51
|
Aranega-Bou P, Brown N, Stigling A, D’Costa W, Verlander NQ, Pottage T, Bennett A, Moore G. Laboratory Evaluation of a Quaternary Ammonium Compound-Based Antimicrobial Coating Used in Public Transport during the COVID-19 Pandemic. Appl Environ Microbiol 2023; 89:e0174422. [PMID: 36856438 PMCID: PMC10057021 DOI: 10.1128/aem.01744-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/19/2023] [Indexed: 03/02/2023] Open
Abstract
The virucidal activity of the Zoono Z71 Microbe Shield surface sanitizer and protectant, a quaternary ammonium compound (QAC)-based antimicrobial coating that was used by the United Kingdom rail industry during the COVID-19 pandemic, was evaluated, using the bacteriophage ɸ6 as a surrogate for SARS-CoV-2. Immediately after application and in the absence of interfering substances, the product effectively reduced (>3 log10) the viability of ɸ6 on some materials that are typically used in rail carriages (stainless steel, high-pressure laminate, plastic). If, after the application of the product, these surfaces remained undisturbed, the antimicrobial coating retained its efficacy for at least 28 days. However, efficacy depended on the material being coated. The product provided inconsistent results when applied to glass surfaces and was ineffective (i.e., achieved <3 log10 reduction) when applied to a train arm rest that was made of Terluran 22. Regardless of the material that was coated or the time since application, the presence of organic debris (fetal bovine serum) significantly reduced the viricidal activity of the coating. Wiping the surface with a wetted cloth after the deposition of organic debris was not sufficient to restore efficacy. We conclude that the product is likely to be of limited effectiveness in a busy, multiuser environment, such as public transport. IMPORTANCE This study evaluated the performance of a commercially available antimicrobial coating that was used by the transport industry in the United Kingdom during the COVID-19 pandemic. While the product was effective against ɸ6, the efficacy of the coating depended upon the material to which it was applied. Similarly, and regardless of the surface material, the presence of organic debris severely impaired viricidal activity, and efficacy could not be recovered through wiping (cleaning) the surface. This highlights the importance of including relevant materials and conditions when evaluating antimicrobial coatings in the laboratory. Further efforts are required to identify suitable infection prevention and control practices for the transport industry.
Collapse
Affiliation(s)
- Paz Aranega-Bou
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Natalie Brown
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Abigail Stigling
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Wilhemina D’Costa
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Neville Q. Verlander
- Statistics, Modelling and Economics Department, United Kingdom Health Security Agency, United Kingdom
| | - Thomas Pottage
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Allan Bennett
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Ginny Moore
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| |
Collapse
|
52
|
Singh P, Ali SW, Kale RD. Antimicrobial Nanomaterials as Advanced Coatings for Self-Sanitizing of Textile Clothing and Personal Protective Equipment. ACS OMEGA 2023; 8:8159-8171. [PMID: 36910928 PMCID: PMC9996805 DOI: 10.1021/acsomega.2c06343] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Controlling bioaerosols has become increasingly critical in affecting human health. Natural product treatment in the nano form is a potential method since it has lower toxicity than inorganic nanomaterials like silver nanoparticles. This research is important for the creation of a bioaerosol control system that is effective. Nanoparticles (NPs) are gradually being employed to use bacteria as a nonantibiotic substitute for treating bacterial infections. The present study looks at nanoparticles' antimicrobial properties, their method of action, their impact on drug-opposing bacteria, and the hazards connected with their operation as antimicrobial agents. The aspects that influence nanoparticle conduct in clinical settings, as well as their distinctive features and mode of action as antibacterial assistants, are thoroughly examined. Nanoparticles' action on bacterial cells is presently accepted by way of the introduction of oxidative stress induction, metal-ion release, and nonoxidative methods. Because many concurrent mechanisms of action against germs would necessitate multiple simultaneous gene modifications in the same bacterial cell for antibacterial protection to evolve, bacterial cells developing resistance to NPs is difficult. This review discusses the antimicrobial function of NPs against microbes and presents a comprehensive discussion of the bioaerosols: their origin, hazards, and their prevention. This state of the art method is dependent upon the use of personal protective gear against these bioaerosols. The benefit of the utmost significant categories of metal nanoparticles as antibacterial agents is given important consideration. The novelty of this review depends upon the antimicrobial properties of (a) silver (Ag), (b) zinc oxide (ZnO), and (c) copper oxide (CuO) nanoparticles. The value-added features of these nanoparticles are discussed, as well as their physicochemical characterization and pharmacokinetics, including the toxicological danger they pose to people. Lastly, the effective role of nanomaterials and their future in human wellness is discussed.
Collapse
Affiliation(s)
- Preeti Singh
- Fibers
& Textile Processing Technology, Institute
of Chemical Technology, Mumbai, India
- Department
of Textile and Fibre Engineering, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - S. Wazed Ali
- Department
of Textile and Fibre Engineering, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ravindra D. Kale
- Fibers
& Textile Processing Technology, Institute
of Chemical Technology, Mumbai, India
| |
Collapse
|
53
|
Park SH, Hong SH, Kim K, Lee SW, Yon DK, Jung SJ, Abdeen Z, Brahim Ahmed MLC, Serouri AA, Al‐Herz W, Subbaram K, Shaik Syed P, Ali S, ALI KOSAR, Al‐Shamsi HO, Baatarkhuu O, Nielsen HB, BERNINI‐CARRI E, Bondarenko A, Cassell A, Cham A, Chua MLK, Dadabhai S, Darre T, Davtyan H, Dragioti E, East B, Jeffrey Edwards R, Ferioli M, Georgiev T, Ghandour L, Harapan H, Hsueh P, Ikram A, Inoue S, Jacob L, Janković S, Jayarajah U, Jesenak M, Kakodkar P, Kapata N, Kebede Y, Khader Y, Kifle M, Koh D, Maleš VK, Kotfis K, Koyanagi A, Kretchy J, Lakoh S, Lee J, Lee JY, Mendonça MDLL, Ling L, Llibre‐Guerra J, Machida M, Makurumidze R, Mallah S, Memish ZA, MENDOZA IVAN, Moiseev S, Nadasdy T, Nahshon C, ÑAMENDYS‐SILVA SILVIOA, Yongsi BN, Nicolasora AD, Nugmanova Z, Oh H, Oksanen A, OWOPETU OLUWATOMI, Ozguler ZO, Perez GE, Pongpirul K, Rademaker M, Radojevic N, Roca A, Rodriguez‐Morales AJ, Viveiros Rosa SG, Roshi E, SAEED KMI, Sah R, Sakakushev B, Sallam DE, SATHIAN BRIJESH, Schober P, Simonović Z, Singhal T, Skhvitaridze N, Solmi M, Tizaoui K, TLHAKANELO JOHNTHATO, Torales J, Torres‐Roman S, Tsartsalis D, Tsolmon J, Vieira DN, Wanghi G, Wollina U, Xu R, Yang L, et alPark SH, Hong SH, Kim K, Lee SW, Yon DK, Jung SJ, Abdeen Z, Brahim Ahmed MLC, Serouri AA, Al‐Herz W, Subbaram K, Shaik Syed P, Ali S, ALI KOSAR, Al‐Shamsi HO, Baatarkhuu O, Nielsen HB, BERNINI‐CARRI E, Bondarenko A, Cassell A, Cham A, Chua MLK, Dadabhai S, Darre T, Davtyan H, Dragioti E, East B, Jeffrey Edwards R, Ferioli M, Georgiev T, Ghandour L, Harapan H, Hsueh P, Ikram A, Inoue S, Jacob L, Janković S, Jayarajah U, Jesenak M, Kakodkar P, Kapata N, Kebede Y, Khader Y, Kifle M, Koh D, Maleš VK, Kotfis K, Koyanagi A, Kretchy J, Lakoh S, Lee J, Lee JY, Mendonça MDLL, Ling L, Llibre‐Guerra J, Machida M, Makurumidze R, Mallah S, Memish ZA, MENDOZA IVAN, Moiseev S, Nadasdy T, Nahshon C, ÑAMENDYS‐SILVA SILVIOA, Yongsi BN, Nicolasora AD, Nugmanova Z, Oh H, Oksanen A, OWOPETU OLUWATOMI, Ozguler ZO, Perez GE, Pongpirul K, Rademaker M, Radojevic N, Roca A, Rodriguez‐Morales AJ, Viveiros Rosa SG, Roshi E, SAEED KMI, Sah R, Sakakushev B, Sallam DE, SATHIAN BRIJESH, Schober P, Simonović Z, Singhal T, Skhvitaridze N, Solmi M, Tizaoui K, TLHAKANELO JOHNTHATO, Torales J, Torres‐Roman S, Tsartsalis D, Tsolmon J, Vieira DN, Wanghi G, Wollina U, Xu R, Yang L, Zia K, Zildzic M, Il Shin J, Smith L. Nonpharmaceutical interventions reduce the incidence and mortality of COVID-19: A study based on the survey from the International COVID-19 Research Network (ICRN). J Med Virol 2023; 95:e28354. [PMID: 36447130 PMCID: PMC9878143 DOI: 10.1002/jmv.28354] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022]
Abstract
The recently emerged novel coronavirus, "severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)," caused a highly contagious disease called coronavirus disease 2019 (COVID-19). It has severely damaged the world's most developed countries and has turned into a major threat for low- and middle-income countries. Since its emergence in late 2019, medical interventions have been substantial, and most countries relied on public health measures collectively known as nonpharmaceutical interventions (NPIs). We aimed to centralize the accumulative knowledge of NPIs against COVID-19 for each country under one worldwide consortium. International COVID-19 Research Network collaborators developed a cross-sectional online survey to assess the implications of NPIs and sanitary supply on the incidence and mortality of COVID-19. The survey was conducted between January 1 and February 1, 2021, and participants from 92 countries/territories completed it. The association between NPIs, sanitation supplies, and incidence and mortality were examined by multivariate regression, with the log-transformed value of population as an offset value. The majority of countries/territories applied several preventive strategies, including social distancing (100.0%), quarantine (100.0%), isolation (98.9%), and school closure (97.8%). Individual-level preventive measures such as personal hygiene (100.0%) and wearing facial masks (94.6% at hospitals; 93.5% at mass transportation; 91.3% in mass gathering facilities) were also frequently applied. Quarantine at a designated place was negatively associated with incidence and mortality compared to home quarantine. Isolation at a designated place was also associated with reduced mortality compared to home isolation. Recommendations to use sanitizer for personal hygiene reduced incidence compared to the recommendation to use soap. Deprivation of masks was associated with increased incidence. Higher incidence and mortality were found in countries/territories with higher economic levels. Mask deprivation was pervasive regardless of economic level. NPIs against COVID-19 such as using sanitizer, quarantine, and isolation can decrease the incidence and mortality of COVID-19.
Collapse
Affiliation(s)
| | - Sung Hwi Hong
- Yonsei University College of MedicineSeoulRepublic of Korea
| | - Kwanghyun Kim
- Department of Preventive Medicine, Yonsei University College of MedicineSeoulKorea
- Department of Public HealthYonsei UniversitySeoulKorea
| | - Seung Won Lee
- Department of Data Science, Sejong University College of Software ConvergenceSeoulSouth Korea
- Department of Precision Medicine, Sungkyunkwan University School of MedicineSuwonRepublic of Korea
| | - Dong Keon Yon
- Medical Science Research Institute, Kyung Hee University College of MedicineSeoulSouth Korea
| | - Sun Jae Jung
- Department of Public HealthYonsei UniversitySeoulKorea
| | - Ziad Abdeen
- Department of Emergency Medicine, Augusta Victoria Hospital, Address: Al Tour, East Jerusalem
| | | | | | | | - Kannan Subbaram
- School of Medicine, The Maldives National University School of MedicineMaldives
| | - P. Shaik Syed
- School of Medicine, The Maldives National University School of MedicineMaldives
| | - Sheeza Ali
- School of Medicine, The Maldives National University School of MedicineMaldives
| | - KOSAR ALI
- University of Sulaimani college of medicine
| | - Humaid O. Al‐Shamsi
- Burjeel Cancer Institute, Burjeel Medical City, Abu DhabiUnited Arab Emirates
| | - Oidov Baatarkhuu
- Department of Infectious Diseases, Mongolian National University of Medical Sciences
| | - Henning Bay Nielsen
- Department of Anesthesia and Intensive Care, Zealand University Hospital RoskildeRoskildeDenmark
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of CopenhagenDenmark
| | | | | | | | | | | | - Sufia Dadabhai
- Johns Hopkins Bloomberg School of Public Health; BlantyreMalawi
| | - Tchin Darre
- Department of Pathology, University of LoméTogo
| | | | - Elena Dragioti
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping UniversityLinköpingSweden
| | - Barbora East
- 3rd, Department of Surgery, 1st Medical Faculty of Charles University, Motol University HospitalPrague, Czech Republic
| | | | - Martina Ferioli
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Respiratory and Critical Care UnitBolognaItaly
- Department of Clinical, Integrated and Experimental Medicine (DIMES), Alma Mater Studiorum UniversityBolognaItaly
| | | | | | - Harapan Harapan
- Medical Research UnitUniversitas Syiah KualaBanda AcehIndonesia
| | - Po‐Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University HospitalChina Medical UniversityTaichungTaiwan
| | | | - Shigeru Inoue
- Tokyo Medical University, Department of Preventive Medicine and Public Health
| | - Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, ISCIII, Dr. Antoni Pujadas, 42, Sant Boi de LlobregatBarcelona08830Spain
- Faculty of Medicine, University of Versailles Saint‐Quentin‐en‐Yvelines78180Montigny‐le‐BretonneuxFrance
| | | | - Umesh Jayarajah
- Postgraduate Institute of Medicine, University of ColomboSri Lanka
| | - Milos Jesenak
- Department of Pediatrics, Jessenius Faculty of Medicine in MartinComenius University in Bratislava, University Teaching Hospital in Martin
| | | | | | - Yohannes Kebede
- Department of Health, Behavior and Society, Jimma UniversityEthiopia
| | | | - Meron Kifle
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of OxfordOxfordUK
| | - David Koh
- Saw Swee Hock School of Public Health, National University of Singapore
| | | | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in SzczecinPoland
| | - Ai Koyanagi
- Parc Sanitari San Joan de Deu, ICREA, CIBERSAM, ISCIII
| | - James‐Paul Kretchy
- Public Health Unit, School of Medicine and Health Sciences, Central University, P. O. Box2305AccraGhana
| | - Sulaiman Lakoh
- College of Medicine and Allied Health Sciences, University of Sierra Leone
| | - Jinhee Lee
- Yonsei University Wonju College of Medicine
| | | | | | | | | | - Masaki Machida
- Tokyo Medical University, Department of Preventive Medicine and Public Health
| | - Richard Makurumidze
- University of Zimbabwe Faculty of Medicine and Health Sciences; Family Medicine, Global and Public Health Unit
| | - Saad Mallah
- Royal College of Surgeons in Ireland ‐Bahrain
| | - Ziad A Memish
- Director Research and Innovation Center, King Saud Medical City, Ministry of health
| | - IVAN MENDOZA
- Tropical Cardiology. Central University of Venezuela
| | | | | | - Chen Nahshon
- Department of Gynecologic Surgery & Oncology, Carmel Medical Center, HaifaIsrael
| | - SILVIO A. ÑAMENDYS‐SILVA
- Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran; Instituto Nacional de CancerologiaMexico CityMexico
| | | | - Amalea Dulcene Nicolasora
- Molecular Biology Laboratory, Research Institute for Tropical Medicine, Alabang, Muntinlupa CityPhilippines1781
| | | | - Hans Oh
- University of Southern California
| | - Atte Oksanen
- Faculty of social sciencesTampere UniversityFinland
| | - OLUWATOMI OWOPETU
- Department of Community Medicine, University College HospitalIbadanNigeria
| | | | | | | | - Marius Rademaker
- Marius Rademaker Waikato Clinical Campus, University of Auckland Medical SchoolHamiltonNew Zealand
| | | | - Anna Roca
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, The Gambia
| | - Alfonso J. Rodriguez‐Morales
- Grupo de Investigación BiomedicinaFaculty of Medicine, Fundación Universitaria Autónoma de las AmericasPereiraColombia
- Universidad Cientifica del SurLimaPeru
| | | | | | | | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine
| | - Boris Sakakushev
- RIMU/Research Institute of Medical University Plovdiv
- Chair of Propedeutics of Surgical Diseases
- University Hospital St George Plovdiv
| | - Dina Ebrahem Sallam
- Pediatrics & Pediatric Nephrology Department, Faculty of MedicineAin Shams UniversityCairoEgypt
| | - BRIJESH SATHIAN
- Geriatrics and long term care department, Rumailah HospitalDohaQatar
| | - Patrick Schober
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of AnesthesiologyAmsterdamThe Netherlands
| | | | - Tanu Singhal
- Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute
| | | | - Marco Solmi
- Department of Psychiatry, University of OttawaOntarioCanada
- Department of Mental HealthThe Ottawa HospitalOntarioCanada
- Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa Ottawa Ontario
- Department of Child and Adolescent Psychiatry, Charité UniversitätsmedizinBerlinGermany
| | - kalthoum Tizaoui
- Laboratory of Microorganisms and Actives Biomolecules, Faculty of Sciences of TunisUniversity Tunis El Manar
| | | | - Julio Torales
- National University of Asunción, School of Medical SciencesParaguay
| | - Smith Torres‐Roman
- South American Center for Education and Research in Public Health, Universidad Norbert WienerLima15108Peru
| | - Dimitrios Tsartsalis
- Department of Emergency Medicine, Hippokration Hospital, Address: Leof Vasilissis Sofias 8011527AthensGreece
| | | | | | - Guy Wanghi
- University of Kinshasa Faculty of Medicine
| | - Uwe Wollina
- Department of Dermatology and Allergology, Städtisches Klinikum Dresden – Academic Teaching HospitalDresdenGermany
| | - Ren‐He Xu
- Faculty of Health Sciences, University of Macau
| | - Lin Yang
- Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services; School of Medicine, University of CalgaryCalgaryCanada
| | - Kashif Zia
- School of Health and Wellbeing, University of Glasgow, U.K
| | | | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Lee Smith
- Centre for Health Performance and WellbeingAnglia Ruskin University, Cambridge, UK, CB1 1PT
| |
Collapse
|
54
|
Park SH, Hong SH, Kim K, Lee SW, Yon DK, Jung SJ, Abdeen Z, Ghayda RA, Ahmed MLCB, Serouri AA, Al‐Herz W, Al‐Shamsi HO, Ali S, Ali K, Baatarkhuu O, Nielsen HB, Bernini‐Carri E, Bondarenko A, Cassell A, Cham A, Chua MLK, Dadabhai S, Darre T, Davtyan H, Dragioti E, East B, Edwards RJ, Ferioli M, Georgiev T, Ghandour LA, Harapan H, Hsueh P, Mallah SI, Ikram A, Inoue S, Jacob L, Janković SM, Jayarajah U, Jesenak M, Kakodkar P, Kapata N, Kebede Y, Khader Y, Kifle M, Koh D, Maleš VK, Kotfis K, Koyanagi A, Kretchy J, Lakoh S, Lee J, Lee JY, Mendonça MDLL, Ling L, Llibre‐Guerra J, Machida M, Makurumidze R, Memish ZA, Mendoza I, Moiseev S, Nadasdy T, Nahshon C, Ñamendys‐Silva SA, Yongsi BN, Nicolasora AD, Nugmanova Z, Oh H, Oksanen A, Owopetu O, Ozguler ZO, Parperis K, Perez GE, Pongpirul K, Rademaker M, Radojevic N, Roca A, Rodriguez‐Morales AJ, Roshi E, Saeed KMI, Sah R, Sakakushev B, Sallam DE, Sathian B, Schober P, Ali PSS, Simonović Z, Singhal T, Skhvitaridze N, Solmi M, Subbaram K, Tizaoui K, Tlhakanelo JT, Torales J, Torres‐Roman JS, Tsartsalis D, Tsolmon J, Vieira DN, Rosa SGV, Wanghi G, Wollina U, et alPark SH, Hong SH, Kim K, Lee SW, Yon DK, Jung SJ, Abdeen Z, Ghayda RA, Ahmed MLCB, Serouri AA, Al‐Herz W, Al‐Shamsi HO, Ali S, Ali K, Baatarkhuu O, Nielsen HB, Bernini‐Carri E, Bondarenko A, Cassell A, Cham A, Chua MLK, Dadabhai S, Darre T, Davtyan H, Dragioti E, East B, Edwards RJ, Ferioli M, Georgiev T, Ghandour LA, Harapan H, Hsueh P, Mallah SI, Ikram A, Inoue S, Jacob L, Janković SM, Jayarajah U, Jesenak M, Kakodkar P, Kapata N, Kebede Y, Khader Y, Kifle M, Koh D, Maleš VK, Kotfis K, Koyanagi A, Kretchy J, Lakoh S, Lee J, Lee JY, Mendonça MDLL, Ling L, Llibre‐Guerra J, Machida M, Makurumidze R, Memish ZA, Mendoza I, Moiseev S, Nadasdy T, Nahshon C, Ñamendys‐Silva SA, Yongsi BN, Nicolasora AD, Nugmanova Z, Oh H, Oksanen A, Owopetu O, Ozguler ZO, Parperis K, Perez GE, Pongpirul K, Rademaker M, Radojevic N, Roca A, Rodriguez‐Morales AJ, Roshi E, Saeed KMI, Sah R, Sakakushev B, Sallam DE, Sathian B, Schober P, Ali PSS, Simonović Z, Singhal T, Skhvitaridze N, Solmi M, Subbaram K, Tizaoui K, Tlhakanelo JT, Torales J, Torres‐Roman JS, Tsartsalis D, Tsolmon J, Vieira DN, Rosa SGV, Wanghi G, Wollina U, Xu R, Yang L, Zia K, Zildzic M, Il Shin J, Smith L. Nonpharmaceutical interventions reduce the incidence and mortality of COVID‐19: A study based on the survey from the International COVID‐19 Research Network (ICRN). J Med Virol 2023; 95. [DOI: https:/doi.org/10.1002/jmv.28354] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/02/2022] [Indexed: 09/03/2023]
Abstract
AbstractThe recently emerged novel coronavirus, “severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2),” caused a highly contagious disease called coronavirus disease 2019 (COVID‐19). It has severely damaged the world's most developed countries and has turned into a major threat for low‐ and middle‐income countries. Since its emergence in late 2019, medical interventions have been substantial, and most countries relied on public health measures collectively known as nonpharmaceutical interventions (NPIs). We aimed to centralize the accumulative knowledge of NPIs against COVID‐19 for each country under one worldwide consortium. International COVID‐19 Research Network collaborators developed a cross‐sectional online survey to assess the implications of NPIs and sanitary supply on the incidence and mortality of COVID‐19. The survey was conducted between January 1 and February 1, 2021, and participants from 92 countries/territories completed it. The association between NPIs, sanitation supplies, and incidence and mortality were examined by multivariate regression, with the log‐transformed value of population as an offset value. The majority of countries/territories applied several preventive strategies, including social distancing (100.0%), quarantine (100.0%), isolation (98.9%), and school closure (97.8%). Individual‐level preventive measures such as personal hygiene (100.0%) and wearing facial masks (94.6% at hospitals; 93.5% at mass transportation; 91.3% in mass gathering facilities) were also frequently applied. Quarantine at a designated place was negatively associated with incidence and mortality compared to home quarantine. Isolation at a designated place was also associated with reduced mortality compared to home isolation. Recommendations to use sanitizer for personal hygiene reduced incidence compared to the recommendation to use soap. Deprivation of masks was associated with increased incidence. Higher incidence and mortality were found in countries/territories with higher economic levels. Mask deprivation was pervasive regardless of economic level. NPIs against COVID‐19 such as using sanitizer, quarantine, and isolation can decrease the incidence and mortality of COVID‐19.
Collapse
Affiliation(s)
- Seung Hyun Park
- Yonsei University College of Medicine Seoul Republic of Korea
| | - Sung Hwi Hong
- Yonsei University College of Medicine Seoul Republic of Korea
| | - Kwanghyun Kim
- Department of Preventive Medicine Yonsei University College of Medicine Seoul Republic of Korea
- Department of Public Health Yonsei University Seoul Republic of Korea
| | - Seung Won Lee
- Department of Precision Medicine Sungkyunkwan University School of Medicine Suwon Republic of Korea
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine Seoul Republic of Korea
| | - Sun Jae Jung
- Department of Preventive Medicine Yonsei University College of Medicine Seoul Republic of Korea
- Department of Public Health Yonsei University Seoul Republic of Korea
| | - Ziad Abdeen
- Department of Community Health, Faculty of Medicine Al‐Quds University East Jerusalem Palestine
| | - Ramy Abou Ghayda
- Urology Institute, University Hospitals Case Western Reserve University, Cleveland Ohio United States of America
| | | | | | | | - Humaid O. Al‐Shamsi
- Burjeel Cancer Institute, Burjeel Medical City Abu Dhabi United Arab Emirates
| | - Sheeza Ali
- School of Medicine, The Maldives National University Male Maldives
| | - Kosar Ali
- University of Sulaimani College of Medicine Sulaymaniyah Iraq
| | - Oidov Baatarkhuu
- Department of Infectious Diseases Mongolian National University of Medical Sciences Ulaanbaatar Mongolia
| | - Henning Bay Nielsen
- Department of Anesthesia and Intensive Care Zealand University Hospital Roskilde Roskilde Denmark
- Department of Nutrition Exercise and Sports, University of Copenhagen Copenhagen Denmark
| | - Enrico Bernini‐Carri
- European Centre for Disaster Medicine, Council of Europe (CEMEC) Strasbourg France
| | - Anastasiia Bondarenko
- Department of Pediatrics, Immunology, Infectious and Rare Diseases International European University Kyiv Ukraine
| | - Ayun Cassell
- John F. Kennedy Medical Center, Edison New Jersey United States of America
| | - Akway Cham
- School of Medicine, University of Juba Juba South Sudan
| | - Melvin L. K. Chua
- Department of Head and Neck and Thoracic Cancers, Division of Radiation Oncology National Cancer Centre Singapore Singapore Singapore
- Oncology Academic Programme, Duke‐NUS Medical School Singapore Singapore
- Division of Medical Sciences National Cancer Centre Singapore Singapore Singapore
| | - Sufia Dadabhai
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore Maryland United States of America
| | - Tchin Darre
- Department of Pathology University of Lomé Lome Togo
| | - Hayk Davtyan
- Tuberculosis Research and Prevention Center Yerevan Armenia
| | - Elena Dragioti
- Department of Health, Medicine and Caring Sciences Pain and Rehabilitation Centre, Linköping University Linköping Sweden
| | - Barbora East
- 3rd Department of Surgery 1st Medical Faculty of Charles University, Motol University Hospital Prague Czech Republic
| | | | - Martina Ferioli
- Respiratory and Critical Care Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna Bologna Italy
| | - Tsvetoslav Georgiev
- First Department of Internal Medicine Medical University—Varna Varna Bulgaria
| | | | - Harapan Harapan
- Department of Microbiology Universitas Syiah Kuala Banda Aceh Indonesia
| | - Po‐Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine China Medical University Hospital China Medical University Taichung Taiwan
| | - Saad I. Mallah
- Royal College of Surgeons in Ireland ‐ Bahrain Al Sayh Bahrain
| | - Aamer Ikram
- National Institute of Health, Islamabad Pakistan
| | - Shigeru Inoue
- Department of Preventive Medicine and Public Health Tokyo Medical University Tokyo Japan
| | - Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, ISCIII, Dr. Antoni Pujadas Barcelona Spain
- Faculty of Medicine University of Versailles Saint‐Quentin‐en‐Yvelines, Montigny‐le‐Bretonneux France
| | | | - Umesh Jayarajah
- Postgraduate Institute of Medicine, University of Colombo Colombo Sri Lanka
| | - Milos Jesenak
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin University Teaching Hospital in Martin, Comenius University in Bratislava Bratislava Slovakia
| | | | - Nathan Kapata
- Zambia National Public Health Institute Lusaka Zambia
| | - Yohannes Kebede
- Department of Health, Behavior and Society Jimma University Jimma Ethiopia
| | - Yousef Khader
- Department of Public Health Jordan University of Science and Technology Irbid Jordan
| | - Meron Kifle
- Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, Nuffield University of Oxford Oxford United Kingdom
| | - David Koh
- Saw Swee Hock School of Public Health National University of Singapore, Singapore Singapore
| | - Višnja Kokić Maleš
- Clinical Hospital Centre Split, University Department of Health Studies University of Split Croatia
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications Pomeranian Medical University in Szczecin Szczecin Poland
| | - Ai Koyanagi
- Parc Sanitari Sant Joan de Deu, ICREA, CIBERSAM, ISCIII Barcelona Spain
| | - James‐Paul Kretchy
- Public Health Unit, School of Medicine and Health Sciences Central University Accra Ghana
| | - Sulaiman Lakoh
- College of Medicine and Allied Health Sciences University of Sierra Leone Freetown Sierra Leone
| | - Jinhee Lee
- Department of Psychiatry Yonsei University Wonju College of Medicine, Wonju‐si Gangwon‐do Republic of Korea
| | - Jun Young Lee
- Department of Nephrology Yonsei University Wonju College of Medicine, Wonju‐si Gangwon‐do Republic of Korea
| | | | - Lowell Ling
- The Chinese University of Hong Kong, Hong Kong SAR China
| | | | - Masaki Machida
- Department of Preventive Medicine and Public Health Tokyo Medical University Tokyo Japan
| | - Richard Makurumidze
- Family Medicine, Global and Public Health Unit University of Zimbabwe Faculty of Medicine and Health Sciences Harare Zimbabwe
| | - Ziad A. Memish
- Director Research and Innovation Center, King Saud Medical City, Ministry of Health & College of Medicine Alfaisal University Riyadh Saudi Arabia
| | - Ivan Mendoza
- Tropical Cardiology Central University of Venezuela, Caracas Venezuela
| | - Sergey Moiseev
- Sechenov First Moscow State Medical University Moscow Russia
| | | | - Chen Nahshon
- Department of Gynecologic Surgery & Oncology Carmel Medical Center Haifa Israel
| | - Silvio A. Ñamendys‐Silva
- Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Instituto Nacional de Cancerologia Mexico City Mexico
| | | | | | | | - Hans Oh
- University of Southern California, Los Angeles California United States of America
| | - Atte Oksanen
- Faculty of Social Sciences Tampere University Tampere Finland
| | - Oluwatomi Owopetu
- Department of Community Medicine University College Hospital Ibadan Nigeria
| | - Zeynep Ozge Ozguler
- General Directorate of Public Health Ministry of Health of Turkey Adnan Saygun St, Çankaya Ankara Turkey
| | | | | | - Krit Pongpirul
- School of Global Health and Department of Preventive and Social Medicine, Faculty of Medicine Chulalongkorn University Bangkok Thailand
| | - Marius Rademaker
- Clinical Trials New Zealand, Waikato Hospital Campus Hamilton New Zealand
| | | | - Anna Roca
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara Gambia
| | - Alfonso J. Rodriguez‐Morales
- Grupo de Investigación Biomedicina Faculty of Medicine, Fundación Universitaria Autónoma de las Americas ‐ Institución Universitaria Visión de las Américas Pereira Colombia
- Master of Clinical Epidemiology and Biostatistics, Universidad Cientifica del Sur Lima Peru
- Gilbert and Rose‐Marie Chagoury School of Medicine, Lebanese American University Beirut Lebanon
| | - Enver Roshi
- Department of Public Health, Faculty of Medicine University of Medicine of Tirana Albania
| | | | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine Kathmandu Nepal
| | - Boris Sakakushev
- RIMU/Research Institute of Medical University Plovdiv Bulgaria
- Chair of Propedeutics of Surgical Diseases
- University Hospital St. George, Plovdiv, Bulgaria
| | - Dina E. Sallam
- Pediatrics and Pediatric Nephrology Department Faculty of Medicine Ain Shams University Cairo Egypt
| | - Brijesh Sathian
- Geriatrics and Long Term Care Department Rumailah Hospital Doha Qatar
| | - Patrick Schober
- Department of Anesthesiology Amsterdam UMC location Vrije Universiteit Amsterdam Amsterdam Netherlands
| | | | | | - Tanu Singhal
- Kokilaben Dhirubhai Ambani Hospital and Research Institute Mumbai India
| | | | - Marco Solmi
- Department of Psychiatry University of Ottawa Ontario Canada
- Department of Mental Health Ontario Canada
- Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa, Ottawa Ontario Canada
- Department of Child and Adolescent Psychiatry Charité Universitätsmedizin Berlin Germany
| | - Kannan Subbaram
- School of Medicine, The Maldives National University Male Maldives
| | - Kalthoum Tizaoui
- Laboratory of Microorganisms and Actives Biomolecules, Faculty of Sciences of Tunis University Tunis El Manar Tunis Tunisia
| | - John Thato Tlhakanelo
- Department of Family Medicine and Public Health University of Botswana, Faculty of Medicine Gaborone Botswana
| | - Julio Torales
- National University of Asunción, School of Medical Sciences San Lorenzo Paraguay
| | | | | | - Jadamba Tsolmon
- Mongolian National University of Medical Sciences (MNUMS) Ulaanbaatar Mongolia
| | | | | | - Guy Wanghi
- Department of Basic Sciences, University of Kinshasa Faculty of Medicine, Laboratory of Physiology Kinshasa, Democratic Republic of the Congo
| | - Uwe Wollina
- Department of Dermatology and Allergology Städtisches Klinikum Dresden – Academic Teaching Hospital Dresden Germany
| | - Ren‐He Xu
- Faculty of Health Sciences University of Macau Macau China
| | - Lin Yang
- Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services School of Medicine, University of Calgary Calgary Canada
| | - Kashif Zia
- School of Health and Wellbeing, University of Glasgow Glasgow United Kingdom
| | - Muharem Zildzic
- Academy of Medical Science of Bosnia and Herzegovina Sarajevo Bosnia and Herzegovina
| | - Jae Il Shin
- Department of Pediatrics Yonsei University College of Medicine Seoul Republic of Korea
| | - Lee Smith
- Centre for Health Performance and Wellbeing Anglia Ruskin University Cambridge United Kingdom
| |
Collapse
|
55
|
Bhilegaonkar KN, Kolhe RP. Transfer of viruses implicated in human disease through food. PRESENT KNOWLEDGE IN FOOD SAFETY 2023:786-811. [DOI: 10.1016/b978-0-12-819470-6.00060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
56
|
Sahihi M, Faraudo J. Computer Simulation of the Interaction between SARS-CoV-2 Spike Protein and the Surface of Coinage Metals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14673-14685. [PMID: 36418228 PMCID: PMC9730903 DOI: 10.1021/acs.langmuir.2c02120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
A prominent feature of the SARS-CoV-2 virus is the presence of a large glycoprotein spike protruding from the virus envelope. The spike determines the interaction of the virus with the environment and the host. Here, we used an all-atom molecular dynamics simulation method to investigate the interaction of up- and down-conformations of the S1 subunit of the SARS-CoV-2 spike with the (100) surface of Au, Ag, and Cu. Our results revealed that the spike protein is adsorbed onto the surface of these metals, with Cu being the metal with the highest interaction with the spike. In our simulations, we considered the spike protein in both its up-conformation Sup (one receptor binding domain exposed) and down-conformation Sdown (no exposed receptor binding domain). We found that the affinity of the metals for the up-conformation was higher than their affinity for the down-conformation. The structural changes in the spike in the up-conformation were also larger than the changes in the down-conformation. Comparing the present results for metals with those obtained in our previous MD simulations of Sup with other materials (cellulose, graphite, and human skin models), we see that Au induces the highest structural change in Sup, larger than those obtained in our previous studies.
Collapse
|
57
|
Roh EJ, Shim JY, Chung EH. Epidemiology and surveillance implications of community-acquired pneumonia in children. Clin Exp Pediatr 2022; 65:563-573. [PMID: 36265520 PMCID: PMC9742763 DOI: 10.3345/cep.2022.00374] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/26/2022] [Indexed: 11/05/2022] Open
Abstract
Community-acquired pneumonia (CAP) is the single largest infectious cause of hospitalization and death in children worldwide. With improved immunizations, the incidence of bacterial pneumonia and the number of colonized bacteria have decreased. However, respiratory viruses are still an important cause of CAP, especially as new infectious agents such severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerge. The SARS-CoV-2 virus emerged in 2019 and caused the current coronavirus disease 2019 pandemic. Therefore, it is necessary to elucidate the epidemiology and causative pathogens of CAP. Recently, the Pneumonia and Respiratory Disease Study Group, affiliated with the Korean Academy of Pediatric Allergy and Respiratory Disease, investigated the causative pathogens of respiratory infections in children hospitalized with CAP, the serotype of Streptococcus pneumoniae, and the prevalence of Mycoplasma pneumoniae with gene mutations. Antibiotic resistance and serotype test results can determine the use of empirical antibiotics. Moreover, it is possible to help develop future vaccines by comparing bacterial culture results with vaccine serotype and identifying the changes and prevalence of each serotype. Therefore, we will perform continuous national surveillance and monitor the epidemiology of respiratory pathogens in Korea and worldwide. The surveillance of these respiratory infections can play a role in monitoring the emergence of new infectious diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Eui Jeong Roh
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, Korea
| | - Jung Yeon Shim
- Department of Pediatrics, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Seoul, Korea
| | - Eun Hee Chung
- Department of Pediatrics, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
58
|
Petrillo F, Petrillo A, Sasso FP, Schettino A, Maione A, Galdiero M. Viral Infection and Antiviral Treatments in Ocular Pathologies. Microorganisms 2022; 10:2224. [PMID: 36363815 PMCID: PMC9694090 DOI: 10.3390/microorganisms10112224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 08/27/2023] Open
Abstract
Ocular viral infections are common and widespread globally. These infectious diseases are a major cause of acute red eyes and vision loss. The eye and its nearby tissues can be infected by several viral agents, causing infections with a short course and limited ocular implications or a long clinical progression and serious consequences for the function and structure of the ocular region. Several surveillance studies underline the increased emergence of drug resistance among pathogenic viral strains, limiting treatment options for these infections. Currently, in the event of resistant infections, topical or systemic corticosteroids are useful in the management of associated immune reactions in the eye, which contribute to ocular dysfunction. Many cases of viral eye infections are misdiagnosed as being of bacterial origin. In these cases, therapy begins late and is not targeted at the actual cause of the infection, often leading to severe ocular compromises, such as corneal infiltrates, conjunctival scarring, and reduced visual acuity. The present study aims at a better understanding of the viral pathogens that cause eye infections, along with the treatment options available.
Collapse
Affiliation(s)
- Francesco Petrillo
- Azienda Ospedaliera Universitaria-Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | | | | | - Antonietta Schettino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Angela Maione
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
59
|
Boarino A, Wang H, Olgiati F, Artusio F, Özkan M, Bertella S, Razza N, Cagno V, Luterbacher JS, Klok HA, Stellacci F. Lignin: A Sustainable Antiviral Coating Material. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:14001-14010. [PMID: 36312454 PMCID: PMC9597781 DOI: 10.1021/acssuschemeng.2c04284] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/30/2022] [Indexed: 05/15/2023]
Abstract
Transmission of viruses through contact with contaminated surfaces is an important pathway for the spread of infections. Antiviral surface coatings are useful to minimize such risks. Current state-of-the-art approaches toward antiviral surface coatings either involve metal-based materials or complex synthetic polymers. These approaches, however, even if successful, will have to face great challenges when it comes to large-scale applications and their environmental sustainability. Here, an antiviral surface coating was prepared by spin-coating lignin, a natural biomass residue of the paper production industry. We show effective inactivation of herpes simplex virus type 2 (>99% after 30 min) on a surface coating that is low-cost and environmentally sustainable. The antiviral mechanism of the lignin surface was investigated and is attributed to reactive oxygen species generated upon oxidation of lignin phenols. This mechanism does not consume the surface coating (as opposed to the release of a specific antiviral agent) and does not require regeneration. The coating is stable in ambient conditions, as demonstrated in a 6 month aging study that did not reveal any decrease in antiviral activity. This research suggests that natural compounds may be used for the development of affordable and sustainable antiviral coatings.
Collapse
Affiliation(s)
- Alice Boarino
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Heyun Wang
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Francesca Olgiati
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Fiora Artusio
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Melis Özkan
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Stefania Bertella
- Laboratory
of Sustainable and Catalytic Processing, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Nicolò Razza
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Valeria Cagno
- Institute
of Microbiology, Lausanne University Hospital,
University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Jeremy S. Luterbacher
- Laboratory
of Sustainable and Catalytic Processing, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Francesco Stellacci
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
- Institute
of Materials, Department of Bioengineering and Global Health Institute, École Polytechnique Fédérale
de Lausanne (EPFL), Station
12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
60
|
Jones LM, Super EH, Batt LJ, Gasbarri M, Coppola F, Bhebhe LM, Cheesman BT, Howe AM, Král P, Coulston R, Jones ST. Broad-Spectrum Extracellular Antiviral Properties of Cucurbit[ n]urils. ACS Infect Dis 2022; 8:2084-2095. [PMID: 36062478 PMCID: PMC9578052 DOI: 10.1021/acsinfecdis.2c00186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Viruses are microscopic pathogens capable of causing disease and are responsible for a range of human mortalities and morbidities worldwide. They can be rendered harmless or destroyed with a range of antiviral chemical compounds. Cucurbit[n]urils (CB[n]s) are a family of macrocycle chemical compounds existing as a range of homologues; due to their structure, they can bind to biological materials, acting as supramolecular "hosts" to "guests", such as amino acids. Due to the increasing need for a nontoxic antiviral compound, we investigated whether cucurbit[n]urils could act in an antiviral manner. We have found that certain cucurbit[n]uril homologues do indeed have an antiviral effect against a range of viruses, including herpes simplex virus 2 (HSV-2), respiratory syncytial virus (RSV) and SARS-CoV-2. In particular, we demonstrate that CB[7] is the active homologue of CB[n], having an antiviral effect against enveloped and nonenveloped species. High levels of efficacy were observed with 5 min contact times across different viruses. We also demonstrate that CB[7] acts with an extracellular virucidal mode of action via host-guest supramolecular interactions between viral surface proteins and the CB[n] cavity, rather than via cell internalization or a virustatic mechanism. This finding demonstrates that CB[7] acts as a supramolecular virucidal antiviral (a mechanism distinct from other current extracellular antivirals), demonstrating the potential of supramolecular interactions for future antiviral disinfectants.
Collapse
Affiliation(s)
- Luke M. Jones
- Department
of Materials and The Henry Royce Institute, The University of Manchester, Manchester M19 3PL, United
Kingdom
| | - Elana H. Super
- Department
of Materials and The Henry Royce Institute, The University of Manchester, Manchester M19 3PL, United
Kingdom
| | - Lauren J. Batt
- Department
of Materials and The Henry Royce Institute, The University of Manchester, Manchester M19 3PL, United
Kingdom
| | - Matteo Gasbarri
- Institute
of Materials, Interfaculty Bioengineering
Institute, MXG 030 Lausanne, Switzerland
| | - Francesco Coppola
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
| | - Lorraine M. Bhebhe
- Department
of Materials and The Henry Royce Institute, The University of Manchester, Manchester M19 3PL, United
Kingdom
| | - Benjamin T. Cheesman
- Aqdot
Limited, Iconix Park,
London Road, Pampisford, Cambridge CB22 3EG, United Kingdom
| | - Andrew M. Howe
- Aqdot
Limited, Iconix Park,
London Road, Pampisford, Cambridge CB22 3EG, United Kingdom
| | - Petr Král
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States,Department
of Physics and Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Roger Coulston
- Aqdot
Limited, Iconix Park,
London Road, Pampisford, Cambridge CB22 3EG, United Kingdom
| | - Samuel T. Jones
- Department
of Materials and The Henry Royce Institute, The University of Manchester, Manchester M19 3PL, United
Kingdom,
| |
Collapse
|
61
|
Silva-Trujillo L, Quintero-Rueda E, Stashenko EE, Conde-Ocazionez S, Rondón-Villarreal P, Ocazionez RE. Essential Oils from Colombian Plants: Antiviral Potential against Dengue Virus Based on Chemical Composition, In Vitro and In Silico Analyses. Molecules 2022; 27:6844. [PMID: 36296437 PMCID: PMC9607004 DOI: 10.3390/molecules27206844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/26/2022] Open
Abstract
Currently, there are no therapies to prevent severe dengue disease. Essential oils (EOs) can serve as primary sources for research and the discovery of phytomedicines for alternative therapy. Fourteen EOs samples were obtained by distillation from six plants used in Colombian folk medicine. GC/MS analysis identified 125 terpenes. Cytopathic effect (CPE) reduction assays revealed differences in antiviral activity. EOs of Lippia alba, citral chemotype and carvone-rich fraction; Lippia origanoides, phellandrene chemotype; and Turnera diffusa, exhibited strong antiviral activity (IC50: 29 to 82 µg/mL; SI: 5.5 to 14.3). EOs of Piper aduncum, Ocimum basilicum, and L. origanoides, carvacrol, and thymol chemotypes, exhibited weak antiviral activity (32 to 53% DENV-CPE reduction at 100 µg/mL; SI > 5.0). Cluster and one-way ANOVA analyses suggest that the strong antiviral activity of EOs could be attributed to increased amounts of non-phenolic oxygenated monoterpenes and sesquiterpene hydrocarbons. Docking analyses (AutoDock Vina) predicted binding affinity between the DENV-2 E protein and terpenes: twenty sesquiterpene hydrocarbons (−8.73 to −6.91 kcal/mol), eight oxygenated monoterpenes (−7.52 to −6.98 kcal/mol), and seven monoterpene hydrocarbons (−7.60 to −6.99 kcal/mol). This study reports for the first time differences in the antiviral activity of EOs against DENV, corresponding to their composition of monoterpenes and sesquiterpenes.
Collapse
Affiliation(s)
- Lina Silva-Trujillo
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Santander, Colombia
| | - Elizabeth Quintero-Rueda
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Santander, Colombia
| | - Elena E. Stashenko
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Santander, Colombia
| | - Sergio Conde-Ocazionez
- Instituto de Investigación Masira, Facultad de Ciencias de la Salud, Universidad de Santander, Bucaramanga 680003, Santander, Colombia
| | - Paola Rondón-Villarreal
- Instituto de Investigación Masira, Facultad de Ciencias de la Salud, Universidad de Santander, Bucaramanga 680003, Santander, Colombia
| | - Raquel E. Ocazionez
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Santander, Colombia
| |
Collapse
|
62
|
Ong Q, Ronnie Teo J, Dela Cruz J, Wee E, Wee W, Han W. Irradiation of UVC LED at 277 nm inactivates coronaviruses in association to photodegradation of spike protein. Heliyon 2022; 8:e11132. [PMID: 36276725 PMCID: PMC9575548 DOI: 10.1016/j.heliyon.2022.e11132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/15/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
To interrupt SARS-CoV-2 transmission chains, Ultraviolet-C (UVC) irradiation has emerged as a potential disinfection tool to aid in blocking the spread of coronaviruses. While conventional 254-nm UVC mercury lamps have been used for disinfection purposes, other UVC wavelengths have emerged as attractive alternatives but a direct comparison of these tools is lacking with the inherent mechanistic properties unclear. Our results using human coronaviruses, hCoV-229E and hCoV-OC43, have indicated that 277-nm UVC LED is most effective in viral inactivation, followed by 222-nm far UVC and 254-nm UVC mercury lamp. While UVC mercury lamp is more effective in degrading viral genomic content compared to 277-nm UVC LED, the latter results in a pronounced photo-degradation of spike proteins which potentially contributed to the higher efficacy of coronavirus inactivation. Hence, inactivation of coronaviruses by 277-nm UVC LED irradiation constitutes a more promising method for disinfection.
Collapse
Affiliation(s)
- Qunxiang Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 11 Biopolis Way, #02-02, Helios, 138667, Singapore
| | - J.W. Ronnie Teo
- Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, #08-04, Innovis, 138634, Singapore
| | - Joshua Dela Cruz
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 11 Biopolis Way, #02-02, Helios, 138667, Singapore
| | - Elijah Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 11 Biopolis Way, #02-02, Helios, 138667, Singapore
| | - Winson Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 11 Biopolis Way, #02-02, Helios, 138667, Singapore
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 11 Biopolis Way, #02-02, Helios, 138667, Singapore
| |
Collapse
|
63
|
Del Álamo C, Vázquez-Calvo Á, Alcamí A, Sánchez-García-Casarrubios J, Pérez-Díaz JL. Assessment of Surface Disinfection Effectiveness of Decontamination System COUNTERFOG® SDR-F05A+ Against Bacteriophage ɸ29. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:304-313. [PMID: 35851946 PMCID: PMC9294796 DOI: 10.1007/s12560-022-09526-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/24/2022] [Indexed: 05/14/2023]
Abstract
The experience of COVID19 pandemic has demonstrated the real concern of biological agents dispersed in the air and surfaces environments. Therefore, the need of a fast and large-scale disinfection method has arisen for prevention of contagion. COUNTERFOG® is an innovative technology developed for large-scale decontamination of air and surfaces. The objective of this study is to assess experimentally the effectiveness of COUNTERFOG® in disinfecting viral-contaminated surfaces. We also aim to measure the necessary time to disinfect said surfaces. Stainless steel surfaces were contaminated with bacteriophage φ29 and disinfected using COUNTERFOG® SDR-F05A+, which uses a sodium hypochlorite solution at different concentrations and for different exposure times. A log reduction over 6 logs of virus titer is obtained in 1 min with 1.2% sodium hypochlorite when the application is direct; while at a radial distance of 5 cm from the point of application the disinfection reaches a reduction of 5.5 logs in 8 min. In the same way, a higher dilution of the sodium hypochlorite concentration (0.7% NaOCl) requires more exposure time (16 min) to obtain the same log reduction (> 6 logs). COUNTERFOG® creates, in a short time and at a distance of 2 m from the point of application, a thin layer of disinfectant that covers the surfaces. The selection of the concentration and exposure time is critical for the efficacy of disinfection. These tests demonstrate that a concentration between 0.7- 1.2% sodium hypochlorite is enough for a fast and efficient ɸ29 phage inactivation. The fact that ɸ29 phage is more resistant to disinfection than SARS-CoV-2 sustains this disinfection procedure.
Collapse
Affiliation(s)
- Cristina Del Álamo
- Escuela Politécnica Superior UAH, Universidad de Alcalá, Campus Universitario, Ctra. Madrid-Barcelona km 33,600, 28805, Alcalá de Henares, Spain.
| | - Ángela Vázquez-Calvo
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - José Luis Pérez-Díaz
- Escuela Politécnica Superior UAH, Universidad de Alcalá, Campus Universitario, Ctra. Madrid-Barcelona km 33,600, 28805, Alcalá de Henares, Spain
| |
Collapse
|
64
|
Cantú VJ, Sanders K, Belda-Ferre P, Salido RA, Tsai R, Austin B, Jordan W, Asudani M, Walster A, Magallanes CG, Valentine H, Manjoonian A, Wijaya C, Omaleki V, Aigner S, Baer NA, Betty M, Castro-Martínez A, Cheung W, De Hoff P, Eisner E, Hakim A, Lastrella AL, Lawrence ES, Ngo TT, Ostrander T, Plascencia A, Sathe S, Smoot EW, Carlin AF, Yeo GW, Laurent LC, Manlutac AL, Fielding-Miller R, Knight R. Sentinel Cards Provide Practical SARS-CoV-2 Monitoring in School Settings. mSystems 2022; 7:e0010922. [PMID: 35703436 PMCID: PMC9426498 DOI: 10.1128/msystems.00109-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022] Open
Abstract
A promising approach to help students safely return to in person learning is through the application of sentinel cards for accurate high resolution environmental monitoring of SARS-CoV-2 traces indoors. Because SARS-CoV-2 RNA can persist for up to a week on several indoor surface materials, there is a need for increased temporal resolution to determine whether consecutive surface positives arise from new infection events or continue to report past events. Cleaning sentinel cards after sampling would provide the needed resolution but might interfere with assay performance. We tested the effect of three cleaning solutions (BZK wipes, Wet Wipes, RNase Away) at three different viral loads: "high" (4 × 104 GE/mL), "medium" (1 × 104 GE/mL), and "low" (2.5 × 103 GE/mL). RNase Away, chosen as a positive control, was the most effective cleaning solution on all three viral loads. Wet Wipes were found to be more effective than BZK wipes in the medium viral load condition. The low viral load condition was easily reset with all three cleaning solutions. These findings will enable temporal SARS-CoV-2 monitoring in indoor environments where transmission risk of the virus is high and the need to avoid individual-level sampling for privacy or compliance reasons exists. IMPORTANCE Because SARS-CoV-2, the virus that causes COVID-19, persists on surfaces, testing swabs taken from surfaces is useful as a monitoring tool. This approach is especially valuable in school settings, where there are cost and privacy concerns that are eliminated by taking a single sample from a classroom. However, the virus persists for days to weeks on surface samples, so it is impossible to tell whether positive detection events on consecutive days are a persistent signal or new infectious cases and therefore whether the positive individuals have been successfully removed from the classroom. We compare several methods for cleaning "sentinel cards" to show that this approach can be used to identify new SARS-CoV-2 signals day to day. The results are important for determining how to monitor classrooms and other indoor environments for SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Victor J. Cantú
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Karenina Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Rodolfo A. Salido
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Rebecca Tsai
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Brett Austin
- San Diego County Public Health Lab, San Diego, California, USA
| | - William Jordan
- San Diego County Public Health Lab, San Diego, California, USA
| | - Menka Asudani
- San Diego County Public Health Lab, San Diego, California, USA
| | - Amanda Walster
- San Diego County Public Health Lab, San Diego, California, USA
| | - Celestine G. Magallanes
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, California, USA
| | - Holly Valentine
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, California, USA
| | - Araz Manjoonian
- Herbert Wertheim School of Public Health, University of California San Diego, La Jolla, California, USA
- San Diego State University, San Diego, California, USA
| | - Carrissa Wijaya
- Herbert Wertheim School of Public Health, University of California San Diego, La Jolla, California, USA
| | - Vinton Omaleki
- Herbert Wertheim School of Public Health, University of California San Diego, La Jolla, California, USA
| | - Stefan Aigner
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Nathan A. Baer
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Maryann Betty
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Rady Children's Hospital, San Diego, California, USA
| | - Anelizze Castro-Martínez
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Willi Cheung
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, California, USA
- San Diego State University, San Diego, California, USA
| | - Peter De Hoff
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, California, USA
| | - Emily Eisner
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Abbas Hakim
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Alma L. Lastrella
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Elijah S. Lawrence
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Toan T. Ngo
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Tyler Ostrander
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Ashley Plascencia
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Shashank Sathe
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Elizabeth W. Smoot
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Aaron F. Carlin
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Gene W. Yeo
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, California, USA
| | | | - Rebecca Fielding-Miller
- Herbert Wertheim School of Public Health, University of California San Diego, La Jolla, California, USA
| | - Rob Knight
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
65
|
Chandra S, Hu T. From Prevention to Therapy: A Roadmap of Nanotechnologies to Stay Ahead of Future Pandemics. ACS NANO 2022; 16:9985-9993. [PMID: 35793456 PMCID: PMC9330760 DOI: 10.1021/acsnano.2c04148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Several recent viral outbreaks, culminating in the COVID-19 pandemic, have illustrated the need for comprehensive improvement in the detection, control, and treatment of emerging viruses that exhibit the potential to cause epidemics. Nanotechnology approaches have the potential to make major contributions in all these areas. This perspective is intended to outline how nanotechnology can be employed to improve upon respiratory disease detection and containment measures, and therapeutics, with a particular emphasis on applications that can address key areas, including home diagnostics, contact tracing, and the evaluation of durability of vaccine protection over time and against future variants. Nanotechnology offers potent tools to address these needs, but further research is required to validate these applications to address needs of future epidemics.
Collapse
Affiliation(s)
- Sutapa Chandra
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Tony Hu
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
66
|
Kramer A, Arvand M, Christiansen B, Dancer S, Eggers M, Exner M, Müller D, Mutters NT, Schwebke I, Pittet D. Ethanol is indispensable for virucidal hand antisepsis: memorandum from the alcohol-based hand rub (ABHR) Task Force, WHO Collaborating Centre on Patient Safety, and the Commission for Hospital Hygiene and Infection Prevention (KRINKO), Robert Koch Institute, Berlin, Germany. Antimicrob Resist Infect Control 2022; 11:93. [PMID: 35794648 PMCID: PMC9257567 DOI: 10.1186/s13756-022-01134-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The approval of ethanol by the Biocidal Products Regulation has been under evaluation since 2007. This follows concern over alcohol uptake from ethanol-based hand rubs (EBHR). If ethanol is classified as carcinogenic, mutagenic, or reprotoxic by the European Chemicals Agency (ECHA), then this would affect infection prevention and control practices. AIM A review was performed to prove that ethanol is toxicological uncritical and indispensable for hand antisepsis because of its unique activity against non-enveloped viruses and thus the resulting lack of alternatives. Therefore, the following main points are analyzed: The effectiveness of ethanol in hand hygiene, the evidence of ethanol at blood/tissue levels through hand hygiene in healthcare, and the evidence of toxicity of different blood/tissue ethanol levels and the non-comparability with alcoholic consumption and industrial exposure. RESULTS EBHR are essential for preventing infections caused by non-enveloped viruses, especially in healthcare, nursing homes, food industry and other areas. Propanols are effective against enveloped viruses as opposed to non-enveloped viruses but there are no other alternatives for virucidal hand antisepsis. Long-term ingestion of ethanol in the form of alcoholic beverages can cause tumours. However, lifetime exposure to ethanol from occupational exposure < 500 ppm does not significantly contribute to the cancer risk. Mutagenic effects were observed only at doses within the toxic range in animal studies. While reprotoxicity is linked with abuse of alcoholic beverages, there is no epidemiological evidence for this from EBHR use in healthcare facilities or from products containing ethanol in non-healthcare settings. CONCLUSION The body of evidence shows EBHRs have strong efficacy in killing non-enveloped viruses, whereas 1-propanol and 2-propanol do not kill non-enveloped viruses, that pose significant risk of infection. Ethanol absorbed through the skin during hand hygiene is similar to consumption of beverages with hidden ethanol content (< 0.5% v/v), such as apple juice or kefir. There is no risk of carcinogenicity, mutagenicity or reprotoxicity from repeated use of EBHR. Hence, the WHO Task Force strongly recommend retaining ethanol as an essential constituent in hand rubs for healthcare.
Collapse
Affiliation(s)
- Axel Kramer
- German Commission for Hospital Hygiene and Infection Prevention at the Robert-Koch Institute, Berlin, Germany. .,WHO Task Force Alcohol-Based Hand Rub, Zürich, Switzerland. .,Institute of Hygiene and Environmental Medicine University Medicine Greifswald, Walther-Rathenau-Straße 38, 17475, Greifswald, Germany.
| | - Mardjan Arvand
- Division Hospital Hygiene, Infection Prevention and Control, Robert-Koch Institute, Berlin, Germany
| | - Bärbel Christiansen
- German Commission for Hospital Hygiene and Infection Prevention at the Robert-Koch Institute, Berlin, Germany.,Department of Hospital Hygiene, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Stephanie Dancer
- Department of Microbiology, University Hospital Hairmyres, Glasgow, UK.,School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Maren Eggers
- Labor Prof. Dr. G. Enders MVZ GbR, Stuttgart, Germany
| | - Martin Exner
- German Commission for Hospital Hygiene and Infection Prevention at the Robert-Koch Institute, Berlin, Germany.,Institute of Hygiene and Public Health, University Hospital, Bonn, Germany
| | - Dieter Müller
- Department of Occupational Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Nico T Mutters
- German Commission for Hospital Hygiene and Infection Prevention at the Robert-Koch Institute, Berlin, Germany.,Institute of Hygiene and Public Health, University Hospital, Bonn, Germany
| | - Ingeborg Schwebke
- German Association for the Control of Virus Diseases (DVV e. V.), Berlin, Germany
| | - Didier Pittet
- Infection Control Program and WHO Collaborating Centre on Patient Safety, University of Geneva, Hospitals and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
67
|
Park C, Lee D, Kim I, Park S, Lee G, Tak S. Changes in the pattern and disease burden of acute viral respiratory infections before and during the COVID-19 pandemic. Osong Public Health Res Perspect 2022; 13:203-211. [PMID: 35820669 PMCID: PMC9263336 DOI: 10.24171/j.phrp.2022.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Objectives We conducted a comparative analysis of the differences in the incidence of 8 acute respiratory viruses and the changes in their patterns before and during the coronavirus disease 2019 (COVID-19) pandemic. Methods Three sentinel surveillance systems of the Korea Disease Control and Prevention Agency and data from the Health Insurance Review and Assessment Service were analyzed. The average numbers of reported cases and the related hospital admissions and outpatient data were compared between April 2018–2019 and 2020–2021. Changes in the disease burden and medical expenditures between these 2 time periods were evaluated. Results During the COVID-19 pandemic, the number of reported cases of all acute respiratory viral infections, except for human bocavirus, decreased significantly. Data from the Health Insurance Review and Assessment Service also showed decreases in the actual amount of medical service usage and a marked reduction in medical expenditures. Conclusion Non-pharmacological interventions in response to COVID-19 showed preventive effects on the transmission of other respiratory viruses, as well as COVID-19. Although COVID-19 had a tremendous impact on society as a whole, with high social costs, there were also positive effects, such as a reduction in the incidence of acute respiratory viral infections.
Collapse
|
68
|
Potential Use of Tea Tree Oil as a Disinfectant Agent against Coronaviruses: A Combined Experimental and Simulation Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123786. [PMID: 35744913 PMCID: PMC9228983 DOI: 10.3390/molecules27123786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
The COVID-19 pandemic has highlighted the relevance of proper disinfection procedures and renewed interest in developing novel disinfectant materials as a preventive strategy to limit SARS-CoV-2 contamination. Given its widely known antibacterial, antifungal, and antiviral properties, Melaleuca alternifolia essential oil, also named Tea tree oil (TTO), is recognized as a potential effective and safe natural disinfectant agent. In particular, the proposed antiviral activity of TTO involves the inhibition of viral entry and fusion, interfering with the structural dynamics of the membrane and with the protein envelope components. In this study, for the first time, we demonstrated the virucidal effects of TTO against the feline coronavirus (FCoVII) and the human coronavirus OC43 (HCoV-OC43), both used as surrogate models for SARS-CoV-2. Then, to atomistically uncover the possible effects exerted by TTO compounds on the outer surface of the SARS-CoV-2 virion, we performed Gaussian accelerated Molecular Dynamics simulations of a SARS-CoV-2 envelope portion, including a complete model of the Spike glycoprotein in the absence or presence of the three main TTO compounds (terpinen-4-ol, γ-terpinene, and 1,8-cineole). The obtained results allowed us to hypothesize the mechanism of action of TTO and its possible use as an anti-coronavirus disinfectant agent.
Collapse
|
69
|
Caruso C, Eletto D, Tosco A, Pannetta M, Scarinci F, Troisi M, Porta A. Comparative Evaluation of Antimicrobial, Antiamoebic, and Antiviral Efficacy of Ophthalmic Formulations. Microorganisms 2022; 10:microorganisms10061156. [PMID: 35744674 PMCID: PMC9229167 DOI: 10.3390/microorganisms10061156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 12/10/2022] Open
Abstract
The extensive use of ophthalmic antibiotics is contributing to the appearance of resistant bacterial strains, which require prolonged and massive treatments with consequent detrimental outcomes and adverse effects. In addition to these issues, antibiotics are not effective against parasites and viruses. In this context, antiseptics could be valuable alternatives. They have nonselective mechanisms of action preventing bacterial resistance and a broad spectrum of action and are also effective against parasites and viruses. Here, we compare the in vitro antibacterial, antiameobic, and antiviral activities of six ophthalmic formulations containing antiseptics such as povidone-iodine, chlorhexidine, and thymol against Gram-positive and Gram-negative bacteria, the amoeba Acanthamoeba castellanii, and two respiratory viruses, HAdV-2 and HCoV-OC43. The results suggest that, among all the tested formulations, Dropsept, consisting of Vitamin E TPGS-based (tocopheryl polyethylene glycol succinate) in combination with the antiseptic chlorhexidine, is the one with the highest range of activities, as it works efficiently against bacteria, amoeba, and viruses. On the other hand, the solution containing PVA (polyvinyl alcohol) and thymol showed a promising inhibitory effect on Pseudomonas aeruginosa, which causes severe keratitis. Given its high efficiency, Dropsept might represent a valuable alternative to the widely used antibiotics for the treatment of ocular infections. In addition to this commercial eye drop solution, thymol-based solutions might be enrolled for their natural antimicrobial and antiamoebic effect.
Collapse
Affiliation(s)
- Ciro Caruso
- Corneal Transplant Centre, Pellegrini Hospital, 80134 Naples, Italy;
| | - Daniela Eletto
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.T.); (M.P.)
- Correspondence: (D.E.); (A.P.); Tel.: +39-089-969-421 (D.E.); +39-089-969-455 (A.P.)
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.T.); (M.P.)
| | - Martina Pannetta
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.T.); (M.P.)
| | - Fabio Scarinci
- Department of Ophthalmology, IRCCS Fondazione, Bietti, Via Livenza, 3, 00198 Roma, Italy;
| | - Mario Troisi
- Department of Neurosciences, Reproductive Sciences and Dentistry, Eye Clinic, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.T.); (M.P.)
- Correspondence: (D.E.); (A.P.); Tel.: +39-089-969-421 (D.E.); +39-089-969-455 (A.P.)
| |
Collapse
|
70
|
Kunduru KR, Kutner N, Nassar‐Marjiya E, Shaheen‐Mualim M, Rizik L, Farah S. Disinfectants role in the prevention of spreading the
COVID
‐19 and other infectious diseases: The need for functional polymers! POLYM ADVAN TECHNOL 2022; 33:3853-3861. [PMID: 35572096 PMCID: PMC9088588 DOI: 10.1002/pat.5689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
Abstract
The spreading of coronavirus through droplets and aerosols of an infected person is a well‐known mechanism. The main protection methods from this virus are using disinfectants/sanitizers, face masks, keeping social distance, and vaccination. With the rapid mutations of the virus accompanied by its features and contagions changing, new advanced functional materials development is highly needed. The usage of disinfectants/sanitizers in excess generates poisonous effects among the general public. Effective and simultaneously, human‐friendly sanitizers or disinfectants are required to prevent the poisoning and the associated issues. They minimize the toxic effects of the currently available materials by rapid action, high potential, long‐term stability, and excellent biocompatible nature. Here, we summarize the available antiviral materials, their features, and their limitations. We highlight the need to develop an arsenal of advanced functional antiviral polymers with intrinsic bioactive functionalities or released bioactive moieties in a controlled manner for rapid and long‐term actions for current and future anticipated viral outbreaks.
Collapse
Affiliation(s)
- Konda Reddy Kunduru
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Neta Kutner
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Eid Nassar‐Marjiya
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Merna Shaheen‐Mualim
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Luna Rizik
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Shady Farah
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
- The Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa Israel
| |
Collapse
|
71
|
Giampieri A, Ma Z, Ling-Chin J, Roskilly AP, Smallbone AJ. An overview of solutions for airborne viral transmission reduction related to HVAC systems including liquid desiccant air-scrubbing. ENERGY (OXFORD, ENGLAND) 2022; 244:122709. [PMID: 34840405 PMCID: PMC8605622 DOI: 10.1016/j.energy.2021.122709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 05/31/2023]
Abstract
The spread of the coronavirus SARS-CoV-2 affects the health of people and the economy worldwide. As air transmits the virus, heating, ventilation and air-conditioning (HVAC) systems in buildings, enclosed spaces and public transport play a significant role in limiting the transmission of airborne pathogens at the expenses of increased energy consumption and possibly reduced thermal comfort. On the other hand, liquid desiccant technology could be adopted as an air scrubber to increase indoor air quality and inactivate pathogens through temperature and humidity control, making them less favourable to the growth, proliferation and infectivity of microorganisms. The objectives of this study are to review the role of HVAC in airborne viral transmission, estimate its energy penalty associated with the adoption of HVAC for transmission reduction and understand the potential of liquid desiccant technology. Factors affecting the inactivation of pathogens by liquid desiccant solutions and possible modifications to increase their heat and mass transfer and sanitising characteristics are also described, followed by an economic evaluation. It is concluded that the liquid desiccant technology could be beneficial in buildings (requiring humidity control or moisture removal in particular when viruses are likely to present) or in high-footfall enclosed spaces (during virus outbreaks).
Collapse
Key Words
- ASHRAE, American Society of Heating, Refrigerating and Air-Conditioning Engineers
- Airborne viral transmission
- CIBSE, Chartered Institution of Building Services Engineers
- COP, Coefficient of performance
- COVID-19
- COVID-19, Coronavirus disease 19
- CaCl2, Calcium chloride
- Economic analysis
- HCO2K, Potassium formate
- HEPA, High-efficiency particulate air filter
- HVAC energy consumption
- HVAC, Heating, ventilation and air-conditioning
- Humidity control
- IAQ, Indoor air quality
- IBV, Infectious bronchitis virus
- IL, Ionic liquid
- LiBr, Lithium bromide
- LiCl, Lithium chloride
- Liquid desiccant
- MERS-CoV, Middle East respiratory syndrome coronavirus
- MERV, Minimum efficiency reporting value
- PRRSV, Porcine reproductive and respiratory syndrome virus
- REHVA, Federation of European Heating, Ventilation and Air Conditioning Associations
- SARS-CoV-1, Severe acute respiratory syndrome coronavirus 1
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- TEG, Triethylene glycol
- TGEV, Transmissible gastroenteritis virus
- UVA, Long-wave ultraviolet light
- UVB, Middle-wave ultraviolet light
- UVC, Short-wave ultraviolet light
- UVGI, Ultraviolet germicidal irradiation
- WHO, World Health Organization
Collapse
Affiliation(s)
- A Giampieri
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | - Z Ma
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | - J Ling-Chin
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | - A P Roskilly
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | - A J Smallbone
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
72
|
Ahn JG. Epidemiological changes in infectious diseases during the coronavirus disease 2019 pandemic in Korea: a systematic review. Clin Exp Pediatr 2022; 65:167-171. [PMID: 34844396 PMCID: PMC8990948 DOI: 10.3345/cep.2021.01515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
In the era of the coronavirus disease 2019 (COVID-19) pandemic, countries worldwide have implemented several nonpharmaceutical interventions (NPIs) to contain its spread before vaccines and treatments were developed. NPIs included social distancing, mask wearing, intensive contact tracing and isolation, and sanitization. In addition to their effectiveness at preventing the rapid spread of COVID-19, NPIs have caused secondary changes in the epidemiology of other infectious diseases. In Korea, various NPI stages have been implemented since the first confirmed case of COVID-19 on January 20, 2020. This review, based on a PubMed database search, shows the impact of NPIs on several infectious diseases other than severe acute respiratory syndrome coronavirus 2 in the COVID-19 pandemic era in Korea.
Collapse
Affiliation(s)
- Jong Gyun Ahn
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
73
|
Song Y, Sun Q, Luo J, Kong Y, Pan B, Zhao J, Wang Y, Yu C. Cationic and Anionic Antimicrobial Agents Co-Templated Mesostructured Silica Nanocomposites with a Spiky Nanotopology and Enhanced Biofilm Inhibition Performance. NANO-MICRO LETTERS 2022; 14:83. [PMID: 35348927 PMCID: PMC8964905 DOI: 10.1007/s40820-022-00826-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/22/2022] [Indexed: 05/13/2023]
Abstract
HIGHLIGHTS A ‘dual active templating’ strategy is firstly reported, using cationic and anionic bactericidal agents as co-templates for the preparation of antibacterial silica nanocomposite with spiky nanotopography. The spiky nanocomposite exhibited enhanced antibacterial and biofilm inhibition performance, compared to pure antimicrobial cationic agent templated smooth silica nanocomposite. ABSTRACT Silica-based materials are usually used as delivery systems for antibacterial applications. In rare cases, bactericidal cationic surfactant templated silica composites have been reported as antimicrobial agents. However, their antibacterial efficacy is limited due to limited control in content and structure. Herein, we report a “dual active templating” strategy in the design of nanostructured silica composites with intrinsic antibacterial performance. This strategy uses cationic and anionic structural directing agents as dual templates, both with active antibacterial property. The cationic-anionic dual active templating strategy further contributes to antibacterial nanocomposites with a spiky surface. With controllable release of dual active antibacterial agents, the spiky nanocomposite displays enhanced anti-microbial and anti-biofilm properties toward Staphylococcus epidermidis. These findings pave a new avenue toward the designed synthesis of novel antibacterial nanocomposites with improved performance for diverse antibacterial applications. [Image: see text] SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40820-022-00826-4.
Collapse
Affiliation(s)
- Yaping Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Qiang Sun
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jiangqi Luo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yueqi Kong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bolin Pan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jing Zhao
- Australia Centre for Water and Environmental Biotechnology, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yue Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
74
|
Sloan A, Kasloff SB, Cutts T. Mechanical Wiping Increases the Efficacy of Liquid Disinfectants on SARS-CoV-2. Front Microbiol 2022; 13:847313. [PMID: 35391722 PMCID: PMC8981239 DOI: 10.3389/fmicb.2022.847313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
High-touch environmental surfaces are acknowledged as potential sources of pathogen transmission, particularly in health care settings where infectious agents may be readily abundant. Methods of disinfecting these surfaces often include direct application of a chemical disinfectant or simply wiping the surface with a disinfectant pre-soaked wipe (DPW). In this study, we examine the ability of four disinfectants, ethanol (EtOH), sodium hypochlorite (NaOCl), chlorine dioxide (ClO2), and potassium monopersulfate (KMPS), to inactivate SARS-CoV-2 on a hard, non-porous surface, assessing the effects of concentration and contact time. The efficacy of DPWs to decontaminate carriers spiked with SARS-CoV-2, as well as the transferability of the virus from used DPWs to clean surfaces, is also assessed. Stainless steel carriers inoculated with approximately 6 logs of SARS-CoV-2 prepared in a soil load were disinfected within 5 min through exposure to 66.5% EtOH, 0.5% NaOCl, and 1% KMPS. The addition of mechanical wiping using DPWs impregnated with these biocides rendered the virus inactive almost immediately, with no viral transfer from the used DPW to adjacent surfaces. Carriers treated with 100 ppm of ClO2 showed a significant amount of viable virus remaining after 10 min of biocide exposure, while the virus was only completely inactivated after 10 min of treatment with 500 ppm of ClO2. Wiping SARS-CoV-2-spiked carriers with DPWs containing either concentration of ClO2 for 5 s left significant amounts of viable virus on the carriers. Furthermore, higher titers of infectious virus retained on the ClO2-infused DPWs were transferred to uninoculated carriers immediately after wiping. Overall, 66.5% EtOH, 0.5% NaOCl, and 1% KMPS appear to be highly effective biocidal agents against SARS-CoV-2, while ClO2 formulations are much less efficacious.
Collapse
Affiliation(s)
| | | | - Todd Cutts
- National Microbiology Laboratory, Applied Biosafety Research Program, Safety and Environmental Services, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
75
|
Abstract
Human norovirus (HuNoV) is the leading cause of epidemic and sporadic acute gastroenteritis worldwide. HuNoV transmission occurs predominantly by direct person-to-person contact, and its health burden is associated with poor hand hygiene and a lack of effective antiseptics and disinfectants. Specific therapies and methods to prevent and control HuNoV spread previously were difficult to evaluate because of the lack of a cell culture system to propagate infectious virus. This barrier has been overcome with the successful cultivation of HuNoV in nontransformed human intestinal enteroids (HIEs). Here, we report using the HIE cultivation system to evaluate the virucidal efficacy of an olanexidine gluconate-based hand rub (OLG-HR) and 70% ethanol (EtOH70%) against HuNoVs. OLG-HR exhibited fast-acting virucidal activity against a spectrum of HuNoVs including GII.4 Sydney[P31], GII.4 Den Haag[P4], GII.4 New Orleans[P4], GII.3[P21], GII.17[P13], and GI.1[P1] strains. Exposure of HuNoV to OLG-HR for 30 to 60 s resulted in complete loss of the ability of virus to bind to the cells and reduced in vitro binding to glycans in porcine gastric mucin. By contrast, the virucidal efficiency of EtOH70% on virus infectivity was strain specific. Dynamic light scattering (DLS) and electron microscopy of virus-like particles (VLPs) show that OLG-HR treatment causes partial disassembly and possibly conformational changes in VP1, interfering with histo-blood group antigen (HBGA) binding and infectivity, whereas EtOH70% treatment causes particle disassembly and clumping of the disassembled products, leading to loss of infectivity while retaining HBGA binding. The highly effective inactivation of HuNoV infectivity by OLG-HR suggests that this compound could reduce HuNoV transmission.
Collapse
|
76
|
Poague KIHM, Blanford JI, Anthonj C. Water, Sanitation and Hygiene in Schools in Low- and Middle-Income Countries: A Systematic Review and Implications for the COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3124. [PMID: 35270814 PMCID: PMC8910349 DOI: 10.3390/ijerph19053124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/26/2022]
Abstract
The global COVID-19 pandemic has revealed the extent to which schools are struggling with the provision of safe drinking water, sanitation and hygiene (WASH). To describe the WASH conditions in schools and discuss the implications for the safe reopening of schools during the ongoing COVID-19 pandemic, a systematic review of peer-reviewed literature on WASH in schools in low- and middle-income countries was performed. In April 2021, five databases, including MEDLINE (via PubMed), Web of Science, Scopus, AJOL, and LILACS, were used to identify studies. Sixty-five papers met the inclusion criteria. We extracted and analyzed data considering the Joint Monitoring Programme (JMP) definitions and the normative contents of Human Rights to safe drinking water and sanitation. Publications included in this systematic review considered 18,465 schools, across 30 different countries. Results indicate a lack of adequate WASH conditions and menstrual hygiene management requirements in all countries. The largely insufficient and inadequate school infrastructure hampers students to practice healthy hygiene habits and handwashing in particular. In the context of the COVID-19 pandemic, being hindered to implement such a key strategy to contain the spread of SARS-CoV-2 in the school environment is of major concern.
Collapse
Affiliation(s)
- Kasandra I. H. M. Poague
- Faculty of Geo-Information Science and Earth Observation–ITC, University of Twente, Hengelosestraat 99, P.O. Box 217, 7500 AE Enschede, The Netherlands; (J.I.B.); (C.A.)
| | | | | |
Collapse
|
77
|
Zhang D, Duran SSF, Lim WYS, Tan CKI, Cheong WCD, Suwardi A, Loh XJ. SARS-CoV-2 in wastewater: From detection to evaluation. MATERIALS TODAY. ADVANCES 2022; 13:100211. [PMID: 35098102 PMCID: PMC8786653 DOI: 10.1016/j.mtadv.2022.100211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 05/07/2023]
Abstract
SARS-CoV-2 presence in wastewater has been reported in several studies and has received widespread attention among the Wastewater-based epidemiology (WBE) community. Such studies can potentially be used as a proxy for early warning of potential COVID-19 outbreak, or as a mitigation measure for potential virus transmission via contaminated water. In this review, we summarized the latest understanding on the detection, concentration, and evaluation of SARS-CoV-2 in wastewater. Importantly, we discuss factors affecting the quality of wastewater surveillance ranging from temperature, pH, starting concentration, as well as the presence of chemical pollutants. These factors greatly affect the reliability and comparability of studies reported by various communities across the world. Overall, this review provides a broadly encompassing guidance for epidemiological study using wastewater surveillance.
Collapse
Affiliation(s)
- Danwei Zhang
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Solco S Faye Duran
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Wei Yang Samuel Lim
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Chee Kiang Ivan Tan
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Wun Chet Davy Cheong
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Ady Suwardi
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| |
Collapse
|
78
|
Săveanu CI, Porsega A, Anistoroaei D, Iordache C, Bobu L, Săveanu AE. Cross-Sectional Study to Evaluate Knowledge on Hand Hygiene in a Pandemic Context with SARS-CoV-2. Medicina (B Aires) 2022; 58:medicina58020304. [PMID: 35208627 PMCID: PMC8878756 DOI: 10.3390/medicina58020304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 01/24/2023] Open
Abstract
Background and Objectives: The basis of any infection control program is hand hygiene (HH). The aim of this study was to investigate knowledge of HH among medical students. Materials and Methods: Students were randomly selected from two Romanian universities and a cross-sectional, questionnaire-based study was conducted between January and May 2021. The answers regarding demographic data and knowledge concerning the methods, the time and the antiseptics used for HH were collected. The selection of the study group was made according to selection criteria in accordance with ethical issues. A descriptive statistical analysis was performed, and a chi-square test was used for data comparison, with a cut-off point of 0.05 for statistical significance. Results: The results indicated that the attitude of the students towards the practice of HH improved significantly. Most students believe that simple HH can control infections. Significant differences were found by the year of study in terms of the hand surfaces included and recommended duration (p < 0.05). Conclusions: In conclusion, the study shows that most respondents have sufficient knowledge on HH, meaning that a higher compliance is required to control infections. The indicated reasons of non-compliance with HH are emergencies and other priorities.
Collapse
Affiliation(s)
- Cătălina Iulia Săveanu
- Department I—Surgicals, Faculty of Dental Medicine, University of Medicine and Pharmacy Grigore T Popa, 700115 Iasi, Romania;
| | - Andreea Porsega
- Faculty of Dental Medicine, University of Medicine and Pharmacy Grigore T Popa, 700115 Iasi, Romania; (A.P.); (A.E.S.)
| | - Daniela Anistoroaei
- Department I—Surgicals, Faculty of Dental Medicine, University of Medicine and Pharmacy Grigore T Popa, 700115 Iasi, Romania;
- Correspondence: or (D.A.); (C.I.); or (L.B.); Tel.: +4-0721-377-269 (D.A.); +4-0745-503-852 (C.I.); +4-0747-896-205 (L.B.)
| | - Cristina Iordache
- Department of Implantology, Removable Prostheses, Dental Technology, Faculty of Dental Medicine, University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: or (D.A.); (C.I.); or (L.B.); Tel.: +4-0721-377-269 (D.A.); +4-0745-503-852 (C.I.); +4-0747-896-205 (L.B.)
| | - Livia Bobu
- Department I—Surgicals, Faculty of Dental Medicine, University of Medicine and Pharmacy Grigore T Popa, 700115 Iasi, Romania;
- Correspondence: or (D.A.); (C.I.); or (L.B.); Tel.: +4-0721-377-269 (D.A.); +4-0745-503-852 (C.I.); +4-0747-896-205 (L.B.)
| | - Alexandra Ecaterina Săveanu
- Faculty of Dental Medicine, University of Medicine and Pharmacy Grigore T Popa, 700115 Iasi, Romania; (A.P.); (A.E.S.)
| |
Collapse
|
79
|
Marín-García D, Bienvenido-Huertas D, Moyano J, Oliveira MJ. In-situ disinfection of wastes generated in dwellings by utilizing ozone for their safe incorporation into the recycling chain. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 139:60-69. [PMID: 34942557 PMCID: PMC9759263 DOI: 10.1016/j.wasman.2021.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/05/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
The Covid-19 pandemic has certainly changed behaviour patterns in many aspects of life, such as the management of solid wastes inside residential spaces. The goal of this research work is to study an ozone generator device as a disinfection and sterilization tool for these wastes in dwellings themselves, thus re-establishing the selective collection to take them back to the recycling chain. In addition, an approach to the risk verification is made. The methodology is based on an experimentation with a device designed to be as cheap as possible. A room like a bedroom is used as a test bed to apply the device, but with no people inside the room to avoid risks. The results show that the device is feasible, concluding that risks are acceptable if its use is correct and appropriate equipment is available to be applied and controlled, all without prejudice of the rigorous control by the competent authorities that approve its use.
Collapse
Affiliation(s)
- David Marín-García
- Department of Graphical Expression and Building Engineering, Higher Technical School of Building Engineering, University of Seville. 4A Reina Mercedes Avenue, Seville 41012, Spain.
| | - David Bienvenido-Huertas
- Department of Building Construction II, Higher Technical School of Building Engineering, University of Seville. 4A Reina Mercedes Avenue, Seville 41012, Spain and Department of Building Construction, University of Granada, Granada, Spain.
| | - Juan Moyano
- Department of Graphical Expression and Building Engineering, Higher Technical School of Building Engineering, University of Seville. 4A Reina Mercedes Avenue, Seville 41012, Spain.
| | - Miguel José Oliveira
- Institute of Engineering, University of Algarve, Campus da Penha, 8005-139 Faro, Portugal.
| |
Collapse
|
80
|
Ezzatpanah H, Gómez‐López VM, Koutchma T, Lavafpour F, Moerman F, Mohammadi M, Raheem D. New food safety challenges of viral contamination from a global perspective: Conventional, emerging, and novel methods of viral control. Compr Rev Food Sci Food Saf 2022; 21:904-941. [DOI: 10.1111/1541-4337.12909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Hamid Ezzatpanah
- Department of Food Science and Technology, Science and Research Branch Islamic Azad University Tehran Iran
| | | | - Tatiana Koutchma
- Guelph Research and Development Center Agriculture and Agri‐Food Canada Guelph Ontario Canada
| | | | - Frank Moerman
- Department of Chemistry Catholic University of Leuven ‐ KU Leuven Leuven Belgium
| | | | - Dele Raheem
- Arctic Centre (NIEM) University of Lapland Rovaniemi Finland
| |
Collapse
|
81
|
Mariita RM, Davis JH, Randive RV. Illuminating Human Norovirus: A Perspective on Disinfection of Water and Surfaces Using UVC, Norovirus Model Organisms, and Radiation Safety Considerations. Pathogens 2022; 11:226. [PMID: 35215169 PMCID: PMC8879714 DOI: 10.3390/pathogens11020226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Human noroviruses (HuNoVs) are a major cause of gastroenteritis and are associated with high morbidity because of their ability to survive in the environment and small inoculum size required for infection. Norovirus is transmitted through water, food, high touch-surfaces, and human-to-human contact. Ultraviolet Subtype C (UVC) light-emitting diodes (LEDs) can disrupt the norovirus transmission chain for water, food, and surfaces. Here, we illuminate considerations to be adhered to when picking norovirus surrogates for disinfection studies and shine light on effective use of UVC for norovirus infection control in water and air and validation for such systems and explore the blind spot of radiation safety considerations when using UVC disinfection strategies. This perspective also discusses the promise of UVC for norovirus mitigation to save and ease life.
Collapse
Affiliation(s)
- Richard M. Mariita
- Crystal IS Inc., an Asahi Kasei Company, 70 Cohoes Avenue, Green Island, NY 12183, USA; (J.H.D.); (R.V.R.)
| | | | | |
Collapse
|
82
|
Rahmani R, Molan K, Brojan M, Prashanth KG, Stopar D. High virucidal potential of novel ceramic-metal composites fabricated via hybrid selective laser melting and spark plasma sintering routes. THE INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY 2022; 120:975-988. [PMID: 35194290 PMCID: PMC8849825 DOI: 10.1007/s00170-022-08878-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/02/2022] [Indexed: 05/31/2023]
Abstract
In this work, we combine selective laser melting (SLM) and spark plasma sintering (SPS) to fabricate new materials with high virucidal potential. Various bioactive disc-shaped ceramics, metal alloys, and composites were fabricated and tested against bacteriophage Phi6-a model system for RNA-enveloped viruses. We prepared silver-doped titanium dioxide (TiO2 + 2.5‒10% Ag), copper-doped titanium dioxide (TiO2 + 2.5‒10% Cu), Cu2NiSiCr, and Cu15Ni8Sn composite materials (metal lattices filled with ceramics). The virucidal tests of the ceramic and metal powders were performed in buffered suspensions, while the surfaces of the discs were tested by swabbing. The results show that the virus titer on the TiO2 + 10% Ag ceramic and CuNi2SiCr metal discs decreased by 4 logs after 15 min of exposure to the surfaces compared to the control ceramic and steel discs. We show that SLM 3D printed pre-alloyed CuNi2SiCr filled with bioactive TiO2 + 10% Ag nanopowders and sintered by the SPS process combines the simplicity of printing with the strength and virucidal properties of Ag and Cu materials. The proposed new virucidal materials were also used for the fabrication of prototype elevator buttons.
Collapse
Affiliation(s)
- Ramin Rahmani
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
- Laboratory for Nonlinear Mechanics, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia
| | - Katja Molan
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Miha Brojan
- Laboratory for Nonlinear Mechanics, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia
| | - Konda Gokuldoss Prashanth
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
- Erich Schmid Institute of Materials Science, Austrian Academy of Science, Jahnstraße 12, 8700 Leoben, Austria
- CBCMT, School of Mechanical Engineering, Vellore Institute of Technology, 632014 Vellore, Tamil Nadu India
| | - David Stopar
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
83
|
Iobbi V, Lanteri AP, Minuto A, Santoro V, Ferrea G, Fossa P, Bisio A. Autoxidation Products of the Methanolic Extract of the Leaves of Combretum micranthum Exert Antiviral Activity against Tomato Brown Rugose Fruit Virus (ToBRFV). Molecules 2022; 27:760. [PMID: 35164024 PMCID: PMC8838289 DOI: 10.3390/molecules27030760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Tomato brown rugose fruit virus (ToBRFV) is a new damaging plant virus of great interest from both an economical and research point of view. ToBRFV is transmitted by contact, remains infective for months, and to-date, no resistant cultivars have been developed. Due to the relevance of this virus, new effective, sustainable, and operator-safe antiviral agents are needed. Thus, 4-hydroxybenzoic acid was identified as the main product of the alkaline autoxidation at high temperature of the methanolic extract of the leaves of C. micranthum, known for antiviral activity. The autoxidized extract and 4-hydroxybenzoic acid were assayed in in vitro experiments, in combination with a mechanical inoculation test of tomato plants. Catechinic acid, a common product of rearrangement of catechins in hot alkaline solution, was also tested. Degradation of the viral particles, evidenced by the absence of detectable ToBRFV RNA and the loss of virus infectivity, as a possible consequence of disassembly of the virus coat protein (CP), were shown. Homology modeling was then applied to prepare the protein model of ToBRFV CP, and its structure was optimized. Molecular docking simulation showed the interactions of the two compounds, with the amino acid residues responsible for CP-CP interactions. Catechinic acid showed the best binding energy value in comparison with ribavirin, an anti-tobamovirus agent.
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (P.F.)
| | - Anna Paola Lanteri
- CeRSAA—Centro di Sperimentazione e Assistenza Agricola, Regione Rollo 98, 17031 Albenga, Italy; (A.P.L.); (A.M.)
| | - Andrea Minuto
- CeRSAA—Centro di Sperimentazione e Assistenza Agricola, Regione Rollo 98, 17031 Albenga, Italy; (A.P.L.); (A.M.)
| | - Valentina Santoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy;
| | - Giuseppe Ferrea
- Azienda Sanitaria Locale 1, Regione Liguria, Via Aurelia 97, Bussana, 18038 Sanremo, Italy;
| | - Paola Fossa
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (P.F.)
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (P.F.)
| |
Collapse
|
84
|
Molan K, Rahmani R, Krklec D, Brojan M, Stopar D. Phi 6 Bacteriophage Inactivation by Metal Salts, Metal Powders, and Metal Surfaces. Viruses 2022; 14:204. [PMID: 35215798 PMCID: PMC8877498 DOI: 10.3390/v14020204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The interaction of phages with abiotic environmental surfaces is usually an understudied field of phage ecology. In this study, we investigated the virucidal potential of different metal salts, metal and ceramic powders doped with Ag and Cu ions, and newly fabricated ceramic and metal surfaces against Phi6 bacteriophage. The new materials were fabricated by spark plasma sintering (SPS) and/or selective laser melting (SLM) techniques and had different surface free energies and infiltration features. We show that inactivation of Phi6 in solutions with Ag and Cu ions can be as effective as inactivation by pH, temperature, or UV. Adding powder to Ag and Cu ion solutions decreased their virucidal effect. The newly fabricated ceramic and metal surfaces showed very good virucidal activity. In particular, 45%TiO2 + 5%Ag + 45%ZrO2 + 5%Cu, in addition to virus adhesion, showed virucidal and infiltration properties. The results indicate that more than 99.99% of viruses deposited on the new ceramic surface were inactivated or irreversibly attached to it.
Collapse
Affiliation(s)
- Katja Molan
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia; (K.M.); (D.K.)
| | - Ramin Rahmani
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia;
| | - Daniel Krklec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia; (K.M.); (D.K.)
| | - Miha Brojan
- Laboratory for Nonlinear Mechanics, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia;
| | - David Stopar
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia; (K.M.); (D.K.)
| |
Collapse
|
85
|
Suwardi A, Wang F, Xue K, Han MY, Teo P, Wang P, Wang S, Liu Y, Ye E, Li Z, Loh XJ. Machine Learning-Driven Biomaterials Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102703. [PMID: 34617632 DOI: 10.1002/adma.202102703] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Biomaterials is an exciting and dynamic field, which uses a collection of diverse materials to achieve desired biological responses. While there is constant evolution and innovation in materials with time, biomaterials research has been hampered by the relatively long development period required. In recent years, driven by the need to accelerate materials development, the applications of machine learning in materials science has progressed in leaps and bounds. The combination of machine learning with high-throughput theoretical predictions and high-throughput experiments (HTE) has shifted the traditional Edisonian (trial and error) paradigm to a data-driven paradigm. In this review, each type of biomaterial and their key properties and use cases are systematically discussed, followed by how machine learning can be applied in the development and design process. The discussions are classified according to various types of materials used including polymers, metals, ceramics, and nanomaterials, and implants using additive manufacturing. Last, the current gaps and potential of machine learning to further aid biomaterials discovery and application are also discussed.
Collapse
Affiliation(s)
- Ady Suwardi
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - FuKe Wang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Kun Xue
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Ming-Yong Han
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Peili Teo
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Pei Wang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Shijie Wang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Ye Liu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| |
Collapse
|
86
|
Sensitivity of SARS-CoV-2 towards Alcohols: Potential for Alcohol-Related Toxicity in Humans. Life (Basel) 2021; 11:life11121334. [PMID: 34947865 PMCID: PMC8708630 DOI: 10.3390/life11121334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative organism that is highly contagious and has been responsible for more than 240 million cases and 5 million deaths worldwide. Using masks, soap-based hand washing, and maintaining social distancing are some of the common methods to prevent the spread of the virus. In the absence of any preventive medications, from the outset of pandemic, alcohol-based hand sanitizers (ABHS) have been one of the first-line measures to control transmission of Coronavirus Disease 2019 (COVID-19). The purpose of this narrative review is to evaluate the sensitivity of SARS-CoV-2 towards ABHS and understand their potential adverse effects on humans. Ethanol and isopropanol have been the most commonly used alcohols in ABHS (e.g., gel, solution, spray, wipes, or foam) with alcohol in the range of 70–85% v/v in World Health Organization or Food and Drug Administration-approved ABHS. The denaturation of proteins around the envelope of SARS-CoV-2 positive sense single-stranded RNA virus is the major mechanism of action of ABHS. Due to frequent use of high-percentage alcohol-containing ABHS over an extended period of time, the oral, dermal, or pulmonary absorption is a possibility. In addition to the systemic toxicity, topical adverse effects such as contact dermatitis and atopic dermatitis are plausible and have been reported during COVID-19. ABHS appear to be effective in controlling the transmission of SARS-CoV-2 with the concern of oral, dermal, or pulmonary absorption.
Collapse
|
87
|
Nasri N, Rusli A, Teramoto N, Jaafar M, Ku Ishak KM, Shafiq MD, Abdul Hamid ZA. Past and Current Progress in the Development of Antiviral/Antimicrobial Polymer Coating towards COVID-19 Prevention: A Review. Polymers (Basel) 2021; 13:4234. [PMID: 34883737 PMCID: PMC8659939 DOI: 10.3390/polym13234234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
The astonishing outbreak of SARS-CoV-2 coronavirus, known as COVID-19, has attracted numerous research interests, particularly regarding fabricating antimicrobial surface coatings. This initiative is aimed at overcoming and minimizing viral and bacterial transmission to the human. When contaminated droplets from an infected individual land onto common surfaces, SARS-CoV-2 coronavirus is able to survive on various surfaces for up to 9 days. Thus, the possibility of virus transmission increases after touching or being in contact with contaminated surfaces. Herein, we aim to provide overviews of various types of antiviral and antimicrobial coating agents, such as antimicrobial polymer-based coating, metal-based coating, functional nanomaterial, and nanocomposite-based coating. The action mode for each type of antimicrobial agent against pathogens is elaborated. In addition, surface properties of the designed antiviral and antimicrobial polymer coating with their influencing factors are discussed in this review. This paper also exhibits several techniques on surface modification to improve surface properties. Various developed research on the development of antiviral/antimicrobial polymer coating to curb the COVID-19 pandemic are also presented in this review.
Collapse
Affiliation(s)
- Nazihah Nasri
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Arjulizan Rusli
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Chiba, Japan;
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Ku Marsilla Ku Ishak
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Mohamad Danial Shafiq
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Zuratul Ain Abdul Hamid
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| |
Collapse
|
88
|
Leow Y, Shi JK, Liu W, Ni XP, Yew PYM, Liu S, Li Z, Xue Y, Kai D, Loh XJ. Design and development of multilayer cotton masks via machine learning. MATERIALS TODAY. ADVANCES 2021; 12:100178. [PMID: 34746738 PMCID: PMC8559538 DOI: 10.1016/j.mtadv.2021.100178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 05/23/2023]
Abstract
With the ongoing COVID-19 pandemic, reusable high-performance cloth masks are recommended for the public to minimize virus spread and alleviate the demand for disposable surgical masks. However, the approach to design a high-performance cotton mask is still unclear. In this study, we aimed to find out the relationship between fabric properties and mask performance via experimental design and machine learning. Our work is the first reported work of employing machine learning to develop protective face masks. Here, we analyzed the characteristics of Egyptian cotton (EC) fabrics with different thread counts and measured the efficacy of triple-layered masks with different layer combinations and stacking orders. The filtration efficiencies of the triple-layered masks were related to the cotton properties and the layer combination. Stacking EC fabrics in the order of thread count 100-300-100 provides the best particle filtration efficiency (45.4%) and bacterial filtration efficiency (98.1%). Furthermore, these key performance metrics were correctly predicted using machine-learning models based on the physical characteristics of the constituent EC layers using Lasso and XGBoost machine-learning models. Our work showed that the machine learning-based prediction approach can be generalized to other material design problems to improve the efficiency of product development.
Collapse
Affiliation(s)
- Y Leow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - J K Shi
- Institute for Infocomm Research (IR), Agency for Science, Technology and Research (A∗STAR), 1 Fusionopolis Way, Connexis South Tower, #21-01, Singapore, 138632, Singapore
| | - W Liu
- Institute for Infocomm Research (IR), Agency for Science, Technology and Research (A∗STAR), 1 Fusionopolis Way, Connexis South Tower, #21-01, Singapore, 138632, Singapore
| | - X P Ni
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - P Y M Yew
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - S Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Z Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Y Xue
- Institute for Infocomm Research (IR), Agency for Science, Technology and Research (A∗STAR), 1 Fusionopolis Way, Connexis South Tower, #21-01, Singapore, 138632, Singapore
| | - D Kai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - X J Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| |
Collapse
|
89
|
Upper Respiratory Tract Symptoms: Cough, Rhinorrhea, Sore Throat? COVID Right? No! Rhinovirus! INFECTIOUS DISEASES IN CLINICAL PRACTICE 2021; 29:e486-e487. [PMID: 34803355 PMCID: PMC8594398 DOI: 10.1097/ipc.0000000000001064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
90
|
Watts S, Ramstedt M, Salentinig S. Ethanol Inactivation of Enveloped Viruses: Structural and Surface Chemistry Insights into Phi6. J Phys Chem Lett 2021; 12:9557-9563. [PMID: 34581569 DOI: 10.1021/acs.jpclett.1c02327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid-enveloped viruses, such as Ebola, influenza, or coronaviruses, are a major threat to human health. Ethanol is an efficient disinfectant that is widely used to inactivate these viruses and prevent their transmission. However, the interactions between ethanol and enveloped viruses leading to their inactivation are not yet fully understood. This study demonstrates the link between ethanol-induced viral inactivation and the nanostructural and chemical transformations of the model virus Phi6, an 85 nm diameter lipid-enveloped bacterial virus that is commonly used as surrogate for human pathogenic viruses. The virus morphology was investigated using small-angle X-ray scattering and dynamic light scattering and was related to its infectivity. The Phi6's surface chemistry was characterized by cryogenic X-ray photoelectron spectroscopy, and the modifications in protein structure were assessed by circular dichroism and fluorescence spectroscopy. Ethanol-triggered structural modifications were found in the lipid envelope, detaching from the protein capsid and forming coexisting nanostructures.
Collapse
Affiliation(s)
- Samuel Watts
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Material Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | | | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
91
|
Rowan NJ, Meade E, Garvey M. Efficacy of frontline chemical biocides and disinfection approaches for inactivating SARS-CoV-2 variants of concern that cause coronavirus disease with the emergence of opportunities for green eco-solutions. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2021; 23:100290. [PMID: 34250323 PMCID: PMC8254398 DOI: 10.1016/j.coesh.2021.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The emergence of severe acute respiratory disease (SARS-CoV-2) variants that cause coronavirus disease is of global concern. Severe acute respiratory disease variants of concern (VOC) exhibiting greater transmissibility, and potentially increased risk of hospitalization, severity and mortality, are attributed to molecular mutations in outer viral surface spike proteins. Thus, there is a reliance on using appropriate counter-disease measures, including non-pharmaceutical interventions and vaccination. The best evidence suggests that the use of frontline biocides effectively inactivate coronavirus similarly, including VOC, such as 202012/01, 501Y.V2 and P.1 that have rapidly replaced the wild-type variant in the United Kingdom, South Africa and Brazil, respectively. However, this review highlights that efficacy of VOC-disinfection will depend on the type of biocide and the parameters governing the activity. VOC are likely to be similar in size to the wild-type strain, thus implying that existing guidelines for use and re-use of face masks post disinfection remain relevant. Monitoring to avoid injudicious use of biocides during the coronavirus disease era is required as prolonged and excessive biocide usage may negatively impact our receiving environments; thus, highlighting the potential for alternative more environmental-friendly sustainable biocide solutions. Traditional biocides may promote cross-antimicrobial resistance to antibiotics in problematical bacteria. The existing filtration efficacy of face masks is likely to perform similarly for VOC due to similar viral size; however, advances in face mask manufacturing by way incorporating new anti-viral materials will potentially enhance their design and functionality for existing and potential future pandemics.
Collapse
Affiliation(s)
- Neil J Rowan
- Centre for Disinfection and Sterilisation, Athlone Institute of Technology, Dublin Road, Athlone, Ireland
- Department of Nursing and Healthcare, Athlone Institute of Technology, Dublin Road, Athlone, Ireland
| | - Elaine Meade
- Department of Life Science, Institute of Technology, Sligo, Ash Lane, Sligo, Ireland
| | - Mary Garvey
- Department of Life Science, Institute of Technology, Sligo, Ash Lane, Sligo, Ireland
| |
Collapse
|
92
|
Olsen SJ, Winn AK, Budd AP, Prill MM, Steel J, Midgley CM, Kniss K, Burns E, Rowe T, Foust A, Jasso G, Merced-Morales A, Davis CT, Jang Y, Jones J, Daly P, Gubareva L, Barnes J, Kondor R, Sessions W, Smith C, Wentworth DE, Garg S, Havers FP, Fry AM, Hall AJ, Brammer L, Silk BJ. Changes in influenza and other respiratory virus activity during the COVID-19 pandemic-United States, 2020-2021. Am J Transplant 2021; 21:3481-3486. [PMID: 34624182 PMCID: PMC8653380 DOI: 10.1111/ajt.16049] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sonja J. Olsen
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA,Correspondence Sonja J. Olsen, Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, GA, USA.
| | - Amber K. Winn
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA,Amber K. Winn, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, GA, USA.
| | - Alicia P. Budd
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Mila M. Prill
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - John Steel
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Claire M. Midgley
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Krista Kniss
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Erin Burns
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Thomas Rowe
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Angela Foust
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Gabriela Jasso
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Angiezel Merced-Morales
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - C. Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Yunho Jang
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Joyce Jones
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Peter Daly
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Larisa Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - John Barnes
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Rebecca Kondor
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Wendy Sessions
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Catherine Smith
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - David E. Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Shikha Garg
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Fiona P. Havers
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Alicia M. Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Aron J. Hall
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Lynnette Brammer
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - Benjamin J. Silk
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| |
Collapse
|
93
|
Ijaz MK, Nims RW, de Szalay S, Rubino JR. Soap, water, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an ancient handwashing strategy for preventing dissemination of a novel virus. PeerJ 2021; 9:e12041. [PMID: 34616601 PMCID: PMC8451441 DOI: 10.7717/peerj.12041] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
Public Health Agencies worldwide (World Health Organization, United States Centers for Disease Prevention & Control, Chinese Center for Disease Control and Prevention, European Centre for Disease Prevention and Control, etc.) are recommending hand washing with soap and water for preventing the dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. In this review, we have discussed the mechanisms of decontamination by soap and water (involving both removal and inactivation), described the contribution of the various components of formulated soaps to performance as cleansers and to pathogen inactivation, explained why adherence to recommended contact times is critical, evaluated the possible contribution of water temperature to inactivation, discussed the advantages of antimicrobial soaps vs. basic soaps, discussed the differences between use of soap and water vs. alcohol-based hand sanitizers for hand decontamination, and evaluated the limitations and advantages of different methods of drying hands following washing. While the paper emphasizes data applicable to SARS-CoV-2, the topics discussed are germane to most emerging and re-emerging enveloped and non-enveloped viruses and many other pathogen types.
Collapse
Affiliation(s)
- M. Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, United States
- Department of Biology, Medgar Evers College of the City University of New York (CUNY), Brooklyn, New York, United States
| | - Raymond W. Nims
- RMC Pharmaceutical Solutions, Inc., Longmont, Colorado, United States
| | - Sarah de Szalay
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, United States
| | - Joseph R. Rubino
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, United States
| |
Collapse
|
94
|
Sakarya FK, Haznedaroglu BZ, Tezel U. Biological removal of benzalkonium chlorides from wastewater by immobilized cells of Pseudomonas sp. BIOMIG1 in an up-flow packed bed reactor. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126210. [PMID: 34102365 PMCID: PMC9757925 DOI: 10.1016/j.jhazmat.2021.126210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/15/2021] [Accepted: 05/21/2021] [Indexed: 05/04/2023]
Abstract
Quaternary ammonium compounds (QACs) are active ingredients of many disinfectants used against SARS-CoV-2 to control the transmission of the virus through human-contact surfaces. As a result, QAC consumption has increased more than twice during the pandemic. Consequently, the concentration of QACs in wastewater and receiving environments may increase. Due to their antimicrobial activity, high levels of QACs in wastewater may cause malfunctioning of biological treatment systems resulting in inadequate treatment of wastewater. In this study, a biocatalyst was produced by entrapping Pseudomonas sp. BIOMIG1 capable of degrading QACs in calcium alginate. Bioactive 3-mm alginate beads degraded benzalkonium chlorides (BACs), a group of QACs, with a rate of 0.47 µM-BACs/h in shake flasks. A bench-scale continuous up-flow reactor packed with BIOMIG1-beads was operated over one and a half months with either synthetic wastewater or secondary effluent containing 2-20 µM BACs at an empty bed contact time (EBCT) ranging between 0.6 and 4.7 h. Almost complete BAC removal was achieved from synthetic and real wastewater at and above 1.2 h EBCT without aeration and effluent recirculation. The microbial community in beads dominantly composed of BIOMIG1 with trace number of Achromobacter spp. after the operation of the reactor with the real wastewater, suggesting that BIOMIG1 over-competed native wastewater bacteria during the operation. This reactor system offers a low cost and robust treatment of QACs in wastewater. It can be integrated to conventional treatment systems for efficient removal of QACs from the wastewater, especially during the pandemic period.
Collapse
Affiliation(s)
- Fahri Koray Sakarya
- Institute of Environmental Sciences, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | | | - Ulas Tezel
- Institute of Environmental Sciences, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| |
Collapse
|
95
|
Liu X, Song N, Qian D, Gu S, Pu J, Huang L, Liu J, Qian K. Porous Inorganic Materials for Bioanalysis and Diagnostic Applications. ACS Biomater Sci Eng 2021; 8:4092-4109. [PMID: 34494831 DOI: 10.1021/acsbiomaterials.1c00733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Porous inorganic materials play an important role in adsorbing targeted analytes and supporting efficient reactions in analytical science. The detection performance relies on the structural properties of porous materials, considering the tunable pore size, shape, connectivity, etc. Herein, we first clarify the enhancement mechanisms of porous materials for bioanalysis, concerning the detection sensitivity and selectivity. The diagnostic applications of porous material-assisted platforms by coupling with various analytical techniques, including electrochemical sensing, optical spectrometry, and mass spectrometry, etc., are then reviewed. We foresee that advanced porous materials will bring far-reaching implications in bioanalysis toward real-case applications, especially as diagnostic assays in clinical settings.
Collapse
Affiliation(s)
- Xun Liu
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Naikun Song
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dahong Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Sai Gu
- School of Engineering, University of Warwick, Coventry CV4 7AL, W Midlands, England.,Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom
| | - Jun Pu
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Jian Liu
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom.,Chinese Academy of Sciences, Dalian Institute of Chemical Physics, CAS State Key Laboratory of Catalysis, 568 Zhongshan Road, Dalian 116023, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.,Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| |
Collapse
|
96
|
Yin W, Liu G, Li J, Bian Z. Landscape of Cell Communication in Human Dental Pulp. SMALL METHODS 2021; 5:e2100747. [PMID: 34928049 DOI: 10.1002/smtd.202100747] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Indexed: 06/14/2023]
Abstract
The cellular atlas of the stroma is not well understood. Here, the cell populations in human dental pulp through single-cell RNA sequencing are profiled. Dental pulp stem cells, pulp cells, T cells, macrophages, endothelial cells, and glial cells are identified in human dental pulp. These cells support each other through sending growth signals. Based on the appearance of ligand-receptor pairs between two cell populations, pulp cells have the greatest communication with other cell types, while T cells have the least communication. In addition, T cells expressing TLR1, TLR2, and TLR4, and endothelial cells expressing TLR4, monitor bacterial invasion. These findings provide the census of normal dental pulp.
Collapse
Affiliation(s)
- Wei Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Gaoxia Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jinhong Li
- Department of Stomatology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
97
|
Ooi CC, Suwardi A, Ou Yang ZL, Xu G, Tan CKI, Daniel D, Li H, Ge Z, Leong FY, Marimuthu K, Ng OT, Lim SB, Lim P, Mak WS, Cheong WCD, Loh XJ, Kang CW, Lim KH. Risk assessment of airborne COVID-19 exposure in social settings. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:087118. [PMID: 34552314 PMCID: PMC8450907 DOI: 10.1063/5.0055547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 05/04/2023]
Abstract
The COVID-19 pandemic has led to many countries oscillating between various states of lock-down as they seek to balance keeping the economy and essential services running and minimizing the risk of further transmission. Decisions are made about which activities to keep open across a range of social settings and venues guided only by ad hoc heuristics regarding social distancing and personal hygiene. Hence, we propose the dual use of computational fluid dynamic simulations and surrogate aerosol measurements for location-specific assessment of risk of infection across different real-world settings. We propose a 3-tiered risk assessment scheme to facilitate classification of scenarios into risk levels based on simulations and experiments. Threshold values of <54 and >840 viral copies and <5% and >40% of original aerosol concentration are chosen to stratify low, medium, and high risk. This can help prioritize allowable activities and guide implementation of phased lockdowns or re-opening. Using a public bus in Singapore as a case study, we evaluate the relative risk of infection across scenarios such as different activities and passenger positions and demonstrate the effectiveness of our risk assessment methodology as a simple and easily interpretable framework. For example, this study revealed that the bus's air-conditioning greatly influences dispersion and increases the risk of certain seats and that talking can result in similar relative risk to coughing for passengers around an infected person. Both numerical and experimental approaches show similar relative risk levels with a Spearman's correlation coefficient of 0.74 despite differing observables, demonstrating applicability of this risk assessment methodology to other scenarios.
Collapse
Affiliation(s)
- Chin Chun Ooi
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Singapore 138632
| | - Ady Suwardi
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Singapore 138634
| | - Zhong Liang Ou Yang
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Singapore 138632
| | - George Xu
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Singapore 138632
| | - Chee Kiang Ivan Tan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Singapore 138634
| | - Dan Daniel
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Singapore 138634
| | - Hongying Li
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Singapore 138632
| | - Zhengwei Ge
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Singapore 138632
| | - Fong Yew Leong
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Singapore 138632
| | - Kalisvar Marimuthu
- National Centre for Infectious Diseases, Tan Tock Seng Hospital, 16 Jalan Tan Tock Seng, Singapore 308443
| | - Oon Tek Ng
- National Centre for Infectious Diseases, Tan Tock Seng Hospital, 16 Jalan Tan Tock Seng, Singapore 308443
| | - Shin Bin Lim
- Ministry of Health Singapore, College of Medicine Building, 16 College Road, Singapore 169854
| | - Peter Lim
- Land Transport Authority, 1 Hampshire Road, Singapore 219428
| | - Wai Siong Mak
- Land Transport Authority, 1 Hampshire Road, Singapore 219428
| | - Wun Chet Davy Cheong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Singapore 138634
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Singapore 138634
| | - Chang Wei Kang
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Singapore 138632
| | - Keng Hui Lim
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Singapore 138632
| |
Collapse
|
98
|
Mileto D, Mancon A, Staurenghi F, Rizzo A, Econdi S, Gismondo MR, Guidotti M. Inactivation of SARS-CoV-2 in the Liquid Phase: Are Aqueous Hydrogen Peroxide and Sodium Percarbonate Efficient Decontamination Agents? ACS CHEMICAL HEALTH & SAFETY 2021; 28:260-267. [PMID: 37556234 PMCID: PMC7901233 DOI: 10.1021/acs.chas.0c00095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/23/2022]
Abstract
A diluted 3% w/w hydrogen peroxide solution acidified to pH 2.5 by adding citric acid inactivated SARS-CoV-2 virus by more than 4 orders of magnitude in 5 min. After a contact time of 15 min, no viral replication was detected. Aqueous solutions of sodium percarbonate inactivated coronavirus by >3 log10 diminution in 15 min. Conversely, H2O2 solutions with no additives displayed a scarce virucidal activity (1.1 log10 diminution in 5 min), confirming that a pH-modifying ingredient is necessary to have a H2O2-based disinfectant active against the novel coronavirus.
Collapse
Affiliation(s)
- Davide Mileto
- Laboratory of Clinical Microbiology, Virology and
Bioemergency, ASST Fatebenefratelli Sacco, University Hospital L.
Sacco, 20157 Milan, Italy
| | - Alessandro Mancon
- Laboratory of Clinical Microbiology, Virology and
Bioemergency, ASST Fatebenefratelli Sacco, University Hospital L.
Sacco, 20157 Milan, Italy
| | - Federica Staurenghi
- Laboratory of Clinical Microbiology, Virology and
Bioemergency, ASST Fatebenefratelli Sacco, University Hospital L.
Sacco, 20157 Milan, Italy
| | - Alberto Rizzo
- Laboratory of Clinical Microbiology, Virology and
Bioemergency, ASST Fatebenefratelli Sacco, University Hospital L.
Sacco, 20157 Milan, Italy
| | - Stefano Econdi
- CNR-SCITEC, Istituto di Scienze e
Tecnologie Chimiche “Giulio Natta”, via C. Golgi 19, 20133
Milan, Italy
- Department of Chemistry, University of
Milan, via C. Golgi 19, 20133 Milan, Italy
| | - Maria Rita Gismondo
- Laboratory of Clinical Microbiology, Virology and
Bioemergency, ASST Fatebenefratelli Sacco, University Hospital L.
Sacco, 20157 Milan, Italy
| | - Matteo Guidotti
- CNR-SCITEC, Istituto di Scienze e
Tecnologie Chimiche “Giulio Natta”, via C. Golgi 19, 20133
Milan, Italy
| |
Collapse
|
99
|
Olsen SJ, Winn AK, Budd AP, Prill MM, Steel J, Midgley CM, Kniss K, Burns E, Rowe T, Foust A, Jasso G, Merced-Morales A, Davis CT, Jang Y, Jones J, Daly P, Gubareva L, Barnes J, Kondor R, Sessions W, Smith C, Wentworth DE, Garg S, Havers FP, Fry AM, Hall AJ, Brammer L, Silk BJ. Changes in Influenza and Other Respiratory Virus Activity During the COVID-19 Pandemic - United States, 2020-2021. MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT 2021; 70:1013-1019. [PMID: 34292924 PMCID: PMC8297694 DOI: 10.15585/mmwr.mm7029a1] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
100
|
Dhama K, Patel SK, Kumar R, Masand R, Rana J, Yatoo MI, Tiwari R, Sharun K, Mohapatra RK, Natesan S, Dhawan M, Ahmad T, Emran TB, Malik YS, Harapan H. The role of disinfectants and sanitizers during COVID-19 pandemic: advantages and deleterious effects on humans and the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34211-34228. [PMID: 33991301 PMCID: PMC8122186 DOI: 10.1007/s11356-021-14429-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/11/2021] [Indexed: 04/16/2023]
Abstract
Disinfectants and sanitizers are essential preventive agents against the coronavirus disease 2019 (COVID-19) pandemic; however, the pandemic crisis was marred by undue hype, which led to the indiscriminate use of disinfectants and sanitizers. Despite demonstrating a beneficial role in the control and prevention of COVID-19, there are crucial concerns regarding the large-scale use of disinfectants and sanitizers, including the side effects on human and animal health along with harmful impacts exerted on the environment and ecological balance. This article discusses the roles of disinfectants and sanitizers in the control and prevention of the current pandemic and highlights updated disinfection techniques against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This article provides evidence of the deleterious effects of disinfectants and sanitizers exerted on humans, animals, and the environment as well as suggests mitigation strategies to reduce these effects. Additionally, potential technologies and approaches for the reduction of these effects and the development of safe, affordable, and effective disinfectants are discussed, particularly, eco-friendly technologies using nanotechnology and nanomedicine.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Rakesh Kumar
- Department of Veterinary Pathology, Dr. G.C Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India
| | - Rupali Masand
- Department of Veterinary Pathology, Dr. G.C Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India
| | - Jigyasa Rana
- Department of Veterinary Anatomy, Faculty of Veterinary and Animal Sciences, Rajeev Gandhi South Campus, Banaras Hindu University, Barkachha, Mirzapur, Uttar Pradesh, 231001, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190006, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, 758002, India
| | - Senthilkumar Natesan
- Indian Institute of Public Health Gandhinagar, Lekawada, Gandhinagar, Gujarat, 382042, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, India
- The Trafford Group of Colleges, Manchester, WA14 5PQ, UK
| | - Tauseef Ahmad
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
| |
Collapse
|