51
|
Weber K, Bartsch U, Stocking C, Fehse B. A multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors for functional gene analysis. Mol Ther 2008; 16:698-706. [PMID: 18362927 DOI: 10.1038/mt.2008.6] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Functional gene analysis requires the possibility of overexpression, as well as downregulation of one, or ideally several, potentially interacting genes. Lentiviral vectors are well suited for this purpose as they ensure stable expression of complementary DNAs (cDNAs), as well as short-hairpin RNAs (shRNAs), and can efficiently transduce a wide spectrum of cell targets when packaged within the coat proteins of other viruses. Here we introduce a multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors designed according to the "building blocks" principle. Using a wide spectrum of different fluorescent markers, including drug-selectable enhanced green fluorescent protein (eGFP)- and dTomato-blasticidin-S resistance fusion proteins, LeGO vectors allow simultaneous analysis of multiple genes and shRNAs of interest within single, easily identifiable cells. Furthermore, each functional module is flanked by unique cloning sites, ensuring flexibility and individual optimization. The efficacy of these vectors for analyzing multiple genes in a single cell was demonstrated in several different cell types, including hematopoietic, endothelial, and neural stem and progenitor cells, as well as hepatocytes. LeGO vectors thus represent a valuable tool for investigating gene networks using conditional ectopic expression and knock-down approaches simultaneously.
Collapse
Affiliation(s)
- Kristoffer Weber
- Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
52
|
A Multicolor Panel of Novel Lentiviral “Gene Ontology” (LeGO) Vectors for Functional Gene Analysis. Mol Ther 2008. [DOI: 10.1038/sj.mt.2008.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
53
|
A safeguard eliminates T cell receptor gene-modified autoreactive T cells after adoptive transfer. Proc Natl Acad Sci U S A 2008; 105:623-8. [PMID: 18182487 DOI: 10.1073/pnas.0710198105] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
By transfer of T cell receptor (TCR) genes, antigen specificity of T cells can be redirected to target any antigen. Adoptive transfer of TCR-redirected T cells into patients has shown promising results. However, this immunotherapy bears the risk of autoreactive side effects if the TCR recognizes antigens on self-tissue. Here, we introduce a safeguard based on a TCR-intrinsic depletion mechanism to eliminate autoreactive TCR-redirected T cells in vivo. By the introduction of a 10-aa tag of the human c-myc protein into murine (OT-I, P14) and human (gp100) TCR sequences, we were able to deplete T cells that were transduced with these myc-tagged TCRs with a tag-specific antibody in vitro. T cells transduced with the modified TCR maintained equal properties compared with cells transduced with the wild-type receptor concerning antigen binding and effector function. More importantly, therapeutic in vivo depletion of adoptively transferred T cells rescued mice showing severe signs of autoimmune insulitis from lethal diabetes. This safeguard allows termination of adoptive therapy in case of severe side effects.
Collapse
|
54
|
Breckpot K, Aerts JL, Thielemans K. Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics. Gene Ther 2007; 14:847-62. [PMID: 17361214 DOI: 10.1038/sj.gt.3302947] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lentiviral vectors have emerged as promising tools for both gene therapy and immunotherapy purposes. They exhibit several advantages over other viral systems in that they are less immunogenic and are capable of transducing a wide range of different cell types, including dendritic cells (DC). DC transduced ex vivo with a whole range of different (tumor) antigens were capable of inducing strong antigen-specific T-cell responses, both in vitro and in vivo. Recently, the administration of lentiviral vectors in vivo has gained substantial interest as an alternative method for antigen-specific immunization. This method offers a number of advantages over DC vaccines as the same lentivirus can in principle be used for all patients resulting in a significantly reduced cost and requirement for considerably less expertise for the generation and administration of lentiviral vaccines. By selectively targeting lentiviral vectors to, or restricting transgene expression in certain cell types, selectivity, safety and efficacy can be further improved. This review will focus on the use of direct administration of lentiviral vectors encoding tumor-associated antigens (TAA) for the induction of tumor-specific immune responses in vivo, with a special focus on problems related to the generation of large amounts of highly purified virus and specific targeting of antigen-presenting cells (APC).
Collapse
Affiliation(s)
- K Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | |
Collapse
|
55
|
Hachiya A, Sriwiriyanont P, Patel A, Saito N, Ohuchi A, Kitahara T, Takema Y, Tsuboi R, Boissy RE, Visscher MO, Wilson JM, James WM, Kobinger GP. Gene transfer in human skin with different pseudotyped HIV-based vectors. Gene Ther 2007; 14:648-56. [PMID: 17268532 DOI: 10.1038/sj.gt.3302915] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pseudotyping lentiviral vector with other viral surface proteins could be applied for treating genetic anomalies in human skin. In this study, the modification of HIV vector tropism by pseudotyping with the envelope glycoprotein from vesicular stomatitis virus (VSV), the Zaire Ebola (EboZ) virus, murine leukemia virus (MuLV), lymphocytic choriomeningitis virus (LCMV), Rabies or the rabies-related Mokola virus encoding LacZ as a reporter gene was evaluated qualitatively and quantitatively in human skin xenografts. High transgene expression was detected in dermal fibroblasts transduced with VSV-G-, EboZ- or MuLV-pseudotyped HIV vector with tissue irregularities in the dermal compartments following repeated injections of EboZ- or LCMV-pseudotyped vectors. Four weeks after transduction, double-labeling immunofluorescence of beta-galactosidase and involucrin or integrin beta1 demonstrated that VSV-G-, EboZ- or MuLV-pseudotyped HIV vector effectively targeted quiescent epidermal stem cells which underwent terminal differentiation resulting in transgene expression in their progenies. Among the six different pseudotyped HIV-based vectors evaluated, VSV-G-pseudotyped vector was found to be the most efficient viral glycoprotein for cutaneous transduction as demonstrated by the highest level of beta-galactosidase expression and genome copy number evaluated by TaqMan PCR.
Collapse
Affiliation(s)
- A Hachiya
- Kao Biological Science Laboratories, Haga, Tochigi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Reuss S, Biese P, Cosset FL, Takeuchi Y, Uckert W. Suspension packaging cell lines for the simplified generation of T-cell receptor encoding retrovirus vector particles. Gene Ther 2007; 14:595-603. [PMID: 17235289 DOI: 10.1038/sj.gt.3302906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transfer of T-cell receptor (TCR) genes into primary human T-cells to endow their specificity toward virus-infected and tumor cells is becoming an interesting tool for immunotherapy. TCR-modified T cells are mainly generated by retrovirus-mediated gene transfer. To produce TCR-retrovirus particles, fibroblast packaging cell lines are the most common tool. We constructed two packaging cell lines based on the human suspension T-cell lymphoma line Deltabeta-Jurkat, which lacks endogenous TCRbeta-chains and is therefore unable to express CD3 complexes on the cell surface. After supply of gag-pol (murine leukemia virus (Mo-MLV)) and env (GALV or MLV-10A1) genes, a green fluorescent protein (GFP)-encoding retrovirus vector was transduced into both packaging cell clones, which then stably produced GFP-retroviruses with titers of up to 4 x 10(5) infectious particles (IP)/ml. After transfer of a TCRalpha/beta-encoding retrovirus vector, Deltabeta-Jurkat/GALV and Deltabeta-Jurkat/10A1 cells expressed CD3 molecules on the cell surface. CD3-high expressing packaging cells were enriched by fluorescence-activated cell sorter sorting. In these cells, the CD3 expression level directly correlated with the titer of vector particles. TCR-retroviruses efficiently transduced human T-cell lines and primary T cells. In conclusion, the method allowed the fast and easy generation of high virus titer supernatants for TCR gene transfer.
Collapse
Affiliation(s)
- S Reuss
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | |
Collapse
|
57
|
Stitz J, Wolfrum N, Buchholz CJ, Cichutek K. Envelope proteins of spleen necrosis virus form infectious human immunodeficiency virus type 1 pseudotype vector particles, but fail to incorporate upon substitution of the cytoplasmic domain with that of Gibbon ape leukemia virus. J Gen Virol 2006; 87:1577-1581. [PMID: 16690921 DOI: 10.1099/vir.0.81231-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The wild-type (wt) envelope (Env) proteins of spleen necrosis virus (SNV), together with the transmembrane (TM) protein fused to antibody domains (scFv), have been used for the generation of stable packaging cell lines releasing pseudotyped cell targeting vectors derived from SNV and Murine leukemia virus (MLV). As a first step towards assessing whether HIV-1(SNV/TM-scFv) packaging cells could be established for the production of lentiviral cell targeting vectors, it is reported here that infectious HIV-1-derived particles pseudotyped with wt SNV Env proteins could be generated. Using novel chimeric SNV-derived Env proteins encompassing wt and engineered cytoplasmic domains (C-tail) of the Gibbon ape leukemia virus (GaLV) TM protein, it was further shown that the wt C-tail not only excludes the GaLV TM protein from incorporation into HIV-1 particles, but confers this phenotype to other retroviral envelopes upon C-terminal fusion.
Collapse
Affiliation(s)
- Jörn Stitz
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology, Wolfgang-Pauli-Strasse 10, HCI F107, CH-8093 Zurich, Switzerland
- Division of Medical Biotechnology, Paul Ehrlich Institute, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany
| | - Nina Wolfrum
- Division of Medical Biotechnology, Paul Ehrlich Institute, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany
| | - Christian J Buchholz
- Division of Medical Biotechnology, Paul Ehrlich Institute, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany
| | - Klaus Cichutek
- Division of Medical Biotechnology, Paul Ehrlich Institute, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany
| |
Collapse
|
58
|
Affiliation(s)
- Keith Bupp
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Pisacataway, New Jersey 08854, USA
| | | |
Collapse
|
59
|
Jang JE, Shaw K, Yu XJ, Petersen D, Pepper K, Lutzko C, Kohn DB. Specific and Stable Gene Transfer to Human Embryonic Stem Cells Using Pseudotyped Lentiviral Vectors. Stem Cells Dev 2006; 15:109-17. [PMID: 16522168 DOI: 10.1089/scd.2006.15.109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic modification of human embryonic stem cells (hESCs) is an important tool for understanding and influencing their biologic properties. At the present time, lentiviral vectors pseudotyped with the vesicular stomatitis virus G protein (VSV-G) have been most effective for stable gene transfer to hESCs. However, they also efficiently transduce murine embryonic fibroblasts (MEF), used to support the undifferentiated state of many commonly used hESC lines. Transduction of both the MEF as well as hESCs complicates analyses of gene transfer and expression. We made lentiviral vectors pseudotyped with envelope glycoproteins from retroviruses that have been shown to have more restricted transduction ranges and evaluated their specificity. Lentiviral vectors pseudotyped by the envelopes from either the gibbon ape leukemia virus (GALV) or the RD114 feline endogenous virus (RD114) specifically transduced hESCs to similar extents as VSV-G pseudotyped vectors, but did not transduce MEF. In addition, gene modfication by these pseudotyped lentiviral vectors was stably maintained throughout differentiation of hESCs in vitro. These pseudotyped lentiviral vectors may be valuable tools for efficient, specific and stable gene modification of hESCs.
Collapse
Affiliation(s)
- Jung-Eun Jang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Budak-Alpdogan T, Banerjee D, Bertino JR. Hematopoietic stem cell gene therapy with drug resistance genes: an update. Cancer Gene Ther 2005; 12:849-63. [PMID: 16037821 DOI: 10.1038/sj.cgt.7700866] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transfer of drug resistance genes into hematopoietic stem cells (HSCs) has promise for the treatment of a variety of inherited, that is, X-linked severe combined immune deficiency, adenosine deaminase deficiency, thalassemia, and acquired disorders, that is, breast cancer, lymphomas, brain tumors, and testicular cancer. Drug resistance genes are transferred into HSCs either for providing myeloprotection against chemotherapy-induced myelosuppression or for selecting HSCs that are concomitantly transduced with another gene for correction of an inherited disorder. In this review, we describe ongoing experimental approaches, observations from clinical trials, and safety concerns related to the drug resistance gene transfer.
Collapse
Affiliation(s)
- Tulin Budak-Alpdogan
- Department of Medicine, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 195 Little Albany Street, New Brunswick, New Jersey 08903, USA
| | | | | |
Collapse
|
61
|
Chan L, Nesbeth D, Mackey T, Galea-Lauri J, Gäken J, Martin F, Collins M, Mufti G, Farzaneh F, Darling D. Conjugation of lentivirus to paramagnetic particles via nonviral proteins allows efficient concentration and infection of primary acute myeloid leukemia cells. J Virol 2005; 79:13190-4. [PMID: 16189021 PMCID: PMC1235865 DOI: 10.1128/jvi.79.20.13190-13194.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nonviral producer cell proteins incorporated into retroviral vector surfaces profoundly influence infectivity and in vivo half-life. We report the purification and concentration of lentiviral vectors using these surface proteins as an efficient gene transduction strategy. Biotinylation of these proteins and streptavidin paramagnetic particle concentration enhances titer 400- to 2,500-fold (to 10(9) CFU/ml for vesicular stomatitis virus G protein and 5 x 10(8) for amphotropic murine leukemia virus envelope). This method also uses newly introduced membrane proteins (B7.1 and DeltaLNGFR) directed to lentiviral surfaces, allowing up to 17,000-fold concentrations. Particle conjugation of lentivirus allows facile manipulation in vitro, resulting in the transduction of 48 to 94% of human acute myeloid leukemia blasts.
Collapse
Affiliation(s)
- Lucas Chan
- King's College London, Department of Haematological and Molecular Medicine, The Rayne Institute, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Cronin J, Zhang XY, Reiser J. Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 2005; 5:387-98. [PMID: 16101513 PMCID: PMC1368960 DOI: 10.2174/1566523054546224] [Citation(s) in RCA: 388] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The host range of retroviral vectors including lentiviral vectors can be expanded or altered by a process known as pseudotyping. Pseudotyped lentiviral vectors consist of vector particles bearing glycoproteins (GPs) derived from other enveloped viruses. Such particles possess the tropism of the virus from which the GP was derived. For example, to exploit the natural neural tropism of rabies virus, vectors designed to target the central nervous system have been pseudotyped using rabies virus-derived GPs. Among the first and still most widely used GPs for pseudotyping lentiviral vectors is the vesicular stomatitis virus GP (VSV-G), due to the very broad tropism and stability of the resulting pseudotypes. Pseudotypes involving VSV-G have become effectively the standard for evaluating the efficiency of other pseudotypes. This review samples a few of the more prominent examples from the ever-expanding list of published lentiviral pseudotypes, noting comparisons made with pseudotypes involving VSV-G in terms of titer, viral particle stability, toxicity, and host-cell specificity. Particular attention is paid to publications of successfully targeting a specific organ or cell types.
Collapse
Affiliation(s)
- James Cronin
- Gene Therapy Program, Louisiana State University Health Sciences Center, New Orleans, 70112, USA
| | | | | |
Collapse
|
63
|
Relander T, Johansson M, Olsson K, Ikeda Y, Takeuchi Y, Collins M, Richter J. Gene transfer to repopulating human CD34+ cells using amphotropic-, GALV-, or RD114-pseudotyped HIV-1-based vectors from stable producer cells. Mol Ther 2005; 11:452-9. [PMID: 15727942 DOI: 10.1016/j.ymthe.2004.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 10/05/2004] [Accepted: 10/25/2004] [Indexed: 11/27/2022] Open
Abstract
A novel, stable human immunodeficiency virus type 1 vector packaging system, STAR, was tested for its ability to transduce human cord blood CD34+ progenitor cells assayed both in vitro and after transplantation into NOD/SCID mice. Vectors pseudotyped with three different gammaretrovirus envelopes were used: the amphotropic MLV envelope (MLV-A), a modified gibbon ape leukemia virus envelope (GALV+), and a modified feline endogenous virus RD114 envelope (RDpro). Gene transfer to freshly thawed CD34+ cells in the absence of cytokines was very low. Addition of cytokines increased gene transfer efficiency significantly and this was further augmented if the cells were prestimulated for 24 h. Concentration of the vectors (15-fold) by low-speed centrifugation increased gene transfer to CD34+ cells in vitro even further. More than 90% of cells were transduced with a single exposure to the RDpro vector as determined by GFP expression using flow cytometry. The two other pseudotypes transduced approximately 65-70% of the cells under the same conditions. Transplantation of CD34+ cells prestimulated for 24 h and then transduced with a single exposure to concentrated vector revealed that the RDpro vector transduced 55.1% of NOD/SCID repopulating human cells, which was significantly higher than the MLV-A (12.6%)- or GALV+ (25.1%)-pseudotyped vectors.
Collapse
Affiliation(s)
- Thomas Relander
- Department of Molecular Medicine and Gene Therapy, Lund University, 221 84 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
Recent work demonstrates that RNA interference (RNAi) can coordinate protein expression. Inhibitory RNAs are expressed naturally in cells as microRNAs (miRNAs) or introduced into cells as small interfering RNAs (siRNAs). Both types of small RNAs can be used at the bench to silence mRNA expression. For many researchers, transfection of siRNAs synthesized in vitro or purchased from commercial sources is impractical for the cellular system under study. As an alternative to transfection-based methods, we provide a practical approach to accomplish siRNA-mediated gene silencing through the generation and introduction of recombinant viral vectors expressing short hairpin RNAs (shRNAs). shRNAs are subsequently processed to siRNAs in vivo, leading to efficient, and, in some cases, long-term silencing.
Collapse
Affiliation(s)
- Beverly L Davidson
- Department of Internal Medicine, Neurology, Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, 52242, USA
| | | |
Collapse
|
65
|
Sena-Esteves M, Tebbets JC, Steffens S, Crombleholme T, Flake AW. Optimized large-scale production of high titer lentivirus vector pseudotypes. J Virol Methods 2005; 122:131-9. [PMID: 15542136 DOI: 10.1016/j.jviromet.2004.08.017] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 08/02/2004] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
The goal of the present study was to develop an efficient transient transfection method for large-scale production of high titer lentivirus vector stocks of eight different pseudotypes. The envelope genes used for this purpose were those from VSV-G, Mokola, Rabies, MLV-Ampho, MLV-10A1, LCMV-WE, and LCMV-Arm53b. All envelopes were cloned into phCMV, which yielded lentivirus vector titers one, two, or three orders of magnitude higher than the original plasmids for the Rabies, MLV-10A1, and MLV-Ampho envelopes, respectively. When these newly constructed envelope expression plasmids were used for packaging, treatment with sodium butyrate resulted in almost five-fold increase in titers for some of the pseudotypes, had no effect for others (VSV-G and Rabies), and negatively impacted titers for the LCMV-derived pseudotypes. Production of vectors in serum-free media yielded titers only slightly lower than those obtained in the presence of serum. The efficiency of concentrating vector supernatants by ultracentrifugation or ultrafiltration was compared, with higher recovery efficiencies for the latter method, but the highest titers for most pseudotypes were obtained by ultracentrifugation. The best conditions for each individual pseudotype yielded lentivirus vector stocks with titers above 1 x 10(9) tu/mL for most pseudotypes, and higher than 1 x 10(10) tu/mL for VSV-G.
Collapse
Affiliation(s)
- Miguel Sena-Esteves
- Department of Surgery, The Children's Hospital of Philadelphia, Abramson Research Center, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
66
|
Merten CA, Stitz J, Braun G, Poeschla EM, Cichutek K, Buchholz CJ. Directed evolution of retrovirus envelope protein cytoplasmic tails guided by functional incorporation into lentivirus particles. J Virol 2005; 79:834-40. [PMID: 15613311 PMCID: PMC538528 DOI: 10.1128/jvi.79.2.834-840.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In contrast to most gammaretrovirus envelope proteins (Env), the Gibbon ape leukemia virus (GaLV) Env protein does not mediate the infectivity of human immunodeficiency virus type 1 (HIV-1) particles. We made use of this observation to set up a directed evolution system by creating a library of GaLV Env variants diversified at three critical amino acids, all located around the R-peptide cleavage site within the cytoplasmic tail. This library was screened for variants that were able to functionally pseudotype HIV-1 vector particles. All selected Env variants mediated the infectivity of HIV-1 vector particles and encoded novel cytoplasmic tail motifs. They were efficiently incorporated into HIV particles, and the R peptide was processed by the HIV protease. Interestingly, in some of the selected variants, the R-peptide cleavage site had shifted closer to the C terminus. These data demonstrate a valuable approach for the engineering of chimeric viruses and vector particles.
Collapse
Affiliation(s)
- Christoph A Merten
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | | | | | | | | | | |
Collapse
|
67
|
Strang BL, Ikeda Y, Cosset FL, Collins MKL, Takeuchi Y. Characterization of HIV-1 vectors with gammaretrovirus envelope glycoproteins produced from stable packaging cells. Gene Ther 2004; 11:591-8. [PMID: 14724689 DOI: 10.1038/sj.gt.3302189] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have recently described a novel, stable human immunodeficiency virus type 1 (HIV-1) vector packaging system, STAR. High-titre HIV-1 vectors bearing gammaretrovirus envelopes (Env) are continuously produced from STAR cells. Here we compare the properties of such vectors, with the amphotropic murine leukaemia virus (MLV-A) Env, a modified gibbon ape leukaemia virus (GALV) Env and two modified versions of the cat endogenous retrovirus RD114 Env, produced from STAR cells, to transiently produced HIV-1 vectors with vesicular stomatitis virus G protein (VSV-G). Our results indicate that gammaretrovirus pseudotypes from STAR cells are relatively stable at 37 degrees C and are resistant to inactivation by freeze/thaw cycling or incubation with human sera. HIV-1(VSV-G) was, however, sensitive to freeze/thaw when harvested in serum-free media and was readily inactivated in human sera. Furthermore, the titre of 'gamma-retrovirus' pseudotypes, but not HIV-1(VSV-G), could be increased by the use of a combination of polybrene and spinoculation. All pseudotypes could be efficiently concentrated, but soluble gammaretrovirus Env could act as an inhibitor of infection.
Collapse
Affiliation(s)
- B L Strang
- Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Sciences, University College London, London, UK
| | | | | | | | | |
Collapse
|
68
|
Sandrin V, Muriaux D, Darlix JL, Cosset FL. Intracellular trafficking of Gag and Env proteins and their interactions modulate pseudotyping of retroviruses. J Virol 2004; 78:7153-64. [PMID: 15194792 PMCID: PMC421692 DOI: 10.1128/jvi.78.13.7153-7164.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoproteins derived from most retroviruses and from several families of enveloped viruses can form infectious pseudotypes with murine leukemia virus (MLV) and lentiviral core particles, like the MLV envelope glycoproteins (Env) that are incorporated on either virus type. However, coexpression of a given glycoprotein with heterologous core proteins does not always give rise to highly infectious viral particles, and restrictions on pseudotype formation have been reported. To understand the mechanisms that control the recruitment of viral surface glycoproteins on lentiviral and retroviral cores, we exploited the fact that the feline endogenous retrovirus RD114 glycoprotein does not efficiently pseudotype lentiviral cores derived from simian immunodeficiency virus, whereas it is readily incorporated onto MLV particles. Our results indicate that recruitment of glycoproteins by the MLV and lentiviral core proteins occurs in intracellular compartments and not at the cell surface. We found that Env and core protein colocalization in intracytoplasmic vesicles is required for pseudotype formation. By investigating MLV/RD114 Env chimeras, we show that signals in the cytoplasmic tail of either glycoprotein differentially influenced their intracellular localization; that of MLV allows endosomal localization and hence recruitment by both lentiviral and MLV cores. Furthermore, we found that upon membrane binding, MLV core proteins could relocalize Env glycoproteins in late endosomes and allow their incorporation on viral particles. Thus, intracellular colocalization, as well as interactions between Env and core proteins, may influence the recruitment of the glycoprotein onto viral particles and generate infectious pseudotyped viruses.
Collapse
Affiliation(s)
- Virginie Sandrin
- Laboratoire de Vectorologie Rétrovirale et Thérapie Génique, INSERM U412, IFR128 BioSciences Lyon-Gerland, Ecole Normal Supérieure de Lyon, France
| | | | | | | |
Collapse
|
69
|
Zhang XY, La Russa VF, Reiser J. Transduction of bone-marrow-derived mesenchymal stem cells by using lentivirus vectors pseudotyped with modified RD114 envelope glycoproteins. J Virol 2004; 78:1219-29. [PMID: 14722277 PMCID: PMC321376 DOI: 10.1128/jvi.78.3.1219-1229.2004] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bone-marrow-derived mesenchymal stem cells (MSCs) have attracted considerable attention as tools for the systemic delivery of therapeutic proteins in vivo, and the ability to efficiently transfer genes of interest into such cells would create a number of therapeutic opportunities. We have designed and tested a series of human immunodeficiency virus type 1 (HIV-1)-based vectors and vectors based on the oncogenic murine stem cell virus to deliver and express transgenes in human MSCs. These vectors were pseudotyped with either the vesicular stomatitis virus G (VSV-G) glycoprotein (GP) or the feline endogenous virus RD114 envelope GP. Transduction efficiencies and transgene expression levels in MSCs were analyzed by quantitative flow cytometry and quantitative real-time PCR. While transduction efficiencies with virus particles pseudotyped with the VSV-G GP were found to be high, RD114 pseudotypes revealed transduction efficiencies that were 1 to 2 orders of magnitude below those observed with VSV-G pseudotypes. However, chimeric RD114 GPs, with the transmembrane and extracellular domains fused to the cytoplasmic domain derived from the amphotropic Moloney murine leukemia virus 4070A GP, revealed about 15-fold higher titers relative to the unmodified RD114 GP. The transduction efficiencies in human MSCs of HIV-1-based vectors pseudotyped with the chimeric RD114 GP were similar to those obtained with HIV-1 vectors pseudotyped with the VSV-G GP. Our results also indicate that RD114 pseudotypes were less toxic than VSV-G pseudotypes in human MSC progenitor assays. Taken together, these results suggest that lentivirus pseudotypes bearing alternative Env GPs provide efficient tools for ex vivo modification of human MSCs.
Collapse
Affiliation(s)
- Xian-Yang Zhang
- Gene Therapy Program, Department of Medicine, LSU Health Sciences Center, Tulane Cancer Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
70
|
Kingsman SM. Lentivirus: a vector for nervous system applications. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2004:179-207. [PMID: 12894457 DOI: 10.1007/978-3-662-05352-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- S M Kingsman
- Oxford BioMedica (UK) Ltd., Medawar Centre, Robert Robinson Avenue, Oxford Science Park, Oxford OX4 4GA, UK.
| |
Collapse
|
71
|
Wong LF, Azzouz M, Walmsley LE, Askham Z, Wilkes FJ, Mitrophanous KA, Kingsman SM, Mazarakis ND. Transduction Patterns of Pseudotyped Lentiviral Vectors in the Nervous System. Mol Ther 2004; 9:101-11. [PMID: 14741783 DOI: 10.1016/j.ymthe.2003.09.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
We have developed a non-primate-based lentiviral vector based on the equine infectious anemia virus (EIAV) for efficient gene transfer to the central and peripheral nervous systems. Previously we have demonstrated that pseudotyping lentiviral vectors with the rabies virus glycoprotein confers retrograde axonal transport to these vectors. In the present study we have successfully produced high-titer EIAV vectors pseudotyped with envelope glycoproteins from Rhabdovirus vesicular stomatitis virus (VSV) serotypes (Indiana and Chandipura strains); rabies virus [various Evelyn-Rokitnicki-Abelseth ERA strains and challenge virus standard (CVS)]; Lyssavirus Mokola virus, a rabies-related virus; and Arenavirus lymphocytic choriomeningitis virus (LCMV). These vectors were delivered to the striatum or spinal cord of adult rats or muscle of neonatal mice by direct injection. We report that the lentiviral vectors pseudotyped with envelopes from the VSV Indiana strain, wild-type ERA, and CVS strains resulted in strong transduction in the striatum, while Mokola- and LCMV-pseudotyped vectors exhibited moderate and weak transduction, respectively. Furthermore ERA- and CVS-pseudotyped lentiviral vectors demonstrated retrograde transport and expression in distal neurons after injection in brain, spinal cord, and muscle. The differences in transduction efficiencies and retrograde transport conferred by these envelope glycoproteins present novel opportunities in designing therapeutic strategies for different neurological diseases.
Collapse
Affiliation(s)
- Liang-Fong Wong
- Neurobiology Group, Oxford Biomedica (UK) Ltd., Medawar Centre, Oxford OX4 4GA, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Retroviral vectors capable of efficient in vivo gene delivery to specific target cell types or to specific locations of disease pathology would greatly facilitate many gene therapy applications. The surface glycoproteins of membrane-enveloped viruses stand among the choice candidates to control the target cell receptor recognition and host range of retroviral vectors onto which they are incorporated. This can be achieved in many ways, such as the exchange of glycoprotein by pseudotyping, their biochemical modifications, their conjugation with virus-cell bridging agents or their structural modifications. Understanding the fundamental properties of the viral glycoproteins and the molecular mechanism of virus entry into cells has been instrumental in the functional alteration of their tropism. Here we briefly review the current state of our understanding of the structure and function of viral envelope glycoproteins and we discuss the emerging targeting strategies based on retroviral and lentiviral vector systems.
Collapse
Affiliation(s)
- V Sandrin
- Laboratoire de Vectorologie Rétrovirale et Thérapie Génique, Unité de Virologie Humaine, INSERM U412, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | |
Collapse
|
73
|
Medina MF, Kobinger GP, Rux J, Gasmi M, Looney DJ, Bates P, Wilson JM. Lentiviral vectors pseudotyped with minimal filovirus envelopes increased gene transfer in murine lung. Mol Ther 2003; 8:777-89. [PMID: 14599811 DOI: 10.1016/j.ymthe.2003.07.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A human immunodeficiency virus (HIV)-based vector pseudotyped with the Ebola Zaire (EboZ) viral envelope glycoprotein (GP) was recently shown to transduce murine airway epithelia cells in vivo. In this study, the vector was further redesigned to improve gene transfer and also to increase safety. We used mutant EboZ envelopes for pseudotyping, which resulted in higher titers and increased transduction of airway cells in vivo compared to vectors pseudotyped with wild-type EboZ GP. As these envelopes lack regions associated with toxicity of the wild-type EboZ GP, they should also be safer to use for pseudotyping of lentiviral vectors. In addition, lentiviral vectors were created based on feline immunodeficiency virus and shown to have similar efficiency of transduction compared to HIV-based vectors. The creation of lentiviral vectors with highly engineered EboZ envelopes improved the performance of the system and should also increase its safety since only minimal regions of the EboZ envelope, which lack the toxic domain, are used.
Collapse
Affiliation(s)
- Maria Fe Medina
- Division of Medical Genetics, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
A key factor in the success of gene therapy is the development of gene delivery systems that are capable of efficient gene transfer in a broad variety of tissues, without causing any pathogenic effect. Currently, viral vectors based on many different viruses have been developed, and their performance and pathogenicity has been evaluated in animal models. The results of these studies form the basis for the first clinical trials for correcting genetic disorders using retroviral, adenoviral, and adeno-associated viral vectors. Even though the results of these trials are encouraging, vector development is still required to improve and refine future treatment of hereditary disorders.
Collapse
Affiliation(s)
- Neeltje A Kootstra
- Laboratory of Genetics, The Salk Institute, La Jolla, California 92037-1099, USA.
| | | |
Collapse
|
75
|
Junker K, Koehl U, Zimmerman S, Stein S, Schwabe D, Klingebiel T, Grez M. Kinetics of cell death in T lymphocytes genetically modified with two novel suicide fusion genes. Gene Ther 2003; 10:1189-97. [PMID: 12833128 DOI: 10.1038/sj.gt.3301977] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Donor lymphocyte infusions (DLI) following allogeneic stem cell transplantation are known to mediate graft-versus-leukemia effect (GVL). A major side effect of these immunotherapies is the development of graft-versus-host diseases (GVHD). One promising approach to prevent GVHD is to genetically modify donor T cells with a suicide mechanism that can be induced in the case of GVHD. Here we report on a retroviral vector containing the death effector domain (DED) of the human Fas-associated protein with death domain (FADD). The DED was fused to two copies of an FKBP506-binding protein and a truncated version of the human low-affinity receptor for nerve growth factor (LNGFR). Activation of the death signal pathway can be triggered upon the addition of chemical inducers of dimerization. This construct was functionally compared to an optimized HSV-TK vector in which a hypersensitive mutant of the herpes simplex virus thymidine kinase gene (TK39) was fused to a cytoplasmic truncated version of the cell surface antigen CD34. A direct comparison between both vectors in primary T lymphocytes showed that the number of T cells transduced with vectors containing the DED was significantly reduced within 24 h of drug administration whereas ganciclovir treatment of TK39-transduced T cells showed a delay in cell death of approximately 3-4 days. Our results indicate that constructs containing the DED may prove to be the most efficient mechanism to quickly eliminate alloreactive T cells.
Collapse
Affiliation(s)
- K Junker
- Department of Pediatric Hematology and Oncology, University Hospital, Johann-Wolfgang von Goethe University, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
76
|
Sinn PL, Hickey MA, Staber PD, Dylla DE, Jeffers SA, Davidson BL, Sanders DA, McCray PB. Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor alpha. J Virol 2003; 77:5902-10. [PMID: 12719583 PMCID: PMC154009 DOI: 10.1128/jvi.77.10.5902-5910.2003] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The practical application of gene therapy as a treatment for cystic fibrosis is limited by poor gene transfer efficiency with vectors applied to the apical surface of airway epithelia. Recently, folate receptor alpha (FR alpha), a glycosylphosphatidylinositol-linked surface protein, was reported to be a cellular receptor for the filoviruses. We found that polarized human airway epithelia expressed abundant FR alpha on their apical surface. In an attempt to target these apical receptors, we pseudotyped feline immunodeficiency virus (FIV)-based vectors by using envelope glycoproteins (GPs) from the filoviruses Marburg virus and Ebola virus. Importantly, primary cultures of well-differentiated human airway epithelia were transduced when filovirus GP-pseudotyped FIV was applied to the apical surface. Furthermore, by deleting a heavily O-glycosylated extracellular domain of the Ebola GP, we improved the titer of concentrated vector severalfold. To investigate the folate receptor dependence of gene transfer with the filovirus pseudotypes, we compared gene transfer efficiency in immortalized airway epithelium cell lines and primary cultures. By utilizing phosphatidylinositol-specific phospholipase C (PI-PLC) treatment and FR alpha-blocking antibodies, we demonstrated FR alpha-dependent and -independent entry by filovirus glycoprotein-pseudotyped FIV-based vectors in airway epithelia. Of particular interest, entry independent of FR alpha was observed in primary cultures of human airway epithelia. Understanding viral vector binding and entry pathways is fundamental for developing cystic fibrosis gene therapy applications.
Collapse
Affiliation(s)
- Patrick L Sinn
- Program in Gene Therapy, Department of Pediatrics, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Leurs C, Jansen M, Pollok KE, Heinkelein M, Schmidt M, Wissler M, Lindemann D, Von Kalle C, Rethwilm A, Williams DA, Hanenberg H. Comparison of three retroviral vector systems for transduction of nonobese diabetic/severe combined immunodeficiency mice repopulating human CD34+ cord blood cells. Hum Gene Ther 2003; 14:509-19. [PMID: 12718762 DOI: 10.1089/104303403764539305] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of recombinant vectors based on wild-type viruses that are absent in humans and are not associated with any disease in their natural animal hosts or in accidentally infected humans would add an additional level of safety for human somatic gene therapy approaches. These criteria are fulfilled by foamy viruses (FVs), a family of complex retroviruses whose members are widely found among mammals and are apathogenic in all hosts. Here, we show by comparison of identically designed vector constructs that recombinant retroviral vectors based on FVs were as efficient as lentiviral vectors in transducing nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice repopulating human CD34(+) cord blood (CB) cells. The FV vector was able to achieve gene transfer levels up to 84% of engrafted human cells in a short overnight transduction protocol. In contrast, without prestimulation of the target cells, a human immunodeficiency virus type 1 (HIV-1)-based lentiviral vector pseudotyped with gibbon ape leukemia virus envelope (GALV Env) was nearly as inefficient as murine leukemia virus (MLV)-based oncoretroviral vectors in transducing NOD/SCID repopulating cells. The same HIV vector pseudotyped with the vesicular stomatitis virus glycoprotein G (VSV-G) achieved high marking efficiency. Clonality analysis of bone marrow samples showed oligoclonal hematopoiesis with single to multiple insertions per cell, both for FV and HIV vectors. These data demonstrate that vectors based on FVs warrant further investigation and development for medical use.
Collapse
Affiliation(s)
- Cordula Leurs
- Klinik für Pädiatrische Hämatologie und Onkologie, Zentrum für Kinderheilkunde, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Janssens W, Chuah MKL, Naldini L, Follenzi A, Collen D, Saint-Remy JM, VandenDriessche T. Efficiency of onco-retroviral and lentiviral gene transfer into primary mouse and human B-lymphocytes is pseudotype dependent. Hum Gene Ther 2003; 14:263-76. [PMID: 12639306 DOI: 10.1089/10430340360535814] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
B lymphocytes are attractive targets for gene therapy of genetic diseases associated with B-cell dysfunction and for immunotherapy. Transduction of B lymphocytes was evaluated using green fluorescent protein (GFP)-encoding onco-retroviral and HIV-derived lentiviral vectors which were pseudotyped with ecotropic, amphotropic or vesicular stomatitis virus (VSV-G) envelopes. Transduction of mouse B lymphocytes activated with lipopolysaccharides (LPS) or by cross-linking CD40 in conjunction with interleukin-4 (IL-4) was significantly more efficient (p < 0.003) with ecotropic (11%) than with VSV-G pseudotyped onco-retroviral vectors (1%). Using high-titer cell-free ecotropic viral supernatant or by coculture with ecotropic onco-retroviral vector-producing cells, transduction efficiency increased significantly (p < 0.001) to approximately 50%, whereas transduction efficiency by coculture with VSV-G pseudotyped vector-producing cells remained low (< 2%). Similarly, transduction of mouse B lymphocytes was significantly more efficient (twofold, p < 0.01) with the ecotropic (7%) than with the VSV-G pseudotyped lentiviral vectors although gene transfer efficiency remained low because of dose-limiting toxicity of the concentrated vector preparations on the LPS-activated murine B cells. Consistent with murine B-cell transduction, human B cells activated with CD40L and IL-4 were also found to be relatively refractory to VSV-G pseudotyped onco-retroviral vectors (< 1%). However, higher transduction efficiencies could be achieved in activated primary human B lymphocytes using VSV-G pseudotyped lentiviral vectors instead (5%-6%). Contrary to the significant increase in mouse B-cell transduction efficiency with ecotropic vectors, the use of amphotropic onco-retroviral or lentiviral vectors did not increase transduction efficiency in primary human B cells. The present study shows that the transduction efficiency of onco-retroviral and lentiviral vectors in human and mouse B lymphocytes is pseudotype-dependent and challenges the widely held assumption that VSV-G pseudotyping facilitates gene transfer into all cell types.
Collapse
Affiliation(s)
- Wim Janssens
- Center for Molecular & Vascular Biology, University of Leuven, Leuven, B-3000, Belgium
| | | | | | | | | | | | | |
Collapse
|
79
|
Virus-based vectors for gene expression in mammalian cells: Lentiviruses. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0167-7306(03)38015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
80
|
Kumar M, Bradow BP, Zimmerberg J. Large-scale production of pseudotyped lentiviral vectors using baculovirus GP64. Hum Gene Ther 2003; 14:67-77. [PMID: 12573060 DOI: 10.1089/10430340360464723] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Unlike oncoretroviruses, lentiviral vectors can insert large genes and can target both dividing and nondividing cells; thus they hold unique promise as gene transfer agents. To enhance target range, the native lentiviral envelope glycoprotein is replaced (pseudotyped) with vesicular stomatitis virus G (VSVG), and the genes of interest are packaged in nonreplicating vectors by transient transfection with three plasmids. However, because of cytotoxic effects of VSVG expression in producer cells (293T cells) it has been difficult to generate a packaging cell line, required for even modest scale-up of vector production. Here we introduce a pseudotyped lentivirus vector using the baculovirus GP64 envelope glycoprotein. Compared with VSVG, GP64 vectors exhibited a similar broad tropism and similar native titers. GP64-pseudotyped vectors were usually highly concentrated without much loss of titer. Because, unlike VSVG, GP64 expression does not kill cells, we generated 293T-based cell lines constitutively expressing GP64. Our results demonstrate that the baculovirus GP64 protein is an attractive alternative to VSVG for viral vectors used in the large-scale production of high-titer virus required for clinical and commercial applications.
Collapse
Affiliation(s)
- Mukesh Kumar
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
81
|
Abstract
In contrast to other retroviruses, lentiviruses have the unique property of infecting non-proliferating cells. Thus vectors derived from lentiviruses are promising tools for in vivo gene delivery applications. Vectors derived from human primate and non-primate lentiviruses have recently been described and, unlike retroviral vectors derived from murine leukemia viruses, lead to stable integration of the transgene into quiescent cells in various organs. Despite all the safety safeguards that have been progressively introduced in lentiviral vectors, the clinical acceptance of vectors derived from pathogenic lentiviruses is subject to debate. It is therefore essential to design vectors derived from a wide range of lentivirus types and to comparatively examine their properties in terms of transduction efficiency and bio-safety. Here, we review the properties of lentiviral vectors derived from simian immunodeficiency virus (SIV).
Collapse
Affiliation(s)
- Didier Nègre
- Laboratoire de vectorologie rétrovirale et thérapie génique. INSERM U412, IFR 74, Ecole normale supérieure de Lyon, 46, allée d'Italie, France
| | | |
Collapse
|
82
|
Bobkova M, Stitz J, Engelstädter M, Cichutek K, Buchholz CJ. Identification of R-peptides in envelope proteins of C-type retroviruses. J Gen Virol 2002; 83:2241-2246. [PMID: 12185279 DOI: 10.1099/0022-1317-83-9-2241] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of the murine leukaemia virus (MLV) envelope protein (Env) requires proteolytic cleavage of the R-peptide, a 16 amino acid C-terminal part of the cytoplasmic tail (C-tail) of Env. This paper demonstrates the presence of R-peptides in Env proteins of C-type retroviruses of simian, avian and porcine origin. Sequence alignment with the MLV C-tail led to the identification of a conserved hydrophobic protease cleavage motif located in the centre of retroviral Env protein C-tails. Expression of Env proteins, truncated at the predicted cleavage sites, of spleen necrosis virus (SNV), gibbon ape leukaemia virus and porcine endogenous retroviruses resulted in cell-cell fusion as monitored by microscopy and reporter gene fusion assays. Western blot analysis of MLV particles pseudotyped with the SNV Env protein demonstrated proteolytic cleavage of the SNV R-peptide by the MLV protease. Our data suggest that activation of membrane fusion by R-peptide cleavage is a common mode in C-type retroviruses.
Collapse
Affiliation(s)
- Maria Bobkova
- Department of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany1
| | - Joern Stitz
- Department of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany1
| | - Martin Engelstädter
- Department of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany1
| | - Klaus Cichutek
- Department of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany1
| | - Christian J Buchholz
- Department of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany1
| |
Collapse
|
83
|
Kang Y, Stein CS, Heth JA, Sinn PL, Penisten AK, Staber PD, Ratliff KL, Shen H, Barker CK, Martins I, Sharkey CM, Sanders DA, McCray PB, Davidson BL. In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River Virus glycoproteins. J Virol 2002; 76:9378-88. [PMID: 12186920 PMCID: PMC136422 DOI: 10.1128/jvi.76.18.9378-9388.2002] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vectors derived from lentiviruses provide a promising gene delivery system. We examined the in vivo gene transfer efficiency and tissue or cell tropism of a feline immunodeficiency virus (FIV)-based lentiviral vector pseudotyped with the glycoproteins from Ross River Virus (RRV). RRV glycoproteins were efficiently incorporated into FIV virions, generating preparations of FIV vector, which after concentration attain titers up to 1.5 x 10(8) TU/ml. After systemic administration, RRV-pseudotyped FIV vectors (RRV/FIV) predominantly transduced the liver of recipient mice. Transduction efficiency in the liver with the RRV/FIV was ca. 20-fold higher than that achieved with the vesicular stomatitis virus G protein (VSV-G) pseudotype. Moreover, in comparison to VSV-G, the RRV glycoproteins caused less cytotoxicity, as determined from the levels of glutamic pyruvic transaminase and glutamic oxalacetic transaminase in serum. Although hepatocytes were the main liver cell type transduced, nonhepatocytes (mainly Kupffer cells) were also transduced. The percentages of the transduced nonhepatocytes were comparable between RRV and VSV-G pseudotypes and did not correlate with the production of antibody against the transgene product. After injection into brain, RRV/FIV preferentially transduced neuroglial cells (astrocytes and oligodendrocytes). In contrast to the VSV-G protein that targets predominantly neurons, <10% of the brain cells transduced with the RRV pseudotyped vector were neurons. Finally, the gene transfer efficiencies of RRV/FIV after direct application to skeletal muscle or airway were also examined and, although transgene-expressing cells were detected, their proportions were low. Our data support the utility of RRV glycoprotein-pseudotyped FIV lentiviral vectors for hepatocyte- and neuroglia-related disease applications.
Collapse
Affiliation(s)
- Yubin Kang
- Program in Gene Therapy, Department of Pediatrics, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Sandrin V, Boson B, Salmon P, Gay W, Nègre D, Le Grand R, Trono D, Cosset FL. Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood 2002; 100:823-32. [PMID: 12130492 DOI: 10.1182/blood-2001-11-0042] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Generating lentiviral vectors pseudotyped with different viral glycoproteins (GPs) may modulate the physicochemical properties of the vectors, their interaction with the host immune system, and their host range. We have investigated the capacity of a panel of GPs of both retroviral (amphotropic murine leukemia virus [MLV-A]; gibbon ape leukemia virus [GALV]; RD114, feline endogenous virus) and nonretroviral (fowl plague virus [FPV]; Ebola virus [EboV]; vesicular stomatitis virus [VSV]; lymphocytic choriomeningitis virus [LCMV]) origins to pseudotype lentiviral vectors derived from simian immunodeficiency virus (SIVmac251). SIV vectors were efficiently pseudotyped with the FPV hemagglutinin, VSV-G, LCMV, and MLV-A GPs. In contrast, the GALV and RD114 GPs conferred much lower infectivity to the vectors. Capitalizing on the conservation of some structural features in the transmembrane domains and cytoplasmic tails of the incorporation-competent MLV-A GP and in RD114 and GALV GPs, we generated chimeric GPs encoding the extracellular and transmembrane domains of GALV or RD114 GPs fused to the cytoplasmic tail (designated TR) of MLV-A GP. Importantly, SIV-derived vectors pseudotyped with these GALV/TR and RD114/TR GP chimeras had significantly higher titers than vectors coated with the parental GPs. Additionally, RD114/TR-pseudotyped vectors were efficiently concentrated and were resistant to inactivation induced by the complement of both human and macaque sera, indicating that modified RD114 GP-pseudotyped lentiviral vectors may be of particular interest for in vivo gene transfer applications. Furthermore, as compared to vectors pseudotyped with other retroviral GPs or with VSV-G, RD114/TR-pseudotyped vectors showed augmented transduction of human and macaque primary blood lymphocytes and CD34+ cells.
Collapse
Affiliation(s)
- Virginie Sandrin
- Vectorologie Rétrovirale & Thérapie Génique, U412 INSERM, IFR 74, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Lavillette D, Marin M, Ruggieri A, Mallet F, Cosset FL, Kabat D. The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors. J Virol 2002; 76:6442-52. [PMID: 12050356 PMCID: PMC136247 DOI: 10.1128/jvi.76.13.6442-6452.2002] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human endogenous retrovirus type W (HERV-W) family includes proviruses with intact protein-coding regions that appear to be under selection pressure, suggesting that some HERV-W proviruses may remain active in higher primates. The envelope glycoprotein (Env) encoded by HERV-W is highly fusogenic, is naturally expressed in human placental syncytiatrophoblasts, and has been reported to function as a superantigen in lymphocyte cultures. Recent evidence suggested that HERV-W Env can mediate syncytium formation by interacting with the human sodium-dependent neutral amino acid transporter type 2 (hASCT2; gene name, SLC1A5) (J.-L. Blond, D. Lavillette, V. Cheynet, O. Bouton, G. Oriol, S. Chapel-Fernandez, B. Mandrand, F. Mallet, and F.-L. Cosset, J. Virol. 74:3321-3329, 2000) and that it can pseudotype human immunodeficiency virus cores (D. S. An, Y. Xie, and I. S. Y. Chen, J. Virol. 75:3488-3489, 2001). By using cell-cell fusion and pseudotype virion infection assays, we found that HERV-W Env efficiently uses both hASCT2 and the related transporter hASCT1 (gene name, SLC1A4) as receptors. In addition, although HERV-W Env mediates only slight syncytium formation or infection of mouse cells, it utilizes the mouse transporters mASCT1 and mASCT2 when their sites for N-linked glycosylation are eliminated by mutagenesis. Consistent with their role as a battlefield in host-virus coevolution, the viral recognition regions in ASCT1 and ASCT2 of humans and mice are highly divergent compared with other regions of these proteins, and their ratios of nonsynonymous to synonymous nucleotide sequence changes are extremely large. The recognition of ASCT1 and ASCT2 despite this divergence of their sequences strongly suggests that the use of both receptors has been highly advantageous for survival and evolution of the HERV-W family of retroviruses.
Collapse
Affiliation(s)
- Dimitri Lavillette
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA
| | | | | | | | | | | |
Collapse
|
86
|
Watson DJ, Kobinger GP, Passini MA, Wilson JM, Wolfe JH. Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol Ther 2002; 5:528-37. [PMID: 11991743 DOI: 10.1006/mthe.2002.0584] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lentiviral vectors have proven to be promising tools for transduction of central nervous system (CNS) cells in vivo and in vitro. In this study, CNS transduction patterns of lentiviral vectors pseudotyped with envelope glycoproteins from Ebola virus, murine leukemia virus (MuLV), lymphocytic choriomeningitis virus (LCMV), or the rabies-related Mokola virus were compared to a vector pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G). Mokola-, LCMV-, and VSV-G-pseudotyped vectors transduced similar populations, including striatum, thalamus, and white matter. Mokola-pseudotyped vectors were the most efficient of the three. MuLV-pseudotyped lentivirus efficiently transduced striatum and hippocampal dentate gyrus. In contrast, no transduction resulted from injection of Ebola-pseudotyped virus in the CNS. The same pattern was observed in vitro with primary cultured oligodendrocytes. LCMV, MuLV, and Ebola pseudotypes were the most stable. These results demonstrate that targeted transduction in the CNS can be achieved using specific envelope glycoproteins to pseudotype lentiviral vectors, and support the use of Mokola-pseudotyped and MuLV-pseudotyped lentiviral vectors as efficient and stable alternatives to VSV-G-pseudotyped vectors for experiments in the mouse CNS.
Collapse
Affiliation(s)
- Deborah J Watson
- Department of Pathobiology and Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
87
|
Affiliation(s)
- M A Curran
- Stanford University, Department of Molecular Pharmacology, 269 Campus Drive, CCSR 3205A, Stanford, CA 94305-5174, USA
| | | |
Collapse
|
88
|
Affiliation(s)
- A Larochelle
- Internal Medicine Program, Siebens 6, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
89
|
Nègre D, Duisit G, Mangeot PE, Moullier P, Darlix JL, Cosset FL. Lentiviral vectors derived from simian immunodeficiency virus. Curr Top Microbiol Immunol 2002; 261:53-74. [PMID: 11892253 DOI: 10.1007/978-3-642-56114-6_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- D Nègre
- Laboratoire de Vectorologie Rétrovirale et Thérapie Génique, INSERM U412, Ecole Normale Supérieure de Lyon, IFR 74, 46 Allée d'Italie, 69364 Lyon, France
| | | | | | | | | | | |
Collapse
|
90
|
Affiliation(s)
- N Déglon
- Division of Surgical Research and Gene Therapy Center, Lausanne University Medical School, Lausanne, Switzerland
| | | |
Collapse
|
91
|
Salmon P, Trono D. Lentiviral vectors for the gene therapy of lympho-hematological disorders. Curr Top Microbiol Immunol 2002; 261:211-27. [PMID: 11892249 DOI: 10.1007/978-3-642-56114-6_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- P Salmon
- Department of Genetics and Microbiology, Faculty of Medicine, Geneva, Switzerland
| | | |
Collapse
|
92
|
|
93
|
Stein CS, Davidson BL. Gene transfer to the brain using feline immunodeficiency virus-based lentivirus vectors. Methods Enzymol 2002; 346:433-54. [PMID: 11883084 DOI: 10.1016/s0076-6879(02)46070-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Colleen S Stein
- College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
94
|
Rohll JB, Mitrophanous KA, Martin-Rendon E, Ellard FM, Radcliffe PA, Mazarakis ND, Kingsman SM. Design, production, safety, evaluation, and clinical applications of nonprimate lentiviral vectors. Methods Enzymol 2002; 346:466-500. [PMID: 11883086 DOI: 10.1016/s0076-6879(02)46072-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Jonathan B Rohll
- Department of Biochemistry, Oxford BioMedica (UK) Limited, Oxford OX4 4GA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
95
|
VandenDriessche T, Naldini L, Collen D, Chuah MKL. Oncoretroviral and lentiviral vector-mediated gene therapy. Methods Enzymol 2002; 346:573-89. [PMID: 11883092 DOI: 10.1016/s0076-6879(02)46078-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oncoretroviral vectors and lentiviral vectors offer the potential for long-term gene expression by virtue of their stable chromosomal integration and lack of viral gene expression. Consequently, their integration allows passage of the transgene to all progeny cells, which makes them particularly suitable for stem cell transduction. However, a disadvantage of oncoretroviral vectors based on Moloney murine leukemia virus (MoMLV) is that cell division is required for transduction and integration, thereby limiting oncoretroviral-mediated gene therapy to actively dividing target cells. In contrast, lentiviral vectors can transduce both dividing and nondividing cells. Lentiviral vectors have been derived from either human or primate lentiviruses, with the human immunodeficiency virus (HIV) as prototype, or from nonprimate lentiviruses, such as the equine infectious anemia virus (EIAV). The ability to pseudotype oncoretroviral and lentiviral vectors with the vesicular stomatitis virus G glycoprotein (VSV-G) allowed for the production of high-titer vectors (10(9)-10(10) transducing units/ml). These high-titer vector preparations were shown to effectively cure genetic diseases in experimental animal models and constitute an essential step toward direct in vivo gene therapy applications. This chapter focuses on different methods that permit large-scale production of high-titer VSV-G pseudotyped oncoretroviral and primate or nonprimate lentiviral vectors and highlights their importance for achieving therapeutic effects in preclinical animal models.
Collapse
Affiliation(s)
- Thierry VandenDriessche
- Flanders Interuniversity Institute of Biotechnology, Center for Transgene Technology and Gene Therapy, University of Leuven, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
96
|
Hanawa H, Kelly PF, Nathwani AC, Persons DA, Vandergriff JA, Hargrove P, Vanin EF, Nienhuis AW. Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol Ther 2002; 5:242-51. [PMID: 11863413 DOI: 10.1006/mthe.2002.0549] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Substantial effort has been invested in developing methodologies for efficient gene transfer into human, repopulating, hematopoietic stem cells. Oncoretroviral vectors are limited by the lack of nuclear mitosis in quiescent stem cells during ex vivo transduction, whereas the preintegration complex of lentiviral vectors contains nuclear-localizing signals that permit genome integration without mitosis. We have developed a flexible and versatile system for generating lentiviral vector particles and have pseudotyped such particles with amphotropic, ecotropic, feline endogenous virus (RD114) or vesicular stomatitis virus (VSV-G) envelope proteins. Particles of all four types could be concentrated approximately 100-fold by ultracentrifugation or ultrafiltration. RD114 or amphotropic particles were more efficient than VSV-G-pseudotyped particles at transducing human cord blood CD34(+) cells and clonogenic progenitors within that population. Amphotropic particles transduced cytokine-mobilized, human peripheral blood CD34(+) cells capable of establishing hematopoiesis in immunodeficient mice more efficiently than the other two types of particles. We conclude that the use of amphotropic pseudotyped lentiviral vector particles rather than the commonly used VSV-G-pseudotyped particles should be considered in potential applications of lentiviral vectors for gene transfer into this therapeutically relevant target cell population.
Collapse
Affiliation(s)
- Hideki Hanawa
- Department of Hematology/Oncology, Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Tissue-specific gene delivery is an important aspect of many gene therapy applications. The experiments reported here constitute the first successful demonstration that cell-specific entry can be obtained by screening a random library of retroviral envelope proteins produced from a mammalian cell system. The library consisted of 10(6) different subgroup A feline leukemia virus envelope protein variants with 10 randomly substituted amino acids in the receptor-determining region. Selecting the library for fully functional envelope proteins able to mediate stable gene transfer resulted in the identification of a single envelope protein variant (EF). Subsequent examination of the host range of EF revealed that it was highly specific for D17 canine osteosarcoma cells. This was in contrast to the host ranges of the parental subgroup A and closely related subgroup C envelope proteins. Interference assays on D17 cells further indicated that receptor usage by EF was also altered compared with the A and C envelope proteins. The EF envelope protein thus isolated should be useful for studying gene therapy treatments of osteosarcoma in a large-animal model.
Collapse
Affiliation(s)
- Keith Bupp
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
98
|
Bruett L, Clements JE. Functional murine leukemia virus vectors pseudotyped with the visna virus envelope show expanded visna virus cell tropism. J Virol 2001; 75:11464-73. [PMID: 11689628 PMCID: PMC114733 DOI: 10.1128/jvi.75.23.11464-11473.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudotype virus vectors serve as a powerful tool for the study of virus receptor usage and entry. We describe the development of murine leukemia virus (MuLV) particles pseudotyped with the visna virus envelope glycoprotein and encoding a green fluorescent protein reporter as a tool to study the expression of the visna virus receptor. Functional MuLV/visna virus pseudotypes were obtained when the cytoplasmic tail of the visna virus envelope TM protein was truncated to 3, 7, or 11 amino acids in length. MuLV/visna virus particles were used to transduce a panel of cell types from various organisms, including sheep, goat, human, hamster, mouse, monkey, and quail. The majority of the cells examined were susceptible to MuLV/visna pseudotype viruses, supporting the notion that the visna virus cellular receptor is a widely expressed protein found in many species. Of 16 different cell types tested, only mouse embryo fibroblast NIH 3T3 cells, hamster ovary CHO cells, and the human promonocyte cell line U937 cells were not susceptible to transduction by the pseudotyped virus. The production of functional MuLV/visna virus pseudotypes has provided a sensitive, biologically relevant system to study visna virus cell entry and envelope-receptor interactions.
Collapse
Affiliation(s)
- L Bruett
- Division of Comparative Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | |
Collapse
|
99
|
Lewis BC, Chinnasamy N, Morgan RA, Varmus HE. Development of an avian leukosis-sarcoma virus subgroup A pseudotyped lentiviral vector. J Virol 2001; 75:9339-44. [PMID: 11533197 PMCID: PMC114502 DOI: 10.1128/jvi.75.19.9339-9344.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We are using avian leukosis-sarcoma virus (ALSV) vectors to generate mouse tumor models in transgenic mice expressing TVA, the receptor for subgroup A ALSV. Like other classical retroviruses, ALSV requires cell division to establish a provirus after infection of host cells. In contrast, lentiviral vectors are capable of integrating their viral DNA into the genomes of nondividing cells. With the intention of initiating tumorigenesis in resting, TVA-positive cells, we have developed a system for the preparation of a human immunodeficiency virus type 1 (HIV-1)-based lentiviral vector, pseudotyped with the envelope protein of ALSV subgroup A (EnvA). The HIV(ALSV-A) vector retains the requirement for TVA on the surface of target cells and can be produced at titers of 5 x 10(3) infectious units (IU)/ml. By inserting the central polypurine tract (cPPT) from the HIV-1 pol gene and removing the cytoplasmic tail of EnvA, the pseudotype can be produced at titers approaching 10(5) IU/ml and can be concentrated by ultracentrifugation to titers of 10(7) IU/ml. HIV(ALSV-A) also infects embryonic fibroblasts derived from transgenic mice in which TVA expression is driven by the beta-actin promoter. In addition, this lentivirus pseudotype efficiently infects these fibroblasts after cell cycle arrest, when they are resistant to infection by ALSV vectors. This system may be useful for introducing genes into somatic cells in adult TVA transgenic animals and allows evaluation of the effects of altered gene expression in differentiated cell types in vivo.
Collapse
Affiliation(s)
- B C Lewis
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
100
|
Baek SC, Lin Q, Robbins PB, Fan H, Khavari PA. Sustainable systemic delivery via a single injection of lentivirus into human skin tissue. Hum Gene Ther 2001; 12:1551-8. [PMID: 11506697 DOI: 10.1089/10430340152480276] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The skin offers a tissue site accessible for delivery of gene-based therapeutics. To develop the capability for sustained systemic polypeptide delivery via cutaneous gene transfer, we generated and injected pseudotyped HIV-1 lentiviral vectors intradermally at a range of doses into human skin grafted on immune-deficient mice. Unlike Moloney murine leukemia virus (MLV)-based retrovectors, which failed to achieve detectable cutaneous gene transfer by this approach, lentivectors effectively targeted all major cell types within human skin tissue, including fibroblasts, endothelial cells, keratinocytes, and macrophages. After a single injection, lentivectors encoding human erythropoietin (EPO) produced dose-dependent increases in serum human EPO levels and hematocrit that increased rapidly within one month and remained stable subsequently. Delivered gene expression was confined locally at the injection site. Excision of engineered skin led to rapid and complete loss of human EPO in the bloodstream, confirming that systemic EPO delivery was entirely due to lentiviral targeting of cells within skin rather than via spread of the injected vector to visceral tissues. These findings indicate that the skin can sustain dosed systemic delivery of therapeutic polypeptides via direct lentivector injection and thus provide an accessible and reversible approach for gene-based delivery to the bloodstream.
Collapse
Affiliation(s)
- S C Baek
- Veterans Affairs Palo Alto Healcare System and Program in Epithelial Biology, Stanford University School of Medicine, CA 94305, USA
| | | | | | | | | |
Collapse
|