51
|
Marinucci L, Balloni S, Fettucciari K, Bodo M, Talesa VN, Antognelli C. Nicotine induces apoptosis in human osteoblasts via a novel mechanism driven by H 2O 2 and entailing Glyoxalase 1-dependent MG-H1 accumulation leading to TG2-mediated NF-kB desensitization: Implication for smokers-related osteoporosis. Free Radic Biol Med 2018; 117:6-17. [PMID: 29355739 DOI: 10.1016/j.freeradbiomed.2018.01.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Nicotine contained in cigarette smoke contributes to the onset of several diseases, including osteoporosis, whose emerging pathogenic mechanism is associated with osteoblasts apoptosis. Scanty information is available on the molecular mechanisms of nicotine on osteoblasts apoptosis and, consequently, on an important aspect of the pathogenesis of smokers-related osteoporosis. Glyoxalase 1 (Glo1) is the detoxification enzyme of methylglyoxal (MG), a major precursor of advanced glycation end products (AGEs), potent pro-apoptotic agents. Hydroimidazolone (MG-H1) is the major AGE derived from the spontaneous MG adduction of arginine residues. The aim of this study was to investigate whether, and by means of which mechanism, the antiglycation defence Glo1 was involved in the apoptosis induced by 0.1 and 1µM nicotine in human primary osteoblasts chronically exposed for 11 and 21 days. By using gene overexpression/silencing and scavenging/inhibitory agents, we demonstrated that nicotine induces a significant intracellular accumulation of hydrogen peroxide (H2O2) that, by inhibiting Glo1, drives MG-H1 accumulation/release. MG-H1, in turn, triggers H2O2 overproduction via receptor for AGEs (RAGE) and, in parallel, an apoptotic mitochondrial pathway by inducing Transglutaminase 2 (TG2) downregulation-dependent NF-kB desensitization. Measurements of H2O2, Glo1 and MG-H1 circulating levels in smokers compared with non-smokers or in smokers with osteoporosis compared with those without this bone-related disease supported the results obtained in vitro. Our findings newly pose the antiglycation enzymatic defense Glo1 and MG-H1 among the molecular events involved in nicotine-induced reactive oxygen species-mediated osteoblasts apoptosis, a crucial event in smoker-related osteoporosis, and suggest novel exposure markers in health surveillance programmes related to smokers-associated osteoporosis.
Collapse
Affiliation(s)
| | - Stefania Balloni
- Department of Experimental Medicine, University of Perugia, Italy
| | | | - Maria Bodo
- Department of Experimental Medicine, University of Perugia, Italy
| | | | | |
Collapse
|
52
|
Protective Effects of Olive Leaf Extract on Acrolein-Exacerbated Myocardial Infarction via an Endoplasmic Reticulum Stress Pathway. Int J Mol Sci 2018; 19:ijms19020493. [PMID: 29414845 PMCID: PMC5855715 DOI: 10.3390/ijms19020493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/27/2018] [Accepted: 02/01/2018] [Indexed: 12/28/2022] Open
Abstract
Many studies reported that air pollution particulate matter (PM) exposure was associated with myocardial infarction (MI). Acrolein representing the unsaturated aldehydes, the main component of PM, derives from the incomplete combustion of wood, plastic, fossil fuels and the main constitute of cigarette smoking. However, the effect of acrolein on MI remains not that clear. In the current study, the effect of acrolein-exacerbated MI was investigated. In vivo, male Sprague–Dawley rats received olive leaf extract (OLE) followed by acrolein, then isoprenaline (ISO) was received by subcutaneous injection to induce MI. Results showed that the expression levels of GRP78 and CHOP, two major components of endoplasmic reticulum (ER) stress were higher in the combination of acrolein and ISO than those in ISO treatment. The apoptosis marker, Bax, was also higher while the anti-apoptosis indicator, Bcl2 expression was lower both at protein and mRNA levels in the combination group. Also, the acrolein-protein adducts and myocardial pathological damage increased in the combination of acrolein and ISO relative to the ISO treatment. Besides, cardiac parameters, ejection fraction (EF) and fractional shortening (FS) were reduced more significantly when acrolein was added than in ISO treatment. Interestingly, all the changes were able to be ameliorated by OLE. Since hydroxytyrosol (HT) and oleuropein (OP) were the main components in OLE, we next investigated the effect of HT and OP on cardiomyocyte H9c2 cell apoptosis induced by acrolein through ER stress and Bax pathway. Results showed that GRP78, CHOP and Bax expression were upregulated, while Bcl2 expression was downregulated both at the protein and mRNA levels, when the H9c2 cells were treated with acrolein. In addition, pretreatment with HT can reverse the expression of GRP78, CHOP, Bax and Bcl2 on the protein and mRNA levels, while there was no effect of OP on the expression of GRP78 and CHOP on the mRNA levels. Overall, all these results demonstrated that OLE and the main components (HT and OP) could prevent the negative effects of acrolein on myocardium and cardiomyocytes.
Collapse
|
53
|
Chen HJC, Chang YL, Teng YC, Hsiao CF, Lin TS. A Stable Isotope Dilution Nanoflow Liquid Chromatography Tandem Mass Spectrometry Assay for the Simultaneous Detection and Quantification of Glyoxal-Induced DNA Cross-Linked Adducts in Leukocytes from Diabetic Patients. Anal Chem 2017; 89:13082-13088. [PMID: 29172486 DOI: 10.1021/acs.analchem.6b04296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glyoxal (gx) is a bifunctional electrophile capable of cross-linking DNA. Although it is present in foods and from the environment, endogenous formation of glyoxal occurs through metabolism of carbohydrates and oxidation of lipids and nucleic acids. Plasma concentrations of glyoxal are elevated in in diabetes mellitus patients compared to nondiabetics. The most abundant 2'-deoxyribonucleoside adducts cross-linked by glyoxal are dG-gx-dC, dG-gx-dA, and dG-gx-dG. These DNA cross-links can be mutagenic by damaging the integrity of the DNA structure. Herein, we developed a highly sensitive and specific assay for the simultaneous detection and quantification of the dG-gx-dC and dG-gx-dA cross-links based on stable isotope dilution (SID) nanoflow liquid chromatography nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) under the highly selected reaction monitoring mode and using a triple quadrupole mass spectrometer. The entire assay procedure involved addition of the stable isotope standards [15N5]dG-gx-dC and [15N5]dG-gx-dA as internal standards, enzyme hydrolysis to release the cross-links as nucleosides, enrichment by a reversed-phase solid-phase extraction column, and nanoLC-NSI/MS/MS analysis. The detection limit is 0.19 amol for dG-gx-dC and 0.89 amol for dG-gx-dA, which is 400 and 80 times more sensitive, respectively, than capillary LC-NSI/MS/MS assay of these adducts. The lower limit of quantification was 94 and 90 amol for dG-gx-dC and dG-gx-dA, respectively, which is equivalent to 0.056 and 0.065 adducts in 108 normal nucleotides in 50 μg of DNA. In type 2 diabetes mellitus (T2DM) patients (n = 38), the levels of dG-gx-dC and dG-gx-dA in leukocyte DNA were 1.94 ± 1.20 and 2.10 ± 1.77 in 108 normal nucleotides, respectively, which were significantly higher than those in nondiabetics (n = 39: 0.83 ± 0.92 and 1.05 ± 0.99 in 108 normal nucleotides, respectively). Excluding the factor of smoking, an exogenous source of glyoxal, levels of these two cross-linked adducts were found to be significantly higher in nonsmoking T2DM patients than in nonsmoking control subjects. Furthermore, the levels of dG-gx-dC and dG-gx-dA correlated with HbA1c with statistical significance. To our best knowledge, this is the first report of the identification and quantification of glyoxal-derived cross-linked DNA adducts in human leukocyte DNA and their association with T2DM. This SID nanoLC-NSI/MS/MS assay is highly sensitive and specific and it requires only 50 μg of leukocyte DNA isolated from 2-3 mL of blood to accurately quantify these two cross-linked adducts simultaneously. Our assay thus provides a useful biomarker for the evaluation of glyoxal-derived DNA damage.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62102, Taiwan
| | - Ya-Lang Chang
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62102, Taiwan
| | - Yi-Chun Teng
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62102, Taiwan
| | - Chiung-Fong Hsiao
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62102, Taiwan
| | - Tsai-Shiuan Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62102, Taiwan
| |
Collapse
|
54
|
Hellwig M, Gensberger-Reigl S, Henle T, Pischetsrieder M. Food-derived 1,2-dicarbonyl compounds and their role in diseases. Semin Cancer Biol 2017; 49:1-8. [PMID: 29174601 DOI: 10.1016/j.semcancer.2017.11.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 11/09/2017] [Accepted: 11/18/2017] [Indexed: 02/03/2023]
Abstract
Reactive 1,2-dicarbonyl compounds (DCs) are generated from carbohydrates during food processing and storage and under physiological conditions. In the recent decades, much knowledge has been gained concerning the chemical formation pathways and the role of DCs in food and physiological systems. DCs are formed mainly by dehydration and redox reactions and have a strong impact on the palatability of food, because they participate in aroma and color formation. However, they are precursors of advanced glycation end products (AGEs), and cytotoxic effects of several DCs have been reported. The most abundant DCs in food are 3-deoxyglucosone, 3-deoxygalactosone, and glucosone, predominating over methylglyoxal, glyoxal, and 3,4-dideoxyglucosone-3-ene. The availability for absorption of individual DCs is influenced by the release from the food matrix during digestion and by their reactivity towards constituents of intestinal fluids. Some recent works suggest formation of DCs from dietary sugars after their absorption, and others indicate that certain food constituents may scavenge endogenously formed DCs. First works on the interplay between dietary DCs and diseases reveal an ambiguous role of the compounds. Cancer-promoting but also anticancer effects were ascribed to methylglyoxal. Further work is still needed to elucidate the reactions of DCs during intestinal digestion and pathophysiological effects of dietary DCs at doses taken up with food and in "real" food matrices in disease states such as diabetes, uremia, and cancer.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany.
| | - Sabrina Gensberger-Reigl
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Monika Pischetsrieder
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| |
Collapse
|
55
|
Stabbert R, Dempsey R, Diekmann J, Euchenhofer C, Hagemeister T, Haussmann HJ, Knorr A, Mueller BP, Pospisil P, Reininghaus W, Roemer E, Tewes FJ, Veltel DJ. Studies on the contributions of smoke constituents, individually and in mixtures, in a range of in vitro bioactivity assays. Toxicol In Vitro 2017; 42:222-246. [PMID: 28461234 DOI: 10.1016/j.tiv.2017.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 01/21/2023]
Abstract
Tobacco smoke is a complex mixture with over 8700 identified constituents. Smoking causes many diseases including lung cancer, cardiovascular disease, and chronic obstructive pulmonary disease. However, the mechanisms of how cigarette smoke impacts disease initiation or progression are not well understood and individual smoke constituents causing these effects are not generally agreed upon. The studies reported here were part of a series of investigations into the contributions of selected smoke constituents to the biological activity of cigarette smoke. In vitro cytotoxicity measured by the neutral red uptake (NRU) assay and in vitro mutagenicity determined in the Ames bacterial mutagenicity assay (BMA) were selected because these assays are known to produce reproducible, quantitative results for cigarette smoke under standardized exposure conditions. In order to determine the contribution of individual cigarette smoke constituents, a fingerprinting method was developed to semi-quantify the mainstream smoke yields. For cytotoxicity, 90% of gas vapor phase (GVP) cytotoxicity of the Kentucky Reference cigarette 1R4F was explained by 3 aldehydes and 40% of the 1R4F particulate phase cytotoxicity by 10 smoke constituents, e.g., hydroquinone. In the microsuspension version of the BMA, 4 aldehydes accounted for approximately 70% of the GVP mutagenicity. Finally, the benefits of performing such studies along with the difficulties in interpretation in the context of smoking are discussed.
Collapse
Affiliation(s)
- Regina Stabbert
- Philip Morris Products SA, Philip Morris International R&D, Rue des Usines 90, CH-2000 Neuchatel, Switzerland.
| | - Ruth Dempsey
- Philip Morris Products SA, Philip Morris International R&D, Rue des Usines 90, CH-2000 Neuchatel, Switzerland
| | - Joerg Diekmann
- Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, D-51149 Cologne, Germany
| | | | - Timo Hagemeister
- Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, D-51149 Cologne, Germany
| | | | - Arno Knorr
- Philip Morris Products SA, Philip Morris International R&D, Quai Jeanrenaud 5, CH-2000, Neuchatel, Switzerland
| | - Boris P Mueller
- Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, D-51149 Cologne, Germany
| | - Pavel Pospisil
- Philip Morris Products SA, Philip Morris International R&D, Quai Jeanrenaud 5, CH-2000, Neuchatel, Switzerland
| | - Wolf Reininghaus
- Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, D-51149 Cologne, Germany
| | - Ewald Roemer
- Philip Morris Products SA, Philip Morris International R&D, Rue des Usines 90, CH-2000 Neuchatel, Switzerland
| | - Franz J Tewes
- Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, D-51149 Cologne, Germany
| | - Detlef J Veltel
- Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, D-51149 Cologne, Germany
| |
Collapse
|
56
|
Dalle-Donne I, Colombo G, Gornati R, Garavaglia ML, Portinaro N, Giustarini D, Bernardini G, Rossi R, Milzani A. Protein Carbonylation in Human Smokers and Mammalian Models of Exposure to Cigarette Smoke: Focus on Redox Proteomic Studies. Antioxid Redox Signal 2017; 26:406-426. [PMID: 27393565 DOI: 10.1089/ars.2016.6772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Oxidative stress is one mechanism whereby tobacco smoking affects human health, as reflected by increased levels of several biomarkers of oxidative stress/damage isolated from tissues and biological fluids of active and passive smokers. Many investigations of cigarette smoke (CS)-induced oxidative stress/damage have been carried out in mammalian animal and cellular models of exposure to CS. Animal models allow the investigation of many parameters that are similar to those measured in human smokers. In vitro cell models may provide new information on molecular and functional differences between cells of smokers and nonsmokers. Recent Advances: Over the past decade or so, a growing number of researches highlighted that CS induces protein carbonylation in different tissues and body fluids of smokers as well as in in vivo and in vitro models of exposure to CS. CRITICAL ISSUES We review recent findings on protein carbonylation in smokers and models thereof, focusing on redox proteomic studies. We also discuss the relevance and limitations of these models of exposure to CS and critically assess the congruence between the smoker's condition and laboratory models. FUTURE DIRECTIONS The identification of protein targets is crucial for understanding the mechanism(s) by which carbonylated proteins accumulate and potentially affect cellular functions. Recent progress in redox proteomics allows the enrichment, identification, and characterization of specific oxidative protein modifications, including carbonylation. Therefore, redox proteomics can be a powerful tool to gain new insights into the onset and/or progression of CS-related diseases and to develop strategies to prevent and/or treat them. Antioxid. Redox Signal. 26, 406-426.
Collapse
Affiliation(s)
| | - Graziano Colombo
- 1 Department of Biosciences, Università degli Studi di Milano , Milan, Italy
| | - Rosalba Gornati
- 2 Department of Biotechnology and Life Sciences, University of Insubria , Varese, Italy
| | - Maria L Garavaglia
- 1 Department of Biosciences, Università degli Studi di Milano , Milan, Italy
| | - Nicola Portinaro
- 3 Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano and Pediatric Orthopaedic Unit, Humanitas Clinical and Research Center , Rozzano (Milan), Italy
| | | | - Giovanni Bernardini
- 2 Department of Biotechnology and Life Sciences, University of Insubria , Varese, Italy
| | - Ranieri Rossi
- 4 Department of Life Sciences, University of Siena , Siena, Italy
| | - Aldo Milzani
- 1 Department of Biosciences, Università degli Studi di Milano , Milan, Italy
| |
Collapse
|
57
|
Methylglyoxal-Glyoxalase 1 Balance: The Root of Vascular Damage. Int J Mol Sci 2017; 18:ijms18010188. [PMID: 28106778 PMCID: PMC5297820 DOI: 10.3390/ijms18010188] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/20/2022] Open
Abstract
The highly reactive dicarbonyl methylglyoxal (MGO) is mainly formed as byproduct of glycolysis. Therefore, high blood glucose levels determine increased MGO accumulation. Nonetheless, MGO levels are also increased as consequence of the ineffective action of its main detoxification pathway, the glyoxalase system, of which glyoxalase 1 (Glo1) is the rate-limiting enzyme. Indeed, a physiological decrease of Glo1 transcription and activity occurs not only in chronic hyperglycaemia but also with ageing, during which MGO accumulation occurs. MGO and its advanced glycated end products (AGEs) are associated with age-related diseases including diabetes, vascular dysfunction and neurodegeneration. Endothelial dysfunction is the first step in the initiation, progression and clinical outcome of vascular complications, such as retinopathy, nephropathy, impaired wound healing and macroangiopathy. Because of these considerations, studies have been centered on understanding the molecular basis of endothelial dysfunction in diabetes, unveiling a central role of MGO-Glo1 imbalance in the onset of vascular complications. This review focuses on the current understanding of MGO accumulation and Glo1 activity in diabetes, and their contribution on the impairment of endothelial function leading to diabetes-associated vascular damage.
Collapse
|
58
|
Hubbs AF, Fluharty KL, Edwards RJ, Barnabei JL, Grantham JT, Palmer SM, Kelly F, Sargent LM, Reynolds SH, Mercer RR, Goravanahally MP, Kashon ML, Honaker JC, Jackson MC, Cumpston AM, Goldsmith WT, McKinney W, Fedan JS, Battelli LA, Munro T, Bucklew-Moyers W, McKinstry K, Schwegler-Berry D, Friend S, Knepp AK, Smith SL, Sriram K. Accumulation of Ubiquitin and Sequestosome-1 Implicate Protein Damage in Diacetyl-Induced Cytotoxicity. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2887-2908. [PMID: 27643531 PMCID: PMC5222965 DOI: 10.1016/j.ajpath.2016.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/09/2016] [Accepted: 07/21/2016] [Indexed: 01/12/2023]
Abstract
Inhaled diacetyl vapors are associated with flavorings-related lung disease, a potentially fatal airway disease. The reactive α-dicarbonyl group in diacetyl causes protein damage in vitro. Dicarbonyl/l-xylulose reductase (DCXR) metabolizes diacetyl into acetoin, which lacks this α-dicarbonyl group. To investigate the hypothesis that flavorings-related lung disease is caused by in vivo protein damage, we correlated diacetyl-induced airway damage in mice with immunofluorescence for markers of protein turnover and autophagy. Western immunoblots identified shifts in ubiquitin pools. Diacetyl inhalation caused dose-dependent increases in bronchial epithelial cells with puncta of both total ubiquitin and K63-ubiquitin, central mediators of protein turnover. This response was greater in Dcxr-knockout mice than in wild-type controls inhaling 200 ppm diacetyl, further implicating the α-dicarbonyl group in protein damage. Western immunoblots demonstrated decreased free ubiquitin in airway-enriched fractions. Transmission electron microscopy and colocalization of ubiquitin-positive puncta with lysosomal-associated membrane proteins 1 and 2 and with the multifunctional scaffolding protein sequestosome-1 (SQSTM1/p62) confirmed autophagy. Surprisingly, immunoreactive SQSTM1 also accumulated in the olfactory bulb of the brain. Olfactory bulb SQSTM1 often congregated in activated microglial cells that also contained olfactory marker protein, indicating neuronophagia within the olfactory bulb. This suggests the possibility that SQSTM1 or damaged proteins may be transported from the nose to the brain. Together, these findings strongly implicate widespread protein damage in the etiology of flavorings-related lung disease.
Collapse
Affiliation(s)
- Ann F Hubbs
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia.
| | - Kara L Fluharty
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Rebekah J Edwards
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; Department of Forensic and Investigative Science, West Virginia University, Morgantown, West Virginia
| | - Jamie L Barnabei
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - John T Grantham
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Scott M Palmer
- Duke University School of Medicine, Durham, North Carolina
| | - Francine Kelly
- Duke University School of Medicine, Durham, North Carolina
| | - Linda M Sargent
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Steven H Reynolds
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Robert R Mercer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Madhusudan P Goravanahally
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; Centers for Neuroscience, West Virginia University, Morgantown, West Virginia
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - John C Honaker
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Mark C Jackson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Amy M Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - William T Goldsmith
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Lori A Battelli
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Tiffany Munro
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Winnie Bucklew-Moyers
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Kimberly McKinstry
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Diane Schwegler-Berry
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Sherri Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Alycia K Knepp
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; Department of Forensic and Investigative Science, West Virginia University, Morgantown, West Virginia
| | - Samantha L Smith
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; Department of Forensic and Investigative Science, West Virginia University, Morgantown, West Virginia
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| |
Collapse
|
59
|
Pendergrass SM, Cooper JA. Sampling and Analytical Method for Alpha-Dicarbonyl Flavoring Compounds via Derivatization with o-Phenylenediamine and Analysis Using GC-NPD. SCIENTIFICA 2016; 2016:9059678. [PMID: 27247828 PMCID: PMC4877468 DOI: 10.1155/2016/9059678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/25/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
A novel methodology is described for the sampling and analysis of diacetyl, 2,3-pentanedione, 2,3-hexanedione, and 2,3-heptanedione. These analytes were collected on o-phenylenediamine-treated silica gel tubes and quantitatively recovered as the corresponding quinoxaline derivatives. After derivatization, the sorbent was desorbed in 3 mL of ethanol solvent and analyzed using gas chromatography/nitrogen-phosphorous detection (GC/NPD). The limits of detection (LOD) achieved for each analyte were determined to be in the range of 5-10 nanograms/sample. Evaluation of the on-tube derivatization procedure indicated that it is unaffected by humidities ranging from 20% to 80% and that the derivatization procedure was quantitative for analyte concentrations ranging from 0.1 μg to approximately 500 μg per sample. Storage stability studies indicated that the derivatives were stable for 30 days when stored at both ambient and refrigerated temperatures. Additional studies showed that the quinoxaline derivatives were quantitatively recovered when sampling up to a total volume of 72 L at a sampling rate of 50 cc/min. This method will be important to evaluate and monitor worker exposures in the food and flavoring industry. Samples can be collected over an 8-hour shift with up to 288 L total volume collected regardless of time, sampling rate, and/or the effects of humidity.
Collapse
Affiliation(s)
- Stephanie M. Pendergrass
- National Institute for Occupational Safety and Health Centers for Disease Control and Prevention, Cincinnati, OH 45226, USA
| | | |
Collapse
|
60
|
Conklin DJ. Acute cardiopulmonary toxicity of inhaled aldehydes: role of TRPA1. Ann N Y Acad Sci 2016; 1374:59-67. [PMID: 27152448 DOI: 10.1111/nyas.13055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/26/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022]
Abstract
Inhalation of high-level volatile aldehydes, as present in smoke from wildfires and in tobacco smoke, is associated with both acute and chronic cardiopulmonary morbidity and mortality, but the underlying mechanisms are unclear. The transient receptor potential ankyrin 1 (TRPA1) protein forms a cation channel (irritant receptor) that mediates tobacco smoke-induced airway and lung injury, yet the role of TRPA1 in the cardiovascular toxicity of aldehyde exposure is unclear. Physiologically, airway-located TRPA1 activation triggers an irritant response (e.g., coughing and "respiratory braking") that alters the rate and depth of breathing to reduce exposure. Acrolein (2-propenal), a volatile, unsaturated aldehyde, activates TRPA1. Acrolein was used as a chemical weapon in World War I and is present at high levels in wildfires and tobacco smoke. Acrolein is thought to contribute to pulmonary and cardiovascular injury caused by tobacco smoke exposure, although the role of TRPA1 in cardiovascular toxicity is unclear. This minireview addresses this gap in our knowledge by exploring literature and recent data indicating a connection between TRPA1 and cardiovascular as well as pulmonary injury due to inhaled aldehydes.
Collapse
Affiliation(s)
- Daniel J Conklin
- Diabetes and Obesity Center, Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
61
|
Ramdzan AN, Almeida MIG, McCullough MJ, Kolev SD. Development of a microfluidic paper-based analytical device for the determination of salivary aldehydes. Anal Chim Acta 2016; 919:47-54. [DOI: 10.1016/j.aca.2016.03.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/09/2016] [Accepted: 03/16/2016] [Indexed: 11/16/2022]
|
62
|
[Haut Conseil de la Santé publique (HCSP). Guidance on the benefits and risks of the electronic cigarette or e-cigarette in the general population (February, 22, 2016)]. Rev Mal Respir 2016; 33:509-25. [PMID: 27079863 DOI: 10.1016/j.rmr.2016.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
63
|
Campagna D, Amaradio MD, Sands MF, Polosa R. Respiratory infections and pneumonia: potential benefits of switching from smoking to vaping. Pneumonia (Nathan) 2016; 8:4. [PMID: 28702284 PMCID: PMC5469192 DOI: 10.1186/s41479-016-0001-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/02/2016] [Indexed: 11/28/2022] Open
Abstract
Abstaining from tobacco smoking is likely to lower the risk of respiratory infections and pneumonia. Unfortunately, quitting smoking is not easy. Electronic cigarettes (ECs) are emerging as an attractive long-term alternative nicotine source to conventional cigarettes and are being adopted by smokers who wish to reduce or quit cigarette consumption. Also, given that the propylene glycol in EC aerosols is a potent bactericidal agent, switching from smoking to regular vaping is likely to produce additional lung health benefits. Here, we critically address some of the concerns arising from regular EC use in relation to lung health, including respiratory infections and pneumonia. In conclusion, smokers who quit by switching to regular ECs use can reduce risk and reverse harm from tobacco smoking. Innovation in the e-vapour category is likely not only to further minimise residual health risks, but also to maximise health benefits.
Collapse
Affiliation(s)
- Davide Campagna
- Dipartimento di Medicina Clinica e Sperimentale, Università di Catania, Catania, Italy
- UOC di Medicina Interna e d’Urgenza, Edificio 4, Piano 3, Azienda Ospedaliero-Universitaria “Policlinico-V. Emanuele”, Catania, Italy
| | - Maria Domenica Amaradio
- Dipartimento di Medicina Clinica e Sperimentale, Università di Catania, Catania, Italy
- UOC di Medicina Interna e d’Urgenza, Edificio 4, Piano 3, Azienda Ospedaliero-Universitaria “Policlinico-V. Emanuele”, Catania, Italy
| | - Mark F. Sands
- Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY USA
- The Veterans Administration Healthcare System of Western New York, Buffalo, NY USA
| | - Riccardo Polosa
- Dipartimento di Medicina Clinica e Sperimentale, Università di Catania, Catania, Italy
- UOC di Medicina Interna e d’Urgenza, Edificio 4, Piano 3, Azienda Ospedaliero-Universitaria “Policlinico-V. Emanuele”, Catania, Italy
| |
Collapse
|
64
|
Review on quantitation methods for hazardous pollutants released by e-cigarette (EC) smoking. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
65
|
Zhang L, Ning M, Xu Y, Wang C, Zhao G, Cao Q, Zhang J. Predicting the Cytotoxic Potency of Cigarette Smoke by Assessing the Thioredoxin Reductase Inhibitory Capacity of Cigarette Smoke Extract. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13030348. [PMID: 27007390 PMCID: PMC4809011 DOI: 10.3390/ijerph13030348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/30/2022]
Abstract
The present study investigated the influence of the cigarette smoke extract (CSE) on mammalian thioredoxin reductase (TrxR) activity. TrxR is a selenoenzyme with a selenocysteine (Sec) residue exposed on the enzyme’s surface. This unique Sec residue is particularly susceptible to modification by numerous types of electrophiles, leading to inactivation of TrxR and consequent cytotoxicity. Cigarette smoke contains various electrophiles, and the present study showed that CSE could inhibit intracellular TrxR through causing crosslinking and alkylation of TrxR1. TrxR inhibitory capacities of various CSEs were evaluated by using mouse-liver homogenate. Among the CSEs prepared from 18 commercial cigarette brands, TrxR inhibitory capacities of the maximum and the minimum had a 2.5-fold difference. Importantly, CSE’s inhibitory capacity greatly paralleled its cytotoxic potency in all cell lines used. Compared to cytotoxic assays, which have been widely used for evaluating cigarette toxicity but are not suitable for simultaneously examining a large number of cigarette samples, the present method was simple and rapid with a high-throughput feature and thus could be used as an auxiliary means to predict the cytotoxicity of a large number of cigarette samples, making it possible to extensively screen numerous agricultural and industrial measures that potentially affect cigarette safety.
Collapse
Affiliation(s)
- Longjie Zhang
- Anhui Key Laboratory of Tobacco Chemistry, Technology Center, China Tobacco Anhui Industrial CO., LTD., Hefei 230088, China.
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China.
| | - Min Ning
- Anhui Key Laboratory of Tobacco Chemistry, Technology Center, China Tobacco Anhui Industrial CO., LTD., Hefei 230088, China.
| | - Yingbo Xu
- Anhui Key Laboratory of Tobacco Chemistry, Technology Center, China Tobacco Anhui Industrial CO., LTD., Hefei 230088, China.
| | - Chenghui Wang
- Anhui Key Laboratory of Tobacco Chemistry, Technology Center, China Tobacco Anhui Industrial CO., LTD., Hefei 230088, China.
| | - Guangshan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China.
| | - Qingqing Cao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China.
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
66
|
Calejo I, Moreira N, Araújo AM, Carvalho M, Bastos MDL, de Pinho PG. Optimisation and validation of a HS-SPME–GC–IT/MS method for analysis of carbonyl volatile compounds as biomarkers in human urine: Application in a pilot study to discriminate individuals with smoking habits. Talanta 2016; 148:486-93. [DOI: 10.1016/j.talanta.2015.09.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 01/07/2023]
|
67
|
Ding YS, Yan X, Wong J, Chan M, Watson CH. In Situ Derivatization and Quantification of Seven Carbonyls in Cigarette Mainstream Smoke. Chem Res Toxicol 2016; 29:125-31. [PMID: 26700249 PMCID: PMC4718823 DOI: 10.1021/acs.chemrestox.5b00474] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbonyls, especially aldehydes, are a group of harmful volatile organic compounds that are found in tobacco smoke. Seven carbonyls are listed on the FDA's harmful and potential harmful constituents list for tobacco or tobacco smoke. Carbonyls have reactive functional groups and thus are challenging to quantitatively measure in cigarette smoke. The traditional method of measuring carbonyls in smoke involves solvent-filled impinger trapping and derivatization. This procedure is labor-intensive and generates significant volumes of hazardous waste. We have developed a new method to efficiently derivatize and trap carbonyls from mainstream smoke in situ on Cambridge filter pads. The derivatized carbonyls are extracted from the pads and subsequently quantified by ultra-high-pressure liquid chromatography coupled with tandem mass spectrometry. The new method has been validated and applied to research and commercial cigarettes. Carbonyl yields from research cigarettes are comparable to those from other published literature data. With a convenient smoke collection apparatus, a 4 min sample analysis time, and a low- or submicrogram detection limit, this new method not only simplifies and speeds the detection of an important class of chemical constituents in mainstream smoke but also reduces reactive losses and provides a more accurate assessment of carbonyl levels in smoke. Excellent accuracy (average 98%) and precision (14% average relative standard deviation in research cigarettes) ensure this new method's sufficient fidelity to characterize conventional combusted tobacco products, with potential application toward new or emerging products.
Collapse
Affiliation(s)
- Yan S. Ding
- Tobacco Product Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Xizheng Yan
- Tobacco Product Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Joshua Wong
- Tobacco Product Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Michele Chan
- Tobacco Product Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Clifford H. Watson
- Tobacco Product Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| |
Collapse
|
68
|
Yang CH, Lin YD, Yen CY, Chuang LY, Chang HW. A systematic gene-gene and gene-environment interaction analysis of DNA repair genes XRCC1, XRCC2, XRCC3, XRCC4, and oral cancer risk. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 19:238-47. [PMID: 25831063 DOI: 10.1089/omi.2014.0121] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oral cancer is the sixth most common cancer worldwide with a high mortality rate. Biomarkers that anticipate susceptibility, prognosis, or response to treatments are much needed. Oral cancer is a polygenic disease involving complex interactions among genetic and environmental factors, which require multifaceted analyses. Here, we examined in a dataset of 103 oral cancer cases and 98 controls from Taiwan the association between oral cancer risk and the DNA repair genes X-ray repair cross-complementing group (XRCCs) 1-4, and the environmental factors of smoking, alcohol drinking, and betel quid (BQ) chewing. We employed logistic regression, multifactor dimensionality reduction (MDR), and hierarchical interaction graphs for analyzing gene-gene (G×G) and gene-environment (G×E) interactions. We identified a significantly elevated risk of the XRCC2 rs2040639 heterozygous variant among smokers [adjusted odds ratio (OR) 3.7, 95% confidence interval (CI)=1.1-12.1] and alcohol drinkers [adjusted OR=5.7, 95% CI=1.4-23.2]. The best two-factor based G×G interaction of oral cancer included the XRCC1 rs1799782 and XRCC2 rs2040639 [OR=3.13, 95% CI=1.66-6.13]. For the G×E interaction, the estimated OR of oral cancer for two (drinking-BQ chewing), three (XRCC1-XRCC2-BQ chewing), four (XRCC1-XRCC2-age-BQ chewing), and five factors (XRCC1-XRCC2-age-drinking-BQ chewing) were 32.9 [95% CI=14.1-76.9], 31.0 [95% CI=14.0-64.7], 49.8 [95% CI=21.0-117.7] and 82.9 [95% CI=31.0-221.5], respectively. Taken together, the genotypes of XRCC1 rs1799782 and XRCC2 rs2040639 DNA repair genes appear to be significantly associated with oral cancer. These were enhanced by exposure to certain environmental factors. The observations presented here warrant further research in larger study samples to examine their relevance for routine clinical care in oncology.
Collapse
Affiliation(s)
- Cheng-Hong Yang
- 1 Department of Electronic Engineering, National Kaohsiung University of Applied Sciences , Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
69
|
Gonzalez-Suarez I, Martin F, Marescotti D, Guedj E, Acali S, Johne S, Dulize R, Baumer K, Peric D, Goedertier D, Frentzel S, Ivanov NV, Mathis C, Hoeng J, Peitsch MC. In Vitro Systems Toxicology Assessment of a Candidate Modified Risk Tobacco Product Shows Reduced Toxicity Compared to That of a Conventional Cigarette. Chem Res Toxicol 2015; 29:3-18. [DOI: 10.1021/acs.chemrestox.5b00321] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ignacio Gonzalez-Suarez
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Diego Marescotti
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Stefano Acali
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Stephanie Johne
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Remi Dulize
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Karine Baumer
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Dariusz Peric
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Didier Goedertier
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Stefan Frentzel
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Nikolai V. Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Carole Mathis
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C. Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
70
|
de Oliveira MR, Ferreira GC, Schuck PF, Dal Bosco SM. Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Chem Biol Interact 2015; 242:396-406. [DOI: 10.1016/j.cbi.2015.11.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/07/2015] [Accepted: 11/04/2015] [Indexed: 02/07/2023]
|
71
|
Chen HJC, Chen YC, Hsiao CF, Chen PF. Mass Spectrometric Analysis of Glyoxal and Methylglyoxal-Induced Modifications in Human Hemoglobin from Poorly Controlled Type 2 Diabetes Mellitus Patients. Chem Res Toxicol 2015; 28:2377-89. [DOI: 10.1021/acs.chemrestox.5b00380] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department
of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Yu-Chin Chen
- Department
of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Chiung-Fong Hsiao
- Department
of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Pin-Fan Chen
- Buddhist Dalin Tzu Chi General Hospital, No.2, Minsheng Road, Dalin, Chia-Yi 622, Taiwan
| |
Collapse
|
72
|
Sapkota M, Wyatt TA. Alcohol, Aldehydes, Adducts and Airways. Biomolecules 2015; 5:2987-3008. [PMID: 26556381 PMCID: PMC4693266 DOI: 10.3390/biom5042987] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 12/20/2022] Open
Abstract
Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.
Collapse
Affiliation(s)
- Muna Sapkota
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Todd A Wyatt
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA.
- Department of Internal Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
| |
Collapse
|
73
|
Jensen TM, Vistisen D, Fleming T, Nawroth PP, Jørgensen ME, Lauritzen T, Sandbæk A, Witte DR. Impact of intensive treatment on serum methylglyoxal levels among individuals with screen-detected type 2 diabetes: the ADDITION-Denmark study. Acta Diabetol 2015; 52:929-36. [PMID: 25808642 DOI: 10.1007/s00592-015-0739-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/11/2015] [Indexed: 11/25/2022]
Abstract
AIMS Methylglyoxal (MG) has been implicated in the development of micro- and macrovascular diabetic complications, but it remains unclear how current treatments of type 2 diabetes affect its circulating levels. METHODS In the Danish arm of the ADDITION trial, we (a) described serum MG levels at baseline and at 6-year follow-up among individuals with screen-detected type 2 diabetes, (b) examined the effect of intensive multifactorial treatment compared with routine care on MG, (c) examined the associations between MG and risk factors at baseline and at follow-up and (d) examined the associations between changes in MG and changes in risk factors. RESULTS Patients in both treatment arms experienced a significant decline in MG from baseline to follow-up, with no effect of allocation to intensive treatment. In cohort analyses, MG was associated with smoking and fasting glucose at baseline and smoking and LDL cholesterol at follow-up. Compared with patients receiving no lipid-lowering treatment, patients receiving lipid-lowering treatment had higher MG at follow-up, and those initiating lipid-lowering treatment experienced a less pronounced decline in MG. CONCLUSIONS Further studies are required to explore any possible effects of the observed decrease in MG in type 2 diabetes patients as well as the potential interplay between MG, lipids, lipid-lowering treatment and smoking.
Collapse
Affiliation(s)
- Troels M Jensen
- Steno Diabetes Center, NSK 2.11, Niels Steensens Vej 1, 2820, Gentofte, Denmark.
| | - Dorte Vistisen
- Steno Diabetes Center, NSK 2.11, Niels Steensens Vej 1, 2820, Gentofte, Denmark
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Marit E Jørgensen
- Steno Diabetes Center, NSK 2.11, Niels Steensens Vej 1, 2820, Gentofte, Denmark
| | - Torsten Lauritzen
- Department of Public Health, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Annelli Sandbæk
- Department of Public Health, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
| |
Collapse
|
74
|
Shibamoto T. A novel gas chromatographic method for determination of malondialdehyde from oxidized DNA. Methods Mol Biol 2015; 1208:49-62. [PMID: 25323498 DOI: 10.1007/978-1-4939-1441-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malondialdehyde (MA) is known to form from various lipids upon oxidation as one of secondary oxidation products. Determination of MA formed from lipid peroxidation has been used to examine occurrence of oxidative damages associated with many diseases, such as cancer, Alzheimer's, arthritis, inflammation, diabetes, atherosclerosis, and AIDS as well as aging. Analysis of MA is, however, extremely difficult because it is highly reactive and readily polymerized and forming adducts with biological substances such as proteins, phospholipids, and DNA (Shibamoto, J Pharm Biomed Anal 41:12-25, 2002). Gas chromatographic method using stable derivative, 1-methylpyrazole was advanced and has been successfully used to analyze MA in various lipids and lipid-rich foods. This method was also applied to determine MA formed from DNA and related compounds. The amounts found in oxidized 2'-deoxyribonucleotides were 213.8 nmol/16 mmol in 2'-deoxyguanosine, 130.6 nmol/16 mmol in 2'-deoxycytidine, 85.1 nmol/16 mmol in 2'-deoxyadenosine, and 84.5 nmol/16 mmol in thymidine. When the antioxidant activity of flavonoids and anthocyanins against calf thymus DNA oxidized with Fenton's reagent was examined using this newly developed gas chromatographic method, antioxidant activity of flavonoids and anthocyanins ranged from 48.5% (catechin) to 29.9% (apigenin) and from 45.0% (callistephin) to 10.2% (cyaniding), respectively.
Collapse
Affiliation(s)
- Takayuki Shibamoto
- Department of Environmental Toxicology, University of California, 4115 Meyer Hall, One Shields Avenue, Davis, CA, 95616, USA,
| |
Collapse
|
75
|
Kwak J, Geier BA, Fan M, Gogate SA, Rinehardt SA, Watts BS, Grigsby CC, Ott DK. Detection of volatile organic compounds indicative of human presence in the air. J Sep Sci 2015; 38:2463-9. [DOI: 10.1002/jssc.201500261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Jae Kwak
- The Henry M. Jackson Foundation for the Advancement of Military Medicine; Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution; University of Veterinary Medicine Vienna; Austria
| | - Brian A. Geier
- InfoSciTex Corporation; Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Maomian Fan
- Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Sanjay A. Gogate
- Air Force Research Laboratory; U.S. Air Force School of Aerospace Medicine; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Sage A. Rinehardt
- UES; Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Brandy S. Watts
- Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Claude C. Grigsby
- Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Darrin K. Ott
- Air Force Research Laboratory; U.S. Air Force School of Aerospace Medicine; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| |
Collapse
|
76
|
de Assis AM, Rech A, Longoni A, da Silva Morrone M, de Bittencourt Pasquali MA, Perry ML, Souza DO, Moreira JC. Dietary n-3 polyunsaturated fatty acids revert renal responses induced by a combination of 2 protocols that increase the amounts of advanced glycation end product in rats. Nutr Res 2015; 35:512-22. [DOI: 10.1016/j.nutres.2015.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/07/2015] [Accepted: 04/17/2015] [Indexed: 01/02/2023]
|
77
|
de Mendonça Ochs S, de Almeida Furtado L, Pereira Netto AD. Evaluation of the concentrations and distribution of carbonyl compounds in selected areas of a Brazilian bus terminal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9413-9423. [PMID: 25604560 DOI: 10.1007/s11356-014-4021-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
This study describes the determination of 30 carbonyl compounds (CCs) in three areas (bus boarding platform, passenger circulation area, and a pastry shop) of the Presidente João Goulart Bus Terminal, located at Niterói City, RJ, Brazil, and in an open area 700 m distant from the terminal. Samples were collected using SEP-PAK cartridges impregnated with 2,4-dinitrophenylhydrazine, during May to July 2012. The hydrazones formed were analyzed using rapid resolution liquid chromatography with UV detection. The studied locations showed distinct profiles of distribution of CC. The circulation area, which is influenced by different pollution sources, presented an intermediate profile between that of the pastry shop and boarding platform. Formaldehyde and acetaldehyde were the most abundant CC, but acetaldehyde predominated in the pastry shop once it is a by-product of baking yeast fermentation. Samples taken in the pastry shop and circulation area showed significant concentrations of hexanaldehyde and nonanaldehyde emitted during cooking. The pastry shop showed the largest level of total CC among the studied areas followed by the circulation area, the boarding platform, and the open area.
Collapse
Affiliation(s)
- Soraya de Mendonça Ochs
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista, s/n, Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil,
| | | | | |
Collapse
|
78
|
Farsalinos KE, Kistler KA, Gillman G, Voudris V. Why We Consider the NIOSH-Proposed Safety Limits for Diacetyl and Acetyl Propionyl Appropriate in the Risk Assessment of Electronic Cigarette Liquid Use: A Response to Hubbs et al. Nicotine Tob Res 2015; 17:1290-1. [PMID: 25586778 DOI: 10.1093/ntr/ntv005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 11/14/2022]
Affiliation(s)
| | - Kurt A Kistler
- Department of Chemistry, Pennsylvania State University Brandywine, Media, PA
| | | | - Vassilis Voudris
- Department of Cardiology, Onassis Cardiac Surgery Center, Kallithea, Greece
| |
Collapse
|
79
|
Blair SL, Epstein SA, Nizkorodov SA, Staimer N. A Real-Time Fast-Flow Tube Study of VOC and Particulate Emissions from Electronic, Potentially Reduced-Harm, Conventional, and Reference Cigarettes. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2015; 49:816-827. [PMID: 26726281 PMCID: PMC4696598 DOI: 10.1080/02786826.2015.1076156] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Tobacco-free electronic cigarettes (e-cigarettes), which are currently not regulated by the FDA, have become widespread as a "safe" form of smoking. One approach to evaluate the potential toxicity of e-cigarettes and other types of potentially "reduced-harm" cigarettes is to compare their emissions of volatile organic compounds (VOCs), including reactive organic electrophillic compounds such as acrolein, and particulate matter to those of conventional and reference cigarettes. Our newly designed fast-flow tube system enabled us to analyze VOC composition and particle number concentration in real-time by promptly diluting puffs of mainstream smoke obtained from different brands of combustion cigarettes and e-cigarettes. A proton transfer reaction time-of-flight mass spectrometer (PTRMS) was used to analyze real-time cigarette VOC emissions with a 1 s time resolution. Particles were detected with a condensation particle counter (CPC). This technique offers real-time analysis of VOCs and particles in each puff without sample aging and does not require any sample pretreatment or extra handling. Several important determining factors in VOC and particle concentration were investigated: (1) puff frequency; (2) puff number; (3) tar content; (4) filter type. Results indicate that electronic cigarettes are not free from acrolein and acetaldehyde emissions and produce comparable particle number concentrations to those of combustion cigarettes, more specifically to the 1R5F reference cigarette. Unlike conventional cigarettes, which emit different amounts of particles and VOCs each puff, there was no significant puff dependence in the e-cigarette emissions. Charcoal filter cigarettes did not fully prevent the emission of acrolein and other VOCs.
Collapse
Affiliation(s)
- Sandra L. Blair
- Department of Chemistry, University of California, Irvine, California, USA
| | - Scott A. Epstein
- Department of Chemistry, University of California, Irvine, California, USA
| | - Sergey A. Nizkorodov
- Department of Chemistry, University of California, Irvine, California, USA
- corresponding authors: and
| | - Norbert Staimer
- Department of Epidemiology, University of California, Irvine, California, USA
- corresponding authors: and
| |
Collapse
|
80
|
Cheah NP, Pennings JL, Vermeulen JP, Godschalk RW, van Schooten FJ, Opperhuizen A. In vitro effects of low-level aldehyde exposures on human umbilical vein endothelial cells. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00213j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aldehydes cause gene expression changes for genes associated with cardiovascular disease. Exposure to aldehydes from tobacco smoke needs to be controlled.
Collapse
Affiliation(s)
- Nuan P. Cheah
- Department of Toxicology
- Maastricht University
- Maastricht
- The Netherlands
- Centre for Health Protection
| | - Jeroen L.A. Pennings
- Centre for Health Protection
- National Institute for Public Health and the Environment (RIVM)
- Bilthoven
- The Netherlands
| | - Jolanda P. Vermeulen
- Centre for Health Protection
- National Institute for Public Health and the Environment (RIVM)
- Bilthoven
- The Netherlands
| | | | | | - Antoon Opperhuizen
- Department of Toxicology
- Maastricht University
- Maastricht
- The Netherlands
- Netherlands Food and Consumer Product Safety Authority (NVWA)
| |
Collapse
|
81
|
Sun Y, Ito S, Nishio N, Tanaka Y, Chen N, Isobe KI. Acrolein induced both pulmonary inflammation and the death of lung epithelial cells. Toxicol Lett 2014; 229:384-92. [DOI: 10.1016/j.toxlet.2014.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
82
|
LoPachin RM, Gavin T. Molecular mechanisms of aldehyde toxicity: a chemical perspective. Chem Res Toxicol 2014; 27:1081-91. [PMID: 24911545 PMCID: PMC4106693 DOI: 10.1021/tx5001046] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Indexed: 01/19/2023]
Abstract
Aldehydes are electrophilic compounds to which humans are pervasively exposed. Despite a significant health risk due to exposure, the mechanisms of aldehyde toxicity are poorly understood. This ambiguity is likely due to the structural diversity of aldehyde derivatives and corresponding differences in chemical reactions and biological targets. To gain mechanistic insight, we have used parameters based on the hard and soft, acids and bases (HSAB) theory to profile the different aldehyde subclasses with respect to electronic character (softness, hardness), electrophilic reactivity (electrophilic index), and biological nucleophilic targets. Our analyses indicate that short chain aldehydes and longer chain saturated alkanals are hard electrophiles that cause toxicity by forming adducts with hard biological nucleophiles, e.g., primary nitrogen groups on lysine residues. In contrast, α,β-unsaturated carbonyl derivatives, alkenals, and the α-oxoaldehydes are soft electrophiles that preferentially react with soft nucleophilic thiolate groups on cysteine residues. The aldehydes can therefore be grouped into subclasses according to common electronic characteristics (softness/hardness) and molecular mechanisms of toxicity. As we will discuss, the toxic potencies of these subgroups are generally related to corresponding electrophilicities. For some aldehydes, however, predictions of toxicity based on electrophilicity are less accurate due to inherent physicochemical variables that limit target accessibility, e.g., steric hindrance and solubility. The unsaturated aldehydes are also members of the conjugated type-2 alkene chemical class that includes α,β-unsaturated amide, ketone, and ester derivatives. Type-2 alkenes are electrophiles of varying softness and electrophilicity that share a common mechanism of toxicity. Therefore, exposure to an environmental mixture of unsaturated carbonyl derivatives could cause "type-2 alkene toxicity" through additive interactions. Finally, we propose that environmentally derived aldehydes can accelerate diseases by interacting with endogenous aldehydes generated during oxidative stress. This review provides a basis for understanding aldehyde mechanisms and environmental toxicity through the context of electronic structure, electrophilicity, and nucleophile target selectivity.
Collapse
Affiliation(s)
- Richard M. LoPachin
- Department
of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th Street, Bronx, New York 10467, United
States
| | - Terrence Gavin
- Department
of Chemistry, Iona College, New Rochelle, New York 10804, United States
| |
Collapse
|
83
|
Papoušek R, Pataj Z, Nováková P, Lemr K, Barták P. Determination of Acrylamide and Acrolein in Smoke from Tobacco and E-Cigarettes. Chromatographia 2014. [DOI: 10.1007/s10337-014-2729-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
84
|
Lee HW, Wang HT, Weng MW, Hu Y, Chen WS, Chou D, Liu Y, Donin N, Huang WC, Lepor H, Wu XR, Wang H, Beland FA, Tang MS. Acrolein- and 4-Aminobiphenyl-DNA adducts in human bladder mucosa and tumor tissue and their mutagenicity in human urothelial cells. Oncotarget 2014; 5:3526-40. [PMID: 24939871 PMCID: PMC4116500 DOI: 10.18632/oncotarget.1954] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/06/2014] [Indexed: 01/12/2023] Open
Abstract
Tobacco smoke (TS) is a major cause of human bladder cancer (BC). Two components in TS, 4-aminobiphenyl (4-ABP) and acrolein, which also are environmental contaminants, can cause bladder tumor in rat models. Their role in TS related BC has not been forthcoming. To establish the relationship between acrolein and 4-ABP exposure and BC, we analyzed acrolein-deoxyguanosine (dG) and 4-ABP-DNA adducts in normal human urothelial mucosa (NHUM) and bladder tumor tissues (BTT), and measured their mutagenicity in human urothelial cells. We found that the acrolein-dG levels in NHUM and BTT are 10-30 fold higher than 4-ABP-DNA adduct levels and that the acrolein-dG levels in BTT are 2 fold higher than in NHUM. Both acrolein-dG and 4-ABP-DNA adducts are mutagenic; however, the former are 5 fold more mutagenic than the latter. These two types of DNA adducts induce different mutational signatures and spectra. We found that acrolein inhibits nucleotide excision and base excision repair and induces repair protein degradation in urothelial cells. Since acrolein is abundant in TS, inhaled acrolein is excreted into urine and accumulates in the bladder and because acrolein inhibits DNA repair and acrolein-dG DNA adducts are mutagenic, we propose that acrolein is a major bladder carcinogen in TS.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - Hsiang-Tsui Wang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - Mao-wen Weng
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - Yu Hu
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - Wei-sheng Chen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - David Chou
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - Yan Liu
- Department of Urology, New York University School of Medicine, New York, New York
| | - Nicholas Donin
- Department of Urology, New York University School of Medicine, New York, New York
| | - William C. Huang
- Department of Urology, New York University School of Medicine, New York, New York
| | - Herbert Lepor
- Department of Urology, New York University School of Medicine, New York, New York
| | - Xue-Ru Wu
- Department of Urology, New York University School of Medicine, New York, New York
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Frederick A. Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR
| | - Moon-shong Tang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| |
Collapse
|
85
|
Wallace KB, Veith GD. Safe exposure level for diacetyl. INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH 2014; 20:4-5. [PMID: 24804334 DOI: 10.1179/1077352513z.000000000100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
86
|
Shibamoto T. Diacetyl: occurrence, analysis, and toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4048-4053. [PMID: 24738917 DOI: 10.1021/jf500615u] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Diacetyl possesses a butter-like flavor and has been widely used as a flavoring agent. It forms from sugars and lipids via various bacteria and heat treatment in various foods and beverages, such as milk. The toxicity of diacetyl, especially when inhaled, has recently attracted the attention not only of consumers but also of regulatory agencies. Even though accurate quantitative analysis of diacetyl is extremely important in evaluating its possible adverse effects, precise quantitative analysis of diacetyl in foods and beverages, as well as in ambient air, is considerably difficult because it is highly reactive and soluble in water. Among the many analytical methods developed for measuring diacetyl, preparation of 2,3-dimethylquinoxaline followed by gas chromatography has been most commonly used in the analysis of various foods, beverages, and air samples. This mini-review summarizes the formation mechanisms, analytical methods, occurrence, and toxicity of diacetyl.
Collapse
Affiliation(s)
- Takayuki Shibamoto
- Department of Environmental Toxicology, University of California , Davis, California 95616, United States
| |
Collapse
|
87
|
Colombo G, Clerici M, Giustarini D, Portinaro NM, Aldini G, Rossi R, Milzani A, Dalle-Donne I. Pathophysiology of tobacco smoke exposure: recent insights from comparative and redox proteomics. MASS SPECTROMETRY REVIEWS 2014; 33:183-218. [PMID: 24272816 DOI: 10.1002/mas.21392] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023]
Abstract
First-hand and second-hand tobacco smoke are causally linked to a huge number of deaths and are responsible for a broad spectrum of pathologies such as cancer, cardiovascular, respiratory, and eye diseases as well as adverse effects on female reproductive function. Cigarette smoke is a complex mixture of thousands of different chemical species, which exert their negative effects on macromolecules and biochemical pathways, both directly and indirectly. Many compounds can act as oxidants, pro-inflammatory agents, carcinogens, or a combination of these. The redox behavior of cigarette smoke has many implications for smoke related diseases. Reactive oxygen and nitrogen species (both radicals and non-radicals), reactive carbonyl compounds, and other species may induce oxidative damage in almost all the biological macromolecules, compromising their structure and/or function. Different quantitative and redox proteomic approaches have been applied in vitro and in vivo to evaluate, respectively, changes in protein expression and specific oxidative protein modifications induced by exposure to cigarette smoke and are overviewed in this review. Many gel-based and gel-free proteomic techniques have already been used successfully to obtain clues about smoke effects on different proteins in cell cultures, animal models, and humans. The further implementation with other sensitive screening techniques could be useful to integrate the comprehension of cigarette smoke effects on human health. In particular, the redox proteomic approach may also help identify biomarkers of exposure to tobacco smoke useful for preventing these effects or potentially predictive of the onset and/or progression of smoking-induced diseases as well as potential targets for therapeutic strategies.
Collapse
Affiliation(s)
- Graziano Colombo
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Pierce JS, Abelmann A, Spicer LJ, Adams RE, Finley BL. Diacetyl and 2,3-pentanedione exposures associated with cigarette smoking: implications for risk assessment of food and flavoring workers. Crit Rev Toxicol 2014; 44:420-35. [PMID: 24635357 DOI: 10.3109/10408444.2014.882292] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diacetyl and 2,3-pentanedione inhalation have been suggested as causes of severe respiratory disease, including bronchiolitis obliterans, in food/flavoring manufacturing workers. Both compounds are present in many food items, tobacco, and other consumer products, but estimates of exposures associated with the use of these goods are scant. A study was conducted to characterize exposures to diacetyl and 2,3-pentanedione associated with cigarette smoking. The yields (μg/cigarette) of diacetyl and 2,3-pentanedione in mainstream (MS) cigarette smoke were evaluated for six tobacco products under three smoking regimens (ISO, Massachusetts Department of Public Health, and Health Canada Intense) using a standard smoking machine. Mean diacetyl concentrations in MS smoke ranged from 250 to 361 ppm for all tobacco products and smoking regimens, and mean cumulative exposures associated with 1 pack-year ranged from 1.1 to 1.9 ppm-years. Mean 2,3-pentanedione concentrations in MS smoke ranged from 32.2 to 50.1 ppm, and mean cumulative exposures associated with 1 pack-year ranged from 0.14 to 0.26 ppm-years. We found that diacetyl and 2,3-pentanedione exposures from cigarette smoking far exceed occupational exposures for most food/flavoring workers who smoke. This suggests that previous claims of a significant exposure-response relationship between diacetyl inhalation and respiratory disease in food/flavoring workers were confounded, because none of the investigations considered or quantified the non-occupational diacetyl exposure from cigarette smoke, yet all of the cohorts evaluated had considerable smoking histories. Further, because smoking has not been shown to be a risk factor for bronchiolitis obliterans, our findings are inconsistent with claims that diacetyl and/or 2,3-pentanedione exposure are risk factors for this disease.
Collapse
|
89
|
Role of methylglyoxal in Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:238485. [PMID: 24734229 PMCID: PMC3966409 DOI: 10.1155/2014/238485] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is the most common and lethal neurodegenerative disorder. The major hallmarks of Alzheimer's disease are extracellular aggregation of amyloid β peptides and, the presence of intracellular neurofibrillary tangles formed by precipitation/aggregation of hyperphosphorylated tau protein. The etiology of Alzheimer's disease is multifactorial and a full understanding of its pathogenesis remains elusive. Some years ago, it has been suggested that glycation may contribute to both extensive protein cross-linking and oxidative stress in Alzheimer's disease. Glycation is an endogenous process that leads to the production of a class of compounds known as advanced glycation end products (AGEs). Interestingly, increased levels of AGEs have been observed in brains of Alzheimer's disease patients. Methylglyoxal, a reactive intermediate of cellular metabolism, is the most potent precursor of AGEs and is strictly correlated with an increase of oxidative stress in Alzheimer's disease. Many studies are showing that methylglyoxal and methylglyoxal-derived AGEs play a key role in the etiopathogenesis of Alzheimer's disease.
Collapse
|
90
|
Babizhayev MA. The detox strategy in smoking comprising nutraceutical formulas of non-hydrolyzed carnosine or carcinine used to protect human health. Hum Exp Toxicol 2014; 33:284-316. [PMID: 24220875 DOI: 10.1177/0960327113493306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The increased oxidative stress in patients with smoking-associated disease, such as chronic obstructive pulmonary disease, is the result of an increased burden of inhaled oxidants as well as increased amounts of reactive oxygen species generated by various inflammatory, immune and epithelial cells of the airways. Nicotine sustains tobacco addiction, a major cause of disability and premature death. In addition to the neurochemical effects of nicotine, behavioural factors also affect the severity of nicotine withdrawal symptoms. For some people, the feel, smell and sight of a cigarette and the ritual of obtaining, handling, lighting and smoking a cigarette are all associated with the pleasurable effects of smoking. For individuals who are motivated to quit smoking, a combination of pharmacotherapy and behavioural therapy has been shown to be most effective in controlling the symptoms of nicotine withdrawal. In the previous studies, we proposed the viability and versatility of the imidazole-containing dipeptide-based compounds in the nutritional compositions as the telomere protection targeted therapeutic system for smokers in combination with in vitro cellular culture techniques being an investigative tool to study telomere attrition in cells induced by cigarette smoke (CS) and smoke constituents. Our working therapeutic concept is that imidazole-containing dipeptide-based compounds (non-hydrolyzed carnosine and carcinine) can modulate the telomerase activity in the normal cells and can provide the redox regulation of the cellular function under the terms of environmental and oxidative stress and in this way protect the length and the structure of telomeres from attrition. The detoxifying system of non-hydrolyzed carnosine or carcinine can be applied in the therapeutic nutrition formulations or installed in the cigarette filter. Patented specific oral formulations of non-hydrolyzed carnosine and carcinine provide a powerful manipulation tool for targeted therapeutic inhibition of cumulative oxidative stress and inflammation and protection from telomere attrition associated with smoking. It is demonstrated in this work that both non-hydrolyzed carnosine and carcinine are characterized by greater bioavailability than pure l-carnosine subjected to enzymatic hydrolysis with carnosinase, and perform the detoxification of the α,β-unsaturated carbonyl compounds present in tobacco smoke. We argue that while an array of factors has shaped the history of the 'safer' cigarette, it is the current understanding of the industry's past deceptions and continuing avoidance of the moral implications of the sale of products that cause the enormous suffering and death of millions that makes reconsideration of 'safer' cigarettes challenging. In contrast to this, the data presented in the article show that recommended oral forms of non-hydrolyzed carnosine and carcinine protect against CS-induced disease and inflammation, and synergistic agents with the actions of imidazole-containing dipeptide compounds in developed formulations may have therapeutic utility in inflammatory lung diseases where CS plays a role.
Collapse
Affiliation(s)
- Mark A Babizhayev
- 1Innovative Vision Products, Inc., County of New Castle, Delaware, USA
| |
Collapse
|
91
|
Gonzalez-Suarez I, Sewer A, Walker P, Mathis C, Ellis S, Woodhouse H, Guedj E, Dulize R, Marescotti D, Acali S, Martin F, Ivanov NV, Hoeng J, Peitsch MC. Systems biology approach for evaluating the biological impact of environmental toxicants in vitro. Chem Res Toxicol 2014; 27:367-76. [PMID: 24428674 DOI: 10.1021/tx400405s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure to cigarette smoke is a leading cause of lung diseases including chronic obstructive pulmonary disease and cancer. Cigarette smoke is a complex aerosol containing over 6000 chemicals and thus it is difficult to determine individual contributions to overall toxicity as well as the molecular mechanisms by which smoke constituents exert their effects. We selected three well-known harmful and potentially harmful constituents (HPHCs) in tobacco smoke, acrolein, formaldehyde and catechol, and established a high-content screening method using normal human bronchial epithelial cells, which are the first bronchial cells in contact with cigarette smoke. The impact of each HPHC was investigated using 13 indicators of cellular toxicity complemented with a microarray-based whole-transcriptome analysis followed by a computational approach leveraging mechanistic network models to identify and quantify perturbed molecular pathways. HPHCs were evaluated over a wide range of concentrations and at different exposure time points (4, 8, and 24 h). By high-content screening, the toxic effects of the three HPHCs could be observed only at the highest doses. Whole-genome transcriptomics unraveled toxicity mechanisms at lower doses and earlier time points. The most prevalent toxicity mechanisms observed were DNA damage/growth arrest, oxidative stress, mitochondrial stress, and apoptosis/necrosis. A combination of multiple toxicological end points with a systems-based impact assessment allows for a more robust scientific basis for the toxicological assessment of HPHCs, allowing insight into time- and dose-dependent molecular perturbations of specific biological pathways. This approach allowed us to establish an in vitro systems toxicology platform that can be applied to a broader selection of HPHCs and their mixtures and can serve more generally as the basis for testing the impact of other environmental toxicants on normal bronchial epithelial cells.
Collapse
Affiliation(s)
- Ignacio Gonzalez-Suarez
- Philip Morris International R&D, Philip Morris Products S.A. , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Tokikawa R, Loffredo C, Uemi M, Machini MT, Bechara EJH. Radical acylation of L-lysine derivatives and L-lysine-containing peptides by peroxynitrite-treated diacetyl and methylglyoxal. Free Radic Res 2014; 48:357-70. [PMID: 24328571 DOI: 10.3109/10715762.2013.871386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Highly electrophilic α-dicarbonyls such as diacetyl, methylglyoxal, 3-deoxyglucosone, and4,5-dioxovaleric acid have been characterized as secondary catabolites that can aggregate proteins and form DNA nucleobase adducts in several human maladies, including Alzheimer's disease, rheumatoid arthritis, diabetes, sepsis, renal failure, and respiratory distress syndrome. In vitro, diacetyl and methylglyoxal have also been shown to rapidly add up the peroxynitrite anion (k2 ~ 10(4)-10(5) M(-1) s(-1)), a potent biological nucleophile, oxidant and nitrosating agent, followed by carbon chain cleavage to carboxylic acids via acetyl radical intermediate that can modify amino acids. In this study, we used the amino acid derivatives Ac-Lys-OMe and Z-Lys-OMe and synthesized the tetrapeptides H-KALA-OH, Ac-KALA-OH, and H-K(Boc)ALA-OH to reveal the preferential Lys amino group targeted by acyl radical generated by the α-dicarbonyl/peroxynitrite system. The pH profiles of the reactions are bell-shaped, peaking at approximately 7.5; hence, they are close to the pKa values of ONOOH and of the catalytic H2PO4(-) anion. RP-HPLC and ESI-MS analyses of reaction products confirmed (α)N- and (ϵ)N-acetylation of Lys by diacetyl as well as acetylation and formylation by methylglyoxal, with preference for the α-amino group. These data suggest the possibility of radical acylation of proteins in epigenetic processes, where enzymatic acetylation of these biomolecules is a well-documented event, recently reported to be as critical to the cell cycle as phosphorylation. Also noteworthy is the observed formylation of L-Lys containing peptides by methylglyoxal never reported to occur in amino acid residues of peptides and proteins.
Collapse
Affiliation(s)
- R Tokikawa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo , SP , Brazil
| | | | | | | | | |
Collapse
|
93
|
Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res 2013; 47 Suppl 1:3-27. [PMID: 23767955 DOI: 10.3109/10715762.2013.815348] [Citation(s) in RCA: 579] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions; (2) to elucidate the molecular basis of their biological effects; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation.
Collapse
Affiliation(s)
- G Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, Milan, Italy
| | | | | | | | | | | |
Collapse
|
94
|
Degen J, Vogel M, Richter D, Hellwig M, Henle T. Metabolic transit of dietary methylglyoxal. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10253-10260. [PMID: 23451712 DOI: 10.1021/jf304946p] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Methylglyoxal (MGO) is responsible for the pronounced antibacterial activity of manuka honey, in which it may reach concentrations up to 800 mg/kg. As MGO formed in vivo is discussed to play a role in diabetic complications, the metabolic transit of dietary MGO was studied within a 3 day dietary recall with four healthy volunteers. Determination of MGO in 24 h urine was performed with GC-MS after derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine, and D-lactate was quantified enzymatically. Following a diet virtually free from MGO and other glycation compounds, a defined amount of MGO (500 μmol in manuka honey) was administered in the morning of day 2. Renal excretion was between 0.1 and 0.4 μmol/day for MGO and between 50 and 220 μmol/day for D-lactate. No influence on excretion of both compounds was observed following administration of MGO. To investigate the stability of MGO under physiological conditions, a simulated in vitro gastrointestinal digestion was performed with MGO-containing honey. After 8 h of in vitro digestion, only 5-20% of the initial methylglyoxal was recovered. This indicates that dietary MGO is rapidly degraded during the digestion process in the intestine and, therefore, exerts no influence on the MGO level in vivo.
Collapse
Affiliation(s)
- Julia Degen
- Institute of Food Chemistry, Technische Universität Dresden , D-01062 Dresden, Germany
| | | | | | | | | |
Collapse
|
95
|
Noya Y, Seki KI, Asano H, Mai Y, Horinouchi T, Higashi T, Terada K, Hatate C, Hoshi A, Nepal P, Horiguchi M, Kuge Y, Miwa S. Identification of stable cytotoxic factors in the gas phase extract of cigarette smoke and pharmacological characterization of their cytotoxicity. Toxicology 2013; 314:1-10. [PMID: 23981515 DOI: 10.1016/j.tox.2013.08.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/16/2013] [Accepted: 08/16/2013] [Indexed: 11/26/2022]
Abstract
Smoking is a major risk factor for atherosclerotic vascular diseases, but the mechanism for its genesis is unknown. We have recently shown that the gas phase of cigarette smoke (nicotine- and tar-free cigarette smoke extract; CSE) likely to reach the systemic circulation contains stable substances which cause cytotoxicity like plasma membrane damage and cell death in cultured cells, and also that the plasma membrane damage is caused through sequential activation of protein kinase C (PKC) and NADPH oxidase (NOX) and the resulting generation of reactive oxygen species (PKC/NOX-dependent mechanism), whereas cell death is caused through PKC/NOX-dependent and -independent mechanisms. To identify these stable substances, the CSE was prepared by passing the main-stream smoke of 10 cigarettes through a Cambridge glass fiber filter, trapping of the smoke in a vessel cooled at -80°C, and subsequent dissolution in 10ml of water. The CSE was fractionated into nine fractions using reversed-phase HPLC, and each fraction was screened for cytotoxicity in cultured cells, using propidium iodide uptake assay for cell membrane damage and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] reduction assay for cell viability. The cytotoxicity was positive in two of the nine fractions (Fr2 and Fr5). After extraction of the active fractions into dichloromethane, GC/MS analysis identified 2-cyclopenten-1-one (CPO) in Fr5 but none in Fr2. After derivatization of the active fractions with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride, GC/MS analysis identified acrolein, acetone and propionaldehyde in Fr2, and methyl vinyl ketone (MVK) in Fr5. After 4-h incubation, authentic acrolein and MVK induced concentration-dependent cytotoxicity with EC50 values of 75.9±8.2 and 47.0±8.0μM (mean±SEM; n=3), respectively, whereas acetone, propionaldehyde and CPO were without effect. However, after 24-h incubation, CPO induced concentration-dependent cytotoxicity with an EC50 value of 264.0±16.9μM (n=3). The concentrations of acrolein, MVK and CPO in the CSE were 3368±334, 2429±123 and 392.9±31.8μM (n=4), respectively, which were higher than the cytotoxic concentrations. The cytotoxicity of acrolein and MVK consisted of plasma membrane damage and decreased cell viability: the plasma membrane damage was totally prevented by treatment with an inhibitor of PKC or NOX, whereas the decreased cell viability was only partially prevented by these inhibitors. The cytotoxicity of CPO consisted only of decreased cell viability, which was totally resistant to these inhibitors. These results show that acrolein and MVK are responsible for the acute cytotoxicity of the CSE through PKC/NOX-dependent and -independent mechanisms, whereas CPO is responsible for the delayed cytotoxicity of the CSE through a PKC/NOX-independent mechanism.
Collapse
Affiliation(s)
- Yoichi Noya
- Central Institute of Isotope Science, Hokkaido University, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Kibet JK, Khachatryan L, Dellinger B. Molecular products from the thermal degradation of glutamic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7696-7704. [PMID: 23875713 DOI: 10.1021/jf401846t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The thermal behavior of glutamic acid was investigated in N2 and 4% O2 in N2 under flow reactor conditions at a constant residence time of 0.2 s, within a total pyrolysis time of 3 min at 1 atm. The identification of the main pyrolysis products has been reported. Accordingly, the principal products for pyrolysis in order of decreasing abundance were succinimide, pyrrole, acetonitrile, and 2-pyrrolidone. For oxidative pyrolysis, the main products were succinimide, propiolactone, ethanol, and hydrogen cyanide. Whereas benzene, toluene, and a few low molecular weight hydrocarbons (propene, propane, 1-butene, and 2-butene) were detected during pyrolysis, no polycyclic aromatic hydrocarbons (PAHs) were detected. Oxidative pyrolysis yielded low molecular weight hydrocarbon products in trace amounts. The mechanistic channels describing the formation of the major product succinimide have been explored. The detection of succinimide (major product) and maleimide (minor product) from the thermal decomposition of glutamic acid has been reported for the first time in this study. Toxicological implications of some reaction products (HCN, acetonitrile, and acyrolnitrile), which are believed to form during heat treatment of food, tobacco burning, and drug processing, have been discussed in relation to the thermal degradation of glutamic acid.
Collapse
Affiliation(s)
- Joshua K Kibet
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | | | | |
Collapse
|
97
|
Lee SE, Park YS. The role of antioxidant enzymes in adaptive responses to environmental toxicants in vascular disease. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-013-0013-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
98
|
Tu CY, Chen YF, Lii CK, Wang TS. Methylglyoxal induces DNA crosslinks in ECV304 cells via a reactive oxygen species-independent protein carbonylation pathway. Toxicol In Vitro 2013; 27:1211-9. [DOI: 10.1016/j.tiv.2013.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 01/20/2013] [Accepted: 02/18/2013] [Indexed: 11/30/2022]
|
99
|
Cheah NP, Pennings JLA, Vermeulen JP, van Schooten FJ, Opperhuizen A. In vitro effects of aldehydes present in tobacco smoke on gene expression in human lung alveolar epithelial cells. Toxicol In Vitro 2013; 27:1072-81. [PMID: 23416264 DOI: 10.1016/j.tiv.2013.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 11/22/2022]
Abstract
Tobacco smoke consists of thousands of harmful components. A major class of chemicals found in tobacco smoke is formed by aldehydes, in particular formaldehyde, acetaldehyde and acrolein. The present study investigates the gene expression changes in human lung alveolar epithelial cells upon exposure to formaldehyde, acrolein and acetaldehyde at sub-cytotoxic levels. We exposed A549 cells in vitro to aldehydes and non-aldehyde chemicals (nicotine, hydroquinone and 2,5-dimethylfuran) present in tobacco smoke and used microarrays to obtain a global view of the transcriptomic responses. We compared responses of the individual aldehydes with that of the non-aldehydes. We also studied the response of the aldehydes when present in a mixture at relative concentrations as present in cigarette smoke. Formaldehyde gave the strongest response; a total of 66 genes were more than 1.5-fold differentially expressed mostly involved in apoptosis and DNA damage related processes, followed by acetaldehyde (57 genes), hydroquinone (55 genes) and nicotine (8 genes). For acrolein and the mixture only one gene was upregulated involved in oxidative stress. No gene expression effect was found for exposure to 2,5-dimethylfuran. Overall, aldehyde responses are primarily indicative for genotoxicity and oxidative stress. These two toxicity mechanisms are linked to respiratory diseases such as cancer and COPD, respectively. The present findings could be important in providing further understanding of the role of aldehydes emitted from cigarette smoke in the onset of pulmonary diseases.
Collapse
Affiliation(s)
- Nuan P Cheah
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology & Metabolism, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
100
|
Takahashi Y, Horiyama S, Honda C, Suwa K, Nakamura K, Kunitomo M, Shimma S, Toyoda M, Sato H, Shizuma M, Takayama M. A chemical approach to searching for bioactive ingredients in cigarette smoke. Chem Pharm Bull (Tokyo) 2013; 61:85-9. [PMID: 23302590 DOI: 10.1248/cpb.c12-00539] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Cigarette smoke, a collection of many toxic chemicals, contributes to the pathogenesis of smoking-related diseases such as chronic obstructive pulmonary disease and cancer. Much work has been done on the chemical analysis of ingredients in cigarette smoke, but there are few reports on the active ingredients that can modify biomolecules. We used a sensitive liquid chromatography-mass spectrometry (LC/MS) and LC/MS/MS method to show that L-tyrosine (Tyr), an amino acid with a highly reactive hydroxyl group, readily reacts with cigarette smoke extract (CSE) at body temperature (37°C) to form various Tyr derivatives. Among these derivatives were N-(3-oxobutyl)-Tyr and two acetylated compounds, N-acetyl-Tyr and O-acetyl-Tyr, which were synthesized by reaction of Tyr with methyl vinyl ketone and acetic anhydride, respectively, at 37°C. The presence of methyl vinyl ketone and acetic anhydride in CSE was confirmed by gas chromatography-mass spectrometry (GC/MS). These results indicate that Tyr can easily react with active ingredients in CSE. The present analytical methods should aid the search for active ingredients in cigarette smoke.
Collapse
Affiliation(s)
- Yuta Takahashi
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 1-68 Koshien-Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|