51
|
Abstract
Anthrax lethal toxin (LT) activates the NLRP1b (NALP1b) inflammasome and caspase-1 in macrophages from certain inbred mouse strains, but the mechanism by which this occurs is poorly understood. We report here that similar to several NLRP3 (NALP3, cryopyrin)-activating stimuli, LT activation of the NLRP1b inflammasome involves lysosomal membrane permeabilization (LMP) and subsequent cytoplasmic cathepsin B activity. CA-074Me, a potent cathepsin B inhibitor, protects LT-sensitive macrophages from cell death and prevents the activation of caspase-1. RNA interference knockdown of cathepsin B expression, however, cannot prevent LT-mediated cell death, suggesting that CA-074Me may also act on other cellular proteases released during LMP. CA-074Me appears to function downstream of LT translocation to the cytosol (as assessed by mitogen-activated protein kinase kinase cleavage), K(+) effluxes, and proteasome activity. The initial increase in cytoplasmic activity of cathepsin B occurs at the same time or shortly before caspase-1 activation but precedes a larger-scale lysosomal destabilization correlated closely with cytolysis. We present results suggesting that LMP may be involved in the activation of the NLRP1b inflammasome.
Collapse
|
52
|
Warfel JM, D'Agnillo F. Anthrax lethal toxin enhances IkappaB kinase activation and differentially regulates pro-inflammatory genes in human endothelium. J Biol Chem 2009; 284:25761-71. [PMID: 19620708 DOI: 10.1074/jbc.m109.036970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Anthrax lethal toxin (LT) was previously shown to enhance transcriptional activity of NF-kappaB in tumor necrosis factor-alpha-activated primary human endothelial cells. Here we show that this LT-mediated increase in NF-kappaB activation is associated with the enhanced degradation of the inhibitory proteins IkappaBalpha and IkappaBbeta but not IkappaBepsilon. Moreover, this was accompanied by enhanced activation of the IkappaB kinase complex (IKK), which is responsible for targeting IkappaB proteins for degradation. Importantly, LT enhancement of IkappaBalpha degradation was completely blocked by a selective IKKbeta inhibitor, whereas IkappaBbeta degradation was attenuated, suggesting a mechanistic link. Consistent with the above data, LT-cotreated cells show elevated phosphorylation of two IKK substrates, IkappaBalpha and p65, both of which were blocked by incubation with the IKKbeta inhibitor. Consistent with NF-kappaB activation, LT increased transcription of the NF-kappaB regulated gene CD40. Conversely, LT inhibited transcription of another NF-kappaB-regulated gene, CCL2. This inhibition was linked to the LT-mediated suppression of another CCL2-regulating transcription factor, AP-1 (activator protein-1). These data suggest that LT-mediated enhancement of NF-kappaB is IKK-dependent, but importantly, the net effect of LT on the transcription of proinflammatory genes is driven by the cumulative effect of LT on the particular set of transcription factors that regulate a given promoter. Together, these findings provide new mechanistic insight on how LT may disrupt the host response to anthrax.
Collapse
Affiliation(s)
- Jason M Warfel
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
53
|
Abstract
An 8,883-bp mini-pXO1 plasmid containing a replicon from Bacillus anthracis pXO1 (181.6 kb) was identified by making large deletions in the original plasmid using a newly developed Cre-loxP system. Portions of the truncated mini-pXO1 were cloned into an Escherichia coli vector unable to replicate in B. anthracis. A 5.95-kb region encompassing three putative genes was identified as the minimal pXO1 fragment required for replication of the resulting recombinant shuttle plasmid (named pMR) in B. anthracis. Deletion analysis showed that the only genes essential for replication were the pXO1-14 and pXO1-16 genes, which are transcribed in opposite directions and encode predicted proteins of 66.5 and 67.1 kDa, respectively. The ORF14 protein contains a helix-turn-helix motif, while the ORF16 upstream region contains attributes of a theta-replicating plasmid origin of replication (Ori), namely, an exclusively A+T-containing segment, five 9-bp direct repeats, an inverted repeat, and a sigma(A)-dependent promoter for the putative replication initiator Rep protein (ORF16). Spontaneous mutations generated in the ORF14, ORF16, and Ori regions of pMR during PCR amplification produced a temperature-sensitive plasmid that is unable to replicate in B. anthracis at 37 degrees C. The efficacy of transformation of plasmid-free B. anthracis Ames and Sterne strains by the original pMR was approximately 10(3) CFU/microg, while Bacillus cereus strains 569 and ATCC 10987 were transformed with efficiencies of 10(4) and 10(2) CFU/microg, respectively. Around 95% of B. anthracis cells retained pMR after one round of sporulation and germination.
Collapse
|
54
|
Li Y, Cui X, Su J, Haley M, Macarthur H, Sherer K, Moayeri M, Leppla SH, Fitz Y, Eichacker PQ. Norepinephrine increases blood pressure but not survival with anthrax lethal toxin in rats. Crit Care Med 2009; 37:1348-54. [PMID: 19242337 PMCID: PMC3401929 DOI: 10.1097/ccm.0b013e31819cee38] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The response of anthrax lethal toxin (LeTx) induced shock and lethality to conventional therapies has received little study. Previously, fluids worsened outcome in LeTx-challenged rats in contrast to its benefit with lipopolysaccharide (LPS) or Escherichia coli. The current study investigated norepinephrine treatment. MEASUREMENTS AND MAIN RESULTS Sprague-Dawley rats (n = 232) weighing between 230 and 250 g were challenged with similar lethal (80%) 24-hour infusions of either LPS or LeTx, or with diluent only. Toxin-challenged animals were also randomized to receive 24-hour infusions with one of three doses of norepinephrine (0.03, 0.3, or 3.0 microg/kg/min) or placebo started 1 hour after initiation of challenge. All toxin animals received similar volumes of fluid over the 24 hours (equivalent to 4.0-4.3 mL/kg/hr). Although the intermediate norepinephrine dose (0.3 microg/kg/min for 24 hours) improved survival with LPS (p = 0.04) and increased blood pressure before the onset of lethality with LeTx (p < 0.0001), it did not improve survival with the latter (p = ns). Furthermore, neither increasing nor decreasing norepinephrine doses improved survival with LeTx. CONCLUSION Hypotension with LeTx may not be a primary cause of lethality in this model. Rather, LeTx may cause direct cellular injury insensitive to vasopressors. These findings suggest that during anthrax infection and shock, along with hemodynamic support, toxin-directed treatments may be necessary as well.
Collapse
Affiliation(s)
- Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Junwu Su
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Michael Haley
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892
- Carolinas Medical Center, Department of Internal Medicine, Charlotte, NC 28232
| | - Heather Macarthur
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Kevin Sherer
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Mahtab Moayeri
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Stephen H. Leppla
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yvonne Fitz
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Peter Q. Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
55
|
Pomerantsev AP, Pomerantseva OM, Camp AS, Mukkamala R, Goldman S, Leppla SH. PapR peptide maturation: role of the NprB protease in Bacillus cereus 569 PlcR/PapR global gene regulation. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2009; 55:361-77. [PMID: 19159431 PMCID: PMC2678557 DOI: 10.1111/j.1574-695x.2008.00521.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The global transcriptional regulator PlcR controls gene expression in Bacillus cereus and Bacillus thuringiensis. Activity of PlcR is regulated by PapR, the product of an ORF located immediately downstream of plcR. To be active in B. cereus, PapR must be secreted and then processed to the mature peptide by an unknown protease. This peptide is transported by an oligopeptide permease into the cell, where it activates PlcR. In this study, we show that the neutral protease B (NprB) secreted by B. cereus 569 is required for extracellular PapR maturation. Purified recombinant NprB processed the synthetic PapR propeptide to produce a set of peptides derived from the C-terminal domain of PapR. Supplementation of growth media with synthetic PapR-derived C-terminal 5-, 7-, 8- and 27-amino acid (aa) peptides caused activation of intracellular PlcR in a PapR-deficient strain of B. cereus 569 while only the 5- and 7-aa peptides activated PlcR in a nprB mutant. The maximum activity was found for the 7-mer peptide. However, even the 7-mer peptide could not activate PlcR with a C-terminal truncation of as few as 6 aa. This indicates that interactions of the C-terminal regions of both PlcR and PapR are important in transcriptional activation of the B. cereus 569 PlcR regulon.
Collapse
Affiliation(s)
- Andrei P. Pomerantsev
- Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-3202
| | - Olga M. Pomerantseva
- Biological Defense Research Directorate, Naval Medical Research Center, Rockville, MD, 20852
| | - Andrew S. Camp
- Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-3202
| | - Radhika Mukkamala
- Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-3202
| | - Stanley Goldman
- Biological Defense Research Directorate, Naval Medical Research Center, Rockville, MD, 20852
| | - Stephen H. Leppla
- Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-3202
| |
Collapse
|
56
|
Codon-optimized fluorescent proteins designed for expression in low-GC gram-positive bacteria. Appl Environ Microbiol 2009; 75:2099-110. [PMID: 19181829 DOI: 10.1128/aem.02066-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Fluorescent proteins have wide applications in biology. However, not all of these proteins are properly expressed in bacteria, especially if the codon usage and genomic GC content of the host organism are not ideal for high expression. In this study, we analyzed the DNA sequences of multiple fluorescent protein genes with respect to codons and GC content and compared them to a low-GC gram-positive bacterium, Bacillus anthracis. We found high discrepancies for cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), and the photoactivatable green fluorescent protein (PAGFP), but not GFP, with regard to GC content and codon usage. Concomitantly, when the proteins were expressed in B. anthracis, CFP- and YFP-derived fluorescence was undetectable microscopically, a phenomenon caused not by lack of gene transcription or degradation of the proteins but by lack of protein expression. To improve expression in bacteria with low genomic GC contents, we synthesized a codon-optimized gfp and constructed optimized photoactivatable pagfp, cfp, and yfp, which were in contrast to nonoptimized genes highly expressed in B. anthracis and in another low-GC gram-positive bacterium, Staphylococcus aureus. Using optimized GFP as a reporter, we were able to monitor the activity of the protective antigen promoter of B. anthracis and confirm its dependence on bicarbonate and regulators present on virulence plasmid pXO1.
Collapse
|
57
|
Detection of anthrax toxin by an ultrasensitive immunoassay using europium nanoparticles. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:408-13. [PMID: 19129473 DOI: 10.1128/cvi.00412-08] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We developed a europium nanoparticle-based immunoassay (ENIA) for the sensitive detection of anthrax protective antigen (PA). The ENIA exhibited a linear dose-dependent pattern within the detection range of 0.01 to 100 ng/ml and was approximately 100-fold more sensitive than enzyme-linked immunosorbent assay (ELISA). False-positive results were not observed with serum samples from healthy adults, mouse plasma without PA, or plasma samples collected from mice injected with anthrax lethal factor or edema factor alone. For the detection of plasma samples spiked with PA, the detection sensitivities for ENIA and ELISA were 100% (11/11 samples) and 36.4% (4/11 samples), respectively. The assay exhibited a linear but qualitative correlation between the PA injected and the PA detected in murine blood (r=0.97731; P<0.0001). Anthrax PA was also detected in the circulation of mice infected with spores from a toxigenic Sterne-like strain of Bacillus anthracis, but only in the later stages of infection. These results indicate that the universal labeling technology based on europium nanoparticles and its application may provide a rapid and sensitive testing platform for clinical diagnosis and laboratory research.
Collapse
|
58
|
Li Q, Peachman KK, Sower L, Leppla SH, Shivachandra SB, Matyas GR, Peterson JW, Alving CR, Rao M, Rao VB. Anthrax LFn-PA Hybrid Antigens: Biochemistry, Immunogenicity, and Protection Against Lethal Ames Spore Challenge in Rabbits. THE OPEN VACCINE JOURNAL 2009; 2:92-99. [PMID: 20390054 PMCID: PMC2853182 DOI: 10.2174/1875035400902010092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe a novel hybrid anthrax toxin approach that incorporates multiple components into a single vaccine product. The key domains of protective antigen (PA) and lethal factor (LF) that may be critical for inducing protective immunity are combined into one recombinant molecule. Two LF N-terminal domain-PA hybrids, one with wild-type PA and another with furin cleavage-minus PA, were expressed in E. coli and purified in a native form. Both the hybrids bind to the extracellular domain of the host receptor, CMG2; the wild-type hybrid can be cleaved by furin exposing the LF interacting domain, allowing it to oligomerize into lethal toxin as well as translocation pore-like complexes. The hybrid antigens are immunogenic in Dutch-belted rabbits, eliciting strong PA-specific and LF-specific antibodies. However, the lethal toxin neutralizing antibody titers are 3-7 times lower than those elicited by PA-alum. The hybrid antigens conferred 100% (6/6) protection in rabbits challenged intranasally with a 100 LD(50) dose of Bacillus anthracis Ames strain spores.
Collapse
Affiliation(s)
- Qin Li
- Department of Biology, 103 McCort Ward Hall, The Catholic University of America, 620 Michigan Ave., NE, Washington, DC 20064, USA
| | - Kristina K. Peachman
- USMHRP, Henry M. Jackson Foundation for the Advancement of Military Medicine, 1600 East Gude Drive, Rockville, MD, 20850, USA
| | - Laurie Sower
- The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Stephen H. Leppla
- Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, NIH, 33 North Dr., Bethesda, MD, 20892, USA
| | - Sathish B. Shivachandra
- Department of Biology, 103 McCort Ward Hall, The Catholic University of America, 620 Michigan Ave., NE, Washington, DC 20064, USA
| | - Gary R. Matyas
- Division of Retrovirology, Walter Reed Army Institute of Research, 1600 East Gude Drive, Rockville, MD, 20850, USA
| | | | - Carl R. Alving
- Division of Retrovirology, Walter Reed Army Institute of Research, 1600 East Gude Drive, Rockville, MD, 20850, USA
| | - Mangala Rao
- Division of Retrovirology, Walter Reed Army Institute of Research, 1600 East Gude Drive, Rockville, MD, 20850, USA
| | - Venigalla B. Rao
- Department of Biology, 103 McCort Ward Hall, The Catholic University of America, 620 Michigan Ave., NE, Washington, DC 20064, USA
| |
Collapse
|
59
|
Levin TC, Wickliffe KE, Leppla SH, Moayeri M. Heat shock inhibits caspase-1 activity while also preventing its inflammasome-mediated activation by anthrax lethal toxin. Cell Microbiol 2008; 10:2434-46. [PMID: 18671821 PMCID: PMC2592509 DOI: 10.1111/j.1462-5822.2008.01220.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Anthrax lethal toxin (LT) rapidly kills macrophages from certain mouse strains in a mechanism dependent on the breakdown of unknown protein(s) by the proteasome, formation of the Nalp1b (NLRP1b) inflammasome and subsequent activation of caspase-1. We report that heat-shocking LT-sensitive macrophages rapidly protects them against cytolysis by inhibiting caspase-1 activation without upstream effects on LT endocytosis or cleavage of the toxin's known cytosolic substrates (mitogen-activated protein kinases). Heat shock protection against LT occurred through a mechanism independent of de novo protein synthesis, HSP90 activity, p38 activation or proteasome inhibition and was downstream of mitogen-activated protein kinase cleavage and degradation of an unknown substrate by the proteasome. The heat shock inhibition of LT-mediated caspase-1 activation was not specific to the Nalp1b (NLRP1b) inflammasome, as heat shock also inhibited Nalp3 (NLRP3) inflammasome-mediated caspase-1 activation in macrophages. We found that heat shock induced pro-caspase-1 association with a large cellular complex that could prevent its activation. Additionally, while heat-shocking recombinant caspase-1 did not affect its activity in vitro, lysates from heat-shocked cells completely inhibited recombinant active caspase-1 activity. Our results suggest that heat shock inhibition of active caspase-1 can occur independently of an inflammasome platform, through a titratable factor present within intact, functioning heat-shocked cells.
Collapse
Affiliation(s)
- Tera C. Levin
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Katherine E. Wickliffe
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Stephen H. Leppla
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Mahtab Moayeri
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
| |
Collapse
|
60
|
Role of the N-terminal amino acid of Bacillus anthracis lethal factor in lethal toxin cytotoxicity and its effect on the lethal toxin neutralization assay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1737-41. [PMID: 18815235 DOI: 10.1128/cvi.00081-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytotoxic activity of lethal factor (LF), a critical reagent used in the cell-based lethal toxin neutralization assay to assess anthrax vaccines, was shown to depend on the identity of its N-terminal amino acid, which plays a role in the targeting of LF to the proteasome for degradation. These results demonstrate that care must be taken to ensure that LF preparations used in standardized cell-based assays are not altered at their N-terminal ends.
Collapse
|
61
|
Role of N-terminal amino acids in the potency of anthrax lethal factor. PLoS One 2008; 3:e3130. [PMID: 18769623 PMCID: PMC2518864 DOI: 10.1371/journal.pone.0003130] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 08/12/2008] [Indexed: 11/19/2022] Open
Abstract
Anthrax lethal factor (LF) is a Zn(+2)-dependent metalloprotease that cleaves several MAPK kinases and is responsible for the lethality of anthrax lethal toxin (LT). We observed that a recombinant LF (LF-HMA) which differs from wild type LF (LF-A) by the addition of two residues (His-Met) to the native Ala (A) terminus as a result of cloning manipulations has 3-fold lower potency toward cultured cells and experimental animals. We hypothesized that the "N-end rule", which relates the half-life of proteins in cells to the identity of their N-terminal residue, might be operative in the case of LF, so that the N-terminal residue of LF would determine the cytosolic stability and thereby the potency of LF. Mutational studies that replaced the native N-terminal residue of LF with known N-end rule stabilizing or destabilizing residues confirmed that the N-terminal residue plays a significant role in determining the potency of LT for cultured cells and experimental animals. The fact that a commercially-available LF preparation (LF-HMA) that is widely used in basic research studies and for evaluation of vaccines and therapeutics is 3-fold less potent than native LF (LF-A) should be considered when comparing published studies and in the design of future experiments.
Collapse
|
62
|
Bromberg-White JL, Duesbery NS. Biological and biochemical characterization of anthrax lethal factor, a proteolytic inhibitor of MEK signaling pathways. Methods Enzymol 2008; 438:355-65. [PMID: 18413261 DOI: 10.1016/s0076-6879(07)38025-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The secretion of factors that block critical intracellular signaling pathways is a common strategy used by pathogenic bacteria for disabling host defenses and causing disease. Anthrax lethal toxin (LeTx) has been shown to cleave and inactivate mitogen-activated protein kinase (MAPK) kinases (MKKs or MEKs) and to inhibit MKK signaling. Cleavage of MKKs by LeTx prevents activation of their downstream substrates, the MAPKs. Because MAPK pathways regulate a variety of crucial cellular functions including proliferation, survival, differentiation, adhesion, and motility, LeTx has become a focus of study as an investigative tool as well as for the treatment and prevention of diseases due to malfunctions in MAPK signaling. This chapter describes methods for expressing and purifying the components of LeTx and focuses on techniques available for assessing its activity.
Collapse
Affiliation(s)
- Jennifer L Bromberg-White
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | | |
Collapse
|
63
|
Wickliffe KE, Leppla SH, Moayeri M. Killing of macrophages by anthrax lethal toxin: involvement of the N-end rule pathway. Cell Microbiol 2008; 10:1352-62. [PMID: 18266992 PMCID: PMC2500182 DOI: 10.1111/j.1462-5822.2008.01131.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Macrophages from certain inbred mouse strains are rapidly killed (< 90 min) by anthrax lethal toxin (LT). LT cleaves cytoplasmic MEK proteins at 20 min and induces caspase-1 activation in sensitive macrophages at 50-60 min, but the mechanism of LT-induced death is unknown. Proteasome inhibitors block LT-mediated caspase-1 activation and can protect against cell death, indicating that the degradation of at least one cellular protein is required for LT-mediated cell death. Proteins can be degraded by the proteasome via the N-end rule, in which a protein's stability is determined by its N-terminal residue. Using amino acid derivatives that act as inhibitors of this pathway, we show that the N-end rule is required for LT-mediated caspase-1 activation and cell death. We also found that bestatin methyl ester, an aminopeptidase inhibitor protects against LT in vitro and in vivo and that the different inhibitors of the protein degradation pathway act synergistically in protecting against LT. We identify c-IAP1, a mammalian member of the inhibitor of apoptosis protein (IAP) family, as a novel N-end rule substrate degraded in macrophages treated with LT. We also show that LT-induced c-IAP1 degradation is independent of the IAP-antagonizing proteins Smac/DIABLO and Omi/HtrA2, but dependent on caspases.
Collapse
Affiliation(s)
- Katherine E. Wickliffe
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Stephen H. Leppla
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Mahtab Moayeri
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
| |
Collapse
|
64
|
Warfel JM, D'Agnillo F. Anthrax Lethal Toxin Enhances TNF-Induced Endothelial VCAM-1 Expression via an IFN Regulatory Factor-1-Dependent Mechanism. THE JOURNAL OF IMMUNOLOGY 2008; 180:7516-24. [DOI: 10.4049/jimmunol.180.11.7516] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
65
|
Ding Y, Boguslawski EA, Berghuis BD, Young JJ, Zhang Z, Hardy K, Furge K, Kort E, Frankel AE, Hay RV, Resau JH, Duesbery NS. Mitogen-activated protein kinase kinase signaling promotes growth and vascularization of fibrosarcoma. Mol Cancer Ther 2008; 7:648-58. [PMID: 18319331 DOI: 10.1158/1535-7163.mct-07-2229] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We hypothesized that signaling through multiple mitogen-activated protein kinase (MAPK) kinase (MKK) pathways is essential for the growth and vascularization of soft-tissue sarcomas, which are malignant tumors derived from mesenchymal tissues. We tested this using HT-1080, NCI, and Shac fibrosarcoma-derived cell lines and anthrax lethal toxin (LeTx), a bacterial toxin that inactivates MKKs. Western blots confirmed that LeTx treatment reduced the levels of phosphorylated extracellular signal-regulated kinase and p38 MAPK in vitro. Although short treatments with LeTx only modestly affected cell proliferation, sustained treatment markedly reduced cell numbers. LeTx also substantially inhibited the extracellular release of angioproliferative factors including vascular endothelial growth factor, interleukin-8, and basic fibroblast growth factor. Similar results were obtained with cell lines derived from malignant fibrous histiocytomas, leiomyosarcomas, and liposarcomas. In vivo, LeTx decreased MAPK activity and blocked fibrosarcoma growth. Growth inhibition correlated with decreased cellular proliferation and extensive necrosis, and it was accompanied by a decrease in tumor mean vessel density as well as a reduction in serum expression of angioproliferative cytokines. Vital imaging using high-resolution ultrasound enhanced with contrast microbubbles revealed that the effects of LeTx on tumor perfusion were remarkably rapid (<24 h) and resulted in a marked reduction of perfusion within the tumor but not in nontumor tissues. These results are consistent with our initial hypothesis and lead us to propose that MKK inhibition by LeTx is a broadly effective strategy for targeting neovascularization in fibrosarcomas and other similar proliferative lesions.
Collapse
Affiliation(s)
- Yan Ding
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Huang D, Ding Y, Luo WM, Bender S, Qian CN, Kort E, Zhang ZF, VandenBeldt K, Duesbery NS, Resau JH, Teh BT. Inhibition of MAPK kinase signaling pathways suppressed renal cell carcinoma growth and angiogenesis in vivo. Cancer Res 2008; 68:81-8. [PMID: 18172299 DOI: 10.1158/0008-5472.can-07-5311] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathways play essential roles in cell proliferation and differentiation. Recent studies also show the activation of MAPK signaling pathways in tumorigenesis, metastasis, and angiogenesis of multiple human malignancies, including renal cell carcinoma (RCC). To assess the role of this pathway in regulating the proliferation and survival of RCC cells, we first examined the expression of MAPK kinase (MKK) and MAPK in clear cell RCC and confirmed the overexpression of MKK1 and extracellular signal-regulated kinase 2 (ERK2) in these tumors. We then tested the effects of pharmacologic inhibition of MKK on human RCC cell lines, both in vitro and in vivo, using anthrax lethal toxin (LeTx), which cleaves and inactivates several MKKs. Western blotting showed that the phosphorylation levels of ERK, c-Jun-NH(2) kinase, and p38 MAPK decreased after 72 h of LeTx treatment. Exposure to LeTx for 72 h reduced cell proliferation by 20% without significant effects on cell cycle distribution and apoptosis. Anchorage-independent growth of RCC cells was dramatically inhibited by LeTx. In vivo studies showed that tumor growth of RCC xenografts could be suppressed by LeTx. Extensive necrosis and decreased tumor neovascularization were observed after LeTx treatment. LeTx also showed direct inhibition of proliferation of endothelial cells in vitro. Our results suggest that suppression of one or more MAPK signaling pathways may inhibit RCC growth through the disruption of tumor vasculature.
Collapse
Affiliation(s)
- Dan Huang
- Laboratory of Cancer Genetics, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Wickliffe KE, Leppla SH, Moayeri M. Anthrax lethal toxin-induced inflammasome formation and caspase-1 activation are late events dependent on ion fluxes and the proteasome. Cell Microbiol 2008; 10:332-43. [PMID: 17850338 PMCID: PMC2515708 DOI: 10.1111/j.1462-5822.2007.01044.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Anthrax lethal toxin (LT) is cytotoxic to macrophages from certain inbred mouse strains. The gene controlling macrophage susceptibility to LT is Nalp1b. Nalp1b forms part of the inflammasome, a multiprotein complex involved in caspase-1 activation and release of interleukin (IL)-1beta and IL-18. We confirm the role of caspase-1 in LT-mediated death by showing that caspase inhibitors differentially protected cells against LT, with the degree of protection corresponding to each compound's ability to inhibit caspase-1. Caspase-1 activation and cytokine processing and release were late events inhibited by elevated levels of KCl and sucrose, by potassium channel blockers, and by proteasome inhibitors, suggesting that inflammasome formation requires a protein-degradation event and occurs downstream of LT-mediated potassium efflux. In addition, IL-18 and IL-1beta release was dependent on cell death, indicating that caspase-1-mediated cytotoxicity is independent of these cytokines. Finally, inducing NALP3-inflammasome formation in LT-resistant macrophages did not sensitize cells to LT, suggesting that general caspase-1 activation cannot account for sensitivity to LT and that a Nalp1b-mediated event is specifically required for death. Our data indicate that inflammasome formation is a contributing, but not initiating, event in LT-mediated cytotoxicity and that earlier LT-mediated events leading to ion fluxes are required for death.
Collapse
Affiliation(s)
- Katherine E. Wickliffe
- Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Stephen H. Leppla
- Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Mahtab Moayeri
- Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
| |
Collapse
|
68
|
Cao S, Liu Z, Guo A, Li Y, Zhang C, Gaobing W, Chunfang F, Tan Y, Chen H. Efficient production and characterization of Bacillus anthracis lethal factor and a novel inactive mutant rLFm-Y236F. Protein Expr Purif 2008; 59:25-30. [PMID: 18276157 DOI: 10.1016/j.pep.2007.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 12/24/2007] [Accepted: 12/31/2007] [Indexed: 11/17/2022]
Abstract
Lethal factor (LF) is a 90kDa zinc metalloprotease that plays an important role in the virulence of anthrax. Recombinant LF (rLF) is an effective tool to study anthrax pathogenesis and treatment. In this study, the LF gene was cloned into the Escherichia coli expression vector pGEX-6P-1 and expressed as a GST fusion protein (GST-rLF) in E. coli BL21-codonPlus (DE3)-RIL cells with 0.2mM IPTG induction at 28 degrees C. The GST-rLF protein was purified and the GST-tag was then cleaved in a single step by combining both GST-affinity column and treatment with 3C protease. This procedure yielded 5mg of rLF protein per liter of culture. The purified rLF was functional as confirmed by cytotoxicity assay in RAW264.7 cells and Western blot assay. Furthermore, the rLF could induce strong immune response in BALB/c mice and the presence of a specific antiserum could neutralize the cytotoxicity of rLF in vitro. In addition, a novel inactive mutant (rLFm-Y236F) was obtained. Compared to the wild-type rLF, an increase by 3700 folds of the purified rLFm-Y236F was needed to achieve a similar level of cytotoxicity of the wild-type rLF. This mutant might be of significance in the study of anthrax pathogenesis and treatment.
Collapse
Affiliation(s)
- Sha Cao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Depeille P, Young JJ, Boguslawski EA, Berghuis BD, Kort EJ, Resau JH, Frankel AE, Duesbery NS. Anthrax lethal toxin inhibits growth of and vascular endothelial growth factor release from endothelial cells expressing the human herpes virus 8 viral G protein coupled receptor. Clin Cancer Res 2007; 13:5926-34. [PMID: 17908989 DOI: 10.1158/1078-0432.ccr-07-0732] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE In this study, we tested the hypothesis that inhibition of mitogen-activated protein kinase kinases (MKK) inhibits tumor growth by acting on angiogenic signaling and by extension may form the basis of an effective strategy for treatment of Kaposi's sarcoma. EXPERIMENTAL DESIGN Murine endothelial cells expressing the human herpes virus 8 G protein-coupled receptor (vGPCR-SVEC) were treated with anthrax lethal toxin (LeTx). LeTx is a binary toxin ordinarily secreted by Bacillus anthracis and is composed of two proteins: protective antigen (the binding moiety) and lethal factor (the active moiety). Lethal factor is a protease that cleaves and inactivates MKKs. RESULTS In vitro, treatment of vGPCR-SVEC with LeTx inhibited MKK signaling, moderately inhibited cell proliferation, and blocked the ability of these cells to form colonies in soft agar. Treatment with LeTx also blocked the ability of these cells to release several angioproliferative cytokines, notably vascular endothelial growth factor (VEGF). In contrast, inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 with U0126 caused a substantial inhibition of proliferation but only modestly inhibited VEGF release. In xenograft models, i.v. injection of LeTx caused reduced tumor growth characterized immunohistochemically by inhibition of MKK signaling, decreased rates of proliferation, and reduced levels of VEGF and VEGF receptor 2, with a corresponding decrease in vascular density. CONCLUSIONS These data support a role for MKK signaling in tumor growth and vascularization and are consistent with the hypothesis that inhibition of MKK signaling by LeTx or a similar agent may be an effective strategy for the treatment of Kaposi's sarcoma as well as other vascular tumors.
Collapse
Affiliation(s)
- Philippe Depeille
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan , USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Moayeri M, Wiggins JF, Leppla SH. Anthrax protective antigen cleavage and clearance from the blood of mice and rats. Infect Immun 2007; 75:5175-84. [PMID: 17724066 PMCID: PMC2168306 DOI: 10.1128/iai.00719-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis protective antigen (PA) is an 83-kDa (PA83) protein that is cleaved to the 63-kDa protein (PA63) as an essential step in binding and internalizing lethal factor (LF). To assess in vivo receptor saturating PA concentrations, we injected mice with PA variants and measured the PA remaining in the blood at various times using PA83- and PA63-specific enzyme-linked immunosorbent assays. We found that both wild-type PA (WT-PA) and a receptor-binding-defective mutant (Ub-PA) were cleaved to PA63 independent of their ability to bind cells. This suggested a PA-acting protease activity in the blood. The protease cleaved PA at the furin cleavage sequence because furin site-modified PA mutants were not cleaved. Cleavage measured in vitro was leupeptin sensitive and dependent on calcium. Cell surface cleavage was important for toxin clearance, however, as Ub-PA and uncleavable PA mutants were cleared at slower rates than WT-PA. The cell binding-independent cleavage of PA was also verified by using Ub-PA (which is still cleaved) to rescue mice from toxin challenge by competitively binding circulating LF. This mutant was able to rescue mice even when given 12 h before toxin challenge. Its therapeutic ability was comparable to that of dominant-negative PA, which binds cells but does not allow LF translocation, and to the protection afforded through receptor clearance by WT-PA and uncleavable receptor binding-competent mutants. The PA cleavage and clearance observed in mice did not appear to have a role in the differential mouse susceptibility as it occurred similarly in lethal toxin (LT)-resistant DBA/2J and LT-sensitive BALB/cJ mice. Interestingly, PA63 was not found in LT-resistant or -sensitive rats and PA83 clearance was slower in rats than in mice. Finally, to determine the minimum amount of PA required in circulation for LT toxicity in mice, we administered time-separated injections of PA and LF and showed that lethality of LF for mice after PA was no longer measurable in circulation, suggesting active PA sequestration at tissue surfaces.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Laboratory of Bacterial Diseases, Building 33, Room 1W20, NIAID, NIH, Bethesda, MD 20892-3202, USA
| | | | | |
Collapse
|
71
|
Young JJ, Bromberg-White JL, Zylstra C, Church JT, Boguslawski E, Resau JH, Williams BO, Duesbery NS. LRP5 and LRP6 are not required for protective antigen-mediated internalization or lethality of anthrax lethal toxin. PLoS Pathog 2007; 3:e27. [PMID: 17335347 PMCID: PMC1808072 DOI: 10.1371/journal.ppat.0030027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 01/12/2007] [Indexed: 11/22/2022] Open
Abstract
Anthrax toxin (AnTx) plays a key role in the pathogenesis of anthrax. AnTx is composed of three proteins: protective antigen (PA), edema factor, and lethal factor (LF). PA is not toxic but serves to bind cells and translocate the toxic edema factor or LF moieties to the cytosol. Recently, the low-density lipoprotein receptor–related protein LRP6 has been reported to mediate internalization and lethality of AnTx. Based on its similarity to LRP6, we hypothesized that LRP5 may also play a role in cellular uptake of AnTx. We assayed PA-dependent uptake of anthrax LF or a cytotoxic LF fusion protein (FP59) in cells and mice harboring targeted deletions of Lrp5 or Lrp6. Unexpectedly, we observed that uptake was unaltered in the presence or absence of either Lrp5 or Lrp6 expression. Moreover, we observed efficient PA-mediated uptake into anthrax toxin receptor (ANTXR)–deficient Chinese hamster ovary cells (PR230) that had been stably engineered to express either human ANTXR1 or human ANTXR2 in the presence or absence of siRNA specific for LRP5 or LRP6. Our results demonstrate that neither LRP5 nor LRP6 is necessary for PA-mediated internalization or lethality of anthrax lethal toxin. The effects of many pathogenic bacteria are caused by the toxins they release. The toxin released by bacteria that cause anthrax is particularly fascinating since it is made of three different proteins: edema factor, lethal factor, and protective antigen (PA). On their own, each of these proteins is harmless, but when combined, they are deadly. This is because edema factor and lethal factor can exert their poisonous effects only after they have been moved into cells by PA. Determining exactly how PA does this is seen as a critical step in developing medicines that will fight anthrax. That is why a recent report suggesting that LRP6, an outer cell protein, was needed for PA to move the other toxin proteins into cells, was greeted with such interest. However, we now show that mice or cells lacking LRP6, or a related protein called LRP5, are still susceptible to anthrax toxin. The discovery that PA can move lethal factor and edema factor into cells without the help of LRP6 presents a significant challenge to the previously published model. These findings will help focus the efforts of scientists working on new ways to treat anthrax.
Collapse
Affiliation(s)
- John J Young
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Jennifer L Bromberg-White
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Cassandra Zylstra
- Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Joseph T Church
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Elissa Boguslawski
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - James H Resau
- Laboratory of Analytical, Cellular, and Molecular Microscopy, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Bart O Williams
- Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Nicholas S Duesbery
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
72
|
Sherer K, Li Y, Cui X, Li X, Subramanian M, Laird MW, Moayeri M, Leppla SH, Fitz Y, Su J, Eichacker PQ. Fluid support worsens outcome and negates the benefit of protective antigen-directed monoclonal antibody in a lethal toxin-infused rat Bacillus anthracis shock model. Crit Care Med 2007; 35:1560-7. [PMID: 17452924 DOI: 10.1097/01.ccm.0000266535.95770.a2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to test the effects of normal saline treatment either alone or in combination with protective antigen-directed monoclonal antibody in a lethal toxin-infused rat model of anthrax sepsis. DESIGN Prospective controlled animal study. SETTING Animal research laboratory. SUBJECTS Sprague-Dawley rats (n = 539). INTERVENTIONS We initially tested the efficacy of three normal saline doses (5, 10, or 20 mL/kg/hr intravenously for 24 hrs) or none (controls) started when rats were treated with either lethal toxin (24-hr infusion) or, for comparison, lipopolysaccharide (24-hr infusion) or Escherichia coli (intravenous bolus). We then investigated delaying normal saline for 6 hrs or combining it with protective antigen-directed monoclonal antibody following lethal toxin challenge. MEASUREMENTS AND MAIN RESULTS Dose did not alter the effects of normal saline with any challenge (p not significant for all) or when combined with protective antigen-directed monoclonal antibody, so this variable was averaged in analysis. In initial studies, normal saline decreased mortality (mean hazards ratio of survival +/- SE) significantly with E. coli challenge (-0.66 +/- 0.25, p = .009 averaged over normal saline dose) but not lipopolysaccharide (-0.17 +/- 0.20). In contrast, normal saline increased mortality significantly with lethal toxin (0.69 +/- 0.20, p = .001) in a pattern different from E. coli and lipopolysaccharide (p <or= .002 for each). In subsequent studies, normal saline alone once again increased mortality (0.8 +/- 0.3, p = .006), protective antigen-directed monoclonal antibody alone reduced it (-1.7 +/- 0.8, p = .03), and the combination had intermediate effects that were not significant (0.04 +/- 0.3). CONCLUSIONS These findings raise the possibility that normal saline treatment may actually worsen outcome with anthrax lethal toxin. Furthermore, lethal toxin-directed therapies may not be as beneficial when used in combination with this type of fluid support.
Collapse
Affiliation(s)
- Kevin Sherer
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Watson LE, Kuo SR, Katki K, Dang T, Park SK, Dostal DE, Tang WJ, Leppla SH, Frankel AE. Anthrax toxins induce shock in rats by depressed cardiac ventricular function. PLoS One 2007; 2:e466. [PMID: 17520025 PMCID: PMC1867860 DOI: 10.1371/journal.pone.0000466] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/01/2007] [Indexed: 12/05/2022] Open
Abstract
Anthrax infections are frequently associated with severe and often irreversible hypotensive shock. The isolated toxic proteins of Bacillus anthracis produce a non-cytokine-mediated hypotension in rats by unknown mechanisms. These observations suggest the anthrax toxins have direct cardiovascular effects. Here, we characterize these effects. As a first step, we administered systemically anthrax lethal toxin (LeTx) and edema toxin (EdTx) to cohorts of three to twelve rats at different doses and determined the time of onset, degree of hypotension and mortality. We measured serum concentrations of the protective antigen (PA) toxin component at various time points after infusion. Peak serum levels of PA were in the µg/mL range with half-lives of 10–20 minutes. With doses that produced hypotension with delayed lethality, we then gave bolus intravenous infusions of toxins to groups of four to six instrumented rats and continuously monitored blood pressure by telemetry. Finally, the same doses used in the telemetry experiments were given to additional groups of four rats, and echocardiography was performed pretreatment and one, two, three and twenty-four hours post-treatment. LeTx and EdTx each produced hypotension. We observed a doubling of the velocity of propagation and 20% increases in left ventricular diastolic and systolic areas in LeTx-treated rats, but not in EdTx-treated rats. EdTx-but not LeTx-treated rats showed a significant increase in heart rate. These results indicate that LeTx reduced left ventricular systolic function and EdTx reduced preload. Uptake of toxins occurs readily into tissues with biological effects occurring within minutes to hours of serum toxin concentrations in the µg/mL range. LeTx and EdTx yield an irreversible shock with subsequent death. These findings should provide a basis for the rational design of drug interventions to reduce the dismal prognosis of systemic anthrax infections.
Collapse
Affiliation(s)
- Linley E. Watson
- Division of Cardiology, Scott and White Memorial Hospital, Scott, Sherwood and Brindley Foundation, Temple, Texas, United States of America
- Department of Medicine, Texas A&M University System, Health Science Center College of Medicine, Temple, Texas, United States of America
- Division of Molecular Cardiology, Texas A&M University System, Health Science Center College of Medicine, and Central Texas Veterans Health Care System, Temple, Texas, United States of America
| | - Shu-ru Kuo
- Scott and White Cancer Research Institute, Temple, Texas, United States of America
| | - Khurshed Katki
- Department of Medicine, Texas A&M University System, Health Science Center College of Medicine, Temple, Texas, United States of America
| | - Tongyun Dang
- Scott and White Cancer Research Institute, Temple, Texas, United States of America
| | - Seong Kyu Park
- Scott and White Cancer Research Institute, Temple, Texas, United States of America
| | - David E. Dostal
- Department of Medicine, Texas A&M University System, Health Science Center College of Medicine, Temple, Texas, United States of America
- Division of Molecular Cardiology, Texas A&M University System, Health Science Center College of Medicine, and Central Texas Veterans Health Care System, Temple, Texas, United States of America
| | - Wei-Jen Tang
- Ben May Institute for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Stephen H. Leppla
- Bacterial Toxins and Therapeutics Section, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Arthur E. Frankel
- Department of Medicine, Texas A&M University System, Health Science Center College of Medicine, Temple, Texas, United States of America
- Scott and White Cancer Research Institute, Temple, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
74
|
Kedar GC, Brown-Driver V, Reyes DR, Hilgers MT, Stidham MA, Shaw KJ, Finn J, Haselbeck RJ. Evaluation of the metS and murB loci for antibiotic discovery using targeted antisense RNA expression analysis in Bacillus anthracis. Antimicrob Agents Chemother 2007; 51:1708-18. [PMID: 17339372 PMCID: PMC1855544 DOI: 10.1128/aac.01180-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The biowarfare-relevant bacterial pathogen Bacillus anthracis contains two paralogs each of the metS and murB genes, which encode the important antibiotic target functions methionyl-tRNA synthetase and UDP-N-acetylenolpyruvoylglucosamine reductase, respectively. Empirical screens were conducted to detect and characterize gene fragments of each of these four genes that could cause growth reduction of B. anthracis when inducibly expressed from a plasmid-borne promoter. Numerous such gene fragments that were overwhelmingly in the antisense orientation were identified for the metS1 and murB2 alleles, while no such orientation bias was seen for the metS2 and murB1 alleles. Gene replacement mutagenesis was used to confirm the essentiality of the metS1 and murB2 alleles, and the nonessentiality of the metS2 and murB1 alleles, for vegetative growth. Induced transcription of RNA from metS1 and murB2 antisense-oriented gene fragments resulted in specific reduction of mRNA of their cognate genes. Attenuation of MetS1 enzyme expression hypersensitized B. anthracis cells to a MetS-specific antimicrobial compound but not to other antibiotics that affect cell wall assembly, fatty acid biosynthesis, protein translation, or DNA replication. Antisense-dependent reduction of MurB2 enzyme expression caused hypersensitivity to beta-lactam antibiotics, a synergistic response that has also been noted for the MurA-specific antibiotic fosfomycin. These experiments form the basis of mode-of-action detection assays that can be used in the discovery of novel MetS- or MurB-specific antibiotic drugs that are effective against B. anthracis or other gram-positive bacterial pathogens.
Collapse
Affiliation(s)
- G C Kedar
- Trius Therapeutics Inc, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Semenova VA, Schmidt DS, Taylor TH, Li H, Steward-Clark E, Soroka SD, Ballard MM, Quinn CP. Analysis of anti-protective antigen IgG subclass distribution in recipients of anthrax vaccine adsorbed (AVA) and patients with cutaneous and inhalation anthrax. Vaccine 2006; 25:1780-8. [PMID: 17229495 DOI: 10.1016/j.vaccine.2006.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 11/06/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
The anti-PA IgG1, IgG2, IgG3, and IgG4 subclass responses to clinical anthrax and to different numbers of anthrax vaccine adsorbed (AVA, BioThrax) injections were determined in a cross-sectional study of sera from 63 vaccinees and 13 clinical anthrax patients. The data show that both vaccination with three AVA injections and clinical anthrax elicit anti-PA IgG1, IgG2, and IgG3 subclass responses. An anti-PA IgG4 response was detected in AVA recipients after the fourth injection. The anthrax lethal toxin (LTx) neutralization efficacy of sera from recipients who received 4 to > or =10 AVA injections did not vary significantly in relation to changes in distribution of anti-PA IgG1 and IgG4 subclasses.
Collapse
Affiliation(s)
- V A Semenova
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Shivachandra SB, Li Q, Peachman KK, Matyas GR, Leppla SH, Alving CR, Rao M, Rao VB. Multicomponent anthrax toxin display and delivery using bacteriophage T4. Vaccine 2006; 25:1225-35. [PMID: 17069938 PMCID: PMC1888565 DOI: 10.1016/j.vaccine.2006.10.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 09/25/2006] [Accepted: 10/05/2006] [Indexed: 01/08/2023]
Abstract
We describe a multicomponent antigen display and delivery system using bacteriophage T4. Two dispensable outer capsid proteins, Hoc (highly antigenic outer capsid protein, 155 copies) and Soc (small outer capsid protein, 810 copies), decorate phage T4 capsid. These proteins bind to the symmetrically localized capsid sites, which appear following prohead assembly and expansion. We hypothesized that multiple antigens fused to Hoc can be displayed on the same capsid and such particles can elicit broad immunological responses. Anthrax toxin proteins, protective antigen (PA), lethal factor (LF), and edema factor (EF), and their functional domains, were fused to Hoc with an N-terminal hexa-histidine tag and the recombinant proteins were over-expressed in E. coli and purified. Using a defined in vitro assembly system, the anthrax-Hoc fusion proteins were efficiently displayed on T4 capsid, either individually or in combinations. All of the 155 Hoc binding sites can be occupied by one antigen, or they can be split among two or more antigens by varying their molar ratio in the binding reaction. Immunization of mice with T4 phage carrying PA, LF, and EF elicited strong antigen-specific antibodies against all antigens as well as lethal toxin neutralization titers. The triple antigen T4 phage elicited stronger PA-specific immune responses than the phage displaying PA alone. These features offer novel avenues to develop customized multicomponent vaccines against anthrax and other pathogenic diseases.
Collapse
Affiliation(s)
- Sathish B Shivachandra
- Department of Biology, 103 McCort Ward Hall, The Catholic University of America, 620 Michigan Ave., NE, Washington, DC 20064, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Li Q, Shivachandra SB, Leppla SH, Rao VB. Bacteriophage T4 capsid: a unique platform for efficient surface assembly of macromolecular complexes. J Mol Biol 2006; 363:577-88. [PMID: 16982068 DOI: 10.1016/j.jmb.2006.08.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/13/2006] [Accepted: 08/16/2006] [Indexed: 11/21/2022]
Abstract
We report the first description of a macromolecular complex display system using bacteriophage T4. Decorated with two dispensable outer capsid proteins, Hoc (155 copies) and Soc (810 copies), the 120 nm x 86 nm T4 capsid particle offers a unique binding site-rich platform for surface assembly of hetero-oligomeric complexes. To display the 710 kDa anthrax toxin complex, two bipartite functional fusion proteins, LF-Hoc and LFn-Soc, were constructed. Using a defined in vitro binding system, sequential assembly was performed by first attaching LF-Hoc and/or LFn-Soc to hoc-soc- phage, saturating the Hoc and Soc binding sites. Trypsin-nicked PA63 was then assembled into heptamers through specific interaction with the capsid-exposed LFn domain. EF was then attached to the unoccupied sites of PA63 heptamers, completing the assembly of the tripartite anthrax toxin. Negative electron microscopy showed decoration of each capsid with a layer of heptameric PA63 rings. Up to 229 anthrax toxin complexes, equivalent to a total of 2400 protein molecules and a mass of about 133 MDa (2.7 times the mass of capsid shell), were anchored on a single particle, making it the highest density display reported on any virus. The phage T4 capsid lattice provides a stable biological platform allowing maximum display of large hetero-oligomeric complexes in vitro and offers insights for developing novel vaccines, analysis of protein-protein interactions, and structure determination of complexes.
Collapse
Affiliation(s)
- Qin Li
- Department of Biology, The Catholic University of America, 620 Michigan Ave, NE, Washington, DC 20064, USA
| | | | | | | |
Collapse
|
78
|
Gu M, Hine PM, James Jackson W, Giri L, Nabors GS. Increased potency of BioThrax anthrax vaccine with the addition of the C-class CpG oligonucleotide adjuvant CPG 10109. Vaccine 2006; 25:526-34. [PMID: 16973247 DOI: 10.1016/j.vaccine.2006.07.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 07/03/2006] [Accepted: 07/25/2006] [Indexed: 11/24/2022]
Abstract
The inclusion of an adjuvant, in addition to the existing aluminum hydroxide, in the formulation of the licensed anthrax vaccine BioThrax may have the potential to positively modify immune responses. Some potential desirable outcomes from the inclusion of an additional adjuvant include increased immune response kinetics, increased response rates, more prolonged antibody decay rates, and the ability to use less antigen per dose or fewer doses to achieve immunity. One promising group of adjuvants that is being investigated with a variety of vaccines and which has been shown to cause many of these effects are oligonucleotides which contain unmethylated CpG motifs. The C-class oligonucleotide CPG 10109, constructed of a mixed phosphorothioate/phosphodiester backbone and containing 3 CpG motifs, was added to various dilutions of BioThrax and used in mouse and guinea pig immunogenicity studies. Anti-protective antigen (PA) IgG ELISAs and the anthrax toxin neutralization assay (TNA) were performed on serum samples from both species. Anti-PA IgG and TNA responses were approximately 10-fold higher after a single dose of undiluted or diluted BioThrax upon addition of 100 microg CPG 10109 in the mouse regardless of the route of immunization. Responses were also significantly greater in the guinea pig after receiving CpG-adjuvanted undiluted BioThrax or CpG-adjuvanted BioThrax diluted 1:5, 1:10 or 1:30 compared to those achieved with BioThrax alone. A guinea pig spore challenge study showed that a single injection of BioThrax vaccine diluted 1:10 in the presence of 25 microg CPG 10109 was as protective as undiluted BioThrax, whereas a single injection of BioThrax diluted 1:10 was not protective. Taken together with the results from the immunogenicity studies, these results suggest that a CpG adjuvant could be used to reduce the dose of active ingredient required to elicit a protective response, and could lead to improved immune response kinetics.
Collapse
Affiliation(s)
- Mili Gu
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA
| | | | | | | | | |
Collapse
|
79
|
Pomerantsev AP, Sitaraman R, Galloway CR, Kivovich V, Leppla SH. Genome engineering in Bacillus anthracis using Cre recombinase. Infect Immun 2006; 74:682-93. [PMID: 16369025 PMCID: PMC1346652 DOI: 10.1128/iai.74.1.682-693.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome engineering is a powerful method for the study of bacterial virulence. With the availability of the complete genomic sequence of Bacillus anthracis, it is now possible to inactivate or delete selected genes of interest. However, many current methods for disrupting or deleting more than one gene require use of multiple antibiotic resistance determinants. In this report we used an approach that temporarily inserts an antibiotic resistance marker into a selected region of the genome and subsequently removes it, leaving the target region (a single gene or a larger genomic segment) permanently mutated. For this purpose, a spectinomycin resistance cassette flanked by bacteriophage P1 loxP sites oriented as direct repeats was inserted within a selected gene. After identification of strains having the spectinomycin cassette inserted by a double-crossover event, a thermo-sensitive plasmid expressing Cre recombinase was introduced at the permissive temperature. Cre recombinase action at the loxP sites excised the spectinomycin marker, leaving a single loxP site within the targeted gene or genomic segment. The Cre-expressing plasmid was then removed by growth at the restrictive temperature. The procedure could then be repeated to mutate additional genes. In this way, we sequentially mutated two pairs of genes: pepM and spo0A, and mcrB and mrr. Furthermore, loxP sites introduced at distant genes could be recombined by Cre recombinase to cause deletion of large intervening regions. In this way, we deleted the capBCAD region of the pXO2 plasmid and the entire 30 kb of chromosomal DNA between the mcrB and mrr genes, and in the latter case we found that the 32 intervening open reading frames were not essential to growth.
Collapse
Affiliation(s)
- Andrei P Pomerantsev
- Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-4349, USA
| | | | | | | | | |
Collapse
|
80
|
Chekanov AV, Remacle AG, Golubkov VS, Akatov VS, Sikora S, Savinov AY, Fugere M, Day R, Rozanov DV, Strongin AY. Both PA63 and PA83 are endocytosed within an anthrax protective antigen mixed heptamer: A putative mechanism to overcome a furin deficiency. Arch Biochem Biophys 2006; 446:52-9. [PMID: 16384550 DOI: 10.1016/j.abb.2005.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2005] [Revised: 11/17/2005] [Accepted: 11/18/2005] [Indexed: 11/20/2022]
Abstract
Anthrax toxin consists of protective antigen (PA), and lethal (LF) and edema (EF) factors. A 83 kDa PA monomer (PA83) precursor binds to the cell receptor. Furin-like proprotein convertases (PCs) cleave PA83 to generate cell-bound 63 kDa protein (PA63). PA63 oligomerizes to form a ring-shaped heptamer that binds LF-EF and facilitates their entry into the cells. Several additional PCs, as opposed to furin alone, are capable of processing PA83. Following the incomplete processing of the available pool of PA83, the functional heptamer includes both PA83 and PA63. The available structures of the receptor-PA complex imply that the presence of either one or two molecules of PA83 will not impose structural limitations on the formation of the heptamer and the association of either the (PA83)(1)(PA63)(6) or (PA83)(2)(PA63)(5) heteroheptamer with LF-EF. Our data point to the intriguing mechanism of anthrax that appears to facilitate entry of the toxin into the cells which express limiting amounts of PCs and an incompletely processed PA83 pool.
Collapse
Affiliation(s)
- Alexei V Chekanov
- Infectious and Inflammatory Disease Center, The Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Shivachandra SB, Rao M, Janosi L, Sathaliyawala T, Matyas GR, Alving CR, Leppla SH, Rao VB. In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through Hoc-capsid interactions: a strategy for efficient display of large full-length proteins. Virology 2005; 345:190-8. [PMID: 16316672 DOI: 10.1016/j.virol.2005.10.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/13/2005] [Accepted: 10/17/2005] [Indexed: 02/04/2023]
Abstract
An in vitro binding system is described to display large full-length proteins on bacteriophage T4 capsid surface at high density. The phage T4 icosahedral capsid features 155 copies of a nonessential highly antigenic outer capsid protein, Hoc, at the center of each major capsid protein hexon. Gene fusions were engineered to express the 83-kDa protective antigen (PA) from Bacillus anthracis fused to the N-terminus of Hoc and the 130-kDa PA-Hoc protein was expressed in Escherichia coli and purified. The purified PA-Hoc was assembled in vitro on hoc(-) phage particles. Binding was specific, stable, and of high affinity. This defined in vitro system allowed manipulation of the copy number of displayed PA and imposed no significant limitation on the size of the displayed antigen. In contrast to in vivo display systems, the in vitro approach allows all the capsid binding sites to be occupied by the 130-kDa PA-Hoc fusion protein. The PA-T4 particles were immunogenic in mice in the absence of an adjuvant, eliciting strong PA-specific antibodies and anthrax lethal toxin neutralizing antibodies. The in vitro display on phage T4 offers a novel platform for potential construction of customized vaccines against anthrax and other infectious diseases.
Collapse
|
82
|
Karginov VA, Nestorovich EM, Moayeri M, Leppla SH, Bezrukov SM. Blocking anthrax lethal toxin at the protective antigen channel by using structure-inspired drug design. Proc Natl Acad Sci U S A 2005; 102:15075-80. [PMID: 16214885 PMCID: PMC1257733 DOI: 10.1073/pnas.0507488102] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Indexed: 11/18/2022] Open
Abstract
Bacillus anthracis secretes three polypeptides: protective antigen (PA), lethal factor (LF), and edema factor (EF), which interact at the surface of mammalian cells to form toxic complexes. LF and EF are enzymes that target substrates within the cytosol; PA provides a heptameric pore to facilitate LF and EF transport into the cytosol. Other than administration of antibiotics shortly after exposure, there is currently no approved effective treatment for inhalational anthrax. Here we demonstrate an approach to disabling the toxin: high-affinity blockage of the PA pore by a rationally designed low-molecular weight compound that prevents LF and EF entry into cells. Guided by the sevenfold symmetry and predominantly negative charge of the PA pore, we synthesized small cyclic molecules of sevenfold symmetry, beta-cyclodextrins chemically modified to add seven positive charges. By channel reconstitution and high-resolution conductance recording, we show that per-6-(3-aminopropylthio)-beta-cyclodextrin interacts strongly with the PA pore lumen, blocking PA-induced transport at subnanomolar concentrations (in 0.1 M KCl). The compound protected RAW 264.7 mouse macrophages from cytotoxicity of anthrax lethal toxin (= PA + LF). More importantly, it completely protected the highly susceptible Fischer F344 rats from lethal toxin. We anticipate that this approach will serve as the basis for a structure-directed drug discovery program to find new and effective treatments for anthrax.
Collapse
Affiliation(s)
- Vladimir A Karginov
- Innovative Biologics, Inc., 10900 University Boulevard, Manassas, VA 20110, USA
| | | | | | | | | |
Collapse
|
83
|
Webster JI, Sternberg EM. Anthrax lethal toxin represses glucocorticoid receptor (GR) transactivation by inhibiting GR-DNA binding in vivo. Mol Cell Endocrinol 2005; 241:21-31. [PMID: 15964137 DOI: 10.1016/j.mce.2005.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 02/23/2005] [Accepted: 03/07/2005] [Indexed: 11/16/2022]
Abstract
Anthrax lethal factor (LF) is a non-competitive repressor of glucocorticoid (GR) and progesterone receptor (PR) transactivation. This repression was shown to be specific and selective and was dependent on promoter context and receptor subtype. Anthrax lethal toxin (LeTx) selectively repressed GR-mediated transactivation but not transrepression. The DNA binding region of GR was required for repression by LeTx and LeTx prevented GR-DNA binding in vivo, which had downstream consequences on polymerase II binding and histone acetylation. In addition, LeTx also prevented the accessory protein C/EBP from binding to a GR-responsive promoter. We hypothesize that LeTx may remove/inactivate one of the many co-factors or accessory proteins that are required to stabilize the GR-DNA complex. These findings enhance the current knowledge of the molecular mechanism by which the anthrax lethal factor represses nuclear hormone receptors and could provide an approach to overcome some of LeTx's effects.
Collapse
Affiliation(s)
- Jeanette I Webster
- Section on Neuroendocrine Immunology and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-9401, USA.
| | | |
Collapse
|
84
|
Geddie ML, O’Loughlin TL, Woods KK, Matsumura I. Rational design of p53, an intrinsically unstructured protein, for the fabrication of novel molecular sensors. J Biol Chem 2005; 280:35641-6. [PMID: 16118206 PMCID: PMC2045634 DOI: 10.1074/jbc.m508149200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The dominant paradigm of protein engineering is structure-based site-directed mutagenesis. This rational approach is generally more effective for the engineering of local properties, such as substrate specificity, than global ones such as allostery. Previous workers have modified normally unregulated reporter enzymes, including beta-galactosidase, alkaline phosphatase, and beta-lactamase, so that the engineered versions are activated (up to 4-fold) by monoclonal antibodies. A reporter that could easily be "reprogrammed" for the facile detection of novel effectors (binding or modifying activities) would be useful in high throughput screens for directed evolution or drug discovery. Here we describe a straightforward and general solution to this potentially difficult design problem. The transcription factor p53 is normally regulated by a variety of post-translational modifications. The insertion of peptides into intrinsically unstructured domains of p53 generated variants that were activated up to 100-fold by novel effectors (proteases or antibodies). An engineered p53 was incorporated into an existing high throughput screen for the detection of human immunodeficiency virus protease, an arbitrarily chosen novel effector. These results suggest that the molecular recognition properties of intrinsically unstructured proteins are relatively easy to engineer and that the absence of crystal structures should not deter the rational engineering of this class of proteins.
Collapse
Affiliation(s)
| | | | | | - Ichiro Matsumura
- To whom correspondence should be addressed: Dept. of Biochemistry, Center for Fundamental and Applied Molecular Evolution, Emory University School of Medicine, Rollins Research Center, Rm. 4119, 1510 Clifton Rd., Atlanta, GA 30322. Tel.: 404-727-5625; Fax: 404-727-3452; E-mail:
| |
Collapse
|
85
|
Warfel JM, Steele AD, D'Agnillo F. Anthrax lethal toxin induces endothelial barrier dysfunction. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1871-81. [PMID: 15920171 PMCID: PMC1602427 DOI: 10.1016/s0002-9440(10)62496-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemorrhage and pleural effusion are prominent pathological features of systemic anthrax infection. We examined the effect of anthrax lethal toxin (LT), a major virulence factor of Bacillus anthracis, on the barrier function of primary human lung microvascular endothelial cells. We also examined the distribution patterns of cytoskeletal actin and vascular endothelial-cadherin (VE-cadherin), both of which are involved in barrier function regulation. Endothelial monolayers cultured on porous membrane inserts were treated with the LT components lethal factor (LF) and protective antigen (PA) individually, or in combination. LT induced a concentration- and time-dependent decrease in transendothelial electrical resistance that correlated with increased permeability to fluorescently labeled albumin. LT also produced a marked increase in central actin stress fibers and significantly altered VE-cadherin distribution as revealed by immunofluorescence microscopy and cell surface enzyme-linked immunosorbent assay. Treatment with LF, PA, or the combination of an inactive LF mutant and PA did not alter barrier function or the distribution of actin or VE-cadherin. LT-induced barrier dysfunction was not dependent on endothelial apoptosis or necrosis. The present findings support a possible role for LT-induced barrier dysfunction in the vascular permeability changes accompanying systemic anthrax infection.
Collapse
Affiliation(s)
- Jason M Warfel
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, 29 Lincoln Drive, Bldg. 29, Rm. 129, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
86
|
Semenova VA, Steward-Clark E, Stamey KL, Taylor TH, Schmidt DS, Martin SK, Marano N, Quinn CP. Mass value assignment of total and subclass immunoglobulin G in a human standard anthrax reference serum. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:919-23. [PMID: 15358653 PMCID: PMC515271 DOI: 10.1128/cdli.11.5.919-923.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An anti-Anthrax Vaccine Adsorbed (anti-AVA) standard human reference serum pool, AVR414, has been prepared, and the total and protective antigen (PA)-specific immunoglobulin G (IgG) were quantified. AVR414 was prepared by plasmapheresis of healthy adults who had received a minimum of four subcutaneous injections of AVA. Mass values (in milligrams per milliliter) for total IgG and IgG subclasses 1 to 4 were determined by radial immunodiffusion. Anti-PA-specific IgG assignment (in micrograms per milliliter) was done by consensus of two complementary approaches: homologous enzyme-linked immunosorbent assay (ELISA) with affinity-purified anti-PA IgG as a calibrator and summation of mean PA-specific IgG subclass concentrations determined by IgG subclass-specific ELISA using the United States National Reference Preparation for Human Serum Proteins as a standard. The total IgG concentration assigned to AVR414 reference serum was 8.33 mg/ml. IgG subclass concentrations were the following: for IgG1, 4.48 mg/ml; for IgG2, 3.35 mg/ml; for IgG3, 0.37 mg/ml; and for IgG4, 0.30 mg/ml. The assigned mass value for total anti-PA-specific IgG was 141.2 microg/ml. Anti-PA-specific IgG subclass concentrations were the following: for IgG1, 79.6 microg/ml; for IgG2, 35.3 microg/ml; for IgG3, 3.2 microg/ml; and for IgG4, 25.3 microg/ml. Human reference serum pool AVR414 will have direct application in the standardization of anthrax serological assays, in reagent qualification, and as a standard for quantification of PA-specific IgG in humans who have been vaccinated with or otherwise exposed to Bacillus anthracis PA.
Collapse
Affiliation(s)
- V A Semenova
- Meningitis and Special Pathogens Branch, Division of Bacterial and Mycotic Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Kim C, Gajendran N, Mittrücker HW, Weiwad M, Song YH, Hurwitz R, Wilmanns M, Fischer G, Kaufmann SHE. Human alpha-defensins neutralize anthrax lethal toxin and protect against its fatal consequences. Proc Natl Acad Sci U S A 2005; 102:4830-5. [PMID: 15772169 PMCID: PMC555714 DOI: 10.1073/pnas.0500508102] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anthrax caused by Bacillus anthracis represents a major bioterroristic threat. B. anthracis produces lethal toxin (LeTx), a combination of lethal factor (LF) and protective antigen that plays a major role in anthrax pathogenesis. We demonstrate that human neutrophil alpha-defensins are potent inhibitors of LF. The inhibition of LF by human neutrophil protein (HNP-1) was noncompetitive. HNP-1 inhibited cleavage of a mitogen-activated protein kinase kinase and restored impaired mitogen-activated protein kinase signaling in LeTx-treated macrophages. HNP-1 rescued murine macrophages from B. anthracis-induced cytotoxicity, and in vivo treatment with HNP-1-3 protected mice against the fatal consequences of LeTx.
Collapse
Affiliation(s)
- Chun Kim
- Department of Immunology, Max Planck Institute for Infection Biology, Schumannstrasse 21-22, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Liang X, Young JJ, Boone SA, Waugh DS, Duesbery NS. Involvement of Domain II in Toxicity of Anthrax Lethal Factor. J Biol Chem 2004; 279:52473-8. [PMID: 15465830 DOI: 10.1074/jbc.m409105200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anthrax lethal factor (LF) is a Zn2+ -metalloprotease that cleaves and inactivates mitogen-activated protein kinase kinases (MEKs). We have used site-directed mutagenesis to identify a cluster of residues in domain II of LF that lie outside the active site and are required for cellular proteolytic activity toward MEKs. Alanine substituted for Leu293, Lys294, Leu514, Asn516, or Arg491 caused a 10-50-fold reduction in LF toxicity. Further, whereas pairwise substitution of alanine for Leu514 and either Leu293, Lys294, or Arg491 completely abrogated LF toxicity, pairwise mutation of Leu514 and Asn516 resulted in toxicity comparable with N516A alone. The introduction of these mutations reduced LF-mediated cleavage of MEK2 in cell-based assays but altered neither the ability of LF to bind protective antigen nor its ability to translocate across a membrane. Interestingly, direct in vitro measurement of LF activity indicated that decreased toxicity was not always accompanied by reduced proteolytic activity. However, mutations in this region significantly reduced the ability of LF to competitively inhibit B-Raf phosphorylation of MEK. These results provide evidence that elements of domain II are involved in the association of LF into productive complex with MEKs.
Collapse
Affiliation(s)
- Xudong Liang
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | | | | | | | |
Collapse
|
89
|
Peinado JR, Kacprzak MM, Leppla SH, Lindberg I. Cross-inhibition between furin and lethal factor inhibitors. Biochem Biophys Res Commun 2004; 321:601-5. [PMID: 15358148 DOI: 10.1016/j.bbrc.2004.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Indexed: 11/15/2022]
Abstract
Bacillus anthracis synthesizes two toxins composed of the three proteins: protective antigen (PA), lethal factor (LF), and edema factor (EF). The cleavage of PA on the cell surface by the convertase furin leads to the translocation of LF and EF into the cytosol. We have investigated the cross-inhibitory activities of the furin inhibitors hexa-d-arginine amide (D6R) and nona-d-arginine amide (D9R), which block the proteolytic activation of PA; and of the LF inhibitor In-2-LF, a peptide hydroxamate. D6R and D9R inhibit LF with IC(50s) of 300 and 10microM, respectively; conversely, In-2-LF also inhibits furin (IC(50) 2microM). In-2-LF was efficiently cleaved by furin with the concomitant loss of inhibitory activity on both LF and furin. Incubation of In-2-LF with LF however generated a product that retained partial inhibitory activity against LF. Combined treatment of cells with D6R and In-2-LF enhanced protection against anthrax lethal toxin, indicating that combined administration of inhibitors could represent an effective therapeutic approach.
Collapse
Affiliation(s)
- Juan R Peinado
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
90
|
Ren G, Quispe J, Leppla SH, Mitra AK. Large-scale structural changes accompany binding of lethal factor to anthrax protective antigen: a cryo-electron microscopic study. Structure 2004; 12:2059-66. [PMID: 15530370 PMCID: PMC10601970 DOI: 10.1016/j.str.2004.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 08/26/2004] [Accepted: 09/03/2004] [Indexed: 11/29/2022]
Abstract
Anthrax toxin (AT), secreted by Bacillus anthracis, is a three-protein cocktail of lethal factor (LF, 90 kDa), edema factor (EF, 89 kDa), and the protective antigen (PA, 83 kDa). Steps in anthrax toxicity involve (1) binding of ligand (EF/LF) to a heptamer of PA63 (PA63h) generated after N-terminal proteolytic cleavage of PA and, (2) following endocytosis of the complex, translocation of the ligand into the cytosol by an as yet unknown mechanism. The PA63h.LF complex was directly visualized from analysis of images of specimens suspended in vitrified buffer by cryo-electron microscopy, which revealed that the LF molecule, localized to the nonmembrane-interacting face of the oligomer, interacts with four successive PA63 monomers and partially unravels the heptamer, thereby widening the central lumen. The observed structural reorganization in PA63h likely facilitates the passage of the large 90 kDa LF molecule through the lumen en route to its eventual delivery across the membrane bilayer.
Collapse
Affiliation(s)
- Gang Ren
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Joel Quispe
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Stephen H. Leppla
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892
| | - Alok K. Mitra
- School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland 1020, New Zealand
| |
Collapse
|
91
|
Pomerantsev AP, Pomerantseva OM, Leppla SH. A spontaneous translational fusion of Bacillus cereus PlcR and PapR activates transcription of PlcR-dependent genes in Bacillus anthracis via binding with a specific palindromic sequence. Infect Immun 2004; 72:5814-23. [PMID: 15385482 PMCID: PMC517568 DOI: 10.1128/iai.72.10.5814-5823.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transformation of Bacillus anthracis with plasmid pUTE29-plcR-papR carrying the native Bacillus cereus plcR-papR gene cluster did not activate expression of B. anthracis hemolysin genes, even though these are expected to be responsive to activation by the global regulator PlcR. To further characterize the action of PlcR, we examined approximately 3,000 B. anthracis transformants containing pUTE29-plcR-papR and found a single hemolytic colony. The hemolytic strain contained a plasmid having a spontaneous plcR-papR intergenic region deletion. Transformation of the resulting plasmid pFP12, encoding a fused PlcR-PapR protein, into the nonhemolytic B. anthracis parental strain produced strong activation of B. anthracis hemolysins, including phosphatidylcholine-specific phospholipase C and sphingomyelinase. The fused PlcR-PapR protein present in a lysate of B. anthracis containing pFP12 bound strongly and specifically to the double-stranded palindrome 5'-TATGCATTATTTCATA-3' that matches the consensus PlcR-binding site. In contrast, native PlcR protein in a lysate from a B. anthracis strain expressing large amounts of this protein did not demonstrate binding with the palindrome. The results suggest that the activation of PlcR by binding of a PapR pentapeptide as normally occurs in Bacillus thuringiensis and B. cereus can be mimicked by tethering the peptide to PlcR in a translational fusion, thereby obviating the need for PapR secretion, extracellular processing, retrieval into the bacterium, and binding with PlcR.
Collapse
Affiliation(s)
- Andrei P Pomerantsev
- Microbial Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-4350, USA
| | | | | |
Collapse
|
92
|
Biagini RE, Sammons DL, Smith JP, MacKenzie BA, Striley CAF, Semenova V, Steward-Clark E, Stamey K, Freeman AE, Quinn CP, Snawder JE. Comparison of a multiplexed fluorescent covalent microsphere immunoassay and an enzyme-linked immunosorbent assay for measurement of human immunoglobulin G antibodies to anthrax toxins. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2004; 11:50-5. [PMID: 14715544 PMCID: PMC321348 DOI: 10.1128/cdli.11.1.50-55.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, the Centers for Disease Control and Prevention reported an accurate, sensitive, specific, reproducible, and quantitative enzyme-linked immunosorbent assay (ELISA) for immunoglobulin G (IgG) antibodies to Bacillus anthracis protective antigen (PA) in human serum (C. P. Quinn, V. A. Semenova, C. M. Elie et al., Emerg. Infect. Dis. 8:1103-1110, 2002). The ELISA had a minimum detectable concentration (MDC) of 0.06 microgram/ml, which, when dilution adjusted, yielded a whole-serum MDC of 3.0 micro g of anti-PA IgG per ml. The reliable detection limit (RDL) was 0.09 microgram/ml, while the dynamic range was 0.06 to 1.7 microgram/ml. The diagnostic sensitivity of the assay was 97.6% and the diagnostic specificity was 94.2% for clinically verified cases of anthrax. A competitive inhibition anti-PA IgG ELISA was also developed to enhance the diagnostic specificity to 100%. We report a newly developed fluorescence covalent microbead immunosorbent assay (FCMIA) for B. anthracis PA which was Luminex xMap technology. The FCMIA MDC was 0.006 microgram of anti-PA IgG per ml, the RDL was 0.016 microgram/ml, and the whole-serum equivalent MDC was 1.5 micrograms/ml. The dynamic range was 0.006 to 6.8 microgram/ml. Using this system, we analyzed 20 serum samples for anti-PA IgG and compared our results to those measured by ELISA in a double-masked analysis. The two methods had a high positive correlation (r2 = 0.852; P < 0.001). The FCMIA appears to have benefits over the ELISA for the measurement of anti-PA IgG, including greater sensitivity and speed, enhanced dynamic range and reagent stability, the use of smaller sample volumes, and the ability to be multiplexed (measurement of more than one analyte simultaneously), as evidenced by the multiplexed measurement in the present report of anti-PA and anti-lethal factor IgG in serum from a confirmed clinical anthrax infection.
Collapse
Affiliation(s)
- Raymond E Biagini
- Biological Monitoring Laboratory Section, Biomonitoring and Health Assessment Branch, National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Cui X, Moayeri M, Li Y, Li X, Haley M, Fitz Y, Correa-Araujo R, Banks SM, Leppla SH, Eichacker PQ. Lethality during continuous anthrax lethal toxin infusion is associated with circulatory shock but not inflammatory cytokine or nitric oxide release in rats. Am J Physiol Regul Integr Comp Physiol 2004; 286:R699-709. [PMID: 14715494 DOI: 10.1152/ajpregu.00593.2003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although circulatory shock related to lethal toxin (LeTx) may play a primary role in lethality due to Bacillus anthracis infection, its mechanisms are unclear. We investigated whether LeTx-induced shock is associated with inflammatory cytokine and nitric oxide (NO) release. Sprague-Dawley rats with central venous and arterial catheters received 24-h infusions of LeTx (lethal factor 100 microg/kg; protective antigen 200 microg/kg) that produced death beginning at 9 h and a 7-day mortality rate of 53%. By 9 h, mean arterial blood pressure, heart rate, pH, and base excess were decreased and lactate and hemoglobin levels were increased in LeTx nonsurvivors compared with LeTx survivors and controls (diluent only) (P < or = 0.05 for each comparing the 3 groups). Despite these changes, arterial oxygen and circulating leukocytes and platelets were not decreased and TNF-alpha, IL-beta, IL-6, and IL-10 levels were not increased comparing either LeTx nonsurvivors or survivors to controls. Nitrate/nitrite levels and tissue histology also did not differ comparing LeTx animals and controls. In additional experiments, although 24-h infusions of LeTx and Escherichia coli LPS produced similar mortality rates (54 and 56%, respectively) and times to death (13.2 +/- 0.8 vs. 11.0 +/- 1.7 h, respectively) compared with controls, only LPS reduced circulating leukocytes, platelets, and IL-2 levels and increased TNF-alpha, IL-1 alpha and -1 beta, IL-6, IL-10, interferon-gamma, granulocyte macrophage-colony stimulating factor, RANTES, migratory inhibitory protein-1 alpha, -2, and -3, and monocyte chemotactic protein-1, as well as nitrate/nitrite levels (all P < or = 0.05 for the effects of LPS). Thus, in contrast to LPS, excessive inflammatory cytokine and NO release does not appear to contribute to the circulatory shock and lethality occurring with LeTx in this at model. Although therapies to modulate these host mediators may be applicable fo shock caused by LPS or other bacterial toxins, they may not with LeTx.
Collapse
Affiliation(s)
- Xizhong Cui
- Critical Care Medicine Department, National Institutes of Health, Bldg. 10, Rm. 7D43, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Kim J, Chai YG, Yoon MY. Implication of pH in the catalytic properties of anthrax lethal factor. Biochem Biophys Res Commun 2004; 313:217-22. [PMID: 14672720 DOI: 10.1016/j.bbrc.2003.11.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The anthrax lethal factor (LF) is a Zn(2+)-endopeptidase specific for mitogen-activated protein kinase kinases (MAPKKs), which are cleaved within their N-terminal region. Much line of effort was carried out to elucidate the catalytic activity of LF for designing the inhibitor and to understand the cellular mechanism of its cytotoxicity. Current assay methods to analyze the LF activity have been based on a synthetic peptide, consisting of 15-20 residues around being cleaved. However, there are accumulating reports that the region distal to cleavage site is required for the LF-mediated proteolysis of substrate. In this study, we demonstrate the catalytic properties of LF, using the full-length native substrate, MEK. We described the catalytic properties of LF focused on the effects of the pH alteration, which was encountered during the endocytosis of lethal toxin, and of the requirement for metal ions. We present the first evidence that additional metal ions are required for the LF catalyzed hydrolysis of native substrate, and that the pH alteration causes a significant change of catalytic properties of LF.
Collapse
Affiliation(s)
- Joungmok Kim
- Department of Chemistry, Hanyang University, Seoul 133-791, Republic of Korea
| | | | | |
Collapse
|
95
|
Pomerantsev AP, Kalnin KV, Osorio M, Leppla SH. Phosphatidylcholine-specific phospholipase C and sphingomyelinase activities in bacteria of the Bacillus cereus group. Infect Immun 2003; 71:6591-606. [PMID: 14573681 PMCID: PMC219565 DOI: 10.1128/iai.71.11.6591-6606.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 06/13/2003] [Accepted: 08/10/2003] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis is nonhemolytic, even though it is closely related to the highly hemolytic Bacillus cereus. Hemolysis by B. cereus results largely from the action of phosphatidylcholine-specific phospholipase C (PC-PLC) and sphingomyelinase (SPH), encoded by the plc and sph genes, respectively. In B. cereus, these genes are organized in an operon regulated by the global regulator PlcR. B. anthracis contains a highly similar cereolysin operon, but it is transcriptionally silent because the B. anthracis PlcR is truncated at the C terminus. Here we report the cloning, expression, purification, and enzymatic characterization of PC-PLC and SPH from B. cereus and B. anthracis. We also investigated the effects of expressing PlcR on the expression of plc and sph. In B. cereus, PlcR was found to be a positive regulator of plc but a negative regulator of sph. Replacement of the B. cereus plcR gene by its truncated orthologue from B. anthracis eliminated the activities of both PC-PLC and SPH, whereas introduction into B. anthracis of the B. cereus plcR gene with its own promoter did not activate cereolysin expression. Hemolytic activity was detected in B. anthracis strains containing the B. cereus plcR gene on a multicopy plasmid under control of the strong B. anthracis protective antigen gene promoter or in a strain carrying a multicopy plasmid containing the entire B. cereus plc-sph operon. Slight hemolysis and PC-PLC activation were found when PlcR-producing B. anthracis strains were grown under anaerobic-plus-CO(2) or especially under aerobic-plus-CO(2) conditions. Unmodified parental B. anthracis strains did not demonstrate obvious hemolysis under the same conditions.
Collapse
Affiliation(s)
- A P Pomerantsev
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-4350, USA
| | | | | | | |
Collapse
|
96
|
Rosovitz MJ, Schuck P, Varughese M, Chopra AP, Mehra V, Singh Y, McGinnis LM, Leppla SH. Alanine-scanning mutations in domain 4 of anthrax toxin protective antigen reveal residues important for binding to the cellular receptor and to a neutralizing monoclonal antibody. J Biol Chem 2003; 278:30936-44. [PMID: 12771151 DOI: 10.1074/jbc.m301154200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A panel of variants with alanine substitutions in the small loop of anthrax toxin protective antigen domain 4 was created to determine individual amino acid residues critical for interactions with the cellular receptor and with a neutralizing monoclonal antibody, 14B7. Substituted protective antigen proteins were analyzed by cellular cytotoxicity assays, and their interactions with antibody were measured by plasmon surface resonance and analytical ultracentrifugation. Residue Asp683 was the most critical for cell binding and toxicity, causing an approximately 1000-fold reduction in toxicity, but was not a large factor for interactions with 14B7. Substitutions in residues Tyr681, Asn682, and Pro686 also reduced toxicity significantly, by 10-100-fold. Of these, only Asn682 and Pro686 were also critical for interactions with 14B7. However, residues Lys684, Leu685, Leu687, and Tyr688 were critical for 14B7 binding without greatly affecting toxicity. The K684A and L685A variants exhibited wild type levels of toxicity in cell culture assays; the L687A and Y688A variants were reduced only 1.5- and 5-fold, respectively.
Collapse
Affiliation(s)
- M J Rosovitz
- Microbial Pathogenesis Section, NIAID, National Institutes of Health, Bethesda, Maryland 20892-4350, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Kim J, Kim YM, Koo BS, Chae YK, Yoon MY. Production and proteolytic assay of lethal factor from Bacillus anthracis. Protein Expr Purif 2003; 30:293-300. [PMID: 12880779 DOI: 10.1016/s1046-5928(03)00132-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacillus anthracis is the causative agent of anthrax. The major virulence factors are a poly-D-glutamic acid capsule and three-protein component exotoxin, protective antigen (PA, 83 kDa), lethal factor (LF, 90 kDa), and edema factor (EF, 89 kDa), respectively. These three proteins individually have no known toxic activities, but in combination with PA form two toxins (lethal toxin or edema toxin), causing different pathogenic responses in animals and cultured cells. In this study, we constructed and produced rLF as a form of GST fusion protein in Escherichia coli. rLF was rapidly purified through a single affinity purification step to near homogeneity. Furthermore, we developed an in vitro immobilized proteolytic assay of LF under the condition containing full-length native substrate, MEK1, rather than short synthetic peptide. The availability of full-length substrate and of an immobilized LF assay could facilitate not only the in-depth investigation of structure-function relationship of the enzyme toward its substrate but also wide spectrum screening of inhibitor collections based on the 96-well plate system.
Collapse
Affiliation(s)
- Joungmok Kim
- Department of Chemistry, Hanyang University, 133-791 Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
98
|
Webster JI, Tonelli LH, Moayeri M, Simons SS, Leppla SH, Sternberg EM. Anthrax lethal factor represses glucocorticoid and progesterone receptor activity. Proc Natl Acad Sci U S A 2003; 100:5706-11. [PMID: 12724519 PMCID: PMC156265 DOI: 10.1073/pnas.1036973100] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We report here that a bacterial toxin, anthrax lethal toxin (LeTx), at very low concentrations represses glucocorticoid receptor (GR) transactivation in a transient transfection system and the activity of an endogenous GR-regulated gene in both a cellular system and an animal model. This repression is noncompetitive and does not affect ligand binding or DNA binding, suggesting that anthrax lethal toxin (LeTx) probably exerts its effects through a cofactor(s) involved in the interaction between GR and the basal transcription machinery. LeTx-nuclear receptor repression is selective, repressing GR, progesterone receptor B (PR-B), and estrogen receptor alpha (ERalpha), but not the mineralocorticoid receptor (MR) or ERbeta. GR repression was also caused by selected p38 mitogen-activated protein (MAP) kinase inhibitors, suggesting that the LeTx action may result in part from its known inactivation of MAP kinases. Simultaneous loss of GR and other nuclear receptor activities could render an animal more susceptible to lethal or toxic effects of anthrax infection by removing the normally protective antiinflammatory effects of these hormones, similar to the increased mortality seen in animals exposed to both GR antagonists and infectious agents or bacterial products. These finding have implications for development of new treatments and prevention of the toxic effects of anthrax.
Collapse
Affiliation(s)
- Jeanette I Webster
- Section on Neuroendocrine Immunology and Behavior, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
99
|
Chopra AP, Boone SA, Liang X, Duesbery NS. Anthrax lethal factor proteolysis and inactivation of MAPK kinase. J Biol Chem 2003; 278:9402-6. [PMID: 12522135 DOI: 10.1074/jbc.m211262200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anthrax lethal toxin produced by the bacterium Bacillus anthracis is the major cause of death in animals infected with anthrax. One component of this toxin, lethal factor (LF), inactivates members of the mitogen-activated protein kinase kinase or MEK family through proteolysis of their NH(2) termini. However, neither the substrate requirements for LF cleavage nor the mechanism by which proteolysis inactivates MEK have been demonstrated. By means of deletion mutant analysis and site-directed mutagenesis, we have identified an LFIR (LF interacting region) in the COOH-terminal kinase domain of MEK1 adjacent to the proline-rich region, which is essential for LF-mediated proteolysis of MEK. Point mutations in this region block proteolysis but do not alter the kinase activity of MEK. Similar mutations in MEK6 also prevent proteolysis, indicating that this region is functionally conserved among MEKs. In addition, NH(2)-terminal proteolysis of MEK1 by LF was found to reduce not only the affinity of MEK1 for its substrate mitogen-activated protein kinase but also its intrinsic kinase activity, indicating that the NH(2)-terminal end of MEK is important not only for substrate interaction but also for catalytic activity.
Collapse
Affiliation(s)
- Arun P Chopra
- Laboratory of Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | | | | | |
Collapse
|
100
|
Popov SG, Villasmil R, Bernardi J, Grene E, Cardwell J, Popova T, Wu A, Alibek D, Bailey C, Alibek K. Effect of Bacillus anthracis lethal toxin on human peripheral blood mononuclear cells. FEBS Lett 2002; 527:211-5. [PMID: 12220662 DOI: 10.1016/s0014-5793(02)03228-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lethal toxin (LeTx) plays a central role in anthrax pathogenesis, however a cytotoxicity of LeTx has been difficult to demonstrate in vitro. No cytolytic effect has been reported for human cells, in contrast to murine cell lines, indicating that cell lysis can not be considered as a marker of LeTx activity. We have recently shown that murine macrophage-like RAW 264.7 cells treated with LeTx or infected with anthrax spores underwent changes typical of apoptotic death. Here we demonstrate that cells from human peripheral blood display a proapoptotic behavior similar to murine cells. TUNEL assay detected a nucleosomal degradation typical of apoptosis in peripheral blood mononuclear cells (PBMC) treated with LeTx. Membrane staining with apoptotic dyes was detected in macrophages derived from monocytes in presence of LeTx. The toxin inhibited production of proinflammatory cytokines in PBMC stimulated with a preparation of Bacillus anthracis cell wall. Infection of PBMC with anthrax spores led to the appearance of a large population of cells stained positively for apoptosis, with a reduced capacity to eliminate spores and vegetative bacteria. The aminopeptidase inhibitor, bestatin, capable of protecting cells from LeTx, restored a bactericidal activity of infected cells. These findings may be explained by LeTx expression within phagocytes and support an important role of LeTx as an early intracellular virulence factor contributing to bacterial dissemination and disease progression.
Collapse
Affiliation(s)
- Serguei G Popov
- Advanced Biosystems, Inc., 10900 University Blvd., MSN 1A8, Manassas, VA 20110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|