51
|
Lopicic S, Nedeljkov V, Cemerikic D. Augmentation and ionic mechanism of effect of beta-N-methylamino-L-alanine in presence of bicarbonate on membrane potential of Retzius nerve cells of the leech Haemopis sanguisuga. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:284-92. [PMID: 19272457 DOI: 10.1016/j.cbpa.2009.02.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 11/19/2022]
Abstract
The role of neurotoxic non-protein amino acid beta-N-methylamino-L-alanine (L-BMAA) as a putative causative agent of Western pacific amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC) has recently been reinvigorated. In view of this data we have investigated the strength and mechanism of effect of L-BMAA in presence of 20 mmol/L bicarbonate (a cofactor for BMAA) on membrane potential of the Leech Haemopis sanguisuga. Our results show that L-BMAA has excitatory effect in bicarbonate containing solution, which is more potent than in nominally bicarbonate free solution. This potentiation by bicarbonate is L-BMAA specific, as it was not exhibited by beta-N-oxalylamino-L-alanine. The effect of L-BMAA was partially blocked by non-NMDA receptor antagonist CNQX. Application of L-BMAA caused a decrease in input membrane resistance, an increase of intracellular sodium activity, and a decrease of intracellular potassium activity. Present findings indicate that BMAA could initiate excitotoxicity through activation of non-NMDA ionotropic glutamate receptors.
Collapse
Affiliation(s)
- Srdjan Lopicic
- Institute for Pathological Physiology, Medical faculty Belgrade, Belgrade, Serbia.
| | | | | |
Collapse
|
52
|
Mizuno T, Zhang G, Takeuchi H, Kawanokuchi J, Wang J, Sonobe Y, Jin S, Takada N, Komatsu Y, Suzumura A. Interferon-gamma directly induces neurotoxicity through a neuron specific, calcium-permeable complex of IFN-gamma receptor and AMPA GluR1 receptor. FASEB J 2008; 22:1797-806. [PMID: 18198214 DOI: 10.1096/fj.07-099499] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interferon-gamma (IFN-gamma) is a proinflammatory cytokine that plays a pivotal role in pathology of diseases in the central nervous system (CNS), such as multiple sclerosis. However, the direct effect of IFN-gamma on neuronal cells has yet to be elucidated. We show here that IFN-gamma directly induces neuronal dysfunction, which appears as dendritic bead formation in mouse cortical neurons and enhances glutamate neurotoxicity mediated via alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptors but not N-methyl-D-aspartate receptors. In the CNS, IFN-gamma receptor forms a unique, neuron-specific, calcium-permeable receptor complex with AMPA receptor subunit GluR1. Through this receptor complex, IFN-gamma phosphorylates GluR1 at serine 845 position by JAK1.2/STAT1 pathway, increases Ca(2+) influx and following nitric oxide production, and subsequently decreases ATP production, leading to the dendritic bead formation. These findings provide novel mechanisms of neuronal excitotoxicity, which may occur in both inflammatory and neurodegenerative diseases in the CNS.
Collapse
Affiliation(s)
- Tetsuya Mizuno
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Two-photon imaging of stroke onset in vivo reveals that NMDA-receptor independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines. J Neurosci 2008; 28:1756-72. [PMID: 18272696 DOI: 10.1523/jneurosci.5128-07.2008] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We adapt a mouse global ischemia model to permit rapid induction of ischemia and reperfusion in conjunction with two-photon imaging to monitor the initial ionic, structural, and functional implications of brief interruptions of blood flow (6-8 min) in vivo. After only 2-3 min of global ischemia, a wide spread loss of mouse somatosensory cortex apical dendritic structure is initiated during the passage of a propagating wave (3.3 mm/min) of ischemic depolarization. Increases in intracellular calcium levels occurred during the wave of ischemic depolarization and were coincident with the loss of dendritic structure, but were not triggered by reperfusion. To assess the role of NMDA receptors, we locally applied the antagonist MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate] at concentrations sufficient to fully block local NMDA agonist-evoked changes in intracellular calcium levels in vivo. Changes in dendritic structure and intracellular calcium levels were independent of NMDA receptor activation. Local application of the non-NMDA glutamate receptor antagonist CNQX also failed to block ischemic depolarization or rapid changes in dendrite structure. Within 3-5 min of reperfusion, damage ceased and restoration of synaptic structure occurred over 10-60 min. In contrast to a reperfusion promoting damage, over this time scale, the majority of spines and dendrites regained their original structure during reperfusion. Intrinsic optical signal imaging of sensory evoked maps indicated that reversible alteration in dendritic structure during reperfusion was accompanied by restored functional maps. Our results identify glutamate receptor-independent ischemic depolarization as the major ionic event associated with disruption of synaptic structure during the first few minutes of ischemia in vivo.
Collapse
|
54
|
Chao D, Bazzy-Asaad A, Balboni G, Salvadori S, Xia Y. Activation of DOR attenuates anoxic K+ derangement via inhibition of Na+ entry in mouse cortex. Cereb Cortex 2008; 18:2217-27. [PMID: 18203692 DOI: 10.1093/cercor/bhm247] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have recently found that in the mouse cortex, activation of delta-opioid receptor (DOR) attenuates the disruption of K(+) homeostasis induced by hypoxia or oxygen-glucose deprivation. This novel observation suggests that DOR may protect neurons from hypoxic/ischemic insults via the regulation of K(+) homeostasis because the disruption of K(+) homeostasis plays a critical role in neuronal injury under hypoxic/ischemic stress. The present study was performed to explore the ionic mechanism underlying the DOR-induced neuroprotection. Because anoxia causes Na(+) influx and thus stimulates K(+) leakage, we investigated whether DOR protects the cortex from anoxic K(+) derangement by targeting the Na(+)-based K(+) leakage. By using K(+)-sensitive microelectrodes in mouse cortical slices, we showed that 1) lowering Na(+) concentration and substituting with impermeable N-methyl-D-glucamine caused a concentration-dependent attenuation of anoxic K(+) derangement; 2) lowering Na(+) concentration by substituting with permeable Li(+) tended to potentiate the anoxic K(+) derangement; and 3) the DOR-induced protection against the anoxic K(+) responses was largely abolished by low-Na(+) perfusion irrespective of the substituted cation. We conclude that external Na(+) concentration greatly influences anoxic K(+) derangement and that DOR activation likely attenuates anoxic K(+) derangement induced by the Na(+)-activated mechanisms in the cortex.
Collapse
Affiliation(s)
- Dongman Chao
- Department of Pediatrics, Section of Respiratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
55
|
Bellizzi MJ, Lu SM, Gelbard HA. Protecting the synapse: evidence for a rational strategy to treat HIV-1 associated neurologic disease. J Neuroimmune Pharmacol 2007; 1:20-31. [PMID: 18040788 DOI: 10.1007/s11481-005-9006-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Loss of synaptic integrity and function appears to underlie neurologic deficits in patients with HIV-1-associated dementia (HAD) and other chronic neurodegenerative diseases. Because synaptic injury often long precedes neuronal death and surviving neurons possess a remarkable capacity for synaptic repair and functional recovery, we hypothesize that therapeutic intervention to protect synapses has great potential to improve neurologic function in HAD and other diseases. We discuss findings from both HAD and Alzheimer's disease to demonstrate that the disruption of synaptic structure and function that can occur during excitotoxic injury and neuroinflammation represents a likely substrate for neurologic deficits. Based on available evidence, we provide a rationale for future studies aimed at identifying molecular targets for synaptic protection in neurodegenerative disease. Whereas patients with HAD beginning antiretroviral therapy have shown reversal of neurologic symptoms that is unique for patients with chronic neurodegenerative conditions, we propose that the potential for such reversal is not unique.
Collapse
Affiliation(s)
- Matthew J Bellizzi
- Department of Neurology (Child Neurology Division), University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
56
|
Dendritic and mitochondrial changes during glutamate excitotoxicity. Neuropharmacology 2007; 53:891-8. [DOI: 10.1016/j.neuropharm.2007.10.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/11/2007] [Accepted: 10/01/2007] [Indexed: 11/18/2022]
|
57
|
Structural abnormalities in neurons are sufficient to explain the clinical disease and fatal outcome of experimental rabies in yellow fluorescent protein-expressing transgenic mice. J Virol 2007; 82:513-21. [PMID: 17942540 DOI: 10.1128/jvi.01677-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Under natural conditions and in some experimental models, rabies virus infection of the central nervous system causes relatively mild histopathological changes, without prominent evidence of neuronal death despite its lethality. In this study, the effects of rabies virus infection on the structure of neurons were investigated with experimentally infected transgenic mice expressing yellow fluorescent protein (YFP) in neuronal subpopulations. Six-week-old mice were inoculated in the hind-limb footpad with the CVS strain of fixed virus or were mock infected with vehicle (phosphate-buffered saline). Brain regions were subsequently examined by light, epifluorescent, and electron microscopy. In moribund CVS-infected mice, histopathological changes were minimal in paraffin-embedded tissue sections, although mild inflammatory changes were present. Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling and caspase-3 immunostaining showed only a few apoptotic cells in the cerebral cortex and hippocampus. Silver staining demonstrated the preservation of cytoskeletal integrity in the cerebral cortex. However, fluorescence microscopy revealed marked beading and fragmentation of the dendrites and axons of layer V pyramidal neurons in the cerebral cortex, cerebellar mossy fibers, and axons in brainstem tracts. At an earlier time point, when mice displayed hind-limb paralysis, beading was observed in a few axons in the cerebellar commissure. Toluidine blue-stained resin-embedded sections from moribund YFP-expressing animals revealed vacuoles within the perikarya and proximal dendrites of pyramidal neurons in the cerebral cortex and hippocampus. These vacuoles corresponded with swollen mitochondria under electron microscopy. Vacuolation was also observed ultrastructurally in axons and in presynaptic nerve endings. We conclude that the observed structural changes are sufficient to explain the severe clinical disease with a fatal outcome in this experimental model of rabies.
Collapse
|
58
|
King AE, Dickson TC, Blizzard CA, Foster SS, Chung RS, West AK, Chuah MI, Vickers JC. Excitotoxicity mediated by non-NMDA receptors causes distal axonopathy in long-term cultured spinal motor neurons. Eur J Neurosci 2007; 26:2151-9. [PMID: 17908171 DOI: 10.1111/j.1460-9568.2007.05845.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excitotoxicity has been implicated as a potential cause of neuronal degeneration in amyotrophic lateral sclerosis (ALS). It has not been clear how excitotoxic injury leads to the hallmark pathological changes of ALS, such as the abnormal accumulation of filamentous proteins in axons. We have investigated the effects of overactivation of excitatory receptors in rodent neurons maintained in long-term culture. Excitotoxicity, mediated principally via non-N-methyl-D-aspartate (NMDA) receptors, caused axonal swelling and accumulation of cytoskeletal proteins in the distal segments of the axons of cultured spinal, but not cortical, neurons. Axonopathy only occurred in spinal neurons maintained for 3 weeks in vitro, indicating that susceptibility to axonal pathology may be related to relative maturity of the neuron. Excitotoxic axonopathy was associated with the aberrant colocalization of phosphorylated and dephosphorylated neurofilament proteins, indicating that disruption to the regulation of phosphorylation of neurofilaments may lead to their abnormal accumulation. These data provide a strong link between excitotoxicity and the selective pattern of axonopathy of lower motor neurons that underlies neuronal dysfunction in ALS.
Collapse
Affiliation(s)
- A E King
- NeuroRepair Group, Menzies Research Institute, Hobart, Tasmania 7000, Australia
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Greenwood SM, Mizielinska SM, Frenguelli BG, Harvey J, Connolly CN. Mitochondrial dysfunction and dendritic beading during neuronal toxicity. J Biol Chem 2007; 282:26235-44. [PMID: 17616519 DOI: 10.1074/jbc.m704488200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial dysfunction (depolarization and structural collapse), cytosolic ATP depletion, and neuritic beading are early hallmarks of neuronal toxicity induced in a variety of pathological conditions. We show that, following global exposure to glutamate, mitochondrial changes are spatially and temporally coincident with dendritic bead formation. During oxygen-glucose deprivation, mitochondrial depolarization precedes mitochondrial collapse, which in turn is followed by dendritic beading. These events travel as a wave of activity from distal dendrites toward the neuronal cell body. Despite the spatiotemporal relationship between dysfunctional mitochondria and dendritic beads, mitochondrial depolarization and cytoplasmic ATP depletion do not trigger these events. However, mitochondrial dysfunction increases neuronal vulnerability to these morphological changes during normal physiological activity. Our findings support a mechanism whereby, during glutamate excitotoxicity, Ca(2+) influx leads to mitochondrial depolarization, whereas Na(+) influx leads to an unsustainable increase in ATP demand (Na(+),K(+)-ATPase activity). This leads to a drop in ATP levels, an accumulation of intracellular Na(+) ions, and the subsequent influx of water, leading to microtubule depolymerization, mitochondrial collapse, and dendritic beading. Following the removal of a glutamate challenge, dendritic recovery is dependent upon the integrity of the mitochondrial membrane potential, but not on a resumption of ATP synthesis or Na(+),K(+)-ATPase activity. Thus, dendritic recovery is not a passive reversal of the events that induce dendritic beading. These findings suggest that the degree of calcium influx and mitochondrial depolarization inflicted by a neurotoxic challenge, determines the ability of the neuron to recover its normal morphology.
Collapse
Affiliation(s)
- Sam M Greenwood
- Neurosciences Institute, Ninewells Medical School, University of Dundee, Dundee DD19SY, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
60
|
Prilloff S, Noblejas MI, Chedhomme V, Sabel BA. Two faces of calcium activation after optic nerve trauma: life or death of retinal ganglion cells in vivo depends on calcium dynamics. Eur J Neurosci 2007; 25:3339-46. [PMID: 17553002 DOI: 10.1111/j.1460-9568.2007.05550.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Calcium elevations after neurotrauma are not only implicated in cell death but may contribute to adaptive plasticity. We now wished to resolve this contradiction by following calcium dynamics after optic nerve crush in vivo. Adult rats received no injury (n = 5), unilateral mild (n = 10) or moderate optic nerve crush (n = 10) (ONC), or axotomy (n = 5). Before surgery, retinal ganglion cells (RGCs) were retrogradely labelled with Oregon Green BAPTA-dextran, a fluorescent calcium marker. Calcium-related fluorescence intensity (FI) was repeatedly measured in individual RGCs in vivo using the in vivo confocal neuroimaging (ICON) method. Four different RGC types were found. Normal RGCs without FI change were found in sham rats and also in both ONC groups. RGCs with mild damage were seen only after mild ONC, showing an initial calcium depression of 26% at day 4 followed by a 169% increase 15 days after ONC. RGCs with moderate damage were found only after moderate ONC and showed calcium hypoactivation followed by a slower return toward baseline and a delayed calcium increase of 72% above baseline. Sixty to sixty-five per cent of the RGCs in both ONC groups and all RGCs in the axotomy group died within 6 days following a fast and massive calcium increase of 316% with a concomitant 156% soma size increase. In conclusion rapid calcium elevation leads to cell death, while an initial calcium depression followed by a delayed and moderate calcium hyperactivation is associated with cell survival. We propose that immediate, massive calcium activation is maladaptive whereas delayed and moderate hyperactivation of surviving cells is adaptive. Implications for pharmacotherapy are discussed.
Collapse
Affiliation(s)
- S Prilloff
- Institute of Medical Psychology, Otto-von-Guericke University of Magdeburg, Medical Faculty, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | | | |
Collapse
|
61
|
Abstract
✓Cerebral edema is caused by a variety of pathological conditions that affect the brain. It is associated with two separate pathophysiological processes with distinct molecular and physiological antecedents: those related to cytotoxic (cellular) edema of neurons and astrocytes, and those related to transcapillary flux of Na+and other ions, water, and serum macromolecules. In this review, the authors focus exclusively on the first of these two processes. Cytotoxic edema results from unchecked or uncompensated influx of cations, mainly Na+, through cation channels. The authors review the different cation channels that have been implicated in the formation of cytotoxic edema of astrocytes and neurons in different pathological states. A better understanding of these molecular mechanisms holds the promise of improved treatments of cerebral edema and of the secondary injury produced by this pathological process.
Collapse
Affiliation(s)
- Danny Liang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201-1595, USA
| | | | | | | |
Collapse
|
62
|
Novitskaya V, Makarava N, Sylvester I, Bronstein IB, Baskakov IV. Amyloid fibrils of mammalian prion protein induce axonal degeneration in NTERA2-derived terminally differentiated neurons. J Neurochem 2007; 102:398-407. [PMID: 17472702 DOI: 10.1111/j.1471-4159.2007.04537.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Defects in axonal transport and synaptic dysfunctions are associated with early stages of several neurodegenerative diseases including Alzheimer's, Huntington's, Parkinson's, and prion diseases. Here, we tested the effect of full-length mammalian prion protein (rPrP) converted into three conformationally different isoforms to induce pathological changes regarded as early subcellular hallmarks of prion disease. We employed human embryonal teratocarcinoma NTERA2 cells (NT2) that were terminally differentiated into neuronal and glial cells and co-cultured together. We found that rPrP fibrils but not alpha-rPrP or soluble beta-sheet rich oligomers caused degeneration of neuronal processes. Degeneration of processes was accompanied by a collapse of microtubules and aggregation of cytoskeletal proteins, formation of neuritic beads, and a dramatic change in localization of synaptophysin. Our studies demonstrated the utility of NT2 cells as valuable human model system for elucidating subcellular events of prion pathogenesis, and supported the emerging hypothesis that defects in neuronal transport and synaptic abnormalities are early pathological hallmarks associated with prion diseases.
Collapse
Affiliation(s)
- Vera Novitskaya
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
63
|
Abstract
Excitotoxicity is associated with stroke, brain trauma, and a number of neurodegenerative disorders. In the brain, during excitotoxic insults, neurons undergo rapid swelling in both the soma and dendrites. Focal swellings along the dendrites called varicosities are considered to be a hallmark of acute excitotoxic neuronal injury. However, it is not clear what pathway is involved in the neuronal anion flux that leads to the formation and resolution of excitotoxic varicosities. Here, we assessed the roles of the volume-sensitive outwardly rectifying (VSOR) Cl- channel in excitotoxic responses in mouse cortical neurons. Whole-cell patch-clamp recordings revealed that the VSOR Cl- channel in cultured neurons was activated by NMDA exposure. Moreover, robust expression of this channel on varicosities was confirmed by on-cell and nystatin-perforated vesicle patch techniques. VSOR channel blockers, but not blockers of GABA(A) receptors and Cl- transporters, abolished not only varicosity resolution after sublethal excitotoxic stimulation but also necrotic death after sustained varicosity formation induced by prolonged NMDA exposure in cortical neurons. The present slice-patch experiments demonstrated, for the first time, expression of the VSOR Cl- channels in somatosensory pyramidal neurons. NMDA-induced necrotic neuronal death in slice preparations was largely suppressed by a blocker of the VSOR Cl- channel but not of the GABA(A) receptor. These results indicate that VSOR Cl- channels exert dual, reciprocal actions on neuronal excitotoxicity by serving as major anionic pathways both for varicosity recovery after washout of an excitotoxic stimulant and for persistent varicosity formation under prolonged excitotoxic insults leading to necrosis in cortical neurons.
Collapse
Affiliation(s)
- Hana Inoue
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Yasunobu Okada
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| |
Collapse
|
64
|
Monnerie H, Le Roux PD. Reduced dendrite growth and altered glutamic acid decarboxylase (GAD) 65- and 67-kDa isoform protein expression from mouse cortical GABAergic neurons following excitotoxic injury in vitro. Exp Neurol 2007; 205:367-82. [PMID: 17433299 DOI: 10.1016/j.expneurol.2007.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 01/25/2007] [Accepted: 02/15/2007] [Indexed: 02/02/2023]
Abstract
The vulnerability of brain cells to neurologic insults varies greatly, depending on their neuronal subpopulation. However, cells surviving pathological insults such as ischemia or brain trauma may undergo structural changes, e.g., altered process growth, that could compromise brain function. In this study, we examined the effect of glutamate excitotoxicity on dendrite growth from surviving cortical GABAergic neurons in vitro. Glutamate exposure did not affect GABAergic neuron viability, however, it significantly reduced dendrite growth from GABAergic neurons. This effect was blocked by the AMPA receptor antagonists NBQX and CFM-2, and mimicked by AMPA, but not NMDA. Glutamate excitotoxicity also caused an NMDA receptor-mediated decrease in the GABA synthesizing enzyme glutamic acid decarboxylase (GAD65/67) immunoreactivity from GABAergic neurons, measured using immunocytochemical and Western blot techniques. GAD is necessary for GABA synthesis; however, reduction of GABA by 3-mercaptopropionic acid (3-MPA), which inhibits GABA synthesis, did not alter dendrite growth. These results suggest that GABAergic cortical neurons are relatively resistant to excitotoxic-induced cell death, but they can display morphological and biochemical alterations which may impair their function.
Collapse
Affiliation(s)
- Hubert Monnerie
- Department of Neurosurgery, University of Pennsylvania, 330 S 9th Street, 4th Floor, Philadelphia, PA 19107, USA
| | | |
Collapse
|
65
|
Hoskison MM, Yanagawa Y, Obata K, Shuttleworth CW. Calcium-dependent NMDA-induced dendritic injury and MAP2 loss in acute hippocampal slices. Neuroscience 2007; 145:66-79. [PMID: 17239543 PMCID: PMC1853289 DOI: 10.1016/j.neuroscience.2006.11.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 11/01/2006] [Accepted: 11/13/2006] [Indexed: 11/25/2022]
Abstract
Excessive glutamate receptor stimulation can produce rapid disruption of dendritic morphology, including dendritic beading. We recently showed that transient N-methyl-d-aspartic acid (NMDA) exposure resulted in irreversible loss of synaptic function and loss of microtubule associated protein 2 (MAP2) from apical dendrites. The present study examined the initiation and progression of dendritic injury in mouse hippocampal slices following this excitotoxic stimulus. NMDA exposure (30 microM, 10 min) produced irregularly shaped dendritic swellings, evident first in distal apical dendrite branches, and later (20-90 min) involving most proximal dendrites. Over the same time course, immunoreactivity for the microtubule-associated protein MAP2 was progressively lost from apical dendrites, and increased in CA1 somata. This damage and MAP2 loss was Ca2+-dependent, and was not reversible within the time course of these experiments (90 min post-NMDA washout). Formation of regularly-spaced, spherical dendritic varicosities (dendritic beading) was rarely observed, except when NMDA was applied in Ca2+-free ACSF. Under these conditions, beading appeared predominant in interneurons, as assessed from experiments with GAD67-GFP (Deltaneo) mice. Ca2+-removal was associated with significantly better preservation of dendritic structure (MAP2) following NMDA exposure, and other ionic fluxes (sensitive to Gd3+ and spermine) may contribute to residual damage occurring in Ca2+-free conditions. These results suggest that irregularly shaped dendritic swelling is a Ca2+-dependent degenerative event that may be quite different from Ca2+-independent dendritic beading, and can be a predominant type of injury in CA1 pyramidal neurons in slices.
Collapse
Affiliation(s)
- M M Hoskison
- Department of Neurosciences, University of New Mexico School of Medicine, MSC08 4740, University of New Mexico, Albuquerque, NM 87120-0001, USA
| | | | | | | |
Collapse
|
66
|
|
67
|
Erdmann NB, Whitney NP, Zheng J. Potentiation of Excitotoxicity in HIV-1 Associated Dementia and the Significance of Glutaminase. ACTA ACUST UNITED AC 2006; 6:315-328. [PMID: 18059978 DOI: 10.1016/j.cnr.2006.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HIV-1 Associated Dementia (HAD) is a significant consequence of HIV infection. Although multiple inflammatory factors contribute to this chronic, progressive dementia, excitotoxic damage appears to be an underlying mechanism in the neurodegenerative process. Excitotoxicity is a cumulative effect of multiple processes occurring in the CNS during HAD. The overstimulation of glutamate receptors, an increased vulnerability of neurons, and disrupted astrocyte support each potentiate excitotoxic damage to neurons. Recent evidence suggests that poorly controlled generation of glutamate by phosphate-activated glutaminase may contribute to the neurotoxic state typical of HAD as well as other neurodegenerative disorders. Glutaminase converts glutamine, a widely available substrate throughout the CNS to glutamate. Inflammatory conditions may precipitate unregulated activity of glutaminase, a potentially important mechanism in HAD pathogenesis.
Collapse
Affiliation(s)
- Nathan B Erdmann
- The laboratory of Neurotoxicology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880
| | | | | |
Collapse
|
68
|
Kiewert C, Kumar V, Hildmann O, Rueda M, Hartmann J, Naik RS, Klein J. Role of GABAergic antagonism in the neuroprotective effects of bilobalide. Brain Res 2006; 1128:70-8. [PMID: 17134681 PMCID: PMC1865101 DOI: 10.1016/j.brainres.2006.10.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/07/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
Bilobalide, a constituent of Ginkgo biloba, has neuroprotective properties. Its mechanism of action is unknown but it was recently found to block GABA(A) receptors. The goal of this study was to test the potential role of a GABAergic mechanism for the neuroprotective activity of bilobalide. In rat hippocampal slices exposed to NMDA, release of choline indicates breakdown of membrane phospholipids. NMDA-induced choline release was almost completely blocked in the presence of bilobalide (10 microM) and under low-chloride conditions. Bicuculline (100 microM), a competitive antagonist at GABA(A) receptors, reduced NMDA-induced choline release to a small extent (-23%). GABA (100 microM) partially antagonized the inhibitory action of bilobalide. Exposure of hippocampal slices to NMDA also caused edema formation as measured by increases of tissue water content. NMDA-induced edema formation was suppressed by bilobalide and by low-chloride conditions. Bicuculline exerted partial protection (by 30%) while GABA reduced bilobalide's effect by about one third. To investigate bilobalide's interaction with GABA(A) receptors directly, we measured binding of [(35)S]-TBPS to rat cortical membranes. TBPS binding was competitively inhibited by bilobalide in the low micromolar range (IC(50)=3.7 microM). As a functional test, we determined (36)chloride flux in rat corticohippocampal synaptoneurosomes. GABA (100 microM) significantly increased (36)chloride flux (+65%), and this increase was blocked by bilobalide, but with low potency (IC(50): 39 microM). We conclude that, while antagonism of GABA(A) receptors may contribute to bilobalide's neuroprotective effects, additional mechanisms must be postulated to fully explain bilobalide's actions.
Collapse
Affiliation(s)
- Cornelia Kiewert
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, 1300 Coulter Dr., Amarillo, TX 79106, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Underhill SM, Goldberg MP. Hypoxic injury of isolated axons is independent of ionotropic glutamate receptors. Neurobiol Dis 2006; 25:284-90. [PMID: 17071096 PMCID: PMC1892630 DOI: 10.1016/j.nbd.2006.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 09/05/2006] [Accepted: 09/16/2006] [Indexed: 10/24/2022] Open
Abstract
Axonal injury in white matter is an important consequence of many acute neurological diseases including ischemia. A role for glutamate-mediated excitotoxicity is suggested by observations from in vitro and in situ models that AMPA/kainate blockers can reduce axonal injury. We assessed axonal vulnerability in primary murine neuronal cultures, with axons isolated from their cell bodies using a compartmented chamber design. Transient removal of oxygen and glucose in the axon compartment resulted in irreversible loss of axon length and neurofilament labeling. This injury was not prevented by addition of ionotropic glutamate receptor blockers and could not be reproduced by glutamate receptor agonists. However, hypoxic injury was prevented by blockade of voltage-gated sodium channels, inhibition of calpain and removal of extracellular calcium. These results suggest that isolated, unmyelinated axons are vulnerable to hypoxic injury which is mediated by influx of sodium and calcium but is independent of glutamate receptor activation.
Collapse
Affiliation(s)
- Suzanne M Underhill
- Hope Center for Neurological Disorders and Department of Neurology, 660 S. Euclid Avenue, Campus Box 8111, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
70
|
Kumar V, Naik RS, Hillert M, Klein J. Effects of chloride flux modulators in an in vitro model of brain edema formation. Brain Res 2006; 1122:222-9. [PMID: 17014830 PMCID: PMC1698554 DOI: 10.1016/j.brainres.2006.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
Brain edema is a serious consequence of hemispheric stroke and traumatic brain injury and contributes significantly to patient mortality. In the present study, we measured water contents in hippocampal slices as an in vitro model of edema formation. Excitotoxic conditions induced by N-methyl-D-aspartate (NMDA, 300 microM), as well as ischemia induced by oxygen-glucose deprivation (OGD), caused cellular edema formation as indicated by an increase of slice water contents. In the presence of furosemide, an inhibitor of the Na,K,Cl-cotransporter, NMDA-induced edema were reduced by 64% while OGD-induced edema were unaffected. The same observation, i.e., reduction of excitotoxic edema formation but no effect on ischemia-induced edema, was made with chloride transport inhibitors such as DIDS and niflumic acid. Under ischemic conditions, modulation of GABAA receptors by bicuculline, a GABA antagonist, or by diazepam, a GABAergic agonist, did not significantly affect edema formation. Further experiments demonstrated that low chloride conditions prevented NMDA-induced, but not OGD-induced, water influx. Omission of calcium ions had no effect. Our results show that NMDA-induced edema formation is highly dependent on chloride influx as it was prevented by low-chloride conditions and by various compounds that interfere with chloride influx. In contrast, OGD-induced edema observed in brain slices was not affected by modulators of chloride fluxes. The results are discussed with reference to ionic changes occurring during tissue ischemia.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, 1300 Coulter Dr, Amarillo, TX 79106, USA
| | | | | | | |
Collapse
|
71
|
Domercq M, Etxebarria E, Pérez-Samartín A, Matute C. Excitotoxic oligodendrocyte death and axonal damage induced by glutamate transporter inhibition. Glia 2006; 52:36-46. [PMID: 15892126 DOI: 10.1002/glia.20221] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glutamate uptake is crucial to terminate glutamate signaling and to prevent excitotoxicity. The present study describes the expression of functional glutamate transporters GLAST and GLT-1 in oligodendrocytes by means of electrophysiology, uptake assays, and immunocytochemistry. Inhibition of glutamate uptake, both in oligodendrocyte cultures and in isolated optic nerves, increases glutamate levels and causes oligodendrocyte excitotoxicity, which is prevented by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and kainate receptor antagonists. Furthermore, glutamate transporter inhibitors or antisense oligonucleotides applied onto the optic nerve in vivo lead to oligodendroglial loss, massive demyelination, and severe axonal damage. Overall, these results demonstrate that the integrity of oligodendrocytes and white matter depends on proper glutamate transporter function. Deregulated transporter activity may contribute to acute and chronic white matter damage.
Collapse
MESH Headings
- Amino Acid Transport System X-AG/antagonists & inhibitors
- Amino Acid Transport System X-AG/metabolism
- Animals
- Animals, Newborn
- Brain/metabolism
- Brain/physiopathology
- Brain Damage, Chronic/etiology
- Brain Damage, Chronic/metabolism
- Brain Damage, Chronic/physiopathology
- Cell Death/physiology
- Cells, Cultured
- Demyelinating Diseases/chemically induced
- Demyelinating Diseases/metabolism
- Demyelinating Diseases/physiopathology
- Enzyme Inhibitors/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Excitatory Amino Acid Transporter 1/antagonists & inhibitors
- Excitatory Amino Acid Transporter 1/metabolism
- Excitatory Amino Acid Transporter 2/antagonists & inhibitors
- Excitatory Amino Acid Transporter 2/metabolism
- Glutamic Acid/metabolism
- Glutamic Acid/pharmacology
- Neurotoxins/metabolism
- Neurotoxins/pharmacology
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Optic Nerve Diseases/chemically induced
- Optic Nerve Diseases/metabolism
- Optic Nerve Diseases/physiopathology
- Patch-Clamp Techniques
- Rats
- Rats, Sprague-Dawley
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Receptors, Kainic Acid/antagonists & inhibitors
- Receptors, Kainic Acid/metabolism
- Wallerian Degeneration/etiology
- Wallerian Degeneration/metabolism
- Wallerian Degeneration/physiopathology
Collapse
Affiliation(s)
- María Domercq
- Departamento de Neurociencias, Universidad del País Vasco, Vizcaya, Spain
| | | | | | | |
Collapse
|
72
|
Bellizzi MJ, Lu SM, Masliah E, Gelbard HA. Synaptic activity becomes excitotoxic in neurons exposed to elevated levels of platelet-activating factor. J Clin Invest 2006; 115:3185-92. [PMID: 16276420 PMCID: PMC1265873 DOI: 10.1172/jci25444] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 08/23/2005] [Indexed: 11/17/2022] Open
Abstract
Neurologic impairment in HIV-1-associated dementia (HAD) and other neuroinflammatory diseases correlates with injury to dendrites and synapses, but how such injury occurs is not known. We hypothesized that neuroinflammation makes dendrites susceptible to excitotoxic injury following synaptic activity. We report that platelet-activating factor, an inflammatory phospholipid that mediates synaptic plasticity and neurotoxicity and is dramatically elevated in the brain during HAD, promotes dendrite injury following elevated synaptic activity and can replicate HIV-1-associated dendritic pathology. In hippocampal slices exposed to a stable platelet-activating factor analogue, tetanic stimulation that normally induces long-term synaptic potentiation instead promoted development of calcium- and caspase-dependent dendritic beading. Chemical preconditioning with diazoxide, a mitochondrial ATP-sensitive potassium channel agonist, prevented dendritic beading and restored long-term potentiation. In contrast to models invoking excessive glutamate release, these results suggest that physiologic synaptic activity may trigger excitotoxic dendritic injury during chronic neuroinflammation. Furthermore, preconditioning may represent a novel therapeutic strategy for preventing excitotoxic injury while preserving physiologic plasticity.
Collapse
Affiliation(s)
- Matthew J Bellizzi
- Department of Neurology, Child Neurology Division, Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
73
|
Pin S, Chen H, Lein PJ, Wang MM. Nucleic acid binding agents exert local toxic effects on neurites via a non-nuclear mechanism. J Neurochem 2006; 96:1253-66. [PMID: 16441515 DOI: 10.1111/j.1471-4159.2006.03653.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism by which drugs that target nucleic acids cause neurotoxicity is not well described. We characterized the neurotoxicity of Hoechst 33342 (bis-benzimide), a common cell permeable nuclear dye, in primary neuronal cultures. The mechanism of cell death was not apoptotic, as death is rapid, not accompanied by typical nuclear morphological changes, and is insensitive to inhibitors of transcription, translation and caspase activity. In addition, free-radical scavenging agents failed to attenuate cell death, and damage was not accompanied by mitochondrial dysfunction. Neuronal processes of cells exposed to Hoechst 33342 display dramatic fragmentation prior to cell death. When this compound was applied selectively to the distal axons of sympathetic neurons grown in compartmented cultures, the distal axons were destroyed. However, the proximal processes present in the cell body compartment were spared, demonstrating direct axonal toxicity rather than a remote effect of nuclear dysfunction. Other cell-permeable nucleic acid binding dyes similarly caused rapid dendritic and axonal toxicity. The hypothesis that these nucleic acid binding dyes target RNA localized to dendrites and axons is supported by observations that RNaseV1 induced similar, rapid neurite fragmentation. We conclude that the neurotoxic effects of nucleic acid binding compounds are mediated, at least in part, by direct neurite injury, which does not require involvement of the cell body and nucleus.
Collapse
Affiliation(s)
- Sokhon Pin
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
74
|
Mizuno T, Kuno R, Nitta A, Nabeshima T, Zhang G, Kawanokuchi J, Wang J, Jin S, Takeuchi H, Suzumura A. Protective effects of nicergoline against neuronal cell death induced by activated microglia and astrocytes. Brain Res 2005; 1066:78-85. [PMID: 16325157 DOI: 10.1016/j.brainres.2005.10.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 10/04/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
We examined the neuroprotective role of nicergoline in neuron-microglia or neuron-astrocytes co-cultures. Nicergoline, an ergoline derivative, significantly suppressed the neuronal cell death induced by co-culture with activated microglia or astrocytes stimulated with lipopolysaccharide (LPS) and interferon (IFN)-gamma. To elucidate the mechanism by which nicergoline exerts a neuroprotective effect, we examined the production of inflammatory mediators and neurotrophic factors in activated microglia and astrocytes following nicergoline treatment. In microglia stimulated with LPS and IFN-gamma, nicergoline suppressed the production of superoxide anions, interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha in a dose-dependent manner. In astrocytes, nicergoline also suppressed the production of proinflammatory cytokines and enhanced brain-derived neurotrophic factor (BDNF). Thus, nicergoline-mediated neuroprotection resulted primarily from the inhibition of inflammatory mediators and the upregulation of neurotrophic factors by glial cells.
Collapse
Affiliation(s)
- Tetsuya Mizuno
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Wong M. Modulation of dendritic spines in epilepsy: cellular mechanisms and functional implications. Epilepsy Behav 2005; 7:569-77. [PMID: 16246628 DOI: 10.1016/j.yebeh.2005.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 08/02/2005] [Accepted: 08/07/2005] [Indexed: 01/14/2023]
Abstract
Epilepsy patients often suffer from significant neurological deficits, including memory impairment, behavioral problems, and psychiatric disorders. While the causes of neuropsychological dysfunction in epilepsy are multifactorial, accumulating evidence indicates that seizures themselves may directly cause brain injury. Although seizures sometimes result in neuronal death, they may also cause more subtle pathological changes in neuronal structure and function, including abnormalities in synaptic transmission. Dendritic spines receive a majority of the excitatory synaptic inputs to cortical neurons and are critically involved in synaptic plasticity and learning. Studies of human epilepsy and experimental animal models demonstrate that seizures may directly affect the morphological and functional properties of dendritic spines, suggesting that seizure-related changes in spines may represent a mechanistic basis for cognitive deficits in epilepsy. Novel therapeutic strategies directed at modulation of spine motility may prevent the detrimental effects of seizures on cognitive function in epilepsy.
Collapse
Affiliation(s)
- Michael Wong
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
76
|
FLOYD CANDACEL, GORIN FREDRICA, LYETH BRUCEG. Mechanical strain injury increases intracellular sodium and reverses Na+/Ca2+ exchange in cortical astrocytes. Glia 2005; 51:35-46. [PMID: 15779085 PMCID: PMC2996279 DOI: 10.1002/glia.20183] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Traditionally, astrocytes have been considered less susceptible to injury than neurons. Yet, we have recently shown that astrocyte death precedes neuronal death in a rat model of traumatic brain injury (TBI) (Zhao et al.: Glia 44:140-152, 2003). A main mechanism hypothesized to contribute to cellular injury and death after TBI is elevated intracellular calcium ([Ca2+]i). Since calcium regulation is also influenced by regulation of intracellular sodium ([Na+]i), we used an in vitro model of strain-induced traumatic injury and live-cell fluorescent digital imaging to investigate alterations in [Na+]i in cortical astrocytes after injury. Changes in [Na+]i, or [Ca2+]i were monitored after mechanical injury or L-glutamate exposure by ratiometric imaging of sodium-binding benzofuran isophthalate (SBFI-AM), or Fura-2-AM, respectively. Mechanical strain injury or exogenous glutamate application produced increases in [Na+]i that were dependent on the severity of injury or concentration. Injury-induced increases in [Na+]i were significantly reduced, but not completely eliminated, by inhibition of glutamate uptake by DL-threo-beta-benzyloxyaspartate (TBOA). Blockade of sodium-dependent calcium influx through the sodium-calcium exchanger with 2-[2-[4-(4-Nitrobenzyloxy)phenyl]ethyl]isothiourea mesylate (KB-R7943) reduced [Ca2+]i after injury. KB-R7943 also reduced astrocyte death after injury. These findings suggest that in astrocytes subjected to mechanical injury or glutamate excitotoxicity, increases in intracellular Na+ may be a critical component in the injury cascade and a therapeutic target for reduction of lasting deficits after traumatic brain injury.
Collapse
Affiliation(s)
- CANDACE L. FLOYD
- Department of Neurological Surgery, Center for Neuroscience, University of California, Davis, California
| | - FREDRIC A. GORIN
- Department of Neurology, Center for Neuroscience, University of California, Davis, California
| | - BRUCE G. LYETH
- Department of Neurological Surgery, Center for Neuroscience, University of California, Davis, California
- Correspondence to: Bruce G. Lyeth, Department of Neurological Surgery, University of California at Davis, 1515 Newton Court, One Shields Avenue, Davis, CA 95616-8797.
| |
Collapse
|
77
|
Abstract
The electroneutral Na-K-Cl co-transporter (NKCC) protein transports Na(+), K(+) and Cl(-) into cells under physiological conditions with a stoichiometry of 1Na(+) :1K(+) :2Cl(-). NKCC is characteristically inhibited by the sulfamoylbenzoic acid "loop'' diuretics, such as bumetanide and furosemide. To date, only two distinct isoforms, NKCC1 and NKCC2, have been identified. NKCC1 has a broad tissue distribution, while the NKCC2 isoform is only found in vertebrate kidney. NKCC serves multiple functions, including ion and fluid movements in secreting or reabsorbing epithelia and cell volume regulation. However, understanding the role of NKCC1 in the central nervous system has just begun. NKCC1 protein is expressed in neurons throughout the brain. Dendritic localization of NKCC1 is found in both pyramidal and non-pyramidal neurons. NKCC1 is important in the maintenance of intracellular Cl(-) in neurons and contributes to GABA-mediated depolarization in immature neurons. Thus, NKCC1 may affect neuronal excitability through regulation of intracellular Cl(-) concentration. Expression of NKCC1 protein has also been found in astrocytes and oligodendrocytes. In addition to its role in the accumulation of Cl(-), NKCC1 may also contribute to K(+) clearance and maintenance of intracellular Na(+) in glia. Our recent studies suggest that NKCC1 activation leads to high [K(+)](o(-)) induced astrocyte swelling and glutamate release, as well as neuronal Na(+) , and Cl(-) influx during acute excitotoxicity. Inhibition of NKCC1 activity significantly reduces infarct volume and cerebral edema following cerebral focal ischemia.
Collapse
Affiliation(s)
- Hai Chen
- Neuroscience Training Program, Department of Neurosurgery, University of Wisconsin Medical School, 332 Clinical Sciences Center, 600 Highland Avenue, Madison, WI 53792, USA
| | | |
Collapse
|
78
|
Tekkök SB, Faddis BT, Goldberg MP. AMPA/kainate receptors mediate axonal morphological disruption in hypoxic white matter. Neurosci Lett 2005; 382:275-9. [PMID: 15925103 DOI: 10.1016/j.neulet.2005.03.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 02/19/2005] [Accepted: 03/15/2005] [Indexed: 11/16/2022]
Abstract
We used acute brain slices to investigate the hypothesis that oxygen-glucose deprivation (OGD) induced loss of axon function and neurofilament labeling are correlated to axonal morphological disruption in the corpus callosum of adult brain. Coronal brain slices including corpus callosum were prepared from adult mice. White matter immunohistochemical properties and conduction along axons remained stable over 12 h after preparation. White matter injury was assessed by recording compound action potentials (CAPs) across corpus callosum, combined with immunofluorescence for axonal neurofilaments and by bright field microscopy of myelin profiles in semi-thin sections. OGD for 30 min resulted in irreversible loss of the CAPs, formation of axon heads and bulbs, and swelling of myelin profiles in slices examined 1h after OGD. In slices followed for 9 h after OGD, there was complete loss of neurofilament labeling and myelin profiles. Because overactivation of AMPA/kainate receptors mediates axon structural and functional disruption in hypoxic corpus callosum slices, we tested whether blockade of AMPA/kainate receptors reduced OGD-induced axonal morphological disruption. NBQX (30 microM), an AMPA/kainate receptor antagonist, prevented OGD-induced formation of axon heads and bulbs, swelling of myelin profiles, loss of neurofilament staining and preserved axonal morphology. These results expand our previous findings that the AMPA/kainate receptor activation contributes to axonal morphological disruption, as well as loss of electrical function.
Collapse
Affiliation(s)
- Selva Baltan Tekkök
- Hope Center for Neurological Disorders, Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
79
|
Ikegami K, Kato S, Koike T. N-alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK) suppresses neuritic degeneration caused by different experimental paradigms including in vitro Wallerian degeneration. Brain Res 2005; 1030:81-93. [PMID: 15567340 DOI: 10.1016/j.brainres.2004.09.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2004] [Indexed: 11/30/2022]
Abstract
Accumulating evidence indicates that neurite degeneration occurs via a distinct mechanism from somal death programs. We have previously shown that neuritic ATP level in sympathetic neurons decreases, whereas somal ATP level remains unaltered during degeneration caused by the microtubule-disrupting agent, vinblastine. Moreover, caspase activation occurs only in cell soma, supporting the view of somal apoptosis and neuritic necrosis. Therefore, the ATP level of neurites is crucial for their degeneration; it appears to correlate with membrane blebbing or beading which precedes late whole fragmentation of neurites under these conditions. Based on these metabolic and morphological criteria, we have tested the effects of various protease inhibitors on vinblastine-induced neurite degeneration in superior cervical ganglia from neonatal mice. Among agents tested, N-alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK), the trypsin-like serine protease inhibitor, but not N-p-tosyl-L-phenylalanine chloromethyl ketone (TPCK), the chymotrypsin-like serine protease inhibitor, protected sympathetic neurites from beading formation, neuritic fragmentation and a decrease in their ATP level. The commitment time for the saving effect of TLCK occurred around 7 h following treatment with vinblastine, at a time point after microtubule degradation (2 h) and before massive beading formation (later than 12 h). Moreover, TLCK was also capable of suppressing Wallerian degeneration in culture and neuritic degeneration following withdrawal of NGF in a dose-dependent manner. These results strongly suggest that TLCK intervenes in a common step in the cascade of neuritic degeneration caused by these different experimental paradigms and provides a helpful clue for identifying such a molecular step.
Collapse
Affiliation(s)
- Koji Ikegami
- Molecular Neurobiology Laboratory, Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | |
Collapse
|
80
|
Banno M, Mizuno T, Kato H, Zhang G, Kawanokuchi J, Wang J, Kuno R, Jin S, Takeuchi H, Suzumura A. The radical scavenger edaravone prevents oxidative neurotoxicity induced by peroxynitrite and activated microglia. Neuropharmacology 2005; 48:283-90. [PMID: 15695167 DOI: 10.1016/j.neuropharm.2004.10.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 09/13/2004] [Accepted: 10/01/2004] [Indexed: 10/26/2022]
Abstract
The free radical scavenger edaravone has been used as an anti-oxidative agent in acute ischemic brain disorders. We examined the effect of edaravone on the production of nitric oxide (NO), reactive oxygen species (ROS) and proinflammatory cytokines by activated microglia, and we also examined its neuroprotective role in cortical neuronal cultures oxidatively stressed by the peroxynitrite donor N-morpholinosydnonimine (SIN-1) or activated microglia. Edaravone significantly suppressed the production of NO and ROS by activated microglia, though it did not suppress production of inflammatory cytokines. In addition, edaravone significantly suppressed neuronal cell death and dendrotoxicity induced by either SIN-1 or activated microglia in a dose-dependent manner. These results suggest that edaravone may function as a neuroprotective agent counteracting oxidative neurotoxicity arising from activated microglia, as occurs in either inflammatory or neurodegenerative disorders of the central nervous system.
Collapse
Affiliation(s)
- Masahiro Banno
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Takeuchi H, Mizuno T, Zhang G, Wang J, Kawanokuchi J, Kuno R, Suzumura A. Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. J Biol Chem 2005; 280:10444-54. [PMID: 15640150 DOI: 10.1074/jbc.m413863200] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent studies suggest that excitotoxicity may contribute to neuronal damage in neurodegenerative diseases including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis. Activated microglia have been observed around degenerative neurons in these diseases, and they are thought to act as effector cells in the degeneration of neural cells in the central nervous system. Neuritic beading, focal bead-like swellings in the dendrites and axons, is a neuropathological sign in epilepsy, trauma, ischemia, aging, and neurodegenerative diseases. Previous reports showed that neuritic beading is induced by various stimuli including glutamate or nitric oxide and is a neuronal response to harmful stimuli. However, the precise physiologic significance of neuritic beading is unclear. We provide evidence that neuritic beading induced by activated microglia is a feature of neuronal cell dysfunction toward neuronal death, and the neurotoxicity of activated microglia is mediated through N-methyl-d-aspartate (NMDA) receptor signaling. Neuritic beading occurred concordant with a rapid drop in intracellular ATP levels and preceded neuronal death. The actual neurite beads consisted of collapsed cytoskeletal proteins and motor proteins arising from impaired neuronal transport secondary to cellular energy loss. The drop in intracellular ATP levels was because of the inhibition of mitochondrial respiratory chain complex IV activity downstream of NMDA receptor signaling. Blockage of NMDA receptors nearly completely abrogated mitochondrial dysfunction and neurotoxicity. Thus, neuritic beading induced by activated microglia occurs through NMDA receptor signaling and represents neuronal cell dysfunction preceding neuronal death. Blockage of NMDA receptors may be an effective therapeutic approach for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | |
Collapse
|
82
|
Kirov SA, Petrak LJ, Fiala JC, Harris KM. Dendritic spines disappear with chilling but proliferate excessively upon rewarming of mature hippocampus. Neuroscience 2004; 127:69-80. [PMID: 15219670 DOI: 10.1016/j.neuroscience.2004.04.053] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 04/21/2004] [Accepted: 04/27/2004] [Indexed: 01/04/2023]
Abstract
More dendritic spine synapses occur on mature neurons in hippocampal slices by 2 h of incubation in vitro, than in perfusion-fixed hippocampus. What conditions initiate this spinogenesis and how rapidly do the spines begin to proliferate on mature neurons? To address these questions, CA1 field of the hippocampus neurons expressing green fluorescent protein in living slices from mature mice were imaged with two-photon microscopy. Spines disappeared and dendrites were varicose immediately after slice preparation in ice-cold artificial cerebrospinal fluid (ACSF). Electron microscopy (EM) revealed disrupted dendritic cytoplasm, enlarged or free-floating postsynaptic densities, and excessive axonal endocytosis. Upon warming dendritic varicosities shrank and spines rapidly reappeared within a few minutes illustrating the remarkable resilience of mature hippocampal neurons in slices. When membrane impermeant sucrose was substituted for NaCl in ACSF dendrites remained spiny at ice-cold temperatures and EM revealed less disruption. Nevertheless, spine number and length increased within 30 min in warm ACSF even when the extracellular calcium concentration was zero and synaptic transmission was blocked. When slices were first recovered for several hours and then chilled in 6 degrees C ACSF many spines disappeared and the dendrites became varicose. Upon re-warming varicosities shrank and spines reemerged in the same position from which they disappeared. In addition, new spines formed and spines were longer suggesting that chilling, not the initial injury from slicing, caused the spines to disappear while re-warming triggered the spine proliferation on mature neurons. The new spines might be a substrate for neuronal recovery of function, when neurons have been chilled or exposed to other traumatic conditions that disrupt ionic homeostasis.
Collapse
Affiliation(s)
- S A Kirov
- Department of Neurosurgery, Human Brain Laboratory, Medical College of Georgia, 1120 15th Street, CB-2607, Augusta, GA 30912, USA.
| | | | | | | |
Collapse
|
83
|
Zhu XM, Ong WY. Changes in GABA transporters in the rat hippocampus after kainate-induced neuronal injury: decrease in GAT-1 and GAT-3 but upregulation of betaine/GABA transporter BGT-1. J Neurosci Res 2004; 77:402-9. [PMID: 15248296 DOI: 10.1002/jnr.20171] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The gamma-aminobutyric acid (GABA) transporters GAT-1, GAT-2, GAT-3, and BGT-1 have been cloned and identified according to their differential amino acid sequences and pharmacologic properties. In contrast to GAT-1, -2, or -3, BGT-1 is capable of utilizing both GABA and betaine as substrates. Betaine has been suggested to be a protective osmolyte in the brain. Because changes in expression of GABA transporters/BGT-1 might result in alterations in levels of GABA/betaine in the extracellular space, with consequent effects on neuronal excitability or osmolarity, the present study was carried out to explore expression of GABA transporters in the rat hippocampus after kainate-induced neuronal injury. A decrease in GAT-1 and GAT-3 immunostaining but no change in GAT-2 staining was observed in the degenerating CA subfields. In contrast, increased BGT-1 immunoreactivity was observed in astrocytes after kainate injection. BGT-1 is a weak transporter of GABA in comparison to other GABA transporters and the increased expression of BGT-1 in astrocytes might be a protective mechanism against increased osmotic stress known to occur after excitotoxic injury. On the other hand, excessive or prolonged BGT-1 expression might be a factor contributing to astrocytic swelling after brain injury.
Collapse
Affiliation(s)
- Xiao-Ming Zhu
- Department of Anatomy, National University of Singapore, Singapore
| | | |
Collapse
|
84
|
Hasegawa S, Yamaguchi M, Nagao H, Yoshihara Y, Mori K. Activated natural killer cells adhere to cultured hippocampal neurons and affect the dendritic morphology. J Neuroimmunol 2004; 151:126-36. [PMID: 15145611 DOI: 10.1016/j.jneuroim.2004.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 02/13/2004] [Accepted: 03/03/2004] [Indexed: 11/22/2022]
Abstract
To examine the manner of interactions between immune cells and central nervous system (CNS) neurons, mouse hippocampal neurons were co-cultured with lymphokine (IL-2)-activated killer (LAK) cells. Immunocytochemical and time-lapse observations indicated that LAK cells migrated along neuronal processes and made adhesive contacts with them. In addition to the direct physical effects, LAK cells released glutamate, induced the formation of beads-like structure in the dendrites of about 14% of hippocampal neurons and caused the reduction of dendritic protrusions. These results suggest that infiltrating immune cells can form direct adhesive connections with CNS neurons and affect their dendritic morphology.
Collapse
Affiliation(s)
- Sanae Hasegawa
- Department of Physiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
85
|
Bossy-Wetzel E, Talantova MV, Lee WD, Schölzke MN, Harrop A, Mathews E, Götz T, Han J, Ellisman MH, Perkins GA, Lipton SA. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 2004; 41:351-65. [PMID: 14766175 DOI: 10.1016/s0896-6273(04)00015-7] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Revised: 08/27/2003] [Accepted: 12/17/2003] [Indexed: 10/26/2022]
Abstract
Nitric oxide (NO) and zinc (Zn2+) are implicated in the pathogenesis of cerebral ischemia and neurodegenerative diseases. However, their relationship and the molecular mechanism of their neurotoxic effects remain unclear. Here we show that addition of exogenous NO or NMDA (to increase endogenous NO) leads to peroxynitrite (ONOO-) formation and consequent Zn2+ release from intracellular stores in cerebrocortical neurons. Free Zn2+ in turn induces respiratory block, mitochondrial permeability transition (mPT), cytochrome c release, generation of reactive oxygen species (ROS), and p38 MAP kinase activation. This pathway leads to caspase-independent K+ efflux with cell volume loss and apoptotic-like death. Moreover, Zn2+ chelators, ROS scavengers, Bcl-xL, dominant-interfering p38, or K+ channel blockers all attenuate NO-induced K+ efflux, cell volume loss, and neuronal apoptosis. Thus, these data establish a new form of crosstalk between NO and Zn2+ apoptotic signal transduction pathways that may contribute to neurodegeneration.
Collapse
Affiliation(s)
- Ella Bossy-Wetzel
- Center for Neuroscience & Aging, The Burnham Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Monnerie H, Shashidhara S, Le Roux PD. Effect of excess extracellular glutamate on dendrite growth from cerebral cortical neurons at 3 days in vitro: Involvement of NMDA receptors. J Neurosci Res 2004; 74:688-700. [PMID: 14635220 DOI: 10.1002/jnr.10797] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glutamate is an important regulator of dendrite development; however, during cerebral ischemia, massive glutamate release can lead to neurodegeneration and death. An early consequence of glutamate excitotoxicity is dendrite injury, which often precedes cell death. We examined the effect of glutamate on dendrite growth from embryonic day 18 (E18) mouse cortical neurons grown for 3 days in vitro (DIV) and immunolabeled with anti-microtubule-associated protein (MAP)2 and anti-neurofilament (NF)-H, to identify dendrites and axons, respectively. Cortical neurons exposed to excess extracellular glutamate (100 microM) displayed reduced dendrite growth, which occurred in the absence of cell death. This effect was mimicked by the ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) and blocked by the ionotropic glutamate receptor antagonist kynurenic acid and the NMDA receptor-specific antagonist MK-801. The non-NMDA receptor agonist AMPA, however, did not affect process growth. Neither NMDA nor AMPA influenced neuron survival. Immunolabeling and Western blot analysis of NMDA receptors using antibodies against the NR1 subunit, demonstrated that immature cortical neurons used in this study, express NMDA receptors. These results suggest that excess glutamate decreases dendrite growth through a mechanism resulting from NMDA receptor subclass activation. Furthermore, these data support the possibility that excess glutamate activation of NMDA receptors mediate both cell death in mature neurons and the inhibitory effect of excess glutamate on dendrite growth in immature neurons or in the absence of cell death.
Collapse
Affiliation(s)
- Hubert Monnerie
- Department of Neurosurgery, University of Pennsylvania, Philadelphia
| | | | | |
Collapse
|
87
|
Goel S, Wharton SB, Brett LP, Whittle IR. Morphological changes and stress responses in neurons in cerebral cortex infiltrated by diffuse astrocytoma. Neuropathology 2003; 23:262-70. [PMID: 14719540 DOI: 10.1046/j.1440-1789.2003.00510.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Local dysfunction in cerebral cortex infiltrated by astrocytoma can cause epilepsy and focal neurological deficits, but the cellular pathology of peritumoral cortex remains poorly defined. The aims of the present study were to define the morphological changes which occur in neurons in tumor-infiltrated cerebral cortex, and to determine whether peritumoral neurons show expression of cell stress-related proteins. Archival specimens of diffuse astrocytoma (n = 28) were identified with areas of both tumor-infiltrated cortex and apparently non-infiltrated cortex. Immunohistochemistry was performed to structural neuronal proteins (MAP-2, neurofilament proteins), beta-amyloid precursor protein, growth associated protein-43 and to injury response proteins (poly(ADP-ribose) polymerase, poly(ADP-ribose), c-fos, and c-jun). Tumor-infiltrated cortex revealed neuronal loss and architectural disarray compared to non-infiltrated cortex. Pyramidal neurons showed thinning of the cytoplasmic rim and their neuritic processes showed increasing tortuosity, varicosity, fragmentation and loss, with axonal spheroid formation and dendritic beading. Poly(ADP-ribose) polymerase, poly(ADP-ribose) and c-fos were up-regulated in both infiltrated and non-infiltrated cortex, but c-jun expression was greater in areas of tumor-infiltrated cortex. Surviving neurons in cortex infiltrated by astrocytoma demonstrate, therefore, a sequence of morphological alterations in their dendritic, somatic and axonal compartments, and demonstrate a cell stress response. The patterns of cellular pathology identified suggest possible mechanisms, by which neurons are damaged and eventually lost in peritumoral brain.
Collapse
Affiliation(s)
- Shom Goel
- Department of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | | | | | | |
Collapse
|
88
|
Huh JW, Raghupathi R, Laurer HL, Helfaer MA, Saatman KE. Transient Loss of Microtubule-Associated Protein 2 Immunoreactivity after Moderate Brain Injury in Mice. J Neurotrauma 2003; 20:975-84. [PMID: 14588114 DOI: 10.1089/089771503770195821] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microtubule-associated protein 2 (MAP2) is important for microtubule stability and neural plasticity and appears to be among the most vulnerable of the cytoskeletal proteins under conditions of neuronal injury. To evaluate the acute effects of moderate severity traumatic brain injury on MAP2, anesthetized, adult male C57BL/6 mice were subjected to controlled cortical impact brain injury. At 5 min, 15 min, 90 min, 4 h, and 24 h following brain injury (n = 4 injured and n = 1 sham-injured per time point), mice were sacrificed and immunohistochemistry was performed on coronal brain sections. Profound decreases in MAP2 immunolabeling were observed in the ipsilateral cortex and hippocampal dentate hilus at 5 min postinjury and in the ipsilateral hippocampal CA3 area by 4 h postinjury. Decreases in MAP2 labeling occurred prior to notable neuronal cell loss. Interestingly, cortical MAP2 immunoreactivity returned by 90 min postinjury, but the recovery was short-lived within the core in comparison to the periphery of the impact site. Partial restoration of MAP2 immunoreactivity was also observed in the ipsilateral CA3 and dentate hilus by 24 h postinjury. Our data corroborate that MAP2 is an early and sensitive marker for neuronal damage following traumatic brain injury. Acute MAP2 loss, however, may not necessarily presage neuronal death, even following moderate severity traumatic brain injury. Rather, to the best of our knowledge, our data are the first to suggest an intrinsic ability of the traumatized brain for MAP2 recovery after injury of moderate severity.
Collapse
Affiliation(s)
- Jimmy W Huh
- Department of Anesthesia and Critical Care, The Children's Hospital of Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
89
|
Abstract
AMPA receptor-mediated excitotoxicity has been implicated in the pathogenesis of stroke, neurotrauma, epilepsy, and many neurodegenerative diseases such as motoneuron disease. We studied the role of Cl- in AMPA receptor-mediated Ca2+-dependent excitotoxicity in cultured rat spinal motoneurons. Using the gramicidin perforated patch-clamp technique, the intracellular Cl- concentration could be calculated from the reversal potential of the GABA-induced current. The membrane depolarization caused by AMPA receptor stimulation resulted in Cl- influx through 5-nitro-2(3-phenylpropyl-amino) benzoic acid- and niflumic acid-sensitive Cl- channels. Cl- influx during AMPA receptor stimulation aggravated excitotoxic motoneuron death by two mechanisms: an increase of AMPA receptor conductance and an elevation of the Ca2+ driving force through a partial repolarization. The Cl- influx during AMPA receptor stimulation was enhanced by coadministration of GABA. This resulted in an increased Ca2+ influx and an enhanced cell death, suggesting that concomitant GABAergic stimulation may aggravate excitotoxic motoneuron death.
Collapse
|
90
|
Abstract
We hypothesized that cation-dependent Cl- transport protein Na-K-Cl cotransporter isoform 1 (NKCC1) plays a role in the disruption of ion homeostasis in cerebral ischemia. In the current study, a role for NKCC1 in neuronal death was elucidated in neurotoxicity induced by glutamate and oxygen and glucose deprivation (OGD). Incubation of cortical neurons cultured for 14-15 d in vitro (DIV) with 100 microm glutamate for 24 hr resulted in 50% cell death. Three hours of OGD followed by 21 hr of reoxygenation led to 70% cell death. Inhibition of NMDA receptors with dizocilpine hydrogen maleate (1 microm) prevented both OGD- and glutamate-mediated cell death. Moreover, blocking of NKCC1 activity with bumetanide (5-10 microm) abolished glutamate- or OGD-induced neurotoxicity. Bumetanide was ineffective if added after 10-120 min of glutamate incubation or 3-6 hr of OGD treatment. Accumulation of intracellular Na+ and 36Cl content after NMDA receptor activation was inhibited by bumetanide. Blockage of NKCC1 significantly attenuated cell swelling after OGD or NMDA receptor activation. This neuroprotection was age dependent. Inhibition of NKCC1 did not protect DIV 7-8 neurons against OGD-mediated cell death. In contrast, cell death in DIV 7-8 neurons was prevented by the protein-synthesis inhibitor, cycloheximide. Taken together, the results suggest that NKCC1 activity is involved in the acute excitotoxicity as a result of excessive Na+ and Cl- entry and disruption of ion homeostasis.
Collapse
|
91
|
Monnerie H, Shashidhara S, Le Roux PD. Decreased dendrite growth from cultured mouse cortical neurons surviving excitotoxic activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate receptors. Neurosci Lett 2003; 345:182-6. [PMID: 12842286 DOI: 10.1016/s0304-3940(03)00526-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During cerebral ischemia, massive glutamate release leads to cell death through ionotropic glutamate receptor activation. An early consequence of this excitotoxicity is dendrite injury, which can precede cell death. We therefore tested whether cells that survived an excitotoxic insult triggered by overactivation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate (KA) subtype of ionotropic glutamate receptors displayed altered dendrite growth. We demonstrate that 24 h exposure of cultured cortical neurons to AMPA or KA dramatically reduced dendrite growth from surviving neurons. AMPA or KA exposure decreased primary dendrite number and length, and also reduced dendritic branching. The AMPA/KA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione blocked the deleterious effect of AMPA and KA on dendrite growth. These results suggest that AMPA/KA receptor overactivation may contribute to dendritic injury from neurons that survive an ischemic insult.
Collapse
Affiliation(s)
- Hubert Monnerie
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
92
|
Chesnoy-Marchais D. Potentiation of glycine responses by dideoxyforskolin and tamoxifen in rat spinal neurons. Eur J Neurosci 2003; 17:681-91. [PMID: 12603258 DOI: 10.1046/j.1460-9568.2003.02481.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dideoxyforskolin, a forskolin analogue unable to stimulate adenylate cyclase, and tamoxifen, an antioestrogen widely used against breast cancer, are both known to block some Cl- channels. Their effects on Cl- responses to glycine or GABA have been tested here by using whole-cell recording from cultured spinal neurons. Dideoxyforskolin (4 or 16 microm) and tamoxifen (0.2-5 microm) both potentiate responses to low glycine concentrations. They also induce blocking effects, predominant at high glycine concentrations. At 5 microm, tamoxifen increased responses to 15 microm glycine by a factor >4.5, reaching 20 in some neurons. Potentiation by extracellular dideoxyforskolin or tamoxifen persisted after intracellular application of the modulator and was not due to Zn2+ contamination. Potentiation by tamoxifen also persisted in a Ca2+-free extracellular solution, after intracellular Ca2+ buffering and protein kinase C blockade. Thus, the critical sites of action are not intracellular. The EC50 for glycine was lowered 6.6-fold by 5 microm tamoxifen. The kinetics and voltage-dependence of the effects of tamoxifen on glycine responses support the idea that this hydrophobic drug may act from a site located within the membrane. Tamoxifen (5 micro m) also increased responses to 2 micro m GABA by a factor of 3.5, but barely affected peak responses to 20 microm GABA. The demonstration that tamoxifen affects some of the main inhibitory receptors should be useful for better evaluating its neurological effects. Furthermore, the results identify a new class of molecules that potentiate glycine receptor function.
Collapse
Affiliation(s)
- Dominique Chesnoy-Marchais
- Laboratoire de Neurobiologie Moléculaire et Cellulaire, CNRS UMR-8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
93
|
Distally directed dendrotoxicity induced by kainic Acid in hippocampal interneurons of green fluorescent protein-expressing transgenic mice. J Neurosci 2002. [PMID: 12223559 DOI: 10.1523/jneurosci.22-18-08052.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Excitotoxicity, resulting from the excessive release of glutamate, is thought to contribute to a variety of neurological disorders, including epilepsy. Excitotoxic damage to dendrites, i.e., dendrotoxicity, is often characterized by the formation of large dendritic swellings, or "beads." Here, we show that hippocampal interneurons that express the neuropeptide somatostatin are highly vulnerable to the excitotoxic effects of the ionotropic glutamate receptor agonist kainate. Brief, focal iontophoretic application of kainate rapidly induced bead formation in dendrites of somatostatinergic interneurons that express green fluorescent protein (GFP) from mice of the transgenic line GIN (GFP-expressing inhibitory neurons). Surprisingly, beads often did not form at the site of kainate application or even in the dendritic segment to which kainate was applied; instead, dendritic beading occurred more distally, often encompassing all branches distal to the application site. We have termed this phenomena, "distally directed dendrotoxicity." Distally directed beading was induced regardless of the branch order of the site of application and was found to be dependent on activation of voltage-gated sodium channels. Subsequent to induction, distally directed beading would reverse in most cells; in other cells, however, beading irreversibly invaded proximal dendritic segments and gradually encompassed the entire dendritic tree. These results demonstrate that distal dendritic segments are highly vulnerable to excitotoxic injury and imply that excessive excitatory activity originating in one synaptic pathway can impact synapses at more distal dendritic segments of the same neuron. The discovery of this phenomenon will likely be important in understanding interneuronal dysfunction following excitotoxic injury.
Collapse
|
94
|
Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide inhibit dendritic growth in cultured sympathetic neurons. J Neurosci 2002. [PMID: 12151535 DOI: 10.1523/jneurosci.22-15-06560.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are related neuropeptides that are released by the preganglionic sympathetic axons. These peptides have previously been implicated in the regulation of sympathetic neurotransmitter metabolism and cell survival in postganglionic sympathetic neurons. In this study we consider the possibility that PACAP and VIP also affect the morphological development of these neurons. Postganglionic rat sympathetic neurons formed extensive dendritic arbors after exposure to bone morphogenetic protein-7 (BMP-7) in vitro. PACAP and VIP reduced BMP-7-induced dendritic growth by approximately 70-90%, and this suppression was maintained for 3 weeks. However, neither PACAP nor VIP affected axonal growth or cell survival. The actions of PACAP and VIP appear to be mediated by PAC1 receptors because their effects were suppressed by an antagonist that binds to PAC1 and VPAC2 receptors (PACAP6-38), but not by an antagonist that binds to the VPAC1 and VPAC2 receptors. Moreover, exposure to PACAP and VIP caused phosphorylation and nuclear translocation of cAMP response element-binding protein, and agents that increase the intracellular concentration of cAMP mimicked the PACAP-induced inhibition of dendritic growth. These data suggest that peptides released by preganglionic nerves modulate dendritic growth in sympathetic neurons by a cAMP-dependent mechanism.
Collapse
|
95
|
Abstract
P2X receptors within the CNS mediate excitatory synaptic transmission and also act presynaptically to modulate neurotransmitter release. We have studied the targeting and trafficking of P2X4 and P2X2 receptors heterologously expressed in cultured olfactory bulb neurons. Homomeric P2X4 receptors had a punctate distribution, and many of the puncta colocalized with early endosomes. In contrast, P2X2 receptors were primarily localized at the plasma membrane. By antibody-labeling of surface receptors in living neurons, we showed that P2X4 receptors undergo rapid constitutive internalization and subsequent reinsertion into the plasma membrane, whereas P2X2 receptors were not regulated in such a way. The internalization of P2X4 receptors was dynamin-dependent, and the binding of ATP enhanced the basal rate of retrieval in a Ca2+-independent manner. The presence of the P2X4 subunit in a P2X4/6 heteromer governed the trafficking properties of the receptor. P2X receptors acted presynaptically to enhance the release of glutamate, suggesting that the regulated cycling of P2X4-containing receptors might provide a mechanism for modulation of synaptic transmission.
Collapse
|
96
|
Zeevalk GD, Manzino L, Sonsalla PK. Protection of malonate-induced GABA but not dopamine loss by GABA transporter blockade in rat striatum. Exp Neurol 2002; 176:193-202. [PMID: 12093096 DOI: 10.1006/exnr.2002.7917] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous work has shown that overstimulation of GABA(A) receptors can potentiate neuronal cell damage during excitotoxic or metabolic stress in vitro and that GABA(A) antagonists or GABA transport blockers are neuroprotective under these situations. Malonate, a reversible succinate dehydrogenase/mitochondrial complex II inhibitor, is frequently used in animals to model cell loss in neurodegenerative diseases such as Parkinson's and Huntington's diseases. To determine if GABA transporter blockade during mitochondrial impairment can protect neurons in vivo as compared with in vitro studies, rats received a stereotaxic infusion of malonate (2 micromol) into the left striatum to induce a metabolic stress. The nonsubstrate GABA transport blocker, NO711 (20 nmol) was infused in some rats 30 min before and 3 h following malonate infusion. After 1 week, dopamine and GABA levels in the striata were measured. Malonate caused a significant loss of striatal dopamine and GABA. Blockade of the GABA transporter significantly attenuated GABA, but not dopamine loss. In contrast with several in vitro reports, GABA(A) receptors were not a downstream mediator of protection by NO711. Intrastriatal infusion of malonate (2 micromol) plus or minus the GABA(A) receptor agonist muscimol (1 micromol), the GABA(A) Cl- binding site antagonist picrotoxin (50 nmol) or the GABA(B) receptor antagonist saclofen (33 nmol) did not modify loss of striatal dopamine or GABA when examined 1 week following infusion. These data show that GABA transporter blockade during mitochondrial impairment in the striatum provides protection to GABAergic neurons. GABA transporter blockade, which is currently a pharmacological strategy for the treatment of epilepsy, may thus also be beneficial in the treatment of acute and chronic conditions involving energy inhibition such as stroke/ischemia or Huntington's disease. These findings also point to fundamental differences between immature and adult neurons in the downstream involvement of GABA receptors during metabolic insult.
Collapse
Affiliation(s)
- Gail D Zeevalk
- Department of Neurology, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
97
|
Esquenazi S, Monnerie H, Kaplan P, Le Roux P. BMP-7 and excess glutamate: opposing effects on dendrite growth from cerebral cortical neurons in vitro. Exp Neurol 2002; 176:41-54. [PMID: 12093081 DOI: 10.1006/exnr.2002.7906] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamate is an important regulator of dendrite development. During cerebral ischemia, however, there is massive release of glutamate reaching millimolar concentrations in the extracellular space. An early consequence of this excess glutamate is reduced dendrite growth. Bone morphogenetic protein-7 (BMP-7) a member of the transforming growth factor-beta (TGF-beta) superfamily has been demonstrated to enhance dendrite output from cerebral cortical and hippocampal neurons in vitro. However, it is not known whether BMP-7can prevent the reduced dendrite growth associated with excess glutamate or enhance dendrite growth after glutamate exposure. Therefore we quantified axon and primary, secondary, and total dendrite growth from embryonic mouse cortical neurons (E18) grown at low density in vitro in a chemically defined medium and exposed to glutamate (1 or 2 mM) for 48 h. Morphology and double immunolabeling (MAP2, NF-H) were used to identify cortical dendrites and axons after 3 DIV. In these short-term cultures, glutamate did not influence neuron survival. The addition of glutamate to cortical neurons, however, significantly attenuated dendrite output. This effect was mimicked by the addition of NMDA but not AMPA agonists and inhibited by the specific NMDA receptor antagonist MK-801. The reduction in dendrite growth mediated by excess glutamate was ameliorated by the administration of 30 or 100 ng/ml of BMP-7. In addition, when administered in a delayed fashion between 1 and 24 h after the initial glutamate exposure, BMP-7 was able to enhance dendrite growth, including primary dendrite number, primary dendrite length, and secondary dendritic branching. These findings demonstrate that BMP-7 can ameliorate reduced dendrite growth from cerebral cortical neurons associated with excess glutamate in vitro and are important because they may help explain why BMP-7 administration is associated with enhanced functional recovery in models of cerebral ischemia.
Collapse
Affiliation(s)
- Susana Esquenazi
- Department of Neurosurgery, New York University, New York, New York, USA
| | | | | | | |
Collapse
|
98
|
Leonard SE, Kirby R. The role of glutamate, calcium and magnesium in secondary brain injury. J Vet Emerg Crit Care (San Antonio) 2002. [DOI: 10.1046/j.1534-6935.2002.00003.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
99
|
Tauskela JS, Comas T, Hewitt K, Monette R, Paris J, Hogan M, Morley P. Cross-tolerance to otherwise lethal N-methyl-D-aspartate and oxygen-glucose deprivation in preconditioned cortical cultures. Neuroscience 2002; 107:571-84. [PMID: 11720781 DOI: 10.1016/s0306-4522(01)00381-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In vitro ischemic preconditioning induced by subjecting rat cortical cultures to nonlethal oxygen-glucose deprivation protects against a subsequent exposure to otherwise lethal oxygen-glucose deprivation. We provide evidence that attenuation of the postsynaptic N-methyl-D-aspartate (NMDA) receptor- and Ca(2+)-dependent neurotoxicity underlies oxygen-glucose deprivation tolerance. It is demonstrated that extended tolerance to otherwise lethal NMDA or oxygen-glucose deprivation can be induced by either of their sublethal forms of preconditioning. These four pathways are linked, since NMDA receptor blockade during preconditioning by oxygen-glucose deprivation eliminates tolerance. These results suggest that NMDA tolerance, induced by nonlethal activation of these receptors during oxygen-glucose deprivation preconditioning, underlies oxygen-glucose deprivation tolerance. Several neurotoxic downstream Ca(2+)-dependent signaling events specifically linked to NMDA receptor activation are attenuated during otherwise lethal oxygen-glucose deprivation in preconditioned cultures. Specifically, calpain activation, as well as degradation of microtubule-associated protein-2 and postsynaptic density-95, are attenuated 2 h following otherwise lethal NMDA treatment alone or oxygen-glucose deprivation in preconditioned cultures. Formation of microtubule-associated protein-2-labeled dendritic varicosities is also attenuated in preconditioned cultures within 1 h of lethal oxygen-glucose deprivation or NMDA application. Intracellular Ca(2+) levels, measured using the high- or low-affinity dyes Fluo-4 (K(d) approximately equal 345 nM) or Fluo-4FF (K(d) approximately equal 9.7 microM) respectively, are markedly attenuated during lethal oxygen-glucose deprivation in preconditioned cultures.Collectively, the results suggest the attenuation of the postsynaptic NMDA-mediated component of otherwise lethal oxygen-glucose deprivation through the suppression of Ca(2+)-dependent neurotoxic signaling, a mechanism that is initially induced by transient nonlethal activation of this receptor during ischemic preconditioning.
Collapse
Affiliation(s)
- J S Tauskela
- National Research Council of Canada, Institute for Biological Sciences, Ottawa, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
100
|
Kanno T, Kubohara Y, Goto F, Takata K, Hayashi K. N-methyl-D-aspartate receptor-dependent and -independent cytotoxic effects of Dictyostelium discoideum differentiation-inducing factor-1 on rat cortical neurons. Dev Growth Differ 2001; 43:709-16. [PMID: 11737151 DOI: 10.1046/j.1440-169x.2001.00607.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Differentiation-inducing factor-1 (DIF-1) is a chlorinated alkylphenone (small lipophilic hormone) that induces stalk cell formation in the cellular slime mold Dictyostelium discoideum. Recent studies have revealed that DIF-1 inhibits growth and induces the differentiation of mammalian tumor cells. The present study examines the effects of DIF-1 on rat cortical neurons in primary culture. We found that DIF-1 induced rapid neuronal cell death. The release of lactate dehydrogenase (LDH), as an indicator of cell death, increased dose-dependently with DIF-1. The release of LDH was inhibited by the N-methyl-D-aspartate (NMDA) receptor antagonists MK801 and AP5, suggesting that the NMDA receptor is involved in the induction of cell death by DIF-1. However, glutamate cytotoxicity could not explain the entire action of DIF-1 on neurons because the estimated concentration of glutamate around DIF-1-treated neurons was below 50 microM and DIF-1 caused more severe cell death than 500 microM glutamate. We discovered that another portion of DIF-1 cytotoxicity is independent of the NMDA receptor; that is, coaddition of DIF-1 and MK801 induced dendritic beading and increased expression of the immediate early genes c-fos and zif/268. These results indicate that DIF-1 induces rapid cell death via both NMDA receptor-dependent and -independent pathways in rat cortical neurons.
Collapse
Affiliation(s)
- T Kanno
- Laboratory of Molecular and Cellular Morphology, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15, Showamachi, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | |
Collapse
|