor prognosis of HCC patients underscore the importance of developing new therapeutic strategies. Infection with HBV and HCV are the major risk factors for developing HCC. While the precise molecular mechanisms that link HBV and HCV infections to the development and progression of HCC are not entirely understood, increasing evidence indicates that stimulation of angiogenesis by these viruses may contribute to HCC malignancy. In this review, we summarize the progress in understanding the role of HBV and HCV infection in liver and HCC angiogenesis, the mechanisms applied by these viruses to deregulate the angiogenic balance and the potential therapeutic options that come with this understanding.
Collapse
|
59
|
Mason WS. Hepadnaviruses and Hepatocellular Carcinoma. CANCER ASSOCIATED VIRUSES 2012:531-569. [DOI: 10.1007/978-1-4614-0016-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
60
|
The hepatitis B virus X protein elevates cytosolic calcium signals by modulating mitochondrial calcium uptake. J Virol 2011; 86:313-27. [PMID: 22031934 DOI: 10.1128/jvi.06442-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infections are associated with the development of hepatocellular carcinoma (HCC). The HBV X protein (HBx) is thought to play an important role in the development of HBV-associated HCC. One fundamental HBx function is elevation of cytosolic calcium signals; this HBx activity has been linked to HBx stimulation of cell proliferation and transcription pathways, as well as HBV replication. Exactly how HBx elevates cytosolic calcium signals is not clear. The studies described here show that HBx stimulates calcium entry into cells, resulting in an increased plateau level of inositol 1,4,5-triphosphate (IP3)-linked calcium signals. This increased calcium plateau can be inhibited by blocking mitochondrial calcium uptake and store-operated calcium entry (SOCE). Blocking SOCE also reduced HBV replication. Finally, these studies also demonstrate that there is increased mitochondrial calcium uptake in HBx-expressing cells. Cumulatively, these studies suggest that HBx can increase mitochondrial calcium uptake and promote increased SOCE to sustain higher cytosolic calcium and stimulate HBV replication.
Collapse
|
61
|
Na B, Huang Z, Wang Q, Qi Z, Tian Y, Lu CC, Yu J, Hanes MA, Kakar S, Huang EJ, Ou JHJ, Liu L, Yen TSB. Transgenic expression of entire hepatitis B virus in mice induces hepatocarcinogenesis independent of chronic liver injury. PLoS One 2011; 6:e26240. [PMID: 22022578 PMCID: PMC3192172 DOI: 10.1371/journal.pone.0026240] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/22/2011] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the third leading cause of cancer deaths worldwide, is most commonly caused by chronic hepatitis B virus (HBV) infection. However, whether HBV plays any direct role in carcinogenesis, other than indirectly causing chronic liver injury by inciting the host immune response, remains unclear. We have established two independent transgenic mouse lines expressing the complete genome of a mutant HBV ("preS2 mutant") that is found at much higher frequencies in people with HCC than those without. The transgenic mice show evidence of stress in the endoplasmic reticulum (ER) and overexpression of cyclin D1 in hepatocytes. These mice do not show any evidence of chronic liver injury, but by 2 years of age a majority of the male mice develop hepatocellular neoplasms, including HCC. Unexpectedly, we also found a significant increase in hepatocarcinogenesis independent of necroinflammation in a transgenic line expressing the entire wildtype HBV. As in the mutant HBV mice, HCC was found only in aged--2-year-old--mice of the wildtype HBV line. The karyotype in all the three transgenic lines appears normal and none of the integration sites of the HBV transgene in the mice is near an oncogene or tumor suppressor gene. The significant increase of HCC incidence in all the three transgenic lines--expressing either mutant or wildtype HBV--therefore argues strongly that in absence of chronic necroinflammation, HBV can contribute directly to the development of HCC.
Collapse
Affiliation(s)
- Bing Na
- Pathology Service, Veterans Administration Medical Center, San Francisco, California, United States of America
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Zhiming Huang
- Pathology Service, Veterans Administration Medical Center, San Francisco, California, United States of America
| | - Qian Wang
- Pathology Service, Veterans Administration Medical Center, San Francisco, California, United States of America
| | - Zhongxia Qi
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Yongjun Tian
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America
| | - Cheng-Chan Lu
- Department of Pathology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Jingwei Yu
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Martha A. Hanes
- Department of Laboratory Animal Resources, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Sanjay Kakar
- Pathology Service, Veterans Administration Medical Center, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Eric J. Huang
- Pathology Service, Veterans Administration Medical Center, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - J.-H. James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America
| | - Limin Liu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - T. S. Benedict Yen
- Pathology Service, Veterans Administration Medical Center, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
62
|
Zhao J, Wang C, Wang J, Yang X, Diao N, Li Q, Wang W, Xian L, Fang Z, Yu L. E3 ubiquitin ligase Siah-1 facilitates poly-ubiquitylation and proteasomal degradation of the hepatitis B viral X protein. FEBS Lett 2011; 585:2943-50. [PMID: 21878328 DOI: 10.1016/j.febslet.2011.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 07/23/2011] [Accepted: 08/09/2011] [Indexed: 11/15/2022]
Abstract
Hepatitis B viral X protein (HBx) is a multifunctional transactivator and implicated in hepatitis B virus (HBV) replication and hepatocarcinogenesis. HBx can be ubiquitinated and degraded through ubiquitin-proteasome pathway. However, the E3 ubiquitin ligase regulating HBx ubiquitin-dependent degradation is still unknown. In this study, we identified Siah-1 as a novel E3 ubiquitin ligase for HBx, which interacted with HBx and facilitated HBx poly-ubiquitylation and proteasomal degradation. Co-expression of Siah-1 attenuated the transcriptional transactivation of HBx on glucocorticoid response element (GRE), heat shock response element (HSE) and cAMP response element (CRE) signal pathways. Moreover, Siah-1 participated in p53-mediated HBx degradation. Therefore, Siah-1 may play important roles in ubiquitin-dependent degradation of HBx and may be involved in suppressing the progression of hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Jing Zhao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Kido T, Ou JHJ, Lau YFC. The X-linked tumor suppressor TSPX interacts and promotes degradation of the hepatitis B viral protein HBx via the proteasome pathway. PLoS One 2011; 6:e22979. [PMID: 21829568 PMCID: PMC3146538 DOI: 10.1371/journal.pone.0022979] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/08/2011] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major risk for hepatocellular carcinoma (HCC), and it is a serious global health problem with two billion people exposed to it worldwide. HBx, an essential factor for viral replication and a putative oncoprotein encoded by the HBV genome, has been shown to promote oncogenic properties at multiple sites in HBV-infected liver cells. The expression level of HBx closely associates with the development and progression of HCC, therefore the mechanism(s) regulating the stability of HBx is important in oncogenesis of HBV-infected cells. We demonstrate that the X-linked tumor suppressor TSPX enhances the degradation of HBx through the ubiquitin-proteasome pathway. TSPX interacts with both HBx and a proteasome 19S lid subunit RPN3 via its C-terminal acidic tail. Most importantly, over-expression of RPN3 protects HBx from, and hence acts as a negative regulator for, proteasome-dependent degradation. TSPX abrogates the RPN3-depedent stabilization of HBx, suggesting that TSPX and RPN3 act competitively in regulation of HBx stability. Since mutation and/or epigenetic repression of X-located tumor suppressor gene(s) could significantly predispose males to human cancers, our data suggest that TSPX-induced HBx degradation could play key role(s) in hepatocarcinogenesis among HBV-infected HCC patients.
Collapse
Affiliation(s)
- Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, University of California San Francisco, San Francisco, California, United States of America
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
64
|
Martin-Vilchez S, Lara-Pezzi E, Trapero-Marugán M, Moreno-Otero R, Sanz-Cameno P. The molecular and pathophysiological implications of hepatitis B X antigen in chronic hepatitis B virus infection. Rev Med Virol 2011; 21:315-29. [PMID: 21755567 DOI: 10.1002/rmv.699] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/23/2011] [Accepted: 05/26/2011] [Indexed: 12/16/2022]
Abstract
Hepatitis B virus is considered one of the most significant environmental carcinogens in humans. Because the mechanisms of HBV replication and the development of hepatocellular carcinoma (HCC) are partially known, HBV-associated pathogenesis remains a challenge to increase its understanding. Evidence suggests that the regulatory protein hepatitis B virus X (HBx) mediates the establishment and maintenance of the chronic carrier state. HBx is a multifunctional and potentially oncogenic protein that is conserved among mammalian hepadnaviruses; it is produced very early after infection and throughout the chronic phase. HBx exerts its effects by interacting with cellular proteins and activating various signaling pathways. HBx stimulates the transcription of genes that regulate cell growth, apoptosis, and DNA repair. It also interacts with proteasome subunits and affects mitochondrial stability. Moreover, HBx participates in processes that are associated with the progression of chronic liver disease, including angiogenesis and fibrosis. This review discusses the function of HBx in the life cycle of HBV and its contribution to the pathogenesis of HCC.
Collapse
Affiliation(s)
- Samuel Martin-Vilchez
- CIBERehd, ISCIII, Madrid, Spain; Servicio Digestivo, Hospital Universitario "La Princesa" and Instituto de Investigación Biomédica "La Princesa", Madrid, Spain
| | | | | | | | | |
Collapse
|
65
|
Fan R, Li X, Du W, Zou X, Du R, Zhao L, Luo G, Mo P, Xia L, Pan Y, Shi Y, Lian Z, Feitelson MA, Nie Y, Liu J, Fan D. Adenoviral-mediated RNA interference targeting URG11 inhibits growth of human hepatocellular carcinoma. Int J Cancer 2010; 128:2980-93. [PMID: 20725996 DOI: 10.1002/ijc.25624] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/30/2010] [Indexed: 01/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second most common malignancy in Asia, with a 5-year survival rate of less than 5% due to high recurrence after surgery and resistance to chemotherapy. A variety of therapeutic interventions to treat HCC, particularly gene therapy, have recently been investigated in tumor model systems to provide a more complete understanding of hepatocarcinogenesis and effectively design therapeutic strategies to treat this disease. In our study, we constructed an adenoviral vector expressing small interfering RNA (siRNA) targeting a newly discovered gene named upregulated gene 11 (URG11). We introduced this vector into HCC cells to investigate the role of URG11 in HCC carcinogenesis. We observed that upon URG11 knockdown, HCC cell proliferation was inhibited through downregulation of several G1-S phase related molecules including cyclin D1 and apoptosis was induced as a result of Bcl-2 downregulation. Besides decreased expression of cyclin D1, CDK4, pRb and Bcl-2, URG11 also suppressed several other proteins including CAPN9, which was identified by cDNA microarray and 2D gel electrophoresis. Moreover, Ad-URG11-siRNA significantly suppressed HCC tumor growth in nude mice. In conclusion, Ad-URG11-siRNA can significantly suppress HCC tumor growth in vitro and in vivo by silencing the URG11 gene, and the use of this vector for gene therapy may represent a novel strategy to treat human HCC.
Collapse
Affiliation(s)
- Rui Fan
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Cho EY, Kim HC, Choi CS, Shin SR, Park C, So HS, Kim HJ, Park R, Cho JH, Moon HB. Nucleotide changes related to hepatocellular carcinoma in the enhancer 1/x-promoter of hepatitis B virus subgenotype C2 in cirrhotic patients. Cancer Sci 2010; 101:1905-12. [PMID: 20550526 PMCID: PMC11159504 DOI: 10.1111/j.1349-7006.2010.01612.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is widely known to develop more frequently in cirrhotic patients with a high expression of Hepatitis B virus X protein (HBx), which is controlled by the enhancer 1 (Enh1)/X-promoter. To examine the effect of the mutations in the Enh1/X-promoter region in hepatitis B virus (HBV) genomes on the development of HCC, we investigated the differences in HBV isolated from cirrhotic patients with or without HCC along with the promoter activities of certain specific mutations within the Enh1/X-promoter. We examined 160 hepatitis B surface antigen (HBsAg)-positive cirrhotic patients (80 HCC patients, 80 non-HCC patients) by evaluating the biochemical, virological, and molecular characteristics. We evaluated the functional differences in certain specific mutations within the Enh1/X-promoter. The isolated sequences included all of the subgenotypes C2. The sites that showed higher mutation rates in the HCC group were G1053A and G1229A, which were found to be independent risk factors through multiple logistic analysis (P < 0.05). Their promoter activities were elevated 2.38- and 4.68-fold, respectively, over that of the wild type in the HepG2 cells. Similarly, both the mRNA and protein levels of HBx in these two mutants were much higher than that in wild type-transfected HepG2 cells. Mutated nucleotides of the Enh1/X-promoter, especially G1053A and G1229A mutations in the HBV subgenotype C2 of patients with cirrhosis, can be risk factors for hepatocarcinogenesis, and this might be due to an increase in the HBx levels through the transactivation of the Enh1/X-promoter.
Collapse
Affiliation(s)
- Eun-Young Cho
- Departments of Internal Medicine, Wonkwang University, Iksan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death worldwide. Despite recent advances in the diagnosis and treatment of HCC, its prognosis remains dismal. Infection with hepatitis B virus (HBV) and hepatitis C virus (HCV) are the major risk factors for HCC. Although both are hepatotropic viral infections, there are important differences between the oncogenic mechanisms of these two viruses. In addition to the oncogenic potential of its viral proteins, HBV, as a DNA virus, can integrate into host DNA and directly transform hepatocytes. In contrast, HCV, an RNA virus, is unable to integrate into the host genome, and viral protein expression has a more critical function in hepatocarcinogenesis. Both HBV and HCV proteins have been implicated in disrupting cellular signal transduction pathways that lead to unchecked cell growth. Most HCC develops in the cirrhotic liver, but the linkage between cirrhosis and HCC is likely multifactorial. In this review, we summarize current knowledge regarding the pathogenetic mechanisms of viral HCC.
Collapse
Affiliation(s)
- W-L Tsai
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - RT Chung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
68
|
Shieh YS, Chang YS, Hong JR, Chen LJ, Jou LK, Hsu CC, Her GM. Increase of hepatic fat accumulation by liver specific expression of Hepatitis B virus X protein in zebrafish. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:721-30. [PMID: 20416398 DOI: 10.1016/j.bbalip.2010.04.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 03/25/2010] [Accepted: 04/12/2010] [Indexed: 02/06/2023]
Abstract
The pathogenesis of fatty liver disease remains largely unknown. Here, we assessed the importance of hepatic fat accumulation on the progression of hepatitis in zebrafish by liver specific expression of Hepatitis B virus X protein (HBx). Transgenic zebrafish lines, GBXs, which selectively express the GBx transgene (GFP-fused HBx gene) in liver, were established. GBX Liver phenotypes were evaluated by histopathology and molecular analysis of fatty acid (FA) metabolism-related genes expression. Most GBXs (66-81%) displayed obvious emaciation starting at 4 months old. Over 99% of the emaciated GBXs developed hepatic steatosis or steatohepatitis, which in turn led to liver hypoplasia. The liver histology of GBXs displayed steatosis, lobular inflammation, and balloon degeneration, similar to non-alcoholic steatohepatitis (NASH). Oil red O stain detected the accumulation of fatty droplets in GBXs. RT-PCR and Q-rt-PCR analysis revealed that GBx induced hepatic steatosis had significant increases in the expression of lipogenic genes, C/EBP-alpha, SREBP1, ChREBP and PPAR-gamma, which then activate key enzymes of the de novo FA synthesis, ACC1, FAS, SCD1, AGAPT, PAP and DGAT2. In addition, the steatohepatitic GBX liver progressed to liver degeneration and exhibited significant differential gene expression in apoptosis and stress. The GBX models exhibited both the genetic and functional factors involved in lipid accumulation and steatosis-associated liver injury. In addition, GBXs with transmissible NASH-like phenotypes provide a promising model for studying liver disease.
Collapse
Affiliation(s)
- Yun-Sheng Shieh
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
69
|
Molina-Jiménez F, Benedicto I, Murata M, Martín-Vílchez S, Seki T, Antonio Pintor-Toro J, Tortolero M, Moreno-Otero R, Okazaki K, Koike K, Barbero JL, Matsuzaki K, Majano PL, López-Cabrera M. Expression of pituitary tumor-transforming gene 1 (PTTG1)/securin in hepatitis B virus (HBV)-associated liver diseases: evidence for an HBV X protein-mediated inhibition of PTTG1 ubiquitination and degradation. Hepatology 2010; 51:777-87. [PMID: 20198633 DOI: 10.1002/hep.23468] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic infection with hepatitis B virus (HBV) is strongly associated with hepatocellular carcinoma (HCC), and the viral HBx protein plays a crucial role in the pathogenesis of liver tumors. Because the protooncogene pituitary tumor-transforming gene 1 (PTTG1) is overexpressed in HCC, we investigated the regulation of this protein by HBx. We analyzed PTTG1 expression levels in liver biopsies from patients chronically infected with HBV, presenting different disease stages, and from HBx transgenic mice. PTTG1 was undetectable in biopsies from chronic hepatitis B patients or from normal mouse livers. In contrast, hyperplastic livers from transgenic mice and biopsies from patients with cirrhosis, presented PTTG1 expression which was found mainly in HBx-expressing hepatocytes. PTTG1 staining was further increased in HCC specimens. Experiments in vitro revealed that HBx induced a marked accumulation of PTTG1 protein without affecting its messenger RNA levels. HBx expression promoted the inhibition of PTTG1 ubiquitination, which in turn impaired its degradation by the proteasome. Glutathione S-transferase pull-down and co-immunoprecipitation experiments demonstrated that the interaction between PTTG1 and the Skp1-Cul1-F-box ubiquitin ligase complex (SCF) was partially disrupted, possibly through a mechanism involving protein-protein interactions of HBx with PTTG1 and/or SCF. Furthermore, confocal analysis revealed that HBx colocalized with PTTG1 and Cul1. We propose that HBx promotes an abnormal accumulation of PTTG1, which may provide new insights into the molecular mechanisms of HBV-related pathogenesis of progressive liver disease leading to HCC development.
Collapse
|
70
|
Chisari FV, Isogawa M, Wieland SF. Pathogenesis of hepatitis B virus infection. ACTA ACUST UNITED AC 2010; 58:258-66. [PMID: 20116937 DOI: 10.1016/j.patbio.2009.11.001] [Citation(s) in RCA: 297] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 11/02/2009] [Indexed: 12/12/2022]
Abstract
The adaptive immune response is thought to be responsible for viral clearance and disease pathogenesis during hepatitis B virus infection. It is generally acknowledged that the humoral antibody response contributes to the clearance of circulating virus particles and the prevention of viral spread within the host while the cellular immune response eliminates infected cells. The T cell response to the hepatitis B virus (HBV) is vigorous, polyclonal and multispecific in acutely infected patients who successfully clear the virus and relatively weak and narrowly focussed in chronically infected patients, suggesting that clearance of HBV is T cell dependent. The pathogenetic and antiviral potential of the cytotoxic T lymphocyte (CTL) response to HBV has been proven by the induction of a severe necroinflammatory liver disease following the adoptive transfer of HBsAg specific CTL into HBV transgenic mice. Remarkably, the CTLs also purge HBV replicative intermediates from the liver by secreting type 1 inflammatory cytokines thereby limiting virus spread to uninfected cells and reducing the degree of immunopathology required to terminate the infection. Persistent HBV infection is characterized by a weak adaptive immune response, thought to be due to inefficient CD4+ T cell priming early in the infection and subsequent development of a quantitatively and qualitatively ineffective CD8+ T cell response. Other factors that could contribute to viral persistence are immunological tolerance, mutational epitope inactivation, T cell receptor antagonism, incomplete down-regulation of viral replication and infection of immunologically privileged tissues. However, these pathways become apparent only in the setting of an ineffective immune response, which is, therefore, the fundamental underlying cause. Persistent infection is characterized by chronic liver cell injury, regeneration, inflammation, widespread DNA damage and insertional deregulation of cellular growth control genes, which, collectively, lead to cirrhosis of the liver and hepatocellular carcinoma.
Collapse
Affiliation(s)
- F V Chisari
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
71
|
Cheng B, Zheng Y, Guo X, Wang Y, Liu C. Hepatitis B viral X protein alters the biological features and expressions of DNA repair enzymes in LO2 cells. Liver Int 2010; 30:319-26. [PMID: 19968784 DOI: 10.1111/j.1478-3231.2009.02167.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES This study aimed at examining the effects of hepatitis B viral X protein (HBx) on the biological features and the expression of DNA repair enzymes in non-tumour human hepatic LO2 cells in vitro. METHODS The HBx gene was transfected into LO2 cells to establish stably HBx-expressing LO2/HBx cells. The morphological features, cell growth, cell cycle, apoptosis and colony formation of LO2/HBx cells, vector-transfected LO2/pcDNA3.1 cells and unmanipulated LO2 cells were studied. The expressions of DNA repair enzymes and DNA oxidative stress-related 8-hydroxydeoxyguanosine (8-OHdG) were determined by a real-time quantitative polymerase chain reaction assay and high-performance liquid chromatography coupled with electrochemical detection respectively. RESULTS In comparison with controls, significant morphological changes, faster growth, higher frequency of cells at the S phase, but lower at G0/G1 and M/G2 phases, a lower frequency of natural cell apoptosis and a higher percentage of colony formation were observed in the LO2/HBx cells. Furthermore, significantly higher levels of intracellular 8-OHdG and lower levels of human DNA glycosylase alpha (hMYHalpha) mRNA transcripts, but no significant change in human 8-oxoguanine DNA glycosylase 1 (hOGG1), were detected in the LO2/HBx cells. CONCLUSIONS Our data indicated that HBx promoted growth and malignant transformation of non-tumour hepatic LO2 cells in vitro, which was associated with the downregulation of hMYHalpha expression and accumulation of mutagenic DNA adduct 8-OHdG.
Collapse
Affiliation(s)
- Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | |
Collapse
|
72
|
Feitelson MA, Reis HMGPV, Tufan NL, Sun B, Pan J, Lian Z. Putative roles of hepatitis B x antigen in the pathogenesis of chronic liver disease. Cancer Lett 2009; 286:69-79. [PMID: 19201080 PMCID: PMC2789742 DOI: 10.1016/j.canlet.2008.12.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 11/18/2008] [Accepted: 12/02/2008] [Indexed: 12/18/2022]
Abstract
Under most circumstances, hepatitis B virus (HBV) is noncytopathic. However, hepatocellular regeneration that accompanies each bout of hepatitis appears to be associated with increased integration of HBV DNA fragments expressing the virus encoded hepatitis B x antigen (HBxAg). Intrahepatic HBxAg staining correlates with the intensity and progression of chronic liver disease (CLD), and additional work has shown that HBxAg blocks immune mediated killing by Fas and by tumor necrosis factor alpha (TNFalpha). This is not only associated with the blockage of caspase activities by HBxAg, but also by the constitutive stimulation of hepatoprotective pathways, such as nuclear factor kappa B (NF-kappaB), phosphoinositol 3-kinase (PI3K), and beta-catenin (beta-catenin). HBxAg also appears to promote fibrogenesis, by stimulating the production of fibronectin. HBxAg also stimulates the production and activity of transforming growth factor beta1 (TGFbeta1) by several mechanisms, thereby promoting the profibrogenic and tumorigenic properties of this important cytokine. In addition, HBxAg appears to remodel the extracellular matrix (ECM) by altering the expression of several matrix metalloproteinases (MMPs), which may promote tumor metastasis. Hence, HBxAg appears to promote chronic infection by preventing immune mediated apoptosis of infected hepatocytes, by promoting the establishment and persistence of fibrosis and cirrhosis preceding the development of HCC, and by promoting the remodeling of EMC during tumor progression.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA.
| | | | | | | | | | | |
Collapse
|
73
|
p53 Promotes proteasome-dependent degradation of oncogenic protein HBx by transcription of MDM2. Mol Biol Rep 2009; 37:2935-40. [PMID: 19842060 DOI: 10.1007/s11033-009-9855-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 09/28/2009] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus X protein (HBx) is closely involved in the development of hepatocellular carcinoma (HCC). Tumor suppressor p53 was reported to induce HBx degradation and repress its oncogenic function recently, but the molecular mechanism is unknown. In this study, we attempted to identify the underlying mechanism. We found that overexpression of p53 protein reduces the level of HBx protein and shortens its half-life, however, in MDM2 knock out cells, p53 has no effects on degradation of HBx, meanwhile, overexpression of MDM2 in absence of p53 can accelerate turnover of HBx protein. These indicate that p53-mediated HBx degradation is MDM2-dependent. MDM2 interacts with HBx in vitro and in vivo but does not promote its ubiquitination. In consistent with the results above, HCC tissue samples with wild-type p53 hardly detect HBx protein, whereas, HBx always accumulate in the tissues with mutant p53. Our data provide a possible mechanism on how p53 regulate HBx stability and also a new clue for the study of p53 mutation and HCC development.
Collapse
|
74
|
Heindryckx F, Colle I, Van Vlierberghe H. Experimental mouse models for hepatocellular carcinoma research. Int J Exp Pathol 2009; 90:367-86. [PMID: 19659896 DOI: 10.1111/j.1365-2613.2009.00656.x] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Every year almost 500,000 new patients are diagnosed with hepatocellular carcinoma (HCC), a primary malignancy of the liver that is associated with a poor prognosis. Numerous experimental models have been developed to define the pathogenesis of HCC and to test novel drug candidates. This review analyses several mouse models useful for HCC research and points out their advantages and weaknesses. Chemically induced HCC mice models mimic the injury-fibrosis-malignancy cycle by administration of a genotoxic compound alone or, if necessary, followed by a promoting agent. Xenograft models develop HCC by implanting hepatoma cell lines in mice, either ectopically or orthotopically; these models are suitable for drug screening, although extrapolation should be considered with caution as multiple cell lines must always be used. The hollow fibre assay offers a solution for limiting the number of test animals in xenograft research because of the ability for implanting multiple cell lines in one mouse. There is also a broad range of genetically modified mice engineered to investigate the pathophysiology of HCC. Transgenic mice expressing viral genes, oncogenes and/or growth factors allow the identification of pathways involved in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Femke Heindryckx
- Department of Gastroenterology and Hepatology, Ghent University Hospital, 9000 Ghent, Belgium.
| | | | | |
Collapse
|
75
|
Abstract
AIM To explore the mechanism of hepatocarcinogenesis associated with the hepatitis B virus X protein (HBx), we investigated the role of HBx in transformation using human liver L-O2 cells stably transfected with HBx as a model. METHODS Plasmids encoding HBx were stably transfected into immortalized human liver L-O2 cells and rodent fibroblast NIH/3T3 cells. The expression of alfa-fetoprotein (AFP), c-Myc, HBx, and survivin in the engineered cells was examined by Western blotting. The malignant phenotype of the cells was demonstrated by anchorage-independent colony formation and tumor formation in nude mice. RNA interference assays, Western blotting, luciferase reporter gene assays and flow cytometry analysis were performed. The number of centrosomes in the L-O2-X cells was determined by gamma-tubulin immunostaining. The effect of HBx on the transcriptional activity of human telomerase reverse transcriptase (hTERT) and hTERT activity in L-O2-X cells and/or 3T3-X cells was detected by the luciferase reporter gene assay and telomerase repeat amplification protocol (TRAP). RESULTS Stable HBx transfection resulted in a malignant phenotype in the engineered cells in vivo and in vitro. Meanwhile, HBx was able to increase the transcription of the NF-kappaB, AP-1, and survivin genes and to upregulate the expression levels of c-Myc and survivin. Abnormal centrosome duplication and activated hTERT were responsible for the transformation. CONCLUSION Stable HBx transfection leads to genomic instability of host cells, which is responsible for hepatocarcinogenesis; meanwhile, transactivation by the HBx protein contributes to the development of hepatocellular carcinoma (HCC). The L-O2-X cell line is an ideal model for investigating the mechanism of HBx-mediated transformation.
Collapse
|
76
|
Experimental models of hepatocellular carcinoma: developments and evolution. J Cancer Res Clin Oncol 2009; 135:969-81. [DOI: 10.1007/s00432-009-0591-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Accepted: 04/09/2009] [Indexed: 01/01/2023]
|
77
|
Murata M, Matsuzaki K, Yoshida K, Sekimoto G, Tahashi Y, Mori S, Uemura Y, Sakaida N, Fujisawa J, Seki T, Kobayashi K, Yokote K, Koike K, Okazaki K. Hepatitis B virus X protein shifts human hepatic transforming growth factor (TGF)-beta signaling from tumor suppression to oncogenesis in early chronic hepatitis B. Hepatology 2009; 49:1203-17. [PMID: 19263472 DOI: 10.1002/hep.22765] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Hepatitis B virus X (HBx) protein is suspected to participate in oncogenesis during chronic hepatitis B progression. Transforming growth factor beta (TGF-beta) signaling involves both tumor suppression and oncogenesis. TGF-beta activates TGF-beta type I receptor (TbetaRI) and c-Jun N-terminal kinase (JNK), which differentially phosphorylate the mediator Smad3 to become C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Reversible shifting of Smad3-mediated signaling between tumor suppression and oncogenesis in HBx-expressing hepatocytes indicated that TbetaRI-dependent pSmad3C transmitted a tumor-suppressive TGF-beta signal, while JNK-dependent pSmad3L promoted cell growth. We used immunostaining, immunoblotting, and in vitro kinase assay to compare pSmad3L- and pSmad3C-mediated signaling in biopsy specimens representing chronic hepatitis, cirrhosis, or hepatocellular carcinoma (HCC) from 90 patients chronically infected with hepatitis B virus (HBV) with signaling in liver specimens from HBx transgenic mice. In proportion to plasma HBV DNA levels, early chronic hepatitis B specimens showed prominence of pSmad3L in hepatocytic nuclei. HBx-activated JNK/pSmad3L/c-Myc oncogenic pathway was enhanced, while the TbetaRI/pSmad3C/p21(WAF1) tumor-suppressive pathway was impaired as human and mouse HBx-associated hepatocarcinogenesis progressed. Of 28 patients with chronic hepatitis B who showed strong oncogenic pSmad3L signaling, six developed HCC within 12 years; only one of 32 patients showing little pSmad3L developed HCC. In contrast, seven of 30 patients with little Smad3C phosphorylation developed HCC, while no patient who retained hepatocytic tumor-suppressive pSmad3C developed HCC within 12 years. CONCLUSION HBx shifts hepatocytic TGF-beta signaling from the tumor-suppressive pSmad3C pathway to the oncogenic pSmad3L pathway in early carcinogenic process. Hepatocytic pSmad3L and pSmad3C assessment in HBV-infected liver specimens should prove clinically useful for predicting risk of HCC.
Collapse
Affiliation(s)
- Miki Murata
- Department of Gastroenterology and Hepatology, Kansai Medical University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
High level virion production and surface antigen expression with 1.5 copies of hepatitis B viral genome. J Virol Methods 2009; 159:135-40. [PMID: 19490966 DOI: 10.1016/j.jviromet.2009.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 03/04/2009] [Accepted: 03/10/2009] [Indexed: 01/04/2023]
Abstract
The present study aimed to construct a 1.5X hepatitis B virus (HBV) replication system in vitro that could generate high level of HBV viruses. This system would help compare the replication capacity among the virus strains associated with high and low risk of hepatocellular carcinoma (HCC). Four strains of HBV were isolated from two HCC patients and two HBV carriers. After molecular cloning, four corresponding constructs named as HBV-1.5Xs were generated. Each of them has one and a half copies of HBV 3.2kb genome, a 5'-end redundant sequence of 1.1kb to nt715 and a 3'-end redundant sequence of 500bp to nt2325 that situated after the poly (A) sequence. The HepG2 cells were transfected with the HBV-1.5Xs, and the levels of HBsAg, HBeAg and viral DNA were then detected in both the supernatant and the cells. After 24h and 48h of transfection, a high OD value of HBsAg of 3.5 was observed in the supernatant and also in some of the diluted cell lysate samples. The HBeAg level was relatively low in all strain samples of HBV. The log(10) values of viral loads were also determined with the cell lysate having a higher value (10-11 per ml) than that of the supernatant (6-7 per ml). The results showed that the novel HBV-1.5X system was capable to generate high level of HBV in a consistent manner. However, no significant difference was found among the replication capacities among these strains in vitro. The HBV-1.5X system may be a useful platform that assists the establishment of stable cell lines and transgenic mice for the investigation of viral pathogenesis, particularly for the various strains of HBV.
Collapse
|
79
|
Maronpot RR. Biological Basis of Differential Susceptibility to Hepatocarcinogenesis among Mouse Strains. J Toxicol Pathol 2009; 22:11-33. [PMID: 22271974 PMCID: PMC3246016 DOI: 10.1293/tox.22.11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 11/07/2008] [Indexed: 12/13/2022] Open
Abstract
There is a vast amount of literature related to mouse liver tumorigenesis generated over the past 60 years, not all of which has been captured here. The studies reported in this literature have generally been state of the art at the time they were carried out. A PubMed search on the topic "mouse liver tumors" covering the past 10 years yields over 7000 scientific papers. This review address several important topics related to the unresolved controversy regarding the relevance of mouse liver tumor responses observed in cancer bioassays. The inherent mouse strain differential sensitivities to hepatocarcinogenesis largely parallel the strain susceptibility to chemically induced liver neoplasia. The effects of phenobarbital and halogenated hydrocarbons in mouse hepatocarcinogenesis have been summarized because of recurring interest and numerous publications on these topics. No single simple paradigm fully explains differential mouse strain responses, which can vary more than 50-fold among inbred strains. In addition to inherent genetics, modifying factors including cell cycle balance, enzyme induction, DNA methylation, oncogenes and suppressor genes, diet, and intercellular communication influence susceptibility to spontaneous and induced mouse hepatocarcinogenesis. Comments are offered on the evaluation, interpretation, and relevance of mouse liver tumor responses in the context of cancer bioassays.
Collapse
Affiliation(s)
- Robert R Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, NC 27607-4726, USA
| |
Collapse
|
80
|
|
81
|
A novel mouse model of hepatocarcinogenesis triggered by AID causing deleterious p53 mutations. Oncogene 2008; 28:469-78. [PMID: 18997814 DOI: 10.1038/onc.2008.415] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation-induced cytidine deaminase (AID), the only enzyme that is known to be able to induce mutations in the human genome, is required for somatic hypermutation and class-switch recombination in B lymphocytes. Recently, we showed that AID is implicated in the pathogenesis of human cancers including hepatitis C virus (HCV)-induced human hepatocellular carcinoma (HCC). In this study, we established a new AID transgenic mouse model (TNAP-AID) in which AID is expressed in cells producing tissue-nonspecific alkaline phosphatase (TNAP), which is a marker of primordial germ cells and immature stem cells, including ES cells. High expression of TNAP was found in the liver of the embryos and adults of TNAP-AID mice. HCC developed in 27% of these mice at the age of approximately 90 weeks. The HCC that developed in TNAP-AID mice expressed alpha-fetoprotein and had deleterious mutations in the tumour suppressor gene Trp53, some of which corresponded to those found in human cancer. In conclusion, TNAP-AID is a mouse model that spontaneously develops HCC, sharing genetic and phenotypic features with human HCC, which develops in the inflamed liver as a result of the accumulation of genetic changes.
Collapse
|
82
|
Feitelson MA, Reis HMGPV, Pan J, Clayton M, Sun B, Satiroglu-Tufan NL, Lian Z. HBV X protein: elucidating a role in oncogenesis. Future Virol 2008. [DOI: 10.2217/17460794.3.5.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chronic HBV infection is associated with the development of hepatocellular carcinoma (HCC). HBV contributes to tumorigenesis by encoding hepatitis B x antigen (HBxAg), which is a trans-regulatory protein that appears to contribute to HCC by altering patterns of host gene expression. In this review, recent data is presented that outlines some of the putative mechanisms whereby HBxAg contributes to HCC. With the development of animal models of HBxAg-mediated HCC, the relevance and temporal order of putative steps in this process can now be dissected to elucidate what is rate limiting and when. This will have a profound impact on the design of novel and specific therapeutics for HCC.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, College of Science & Technology, Temple University, PA 19122, USA. and, Center for Biotechnology, College of Science & Technology, Temple University, PA 19122, USA
| | - Helena MGPV Reis
- MIT Portugal Program, Av. Antonio Jose de Almeida, 12 1000–043 Lisboa, Portugal
| | - Jingbo Pan
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, PA 19107, USA
| | - Marcy Clayton
- Department of Biology, College of Science & Technology, Temple University, PA 19122, USA
| | - Bill Sun
- Department of Biology, College of Science & Technology, Temple University, PA 19122, USA
| | - N Lale Satiroglu-Tufan
- Department of Medical Biology, Pamukkale University School of Medicine, Kinikli Kampusu Morfoloji Binasi, 20020 Denizli, Turkey
| | - Zhaorui Lian
- Department of Biology, College of Science & Technology, Temple University, PA 19122, USA
| |
Collapse
|
83
|
Clippinger AJ, Bouchard MJ. Hepatitis B virus HBx protein localizes to mitochondria in primary rat hepatocytes and modulates mitochondrial membrane potential. J Virol 2008; 82:6798-811. [PMID: 18448529 PMCID: PMC2446973 DOI: 10.1128/jvi.00154-08] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 04/22/2008] [Indexed: 12/20/2022] Open
Abstract
Over 350 million people are chronically infected with hepatitis B virus (HBV), and a significant number of chronically infected individuals develop primary liver cancer. HBV encodes seven viral proteins, including the nonstructural X (HBx) protein. The results of studies with immortalized or transformed cells and with HBx-transgenic mice demonstrated that HBx can interact with mitochondria. However, no studies with normal hepatocytes have characterized the precise mitochondrial localization of HBx or the effect of HBx on mitochondrial physiology. We have used cultured primary rat hepatocytes as a model system to characterize the mitochondrial localization of HBx and the effect of HBx expression on mitochondrial physiology. We now show that a fraction of HBx colocalizes with density-gradient-purified mitochondria and associates with the outer mitochondrial membrane. We also demonstrate that HBx regulates mitochondrial membrane potential in hepatocytes and that this function of HBx varies depending on the status of NF-kappaB activity. In primary rat hepatocytes, HBx activation of NF-kappaB prevented mitochondrial membrane depolarization; however, when NF-kappaB activity was inhibited, HBx induced membrane depolarization through modulation of the mitochondrial permeability transition pore. Collectively, these results define potential pathways through which HBx may act in order to modulate mitochondrial physiology, thereby altering many cellular activities and ultimately contributing to the development of HBV-associated liver cancer.
Collapse
Affiliation(s)
- Amy J Clippinger
- Graduate Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | |
Collapse
|
84
|
Abstract
Hepatocellular carcinoma (HCC) is a common and deadly cancer whose pathogenesis is incompletely understood. Comparative genomic studies from human HCC samples have classified HCCs into different molecular subgroups; yet, the unifying feature of this tumor is its propensity to arise upon a background of inflammation and fibrosis. This review seeks to analyze the available experimental models in HCC research and to correlate data from human populations with them in order to consolidate our efforts to date, as it is increasingly clear that different models will be required to mimic different subclasses of the neoplasm. These models will be instrumental in the evaluation of compounds targeting specific molecular pathways in future preclinical studies.
Collapse
Affiliation(s)
- Philippa Newell
- Division of Liver Diseases, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1123, New York, NY 10029, USA
- Department of Surgery, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1123, New York, NY 10029, USA
| | - Augusto Villanueva
- Division of Liver Diseases, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1123, New York, NY 10029, USA
| | - Scott L. Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1123, New York, NY 10029, USA
| | - Kazuhiko Koike
- Department of Infectious Diseases, Internal Medicine, Graduate School of Medicine, University of Tokyo, Japan
| | - Josep M. Llovet
- Division of Liver Diseases, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1123, New York, NY 10029, USA
- BCLC Group, Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
85
|
Yamazaki K, Suzuki K, Ohkoshi S, Yano M, Kurita S, Aoki YH, Toba K, Takamura MA, Yamagiwa S, Matsuda Y, Aoyagi Y. Temporal treatment with interferon-beta prevents hepatocellular carcinoma in hepatitis B virus X gene transgenic mice. J Hepatol 2008; 48:255-265. [PMID: 18083266 DOI: 10.1016/j.jhep.2007.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 09/20/2007] [Accepted: 09/21/2007] [Indexed: 12/31/2022]
Abstract
BACKGROUND/AIMS The preventive effect of interferon (IFN) against hepatocellular carcinoma (HCC) has been confirmed clinically. We sought to determine whether the temporal administration of IFN-beta prevents hepatocarcinogenesis in a mouse model where HCC develops without necroinflammation. METHODS Hepatocarcinogenic mice that are transgenic for the hepatitis B virus X gene (HBx-Tg) were treated with IFN-beta or saline (control) for three months, from 3 to 6 months of age, and the incidence of HCC was determined at 18 months of age. The effects of IFN-beta on DNA synthesis and apoptosis were tested. RESULTS The incidence of HCC was significantly lower in the IFN-beta-treated mice than the controls (0 vs. 50%, P<0.01). Inhibition of DNA synthesis in hepatocytes by IFN-beta was observed in the livers of HBx-Tg, without any significant induction of apoptosis. Although the treatment of IFN-beta was temporal, the number of hepatocytes with DNA synthesis remained lower 3 and 12 months later in life. CONCLUSIONS Temporal administration of IFN-beta has a significant preventive effect on the occurrence of HCC in a mouse model where HCC develops without inflammation. The mechanisms are the inhibition of DNA synthesis and cell cycle progression of hepatocytes.
Collapse
Affiliation(s)
- Kazuhide Yamazaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences of Niigata University, 1-754, Asahimachi-Dori, Niigata-city 951-8122, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Ubiquitin-dependent and -independent proteasomal degradation of hepatitis B virus X protein. Biochem Biophys Res Commun 2007; 366:1036-42. [PMID: 18155658 DOI: 10.1016/j.bbrc.2007.12.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 12/13/2007] [Indexed: 01/11/2023]
Abstract
The hepatitis B virus X protein (HBX) plays key regulatory roles in viral replication and the development of hepatocellular carcinoma. HBX is an unstable protein; its instability is attributed to rapid degradation through the ubiquitin-proteasome pathway. Here, we show that the middle and carboxyl-terminal domains of HBX, independently fused to GFP, render the recombinant proteins susceptible to proteasomal degradation, while the amino-terminal domain has little effect on the ubiquitination or stability of HBX. Mutation of any single or combination of up to five of six lysine residues, all located in the middle and carboxyl-terminal domain, did not prevent HBX from being ubiquitinated, ruling out any specific lysine as the sole site of ubiquitination. Surprisingly, HBX in which all six lysines were mutated and showed no evidence of ubiquitination, was still susceptible to proteasomal degradation. These results suggest that both ubiquitin-dependent and -independent proteasomal degradation processes are operative in HBX turnover.
Collapse
|
87
|
Cheng B, Lin ST, Yang YZ, Li PY. Establishment of gene-transfected cell strain L02/HBx and effect of HBx on the cell cycles. Shijie Huaren Xiaohua Zazhi 2007; 15:1488-1493. [DOI: 10.11569/wcjd.v15.i13.1488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish gene-transfected cell strain L02/HBx and study its cell cycle changes.
METHODS: Effectene transfection and G418 selection were used to obtain the positive clones of L02/HBx cells. Then HBx mRNA and protein expression were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. Finally, MTT assay and flow cytometry were adopted to measure the proliferation, apoptosis and cell cycles of L02/HBx cells.
RESULTS: RT-PCR and Western blot analysis showed that the positive clones had HBx expression at mRNA and protein level. MTT assay demonstrated that the proliferation of L02/HBx cells had been accelerated. Flow cytometry found that the apoptosis rates of L02/HBx cells were at a lower level (0.09% ± 0.13% vs 3.74% ± 1.29%, P < 0.05), and the proportion of L02/HBx cells fell G1 phase (61.35% ± 0.82% vs 67.80% ± 6.84%, P < 0.05) but rose in S phase (36.59% ± 2.54% vs 22.37% ± 2.17%, P < 0.05). After co-culture with adriamycin, L02/HBx cells manifested a higher apoptosis rate (34.91% ± 5.85% vs 0.09% ± 0.13%, P < 0.05), and the proportion of G1-phase cells was significantly increased (82.81% ± 6.48% vs 61.35% ± 0.82%, P < 0.05), but still lower than that in the non-transfected group (82.81% ± 6.48% vs 87.19% ± 1.92%, P < 0.05). However, the percentage of S-phase cells was markedly decreased (13.84% ± 6.16% vs 36.59% ± 2.54%, P < 0.05), but still higher than that in the non-transfected group (13.84% ± 6.16% vs 2.22% ± 1.26%, P < 0.05).
CONCLUSION: L02/HBx cell strain stably expressing HBx is established successfully. HBx can accelerate the cell cycles and improve the growth instead of facilitating the apoptosis. L02/HBx cells can be easily affected by the apoptotic factors, indicating that HBx may increase the susceptibility of normal liver cells to the apoptosis-inducing factors.
Collapse
|
88
|
Zheng Y, Chen WL, Louie SG, Yen TSB, Ou JHJ. Hepatitis B virus promotes hepatocarcinogenesis in transgenic mice. Hepatology 2007; 45:16-21. [PMID: 17187428 DOI: 10.1002/hep.21445] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED HBV is a major risk factor for hepatocellular carcinoma (HCC). However, whether HBV can directly cause HCC or only indirectly via the induction of chronic liver inflammation has been controversial. By using transgenic mice carrying the entire HBV genome as a model, we now demonstrate that HBV by itself is an inefficient carcinogen. However, it can efficiently promote hepatocarcinogenesis initiated by the carcinogen diethylnitrosamine (DEN). This effect of HBV does not involve chronic liver inflammation, is apparently due to enhanced hepatocellular apoptosis and compensatory regeneration following DEN treatment, and does not require the HBV X protein. CONCLUSION Our results demonstrate a direct role of HBV in a hepatocarcinogenesis pathway that involves the interaction between this virus and a dietary carcinogen.
Collapse
Affiliation(s)
- Yanyan Zheng
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
89
|
Feitelson MA, Lee J. Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Lett 2006; 252:157-70. [PMID: 17188425 DOI: 10.1016/j.canlet.2006.11.010] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/08/2006] [Accepted: 11/13/2006] [Indexed: 12/31/2022]
Abstract
Chronic liver disease associated with long term hepatitis B virus (HBV) infection contributes importantly to the development of hepatocellular carcinoma (HCC). A salient feature of these chronic infections is the integration of subgenomic HBV DNA fragments into many different locations within the host DNA, suggesting that integration is random. Although this may promote genetic instability during liver regeneration which accompanies a bout of chronic liver disease, the actual role of integrated HBV DNA in hepatocarcinogenesis is uncertain. Importantly, most integration events retain the HBV open reading frame encoding the HBx antigen (HBxAg), which is the virus contribution to HCC. In addition, many integration events reported in the literature occur near or within fragile sites or other cancer associated regions of the human genome that are prone to instability in tumor development and progression. Genetic instability associated with integration potentially alters the expression of oncogenes, tumor suppressor genes, and microRNAs (miRNAs) that may contribute importantly to tumorigenesis. If so, then selected integration events may alter pathways that are rate limiting in hepatocarcinogenesis, thereby providing targets with diagnostic/prognostic potential and for therapeutic intervention.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
90
|
Bagis H, Arat S, Mercan HO, Aktoprakligil D, Caner M, Turanli ET, Baysal K, Turgut G, Sekmen S, Cirakoglu B. Stable transmission and expression of the hepatitis B virus total genome in hybrid transgenic mice until F10 generation. ACTA ACUST UNITED AC 2006; 305:420-7. [PMID: 16489557 DOI: 10.1002/jez.a.277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of the present study was the generation of transgenic mice carrying the complete Hepatitis B Virus (HBV) genome and investigation of the presence of Hepatitis B surface antigen (HBsAg) expression through successive generations. Transgenic mice were generated by microinjecting HBV genome into fertilized eggs. Integration and expression of HBsAg in transgenic mice were analyzed by genomic DNA PCR, Southern and slot blots and enzyme-linked immunosorbent assay (ELISA). Expression was also confirmed by Western blotting and RT-PCR. Histological changes in liver tissue of transgenic mice were examined by HE staining. The HBV genome was transmitted to the F10 generation and the presence of HBV X gene transcripts was confirmed by RT-PCR analysis using liver cDNAs from the F10 generation mice. During an observation period of 2.5 years, mice were sacrificed and their organs subjected to histopathological examination. In the liver, slight histopathologic alterations were observed but none of these lineages had any hepatocellular carcinoma (HCC). HBV DNA can be stably transmitted and expressed in the transgenic mice until F10 generation. However, although we showed the presence of X gene transcripts in liver tissues of F10 generation mice by RT-PCR in these animals, long-term expression of the HBV complete genome and expression of X protein in hepatocytes did not cause neoplasia during the life span and HCC. These transgenic mice should be useful for detailed studies of the replication and expression of HBV and for physiological studies of HBV genome.
Collapse
Affiliation(s)
- Haydar Bagis
- TUBITAK, Research Institute for Genetic Engineering and Biotechnology (RIGEB), Transgenic Core Facility, Kocaeli, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Bouchard MJ, Wang L, Schneider RJ. Activation of focal adhesion kinase by hepatitis B virus HBx protein: multiple functions in viral replication. J Virol 2006; 80:4406-14. [PMID: 16611900 PMCID: PMC1472019 DOI: 10.1128/jvi.80.9.4406-4414.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hepatitis B virus (HBV) X protein (HBx) is a multifunctional regulator of cellular signal transduction and transcription pathways and has a critical role in HBV replication. Much of the cytoplasmic signal transduction activity associated with HBx expression and its stimulation of viral replication is attributable to HBx-induced activation of calcium signaling pathways involving Pyk2 and Src tyrosine kinases. To further characterize upstream signal transduction pathways that are required for HBx activity, including activation of Src and mitogen-activated protein kinase (MAPK) cascades, we determined whether focal adhesion kinase (FAK), a known regulator of Src family kinases and the other member of the Pyk2/FAK kinase family, is activated by HBx. We report that HBx activates FAK and that FAK activation is important for multiple HBx functions. Dominant inhibiting forms of FAK blocked HBx activation of Src kinases and downstream signal transduction, HBx stimulation of NF-kappaB and AP-1-dependent transcription, and HBV DNA replication. We also demonstrate that HBx-induced activation of FAK is dependent on cellular calcium signaling, which is modulated by HBx. Moreover, prolonged expression of HBx increases both FAK activity and its level of expression. FAK activation may play a role in cellular transformation and cancer progression. HBx stimulation of FAK activity and abundance may also be relevant as a potential cofactor in HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Michael J Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | |
Collapse
|
92
|
Lian M, Liu Y, Yu SZ, Qian GS, Wan SG, Dixon KR. Hepatitis B virus x gene and cyanobacterial toxins promote aflatoxin B 1-induced hepatotumorigenesis in mice. World J Gastroenterol 2006; 12:3065-72. [PMID: 16718789 PMCID: PMC4124383 DOI: 10.3748/wjg.v12.i19.3065] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the combinative role of aflatoxin B1 (AFB1), cyanobacterial toxins (cyanotoxins), and hepatitis B virus (HBV) x gene in hepatotumorigenicity.
METHODS: One-week-old animals carrying HBV x gene and their wild-type littermates were intraperitoneally (ip) injected with either single-dose AFB1 [6 mg/kg body weight (bw)], repeated-dose cyanotoxins (microcystin-LR or nodularin, 10 μg/kg bw once a week for 15 wk), DMSO (vehicle control) alone, or AFB1 followed by cyanotoxins a week later, and were sacrificed at 24 and 52 wk post-treatment.
RESULTS: AFB1 induced liver tumors in 13 of 29 (44.8%) transgenic mice at 52 wk post-treatment, significantly more frequent than in wild-type mice (13.3%). This significant difference was not shown in the 24-wk study. Compared with AFB1 exposure alone, MC-LR and nodularin yielded approximately 3-fold and 6-fold increases in the incidence of AFB1-induced liver tumors in wild-type animals at 24 wk, respectively. HBV x gene did not further elevate the risk associated with co-exposure to AFB1 and cyanotoxins. With the exception of an MC-LR-dosed wild-type mouse, no liver tumor was observed in mice treated with cyanotoxins alone at 24 wk. Neither DMSO-treated transgenic mice nor their wild-type littermates had pathologic alterations relevant to hepatotumorigenesis in even up to 52 wk.
CONCLUSION: HBV x gene and nodularin promote the development of AFB1-induced liver tumors. Co-exposure to AFB1 and MC-LR tends to elevate the risk of liver tumors at 24 wk relative to exposure to one of them. The combinative effect of AFB1, cyanotoxins and HBVx on hepatotumorigenesis is weak at 24 wk.
Collapse
Affiliation(s)
- Min Lian
- School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| | | | | | | | | | | |
Collapse
|
93
|
Jin YH, Kwon MH, Kim K, Shin HJ, Shin JS, Cho H, Park S. An intracellular antibody can suppress tumorigenicity in hepatitis B virus X-expressing cells. Cancer Immunol Immunother 2006; 55:569-78. [PMID: 16273352 PMCID: PMC11030035 DOI: 10.1007/s00262-005-0037-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Accepted: 12/30/2004] [Indexed: 10/25/2022]
Abstract
Although the hepatitis B virus X protein (HBx) is thought to play a causative role in the development of hepatocellular carcinoma, it is not yet known whether interfering with HBx function may affect the cellular transformation of HBx-expressing tumor cells. To address this question, we adopted an intracellular antibody fragment expression approach to block the function of HBx. Expression of a single-chain variable fragment (scFv) specific to HBx (designated as H7scFv) inhibited HBx-dependent cellular transactivation. Furthermore, H7scFv suppressed the growth of HBx-expressing tumor cells in both soft agar and nude mice. The suppressive effect of H7scFv on tumorigenicity appeared not to be mediated by inhibition of HBx-induced growth stimulation since the growth rate of these cells was not affected significantly by H7scFv expression. In conclusion, these data suggest that the HBx-dependent transformed phenotype is reversible and that HBx may be a good molecular target for the treatment of HBV-related tumors.
Collapse
Affiliation(s)
- Young-Hee Jin
- Department of Microbiology, Ajou University School of Medicine, San 5 wonchun-dong yeongtong-gu, Suwon, 442-749 Republic of Korea
| | - Myung-Hee Kwon
- Department of Microbiology, Ajou University School of Medicine, San 5 wonchun-dong yeongtong-gu, Suwon, 442-749 Republic of Korea
| | - Kyongmin Kim
- Department of Microbiology, Ajou University School of Medicine, San 5 wonchun-dong yeongtong-gu, Suwon, 442-749 Republic of Korea
| | - Ho Joon Shin
- Department of Microbiology, Ajou University School of Medicine, San 5 wonchun-dong yeongtong-gu, Suwon, 442-749 Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, 134 sinchon-dong, seodaemun-gu, Seoul, 120-749 Republic of Korea
| | - Hyeseong Cho
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sun Park
- Department of Microbiology, Ajou University School of Medicine, San 5 wonchun-dong yeongtong-gu, Suwon, 442-749 Republic of Korea
| |
Collapse
|
94
|
Affiliation(s)
- Mark Branda
- Liver Research Center, Department of Medicine, Rhode Island Hospital and Brown Medical School, Providence 02903, USA
| | | |
Collapse
|
95
|
Wei W, Huang W, Pan Y, Zhu F, Wu J. Functional switch of viral protein HBx on cell apoptosis, transformation, and tumorigenesis in association with oncoprotein Ras. Cancer Lett 2006; 244:119-28. [PMID: 16569476 DOI: 10.1016/j.canlet.2005.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 11/26/2005] [Accepted: 12/05/2005] [Indexed: 01/17/2023]
Abstract
The X protein (HBx) of hepatitis B virus (HBV) plays important roles in hepatitis, cirrhosis, and hepatocellular carcinoma (HCC) during viral infection. In this study, we demonstrated that co-transfection of mouse embryo fibroblasts (STO) with HBx and activated Ras triggered apoptotic cell death, while HBx or activated Ras individually failed to induce apoptosis. In addition, STO cells were able to form colonies on soft agar after transfected with HBx or Ras, and cells co-transfected with both genes failed to transform. Moreover, nude mice injected with STO cells carrying either HBx or Ras could develop tumor, but tumor growth was inhibited by the injection of both STO cells harboring HBx and carrying Ras. These results suggested that HBx plays a role as a tumor inducer and stimulates neoplastic transformation of normal cells, but shifts its function to the induction of apoptosis in association with Ras.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | | | | | | | | |
Collapse
|
96
|
Lian Z, Liu J, Li L, Li X, Clayton M, Wu MC, Wang HY, Arbuthnot P, Kew M, Fan D, Feitelson MA. Enhanced cell survival of Hep3B cells by the hepatitis B x antigen effector, URG11, is associated with upregulation of beta-catenin. Hepatology 2006; 43:415-24. [PMID: 16496348 DOI: 10.1002/hep.21053] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intrahepatic expression of hepatitis B x antigen (HBxAg) is associated with the development of hepatocellular carcinoma (HCC), perhaps through trans-activation of selected cellular genes. When this was examined by PowerBlot analysis, upregulated levels of beta-catenin and several known beta-catenin effectors were observed in HBxAg-positive compared with HBxAg-negative HepG2 cells. When HBxAg was introduced into Hep3B cells, upregulated expression of wild-type beta-catenin was observed. This was also observed in Hep3B cells overexpressing the HBxAg upregulated gene, URG11. Upregulated expression of URG11 and beta-catenin correlated with HBxAg trans-activation function. Transient transfection assays with fragments of the beta-catenin promoter showed that it was activated by both HBxAg and URG11 and inhibited by URG11-specific small inhibitory RNA. The latter also inhibited the growth of Hep3BX cells in a serum-free medium, which correlated with depressed levels of beta-catenin. Activation of beta-catenin effector genes was observed in cells stably expressing HBxAg or overexpressing URG11 compared with control cells transfected with the pTOPFLASH reporter plasmid. Extensive costaining between HBxAg, URG11, and beta-catenin was observed in infected liver and HCC nodules, suggesting a close relationship in vivo. In conclusion, wild-type beta-catenin is activated by HBxAg, in part, through the upregulated expression of the HBxAg effector URG11. URG11 stimulates the beta-catenin promoter and hepatocellular growth and survival. These observations also suggest that URG11 may be a regulatory element in the beta-catenin signaling pathway and may be a target for chemoprevention of HCC.
Collapse
Affiliation(s)
- Zhaorui Lian
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Wu BK, Li CC, Chen HJ, Chang JL, Jeng KS, Chou CK, Hsu MT, Tsai TF. Blocking of G1/S transition and cell death in the regenerating liver of Hepatitis B virus X protein transgenic mice. Biochem Biophys Res Commun 2005; 340:916-28. [PMID: 16403455 DOI: 10.1016/j.bbrc.2005.12.089] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/14/2005] [Indexed: 02/08/2023]
Abstract
The Hepatitis B virus X (HBx) protein has been strongly implicated in the carcinogenesis of hepatocellular carcinoma (HCC). However, effects of the HBx protein on cell proliferation and cell death are controversial. This study investigates the effects of the HBx protein on liver regeneration in two independent lines of HBx transgenic mice, which developed HCC at around 14 to 16 months of age. High mortality, lower liver mass restoration, and impaired liver regeneration were found in the HBx transgenic mice post-hepatectomy. The levels of alanine aminotransferase and alpha-fetoprotein detected post-hepatectomy increased significantly in the HBx transgenic livers, indicating that they were more susceptible to damage during the regenerative process. Prolonged activation of the immediate-early genes in the HBx transgenic livers suggested that the HBx protein creates a strong effect by promoting the transition of the quiescent hepatocytes from G0 to G1 phase. However, impaired DNA synthesis and mitosis, as well as inhibited activation of G1, S, and G2/M markers, were detected. These results indicated that HBx protein exerted strong growth arrest on hepatocytes and imbalanced cell-cycle progression resulting in the abnormal cell death; this was accompanied by severe fat accumulation and impaired glycogen storage in the HBx transgenic livers. In conclusion, this study provides the first physiological evidence that HBx protein blocks G1/S transition of the hepatocyte cell-cycle progression and causes both a failure of liver functionality and cell death in the regenerating liver of the HBx transgenic mice.
Collapse
Affiliation(s)
- Bo-Kuan Wu
- Faculty of Life Sciences and Institute of Genetics, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Dandri M, Volz TK, Lütgehetmann M, Petersen J. Animal models for the study of HBV replication and its variants. J Clin Virol 2005; 34 Suppl 1:S54-62. [PMID: 16461225 DOI: 10.1016/s1386-6532(05)80011-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enormous progresses in hepatitis B virus research have been made through the identification of avian and mammalian HBV related viruses, which offer ample opportunities for studies in naturally occurring hosts. However, none of these natural hosts belongs to the commonly used laboratory animals, and the development of various mouse strains carrying HBV transgenes offered unique opportunities to investigate some mechanisms of viral pathogenesis. Furthermore, the need to perform infection studies in a system harbouring HBV-permissive hepatocytes has lately led researchers to create new challenging human mouse chimera models of HBV infection. In this review, we will overview the type of animal models currently available in hepadnavirus research.
Collapse
Affiliation(s)
- M Dandri
- Department of Medicine, University Hospital Eppendorf University of Hamburg, Martinistr 52, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|
99
|
Pang R, Tse E, Poon RTP. Molecular pathways in hepatocellular carcinoma. Cancer Lett 2005; 240:157-69. [PMID: 16239065 DOI: 10.1016/j.canlet.2005.08.031] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 08/31/2005] [Indexed: 01/18/2023]
Abstract
Research over the past decade has unraveled important molecular pathways involved in hepatocellular carcinoma (HCC), and several chromosomal and genetic aberrations have been identified to be responsible for initiation of the carcinogenic process. HBx protein and HCV core protein appear to play a pivotal role in hepatocarcinogenesis related to hepatitis B virus and hepatitis C virus, respectively. These viral oncoproteins allow cells to bypass some of the multi-steps in hepatocarcinogenesis, accounting for the etiological role of the two viruses in HCC. Understanding of the molecular pathways of HCC facilitates the development of novel molecular strategies for chemoprevention and therapy of HCC.
Collapse
Affiliation(s)
- Roberta Pang
- Department of Medicine, Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | |
Collapse
|
100
|
Buendia MA, Paterlini‐Bréchot P, Tiollais P, Bréchot C. Hepatocellular Carcinoma: Molecular Aspects in Hepatitis B. VIRAL HEPATITIS 2005:269-294. [DOI: 10.1002/9780470987131.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|