51
|
Bracey KM, Gu G, Kaverina I. Microtubules in Pancreatic β Cells: Convoluted Roadways Toward Precision. Front Cell Dev Biol 2022; 10:915206. [PMID: 35874834 PMCID: PMC9305484 DOI: 10.3389/fcell.2022.915206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Pancreatic islet β cells regulate glucose homeostasis via glucose-stimulated insulin secretion (GSIS). Cytoskeletal polymers microtubules (MTs) serve as tracks for the transport and positioning of secretory insulin granules. MT network in β cells has unique morphology with several distinct features, which support granule biogenesis (via Golgi-derived MT array), net non-directional transport (via interlocked MT mesh), and control availability of granules at secretion sites (via submembrane MT bundle). The submembrane MT array, which is parallel to the plasma membrane and serves to withdraw excessive granules from the secretion hot spots, is destabilized and fragmented downstream of high glucose stimulation, allowing for regulated secretion. The origin of such an unusual MT network, the features that define its functionality, and metabolic pathways that regulate it are still to a large extent elusive and are a matter of active investigation and debate. Besides the MT network itself, it is important to consider the interplay of molecular motors that drive and fine-tune insulin granule transport. Importantly, activity of kinesin-1, which is the major MT-dependent motor in β cells, transports insulin granules, and has a capacity to remodel MT network, is also regulated by glucose. We discuss yet unknown potential avenues toward understanding how MT network and motor proteins provide control for secretion in coordination with other GSIS-regulating mechanisms.
Collapse
|
52
|
Nagao M, Lagerstedt JO, Eliasson L. Secretory granule exocytosis and its amplification by cAMP in pancreatic β-cells. Diabetol Int 2022; 13:471-479. [PMID: 35694000 PMCID: PMC9174382 DOI: 10.1007/s13340-022-00580-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
The sequence of events for secreting insulin in response to glucose in pancreatic β-cells is termed "stimulus-secretion coupling". The core of stimulus-secretion coupling is a process which generates electrical activity in response to glucose uptake and causes Ca2+ oscillation for triggering exocytosis of insulin-containing secretory granules. Prior to exocytosis, the secretory granules are mobilized and docked to the plasma membrane and primed for fusion with the plasma membrane. Together with the final fusion with the plasma membrane, these steps are named the exocytosis process of insulin secretion. The steps involved in the exocytosis process are crucial for insulin release from β-cells and considered indispensable for glucose homeostasis. We recently confirmed a signature of defective exocytosis process in human islets and β-cells of obese donors with type 2 diabetes (T2D). Furthermore, cyclic AMP (cAMP) potentiates glucose-stimulated insulin secretion through mechanisms including accelerating the exocytosis process. In this mini-review, we aimed to organize essential knowledge of the secretory granule exocytosis and its amplification by cAMP. Then, we suggest the fatty acid translocase CD36 as a predisposition in β-cells for causing defective exocytosis, which is considered a pathogenesis of T2D in relation to obesity. Finally, we propose potential therapeutics of the defective exocytosis based on a CD36-neutralizing antibody and on Apolipoprotein A-I (ApoA-I), for improving β-cell function in T2D.
Collapse
Affiliation(s)
- Mototsugu Nagao
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603 Japan
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| | - Jens O. Lagerstedt
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
- Novo Nordisk A/S, Copenhagen, Denmark
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| |
Collapse
|
53
|
Ježek P, Holendová B, Jabůrek M, Dlasková A, Plecitá-Hlavatá L. Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Antioxid Redox Signal 2022; 36:920-952. [PMID: 34180254 PMCID: PMC9125579 DOI: 10.1089/ars.2021.0113] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Significance: Mitochondria determine glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells by elevating ATP synthesis. As the metabolic and redox hub, mitochondria provide numerous links to the plasma membrane channels, insulin granule vesicles (IGVs), cell redox, NADH, NADPH, and Ca2+ homeostasis, all affecting insulin secretion. Recent Advances: Mitochondrial redox signaling was implicated in several modes of insulin secretion (branched-chain ketoacid [BCKA]-, fatty acid [FA]-stimulated). Mitochondrial Ca2+ influx was found to enhance GSIS, reflecting cytosolic Ca2+ oscillations induced by action potential spikes (intermittent opening of voltage-dependent Ca2+ and K+ channels) or the superimposed Ca2+ release from the endoplasmic reticulum (ER). The ATPase inhibitory factor 1 (IF1) was reported to tune the glucose sensitivity range for GSIS. Mitochondrial protein kinase A was implicated in preventing the IF1-mediated inhibition of the ATP synthase. Critical Issues: It is unknown how the redox signal spreads up to the plasma membrane and what its targets are, what the differences in metabolic, redox, NADH/NADPH, and Ca2+ signaling, and homeostasis are between the first and second GSIS phase, and whether mitochondria can replace ER in the amplification of IGV exocytosis. Future Directions: Metabolomics studies performed to distinguish between the mitochondrial matrix and cytosolic metabolites will elucidate further details. Identifying the targets of cell signaling into mitochondria and of mitochondrial retrograde metabolic and redox signals to the cell will uncover further molecular mechanisms for insulin secretion stimulated by glucose, BCKAs, and FAs, and the amplification of secretion by glucagon-like peptide (GLP-1) and metabotropic receptors. They will identify the distinction between the hub β-cells and their followers in intact and diabetic states. Antioxid. Redox Signal. 36, 920-952.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
54
|
Pang H, Li J, Li SJ. Role of the voltage-gated proton channel Hv1 in insulin secretion, glucose homeostasis, and obesity. J Physiol Biochem 2022; 78:593-601. [PMID: 35353324 DOI: 10.1007/s13105-022-00891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Diabetes is characterized by an absolutely inadequate insulin secretion (type 1 diabetes mellitus) or a relative deficit in insulin secretion due to insulin resistance (type 2 diabetes mellitus), both of which result in elevated blood glucose. Understanding the molecular mechanisms underlying the pathophysiology of diabetes could lead to the development of new therapeutic approaches. The voltage-gated proton channel Hv1 is an ion channel with specific selectivity for protons, which is regulated by membrane potential and intracellular pH. Recently, our studies showed that Hv1 is expressed in β cells of the endocrine pancreas. Knockout of Hv1 reduces insulin secretion and results in hyperglycemia and glucose intolerance, but not insulin resistance. Furthermore, knockout of Hv1 leads to diet-induced obesity due to inflammation and hepatic steatosis. Increasing evidence suggests that Hv1 plays a pivotal role in glucose homeostasis and lipid metabolism. This review aims to summarize advances made so far in our understanding of the roles of Hv1 in the regulation of insulin secretion in β cells, glucose homeostasis, and obesity.
Collapse
Affiliation(s)
- Huimin Pang
- Department of Biophysics, School of Physics, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Jinwen Li
- Department of Biophysics, School of Physics, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Shu Jie Li
- Department of Biophysics, School of Physics, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
55
|
Wu R, Karagiannopoulos A, Eliasson L, Renström E, Luan C, Zhang E. The Calcium Channel Subunit Gamma-4 as a Novel Regulator of MafA in Pancreatic Beta-Cell Controls Glucose Homeostasis. Biomedicines 2022; 10:770. [PMID: 35453520 PMCID: PMC9030882 DOI: 10.3390/biomedicines10040770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) are high-risk factors of diabetes development and may be caused by defective insulin secretion in pancreatic beta-cells. Glucose-stimulated insulin secretion is mediated by voltage-gated Ca2+ (CaV) channels in which the gamma-4 subunit (CaVγ4) is required for the beta-cell to maintain its differentiated state. We here aim to explore the involvement of CaVγ4 in controlling glucose homeostasis by employing the CaVγ4-/- mice to study in vivo glucose-metabolism-related phenotypes and glucose-stimulated insulin secretion, and to investigate the underlying mechanisms. We show that CaVγ4-/- mice exhibit perturbed glucose homeostasis, including IFG and IGT. Glucose-stimulated insulin secretion is blunted in CaVγ4-/- mouse islets. Remarkably, CaVγ4 deletion results in reduced expression of the transcription factor essential for beta-cell maturation, MafA, on both mRNA and protein levels in islets from human donors and CaVγ4-/- mice, as well as in INS-1 832/13 cells. Moreover, we prove that CaMKII is responsible for mediating this regulatory pathway linked between CaVγ4 and MafA, which is further confirmed by human islet RNA-seq data. We demonstrate that CaVγ4 is a key player in preserving normal blood glucose homeostasis, which sheds light on CaVγ4 as a novel target for the treatment of prediabetes through correcting the impaired metabolic status.
Collapse
|
56
|
Mugabo Y, Zhao C, Tan JJ, Ghosh A, Campbell SA, Fadzeyeva E, Paré F, Pan SS, Galipeau M, Ast J, Broichhagen J, Hodson DJ, Mulvihill EE, Petropoulos S, Lim GE. 14-3-3ζ constrains insulin secretion by regulating mitochondrial function in pancreatic β-cells. JCI Insight 2022; 7:156378. [PMID: 35298439 PMCID: PMC9089799 DOI: 10.1172/jci.insight.156378] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
While critical for neurotransmitter synthesis, 14-3-3 proteins are often assumed to have redundant functions due to their ubiquitous expression, but despite this assumption, various 14-3-3 isoforms have been implicated in regulating metabolism. We previously reported contributions of 14-3-3ζ in β cell function, but these studies were performed in tumor-derived MIN6 cells and systemic KO mice. To further characterize the regulatory roles of 14-3-3ζ in β cell function, we generated β cell–specific 14-3-3ζ–KO mice. Although no effects on β cell mass were detected, potentiated glucose-stimulated insulin secretion (GSIS), mitochondrial function, and ATP synthesis were observed. Deletion of 14-3-3ζ also altered the β cell transcriptome, as genes associated with mitochondrial respiration and oxidative phosphorylation were upregulated. Acute 14-3-3 protein inhibition in mouse and human islets recapitulated the enhancements in GSIS and mitochondrial function, suggesting that 14-3-3ζ is the critical isoform in β cells. In dysfunctional db/db islets and human islets from type 2 diabetic donors, expression of Ywhaz/YWHAZ, the gene encoding 14-3-3ζ, was inversely associated with insulin secretion, and pan–14-3-3 protein inhibition led to enhanced GSIS and mitochondrial function. Taken together, this study demonstrates important regulatory functions of 14-3-3ζ in the regulation of β cell function and provides a deeper understanding of how insulin secretion is controlled in β cells.
Collapse
Affiliation(s)
- Yves Mugabo
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Cheng Zhao
- Division of Obstetrics and Gynecology, Department of Clinical Science, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ju Jing Tan
- Immunopathology Axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal, Montreal, Canada
| | - Anindya Ghosh
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Scott A Campbell
- Cardiometabolic Axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal, Montreal, Canada
| | - Evgenia Fadzeyeva
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
| | - Frédéric Paré
- Cardiometabolic Axis, Centre de recherche du CHUM (CRCHUM), Montreal, Canada
| | - Siew Siew Pan
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Maria Galipeau
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Julia Ast
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Pro, University of Birmingham, Birmingham, United Kingdom
| | - Johannes Broichhagen
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Pro, University of Birmingham, Birmingham, United Kingdom
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | | | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, Canada
| |
Collapse
|
57
|
Guo A, He B, Li A, Jiang H. In vitro and in vivo characterization of insulin vesicles by electron microscopy. Biochem Biophys Res Commun 2022; 597:23-29. [PMID: 35123262 DOI: 10.1016/j.bbrc.2022.01.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
Insulin is the main hypoglycemic hormone, promoting the absorption and storage of glucose and inhibiting its production. It is a hexamer composed of six insulin macromolecules and a Zn2+ and clustered in insulin vesicles of pancreatic β cell. Most current research has focused on the in vivo imaging of whole cells while there are few detailed studies on structure of insulin vesicles. The precise content of Zn2+ in vesicles is not clear, and the aggregation state and location of insulin in insulin vesicles is not fully characterized, which hinders a thorough understanding of insulin secretion process and diseases caused by blood sugar regulation. Here, we performed electron microscopy (EM) studies on both whole cells (in vivo) and extracted isolated insulin vesicles by supercentrifugation (in vitro) to explore the location and distribution of insulin vesicles in pancreatic β cells. Meanwhile, we analyzed the content of Zn2+ and Ca2+ through EM imaging and energy dispersive spectroscopy (EDS) mapping, and the content of Zn2+ was found to be proportional to the size of insulin vesicles. In addition, by taking advantage of TEM tomography, the three-dimensional structure of insulin vesicle was obtained by acquisition projections in different angles of insulin vesicle. This study provides a promising way to quantitative analysis of intracellular insulin, which may be of great significance to the study of diabetes and other blood sugar diseases.
Collapse
Affiliation(s)
- Amin Guo
- School of Physical Science and Technology, & Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| | - Bo He
- School of Physical Science and Technology, & Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| | - Angdi Li
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huaidong Jiang
- School of Physical Science and Technology, & Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
58
|
Liebman C, Loya S, Lawrence M, Bashoo N, Cho M. Stimulatory responses in α- and β-cells by near-infrared (810 nm) photobiomodulation. JOURNAL OF BIOPHOTONICS 2022; 15:e202100257. [PMID: 34837336 DOI: 10.1002/jbio.202100257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Significant efforts have been committed to better understand and regulate insulin secretion as it has direct implications on diabetes. The first phase of biphasic insulin secretion in response to glucose lasts about 10 minutes, followed by a more sustained release persisting several hours. Attenuated insulin release in the first phase is typically associated with abnormal β-cells. While near-infrared photobiomodulation (PBM) demonstrates potential for multiple therapeutic applications, photostimulatory effects on α- and β-cells remain to be further elucidated. Herein, we demonstrate that 810 nm PBM exposure at fluence of 9 J/cm2 can elevate the intracellular reactive oxygen species within 15 minutes following photostimulation. In addition, calcium spiking showed an approximately 3-fold increase in both ATC1 (α-cells) and BTC6 (β-cells) and correlates with hormone secretion in response to PBM stimulation. Our findings could lay a foundation for the development of non-biologic therapeutics that can augment islet transplantation.
Collapse
Affiliation(s)
- Caleb Liebman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Sheccid Loya
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | | | | | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
59
|
Deng K, Thorn P. Presynaptic-like mechanisms and the control of insulin secretion in pancreatic β-cells. Cell Calcium 2022; 104:102585. [DOI: 10.1016/j.ceca.2022.102585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/18/2022]
|
60
|
Marcheva B, Weidemann BJ, Taguchi A, Perelis M, Ramsey KM, Newman MV, Kobayashi Y, Omura C, Manning Fox JE, Lin H, Macdonald PE, Bass J. P2Y1 purinergic receptor identified as a diabetes target in a small-molecule screen to reverse circadian β-cell failure. eLife 2022; 11:e75132. [PMID: 35188462 PMCID: PMC8860442 DOI: 10.7554/elife.75132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Abstract
The mammalian circadian clock drives daily oscillations in physiology and behavior through an autoregulatory transcription feedback loop present in central and peripheral cells. Ablation of the core clock within the endocrine pancreas of adult animals impairs the transcription and splicing of genes involved in hormone exocytosis and causes hypoinsulinemic diabetes. Here, we developed a genetically sensitized small-molecule screen to identify druggable proteins and mechanistic pathways involved in circadian β-cell failure. Our approach was to generate β-cells expressing a nanoluciferase reporter within the proinsulin polypeptide to screen 2640 pharmacologically active compounds and identify insulinotropic molecules that bypass the secretory defect in CRISPR-Cas9-targeted clock mutant β-cells. We validated hit compounds in primary mouse islets and identified known modulators of ligand-gated ion channels and G-protein-coupled receptors, including the antihelmintic ivermectin. Single-cell electrophysiology in circadian mutant mouse and human cadaveric islets revealed ivermectin as a glucose-dependent secretagogue. Genetic, genomic, and pharmacological analyses established the P2Y1 receptor as a clock-controlled mediator of the insulinotropic activity of ivermectin. These findings identify the P2Y1 purinergic receptor as a diabetes target based upon a genetically sensitized phenotypic screen.
Collapse
Affiliation(s)
- Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Benjamin J Weidemann
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Akihiko Taguchi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of MedicineChicagoUnited States
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1YamaguchiJapan
| | - Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of MedicineChicagoUnited States
- Ionis Pharmaceuticals, IncCarlsbadUnited States
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Marsha V Newman
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Yumiko Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Jocelyn E Manning Fox
- Department of Pharmacology, Alberta Diabetes Institute, University of AlbertaEdmonton, ABCanada
| | - Haopeng Lin
- Department of Pharmacology, Alberta Diabetes Institute, University of AlbertaEdmonton, ABCanada
| | - Patrick E Macdonald
- Department of Pharmacology, Alberta Diabetes Institute, University of AlbertaEdmonton, ABCanada
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of MedicineChicagoUnited States
| |
Collapse
|
61
|
Rohli KE, Boyer CK, Blom SE, Stephens SB. Nutrient Regulation of Pancreatic Islet β-Cell Secretory Capacity and Insulin Production. Biomolecules 2022; 12:335. [PMID: 35204835 PMCID: PMC8869698 DOI: 10.3390/biom12020335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic islet β-cells exhibit tremendous plasticity for secretory adaptations that coordinate insulin production and release with nutritional demands. This essential feature of the β-cell can allow for compensatory changes that increase secretory output to overcome insulin resistance early in Type 2 diabetes (T2D). Nutrient-stimulated increases in proinsulin biosynthesis may initiate this β-cell adaptive compensation; however, the molecular regulators of secretory expansion that accommodate the increased biosynthetic burden of packaging and producing additional insulin granules, such as enhanced ER and Golgi functions, remain poorly defined. As these adaptive mechanisms fail and T2D progresses, the β-cell succumbs to metabolic defects resulting in alterations to glucose metabolism and a decline in nutrient-regulated secretory functions, including impaired proinsulin processing and a deficit in mature insulin-containing secretory granules. In this review, we will discuss how the adaptative plasticity of the pancreatic islet β-cell's secretory program allows insulin production to be carefully matched with nutrient availability and peripheral cues for insulin signaling. Furthermore, we will highlight potential defects in the secretory pathway that limit or delay insulin granule biosynthesis, which may contribute to the decline in β-cell function during the pathogenesis of T2D.
Collapse
Affiliation(s)
- Kristen E. Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cierra K. Boyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Sandra E. Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel B. Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
62
|
Papazoglou I, Lee JH, Cui Z, Li C, Fulgenzi G, Bahn YJ, Staniszewska-Goraczniak HM, Piñol RA, Hogue IB, Enquist LW, Krashes MJ, Rane SG. A distinct hypothalamus-to-β cell circuit modulates insulin secretion. Cell Metab 2022; 34:285-298.e7. [PMID: 35108515 PMCID: PMC8935365 DOI: 10.1016/j.cmet.2021.12.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/01/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023]
Abstract
The central nervous system has long been thought to regulate insulin secretion, an essential process in the maintenance of blood glucose levels. However, the anatomical and functional connections between the brain and insulin-producing pancreatic β cells remain undefined. Here, we describe a functional transneuronal circuit connecting the hypothalamus to β cells in mice. This circuit originates from a subpopulation of oxytocin neurons in the paraventricular hypothalamic nucleus (PVNOXT), and it reaches the islets of the endocrine pancreas via the sympathetic autonomic branch to innervate β cells. Stimulation of PVNOXT neurons rapidly suppresses insulin secretion and causes hyperglycemia. Conversely, silencing of these neurons elevates insulin levels by dysregulating neuronal signaling and secretory pathways in β cells and induces hypoglycemia. PVNOXT neuronal activity is triggered by glucoprivation. Our findings reveal that a subset of PVNOXT neurons form functional multisynaptic circuits with β cells in mice to regulate insulin secretion, and their function is necessary for the β cell response to hypoglycemia.
Collapse
Affiliation(s)
- Ioannis Papazoglou
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA.
| | - Ji-Hyeon Lee
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Zhenzhong Cui
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Chia Li
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Gianluca Fulgenzi
- Neural Development Section, MCGP, CCR, NCI, NIH, Frederick, MD, USA; Department of Molecular and Clinical Sciences, Marche Polytechnic University, Ancona, Italy
| | - Young Jae Bahn
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | | | - Ramón A Piñol
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Ian B Hogue
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael J Krashes
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Sushil G Rane
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA.
| |
Collapse
|
63
|
Park JE, Kim SY, Han JS. Scopoletin stimulates the secretion of insulin via a KATP channel-dependent pathway in INS-1 pancreatic β cells. J Pharm Pharmacol 2022; 74:1274-1281. [PMID: 35099527 DOI: 10.1093/jpp/rgab143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES In this study, we investigated whether scopoletin stimulated the secretion of insulin in pancreatic β cells as well as the underlying mechanism involved in this process. METHODS We incubated the INS-1 pancreatic β cells with various concentrations of glucose (1.1, 5.6 or 16.7 mM) in the presence or absence of scopoletin. We then analysed the secretion of insulin in the cells treated with insulin secretion inhibitors or secretagogues. The intracellular influx of calcium induced by scopoletin was also analysed using the Fluo-2 AM dye. KEY FINDINGS We found that scopoletin (1-20 µM) markedly induced the secretion of insulin in a glucose concentration-dependent manner compared with the control. At depolarizing concentrations of potassium chloride (KCl), scopoletin markedly enhanced the insulin secretion compared with the cells which were treated only with KCl. Moreover, the treatment with diazoxide-opening K+ATP channel and verapamil blocking Ca2+ channel significantly decreased the scopoletin-induced increase in insulin secretion. After the pre-treatment of cells with a Ca2+ fluorescent dye, treatment with 20 µM scopoletin resulted in a significant increase in the influx of intracellular Ca2+, exhibiting fluorescence changes in various spectra. CONCLUSIONS Scopoletin stimulates the secretion of insulin via a K+ATP channel-dependent pathway in the INS-1 pancreatic β cells.
Collapse
Affiliation(s)
- Jae Eun Park
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Seon Young Kim
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Ji Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
64
|
Singh A, Kukreti R, Saso L, Kukreti S. Mechanistic Insight into Oxidative Stress-Triggered Signaling Pathways and Type 2 Diabetes. Molecules 2022; 27:950. [PMID: 35164215 PMCID: PMC8840622 DOI: 10.3390/molecules27030950] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) is a metabolic dysfunction mediated by the imbalance between the biochemical processes leading to elevated production of reactive oxygen species (ROS) and the antioxidant defense system of the body. It has a ubiquitous role in the development of numerous noncommunicable maladies including cardiovascular diseases, cancers, neurodegenerative diseases, aging and respiratory diseases. Diseases associated with metabolic dysfunction may be influenced by changes in the redox balance. Lately, there has been increasing awareness and evidence that diabetes mellitus (DM), particularly type 2 diabetes, is significantly modulated by oxidative stress. DM is a state of impaired metabolism characterized by hyperglycemia, resulting from defects in insulin secretion or action, or both. ROS such as hydrogen peroxide and the superoxide anion introduce chemical changes virtually in all cellular components, causing deleterious effects on the islets of β-cells, in turn affecting insulin production. Under hyperglycemic conditions, various signaling pathways such as nuclear factor-κβ (NF-κβ) and protein kinase C (PKC) are also activated by ROS. All of these can be linked to a hindrance in insulin signaling pathways, leading to insulin resistance. Hyperglycemia-induced oxidative stress plays a substantial role in complications including diabetic nephropathy. DM patients are more prone to microvascular as well as atherosclerotic macrovascular diseases. This systemic disease affects most countries around the world, owing to population explosion, aging, urbanization, obesity, lifestyle, etc. However, some modulators, with their free radical scavenging properties, can play a prospective role in overcoming the debilitating effects of OS. This review is a modest approach to summarizing the basics and interlinkages of oxidative stress, its modulators and diabetes mellitus. It may add to the understanding of and insight into the pathophysiology of diabetes and the crucial role of antioxidants to weaken the complications and morbidity resulting from this chronic disease.
Collapse
Affiliation(s)
- Anju Singh
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India;
- Department of Chemistry, Ramjas College, University of Delhi, Delhi 110007, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India;
| |
Collapse
|
65
|
Noordstra I, van den Berg CM, Boot FWJ, Katrukha EA, Yu KL, Tas RP, Portegies S, Viergever BJ, de Graaff E, Hoogenraad CC, de Koning EJP, Carlotti F, Kapitein LC, Akhmanova A. Organization and dynamics of the cortical complexes controlling insulin secretion in β-cells. J Cell Sci 2022; 135:274234. [PMID: 35006275 PMCID: PMC8918791 DOI: 10.1242/jcs.259430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
Insulin secretion in pancreatic β-cells is regulated by cortical complexes that are enriched at the sites of adhesion to extracellular matrix facing the vasculature. Many components of these complexes, including bassoon, RIM, ELKS and liprins, are shared with neuronal synapses. Here, we show that insulin secretion sites also contain the non-neuronal proteins LL5β (also known as PHLDB2) and KANK1, which, in migrating cells, organize exocytotic machinery in the vicinity of integrin-based adhesions. Depletion of LL5β or focal adhesion disassembly triggered by myosin II inhibition perturbed the clustering of secretory complexes and attenuated the first wave of insulin release. Although previous analyses in vitro and in neurons have suggested that secretory machinery might assemble through liquid–liquid phase separation, analysis of endogenously labeled ELKS in pancreatic islets indicated that its dynamics is inconsistent with such a scenario. Instead, fluorescence recovery after photobleaching and single-molecule imaging showed that ELKS turnover is driven by binding and unbinding to low-mobility scaffolds. Both the scaffold movements and ELKS exchange were stimulated by glucose treatment. Our findings help to explain how integrin-based adhesions control spatial organization of glucose-stimulated insulin release. Summary: Characterization of the composition of cortical complexes controlling insulin secretion, showing that their dynamics is inconsistent with assembly through liquid–liquid phase separation.
Collapse
Affiliation(s)
- Ivar Noordstra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cyntha M van den Berg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Fransje W J Boot
- Department of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Eugene A Katrukha
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ka Lou Yu
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Roderick P Tas
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sybren Portegies
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bastiaan J Viergever
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Esther de Graaff
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
66
|
Newsholme P, Rowlands J, Rose’Meyer R, Cruzat V. Metabolic Adaptions/Reprogramming in Islet Beta-Cells in Response to Physiological Stimulators—What Are the Consequences. Antioxidants (Basel) 2022; 11:antiox11010108. [PMID: 35052612 PMCID: PMC8773416 DOI: 10.3390/antiox11010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Irreversible pancreatic β-cell damage may be a result of chronic exposure to supraphysiological glucose or lipid concentrations or chronic exposure to therapeutic anti-diabetic drugs. The β-cells are able to respond to blood glucose in a narrow concentration range and release insulin in response, following activation of metabolic pathways such as glycolysis and the TCA cycle. The β-cell cannot protect itself from glucose toxicity by blocking glucose uptake, but indeed relies on alternative metabolic protection mechanisms to avoid dysfunction and death. Alteration of normal metabolic pathway function occurs as a counter regulatory response to high nutrient, inflammatory factor, hormone or therapeutic drug concentrations. Metabolic reprogramming is a term widely used to describe a change in regulation of various metabolic enzymes and transporters, usually associated with cell growth and proliferation and may involve reshaping epigenetic responses, in particular the acetylation and methylation of histone proteins and DNA. Other metabolic modifications such as Malonylation, Succinylation, Hydroxybutyrylation, ADP-ribosylation, and Lactylation, may impact regulatory processes, many of which need to be investigated in detail to contribute to current advances in metabolism. By describing multiple mechanisms of metabolic adaption that are available to the β-cell across its lifespan, we hope to identify sites for metabolic reprogramming mechanisms, most of which are incompletely described or understood. Many of these mechanisms are related to prominent antioxidant responses. Here, we have attempted to describe the key β-cell metabolic adaptions and changes which are required for survival and function in various physiological, pathological and pharmacological conditions.
Collapse
Affiliation(s)
- Philip Newsholme
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Jordan Rowlands
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Roselyn Rose’Meyer
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Brisbane, QLD 4006, Australia;
| |
Collapse
|
67
|
Gaus B, Brüning D, Groß S, Müller M, Rustenbeck I. The changing view of insulin granule mobility: From conveyor belt to signaling hub. Front Endocrinol (Lausanne) 2022; 13:983152. [PMID: 36120467 PMCID: PMC9478610 DOI: 10.3389/fendo.2022.983152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
Before the advent of TIRF microscopy the fate of the insulin granule prior to secretion was deduced from biochemical investigations, electron microscopy and electrophysiological measurements. Since Calcium-triggered granule fusion is indisputably necessary to release insulin into the extracellular space, much effort was directed to the measure this event at the single granule level. This has also been the major application of the TIRF microscopy of the pancreatic beta cell when it became available about 20 years ago. To better understand the metabolic modulation of secretion, we were interested to characterize the entirety of the insulin granules which are localized in the vicinity of the plasma membrane to identify the characteristics which predispose to fusion. In this review we concentrate on how the description of granule mobility in the submembrane space has evolved as a result of progress in methodology. The granules are in a state of constant turnover with widely different periods of residence in this space. While granule fusion is associated +with prolonged residence and decreased lateral mobility, these characteristics may not only result from binding to the plasma membrane but also from binding to the cortical actin web, which is present in the immediate submembrane space. While granule age as such affects granule mobility and fusion probability, the preceding functional states of the beta cell leave their mark on these parameters, too. In summary, the submembrane granules form a highly dynamic heterogeneous population and contribute to the metabolic memory of the beta cells.
Collapse
Affiliation(s)
- Bastian Gaus
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dennis Brüning
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sofie Groß
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Müller
- Institute of Dynamics and Vibrations, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Ingo Rustenbeck,
| |
Collapse
|
68
|
Mesto N, Movassat J, Tourrel-Cuzin C. P2-type purinergic signaling in the regulation of pancreatic β-cell functional plasticity as a promising novel therapeutic approach for the treatment of type 2 diabetes? Front Endocrinol (Lausanne) 2022; 13:1099152. [PMID: 37065173 PMCID: PMC10099247 DOI: 10.3389/fendo.2022.1099152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetes Mellitus is a metabolic disorder characterized by a chronic hyperglycemia due to an impaired insulin secretion and a decreased in peripheral insulin sensitivity. This disease is a major public health problem due to it sharp prevalence. Therefore, it is crucial to readapt therapeutic approaches for the treatment of this pathology. One of the strategies would be through P2-type purinergic receptors pathway via ATP binding. In addition to its well-known role as an intracellular energy intermediary in numerous biochemical and physiological processes, ATP is also an important extracellular signaling molecule. ATP mediates its effects by binding and activating two classes of P2 purinoreceptors: P2X receptors that are ligand-gated ion channel receptors, existing in seven isoforms (P2X 1 to 7) and P2Y receptors that are G-protein coupled receptors, existing in eight isoforms (P2Y 1/2/4/6/11/12/13/14). These receptors are ubiquitously distributed and involved in numerous physiological processes in several tissues. The concept of purinergic signaling, originally formulated by Geoffrey Burnstock (1929-2020), was also found to mediate various responses in the pancreas. Several studies have shown that P2 receptors are expressed in the endocrine pancreas, notably in β cells, where ATP could modulate their function but also their plasticity and thus play a physiological role in stimulating insulin secretion to face some metabolic demands. In this review, we provide a historical perspective and summarize current knowledge on P2-type purinergic signaling in the regulation of pancreatic β-cell functional plasticity, which would be a promising novel therapeutic approach for the treatment of type 2 diabetes.
Collapse
|
69
|
Oberhauser L, Maechler P. Lipid-Induced Adaptations of the Pancreatic Beta-Cell to Glucotoxic Conditions Sustain Insulin Secretion. Int J Mol Sci 2021; 23:324. [PMID: 35008750 PMCID: PMC8745448 DOI: 10.3390/ijms23010324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Over the last decades, lipotoxicity and glucotoxicity emerged as established mechanisms participating in the pathophysiology of obesity-related type 2 diabetes in general, and in the loss of β-cell function in particular. However, these terms hold various potential biological processes, and it is not clear what precisely they refer to and to what extent they might be clinically relevant. In this review, we discuss the basis and the last advances of research regarding the role of free fatty acids, their metabolic intracellular pathways, and receptor-mediated signaling related to glucose-stimulated insulin secretion, as well as lipid-induced β-cell dysfunction. We also describe the role of chronically elevated glucose, namely, glucotoxicity, which promotes failure and dedifferentiation of the β cell. Glucolipotoxicity combines deleterious effects of exposures to both high glucose and free fatty acids, supposedly provoking synergistic defects on the β cell. Nevertheless, recent studies have highlighted the glycerolipid/free fatty acid cycle as a protective pathway mediating active storage and recruitment of lipids. Finally, we discuss the putative correspondence of the loss of functional β cells in type 2 diabetes with a natural, although accelerated, aging process.
Collapse
Affiliation(s)
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland;
| |
Collapse
|
70
|
Walcott S, Warshaw DM. Modeling myosin Va liposome transport through actin filament networks reveals a percolation threshold that modulates transport properties. Mol Biol Cell 2021; 33:ar18. [PMID: 34935414 PMCID: PMC9236151 DOI: 10.1091/mbc.e21-08-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Myosin Va (myoVa) motors transport membrane-bound cargo through three-dimensional, intracellular actin filament networks. We developed a coarse-grained, in silico model to predict how actin filament density (3-800 filaments) within a randomly oriented actin network affects fluid-like liposome (350 nm vs. 1750 nm) transport by myoVa motors. Five thousand simulated liposomes transported within each network adopted one of three states: transport, tug-of-war, or diffusion. Diffusion due to liposome detachment from actin rarely occurred given at least 10 motors on the liposome surface. However, with increased actin density, liposomes transitioned from primarily directed transport on single actin filaments to an apparent random walk, resulting from a mixture of transport and tug-of-wars as the probability of encountering additional actin filaments increased. This phase transition arises from a percolation phase transition at a critical number of accessible actin filaments, Nc. Nc is a geometric property of the actin network that depends only on the position and polarity of the actin filaments, transport distance, and the liposome diameter, as evidenced by a fivefold increase in liposome diameter resulting in a fivefold decrease in Nc. Thus in cells, actin network density and cargo size may be regulated to match cargo delivery to the cell’s physiological demands.
Collapse
Affiliation(s)
- S Walcott
- Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609
| | - D M Warshaw
- Molecular Physiology and Biophysics, University of Vermont, Health Science Research Facility, 149 Beaumont Avenue, Burlington, VT 05405
| |
Collapse
|
71
|
Dandan M, Han J, Mann S, Kim R, Mohammed H, Nyangau E, Hellerstein M. Turnover Rates of the Low-Density Lipoprotein Receptor and PCSK9: Added Dimension to the Cholesterol Homeostasis Model. Arterioscler Thromb Vasc Biol 2021; 41:2866-2876. [PMID: 34615375 DOI: 10.1161/atvbaha.121.316764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We measured the turnover rates of the LDLR (low-density lipoprotein receptor) and PCSK9 (proprotein convertase subtilisin/kexin type 9) in mice by metabolic labeling with heavy water and mass spectrometry. Approach and Results: In liver of mice fed high-cholesterol diets, LDLR mRNA levels and synthesis rates were markedly lower with complete suppression of cholesterol synthesis and higher cholesterol content, consistent with the Brown-Goldstein model of tissue cholesterol homeostasis. We observed markedly lower PCSK9 mRNA levels and synthesis rates in liver and lower concentrations and synthesis rates in plasma. Hepatic LDLR half-life (t½) was prolonged, consistent with an effect of reduced PCSK9, and resulted in no reduction in hepatic LDLR content despite reduced mRNA levels and LDLR synthesis rates. These changes in PCSK9 synthesis complement and expand the well-established model of tissue cholesterol homeostasis in mouse liver, in that reduced synthesis and levels of PCSK9 counterbalance lower LDLR synthesis by promoting less LDLR catabolism, thereby maintaining uptake of LDL cholesterol into liver despite high intracellular cholesterol concentrations. CONCLUSIONS Lower hepatic synthesis and secretion of PCSK9, an SREBP2 (sterol response element binding protein) target gene, results in longer hepatic LDLR t½ in response to cholesterol feeding in mice in the face of high intracellular cholesterol content. PCSK9 modulation opposes the canonical lowering of LDLR mRNA and synthesis by cholesterol surplus and preserves LDLR levels. The physiological and therapeutic implications of these opposing control mechanisms over liver LDLR are of interest and may reflect subservience of hepatic cholesterol homeostasis to whole body cholesterol needs.
Collapse
Affiliation(s)
- Mohamad Dandan
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley
| | - Julia Han
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley
| | - Sabrina Mann
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley
| | - Rachael Kim
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley
| | - Hussein Mohammed
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley
| | - Edna Nyangau
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley
| | - Marc Hellerstein
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley
| |
Collapse
|
72
|
Cai Z, Liu F, Yang Y, Li D, Hu S, Song L, Yu S, Li T, Liu B, Luo H, Zhang W, Zhou Z, Zhang J. GRB10 regulates β cell mass by inhibiting β cell proliferation and stimulating β cell dedifferentiation. J Genet Genomics 2021; 49:208-216. [PMID: 34861413 DOI: 10.1016/j.jgg.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Decreased functional β-cell mass is the hallmark of diabetes, but the cause of this metabolic defect remains elusive. Here, we show that the expression levels of the growth factor receptor-bound protein 10 (GRB10), a negative regulator of insulin and mTORC1 signaling, are markedly induced in islets of diabetic mice and high glucose-treated insulinoma cell line INS-1cells. β-cell-specific knockout of Grb10 in mice increased β-cell mass and improved β-cell function. Grb10-deficient β-cells exhibit enhanced mTORC1 signaling and reduced β-cell dedifferentiation, which could be blocked by rapamycin. On the contrary, Grb10 overexpression induced β-cell dedifferentiation in MIN6 cells. Our study identifies GRB10 as a critical regulator of β-cell dedifferentiation and β-cell mass, which exerts its effect by inhibiting mTORC1 signaling.
Collapse
Affiliation(s)
- Zixin Cai
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Fen Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Dandan Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shanbiao Hu
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lei Song
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shaojie Yu
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ting Li
- Department of Liver Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Bilian Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hairong Luo
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Weiping Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jingjing Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
73
|
Trogden KP, Lee J, Bracey KM, Ho KH, McKinney H, Zhu X, Arpag G, Folland TG, Osipovich AB, Magnuson MA, Zanic M, Gu G, Holmes WR, Kaverina I. Microtubules regulate pancreatic β-cell heterogeneity via spatiotemporal control of insulin secretion hot spots. eLife 2021; 10:59912. [PMID: 34783306 PMCID: PMC8635970 DOI: 10.7554/elife.59912] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Heterogeneity of glucose-stimulated insulin secretion (GSIS) in pancreatic islets is physiologically important but poorly understood. Here, we utilize mouse islets to determine how microtubules (MTs) affect secretion toward the vascular extracellular matrix at single cell and subcellular levels. Our data indicate that MT stability in the β-cell population is heterogenous, and that GSIS is suppressed in cells with highly stable MTs. Consistently, MT hyper-stabilization prevents, and MT depolymerization promotes the capacity of single β-cell for GSIS. Analysis of spatiotemporal patterns of secretion events shows that MT depolymerization activates otherwise dormant β-cells via initiation of secretion clusters (hot spots). MT depolymerization also enhances secretion from individual cells, introducing both additional clusters and scattered events. Interestingly, without MTs, the timing of clustered secretion is dysregulated, extending the first phase of GSIS and causing oversecretion. In contrast, glucose-induced Ca2+ influx was not affected by MT depolymerization yet required for secretion under these conditions, indicating that MT-dependent regulation of secretion hot spots acts in parallel with Ca2+ signaling. Our findings uncover a novel MT function in tuning insulin secretion hot spots, which leads to accurately measured and timed response to glucose stimuli and promotes functional β-cell heterogeneity.
Collapse
Affiliation(s)
- Kathryn P Trogden
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Justin Lee
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Kai M Bracey
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Kung-Hsien Ho
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Hudson McKinney
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Medicine, Vanderbilt University, Nashville, United States
| | - Goker Arpag
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Thomas G Folland
- Department of Mechanical Engineering, Vanderbilt University, Nashville, United States
| | - Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States.,Center for Stem Cell Biology, Vanderbilt University, Nashville, United States
| | - Mark A Magnuson
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States.,Center for Stem Cell Biology, Vanderbilt University, Nashville, United States
| | - Marija Zanic
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, United States.,Department of Biochemistry, Vanderbilt University, Nashville, United States
| | - Guoqiang Gu
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - William R Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, United States.,Department of Mathematics, Vanderbilt University, Nashville, United States.,Quantitative Systems Biology Center, Vanderbilt University, Nashville, United States
| | - Irina Kaverina
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
74
|
Yau B, Hocking S, Andrikopoulos S, Kebede MA. Targeting the insulin granule for modulation of insulin exocytosis. Biochem Pharmacol 2021; 194:114821. [PMID: 34748819 DOI: 10.1016/j.bcp.2021.114821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
The pancreatic β-cells control insulin secretion in the body to regulate glucose homeostasis, and β-cell stress and dysfunction is characteristic of Type 2 Diabetes. Pharmacological targeting of the β-cell to increase insulin secretion is typically utilised, however, extended use of common drugs such as sulfonylureas are known to result in secondary failure. Moreover, there is evidence they may induce β-cell failure in the long term. Within β-cells, insulin secretory granules (ISG) serve as compartments to store, process and traffic insulin for exocytosis. There is now growing evidence that ISG exist in multiple populations, distinct in their protein composition, motility, age, and capacity for secretion. In this review, we discuss the implications of a heterogenous ISG population in β-cells and highlight the need for more understanding into how unique ISG populations may be targeted in anti-diabetic therapies.
Collapse
Affiliation(s)
- Belinda Yau
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
| | - Samantha Hocking
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia; Central Clinical School, Faculty of Medicine and Health and Department of Endocrinology Royal Prince Alfred Hospital, NSW, Australia
| | | | - Melkam A Kebede
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
75
|
Chen SM, Hee SW, Chou SY, Liu MW, Chen CH, Mochly-Rosen D, Chang TJ, Chuang LM. Activation of Aldehyde Dehydrogenase 2 Ameliorates Glucolipotoxicity of Pancreatic Beta Cells. Biomolecules 2021; 11:biom11101474. [PMID: 34680107 PMCID: PMC8533366 DOI: 10.3390/biom11101474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/12/2023] Open
Abstract
Chronic hyperglycemia and hyperlipidemia hamper beta cell function, leading to glucolipotoxicity. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) detoxifies reactive aldehydes, such as methylglyoxal (MG) and 4-hydroxynonenal (4-HNE), derived from glucose and lipids, respectively. We aimed to investigate whether ALDH2 activators ameliorated beta cell dysfunction and apoptosis induced by glucolipotoxicity, and its potential mechanisms of action. Glucose-stimulated insulin secretion (GSIS) in MIN6 cells and insulin secretion from isolated islets in perifusion experiments were measured. The intracellular ATP concentrations and oxygen consumption rates of MIN6 cells were assessed. Furthermore, the cell viability, apoptosis, and mitochondrial and intracellular reactive oxygen species (ROS) levels were determined. Additionally, the pro-apoptotic, apoptotic, and anti-apoptotic signaling pathways were investigated. We found that Alda-1 enhanced GSIS by improving the mitochondrial function of pancreatic beta cells. Alda-1 rescued MIN6 cells from MG- and 4-HNE-induced beta cell death, apoptosis, mitochondrial dysfunction, and ROS production. However, the above effects of Alda-1 were abolished in Aldh2 knockdown MIN6 cells. In conclusion, we reported that the activator of ALDH2 not only enhanced GSIS, but also ameliorated the glucolipotoxicity of beta cells by reducing both the mitochondrial and intracellular ROS levels, thereby improving mitochondrial function, restoring beta cell function, and protecting beta cells from apoptosis and death.
Collapse
Affiliation(s)
- Shiau-Mei Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
| | - Shih-Yun Chou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
| | - Meng-Wei Liu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; (C.-H.C.); (D.M.-R.)
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; (C.-H.C.); (D.M.-R.)
| | - Tien-Jyun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 66217)
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
76
|
Gaus B, Brüning D, Hatlapatka K, Rustenbeck I. Changes in granule mobility and age contribute to changes in insulin secretion after desensitization or rest. BMJ Open Diabetes Res Care 2021; 9:9/1/e002394. [PMID: 34620619 PMCID: PMC8499263 DOI: 10.1136/bmjdrc-2021-002394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Functional impairment of the stimulus secretion coupling in pancreatic beta cells is an essential component of type 2 diabetes. It is known that prolonged stimulation desensitizes the secretion of insulin and thus contributes to beta cell dysfunction. Beta cell rest, in contrast, was shown to enhance the secretory response. Here, the underlying mechanisms were investigated. RESEARCH DESIGN AND METHODS To characterize the consequences of desensitization or rest for the number and mobility of submembrane granules, insulin-secreting MIN6 cells were desensitized by 18-hour culture with 500 µM tolbutamide or rested by 18-hour culture with 1 µM clonidine. The granules were labeled by hIns-EGFP or hIns-DsRed E5, imaged by TIRF microscopy of the cell footprint area and analyzed with an observer-independent program. Additionally, the insulin content and secretion were measured. RESULTS Concurrent with the insulin content, submembrane granules were only slightly reduced after desensitization but markedly increased after rest. Both types of pretreatment diminished arrivals and departures of granules in the submembrane space and increased the proportion of immobile long-term resident granules, but desensitization lowered and rest increased the number of exocytoses, in parallel with the effect on insulin secretion. Labeling with hIns-DsRed E5 ('timer') showed that desensitization did not affect the proportion of aged granules, whereas rest increased it. Aged granules showed a high mobility and made up only a minority of long-term residents. Long-term resident granules were more numerous after rest and had a lower lateral mobility, suggesting a firmer attachment to the membrane. CONCLUSION The number, mobility and age of submembrane granules reflect the preceding functional states of insulin-secreting cells. Representing the pool of releasable granules, their quantity and quality may thus form part of the beta cell memory on renewed stimulation.
Collapse
Affiliation(s)
- Bastian Gaus
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dennis Brüning
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kathrin Hatlapatka
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
- DHD-Consulting GmbH, Hildesheim, Germany
| | - Ingo Rustenbeck
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
77
|
Zhang Y, Han C, Zhu W, Yang G, Peng X, Mehta S, Zhang J, Chen L, Liu Y. Glucagon Potentiates Insulin Secretion Via β-Cell GCGR at Physiological Concentrations of Glucose. Cells 2021; 10:cells10092495. [PMID: 34572144 PMCID: PMC8471175 DOI: 10.3390/cells10092495] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Incretin-potentiated glucose-stimulated insulin secretion (GSIS) is critical to maintaining euglycemia, of which GLP-1 receptor (GLP-1R) on β-cells plays an indispensable role. Recently, α-cell-derived glucagon but not intestine-derived GLP-1 has been proposed as the critical hormone that potentiates GSIS via GLP-1R. However, the function of glucagon receptors (GCGR) on β-cells remains elusive. Here, using GCGR or GLP-1R antagonists, in combination with glucagon, to treat single β-cells, α-β cell clusters and isolated islets, we found that glucagon potentiates insulin secretion via β-cell GCGR at physiological but not high concentrations of glucose. Furthermore, we transfected primary mouse β-cells with RAB-ICUE (a genetically encoded cAMP fluorescence indicator) to monitor cAMP level after glucose stimulation and GCGR activation. Using specific inhibitors of different adenylyl cyclase (AC) family members, we revealed that high glucose concentration or GCGR activation independently evoked cAMP elevation via AC5 in β-cells, thus high glucose stimulation bypassed GCGR in promoting insulin secretion. Additionally, we generated β-cell-specific GCGR knockout mice which glucose intolerance was more severe when fed a high-fat diet (HFD). We further found that β-cell GCGR activation promoted GSIS more than GLP-1R in HFD, indicating the critical role of GCGR in maintaining glucose homeostasis during nutrient overload.
Collapse
Affiliation(s)
- Yulin Zhang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; (Y.Z.); (C.H.); (W.Z.); (G.Y.); (X.P.)
| | - Chengsheng Han
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; (Y.Z.); (C.H.); (W.Z.); (G.Y.); (X.P.)
| | - Wenzhen Zhu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; (Y.Z.); (C.H.); (W.Z.); (G.Y.); (X.P.)
| | - Guoyi Yang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; (Y.Z.); (C.H.); (W.Z.); (G.Y.); (X.P.)
| | - Xiaohong Peng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; (Y.Z.); (C.H.); (W.Z.); (G.Y.); (X.P.)
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093-0702, USA; (S.M.); (J.Z.)
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093-0702, USA; (S.M.); (J.Z.)
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; (Y.Z.); (C.H.); (W.Z.); (G.Y.); (X.P.)
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Beijing Academy of Artificial Intelligence, Beijing 100871, China
- Correspondence: (L.C.); (Y.L.)
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
- Correspondence: (L.C.); (Y.L.)
| |
Collapse
|
78
|
Ngo J, Osto C, Villalobos F, Shirihai OS. Mitochondrial Heterogeneity in Metabolic Diseases. BIOLOGY 2021; 10:biology10090927. [PMID: 34571805 PMCID: PMC8470264 DOI: 10.3390/biology10090927] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Often times mitochondria within a single cell are depicted as homogenous entities both morphologically and functionally. In normal and diseased states, mitochondria are heterogeneous and display distinct functional properties. In both cases, mitochondria exhibit differences in morphology, membrane potential, and mitochondrial calcium levels. However, the degree of heterogeneity is different during disease; or rather, heterogeneity at the physiological state stems from physically distinct mitochondrial subpopulations. Overall, mitochondrial heterogeneity is both beneficial and detrimental to the cellular system; protective in enabling cellular adaptation to biological stress or detrimental in inhibiting protective mechanisms. Abstract Mitochondria have distinct architectural features and biochemical functions consistent with cell-specific bioenergetic needs. However, as imaging and isolation techniques advance, heterogeneity amongst mitochondria has been observed to occur within the same cell. Moreover, mitochondrial heterogeneity is associated with functional differences in metabolic signaling, fuel utilization, and triglyceride synthesis. These phenotypic associations suggest that mitochondrial subpopulations and heterogeneity influence the risk of metabolic diseases. This review examines the current literature regarding mitochondrial heterogeneity in the pancreatic beta-cell and renal proximal tubules as they exist in the pathological and physiological states; specifically, pathological states of glucolipotoxicity, progression of type 2 diabetes, and kidney diseases. Emphasis will be placed on the benefits of balancing mitochondrial heterogeneity and how the disruption of balancing heterogeneity leads to impaired tissue function and disease onset.
Collapse
Affiliation(s)
- Jennifer Ngo
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (J.N.); (C.O.); (F.V.)
- Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Corey Osto
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (J.N.); (C.O.); (F.V.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Frankie Villalobos
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (J.N.); (C.O.); (F.V.)
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Orian S. Shirihai
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (J.N.); (C.O.); (F.V.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
79
|
Kemter E, Müller A, Neukam M, Ivanova A, Klymiuk N, Renner S, Yang K, Broichhagen J, Kurome M, Zakhartchenko V, Kessler B, Knoch KP, Bickle M, Ludwig B, Johnsson K, Lickert H, Kurth T, Wolf E, Solimena M. Sequential in vivo labeling of insulin secretory granule pools in INS- SNAP transgenic pigs. Proc Natl Acad Sci U S A 2021; 118:e2107665118. [PMID: 34508004 PMCID: PMC8449372 DOI: 10.1073/pnas.2107665118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
β cells produce, store, and secrete insulin upon elevated blood glucose levels. Insulin secretion is a highly regulated process. The probability for insulin secretory granules to undergo fusion with the plasma membrane or being degraded is correlated with their age. However, the molecular features and stimuli connected to this behavior have not yet been fully understood. Furthermore, our understanding of β cell function is mostly derived from studies of ex vivo isolated islets in rodent models. To overcome this translational gap and study insulin secretory granule turnover in vivo, we have generated a transgenic pig model with the SNAP-tag fused to insulin. We demonstrate the correct targeting and processing of the tagged insulin and normal glycemic control of the pig model. Furthermore, we show specific single- and dual-color granular labeling of in vivo-labeled pig pancreas. This model may provide unprecedented insights into the in vivo insulin secretory granule behavior in an animal close to humans.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- Center for Innovative Medical Models, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Andreas Müller
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Martin Neukam
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anna Ivanova
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- Center for Innovative Medical Models, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Simone Renner
- Chair for Molecular Animal Breeding and Biotechnology Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- Center for Innovative Medical Models, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Kaiyuan Yang
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- Center for Innovative Medical Models, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Valeri Zakhartchenko
- Chair for Molecular Animal Breeding and Biotechnology Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- Center for Innovative Medical Models, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- Center for Innovative Medical Models, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Klaus-Peter Knoch
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Marc Bickle
- Technology Development Studio (TDS), Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Barbara Ludwig
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Heiko Lickert
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering Technology Platform, Technische Universität Dresden, 01307 Dresden, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany;
- Center for Innovative Medical Models, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Michele Solimena
- German Center for Diabetes Research, 85764 Neuherberg, Germany;
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
80
|
Vishnu N, Hamilton A, Bagge A, Wernersson A, Cowan E, Barnard H, Sancak Y, Kamer KJ, Spégel P, Fex M, Tengholm A, Mootha VK, Nicholls DG, Mulder H. Mitochondrial clearance of calcium facilitated by MICU2 controls insulin secretion. Mol Metab 2021; 51:101239. [PMID: 33932586 PMCID: PMC8163986 DOI: 10.1016/j.molmet.2021.101239] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Transport of Ca2+ into pancreatic β cell mitochondria facilitates nutrient-mediated insulin secretion. However, the underlying mechanism is unclear. Recent establishment of the molecular identity of the mitochondrial Ca2+ uniporter (MCU) and associated proteins allows modification of mitochondrial Ca2+ transport in intact cells. We examined the consequences of deficiency of the accessory protein MICU2 in rat and human insulin-secreting cells and mouse islets. METHODS siRNA silencing of Micu2 in the INS-1 832/13 and EndoC-βH1 cell lines was performed; Micu2-/- mice were also studied. Insulin secretion and mechanistic analyses utilizing live confocal imaging to assess mitochondrial function and intracellular Ca2+ dynamics were performed. RESULTS Silencing of Micu2 abrogated GSIS in the INS-1 832/13 and EndoC-βH1 cells. The Micu2-/- mice also displayed attenuated GSIS. Mitochondrial Ca2+ uptake declined in MICU2-deficient INS-1 832/13 and EndoC-βH1 cells in response to high glucose and high K+. MICU2 silencing in INS-1 832/13 cells, presumably through its effects on mitochondrial Ca2+ uptake, perturbed mitochondrial function illustrated by absent mitochondrial membrane hyperpolarization and lowering of the ATP/ADP ratio in response to elevated glucose. Despite the loss of mitochondrial Ca2+ uptake, cytosolic Ca2+ was lower in siMICU2-treated INS-1 832/13 cells in response to high K+. It was hypothesized that Ca2+ accumulated in the submembrane compartment in MICU2-deficient cells, resulting in desensitization of voltage-dependent Ca2+ channels, lowering total cytosolic Ca2+. Upon high K+ stimulation, MICU2-silenced cells showed higher and prolonged increases in submembrane Ca2+ levels. CONCLUSIONS MICU2 plays a critical role in β cell mitochondrial Ca2+ uptake. β cell mitochondria sequestered Ca2+ from the submembrane compartment, preventing desensitization of voltage-dependent Ca2+ channels and facilitating GSIS.
Collapse
Affiliation(s)
- N Vishnu
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - A Hamilton
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - A Bagge
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - A Wernersson
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - E Cowan
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - H Barnard
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - Y Sancak
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - K J Kamer
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - P Spégel
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - M Fex
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - A Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala SE-751 23, Sweden
| | - V K Mootha
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - D G Nicholls
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden; Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - H Mulder
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden.
| |
Collapse
|
81
|
Park SY, Gautier JF, Chon S. Assessment of Insulin Secretion and Insulin Resistance in Human. Diabetes Metab J 2021; 45:641-654. [PMID: 34610719 PMCID: PMC8497920 DOI: 10.4093/dmj.2021.0220] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
The impaired insulin secretion and increased insulin resistance (or decreased insulin sensitivity) play a major role in the pathogenesis of all types of diabetes mellitus (DM). It is very important to assess the pancreatic β-cell function and insulin resistance/ sensitivity to determine the type of DM and to plan an optimal management and prevention strategy for DM. So far, various methods and indices have been developed to assess the β-cell function and insulin resistance/sensitivity based on static, dynamic test and calculation of their results. In fact, since the metabolism of glucose and insulin is made through a complex process related with various stimuli in several tissues, it is difficult to fully reflect the real physiology. In order to solve the theoretical and practical difficulties, research on new index is still in progress. Also, it is important to select the appropriate method and index for the purpose of use and clinical situation. This review summarized a variety of traditional methods and indices to evaluate pancreatic β-cell function and insulin resistance/sensitivity and introduced novel indices.
Collapse
Affiliation(s)
- So Young Park
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul, Korea
| | - Jean-François Gautier
- Department of Diabetes, Clinical Investigation Centre (CIC-9504), Lariboisière Hospital, University Paris-Diderot, Paris, France
- Faculty of Medicine, University Paris-Diderot, Paris, France
- Jean-François Gautier, https://orcid.org/0000-0001-6458-2001, Department of Diabetes and Endocrinology, Lariboisière Hospital, University Paris 7, 2 Rue Ambroise Paré, Paris 75010, France E-mail:
| | - Suk Chon
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul, Korea
- Department of Endocrinology and Metabolism, College of Medicine, Kyung Hee University, Seoul, Korea
- Corresponding authors: Suk Chon, https://orcid.org/0000-0001-5921-2989, Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, 26 Kyunghee-dearo, Dongdaemungu, Seoul 02447, Korea E-mail:
| |
Collapse
|
82
|
Fan F, Wu Y, Hara M, Rizk A, Ji C, Nerad D, Tamarina N, Lou X. Dynamin deficiency causes insulin secretion failure and hyperglycemia. Proc Natl Acad Sci U S A 2021; 118:e2021764118. [PMID: 34362840 PMCID: PMC8364113 DOI: 10.1073/pnas.2021764118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β cells operate with a high rate of membrane recycling for insulin secretion, yet endocytosis in these cells is not fully understood. We investigate this process in mature mouse β cells by genetically deleting dynamin GTPase, the membrane fission machinery essential for clathrin-mediated endocytosis. Unexpectedly, the mice lacking all three dynamin genes (DNM1, DNM2, DNM3) in their β cells are viable, and their β cells still contain numerous insulin granules. Endocytosis in these β cells is severely impaired, resulting in abnormal endocytic intermediates on the plasma membrane. Although insulin granules are abundant, their release upon glucose stimulation is blunted in both the first and second phases, leading to hyperglycemia and glucose intolerance in mice. Dynamin triple deletion impairs insulin granule exocytosis and decreases intracellular Ca2+ responses and granule docking. The docking defect is correlated with reduced expression of Munc13-1 and RIM1 and reorganization of cortical F-actin in β cells. Collectively, these findings uncover the role of dynamin in dense-core vesicle endocytosis and secretory capacity. Insulin secretion deficiency in the absence of dynamin-mediated endocytosis highlights the risk of impaired membrane trafficking in endocrine failure and diabetes pathogenesis.
Collapse
Affiliation(s)
- Fan Fan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Yumei Wu
- HHMI, Yale University School of Medicine, New Haven, CT 06510
- Departments of Neuroscience and Cell Biology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Manami Hara
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Adam Rizk
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Chen Ji
- Synapses and Circuits section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892
| | - Dan Nerad
- Emergency Medicine, Carl R. Darnall Army Medical Center, Fort Hood, TX 76544
| | - Natalia Tamarina
- Department of Medicine, The Kovler Diabetes Center, University of Chicago, Chicago, IL 60637
| | - Xuelin Lou
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226;
| |
Collapse
|
83
|
Bauchle CJ, Rohli KE, Boyer CK, Pal V, Rocheleau JV, Liu S, Imai Y, Taylor EB, Stephens SB. Mitochondrial Efflux of Citrate and Isocitrate Is Fully Dispensable for Glucose-Stimulated Insulin Secretion and Pancreatic Islet β-Cell Function. Diabetes 2021; 70:1717-1728. [PMID: 34039628 PMCID: PMC8385611 DOI: 10.2337/db21-0037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/22/2021] [Indexed: 11/13/2022]
Abstract
The defining feature of pancreatic islet β-cell function is the precise coordination of changes in blood glucose levels with insulin secretion to regulate systemic glucose homeostasis. While ATP has long been heralded as a critical metabolic coupling factor to trigger insulin release, glucose-derived metabolites have been suggested to further amplify fuel-stimulated insulin secretion. The mitochondrial export of citrate and isocitrate through the citrate-isocitrate carrier (CIC) has been suggested to initiate a key pathway that amplifies glucose-stimulated insulin secretion, though the physiological significance of β-cell CIC-to-glucose homeostasis has not been established. Here, we generated constitutive and adult CIC β-cell knockout (KO) mice and demonstrate that these animals have normal glucose tolerance, similar responses to diet-induced obesity, and identical insulin secretion responses to various fuel secretagogues. Glucose-stimulated NADPH production was impaired in β-cell CIC KO islets, whereas glutathione reduction was retained. Furthermore, suppression of the downstream enzyme cytosolic isocitrate dehydrogenase (Idh1) inhibited insulin secretion in wild-type islets but failed to impact β-cell function in β-cell CIC KO islets. Our data demonstrate that the mitochondrial CIC is not required for glucose-stimulated insulin secretion and that additional complexities exist for the role of Idh1 and NADPH in the regulation of β-cell function.
Collapse
Affiliation(s)
- Casey J Bauchle
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Kristen E Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA
| | - Cierra K Boyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Department of Pharmacology, University of Iowa, Iowa City, IA
| | - Vidhant Pal
- Institute of Biomedical Engineering, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jonathan V Rocheleau
- Institute of Biomedical Engineering, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Siming Liu
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Yumi Imai
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA
- Iowa City Veterans Affairs Medical Center, Iowa City, IA
| | - Eric B Taylor
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA
| |
Collapse
|
84
|
Wijesekara N, Ahrens R, Wu L, Langman T, Tandon A, Fraser PE. α-Synuclein Regulates Peripheral Insulin Secretion and Glucose Transport. Front Aging Neurosci 2021; 13:665348. [PMID: 34393754 PMCID: PMC8361797 DOI: 10.3389/fnagi.2021.665348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022] Open
Abstract
Aim Population based studies indicate a positive association between type 2 diabetes (T2D) and Parkinson’s disease (PD) where there is an increased risk of developing PD in patients with T2D. PD is characterized by the abnormal accumulation of intraneuronal aggregated α-synuclein (α-syn) in Lewy bodies, which negatively impact neuronal viability. α-syn is also expressed in both pancreatic islets and skeletal muscle, key players in glucose regulation. Therefore, we examined the functional role of α-syn in these tissues. Methods Using mice lacking, overexpressing or transiently injected with α-syn, effects on glucose and insulin tolerance and insulin secretion were determined, with further characterization of the effects on GLUT4 translocation using GLUT4myc myotubes. Results Mice genetically ablated for α-syn became glucose intolerant and insulin resistant with hyperinsulinemia and reduced glucose-stimulated insulin secretion (GSIS). Mice overexpressing human α-syn are more insulin senstive and glucose tolerant compared to controls with increased GSIS. Injection of purified α-syn monomers also led to improved glucose tolerance and insulin sensitivity with hightened GSIS. α-syn monomer treatments increased surface GLUT4 levels in myotubes but without any significant change in Akt phosphorylation. The increase in cell surface GLUT4 was largely due to a large reduction in GLUT4 endocytosis, however, with a compensatory reduction in GLUT4 exocytosis. Conclusion Cumulatively, this data suggests that α-syn modulates both pancreatic beta cell function and glucose transport in peripheral tissues, thereby playing a pivitol role in the maintenance of normal glucose homeostasis.
Collapse
Affiliation(s)
- Nadeeja Wijesekara
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Rosemary Ahrens
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ling Wu
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Tammy Langman
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
85
|
Hu R, Zhu X, Yuan M, Ho KH, Kaverina I, Gu G. Microtubules and Gαo-signaling modulate the preferential secretion of young insulin secretory granules in islet β cells via independent pathways. PLoS One 2021; 16:e0241939. [PMID: 34292976 PMCID: PMC8297875 DOI: 10.1371/journal.pone.0241939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
For sustainable function, each pancreatic islet β cell maintains thousands of insulin secretory granules (SGs) at all times. Glucose stimulation induces the secretion of a small portion of these SGs and simultaneously boosts SG biosynthesis to sustain this stock. The failure of these processes, often induced by sustained high-insulin output, results in type 2 diabetes. Intriguingly, young insulin SGs are more likely secreted during glucose-stimulated insulin secretion (GSIS) for unknown reasons, while older SGs tend to lose releasability and be degraded. Here, we examine the roles of microtubule (MT) and Gαo-signaling in regulating the preferential secretion of young versus old SGs. We show that both MT-destabilization and Gαo inactivation results in more SGs localization near plasma membrane (PM) despite higher levels of GSIS and reduced SG biosynthesis. Intriguingly, MT-destabilization or Gαo-inactivation results in higher secretion probabilities of older SGs, while combining both having additive effects on boosting GSIS. Lastly, Gαo inactivation does not detectably destabilize the β-cell MT network. These findings suggest that Gαo and MT can modulate the preferential release of younger insulin SGs via largely parallel pathways.
Collapse
Affiliation(s)
- Ruiying Hu
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Mingyang Yuan
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Kung-Hsien Ho
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Irina Kaverina
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
86
|
Kirilmaz OB, Salegaonkar AR, Shiau J, Uzun G, Ko HS, Lee HF, Park S, Kwon G. Study of blood glucose and insulin infusion rate in real-time in diabetic rats using an artificial pancreas system. PLoS One 2021; 16:e0254718. [PMID: 34270619 PMCID: PMC8284668 DOI: 10.1371/journal.pone.0254718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/01/2021] [Indexed: 11/19/2022] Open
Abstract
Artificial pancreas system (APS) is an emerging new treatment for type 1 diabetes mellitus. The aim of this study was to develop a rat APS as a research tool and demonstrate its application. We established a rat APS using Medtronic Minimed Pump 722, Medtronic Enlite sensor, and the open artificial pancreas system as a controller. We tested different dilutions of Humalog (100 units/ml) in saline ranged from 1:3 to 1:20 and determined that 1:7 dilution works well for rats with ~500g bodyweight. Blood glucose levels (BGL) of diabetic rats fed with chow diet (58% carbohydrate) whose BGL was managed by the closed-loop APS for the total duration of 207h were in euglycemic range (70-180 mg/dl) for 94.5% of the time with 2.1% and 3.4% for hyperglycemia (>180mg/dl) and hypoglycemia (<70 mg/dl), respectively. Diabetic rats fed with Sucrose pellets (94.8% carbohydrate) for the experimental duration of 175h were in euglycemic range for 61% of the time with 35% and 4% for hyperglycemia and hypoglycemia, respectively. Heathy rats fed with chow diet showed almost a straight line of BGL ~ 95 mg/dl (average 94.8 mg/dl) during the entire experimental period (281h), which was minimally altered by food intake. In the healthy rats, feeding sucrose pellets caused greater range of BGL in high and low levels but still within euglycemic range (99.9%). Next, to study how healthy and diabetic rats handle supra-physiological concentrations of glucose, we intraperitoneally injected various amounts of 50% dextrose (2, 3, 4g/kg) and monitored BGL. Duration of hyperglycemia after injection of 50% dextrose at all three different concentrations was significantly greater for healthy rats than diabetic rats, suggesting that insulin infusion by APS was superior in reducing BGL as compared to natural insulin released from pancreatic β-cells. Ex vivo studies showed that islets isolated from diabetic rats were almost completely devoid of pancreatic β-cells but with intact α-cells as expected. Lipid droplet deposition in the liver of diabetic rats was significantly lower with higher levels of triacylglyceride in the blood as compared to those of healthy rats, suggesting lipid metabolism was altered in diabetic rats. However, glycogen storage in the liver determined by Periodic acid-Schiff staining was not altered in diabetic rats as compared to healthy rats. A rat APS may be used as a powerful tool not only to study alterations of glucose and insulin homeostasis in real-time caused by diet, exercise, hormones, or antidiabetic agents, but also to test mathematical and engineering models of blood glucose prediction or new algorithms for closed-loop APS.
Collapse
MESH Headings
- Animals
- Blood Glucose/analysis
- Blood Glucose/drug effects
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/diagnosis
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/diagnosis
- Diabetes Mellitus, Type 1/therapy
- Glycated Hemoglobin/analysis
- Humans
- Infusions, Intravenous/instrumentation
- Infusions, Intravenous/methods
- Insulin/administration & dosage
- Male
- Pancreas, Artificial
- Rats
- Streptozocin/administration & dosage
- Streptozocin/toxicity
Collapse
Affiliation(s)
- Omer Batuhan Kirilmaz
- School of Engineering, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | | | - Justin Shiau
- School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Guney Uzun
- School of Engineering, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Hoo Sang Ko
- School of Engineering, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - H. Felix Lee
- School of Engineering, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Sarah Park
- Research and Instructional Services, Duke University, Durham, North Carolina, United States of America
| | - Guim Kwon
- School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
- * E-mail:
| |
Collapse
|
87
|
Metabolic Phenotypes and Step by Step Evolution of Type 2 Diabetes: A New Paradigm. Biomedicines 2021; 9:biomedicines9070800. [PMID: 34356863 PMCID: PMC8301386 DOI: 10.3390/biomedicines9070800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/18/2023] Open
Abstract
Unlike bolus insulin secretion mechanisms, basal insulin secretion is poorly understood. It is essential to elucidate these mechanisms in non-hyperinsulinaemia healthy persons. This establishes a baseline for investigation into pathologies where these processes are dysregulated, such as in type 2 diabetes (T2DM), cardiovascular disease (CVD), certain cancers and dementias. Chronic hyperinsulinaemia enforces glucose fueling, depleting the NAD+ dependent antioxidant activity that increases mitochondrial reactive oxygen species (mtROS). Consequently, beta-cell mitochondria increase uncoupling protein expression, which decreases the mitochondrial ATP surge generation capacity, impairing bolus mediated insulin exocytosis. Excessive ROS increases the Drp1:Mfn2 ratio, increasing mitochondrial fission, which increases mtROS; endoplasmic reticulum-stress and impaired calcium homeostasis ensues. Healthy individuals in habitual ketosis have significantly lower glucagon and insulin levels than T2DM individuals. As beta-hydroxybutyrate rises, hepatic gluconeogenesis and glycogenolysis supply extra-hepatic glucose needs, and osteocalcin synthesis/release increases. We propose insulin’s primary role is regulating beta-hydroxybutyrate synthesis, while the role of bone regulates glucose uptake sensitivity via osteocalcin. Osteocalcin regulates the alpha-cell glucagon secretory profile via glucagon-like peptide-1 and serotonin, and beta-hydroxybutyrate synthesis via regulating basal insulin levels. Establishing metabolic phenotypes aids in resolving basal insulin secretion regulation, enabling elucidation of the pathological changes that occur and progress into chronic diseases associated with ageing.
Collapse
|
88
|
Laurenti MC, Matveyenko A, Vella A. Measurement of Pulsatile Insulin Secretion: Rationale and Methodology. Metabolites 2021; 11:409. [PMID: 34206296 PMCID: PMC8305896 DOI: 10.3390/metabo11070409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022] Open
Abstract
Pancreatic β-cells are responsible for the synthesis and exocytosis of insulin in response to an increase in circulating glucose. Insulin secretion occurs in a pulsatile manner, with oscillatory pulses superimposed on a basal secretion rate. Insulin pulses are a marker of β-cell health, and secretory parameters, such as pulse amplitude, time interval and frequency distribution, are impaired in obesity, aging and type 2 diabetes. In this review, we detail the mechanisms of insulin production and β-cell synchronization that regulate pulsatile insulin secretion, and we discuss the challenges to consider when measuring fast oscillatory secretion in vivo. These include the anatomical difficulties of measuring portal vein insulin noninvasively in humans before the hormone is extracted by the liver and quickly removed from the circulation. Peripheral concentrations of insulin or C-peptide, a peptide cosecreted with insulin, can be used to estimate their secretion profile, but mathematical deconvolution is required. Parametric and nonparametric approaches to the deconvolution problem are evaluated, alongside the assumptions and trade-offs required for their application in the quantification of unknown insulin secretory rates from known peripheral concentrations. Finally, we discuss the therapeutical implication of targeting impaired pulsatile secretion and its diagnostic value as an early indicator of β-cell stress.
Collapse
Affiliation(s)
- Marcello C. Laurenti
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, MN 55905, USA; (M.C.L.); (A.M.)
- Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Aleksey Matveyenko
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, MN 55905, USA; (M.C.L.); (A.M.)
| | - Adrian Vella
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, MN 55905, USA; (M.C.L.); (A.M.)
| |
Collapse
|
89
|
Rustenbeck I, Schulze T, Morsi M, Alshafei M, Panten U. What Is the Metabolic Amplification of Insulin Secretion and Is It (Still) Relevant? Metabolites 2021; 11:metabo11060355. [PMID: 34199454 PMCID: PMC8229681 DOI: 10.3390/metabo11060355] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
The pancreatic beta-cell transduces the availability of nutrients into the secretion of insulin. While this process is extensively modified by hormones and neurotransmitters, it is the availability of nutrients, above all glucose, which sets the process of insulin synthesis and secretion in motion. The central role of the mitochondria in this process was identified decades ago, but how changes in mitochondrial activity are coupled to the exocytosis of insulin granules is still incompletely understood. The identification of ATP-sensitive K+-channels provided the link between the level of adenine nucleotides and the electrical activity of the beta cell, but the depolarization-induced Ca2+-influx into the beta cells, although necessary for stimulated secretion, is not sufficient to generate the secretion pattern as produced by glucose and other nutrient secretagogues. The metabolic amplification of insulin secretion is thus the sequence of events that enables the secretory response to a nutrient secretagogue to exceed the secretory response to a purely depolarizing stimulus and is thus of prime importance. Since the cataplerotic export of mitochondrial metabolites is involved in this signaling, an orienting overview on the topic of nutrient secretagogues beyond glucose is included. Their judicious use may help to define better the nature of the signals and their mechanism of action.
Collapse
Affiliation(s)
- Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
- Correspondence: ; Tel.: +49-(0)53-139-156-70
| | - Torben Schulze
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
| | - Mai Morsi
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
- Department of Pharmacology, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mohammed Alshafei
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
| | - Uwe Panten
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
| |
Collapse
|
90
|
Isolation and Proteomics of the Insulin Secretory Granule. Metabolites 2021; 11:metabo11050288. [PMID: 33946444 PMCID: PMC8147143 DOI: 10.3390/metabo11050288] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/21/2022] Open
Abstract
Insulin, a vital hormone for glucose homeostasis is produced by pancreatic beta-cells and when secreted, stimulates the uptake and storage of glucose from the blood. In the pancreas, insulin is stored in vesicles termed insulin secretory granules (ISGs). In Type 2 diabetes (T2D), defects in insulin action results in peripheral insulin resistance and beta-cell compensation, ultimately leading to dysfunctional ISG production and secretion. ISGs are functionally dynamic and many proteins present either on the membrane or in the lumen of the ISG may modulate and affect different stages of ISG trafficking and secretion. Previously, studies have identified few ISG proteins and more recently, proteomics analyses of purified ISGs have uncovered potential novel ISG proteins. This review summarizes the proteins identified in the current ISG proteomes from rat insulinoma INS-1 and INS-1E cell lines. Here, we also discuss techniques of ISG isolation and purification, its challenges and potential future directions.
Collapse
|
91
|
Ghazvini Zadeh EH, Huang Z, Xia J, Li D, Davidson HW, Li WH. ZIGIR, a Granule-Specific Zn 2+ Indicator, Reveals Human Islet α Cell Heterogeneity. Cell Rep 2021; 32:107904. [PMID: 32668245 DOI: 10.1016/j.celrep.2020.107904] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/04/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Numerous mammalian cells contain abundant Zn2+ in their secretory granules, yet available Zn2+ sensors lack the desired specificity and sensitivity for imaging granular Zn2+. We developed a fluorescent zinc granule indicator, ZIGIR, that possesses numerous desired properties for live cell imaging, including >100-fold fluorescence enhancement, membrane permeability, and selective enrichment to acidic granules. The combined advantages endow ZIGIR with superior sensitivity and specificity for imaging granular Zn2+. ZIGIR enables separation of heterogenous β cells based on their insulin content and sorting of mouse islets into pure α cells and β cells. In human islets, ZIGIR facilitates sorting of endocrine cells into highly enriched α cells and β cells, reveals unexpectedly high Zn2+ activity in the somatostatin granule of some δ cells, and uncovers variation in the glucagon content among human α cells. We expect broad applications of ZIGIR for studying Zn2+ biology and Zn2+-rich secretory granules and for engineering β cells with high insulin content for treating diabetes.
Collapse
Affiliation(s)
- Ebrahim H Ghazvini Zadeh
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA
| | - ZhiJiang Huang
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA
| | - Jing Xia
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA; Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Daliang Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA
| | - Howard W Davidson
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Wen-Hong Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA.
| |
Collapse
|
92
|
Yang Y, Sun K, Liu W, Li X, Tian W, Shuai P, Zhu X. The phosphatidylserine flippase β-subunit Tmem30a is essential for normal insulin maturation and secretion. Mol Ther 2021; 29:2854-2872. [PMID: 33895325 PMCID: PMC8417432 DOI: 10.1016/j.ymthe.2021.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
The processing, maturation, and secretion of insulin are under precise regulation, and dysregulation causes profound defects in glucose handling, leading to diabetes. Tmem30a is the β subunit of the phosphatidylserine (PS) flippase, which maintains the membrane asymmetric distribution of PS. Tmem30a regulates cell survival and the localization of subcellular structures and is thus critical to the normal function of multiple physiological systems. Here, we show that conditional knockout of Tmem30a specifically in pancreatic islet β cells leads to obesity, hyperglycemia, glucose intolerance, hyperinsulinemia, and insulin resistance in mice, due to insufficient insulin release. Moreover, we reveal that Tmem30a plays an essential role in clathrin-mediated vesicle transport between the trans Golgi network (TGN) and the plasma membrane (PM), which comprises immature secretory granule (ISG) budding at the TGN. We also find that Tmem30a deficiency impairs clathrin-mediated vesicle budding and thus blocks both insulin maturation in ISGs and the transport of glucose-sensing Glut2 to the PM. Collectively, these disruptions compromise both insulin secretion and glucose sensitivity, thus contributing to impairments in glucose-stimulated insulin secretion. Taken together, our data demonstrate an important role of Tmem30a in insulin maturation and glucose metabolic homeostasis and suggest the importance of membrane phospholipid distribution in metabolic disorders.
Collapse
Affiliation(s)
- Yeming Yang
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Kuanxiang Sun
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiao Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wanli Tian
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Ping Shuai
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072 China.
| | - Xianjun Zhu
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072 China; Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610072, China; Department of Ophthalmology, First People's Hospital of Shangqiu, Shangqiu, Hennan 476100, China.
| |
Collapse
|
93
|
Hatamie A, Ren L, Dou H, Gandasi NR, Rorsman P, Ewing A. Nanoscale Amperometry Reveals that Only a Fraction of Vesicular Serotonin Content is Released During Exocytosis from Beta Cells. Angew Chem Int Ed Engl 2021; 60:7593-7596. [PMID: 33340209 PMCID: PMC8049002 DOI: 10.1002/anie.202015902] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 12/23/2022]
Abstract
Recent work has shown that chemical release during the fundamental cellular process of exocytosis in model cell lines is not all-or-none. We tested this theory for vesicular release from single pancreatic beta cells. The vesicles in these cells release insulin, but also serotonin, which is detectible with amperometric methods. Traditionally, it is assumed that exocytosis in beta cells is all-or-none. Here, we use a multidisciplinary approach involving nanoscale amperometric chemical methods to explore the chemical nature of insulin exocytosis. We amperometrically quantified the number of serotonin molecules stored inside of individual nanoscale vesicles (39 317±1611) in the cell cytoplasm before exocytosis and the number of serotonin molecules released from single cells (13 310±1127) for each stimulated exocytosis event. Thus, beta cells release only one-third of their granule content, clearly supporting partial release in this system. We discuss these observations in the context of type-2 diabetes.
Collapse
Affiliation(s)
- Amir Hatamie
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Lin Ren
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Haiqiang Dou
- Department of Physiology, Sahlgrenska AcademyUniversity of GothenburgMedicinaregatan 11–1341390GothenburgSweden
| | - Nikhil R. Gandasi
- Department of Physiology, Sahlgrenska AcademyUniversity of GothenburgMedicinaregatan 11–1341390GothenburgSweden
| | - Patrik Rorsman
- Department of Physiology, Sahlgrenska AcademyUniversity of GothenburgMedicinaregatan 11–1341390GothenburgSweden
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordChurchill HospitalOxfordOX3 7LJUK
| | - Andrew Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| |
Collapse
|
94
|
Schulze T, Mattern K, Erfle P, Brüning D, Scherneck S, Dietzel A, Rustenbeck I. A Parallel Perifusion Slide From Glass for the Functional and Morphological Analysis of Pancreatic Islets. Front Bioeng Biotechnol 2021; 9:615639. [PMID: 33763408 PMCID: PMC7982818 DOI: 10.3389/fbioe.2021.615639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
An islet-on-chip system in the form of a completely transparent microscope slide optically accessible from both sides was developed. It is made from laser-structured borosilicate glass and enables the parallel perifusion of five microchannels, each containing one islet precisely immobilized in a pyramidal well. The islets can be in inserted via separate loading windows above each pyramidal well. This design enables a gentle, fast and targeted insertion of the islets and a reliable retention in the well while at the same time permitting a sufficiently fast exchange of the media. In addition to the measurement of the hormone content in the fractionated efflux, parallel live cell imaging of the islet is possible. By programmable movement of the microscopic stage imaging of five wells can be performed. The current chip design ensures sufficient time resolution to characterize typical parameters of stimulus-secretion coupling. This was demonstrated by measuring the reaction of the islets to stimulation by glucose and potassium depolarization. After the perifusion experiment islets can be removed for further analysis. The live-dead assay of the removed islets confirmed that the process of insertion and removal was not detrimental to islet structure and viability. In conclusion, the present islet-on-chip design permits the practical implementation of parallel perifusion experiments on a single and easy to load glass slide. For each immobilized islet the correlation between secretion, signal transduction and morphology is possible. The slide concept allows the scale-up to even higher degrees of parallelization.
Collapse
Affiliation(s)
- Torben Schulze
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai Mattern
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Per Erfle
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dennis Brüning
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Scherneck
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Andreas Dietzel
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
95
|
Cottet-Dumoulin D, Lavallard V, Lebreton F, Wassmer CH, Bellofatto K, Parnaud G, Berishvili E, Berney T, Bosco D. Biosynthetic Activity Differs Between Islet Cell Types and in Beta Cells Is Modulated by Glucose and Not by Secretion. Endocrinology 2021; 162:6047597. [PMID: 33367617 PMCID: PMC7940959 DOI: 10.1210/endocr/bqaa239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 11/19/2022]
Abstract
A correct biosynthetic activity is thought to be essential for the long-term function and survival of islet cells in culture and possibly also after islet transplantation. Compared to the secretory activity, biosynthetic activity has been poorly studied in pancreatic islet cells. Here we aimed to assess biosynthetic activity at the single cell level to investigate if protein synthesis is dependent on secretagogues and increased as a consequence of hormonal secretion. Biosynthetic activity in rat islet cells was studied at the single cell level using O-propargyl-puromycin (OPP) that incorporates into newly translated proteins and chemically ligates to a fluorescent dye by "click" reaction. Heterogeneous biosynthetic activity was observed between the four islet cell types, with delta cells showing the higher relative protein biosynthesis. Beta cells protein biosynthesis was increased in response to glucose while 3-isobutyl-1-methylxanthine and phorbol-12-myristate-13-acetate, 2 drugs known to stimulate insulin secretion, had no similar effect on protein biosynthesis. However, after several hours of secretion, protein biosynthesis remained high even when cells were challenged to basal conditions. These results suggest that mechanisms regulating secretion and biosynthesis in islet cells are different, with glucose directly triggering beta cells protein biosynthesis, independently of insulin secretion. Furthermore, this OPP labeling approach is a promising method to identify newly synthesized proteins under various physiological and pathological conditions.
Collapse
Affiliation(s)
- David Cottet-Dumoulin
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Correspondence: Domenico Bosco, Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1, rue Michel Servet, CH-1211 Genève 4, Switzerland.
| | - Vanessa Lavallard
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Charles H Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kevin Bellofatto
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Géraldine Parnaud
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
96
|
Hatamie A, Ren L, Dou H, Gandasi NR, Rorsman P, Ewing A. Nanoscale Amperometry Reveals that Only a Fraction of Vesicular Serotonin Content is Released During Exocytosis from Beta Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Amir Hatamie
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Lin Ren
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Haiqiang Dou
- Department of Physiology, Sahlgrenska Academy University of Gothenburg Medicinaregatan 11–13 41390 Gothenburg Sweden
| | - Nikhil R. Gandasi
- Department of Physiology, Sahlgrenska Academy University of Gothenburg Medicinaregatan 11–13 41390 Gothenburg Sweden
| | - Patrik Rorsman
- Department of Physiology, Sahlgrenska Academy University of Gothenburg Medicinaregatan 11–13 41390 Gothenburg Sweden
- Oxford Centre for Diabetes, Endocrinology and Metabolism University of Oxford Churchill Hospital Oxford OX3 7LJ UK
| | - Andrew Ewing
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
97
|
Hu M, Cebola I, Carrat G, Jiang S, Nawaz S, Khamis A, Canouil M, Froguel P, Schulte A, Solimena M, Ibberson M, Marchetti P, Cardenas-Diaz FL, Gadue PJ, Hastoy B, Almeida-Souza L, McMahon H, Rutter GA. Chromatin 3D interaction analysis of the STARD10 locus unveils FCHSD2 as a regulator of insulin secretion. Cell Rep 2021; 34:108703. [PMID: 33535042 PMCID: PMC7856552 DOI: 10.1016/j.celrep.2021.108703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/10/2019] [Accepted: 01/08/2021] [Indexed: 12/26/2022] Open
Abstract
Using chromatin conformation capture, we show that an enhancer cluster in the STARD10 type 2 diabetes (T2D) locus forms a defined 3-dimensional (3D) chromatin domain. A 4.1-kb region within this locus, carrying 5 T2D-associated variants, physically interacts with CTCF-binding regions and with an enhancer possessing strong transcriptional activity. Analysis of human islet 3D chromatin interaction maps identifies the FCHSD2 gene as an additional target of the enhancer cluster. CRISPR-Cas9-mediated deletion of the variant region, or of the associated enhancer, from human pancreas-derived EndoC-βH1 cells impairs glucose-stimulated insulin secretion. Expression of both STARD10 and FCHSD2 is reduced in cells harboring CRISPR deletions, and lower expression of STARD10 and FCHSD2 is associated, the latter nominally, with the possession of risk variant alleles in human islets. Finally, CRISPR-Cas9-mediated loss of STARD10 or FCHSD2, but not ARAP1, impairs regulated insulin secretion. Thus, multiple genes at the STARD10 locus influence β cell function.
Collapse
Affiliation(s)
- Ming Hu
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Gaelle Carrat
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Shuying Jiang
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Sameena Nawaz
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LE, UK
| | - Amna Khamis
- Université de Lille, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199 - EGID, 59000 Lille, France
| | - Mickaël Canouil
- Université de Lille, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199 - EGID, 59000 Lille, France
| | - Philippe Froguel
- Université de Lille, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199 - EGID, 59000 Lille, France
| | - Anke Schulte
- Sanofi-Aventis Deutschland GmbH, 65926 Frankfurt am Main, Germany
| | - Michele Solimena
- Paul Langerhans Institute of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, 56126 Pisa, Italy
| | - Fabian L Cardenas-Diaz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Centre for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul J Gadue
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Centre for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benoit Hastoy
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LE, UK
| | - Leonardo Almeida-Souza
- HiLIFE Institute of Biotechnology & Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Harvey McMahon
- MRC MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK; Lee Kong Chian School of Medicine, Nan Yang Technological University, Singapore, Singapore.
| |
Collapse
|
98
|
Bogan JS. Granular detail of β cell structures for insulin secretion. J Cell Biol 2021; 220:e202012082. [PMID: 33427875 PMCID: PMC7802365 DOI: 10.1083/jcb.202012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pancreatic β cells secrete insulin in response to increased glucose concentrations. Müller et al. (2021. J. Cell Biol. https://doi.org/10.1083/jcb.202010039) use 3D FIB-SEM to study the architecture of these cells and to elucidate how glucose stimulation remodels microtubules to control insulin secretory granule exocytosis.
Collapse
Affiliation(s)
- Jonathan S. Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine; and Department of Cell Biology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
99
|
Müller A, Schmidt D, Xu CS, Pang S, D’Costa JV, Kretschmar S, Münster C, Kurth T, Jug F, Weigert M, Hess HF, Solimena M. 3D FIB-SEM reconstruction of microtubule-organelle interaction in whole primary mouse β cells. J Cell Biol 2021; 220:e202010039. [PMID: 33326005 PMCID: PMC7748794 DOI: 10.1083/jcb.202010039] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022] Open
Abstract
Microtubules play a major role in intracellular trafficking of vesicles in endocrine cells. Detailed knowledge of microtubule organization and their relation to other cell constituents is crucial for understanding cell function. However, their role in insulin transport and secretion is under debate. Here, we use FIB-SEM to image islet β cells in their entirety with unprecedented resolution. We reconstruct mitochondria, Golgi apparati, centrioles, insulin secretory granules, and microtubules of seven β cells, and generate a comprehensive spatial map of microtubule-organelle interactions. We find that microtubules form nonradial networks that are predominantly not connected to either centrioles or endomembranes. Microtubule number and length, but not microtubule polymer density, vary with glucose stimulation. Furthermore, insulin secretory granules are enriched near the plasma membrane, where they associate with microtubules. In summary, we provide the first 3D reconstructions of complete microtubule networks in primary mammalian cells together with evidence regarding their importance for insulin secretory granule positioning and thus their supportive role in insulin secretion.
Collapse
Affiliation(s)
- Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Deborah Schmidt
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - C. Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Joyson Verner D’Costa
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Susanne Kretschmar
- Center for Molecular and Cellular Bioengineering, Technology Platform, Technische Universität Dresden, Dresden, Germany
| | - Carla Münster
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering, Technology Platform, Technische Universität Dresden, Dresden, Germany
| | - Florian Jug
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Fondazione Human Technopole, Milano, Italy
| | - Martin Weigert
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Harald F. Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
100
|
Ježek P, Holendová B, Jabůrek M, Tauber J, Dlasková A, Plecitá-Hlavatá L. The Pancreatic β-Cell: The Perfect Redox System. Antioxidants (Basel) 2021; 10:antiox10020197. [PMID: 33572903 PMCID: PMC7912581 DOI: 10.3390/antiox10020197] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA β-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.
Collapse
|