51
|
Yan SJ, Li Y, Li ZL, Chen Y, Zhang XH, Xiao L. A case report for severe hand-foot skin reaction caused by chemotherapy with actinomycin D in a patient with oculocutaneous albinism. Onco Targets Ther 2019; 12:1851-1855. [PMID: 30881037 PMCID: PMC6415729 DOI: 10.2147/ott.s195635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gestational trophoblastic neoplasms (GTN) are highly curable tumors, with an overall patient survival of 90%, due to the individualized chemotherapy. However, chemotherapy regimens vary between different treatment centers and the comparable benefits and risks of these different regimens are unclear. Here, we reported a case of GTN with oculocutaneous albinism (OCA) is resistant to fluorouracil (5-FU), extremely sensitive to actinomycin D (Act-D) with severe hand-foot skin reaction (HFSR). We hypothesized that the known, or unknown, gene mutations might be correlated with drug resistance, supersensitivity and severe drug side effects in OCA patients. Thus, we considered that OCA related genes influence some drug sensitivity and that the absence of melanin likely contributes to some drug resistance. It is important to assess the OCA related gene mutations locus of drug sensitivity, and resistance in OCA patients in future research.
Collapse
Affiliation(s)
- Shi-Jie Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Anhui Medical University, Hefei 230020, Anhui, P.R. China, .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230020, Anhui, P.R. China,
| | - Yan Li
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, Hubei, P.R. China
| | - Ze-Lian Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Anhui Medical University, Hefei 230020, Anhui, P.R. China, .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230020, Anhui, P.R. China,
| | - Ying Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Anhui Medical University, Hefei 230020, Anhui, P.R. China, .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230020, Anhui, P.R. China,
| | - Xiao-Hui Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Anhui Medical University, Hefei 230020, Anhui, P.R. China, .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230020, Anhui, P.R. China,
| | - Lan Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Anhui Medical University, Hefei 230020, Anhui, P.R. China, .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230020, Anhui, P.R. China,
| |
Collapse
|
52
|
Rodrigues-Junior DM, Tan SS, Lim SK, de Souza Viana L, Carvalho AL, Vettore AL, Iyer NG. High expression of MLANA in the plasma of patients with head and neck squamous cell carcinoma as a predictor of tumor progression. Head Neck 2019; 41:1199-1205. [PMID: 30803092 DOI: 10.1002/hed.25510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 05/04/2018] [Accepted: 08/15/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND There is a paucity of plasma-based biomarkers that predict outcome in patients with head and neck squamous cell carcinoma (HNSCC) treated with chemoradiation therapy (CRT). Here, we evaluate the prognostic potential of plasma Melanoma-Antigen Recognized by T-cells 1 (MLANA) in this setting. METHODS MLANA expression in HNSCC lines were evaluated by reverse transcription polymerase chain reaction, whereas plasma levels were quantified using ELISA in 48 patients with locally advanced HNSCC undergoing a phase 2 trial with CRT. RESULTS MLANA is expressed at variable levels in a panel of HNSCC lines. In plasma, levels were elevated in patients with tumor relapse compared to those without (P < .004); 73.9% of the patients expressing high plasma MLANA levels progressed with recurrent disease (P = .020). Multivariate analysis showed that plasma MLANA levels and tumor resectability were independent prognostic factors for progression free survival. CONCLUSION Plasma MLANA expression appears to be an effective noninvasive biomarker for outcomes in patients treated with CRT, and could potentially guide therapeutic decisions in this context.
Collapse
Affiliation(s)
- Dorival Mendes Rodrigues-Junior
- Biological Science Department, Campus Diadema, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil.,Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore
| | | | | | - Luciano de Souza Viana
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Andre Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Andre Luiz Vettore
- Biological Science Department, Campus Diadema, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - N Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore.,Division of Surgical Oncology, National Cancer Centre, Singapore
| |
Collapse
|
53
|
Interleukin-13 receptor α2 is a novel marker and potential therapeutic target for human melanoma. Sci Rep 2019; 9:1281. [PMID: 30718742 PMCID: PMC6362032 DOI: 10.1038/s41598-019-39018-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/31/2018] [Indexed: 12/23/2022] Open
Abstract
Malignant melanoma is one of the untreatable cancers in which conventional therapeutic strategies, including chemotherapy, are hardly effective. Therefore, identification of novel therapeutic targets involved in melanoma progression is urgently needed for developing effective therapeutic methods. Overexpression of interleukin-13 receptor α2 (IL13Rα2) is observed in several cancer types including glioma and pancreatic cancer. Although IL13Rα2 is implicated in the progression of various types of cancer, its expression and roles in the malignant melanoma have not yet been elucidated. In the present study, we showed that IL13Rα2 was expressed in approximately 7.5% melanoma patients. While IL13Rα2 expression in human melanoma cells decreased their proliferation in vitro, it promoted in vivo tumour growth and angiogenesis in melanoma xenograft mouse model. We also found that the expression of amphiregulin, a member of the epidermal growth factor (EGF) family, was correlated with IL13Rα2 expression in cultured melanoma cells, xenograft tumour tissues and melanoma clinical samples. Furthermore, expression of amphiregulin promoted tumour growth, implicating causal relationship between the expression of IL13Rα2 and amphiregulin. These results suggest that IL13Rα2 enhances tumorigenicity by inducing angiogenesis in malignant melanoma, and serves as a potential therapeutic target of malignant melanoma.
Collapse
|
54
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
55
|
Jiang L, Xu Y, Zhang P, Zhang Y, Li H, Chen J, Liu S, Zeng Q. Functional MoS2 nanosheets inhibit melanogenesis to enhance UVB/X-ray induced damage. J Mater Chem B 2019. [DOI: 10.1039/c9tb00419j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We produced highly dispersed MoS2 nanosheets in water with the assistance of tryptophan (Trp) to inhibit melanogenesis by suppressing ROS production.
Collapse
Affiliation(s)
- Ling Jiang
- Department of Dermatology
- Third Xiangya Hospital
- Central South University
- Changsha
- China
| | - Yanyan Xu
- Institute of Chemical Biology and Nanomedicine (ICBN)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Pei Zhang
- Institute of Chemical Biology and Nanomedicine (ICBN)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Yi Zhang
- Hunan Key Lab of Mineral Materials and Application
- Central South University
- Changsha
- China
- School of Minerals Processing and Bioengineering
| | - Huimin Li
- Institute of Chemical Biology and Nanomedicine (ICBN)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Jing Chen
- Department of Dermatology
- Third Xiangya Hospital
- Central South University
- Changsha
- China
| | - Song Liu
- Institute of Chemical Biology and Nanomedicine (ICBN)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Qinghai Zeng
- Department of Dermatology
- Third Xiangya Hospital
- Central South University
- Changsha
- China
| |
Collapse
|
56
|
Beauvericin inhibits melanogenesis by regulating cAMP/PKA/CREB and LXR-α/p38 MAPK-mediated pathways. Sci Rep 2018; 8:14958. [PMID: 30297846 PMCID: PMC6175938 DOI: 10.1038/s41598-018-33352-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
Melanogenesis is the process of production of melanin pigments that are responsible for the colors of skin, eye, and hair and provide protection from ultraviolet radiation. However, excessive levels of melanin formation cause hyperpigmentation disorders such as freckles, melasma, and age spots. Liver X receptors (LXR) are nuclear oxysterol receptors belonging to the family of ligand-activated transcription factors and physiological regulators of lipid and cholesterol metabolism. In the skin, activation of LXRs stimulates differentiation of keratinocytes and augments lipid synthesis in sebocytes. However, the function of LXRs in melanogenesis has not been clearly elucidated. In addition, although beauvericin, a well-known mycotoxin primarily isolated from several fungi, has various biological properties, its involvement in melanogenesis has not been reported. Therefore, in this study, we examined the effects of beauvericin on melanogenesis and its molecular mechanisms. Beauvericin decreased melanin content and tyrosinase activity without any cytotoxicity. Beauvericin also reduced protein levels of MITF, tyrosinase, TRP1, and TRP2. In addition, beauvericin suppressed cAMP-PKA-CREB signaling and upregulated expression of LXR-α, resulting in the suppression of p38 MAPK. Our results indicate that beauvericin attenuates melanogenesis by regulating both cAMP/PKA/CREB and LXR-α/p38 MAPK pathways, consequently leading to a reduction of melanin levels.
Collapse
|
57
|
Ryeom GGM, Bang WJ, Kim YB, Lee GE. Gallotannin Improves the Photoaged-Related Proteins by Extracellular Signal-Regulated Kinases/c-Jun N-Terminal Kinases Signaling Pathway in Human Epidermal Keratinocyte Cells. J Med Food 2018; 21:785-792. [PMID: 30004816 DOI: 10.1089/jmf.2017.4096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tannins are a type of polyphenols found in several fruits such as grapes and berries, and nuts such as aronias and acorns. Both hydrolyzable tannins and condensed tannins are referred to as tannins. Among the hydrolyzable tannins, gallotannin has a strong antioxidative property and is known to protect the skin by inhibiting the precursors of elastolytic enzymes. However, its mechanism of protection against ultraviolet B (UVB) damage in human fibroblasts and keratinocytes has not yet been elucidated. In this study, we investigate the antioxidant and antiaging effect of gallotannin on UVB-irradiated human cells by studying its effect on extracellular signal-regulated kinases/c-Jun N-terminal kinases (EKRs/JNKs) signaling related to cell growth and differentiation/stress apoptosis. The results showed that gallotannin improved collagen synthesis, reduced metalloproteinase-1 (MMP-1) expression in a dose-dependent manner, and downregulated MMP-1 levels through the ERK/JNK signaling pathway in UVB-irradiated human cells. Gallotannin also increased glutathione but did not increase transforming growth factor beta 1, which induces fibrosis. We propose that gallotannin is a novel agent for protection against UVB, and acts as an antiaging agent that can be used in food, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Gyoseon Goya M Ryeom
- 1 Skin Science, R&D Center , iPEERES Cosmetics Co. Ltd., Anseong-si, Republic of Korea
| | - Weon Jeong Bang
- 1 Skin Science, R&D Center , iPEERES Cosmetics Co. Ltd., Anseong-si, Republic of Korea
| | - Young Bu Kim
- 2 R&D Center , iPEERES Cosmetics Co. Ltd., Anseong-si, Republic of Korea
| | - Go Eun Lee
- 1 Skin Science, R&D Center , iPEERES Cosmetics Co. Ltd., Anseong-si, Republic of Korea
| |
Collapse
|
58
|
Brożyna AA, Jóźwicki W, Skobowiat C, Jetten A, Slominski AT. RORα and RORγ expression inversely correlates with human melanoma progression. Oncotarget 2018; 7:63261-63282. [PMID: 27542227 PMCID: PMC5325362 DOI: 10.18632/oncotarget.11211] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
The retinoic acid-related orphan receptors (RORs) regulate several physiological and pathological processes, including immune functions, development and cancer. To study the potential role of RORs in melanoma progression, we analysed RORα and RORγ expression in nevi and primary melanomas and non-lesional skin and metastases in relation to melanoma clinico-pathomorphological features. The expression of RORα and RORγ was lower in melanomas than in nevi and decreased during melanoma progression, with lowest levels found in primary melanomas at stages III and IV and in melanoma metastases. Their expression correlated with pathomorphological pTNM parameters being low in aggressive tumors and being high in tumors showing histological markers of good prognosis. Higher nuclear levels of RORα and RORγ and of cytoplasmic RORγ correlated with significantly longer overall and disease free survival time. Highly pigmented melanomas showed significantly lower level of nuclear RORs. This study shows that human melanoma development and aggressiveness is associated with decreased expression of RORα and RORγ, suggesting that RORs could be important in melanoma progression and host responses against the tumor. Furthermore, it suggests that RORα and RORγ might constitute a novel druggable target in anti-melanoma management using tumor suppressor gene therapy restoring their normal functions.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland.,Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Wojciech Jóźwicki
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland.,Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Cezary Skobowiat
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Anton Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Andrzej T Slominski
- Department of Dermatology, Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, USA.,Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, USA.,Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
59
|
Nosanchuk JD, Jeyakumar A, Ray A, Revskaya E, Jiang Z, Bryan RA, Allen KJH, Jiao R, Malo ME, Gómez BL, Morgenstern A, Bruchertseifer F, Rickles D, Thornton GB, Bowen A, Casadevall A, Dadachova E. Structure-function analysis and therapeutic efficacy of antibodies to fungal melanin for melanoma radioimmunotherapy. Sci Rep 2018; 8:5466. [PMID: 29615812 PMCID: PMC5882926 DOI: 10.1038/s41598-018-23889-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/22/2018] [Indexed: 02/06/2023] Open
Abstract
Metastatic melanoma remains difficult to treat despite recent approvals of several new drugs. Recently we reported encouraging results of Phase I clinical trial of radiolabeled with 188Re murine monoclonal IgM 6D2 to melanin in patients with Stage III/IV melanoma. Subsequently we generated a novel murine IgG 8C3 to melanin. IgGs are more amenable to humanization and cGMP (current Good Manufacturing Practice) manufacturing than IgMs. We performed comparative structural analysis of melanin-binding IgM 6D2 and IgG 8C3. The therapeutic efficacy of 213Bi- and 188Re-labeled 8C3 and its comparison with anti-CTLA4 immunotherapy was performed in B16-F10 murine melanoma model. The primary structures of these antibodies revealed significant homology, with the CDRs containing a high percentage of positively charged amino acids. The 8C3 model has a negatively charged binding surface and significant number of aromatic residues in its H3 domain, suggesting that hydrophobic interactions contribute to the antibody-melanin interaction. Radiolabeled IgG 8C3 showed significant therapeutic efficacy in murine melanoma, safety towards healthy melanin-containing tissues and favorable comparison with the anti-CTLA4 antibody. We have demonstrated that antibody binding to melanin relies on both charge and hydrophobic interactions while the in vivo data supports further development of 8C3 IgG as radioimmunotherapy reagent for metastatic melanoma.
Collapse
Affiliation(s)
- J D Nosanchuk
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - A Jeyakumar
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - A Ray
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - E Revskaya
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Z Jiang
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - R A Bryan
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - K J H Allen
- University of Saskatchewan, Saskatoon, SK, Canada
| | - R Jiao
- University of Saskatchewan, Saskatoon, SK, Canada
| | - M E Malo
- University of Saskatchewan, Saskatoon, SK, Canada
| | - B L Gómez
- School of Medicine and Health Sciences, Universidad Rosario, Bogota, Colombia
| | - A Morgenstern
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - F Bruchertseifer
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - D Rickles
- RadImmune Therapeutics, Tarrytown, NY, USA
| | | | - A Bowen
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A Casadevall
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - E Dadachova
- University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
60
|
de Assis LVM, Moraes MN, Magalhães-Marques KK, Kinker GS, da Silveira Cruz-Machado S, Castrucci AMDL. Non-Metastatic Cutaneous Melanoma Induces Chronodisruption in Central and Peripheral Circadian Clocks. Int J Mol Sci 2018; 19:E1065. [PMID: 29614021 PMCID: PMC5979525 DOI: 10.3390/ijms19041065] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022] Open
Abstract
The biological clock has received increasing interest due to its key role in regulating body homeostasis in a time-dependent manner. Cancer development and progression has been linked to a disrupted molecular clock; however, in melanoma, the role of the biological clock is largely unknown. We investigated the effects of the tumor on its micro- (TME) and macro-environments (TMaE) in a non-metastatic melanoma model. C57BL/6J mice were inoculated with murine B16-F10 melanoma cells and 2 weeks later the animals were euthanized every 6 h during 24 h. The presence of a localized tumor significantly impaired the biological clock of tumor-adjacent skin and affected the oscillatory expression of genes involved in light- and thermo-reception, proliferation, melanogenesis, and DNA repair. The expression of tumor molecular clock was significantly reduced compared to healthy skin but still displayed an oscillatory profile. We were able to cluster the affected genes using a human database and distinguish between primary melanoma and healthy skin. The molecular clocks of lungs and liver (common sites of metastasis), and the suprachiasmatic nucleus (SCN) were significantly affected by tumor presence, leading to chronodisruption in each organ. Taken altogether, the presence of non-metastatic melanoma significantly impairs the organism's biological clocks. We suggest that the clock alterations found in TME and TMaE could impact development, progression, and metastasis of melanoma; thus, making the molecular clock an interesting pharmacological target.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Maria Nathália Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Keila Karoline Magalhães-Marques
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Gabriela Sarti Kinker
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Sanseray da Silveira Cruz-Machado
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
61
|
Śniegocka M, Podgórska E, Płonka PM, Elas M, Romanowska-Dixon B, Szczygieł M, Żmijewski MA, Cichorek M, Markiewicz A, Brożyna AA, Słominski AT, Urbańska K. Transplantable Melanomas in Hamsters and Gerbils as Models for Human Melanoma. Sensitization in Melanoma Radiotherapy-From Animal Models to Clinical Trials. Int J Mol Sci 2018; 19:E1048. [PMID: 29614755 PMCID: PMC5979283 DOI: 10.3390/ijms19041048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
The focus of the present review is to investigate the role of melanin in the radioprotection of melanoma and attempts to sensitize tumors to radiation by inhibiting melanogenesis. Early studies showed radical scavenging, oxygen consumption and adsorption as mechanisms of melanin radioprotection. Experimental models of melanoma in hamsters and in gerbils are described as well as their use in biochemical and radiobiological studies, including a spontaneously metastasizing ocular model. Some results from in vitro studies on the inhibition of melanogenesis are presented as well as radio-chelation therapy in experimental and clinical settings. In contrast to cutaneous melanoma, uveal melanoma is very successfully treated with radiation, both using photon and proton beams. We point out that the presence or lack of melanin pigmentation should be considered, when choosing therapeutic options, and that both the experimental and clinical data suggest that melanin could be a target for radiosensitizing melanoma cells to increase efficacy of radiotherapy against melanoma.
Collapse
Affiliation(s)
- Martyna Śniegocka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007 Kraków, Poland.
| | - Ewa Podgórska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007 Kraków, Poland.
| | - Przemysław M Płonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007 Kraków, Poland.
| | - Martyna Elas
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007 Kraków, Poland.
| | - Bożena Romanowska-Dixon
- Department of Ophthalmology and Ocular Oncology, Medical College of Jagiellonian University in Kraków, 31-007 Kraków, Poland.
| | - Małgorzata Szczygieł
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007 Kraków, Poland.
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdansk, 80-210 Gdańsk, Poland.
| | - Mirosława Cichorek
- Department of Embryology, Medical University of Gdansk, 80-210 Gdańsk, Poland.
| | - Anna Markiewicz
- Department of Ophthalmology and Ocular Oncology, Medical College of Jagiellonian University in Kraków, 31-007 Kraków, Poland.
| | - Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland.
- Department of Dermatology, Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Andrzej T Słominski
- Department of Dermatology, Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- VA Medical Center, Birmingham, AL 35294, USA.
| | - Krystyna Urbańska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007 Kraków, Poland.
| |
Collapse
|
62
|
de Assis LVM, Moraes MN, Magalhães-Marques KK, Castrucci AMDL. Melanopsin and rhodopsin mediate UVA-induced immediate pigment darkening: Unravelling the photosensitive system of the skin. Eur J Cell Biol 2018; 97:150-162. [PMID: 29395480 DOI: 10.1016/j.ejcb.2018.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 11/25/2022] Open
Abstract
The mammalian skin has a photosensitive system comprised by several opsins, including rhodopsin (OPN2) and melanopsin (OPN4). Recently, our group showed that UVA (4.4 kJ/m2) leads to immediate pigment darkening (IPD) in murine normal and malignant melanocytes. We show the role of OPN2 and OPN4 as UVA sensors: UVA-induced IPD was fully abolished when OPN4 was pharmacologically inhibited by AA9253 or when OPN2 and OPN4 were knocked down by siRNA in both cell lines. Our data, however, demonstrate that phospholipase C/protein kinase C pathway, a classical OPN4 pathway, is not involved in UVA-induced IPD in either cell line. Nonetheless, in both cell types we have shown that: a) intracellular calcium signal is necessary for UVA-induced IPD; b) the involvement of CaMK II, whose inhibition, abolished the UVA-induced IPD; c) the role of CAMK II/NOS/sGC/cGMP pathway in the process since inhibition of either NOS or sGC abolished the UVA-induced IPD. Taken altogether, we show that OPN2 and OPN4 participate in IPD induced by UVA in murine normal and malignant melanocytes through a conserved common pathway. Interestingly, upon knockdown of OPN2 or OPN4, the UVA-driven IPD is completely lost, which suggests that both opsins are required and cooperatively signal in murine both cell lines. The participation of OPN2 and OPN4 system in UVA radiation-induced response, if proven to take place in human skin, may represent an interesting pharmacological target for the treatment of depigmentary disorders and skin-related cancer.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Keila Karoline Magalhães-Marques
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
63
|
Wang LX, Li Y, Chen GZ. Network-based co-expression analysis for exploring the potential diagnostic biomarkers of metastatic melanoma. PLoS One 2018; 13:e0190447. [PMID: 29377892 PMCID: PMC5788335 DOI: 10.1371/journal.pone.0190447] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Metastatic melanoma is an aggressive skin cancer and is one of the global malignancies with high mortality and morbidity. It is essential to identify and verify diagnostic biomarkers of early metastatic melanoma. Previous studies have systematically assessed protein biomarkers and mRNA-based expression characteristics. However, molecular markers for the early diagnosis of metastatic melanoma have not been identified. To explore potential regulatory targets, we have analyzed the gene microarray expression profiles of malignant melanoma samples by co-expression analysis based on the network approach. The differentially expressed genes (DEGs) were screened by the EdgeR package of R software. A weighted gene co-expression network analysis (WGCNA) was used for the identification of DEGs in the special gene modules and hub genes. Subsequently, a protein-protein interaction network was constructed to extract hub genes associated with gene modules. Finally, twenty-four important hub genes (RASGRP2, IKZF1, CXCR5, LTB, BLK, LINGO3, CCR6, P2RY10, RHOH, JUP, KRT14, PLA2G3, SPRR1A, KRT78, SFN, CLDN4, IL1RN, PKP3, CBLC, KRT16, TMEM79, KLK8, LYPD3 and LYPD5) were treated as valuable factors involved in the immune response and tumor cell development in tumorigenesis. In addition, a transcriptional regulatory network was constructed for these specific modules or hub genes, and a few core transcriptional regulators were found to be mostly associated with our hub genes, including GATA1, STAT1, SP1, and PSG1. In summary, our findings enhance our understanding of the biological process of malignant melanoma metastasis, enabling us to identify specific genes to use for diagnostic and prognostic markers and possibly for targeted therapy.
Collapse
Affiliation(s)
- Li-xin Wang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Yang Li
- Institute of Dermatology and Skin Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Guan-zhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Shandong, China
| |
Collapse
|
64
|
Antitumoral, antioxidant, and antimelanogenesis potencies of Hawthorn, a potential natural agent in the treatment of melanoma. Melanoma Res 2018; 26:211-22. [PMID: 26795272 DOI: 10.1097/cmr.0000000000000240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The lack of an efficient agent that does not have the disadvantage of low activity (kojic acid), high cytotoxicity, and mutagenicity (hydroquinone), poor skin penetration (arbutin), or low stability in formulation (glabridin) led us to continue our research on new antipigmentation/skin-lightening agents. Therefore, research of natural products that can modulate the metabolism of pigmentation is of great interest. Otherwise, malignant melanoma is one of the most aggressive forms of skin cancer, with high metastatic potential, and currently, there is no effective chemotherapy against invasive melanoma. Therefore, it is necessary to develop new drugs with potent activity and weak side effects against melanoma. The in-vitro anticancer effect of hawthorn was analyzed against B16F10 melanoma cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of isolated compounds from hawthorn on melanogenesis in B16F10 melanoma cells was investigated by measuring the amounts of melanin and tyrosinase spectrophotometrically at 475 nm. Balb/c mice models inoculated with B16F10 mouse tumor cells were used to evaluate the in-vivo antitumoral potential of hawthorn by assessing its effect on the growth of transplanted tumors. The antioxidant potential of tested samples was evaluated in B16F10 and primary human keratinocyte cells using a cellular antioxidant activity assay. Hawthorn tested samples inhibited effectively the growth of melanoma cells in vitro. Furthermore, it appears that tested samples from hawthorn reduced melanogenesis by inhibiting the tyrosinase activity of B16F10 cells in a dose-dependent manner. In-vivo studies showed that hawthorn total oligomer flavonoids extract treatment at a dose of 150 mg/kg body weight for 21 days in implanted tumor mice resulted in significant inhibition of the tumor growth volume and weight. In addition, tested samples showed significant cellular antioxidant capacity against the reactive oxygen species in B16F10 and primary human keratinocyte cells. Our results indicate that hawthorn could be considered as a promising agent for the treatment of melanoma as it shows antitumor activity in vitro and in vivo. Moreover, hawthorn constituents are shown to be highly effective at inhibiting tyrosinase-mediated melanogenesis in vitro on melanoma cells by preventing oxidation in these cells and without affecting the viability of normal human keratinocyte cells. Then, hawthorn might also be used as a new candidate of natural skin depigmenting agents in skin care products.
Collapse
|
65
|
Brożyna AA, Aplin A, Cohen C, Carlson G, Page AJ, Murphy M, Slominski AT, Carlson JA. CKS1 expression in melanocytic nevi and melanoma. Oncotarget 2018; 9:4173-4187. [PMID: 29423113 PMCID: PMC5790530 DOI: 10.18632/oncotarget.23648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/16/2017] [Indexed: 12/22/2022] Open
Abstract
Cyclin-dependent kinase subunit 1 (Cks1) regulates the degradation of p27, an important G1-S inhibitor, which is up regulated by MAPK pathway activation. In this study, we sought to determine whether Cks1 expression is increased in melanocytic tumors and correlates with outcome and/or other clinicopathologic prognostic markers. Cks1 expression was assessed by immunohistochemistry in 298 melanocytic lesions. The frequency and intensity of cytoplasmic and nuclear expression was scored as a labeling index and correlated with clinico-pathological data. Nuclear Cks1 protein was found in 63% of melanocytic nevi, 89% primary and 90% metastatic melanomas with mean labeling index of 7 ± 16, 19 ± 20, and 30 ± 29, respectively. While cytoplasmic Cks1 was found in 41% of melanocytic nevi, 84% primary and 95% metastatic melanomas with mean labeling index of 18 ± 34, 35 ± 34, and 52 ± 34, accordingly. Histologic stepwise model of tumor progression, defined as progression from benign nevi to primary melanomas, to melanoma metastases, revealed a significant increase in nuclear and cytoplasmic Cks1 expression with tumor progression. Nuclear and cytoplasmic Cks1 expression correlated with the presence of ulceration, increased mitotic rate, Breslow depth, Clark level, tumor infiltrating lymphocytes and gender. However, other well-known prognostic factors (age, anatomic site, and regression) did not correlate with any type of Cks1 expression. Similarly, increasing nuclear expression of Cks1 significantly correlated with worse overall survival. Thus, Cks1 expression appears to play a role in the progression of melanoma, where high levels of expression are associated with poor outcome. Cytoplasmic expression of Cks1 might represent high turnover of protein via the ubiquination/proteosome pathway.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland
| | - Andrew Aplin
- Department of Cancer Biology, BLSB 524, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Cynthia Cohen
- Winship Cancer Institute, Emory University Hospital, Atlanta, GA 30322, USA
| | - Grant Carlson
- Winship Cancer Institute, Emory University Hospital, Atlanta, GA 30322, USA
| | - Andrew Joseph Page
- Pancreas, Liver, and Cancer Surgery, Piedmont Healthcare, Atlanta, GA 30309, USA
| | - Michael Murphy
- Department of Dermatology, UConn Health, Farmington, CT 06030, USA
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J Andrew Carlson
- Department of Pathology and Laboratory Medicine, Albany Medical College MC-81, Albany, NY 12208, USA
| |
Collapse
|
66
|
Pharmacological activation of TRPV4 produces immediate cell damage and induction of apoptosis in human melanoma cells and HaCaT keratinocytes. PLoS One 2018; 13:e0190307. [PMID: 29293584 PMCID: PMC5749757 DOI: 10.1371/journal.pone.0190307] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
Background TRPV4 channels are calcium-permeable cation channels that are activated by several physicochemical stimuli. Accordingly, TRPV4 channels have been implicated in the regulation of osmosensing, mechanotransduction, thermosensation, and epithelial/endothelial barrier functions. Whether TRPV4 is also mechanistically implicated in melanoma cell proliferation is not clear. Here, we hypothesized that TRPV4 is expressed in human melanoma and that pharmacological activation interferes with cell proliferation. Methodology/Principal findings TRPV4 functions were studied in melanoma cell lines (A375, SK-MEL-28, MKTBR), immortalized non-cancer keratinocytes (HaCaT), and murine 3T3 fibroblasts by patch-clamp, qRT-PCR, intracellular calcium measurements, cell proliferation, and flow cytometric assays of apoptosis and cell cycle. The selective TRPV4-activator, GSK1016790A, elicited non-selective cation currents with TRPV4-typical current-voltage-relationship in all cell lines. GSK1016790A-induced currents were blocked by the TRPV4-blocker, HC067047. TRPV4 mRNA expression was demonstrated by qRT-PCR. In A375 cells, TRPV4 activation was frequently paralleled by co-activation of calcium/calmodulin-regulated KCa3.1 channels. Light microscopy showed that TRPV4-activation produced rapid cellular disarrangement, nuclear densification, and detachment of a large fraction of all melanoma cell lines and HaCaT cells. TRPV4-activation induced apoptosis and drastically inhibited A375 and HaCaT proliferation that could be partially prevented by HC067047. Conclusions/Significance Our study showed that TRPV4 channels were functionally expressed in human melanoma cell lines and in human keratinocytes. Pharmacological TRPV4 activation in human melanoma cells and keratinocytes caused severe cellular disarrangement, necrosis and apoptosis. Pharmacological targeting of TRPV4 could be an alternative or adjuvant therapeutic strategy to treat melanoma progression and other proliferative skin disorders.
Collapse
|
67
|
Xu H, Gong J, Liu H. High expression of lncRNA PVT1 independently predicts poor overall survival in patients with primary uveal melanoma. PLoS One 2017; 12:e0189675. [PMID: 29244840 PMCID: PMC5731763 DOI: 10.1371/journal.pone.0189675] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
The plasmacytoma variant translocation 1 gene (PVT1) plays an oncogenic role in the initiation and progression of multiple cancers. In this study, by using deep-sequencing data and follow-up data in the Cancer Genome Atlas-Uveal melanomas (TCGA-UVM), we assessed the association between the expression of PVT1 and clinicopathological characteristics of patients with uveal melanoma, the mechanism of its dysregulation and its prognostic value. Results showed that high PVT1 expression group had a higher proportion of epithelioid cell dominant disease (a more malignant histological subtype than spindle cell dominant disease) and more cases of extrascleral extension (a risk factor for metastasis) compared with the low PVT1 expression group. 61 out of 80 cases (76.3%) of primary uveal melanoma had PVT1 amplification in TCGA-UVM. In addition, PVT1 expression was strongly and negatively correlated with its methylation status (Pearson's r = -0.712, Spearman's r = -0.806). By performing univariate and multivariate analysis, we found that high PVT1 expression was an independent predictor of poor OS in patients with uveal melanoma (HR: 12.015, 95%CI: 1.854-77.876, p = 0.009). Based on these findings, we infer that PVT1 expression is modulated by both DNA amplification and methylation and its expression might serve as a valuable and specific prognostic biomarker in terms of OS in uveal melanoma.
Collapse
Affiliation(s)
- Haiming Xu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jingwen Gong
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hui Liu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
68
|
Konstantakou EG, Velentzas AD, Anagnostopoulos AK, Giannopoulou AF, Anastasiadou E, Papassideri IS, Voutsinas GE, Tsangaris GT, Stravopodis DJ. Unraveling the human protein atlas of metastatic melanoma in the course of ultraviolet radiation-derived photo-therapy. J Proteomics 2017; 188:119-138. [PMID: 29180045 DOI: 10.1016/j.jprot.2017.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/09/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
To explore the photo-therapeutic capacity of UV radiation in solid tumors, we herein employed an nLC-MS/MS technology to profile the proteomic landscape of irradiated WM-266-4 human metastatic-melanoma cells. Obtained data resulted in proteomic catalogues of 5982 and 7280 proteins for UVB- and UVC-radiation conditions, respectively, and indicated the ability of UVB/C-radiation forms to eliminate metastatic-melanoma cells through induction of synergistically operating programs of apoptosis and necroptosis. However, it seems that one or more WM-266-4 cell sub-populations may escape from UV-radiation's photo-damaging activity, acquiring, besides apoptosis tolerance, an EMT phenotype that likely offers them the advantage of developing resistance to certain chemotherapeutic drugs. Low levels of autophagy may also critically contribute to the selective survival and growth of UV-irradiated melanoma-cell escapers. These are the cells that must be systemically targeted with novel therapeutic schemes, like the one of UV radiation and Irinotecan herein suggested to be holding strong promise for the effective treatment of metastatic-melanoma patients. Given the dual nature of UV radiation to serve as both anti-tumorigenic and tumorigenic agent, all individuals being subjected to risk factors for melanoma development have to be appropriately informed and educated, in order to integrate the innovative PPPM concept in their healthcare-sector management. SIGNIFICANCE This study reports the application of nLC-MS/MS technology to deeply map the proteomic landscape of UV-irradiated human metastatic-melanoma cells. Data bioinformatics processing led to molecular-network reconstructions that unearthed the dual nature of UV radiation to serve as both anti-tumorigenic and tumorigenic factor in metastatic-melanoma cellular environments. Our UV radiation-derived "photo-proteomic" atlas may prove valuable for the identification of new biomarkers and development of novel therapies for the disease. Given that UV radiation represents a major risk factor causing melanoma, a PPPM-based life style and clinical practice must be embraced by all individuals being prone to disease's appearance and expansion.
Collapse
Affiliation(s)
- Eumorphia G Konstantakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios K Anagnostopoulos
- Proteomics Core Facility, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Aikaterini F Giannopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Ema Anastasiadou
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerassimos E Voutsinas
- Laboratory of Environmental Mutagenesis and Carcinogenesis, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - George Th Tsangaris
- Proteomics Core Facility, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
69
|
Lee S, Lee DH, Kim JC, Um BH, Sung SH, Jeong LS, Kim YK, Kim SN. Pectolinarigenin, an aglycone of pectolinarin, has more potent inhibitory activities on melanogenesis than pectolinarin. Biochem Biophys Res Commun 2017; 493:765-772. [DOI: 10.1016/j.bbrc.2017.08.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/26/2017] [Indexed: 10/19/2022]
|
70
|
Nakamura S, Kunikata T, Matsumoto Y, Hanaya T, Harashima A, Nishimoto T, Ushio S. Effects of a non-cyclodextrin cyclic carbohydrate on mouse melanoma cells: Characterization of a new type of hypopigmenting sugar. PLoS One 2017; 12:e0186640. [PMID: 29045474 PMCID: PMC5646846 DOI: 10.1371/journal.pone.0186640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022] Open
Abstract
Cyclic nigerosyl nigerose (CNN) is a cyclic tetrasaccharide that exhibits properties distinct from other conventional cyclodextrins. Herein, we demonstrate that treatment of B16 melanoma with CNN results in a dose-dependent decrease in melanin synthesis, even under conditions that stimulate melanin synthesis, without significant cytotoxity. The effects of CNN were prolonged for more than 27 days, and were gradually reversed following removal of CNN. Undigested CNN was found to accumulate within B16 cells at relatively high levels. Further, CNN showed a weak but significant direct inhibitory effect on the enzymatic activity of tyrosinase, suggesting one possible mechanism of hypopigmentation. While a slight reduction in tyrosinase expression was observed, tyrosinase expression was maintained at significant levels, processed into a mature form, and transported to late-stage melanosomes. Immunocytochemical analysis demonstrated that CNN treatment induced drastic morphological changes of Pmel17-positive and LAMP-1-positive organelles within B16 cells, suggesting that CNN is a potent organelle modulator. Colocalization of both tyrosinase-positive and LAMP-1-positive regions in CNN-treated cells indicated possible degradation of tyrosinase in LAMP-1-positive organelles; however, that possibility was ruled out by subsequent inhibition experiments. Taken together, this study opens a new paradigm of functional oligosaccharides, and offers CNN as a novel hypopigmenting molecule and organelle modulator.
Collapse
|
71
|
Tudor D, Nenu I, Filip GA, Olteanu D, Cenariu M, Tabaran F, Ion RM, Gligor L, Baldea I. Combined regimen of photodynamic therapy mediated by Gallium phthalocyanine chloride and Metformin enhances anti-melanoma efficacy. PLoS One 2017; 12:e0173241. [PMID: 28278159 PMCID: PMC5344368 DOI: 10.1371/journal.pone.0173241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/18/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Melanoma therapy is challenging, especially in advanced cases, due to multiple developed tumor defense mechanisms. Photodynamic therapy (PDT) might represent an adjuvant treatment, because of its bimodal action: tumor destruction and immune system awakening. In this study, a combination of PDT mediated by a metal substituted phthalocyanine-Gallium phthalocyanine chloride (GaPc) and Metformin was used against melanoma. The study aimed to: (1) find the anti-melanoma efficacy of GaPc-PDT, (2) assess possible beneficial effects of Metformin addition to PDT, (3) uncover some of the mechanisms underlining cell killing and anti-angiogenic effects. METHODS Two human lightly pigmented melanoma cell lines: WM35 and M1/15 subjected to previous Metformin exposure were treated by GaPc-PDT. Cell viability, death mechanism, cytoskeleton alterations, oxidative damage, were assessed by means of colorimetry, flowcytometry, confocal microscopy, spectrophotometry, ELISA, Western Blotting. RESULTS GaPc proved an efficient photosensitizer. Metformin addition enhanced cell killing by mechanisms dependent on the cell line, namely apoptosis in the metastatic M1/15 and necrosis in the radial growth phase, WM35. Cell death mechanism relied on the inhibition of nuclear transcription factor (NF)-κB activation and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) sensitization, leading to TRAIL and TNF-α induced apoptosis. Metformin diminished the anti-angiogenic effect of PDT. CONCLUSIONS Metformin addition to GaPc-PDT increased tumor cell killing through enhanced oxidative damage and induction of proapoptotic mechanisms, but altered PDT anti-angiogenic effects. GENERAL SIGNIFICANCE Combination of Metformin and PDT might represent a solution to enhance the efficacy, leading to a potential adjuvant role of PDT in melanoma therapy.
Collapse
Affiliation(s)
- Diana Tudor
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Iuliana Nenu
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Diana Olteanu
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai Cenariu
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Flaviu Tabaran
- Department of Pathology University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Rodica Mariana Ion
- Nanomedicine Research Group, National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, Bucharest, Romania
| | - Lucian Gligor
- OSRAM Opto Semiconductors, OSRAM Romania, Global City Business Park, Voluntari, Ilfov, Romania
| | - Ioana Baldea
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
72
|
Brożyna AA, Jóźwicki W, Roszkowski K, Filipiak J, Slominski AT. Melanin content in melanoma metastases affects the outcome of radiotherapy. Oncotarget 2017; 7:17844-53. [PMID: 26910282 PMCID: PMC4951254 DOI: 10.18632/oncotarget.7528] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/11/2016] [Indexed: 01/18/2023] Open
Abstract
Melanin possess radioprotective and scavenging properties, and its presence can affect the behavior of melanoma cells, its surrounding environment and susceptibility to the therapy, as showed in vitro experiments. To determine whether melanin presence in melanoma affects the efficiency of radiotherapy (RTH) we evaluated the survival time after RTH treatment in metastatic melanoma patients (n = 57). In another cohort of melanoma patients (n = 84), the relationship between melanin level and pT and pN status was determined. A significantly longer survival time was found in patients with amelanotic metastatic melanomas in comparison to the melanotic ones, who were treated with either RTH or chemotherapy (CHTH) and RTH. These differences were more significant in a group of melanoma patients treated only with RTH. A detailed analysis of primary melanomas revealed that melanin levels were significantly higher in melanoma cells invading reticular dermis than the papillary dermis. A significant reduction of melanin pigmentation in pT3 and pT4 melanomas in comparison to pT1 and T2 tumors was observed. However, melanin levels measured in pT3-pT4 melanomas developing metastases (pN1-3, pM1) were higher than in pN0 and pM0 cases. The presence of melanin in metastatic melanoma cells decreases the outcome of radiotherapy, and melanin synthesis is related to higher disease advancement. Based on our previous cell-based and clinical research and present research we also suggest that inhibition of melanogenesis can improve radiotherapy modalities. The mechanism of relationship between melanogenesis and efficacy of RTH requires additional studies, including larger melanoma patients population and orthotopic, imageable mouse models of metastatic melanoma.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Tumour Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland.,Department of Tumour Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Wojciech Jóźwicki
- Department of Tumour Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland.,Department of Tumour Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Krzysztof Roszkowski
- Department of Oncology, Radiotherapy and Gynecologic Oncology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Jan Filipiak
- Department of Chemotherapy, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Andrzej T Slominski
- Departments of Dermatology and Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Laboratory Service of The VA Medical Center at Birmingham, Birmingham, AL, USA
| |
Collapse
|
73
|
Konstantakou EG, Velentzas AD, Anagnostopoulos AK, Litou ZI, Konstandi OA, Giannopoulou AF, Anastasiadou E, Voutsinas GE, Tsangaris GT, Stravopodis DJ. Deep-proteome mapping of WM-266-4 human metastatic melanoma cells: From oncogenic addiction to druggable targets. PLoS One 2017; 12:e0171512. [PMID: 28158294 PMCID: PMC5291375 DOI: 10.1371/journal.pone.0171512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/20/2017] [Indexed: 12/22/2022] Open
Abstract
Cutaneous melanoma is a malignant tumor of skin melanocytes that are pigment-producing cells located in the basal layer (stratum basale) of epidermis. Accumulation of genetic mutations within their oncogenes or tumor-suppressor genes compels melanocytes to aberrant proliferation and spread to distant organs of the body, thereby resulting in severe and/or lethal malignancy. Metastatic melanoma's heavy mutational load, molecular heterogeneity and resistance to therapy necessitate the development of novel biomarkers and drug-based protocols that target key proteins involved in perpetuation of the disease. To this direction, we have herein employed a nano liquid chromatography-tandem mass spectrometry (nLC-MS/MS) proteomics technology to profile the deep-proteome landscape of WM-266-4 human metastatic melanoma cells. Our advanced melanoma-specific catalogue proved to contain 6,681 unique proteins, which likely constitute the hitherto largest single cell-line-derived proteomic collection of the disease. Through engagement of UNIPROT, DAVID, KEGG, PANTHER, INTACT, CYTOSCAPE, dbEMT and GAD bioinformatics resources, WM-266-4 melanoma proteins were categorized according to their sub-cellular compartmentalization, function and tumorigenicity, and successfully reassembled in molecular networks and interactomes. The obtained data dictate the presence of plastically inter-converted sub-populations of non-cancer and cancer stem cells, and also indicate the oncoproteomic resemblance of melanoma to glioma and lung cancer. Intriguingly, WM-266-4 cells seem to be subjected to both epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) programs, with 1433G and ADT3 proteins being identified in the EMT/MET molecular interface. Oncogenic addiction of WM-266-4 cells to autocrine/paracrine signaling of IL17-, DLL3-, FGF(2/13)- and OSTP-dependent sub-routines suggests their critical contribution to the metastatic melanoma chemotherapeutic refractoriness. Interestingly, the 1433G family member that is shared between the BRAF- and EMT/MET-specific interactomes likely emerges as a novel and promising druggable target for the malignancy. Derailed proliferation and metastatic capacity of WM-266-4 cells could also derive from their metabolic addiction to pathways associated with glutamate/ammonia, propanoate and sulfur homeostasis, whose successful targeting may prove beneficial for advanced melanoma-affected patients.
Collapse
Affiliation(s)
- Eumorphia G. Konstantakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanassios D. Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios K. Anagnostopoulos
- Proteomics Core Facility, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Zoi I. Litou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Ourania A. Konstandi
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini F. Giannopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Ema Anastasiadou
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Gerassimos E. Voutsinas
- Laboratory of Environmental Mutagenesis and Carcinogenesis, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - George Th. Tsangaris
- Proteomics Core Facility, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios J. Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
74
|
Peroxisome proliferator-activated receptor α (PPARα) contributes to control of melanogenesis in B16 F10 melanoma cells. Arch Dermatol Res 2017; 309:141-157. [PMID: 28084540 DOI: 10.1007/s00403-016-1711-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 01/10/2023]
Abstract
Recent studies revealed the cooperation between peroxisome proliferator-activated receptor gamma (PPARγ) and α-MSH signaling, which results in enhanced melanogenesis in melanocytes and melanoma cells. However, the agonists of PPARα, such as fenofibrate, exert depigmenting effect. Therefore, we aimed to check how the PPARα expression level affects the antimelanogenic activity of fenofibrate and whether PPARα modulates melanogenesis independently of its agonist. To answer these questions, we used three B16 F10-derived cell lines, which varied in the PPARα expression level and were developed by stable transfection with plasmids driving shRNA-based PPARα silencing or overexpression of PPARα-emerald GFP fusion protein. Melanin contents were assessed with electron paramagnetic resonance spectroscopy along with color component image analysis-a novel approach to pigment content characteristics in melanoma cells. B16 F10 wt and Ctrl shRNA lines showed intermediate pigmentation, whereas the pigmentation of the B16 F10-derived cell lines was inversely correlated with the PPARα expression level. We observed that cells overexpressing PPARα were almost amelanotic and cells with reduced PPARα protein level were heavily melanized. Furthermore, fenofibrate down-regulated the melanogenic apparatus (MITF, tyrosinase, and tyrosinase-related proteins) in the cells with the regular PPARα expression level resulting in their visibly lower total melanin content in all the cell lines. From these observations, we conclude that fenofibrate works as a strong depigmenting agent, which acts independently of PPARα, but in an additive fashion. Our results also indicate that alterations in PGC-1a acetylation and expression level might contribute to the regulation of melanogenesis by PPARα and fenofibrate.
Collapse
|
75
|
Clinical Characteristics of Malignant Melanoma in Southwest China: A Single-Center Series of 82 Consecutive Cases and a Meta-Analysis of 958 Reported Cases. PLoS One 2016; 11:e0165591. [PMID: 27861496 PMCID: PMC5115666 DOI: 10.1371/journal.pone.0165591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 10/16/2016] [Indexed: 12/17/2022] Open
Abstract
Purpose The present study determined the clinical characteristics and prognostic factors in patients with malignant melanoma based on a series of 82 cases from January 2009 to December 2014 in Southwest Hospital and a meta-analysis (including 12 articles) involving 958 patients in China. Materials and methods The database elements included basic demographic data and prognosticators which were extracted from medical records. Statistical analyses of survival, and multivariate analyses of factors associated with survival were performed using the Kaplan—Meier method, and the Cox proportional hazard model, respectively. Literatures were identified through systematic searches in PubMed, Embase, the Cochrane Library, China National Knowledge Infrastructure (CNKI) and Weipu database (VIP) database for the period from inception to December 2015. The meta-analysis was conducted using R 3.1.1 meta-analysis software Results In this series of 82 cases, the median age of the patients was 57.50 years. Melanoma was located in the foot in 79% of patients. Sixty-one patients (74.4%) were classified as stage II-III. Thirty-two patients (39.0%) had acral malignant melanoma, and 31 patients (37.8%) had nodular malignant melanoma. The clinical characteristics of melanoma were similar to those in areas outside southwest China (from results of the meta-analysis). The median survival time was 29.50 months. The 1-year, 3-year, and 5-year survival rates were 84.1%, 39.0% and 10.9%, respectively. COX regression following multi-factor analysis showed that ulcer, tumor boundary and lymph node metastasis were associated with prognosis. Conclusions The clinical characteristics of melanoma in Chinese were different from those in Caucasians. Ulcer, tumor margins, and lymph node metastasis were significantly associated with prognosis. Immune therapy may prolong the median survival time of patients with acral melanoma, nodular melanoma, or stage I-III disease, although these differences were not statistically significant.
Collapse
|
76
|
Sammons S, Brady D, Vahdat L, Salama AK. Copper suppression as cancer therapy: the rationale for copper chelating agents in BRAFV600 mutated melanoma. Melanoma Manag 2016; 3:207-216. [PMID: 30190890 DOI: 10.2217/mmt-2015-0005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/13/2016] [Indexed: 01/21/2023] Open
Abstract
The successful targeting of oncogenic BRAFV600 represents one of the landmark breakthroughs in therapy for advanced melanoma. While the initial clinical benefit can be dramatic, resistance is common due to a number of mechanisms, including MAPK pathway reactivation. Recent data have revealed a novel role for copper (Cu) in BRAF signaling with potential clinical implications. The history, preclinical data and efficacy of Cu chelating agents in cancer, specifically tetrathiomolybdate, will be reviewed with a focus on the rationale for targeting the MAPK cascade in melanoma through novel combination strategies.
Collapse
Affiliation(s)
- Sarah Sammons
- Hematology/Oncology, Department of Internal Medicine, Duke University Medical Center, 203 Research Drive, MSRB1, Room 397, Box 2639, Durham, NC 27710, USA.,Hematology/Oncology, Department of Internal Medicine, Duke University Medical Center, 203 Research Drive, MSRB1, Room 397, Box 2639, Durham, NC 27710, USA
| | - Donita Brady
- Department of Cancer Biology & Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Boulevard, 612 BRBII/III, Philadelphia, PA 19104, USA.,Department of Cancer Biology & Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Boulevard, 612 BRBII/III, Philadelphia, PA 19104, USA
| | - Linda Vahdat
- Division of Hematology & Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.,Division of Hematology & Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - April Ks Salama
- Melanoma Program, Division of Medical Oncology, Department of Internal Medicine, Duke University Medical Center, 25176 Morris Bldg, DUMC 3198, Durham, NC 27710, USA.,Melanoma Program, Division of Medical Oncology, Department of Internal Medicine, Duke University Medical Center, 25176 Morris Bldg, DUMC 3198, Durham, NC 27710, USA
| |
Collapse
|
77
|
Lin Z, Chen X, Li Z, Luo Y, Fang Z, Xu B, Han M. PD-1 Antibody Monotherapy for Malignant Melanoma: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0160485. [PMID: 27483468 PMCID: PMC4970765 DOI: 10.1371/journal.pone.0160485] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/20/2016] [Indexed: 12/31/2022] Open
Abstract
Antibodies targeting programmed death 1 (PD-1) help prevent tumor cells from escaping immune-mediated destruction. We conducted this systematic review and meta-analysis to gain insight into the efficacy of PD-1 antibodies for the treatment of melanoma. Five trials involving 2,828 adult patients were included in this meta-analysis. In patients with previously untreated or refractory melanoma, treatment with PD-1 antibodies significantly improved the six-month progression-free survival (PFS) (HR 0.55, 95% CI 0.50-0.60, P<0.00001) and the overall response rate (OR 3.89, 95% CI 3.12-4.83, P<0.00001). This meta-analysis indicated that anti-PD-1 treatment might provide a significant survival benefit in patients with melanoma. In addition, we found that patients treated with nivolumab reported significantly fewer treatment-related adverse events (OR 0.74, 95% CI 0.57-0.97, P = 0.03) than those treated with other agents, but there was a dose-dependent increase in the frequency of adverse events in patients treated with pembrolizumab.
Collapse
Affiliation(s)
- Zhijuan Lin
- Department of Hematology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Xing Chen
- Department of Nephrology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Zhifeng Li
- Department of Hematology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Yiming Luo
- Department of Hematology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Zhihong Fang
- Department of Hematology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Bing Xu
- Department of Hematology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Mingzhe Han
- Department of Hematology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| |
Collapse
|
78
|
Melanogenesis and DNA damage following photodynamic therapy in melanoma with two meso-substituted porphyrins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:402-10. [PMID: 27314538 DOI: 10.1016/j.jphotobiol.2016.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022]
|
79
|
Hassan L, Pinon A, Limami Y, Seeman J, Fidanzi-Dugas C, Martin F, Badran B, Simon A, Liagre B. Resistance to ursolic acid-induced apoptosis through involvement of melanogenesis and COX-2/PGE2 pathways in human M4Beu melanoma cancer cells. Exp Cell Res 2016; 345:60-69. [PMID: 27262506 DOI: 10.1016/j.yexcr.2016.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 11/23/2022]
Abstract
Melanoma is one of the most aggressive forms of cancer with a continuously growing incidence worldwide and is usually resistant to chemotherapy agents, which is due in part to a strong resistance to apoptosis. Previously, we had showed that B16-F0 murine melanoma cells undergoing apoptosis are able to delay their own death induced by ursolic acid (UA), a natural pentacyclic triterpenoid compound. We had demonstrated that tyrosinase and TRP-1 up-regulation in apoptotic cells and the subsequent production of melanin were implicated in an apoptosis resistance mechanism. Several resistance mechanisms to apoptosis have been characterized in melanoma such as hyperactivation of DNA repair mechanisms, drug efflux systems, and reinforcement of survival signals (PI3K/Akt, NF-κB and Raf/MAPK pathways). Otherwise, other mechanisms of apoptosis resistance involving different proteins, such as cyclooxygenase-2 (COX-2), have been described in many cancer types. By using a strategy of specific inhibition of each ways, we suggested that there was an interaction between melanogenesis and COX-2/PGE2 pathway. This was characterized by analyzing the COX-2 expression and activity, the expression of tyrosinase and melanin production. Furthermore, we showed that anti-proliferative and proapoptotic effects of UA were mediated through modulation of multiple signaling pathways including Akt and ERK-1/2 proteins. Our study not only uncovers underlying molecular mechanisms of UA action in human melanoma cancer cells but also suggest its great potential as an adjuvant in treatment and cancer prevention.
Collapse
Affiliation(s)
- Lama Hassan
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges, France
| | - Aline Pinon
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges, France
| | - Youness Limami
- Laboratoire National de Référence (LNR), Université Mohammed VI des Sciences de la Santé, Casablanca, Morocco
| | - Josiane Seeman
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges, France
| | - Chloe Fidanzi-Dugas
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges, France
| | - Frederique Martin
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges, France
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Alain Simon
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges, France
| | - Bertrand Liagre
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges, France.
| |
Collapse
|
80
|
Nath K, Nelson DS, Putt ME, Leeper DB, Garman B, Nathanson KL, Glickson JD. Comparison of the Lonidamine Potentiated Effect of Nitrogen Mustard Alkylating Agents on the Systemic Treatment of DB-1 Human Melanoma Xenografts in Mice. PLoS One 2016; 11:e0157125. [PMID: 27285585 PMCID: PMC4902256 DOI: 10.1371/journal.pone.0157125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/25/2016] [Indexed: 11/18/2022] Open
Abstract
Previous NMR studies demonstrated that lonidamine (LND) selectively diminishes the intracellular pH (pHi) of DB-1 melanoma and mouse xenografts of a variety of other prevalent human cancers while decreasing their bioenergetic status (tumor βNTP/Pi ratio) and enhancing the activities of melphalan and doxorubicin in these cancer models. Since melphalan and doxorubicin are highly toxic agents, we have examined three other nitrogen (N)-mustards, chlorambucil, cyclophosphamide and bendamustine, to determine if they exhibit similar potentiation by LND. As single agents LND, melphalan and these N-mustards exhibited the following activities in DB-1 melanoma xenografts; LND: 100% tumor surviving fraction (SF); chlorambucil: 100% SF; cyclophosphamide: 100% SF; bendamustine: 79% SF; melphalan: 41% SF. When combined with LND administered 40 min prior to administration of the N-mustard (to maximize intracellular acidification) the following responses were obtained; chlorambucil: 62% SF; cyclophosphamide: 42% SF; bendamustine: 36% SF; melphalan: 10% SF. The effect of LND on the activities of these N-mustards is generally attributed to acid stabilization of the aziridinium active intermediate, acid inhibition of glutathione-S-transferase, which acts as a scavenger of aziridinium, and acid inhibition of DNA repair by O6-alkyltransferase. Depletion of ATP by LND may also decrease multidrug resistance and increase tumor response. At similar maximum tolerated doses, our data indicate that melphalan is the most effective N-mustard in combination with LND when treating DB-1 melanoma in mice, but the choice of N-mustard for coadministration with LND will also depend on the relative toxicities of these agents, and remains to be determined.
Collapse
Affiliation(s)
- Kavindra Nath
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - David S. Nelson
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mary E. Putt
- Biostatistics & Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dennis B. Leeper
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Bradley Garman
- Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katherine L. Nathanson
- Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jerry D. Glickson
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
81
|
Sheen YS, Liao YH, Lin MH, Chiu HC, Jee SH, Liau JY, Chang YL, Chu CY. Insulin-Like Growth Factor II mRNA-Binding Protein 3 Expression Correlates with Poor Prognosis in Acral Lentiginous Melanoma. PLoS One 2016; 11:e0147431. [PMID: 26796627 PMCID: PMC4721868 DOI: 10.1371/journal.pone.0147431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022] Open
Abstract
Insulin-like growth factor-II mRNA-binding protein 3 (IMP-3) is an RNA-binding protein expressed in multiple cancers, including melanomas. However, the expression of IMP-3 has not been investigated in acral lentiginous melanoma (ALM). This study sought to elucidate its prognostic value in ALMs. IMP-3 expression was studied in 93 patients diagnosed with ALM via immunohistochemistry. Univariate and multivariate analyses for survival were performed, according to clinical and histologic parameters, using the Cox proportional hazard model. Survival curves were graphed using the Kaplan-Meier method. IMP-3 was over-expressed in 70 out of 93 tumors (75.3%). IMP-3 expression correlated with thick and high-stage tumor and predicted poorer overall, melanoma-specific, recurrence-free and distant metastasis-free survivals (P = 0.002, 0.006, 0.008 and 0.012, respectively). Further analysis showed that patients with tumor thickness ≤ 4.0 mm and positive IMP-3 expression had a significantly worse melanoma-specific survival than those without IMP-3 expression (P = 0.048). IMP-3 (hazard ratio 3.67, 95% confidence intervals 1.35-9.97, P = 0.011) was confirmed to be an independent prognostic factor for melanoma-specific survival in multivariate survival analysis. Positive IMP-3 expression was an important prognostic factor for ALMs.
Collapse
Affiliation(s)
- Yi-Shuan Sheen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Hsien Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hisn-Chu, Taiwan
| | - Hsien-Ching Chiu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shiou-Hwa Jee
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jau-Yu Liau
- Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yih-Leong Chang
- Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
82
|
Meghrajani CF, Co HS, Arcillas JG, Maaño CC, Cupino NA. A randomized, double-blind trial on the use of 1% hydrocortisone cream for the prevention of acute radiation dermatitis. Expert Rev Clin Pharmacol 2016; 9:483-91. [DOI: 10.1586/17512433.2016.1126506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
83
|
Piotrowska A, Wierzbicka J, Nadkarni S, Brown G, Kutner A, Żmijewski MA. Antiproliferative Activity of Double Point Modified Analogs of 1,25-Dihydroxyvitamin D₂ Against Human Malignant Melanoma Cell Lines. Int J Mol Sci 2016; 17:E76. [PMID: 26760999 PMCID: PMC4730320 DOI: 10.3390/ijms17010076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023] Open
Abstract
Vitamin D is a lipid soluble steroid hormone with pleiotropic biological properties, including regulation of cell proliferation, differentiation and apoptosis. As to these desirable anticancer actions, 1,25-dihydroxyvitamins D and analogs have been reported to inhibit the proliferation and to induce differentiation of a wide variety of cancer cell types, including human malignant melanoma. However, there is a need for novel and more efficacious vitamin D analogs, and how best to design such is still an open issue. A series of double point modified (DPM) analogs of 1,25-dihydroxyvitamin D₂ (1,25(OH)₂D₂) induced differentiation of the vitamin D receptor (VDR) positive A375 and VDR negative SK-MEL 188b human malignant melanoma cell lines. Surprisingly, the dose of 1,25(OH)₂D₂ required to inhibit the proliferation of the A375 melanoma cell line by was several fold lower than that required in the case of 1,25(OH)₂D₃. To evaluate the impact of the modification in the side chain (additional 22-hydroxyl) and in the A-ring (5,6-trans modification), the regular side-chain of vitamin D₂ or D₃ was retained in the structure of our analogs. As expected, 5,6-trans modification was advantageous to enhancing the anti-proliferative activity of analogs, but not as a single point modification (SPM). Very unexpectedly, the additional 22-hydroxyl in the side-chain reduced significantly the anti-proliferative activity of both the natural and 5,6-trans series analogs. Finally, an induction of pigmentation in melanoma SK-MEL 188b cells was observed to sensitized cells to the effect of vitamin D analogs.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk 80-211, Poland.
| | - Justyna Wierzbicka
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk 80-211, Poland.
| | - Sharmin Nadkarni
- Pharmaceutical Research Institute, 8 Rydygiera, Warsaw 01-793, Poland.
| | - Geoffrey Brown
- School of Immunity and Infection, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Andrzej Kutner
- Pharmaceutical Research Institute, 8 Rydygiera, Warsaw 01-793, Poland.
| | - Michał A Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk 80-211, Poland.
| |
Collapse
|
84
|
Chai WM, Wang R, Wei MK, Zou ZR, Deng RG, Liu WS, Peng YY. Proanthocyanidins Extracted from Rhododendron pulchrum Leaves as Source of Tyrosinase Inhibitors: Structure, Activity, and Mechanism. PLoS One 2015; 10:e0145483. [PMID: 26713623 PMCID: PMC4700988 DOI: 10.1371/journal.pone.0145483] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 12/06/2015] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to assess the structure, anti-tyrosinase activity, and mechanism of proanthocyanidins extracted from Rhododendron pulchrum leaves. Results obtained from mass spectra of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS) revealed that proanthocyanidins were complex mixtures of procyanidins, prodelphinidins, propelargonidins, and their derivatives, among which procyanidins were the main components. The anti-tyrosinase analysis results indicated that the mixtures were reversible and mixed competitive inhibitors of tyrosinase. Interactions between proanthocyanidins with substrate (L-tyrosine and 3,4-dihydroxyphenylalanine) and with copper ions were the important molecular mechanisms for explaining their efficient inhibition. This research would provide scientific evidence for the use of R. pulchrum leaf proanthocyanidins as new novel tyrosinase inhibitors.
Collapse
Affiliation(s)
- Wei-Ming Chai
- College of Life Science and Key Laboratory of Small Functional Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
- * E-mail: (WMC); (YYP)
| | - Rui Wang
- College of Life Science and Key Laboratory of Small Functional Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
| | - Man-Kun Wei
- College of Life Science and Key Laboratory of Small Functional Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
| | - Zheng-Rong Zou
- College of Life Science and Key Laboratory of Small Functional Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
| | - Rong-Gen Deng
- College of Life Science and Key Laboratory of Small Functional Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
| | - Wei-Sheng Liu
- College of Life Science and Key Laboratory of Small Functional Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
| | - Yi-Yuan Peng
- College of Life Science and Key Laboratory of Small Functional Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
- * E-mail: (WMC); (YYP)
| |
Collapse
|
85
|
Liu YM, Li Y, Wei WB, Xu X, Jonas JB. Clinical Characteristics of 582 Patients with Uveal Melanoma in China. PLoS One 2015; 10:e0144562. [PMID: 26645696 PMCID: PMC4672905 DOI: 10.1371/journal.pone.0144562] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/19/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To assess clinical characteristics, treatment and survival of patients with uveal melanoma in China. METHODS The retrospective study included all patients with malignant uveal melanoma who were consecutively examined in the study period from January 2005 and June 2015 in the Beijing Tongren hospital. RESULTS The mean age of the 582 patients (295(50.7%) women) was 44.6±12.6 years (range: 5-77 years). The tumors were located most often in the superior temporal region (in 117(21.5%) patients) and least common in the inferior region (in 31(5.7%) patients). In 548(94.2%) patients, the tumors were located in the choroid, in 33(5.7%) patients in the ciliary body, and in one (0.2%) patient in the iris. Treatment included episcleral brachytherapy (415(71.3%) patients), local tumor resection (48(8.2%) patients) and primary enucleation (119(20.4%) patients). In 53 individuals out of the 415 patients with primary brachytherapy, episcleral brachytherapy was followed by enucleation, due to an increasing tumor size or due to uncontrolled neovascular glaucoma. Median follow-up time was of 30 months (range: 1-124 months; mean: 34.8 ± 24.4 months). Overall survival rate at 5 and 10 years was of 92.7% and 85.1%. Younger age (P = 0.017), tumor location in the nasal meridian(P = 0.004), smaller tumor size (P<0.001), hemispheric tumor shape (P = 0.025), histological tumor cell type (spindle-cell type versus epitheloid cell type;P = 0.014), and type of treatment (episcleral brachytherapy versus local tumor resection and versus primary enucleation; P<0.001) were significantly associated with the overall survival in univariate analysis, while in multivariate analysis only smaller tumor size was significantly (P<0.001; RR: 4.75; 95% confidence interval: 2.11,10.7) associated with better overall survival. CONCLUSIONS In this study on clinical characteristics of uveal melanoma of a larger group of patients from China, the onset age was considerably younger and survival rate better than in studies from Western countries. Tumor size was the most significant factor for survival.
Collapse
Affiliation(s)
- Yue Ming Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Capital Medical University, Beijing, China
| | - Yang Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Capital Medical University, Beijing, China
| | - Wen Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Capital Medical University, Beijing, China
- * E-mail:
| | - Xiaolin Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Capital Medical University, Beijing, China
| | - Jost B. Jonas
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Capital Medical University, Beijing, China
- Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University, Heidelberg, Germany
| |
Collapse
|
86
|
Comparative analysis of goitrogenic effects of phenylthiourea and methimazole in zebrafish embryos. Reprod Toxicol 2015; 57:10-20. [DOI: 10.1016/j.reprotox.2015.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/19/2015] [Accepted: 04/29/2015] [Indexed: 11/24/2022]
|
87
|
Rossi AH, Farias A, Fernández JE, Bonomi HR, Goldbaum FA, Berguer PM. Brucella spp. Lumazine Synthase Induces a TLR4-Mediated Protective Response against B16 Melanoma in Mice. PLoS One 2015; 10:e0126827. [PMID: 25973756 PMCID: PMC4431812 DOI: 10.1371/journal.pone.0126827] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/07/2015] [Indexed: 02/03/2023] Open
Abstract
Brucella Lumazine Synthase (BLS) is a highly immunogenic decameric protein which can accept the fusion of foreign proteins at its ten N-termini. These chimeras are very efficient to elicit systemic and oral immunity without adjuvants. BLS signaling via Toll-Like Receptor 4 (TLR4) regulates innate and adaptive immune responses, inducing dendritic cell maturation and CD8+ T-cell cytotoxicity. In this work we study the effect induced by BLS in TLR4-expressing B16 melanoma. In order to evaluate the effectiveness of BLS as a preventive vaccine, C57BL/6J mice were immunized with BLS or BLS-OVA, and 35 days later were subcutaneously inoculated with B16-OVA melanoma. BLS or BLS-OVA induced a significant inhibition of tumor growth, and 50% of mice immunized with the highest dose of BLS did not develop visible tumors. This effect was not observed in TLR4-deficient mice. For treatment experiments, mice were injected with BLS or BLS-OVA 2 days after the inoculation of B16 cells. Both treatments induced significant and equal tumor growth delay and increased survival. Moreover, BLS and BLS-OVA stimulation were also effective in TLR4-deficient mice. In order to study whether BLS has a direct effect on tumor cells, B16 cells were preincubated with BLS, and after 48h, cells were inoculated. Tumors induced by BLS-stimulated cells had inhibited growth and survival was increased. In the BLS group, 40% of mice did not develop tumors. This effect was abolished by the addition of TLR4/MD2 blocking antibody to cells before BLS stimulation. Our work demonstrates that BLS immunization induces a preventive antitumor response that depends on mice TLR4. We also show that BLS generates a therapeutic effect in mice inoculated with B16 cells. Our results show that BLS acts directly in cultured tumor cells via TLR4, highly suggesting that BLS elicits its therapeutic effects acting on the TLR4 from B16 melanoma cells.
Collapse
Affiliation(s)
- Andrés H. Rossi
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana Farias
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Javier E. Fernández
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Hernán R. Bonomi
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fernando A. Goldbaum
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula M. Berguer
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
88
|
Wasiewicz T, Szyszka P, Cichorek M, Janjetovic Z, Tuckey RC, Slominski AT, Zmijewski MA. Antitumor effects of vitamin D analogs on hamster and mouse melanoma cell lines in relation to melanin pigmentation. Int J Mol Sci 2015; 16:6645-67. [PMID: 25811927 PMCID: PMC4424981 DOI: 10.3390/ijms16046645] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 12/30/2022] Open
Abstract
Deregulated melanogenesis is involved in melanomagenesis and melanoma progression and resistance to therapy. Vitamin D analogs have anti-melanoma activity. While the hypercalcaemic effect of the active form of Vitamin D (1,25(OH)2D3) limits its therapeutic use, novel Vitamin D analogs with a modified side chain demonstrate low calcaemic activity. We therefore examined the effect of secosteroidal analogs, both classic (1,25(OH)2D3 and 25(OH)D3), and novel relatively non-calcemic ones (20(OH)D3, calcipotriol, 21(OH)pD, pD and 20(OH)pL), on proliferation, colony formation in monolayer and soft-agar, and mRNA and protein expression by melanoma cells. Murine B16-F10 and hamster Bomirski Ab cell lines were shown to be effective models to study how melanogenesis affects anti-melanoma treatment. Novel Vitamin D analogs with a short side-chain and lumisterol-like 20(OH)pL efficiently inhibited rodent melanoma growth. Moderate pigmentation sensitized rodent melanoma cells towards Vitamin D analogs, and altered expression of key genes involved in Vitamin D signaling, which was opposite to the effect on heavily pigmented cells. Interestingly, melanogenesis inhibited ligand-induced Vitamin D receptor translocation and ligand-induced expression of VDR and CYP24A1 genes. These findings indicate that melanogenesis can affect the anti-melanoma activity of Vitamin D analogs in a complex manner.
Collapse
Affiliation(s)
- Tomasz Wasiewicz
- Department of Histology, Medical University of Gdańsk, Dębinki 1a, 80-211 Gdańsk, Poland.
| | - Paulina Szyszka
- Department of Histology, Medical University of Gdańsk, Dębinki 1a, 80-211 Gdańsk, Poland.
- Department of Endocrinology and Internal Medicine, Medical University of Gdańsk, Dębinki 1a, 80-211 Gdańsk, Poland.
| | - Miroslawa Cichorek
- Department of Embryology, Medical University of Gdańsk, Dębinki 1a, 80-211 Gdańsk, Poland.
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama Birmingham, VA Medical Center, Birmingham, AL 35294, USA.
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, the University of Western Australia, Crawley, Perth, WA 6009, Australia.
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama Birmingham, VA Medical Center, Birmingham, AL 35294, USA.
| | - Michal A Zmijewski
- Department of Histology, Medical University of Gdańsk, Dębinki 1a, 80-211 Gdańsk, Poland.
| |
Collapse
|
89
|
Valpione S, Moser JC, Parrozzani R, Bazzi M, Mansfield AS, Mocellin S, Pigozzo J, Midena E, Markovic SN, Aliberti C, Campana LG, Chiarion-Sileni V. Development and external validation of a prognostic nomogram for metastatic uveal melanoma. PLoS One 2015; 10:e0120181. [PMID: 25780931 PMCID: PMC4363319 DOI: 10.1371/journal.pone.0120181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 02/03/2015] [Indexed: 12/21/2022] Open
Abstract
Background Approximately 50% of patients with uveal melanoma (UM) will develop metastatic disease, usually involving the liver. The outcome of metastatic UM (mUM) is generally poor and no standard therapy has been established. Additionally, clinicians lack a validated prognostic tool to evaluate these patients. The aim of this work was to develop a reliable prognostic nomogram for clinicians. Patients and Methods Two cohorts of mUM patients, from Veneto Oncology Institute (IOV) (N=152) and Mayo Clinic (MC) (N=102), were analyzed to develop and externally validate, a prognostic nomogram. Results The median survival of mUM was 17.2 months in the IOV cohort and 19.7 in the MC cohort. Percentage of liver involvement (HR 1.6), elevated levels of serum LDH (HR 1.6), and a WHO performance status=1 (HR 1.5) or 2–3 (HR 4.6) were associated with worse prognosis. Longer disease-free interval from diagnosis of UM to that of mUM conferred a survival advantage (HR 0.9). The nomogram had a concordance probability of 0.75 (SE .006) in the development dataset (IOV), and 0.80 (SE .009) in the external validation (MC). Nomogram predictions were well calibrated. Conclusions The nomogram, which includes percentage of liver involvement, LDH levels, WHO performance status and disease free-interval accurately predicts the prognosis of mUM and could be useful for decision-making and risk stratification for clinical trials.
Collapse
Affiliation(s)
- Sara Valpione
- Melanoma Oncology Unit, Veneto Region Oncology Research Institute (IOV-IRCCS), Padova, Italy; Department of Surgery, Oncology and Gastroenterology, Padova, Italy
| | - Justin C Moser
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, US
| | | | - Marco Bazzi
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Aaron S Mansfield
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Simone Mocellin
- Department of Surgery, Oncology and Gastroenterology, Padova, Italy
| | - Jacopo Pigozzo
- Melanoma Oncology Unit, Veneto Region Oncology Research Institute (IOV-IRCCS), Padova, Italy
| | - Edoardo Midena
- Department of Statistical Sciences, University of Padova, Padova, Italy; Department of Ophthalmology, University of Padova, Padova, Italy
| | - Svetomir N Markovic
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Camillo Aliberti
- Interventional Radiology, Veneto Region Oncology Research Institute (IOV-IRCCS) Padova, Italy
| | - Luca G Campana
- Sarcoma and Melanoma Unit, Veneto Region Oncology Research Institute (IOV-IRCCS) Padova, Italy
| | - Vanna Chiarion-Sileni
- Melanoma Oncology Unit, Veneto Region Oncology Research Institute (IOV-IRCCS), Padova, Italy
| |
Collapse
|
90
|
Danciu C, Oprean C, Coricovac DE, Andreea C, Cimpean A, Radeke H, Soica C, Dehelean C. Behaviour of four different B16 murine melanoma cell sublines: C57BL/6J skin. Int J Exp Pathol 2015; 96:73-80. [PMID: 25664478 DOI: 10.1111/iep.12114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/01/2014] [Indexed: 12/24/2022] Open
Abstract
Transplantable murine melanomas are well-established models for the study of experimental cancer therapies. The aim of this study was to explore the behaviour of four different B16 murine melanoma cell sublines after inoculation into C57BL/6J mice; and, more specifically to analyse skin changes, with respect to two specific parameters: clinical (tumour volume, melanin amount, erythema) and histological (H & E, S100, VEGF expression). Both non-invasive and invasive analysis showed that B164A5 is the most aggressive melanoma cell line for C57BL/6J's skin, followed by B16F10 and then by diminished aggressive growth pattern by the B16GMCSF and B16FLT3 cell lines.
Collapse
Affiliation(s)
- Corina Danciu
- Department of Pharmacognosy, University of Medicine and Pharmacy 'Victor Babes', Timisoara, Romania
| | - Camelia Oprean
- Department of Pharmaceutical Chemistry, University of Medicine and Pharmacy 'Victor Babes', Timisoara, Romania
| | - Dorina E Coricovac
- Department of Toxicology, University of Medicine and Pharmacy 'Victor Babes', Timisoara, Romania
| | - Cioca Andreea
- Department of Pathology, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, University of Medicine and Pharmacy 'Victor Babes', Timisoara, Romania
| | - Heinfried Radeke
- Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety, Clinic of J. W. Goethe University, Frankfurt, Germany
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, University of Medicine and Pharmacy 'Victor Babes', Timisoara, Romania
| | - Cristina Dehelean
- Department of Toxicology, University of Medicine and Pharmacy 'Victor Babes', Timisoara, Romania
| |
Collapse
|
91
|
Knoll JD, Turro C. Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy. Coord Chem Rev 2015; 282-283:110-126. [PMID: 25729089 PMCID: PMC4343038 DOI: 10.1016/j.ccr.2014.05.018] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The use of visible light to produce highly selective and potent drugs through photodynamic therapy (PDT) holds much potential in the treatment of cancer. PDT agents can be designed to follow an O2-dependent mechanism by producing highly reactive species such as 1O2 and/or an O2 independent mechanism through processes such as excited state electron transfer, covalent binding to DNA or photoinduced drug delivery. Ru(II)-polypyridyl and Rh2(II,II) complexes represent an important class of compounds that can be tailored to exhibit desired photophysical properties and photochemical reactivity by judicious selection of the ligand set. Complexes with relatively long-lived excited states and planar, intercalating ligands localize on the DNA strand and photocleave DNA through 1O2 production or guanine oxidation by the excited state of the chromophore. Photoinduced ligand substitution occurs through the population of triplet metal centered (3MC) excited states and facilitates covalent binding of the metal complex to DNA in a mode similar to cisplatin. Ligand photodissociation also provides a route to selective drug delivery. The ability to construct metal complexes with desired light absorbing and excited state properties by ligand variation enables the design of PDT agents that can potentially provide combination therapy from a single metal complex.
Collapse
Affiliation(s)
- Jessica D. Knoll
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
92
|
Onken MD, Li J, Cooper JA. Uveal melanoma cells utilize a novel route for transendothelial migration. PLoS One 2014; 9:e115472. [PMID: 25506912 PMCID: PMC4266671 DOI: 10.1371/journal.pone.0115472] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/24/2014] [Indexed: 12/27/2022] Open
Abstract
Uveal melanoma arises in the eye, and it spreads to distant organs in almost half of patients, leading to a fatal outcome. To metastasize, uveal melanoma cells must transmigrate into and out of the microvasculature, crossing the monolayer of endothelial cells that separates the vessel lumen from surrounding tissues. We investigated how human uveal melanoma cells cross the endothelial cell monolayer, using a cultured cell system with primary human endothelial cell monolayers on hydrogel substrates. We found that uveal melanoma cells transmigrate by a novel and unexpected mechanism. Uveal melanoma cells intercalate into the endothelial cell monolayer and flatten out, assuming a shape and geometry similar to those of endothelial cells in the monolayer. After an extended period of time in the intercalated state, the uveal melanoma cells round up and migrate underneath the monolayer. VCAM is present on endothelial cells, and anti-VCAM antibodies slowed the process of intercalation. Depletion of BAP1, a known suppressor of metastasis in patients, increased the amount of transmigration of uveal melanoma cells in transwell assays; but BAP1 depletion did not affect the rate of intercalation, based on movies of living cells. Our results reveal a novel route of transendothelial migration for uveal melanoma cells, and they provide insight into the mechanism by which loss of BAP1 promotes metastasis.
Collapse
Affiliation(s)
- Michael D. Onken
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| | - Jinmei Li
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John A. Cooper
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
93
|
Slominski A, Kim TK, Brożyna AA, Janjetovic Z, Brooks DLP, Schwab LP, Skobowiat C, Jóźwicki W, Seagroves TN. The role of melanogenesis in regulation of melanoma behavior: melanogenesis leads to stimulation of HIF-1α expression and HIF-dependent attendant pathways. Arch Biochem Biophys 2014; 563:79-93. [PMID: 24997364 PMCID: PMC4221528 DOI: 10.1016/j.abb.2014.06.030] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/30/2014] [Accepted: 06/24/2014] [Indexed: 12/20/2022]
Abstract
To study the effect of melanogenesis on HIF-1α expression and attendant pathways, we used stable human and hamster melanoma cell lines in which the amelanotic vs. melanotic phenotypes are dependent upon the concentration of melanogenesis precursors in the culture media. The induction of melanin pigmentation led to significant up-regulation of HIF-1α, but not HIF-2α, protein in melanized cells for both lines. Similar upregulation of nuclear HIF-1α was observed in excisions of advanced melanotic vs. amelanotic melanomas. In cultured cells, melanogenesis also significantly stimulated expression of classical HIF-1-dependent target genes involved in angiogenesis and cellular metabolism, including glucose metabolism and stimulation of activity of key enzymes in the glycolytic pathway. Several other stress related genes containing putative HRE consensus sites were also upregulated by melanogenesis, concurrently with modulation of expression of HIF-1-independent genes encoding for steroidogenic enzymes, cytokines and growth factors. Immunohistochemical studies using a large panel of pigmented lesions revealed that higher levels of HIF-1α and GLUT-1 were detected in advanced melanomas in comparison to melanocytic nevi or thin melanomas localized to the skin. However, the effects on overall or disease free survival in melanoma patients were modest or absent for GLUT-1 or for HIF-1α, respectively. In conclusion, induction of the melanogenic pathway leads to robust upregulation of HIF-1-dependent and independent pathways in cultured melanoma cells, suggesting a key role for melanogenesis in regulation of cellular metabolism.
Collapse
Affiliation(s)
- A Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Department of Medicine, Division of Rheumatology, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA.
| | - T-K Kim
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| | - A A Brożyna
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Z Janjetovic
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| | - D L P Brooks
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| | - L P Schwab
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| | - C Skobowiat
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| | - W Jóźwicki
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - T N Seagroves
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| |
Collapse
|
94
|
Curcumin does not switch melanin synthesis towards pheomelanin in B16F10 cells. Arch Dermatol Res 2014; 307:89-98. [PMID: 25398276 DOI: 10.1007/s00403-014-1523-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 10/23/2014] [Accepted: 11/04/2014] [Indexed: 01/23/2023]
Abstract
Melanin, the basic skin pigment present also in the majority of melanomas, has a huge impact on the efficiency of photodynamic, radio- or chemotherapies of melanoma. Moreover, the melanoma cells produce more melanin than normal melanocytes in adjacent skin do. Thus, attention has been paid to natural agents that are safe and effective in suppression of melanogenesis. B16F10 cells were studied by electron paramagnetic resonance (EPR) spectroscopy. The cells were cultured for 24-72 h in RPMI or DMEM with or without curcumin. The results confirmed that curcumin has no significant effect on B16F10 cells viability at concentrations of 1-10 µM. Curcumin at concentration of 10 µM significantly inhibited their proliferation and stimulated differentiation. We have not stimulated melanogenesis hormonally but we found a strong increase in melanogenesis in DMEM, containing more L-Tyr, as compared to RPMI. The EPR studies revealed that the effect of curcumin on melanogenesis in RPMI-incubated cells was not significant, and only in DMEM was curcumin able to inhibit melanogenesis. The effect of curcumin was only quantitative, as it did not switch eumelanogenesis towards pheomelanogenesis under any conditions. Interestingly, we observed elevation of production of hydrogen peroxide in DMEM-incubated cells, in parallel to the facilitation of melanogenesis. Curcumin significantly but transiently intensified the already pronounced generation of H2O2 in DMEM. We conclude that the quantitative effect of curcumin on melanogenesis in melanoma is intricate. It depends on the basic melanogenetic efficiency of the cells, and can be observed only in strongly pigmented cells. Qualitatively, curcumin does not switch melanogenesis towards pheomelanogenesis, either in strongly, or in weakly melanized melanoma cells.
Collapse
|
95
|
Krammer R, Heinzerling L. Therapy preferences in melanoma treatment--willingness to pay and preference of quality versus length of life of patients, physicians and healthy controls. PLoS One 2014; 9:e111237. [PMID: 25369124 PMCID: PMC4219712 DOI: 10.1371/journal.pone.0111237] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
Background New melanoma therapies, like e.g. ipilimumab, improve survival. However, only a small subset of patients benefits while 60% encounter side effects. Furthermore, these marginal benefits come at a very high price of €110’000 per treatment. This study examines attitudes towards melanoma therapy options of physicians, healthy individuals and patients, their willingness to pay and preference of quality versus length of life. Methods Based on findings from a focus group questionnaires were developed and pretested. After obtaining ethical approval and informed consent surveys were conducted in a total of 90 participants (n = 30 for each group). Statistical analyses were conducted using R. Findings Attitudes vastly differed between healthy participants, physicians and melanoma patients. Whereas melanoma patients show a high willingness to endure side effects despite very small survival gains (down to 1 extra week) or even only hope with no survival benefit, healthy controls are more critical, while physicians are the most therapy adverse. Consequently, if given €100’000 and the free decision what to spend the money on the willingness to pay for therapy was much higher in the patient group (68%) compared to 28% of healthy controls and only 43% of the physicians, respectively. When lowering the amount of cash that could be received instead of ipilimumab to €50’000 or €10’000 to test price sensitivity 69% (+1%) and 76% (+8%) of melanoma patients, respectively, preferred ipilimumab over cash. When judging on societal spending even melanoma patients opted for spending on ipilimumab in only 21%. Conclusion The judgment about the benefits of new treatment options largely differs between groups, physicians being the most critical against therapy. Price elasticity was low.
Collapse
Affiliation(s)
- Ramona Krammer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Lucie Heinzerling
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
- * E-mail:
| |
Collapse
|
96
|
Kosiniak-Kamysz A, Marczakiewicz-Lustig A, Marcińska M, Skowron M, Wojas-Pelc A, Pośpiech E, Branicki W. Increased risk of developing cutaneous malignant melanoma is associated with variation in pigmentation genes and VDR, and may involve epistatic effects. Melanoma Res 2014; 24:388-96. [PMID: 24926819 DOI: 10.1097/cmr.0000000000000095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cutaneous malignant melanoma (CMM) is a malicious human skin cancer that primarily affects individuals with light pigmentation and heavy sun exposure, but also has a known familial association. Multiple genes and polymorphisms have been reported as low-penetrance susceptibility loci for CMM. Here, we examined 33 candidate polymorphisms located in 11 pigmentation genes and the vitamin D receptor gene (VDR) in a population of 130 cutaneous melanoma patients and 707 healthy controls. The genotypes obtained were evaluated for main association effects and potential gene-gene interactions. MC1R, TYR, VDR and SLC45A2 genes were found to be associated with CMM in our population. The results obtained for major function MC1R mutations were the most significant [with odds ratio (OR)=1.787, confidence interval (CI)=1.320-2.419 and P=1.715(-4)], followed by TYR (rs1393350) (with OR=1.569, CI=1.162-2.118, P=0.003), VDR (GCCC haplotype in rs2238136-rs4516035-rs7139166-rs11568820 block) (with OR=5.653, CI=1.794-17.811, P=0.003) and SLC45A2 (rs16891982) (with OR=0.238, CI=0.057-0.987, P=0.048). The study also detected significant intermolecular epistatic effects between MC1R and TYR, SLC45A2 and VDR, HERC2 and VDR, OCA2 and TPCN2, as well as intramolecular interactions between variants within the genes MC1R and VDR. In the final multivariate logistic regression model for CMM development, only the gene-gene interactions discovered remained significant, showing that epistasis may be an important factor in the risk of melanoma.
Collapse
Affiliation(s)
- Agnieszka Kosiniak-Kamysz
- aDepartment of Dermatology, Collegium Medicum of the Jagiellonian University bDepartment of Analytical Biochemistry, Jagiellonian University Medical College cDepartment of Genetics and Evolution, Institute of Zoology, Jagiellonian University dSection of Forensic Genetics, Institute of Forensic Research, Kraków, Poland
| | | | | | | | | | | | | |
Collapse
|
97
|
Kleemann B, Loos B, Scriba TJ, Lang D, Davids LM. St John's Wort (Hypericum perforatum L.) photomedicine: hypericin-photodynamic therapy induces metastatic melanoma cell death. PLoS One 2014; 9:e103762. [PMID: 25076130 PMCID: PMC4116257 DOI: 10.1371/journal.pone.0103762] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/01/2014] [Indexed: 12/24/2022] Open
Abstract
Hypericin, an extract from St John's Wort (Hypericum perforatum L.), is a promising photosensitizer in the context of clinical photodynamic therapy due to its excellent photosensitizing properties and tumoritropic characteristics. Hypericin-PDT induced cytotoxicity elicits tumor cell death by various mechanisms including apoptosis, necrosis and autophagy-related cell death. However, limited reports on the efficacy of this photomedicine for the treatment of melanoma have been published. Melanoma is a highly aggressive tumor due to its metastasizing potential and resistance to conventional cancer therapies. The aim of this study was to investigate the response mechanisms of melanoma cells to hypericin-PDT in an in vitro tissue culture model. Hypericin was taken up by all melanoma cells and partially co-localized to the endoplasmic reticulum, mitochondria, lysosomes and melanosomes, but not the nucleus. Light activation of hypericin induced a rapid, extensive modification of the tubular mitochondrial network into a beaded appearance, loss of structural details of the endoplasmic reticulum and concomitant loss of hypericin co-localization. Surprisingly the opposite was found for lysosomal-related organelles, suggesting that the melanoma cells may be using these intracellular organelles for hypericin-PDT resistance. In line with this speculation we found an increase in cellular granularity, suggesting an increase in pigmentation levels in response to hypericin-PDT. Pigmentation in melanoma is related to a melanocyte-specific organelle, the melanosome, which has recently been implicated in drug trapping, chemotherapy and hypericin-PDT resistance. However, hypericin-PDT was effective in killing both unpigmented (A375 and 501mel) and pigmented (UCT Mel-1) melanoma cells by specific mechanisms involving the externalization of phosphatidylserines, cell shrinkage and loss of cell membrane integrity. In addition, this treatment resulted in extrinsic (A375) and intrinsic (UCT Mel-1) caspase-dependent apoptotic modes of cell death, as well as a caspase-independent apoptotic mode that did not involve apoptosis-inducing factor (501 mel). Further research is needed to shed more light on these mechanisms.
Collapse
Affiliation(s)
- Britta Kleemann
- Redox Laboratory and Confocal and Light Microscope Imaging Facility, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Benjamin Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Thomas J. Scriba
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dirk Lang
- Redox Laboratory and Confocal and Light Microscope Imaging Facility, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lester M. Davids
- Redox Laboratory and Confocal and Light Microscope Imaging Facility, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
98
|
Qin C, Cheng K, Chen K, Hu X, Liu Y, Lan X, Zhang Y, Liu H, Xu Y, Bu L, Su X, Zhu X, Meng S, Cheng Z. Tyrosinase as a multifunctional reporter gene for Photoacoustic/MRI/PET triple modality molecular imaging. Sci Rep 2014; 3:1490. [PMID: 23508226 PMCID: PMC3603217 DOI: 10.1038/srep01490] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/25/2013] [Indexed: 01/15/2023] Open
Abstract
Development of reporter genes for multimodality molecular imaging is highly important. In contrast to the conventional strategies which have focused on fusing several reporter genes together to serve as multimodal reporters, human tyrosinase (TYR)--the key enzyme in melanin production--was evaluated in this study as a stand-alone reporter gene for in vitro and in vivo photoacoustic imaging (PAI), magnetic resonance imaging (MRI) and positron emission tomography (PET). Human breast cancer cells MCF-7 transfected with a plasmid that encodes TYR (named as MCF-7-TYR) and non-transfected MCF-7 cells were used as positive and negative controls, respectively. Melanin targeted N-(2-(diethylamino)ethyl)-18F-5-fluoropicolinamide was used as a PET reporter probe. In vivo PAI/MRI/PET imaging studies showed that MCF-7-TYR tumors achieved significant higher signals and tumor-to-background contrasts than those of MCF-7 tumor. Our study demonstrates that TYR gene can be utilized as a multifunctional reporter gene for PAI/MRI/PET both in vitro and in vivo.
Collapse
Affiliation(s)
- Chunxia Qin
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Favre E, Daina A, Carrupt PA, Nurisso A. Modeling the met form of human tyrosinase: a refined and hydrated pocket for antagonist design. Chem Biol Drug Des 2014; 84:206-15. [PMID: 24612747 DOI: 10.1111/cbdd.12306] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/31/2014] [Indexed: 11/30/2022]
Abstract
Tyrosinases are type 3 copper proteins involved in melanin biosynthesis, responsible for skin and hair color in mammals. To steer tyrosinase inhibitor discovery for therapeutic and cosmetic purposes, structural information about human tyrosinase is necessary. As this protein has never been crystallized so far, we derived a robust homology model built using structural information from Streptomyces castaneoglobisporus and Ipomea batata catecholoxidase enzymes. The active site containing two copper atoms in co-ordination with six histidine residues was refined through an optimization protocol based on molecular mechanics parameters for copper co-ordination and charges calculated by quantum mechanics methods. Five structural water molecules and a hydroxyl ion were found to be essential for optimization. The superimposition of the human homology model on crystallographic structures of tyrosinases from other species revealed similar overall backbone topologies, active site conformations, and conserved water molecules. Phenylthiourea (PTU), the tyrosinase inhibitor of reference, was then docked into the solvated human active pocket. A binding mode consistent with crystallographic information was obtained. Taken together, these findings demonstrated that the human tyrosinase model, deposited in the Protein Model Database, is a reliable structure for future rational inhibitor design projects.
Collapse
Affiliation(s)
- Elisabeth Favre
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 30, Quai Ernest-Ansermet, CH-1211, Geneva, Switzerland
| | | | | | | |
Collapse
|
100
|
Bin BH, Seo J, Yang SH, Lee E, Choi H, Kim KH, Cho EG, Lee TR. Novel inhibitory effect of the antidiabetic drug voglibose on melanogenesis. Exp Dermatol 2014; 22:541-6. [PMID: 23879813 DOI: 10.1111/exd.12195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2013] [Indexed: 12/18/2022]
Abstract
Overproduction of melanin can lead to medical disorders such as postinflammatory melanoderma and melasma. Therefore, developing antimelanogenic agents is important for both medical and cosmetic purposes. In this report, we demonstrated for the first time that the antidiabetic drug voglibose is a potent antimelanogenic agent. Voglibose is a representative antidiabetic drug possessing inhibitory activity towards human α-glucosidase; it blocked the proper N-glycan modification of tyrosinase, resulting in a dramatic reduction of the tyrosinase protein level by altering its stability and subsequently decreasing melanin production. Acarbose, another antihyperglycaemic drug that has a lower inhibitory effect on human intracellular α-glucosidase compared with voglibose, did not cause any changes in either the N-glycan modification of tyrosinase or the tyrosinase protein level, indicating that voglibose was the most efficient antimelanogenic agent among the widely used antihyperglycaemic agents. Considering that voglibose was originally selected from the valiolamine derivatives in a screen for an oral antidiabetic drug with a strong inhibitory activity towards intestinal α-glucosidase and low cell permeability, we propose an alternative strategy for screening compounds from valiolamine derivatives that show high inhibitory activity towards human intracellular α-glucosidases and high cell permeability, with the goal of obtaining antimelanogenic agents that are effective inside the cells.
Collapse
Affiliation(s)
- Bum-Ho Bin
- Bioscience Research Institute, AmorePacific Corporation R&D Center, Yongin, Korea
| | | | | | | | | | | | | | | |
Collapse
|