51
|
Are epigenetic drugs for diabetes and obesity at our door step? Drug Discov Today 2016; 21:499-509. [DOI: 10.1016/j.drudis.2015.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/18/2015] [Accepted: 12/02/2015] [Indexed: 01/04/2023]
|
52
|
Charles MA, Delpierre C, Bréant B. [Developmental origin of health and adult diseases (DOHaD): evolution of a concept over three decades]. Med Sci (Paris) 2016; 32:15-20. [PMID: 26850602 DOI: 10.1051/medsci/20163201004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the 1980s, D. Barker and his team proposed the hypothesis of a fetal origin of adult diseases. The concept subsequently evolved into the developmental origins of health and diseases. Progresses in various domains such as social epidemiology, neuroscience, toxicology have contributed to establish the early years of life as a key period for future health. Finally, epigenetics has provided biological plausibility to long-term programming of health by early exposures. The convergence of all these currents has led to conceptualize human health in a complex and dynamic continuum, the Lifecourse Health Development, beginning in the prenatal period and covering the whole life. Many animal models have been developed to try to unravel the mechanisms involved. Their contributions are described in this paper with the example of type 2 diabetes.
Collapse
Affiliation(s)
- Marie-Aline Charles
- Inserm, UMR1153, centre de recherche en épidémiologie et biostatistiques, Sorbonne Paris-Cité (CRESS), équipe de recherche sur les origines précoces de la santé et du développement de l'enfant; Paris Descartes université, 16, avenue Paul Vaillant Couturier, F-94807 Villejuif, France
| | - Cyrille Delpierre
- UMR1027, université Toulouse III, équipe cancer et maladies chroniques : inégalités sociales de santé, accès primaire et secondaire aux soins, 37, allées Jules Guesde, 31069 Toulouse, France
| | - Bernadette Bréant
- Inserm, unité 1138, université Pierre et Marie Curie UMRS 1138 et mission Inserm associations, département de l'information scientifique et de la communication, 101, rue de Tolbiac, 75013 Paris, France
| |
Collapse
|
53
|
Beauchamp B, Harper ME. In utero Undernutrition Programs Skeletal and Cardiac Muscle Metabolism. Front Physiol 2016; 6:401. [PMID: 26779032 PMCID: PMC4701911 DOI: 10.3389/fphys.2015.00401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022] Open
Abstract
In utero undernutrition is associated with increased risk for insulin resistance, obesity, and cardiovascular disease during adult life. A common phenotype associated with low birth weight is reduced skeletal muscle mass. Given the central role of skeletal muscle in whole body metabolism, alterations in its mass as well as its metabolic characteristics may contribute to disease risk. This review highlights the metabolic alterations in cardiac and skeletal muscle associated with in utero undernutrition and low birth weight. These tissues have high metabolic demands and are known to be sites of major metabolic dysfunction in obesity, type 2 diabetes, and cardiovascular disease. Recent research demonstrates that mitochondrial energetics are decreased in skeletal and cardiac muscles of adult offspring from undernourished mothers. These effects apparently lead to the development of a thrifty phenotype, which may represent overall a compensatory mechanism programmed in utero to handle times of limited nutrient availability. However, in an environment characterized by food abundance, the effects are maladaptive and increase adulthood risks of metabolic disease.
Collapse
Affiliation(s)
- Brittany Beauchamp
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa Ottawa, ON, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
54
|
Yasuda H, Mizukami K, Hayashi M, Kamiya T, Hara H, Adachi T. Exendin-4 promotes extracellular-superoxide dismutase expression in A549 cells through DNA demethylation. J Clin Biochem Nutr 2015; 58:34-9. [PMID: 26798195 PMCID: PMC4706090 DOI: 10.3164/jcbn.15-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
Exendin-4 is an agonist of the glucagon-like peptide 1 receptor (GLP-1R) and is used in the treatment of type 2 diabetes. Since human GLP-1R has been identified in various cells besides pancreatic cells, exendin-4 is expected to exert extrapancreatic actions. It has also been suggested to affect gene expression through epigenetic regulation, such as DNA methylation and/or histone modifications. Furthermore, the expression of extracellular-superoxide dismutase (EC-SOD), a major SOD isozyme that is crucially involved in redox homeostasis, is regulated by epigenetic factors. In the present study, we demonstrated that exendin-4 induced the demethylation of DNA in A549 cells, which, in turn, affected the expression of EC-SOD. Our results showed that the treatment with exendin-4 up-regulated the expression of EC-SOD through GLP-1R and demethylated some methyl-CpG sites (methylated cytosine at 5'-CG-3') in the EC-SOD gene. Moreover, the treatment with exendin-4 inactivated DNA methyltransferases (DNMTs), but did not change their expression levels. In conclusion, the results of the present study demonstrated for the first time that exendin-4 regulated the expression of EC-SOD by reducing the activity of DNMTs and demethylation of DNA within the EC-SOD promoter region in A549 cells.
Collapse
Affiliation(s)
- Hiroyuki Yasuda
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Koji Mizukami
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Mutsuna Hayashi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
55
|
Reynolds CM, Gray C, Li M, Segovia SA, Vickers MH. Early Life Nutrition and Energy Balance Disorders in Offspring in Later Life. Nutrients 2015; 7:8090-111. [PMID: 26402696 PMCID: PMC4586579 DOI: 10.3390/nu7095384] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/31/2015] [Accepted: 09/11/2015] [Indexed: 02/07/2023] Open
Abstract
The global pandemic of obesity and type 2 diabetes is often causally linked to changes in diet and lifestyle; namely increased intake of calorically dense foods and concomitant reductions in physical activity. Epidemiological studies in humans and controlled animal intervention studies have now shown that nutritional programming in early periods of life is a phenomenon that affects metabolic and physiological functions throughout life. This link is conceptualised as the developmental programming hypothesis whereby environmental influences during critical periods of developmental plasticity can elicit lifelong effects on the health and well-being of the offspring. The mechanisms by which early environmental insults can have long-term effects on offspring remain poorly defined. However there is evidence from intervention studies which indicate altered wiring of the hypothalamic circuits that regulate energy balance and epigenetic effects including altered DNA methylation of key adipokines including leptin. Studies that elucidate the mechanisms behind these associations will have a positive impact on the health of future populations and adopting a life course perspective will allow identification of phenotype and markers of risk earlier, with the possibility of nutritional and other lifestyle interventions that have obvious implications for prevention of non-communicable diseases.
Collapse
Affiliation(s)
- Clare M Reynolds
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand.
| | - Clint Gray
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand.
| | - Minglan Li
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand.
| | - Stephanie A Segovia
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand.
| | - Mark H Vickers
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
56
|
Liu H, Schultz CG, De Blasio MJ, Peura AM, Heinemann GK, Harryanto H, Hunter DS, Wooldridge AL, Kind KL, Giles LC, Simmons RA, Owens JA, Gatford KL. Effect of placental restriction and neonatal exendin-4 treatment on postnatal growth, adult body composition, and in vivo glucose metabolism in the sheep. Am J Physiol Endocrinol Metab 2015. [PMID: 26219868 PMCID: PMC4631533 DOI: 10.1152/ajpendo.00487.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Intrauterine growth restriction (IUGR) increases the risk of adult type 2 diabetes (T2D) and obesity. Neonatal exendin-4 treatment can prevent diabetes in the IUGR rat, but whether this will be effective in a species where the pancreas is more mature at birth is unknown. Therefore, we evaluated the effects of neonatal exendin-4 administration after experimental restriction of placental and fetal growth on growth and adult metabolic outcomes in sheep. Body composition, glucose tolerance, and insulin secretion and sensitivity were assessed in singleton-born adult sheep from control (CON; n = 6 females and 4 males) and placentally restricted pregnancies (PR; n = 13 females and 7 males) and in sheep from PR pregnancies that were treated with exendin-4 as neonates (daily sc injections of 1 nmol/kg exendin-4; PR + exendin-4; n = 11 females and 7 males). Placental restriction reduced birth weight (by 29%) and impaired glucose tolerance in the adult but did not affect adult adiposity, insulin secretion, or insulin sensitivity. Neonatal exendin-4 suppressed growth during treatment, followed by delayed catchup growth and unchanged adult adiposity. Neonatal exendin-4 partially restored glucose tolerance in PR progeny but did not affect insulin secretion or sensitivity. Although the effects on glucose tolerance are promising, the lack of effects on adult body composition, insulin secretion, and insulin sensitivity suggest that the neonatal period may be too late to fully reprogram the metabolic consequences of IUGR in species that are more mature at birth than rodents.
Collapse
Affiliation(s)
- Hong Liu
- Robinson Research Institute and School of Paediatrics and Reproductive Health
| | - Christopher G Schultz
- Department of Nuclear Medicine, PET and Bone Densitometry, Royal Adelaide Hospital, Adelaide, South Australia, Australia; and
| | - Miles J De Blasio
- Robinson Research Institute and School of Paediatrics and Reproductive Health
| | - Anita M Peura
- Robinson Research Institute and School of Paediatrics and Reproductive Health
| | - Gary K Heinemann
- Robinson Research Institute and School of Paediatrics and Reproductive Health
| | - Himawan Harryanto
- Robinson Research Institute and School of Paediatrics and Reproductive Health
| | - Damien S Hunter
- Robinson Research Institute and School of Paediatrics and Reproductive Health, School of Animal and Veterinary Sciences, and
| | - Amy L Wooldridge
- Robinson Research Institute and School of Paediatrics and Reproductive Health
| | - Karen L Kind
- Robinson Research Institute and School of Animal and Veterinary Sciences, and
| | - Lynne C Giles
- School of Population Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Rebecca A Simmons
- University of Pennsylvania Medical School, Philadelphia, Pennsylvania
| | - Julie A Owens
- Robinson Research Institute and School of Paediatrics and Reproductive Health
| | - Kathryn L Gatford
- Robinson Research Institute and School of Paediatrics and Reproductive Health,
| |
Collapse
|
57
|
Yu T, Qing Q, Deng N, Min XH, Zhao LN, Li JY, Xia ZS, Chen QK. CXCR4 positive cell-derived Pdx1-high/Shh-low cells originated from embryonic stem cells improve the repair of pancreatic injury in mice. Cell Biol Int 2015; 39:995-1006. [PMID: 25820869 DOI: 10.1002/cbin.10470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/14/2015] [Accepted: 03/18/2015] [Indexed: 01/05/2023]
Abstract
Treatments for pancreatic injuries have been significantly improved recently, but full recovery of pancreatic function remains difficult. Embryonic stem cells have great potentialities for self-renewal and multiple differentiations. In this study, we explored an approach to induce the differentiation of pancreatic progenitor cells from embryonic stem cells in vitro. Male mouse embryonic stem cells were cultured by the hanging-drop method to form embryoid bodies. The definitive endoderm marked by CXCR4 in embryoid bodies was sorted by magnetic activated cell sorting and subsequently administrated with b-FGF, exendin-4, and cyclopamine to induce the differentiation of putative pancreatic progenitor cells, which was monitored by Pdx1, and Shh expressions. The putative pancreatic progenitor cells were transplanted into female BALB/c mice with pancreatitis induced by L-Arginine. Male donor cells were located by detecting sex-determining region of Y-chromosome DNA. Definitive endoderm cells (CXCR4(+) cells) were sorted from 5-day embryoid bodies. After 3-day administration with b-FGF, exendin-4, and cyclopamine, Pdx1-high/Shh-low cells were differentiated from CXCR4(+) cells. These cells developed into more amylase-secreted cells in vitro and could specifically reside in the damaged pancreas acinar area in mice with acute pancreatitis to enhance the regeneration. The putative pancreatic progenitor cells (Pdx1-high/Shh-low cells) derived from mouse embryonic stem cells through the administration of b-FGF, exendin-4, and cyclopamine on the CXCR4(+) cells in vitro could improve the regeneration of injured pancreatic acini in vivo.
Collapse
Affiliation(s)
- Tao Yu
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qing Qing
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Na Deng
- Department of Gastroenterology, Yuebei People's Hospital, Shaoguan, Guangdong, People's Republic of China
| | - Xiao-Hui Min
- Department of Infectious Disease, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Li-Na Zhao
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jie-Yao Li
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhong-Sheng Xia
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qi-Kui Chen
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
58
|
Dayeh T, Ling C. Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes? Biochem Cell Biol 2015; 93:511-21. [PMID: 26369706 DOI: 10.1139/bcb-2015-0057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
β cell dysfunction is central to the development and progression of type 2 diabetes (T2D). T2D develops when β cells are not able to compensate for the increasing demand for insulin caused by insulin resistance. Epigenetic modifications play an important role in establishing and maintaining β cell identity and function in physiological conditions. On the other hand, epigenetic dysregulation can cause a loss of β cell identity, which is characterized by reduced expression of genes that are important for β cell function, ectopic expression of genes that are not supposed to be expressed in β cells, and loss of genetic imprinting. Consequently, this may lead to β cell dysfunction and impaired insulin secretion. Risk factors that can cause epigenetic dysregulation include parental obesity, an adverse intrauterine environment, hyperglycemia, lipotoxicity, aging, physical inactivity, and mitochondrial dysfunction. These risk factors can affect the epigenome at different time points throughout the lifetime of an individual and even before an individual is conceived. The plasticity of the epigenome enables it to change in response to environmental factors such as diet and exercise, and also makes the epigenome a good target for epigenetic drugs that may be used to enhance insulin secretion and potentially treat diabetes.
Collapse
Affiliation(s)
- Tasnim Dayeh
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden.,Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden.,Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden
| |
Collapse
|
59
|
Mathiyalagan P, Keating ST, Al-Hasani K, El-Osta A. Epigenetic-mediated reprogramming of pancreatic endocrine cells. Antioxid Redox Signal 2015; 22:1483-95. [PMID: 25621632 DOI: 10.1089/ars.2014.6103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Type 1 diabetes (T1D) results from cell-mediated autoimmune destruction of insulin-secreting pancreatic beta cells (β-cells). In the context of T1D, the scarcity of organ donors has driven research to alternate sources of functionally competent, insulin-secreting β-cells as substitute for donor islets to meet the clinical need for transplantation therapy. RECENT ADVANCES Experimental evidence of an inherent plasticity of pancreatic cells has fuelled interest in in vivo regeneration of β-cells. Transcriptional modulation and direct reprogramming of noninsulin secreting pancreatic α-cells to functionally mimic insulin-secreting β-cells is one of the promising avenues to the treatment of diabetes. Recent studies now show that adult progenitor and glucagon(+) α-cells can be converted into β-like cells in vivo, as a result of specific activation of the Pax4 gene in α-cells and curing diabetes in preclinical models. CRITICAL ISSUES The challenge now is to understand the precise developmental transitions mediated by endocrine transcription factors and co-regulatory determinants responsible for pancreatic function and repair. FUTURE DIRECTIONS Epigenetic-mediated regulation of transcription factor binding in pancreatic α-cells by specific drugs to direct reprogramming into functional insulin producing cells could be of potential innovative therapy for the treatment of T1D.
Collapse
Affiliation(s)
- Prabhu Mathiyalagan
- 1 Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct , Melbourne, Australia
| | | | | | | |
Collapse
|
60
|
Rando OJ, Simmons RA. I'm eating for two: parental dietary effects on offspring metabolism. Cell 2015; 161:93-105. [PMID: 25815988 PMCID: PMC4465102 DOI: 10.1016/j.cell.2015.02.021] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/22/2015] [Accepted: 02/06/2015] [Indexed: 12/18/2022]
Abstract
It has long been understood that the pathogenesis of complex diseases such as diabetes includes both genetic and environmental components. More recently, it has become clear that not only does an individual's environment influence their own metabolism, but in some cases, the environment experienced by their parents may also contribute to their risk of metabolic disease. Here, we review the evidence that parental diet influences metabolic phenotype in offspring in mammals and provide a current survey of our mechanistic understanding of these effects.
Collapse
Affiliation(s)
- Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Rebecca A Simmons
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
61
|
Translational implications of the β-cell epigenome in diabetes mellitus. Transl Res 2015; 165:91-101. [PMID: 24686035 PMCID: PMC4162854 DOI: 10.1016/j.trsl.2014.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a disorder of glucose homeostasis that affects more than 24 million Americans and 382 million individuals worldwide. Dysregulated insulin secretion from the pancreatic β cells plays a central role in the pathophysiology of all forms of diabetes mellitus. Therefore, an enhanced understanding of the pathways that contribute to β-cell failure is imperative. Epigenetics refers to heritable changes in DNA transcription that occur in the absence of changes to the linear DNA nucleotide sequence. Recent evidence suggests an expanding role of the β-cell epigenome in the regulation of metabolic health. The goal of this review is to discuss maladaptive changes in β-cell DNA methylation patterns and chromatin architecture, and their contribution to diabetes pathophysiology. Efforts to modulate the β-cell epigenome as a means to prevent, diagnose, and treat diabetes are also discussed.
Collapse
|
62
|
De Jesus DF, Kulkarni RN. Epigenetic modifiers of islet function and mass. Trends Endocrinol Metab 2014; 25:628-36. [PMID: 25246382 DOI: 10.1016/j.tem.2014.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/28/2023]
Abstract
Type 2 diabetes (T2D) is associated with insulin resistance in target tissues including the β-cell, leading to significant β-cell loss and secretory dysfunction. T2D is also associated with aging, and the underlying mechanisms that increase susceptibility of an individual to develop the disease implicate epigenetics: interactions between susceptible loci and the environment. In this review, we discuss the effects of aging on β-cell function and adaptation, besides the significance of mitochondria in islet bioenergetics and epigenome. We highlight three important modulators of the islet epigenome, namely: metabolites, hormones, and the nutritional state. Unraveling the signaling pathways that regulate the islet epigenome during aging will help to better understand the development of disease progression and to design novel therapies for diabetes prevention.
Collapse
Affiliation(s)
- Dario F De Jesus
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Graduate Program in Areas of Basic and Applied Biology (GABBA), Abdel Salazar Biomedical Sciences Institute, University of Porto, 5000 Porto, Portugal
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
63
|
Kahraman S, Dirice E, De Jesus DF, Hu J, Kulkarni RN. Maternal insulin resistance and transient hyperglycemia impact the metabolic and endocrine phenotypes of offspring. Am J Physiol Endocrinol Metab 2014; 307:E906-18. [PMID: 25249504 PMCID: PMC4233258 DOI: 10.1152/ajpendo.00210.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies in both humans and rodents suggest that maternal diabetes leads to a higher risk of the fetus developing impaired glucose tolerance and obesity during adulthood. However, the impact of hyperinsulinemia in the mother on glucose homeostasis in the offspring has not been fully explored. We aimed to determine the consequences of maternal insulin resistance on offspring metabolism and endocrine pancreas development using the LIRKO mouse model, which exhibits sustained hyperinsulinemia and transient increase in blood glucose concentrations during pregnancy. We examined control offspring born to either LIRKO or control mothers on embryonic days 13.5, 15.5, and 17.5 and postpartum days 0, 4, and 10. Control offspring born to LIRKO mothers displayed low birth weights and subsequently rapidly gained weight, and their blood glucose and plasma insulin concentrations were higher than offspring born to control mothers in early postnatal life. In addition, concentrations of plasma leptin, glucagon, and active GLP-1 were higher in control pups from LIRKO mothers. Analyses of the endocrine pancreas revealed significantly reduced β-cell area in control offspring of LIRKO mothers shortly after birth. β-Cell proliferation and total islet number were also lower in control offspring of LIRKO mothers during early postnatal days. Together, these data indicate that maternal hyperinsulinemia and the transient hyperglycemia impair endocrine pancreas development in the control offspring and induce multiple metabolic alterations in early postnatal life. The relatively smaller β-cell mass/area and β-cell proliferation in these control offspring suggest cell-autonomous epigenetic mechanisms in the regulation of islet growth and development.
Collapse
Affiliation(s)
- Sevim Kahraman
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ercument Dirice
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Dario F De Jesus
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jiang Hu
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
64
|
Mammalian Non-CpG Methylation: Stem Cells and Beyond. BIOLOGY 2014; 3:739-51. [PMID: 25393317 PMCID: PMC4280509 DOI: 10.3390/biology3040739] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 12/29/2022]
Abstract
Although CpG dinucleotides remain the primary site for DNA methylation in mammals, there is emerging evidence that DNA methylation at non-CpG sites (CpA, CpT and CpC) is not only present in mammalian cells, but may play a unique role in the regulation of gene expression. For some time it has been known that non-CpG methylation is abundant in plants and present in mammalian embryonic stem cells, but non-CpG methylation was thought to be lost upon cell differentiation. However, recent publications have described a role for non-CpG methylation in adult mammalian somatic cells including the adult mammalian brain, skeletal muscle, and hematopoietic cells and new interest in this field has been stimulated by the availability of high throughput sequencing techniques that can accurately measure this epigenetic modification. Genome wide assays indicate that non-CpG methylation is negligible in human fetal brain, but abundant in human adult brain tissue. Genome wide measurement of non-CpG methylation coupled with RNA-Sequencing indicates that in the human adult brain non-CpG methylation levels are inversely proportional to the abundance of mRNA transcript at the associated gene. Additionally specific examples where alterations in non-CpG methylation lead to changes in gene expression have been described; in PGC1α in human skeletal muscle, IFN-γ in human T-cells and SYT11 in human brain, all of which contribute to the development of human disease.
Collapse
|
65
|
Hanson MA, Gluckman PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev 2014; 94:1027-76. [PMID: 25287859 PMCID: PMC4187033 DOI: 10.1152/physrev.00029.2013] [Citation(s) in RCA: 763] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Extensive experimental animal studies and epidemiological observations have shown that environmental influences during early development affect the risk of later pathophysiological processes associated with chronic, especially noncommunicable, disease (NCD). This field is recognized as the developmental origins of health and disease (DOHaD). We discuss the extent to which DOHaD represents the result of the physiological processes of developmental plasticity, which may have potential adverse consequences in terms of NCD risk later, or whether it is the manifestation of pathophysiological processes acting in early life but only becoming apparent as disease later. We argue that the evidence suggests the former, through the operation of conditioning processes induced across the normal range of developmental environments, and we summarize current knowledge of the physiological processes involved. The adaptive pathway to later risk accords with current concepts in evolutionary developmental biology, especially those concerning parental effects. Outside the normal range, effects on development can result in nonadaptive processes, and we review their underlying mechanisms and consequences. New concepts concerning the underlying epigenetic and other mechanisms involved in both disruptive and nondisruptive pathways to disease are reviewed, including the evidence for transgenerational passage of risk from both maternal and paternal lines. These concepts have wider implications for understanding the causes and possible prevention of NCDs such as type 2 diabetes and cardiovascular disease, for broader social policy and for the increasing attention paid in public health to the lifecourse approach to NCD prevention.
Collapse
Affiliation(s)
- M A Hanson
- Academic Unit of Human Development and Health, University of Southampton, and NIHR Nutrition Biomedical Research Centre, University Hospital, Southampton, United Kingdom; and Liggins Institute and Gravida (National Centre for Growth and Development), University of Auckland, Auckland, New Zealand
| | - P D Gluckman
- Academic Unit of Human Development and Health, University of Southampton, and NIHR Nutrition Biomedical Research Centre, University Hospital, Southampton, United Kingdom; and Liggins Institute and Gravida (National Centre for Growth and Development), University of Auckland, Auckland, New Zealand
| |
Collapse
|
66
|
Pdx1 and USF transcription factors co-ordinately regulate Alx3 gene expression in pancreatic β-cells. Biochem J 2014; 463:287-96. [DOI: 10.1042/bj20140643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated the transcriptional mechanisms regulating the expression of Alx3 in pancreatic islets. We found that the transcriptional transactivation of Alx3 in β-cells requires the co-operation of the islet-specific homeoprotein Pdx1 with the transcription factors USF1 and USF2.
Collapse
|
67
|
Pereyra-Bonnet F, Gimeno ML, Argumedo NR, Ielpi M, Cardozo JA, Giménez CA, Hyon SH, Balzaretti M, Loresi M, Fainstein-Day P, Litwak LE, Argibay PF. Skin fibroblasts from patients with type 1 diabetes (T1D) can be chemically transdifferentiated into insulin-expressing clusters: a transgene-free approach. PLoS One 2014; 9:e100369. [PMID: 24963634 PMCID: PMC4070975 DOI: 10.1371/journal.pone.0100369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/27/2014] [Indexed: 01/18/2023] Open
Abstract
The conversion of differentiated cells into insulin-producing cells is a promising approach for the autologous replacement of pancreatic cells in patients with type 1 diabetes (T1D). At present, cellular reprogramming strategies encompass ethical problems, epigenetic failure or teratoma formation, which has prompted the development of new approaches. Here, we report a novel technique for the conversion of skin fibroblasts from T1D patients into insulin-expressing clusters using only drug-based induction. Our results demonstrate that skin fibroblasts from diabetic patients have pancreatic differentiation capacities and avoid the necessity of using transgenic strategies, stem cell sources or global demethylation steps. These findings open new possibilities for studying diabetes mechanisms, drug screenings and ultimately autologous transgenic-free regenerative medicine therapies in patients with T1D.
Collapse
Affiliation(s)
- Federico Pereyra-Bonnet
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
- * E-mail:
| | - María L. Gimeno
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Nelson R. Argumedo
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Marcelo Ielpi
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Johana A. Cardozo
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Carla A. Giménez
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Sung-Ho Hyon
- General Surgery Service, HIBA, Buenos Aires, Argentina
| | - Marta Balzaretti
- Endocrinology and Nuclear Medicine Service, HIBA, Buenos Aires, Argentina
| | - Mónica Loresi
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | | | - León E. Litwak
- Endocrinology and Nuclear Medicine Service, HIBA, Buenos Aires, Argentina
| | - Pablo F. Argibay
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| |
Collapse
|
68
|
Hall E, Volkov P, Dayeh T, Bacos K, Rönn T, Nitert MD, Ling C. Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. BMC Med 2014; 12:103. [PMID: 24953961 PMCID: PMC4065864 DOI: 10.1186/1741-7015-12-103] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/25/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Circulating free fatty acids are often elevated in patients with type 2 diabetes (T2D) and obese individuals. Chronic exposure to high levels of saturated fatty acids has detrimental effects on islet function and insulin secretion. Altered gene expression and epigenetics may contribute to T2D and obesity. However, there is limited information on whether fatty acids alter the genome-wide transcriptome profile in conjunction with DNA methylation patterns in human pancreatic islets. To dissect the molecular mechanisms linking lipotoxicity to impaired insulin secretion, we investigated the effects of a 48 h palmitate treatment in vitro on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. METHODS Genome-wide mRNA expression was analyzed using Affymetrix GeneChip(®) Human Gene 1.0 ST whole transcript-based array (n = 13) and genome-wide DNA methylation was analyzed using Infinium HumanMethylation450K BeadChip (n = 13) in human pancreatic islets exposed to palmitate or control media for 48 h. A non-parametric paired Wilcoxon statistical test was used to analyze mRNA expression. Apoptosis was measured using Apo-ONE(®) Homogeneous Caspase-3/7 Assay (n = 4). RESULTS While glucose-stimulated insulin secretion was decreased, there was no significant effect on apoptosis in human islets exposed to palmitate. We identified 1,860 differentially expressed genes in palmitate-treated human islets. These include candidate genes for T2D, such as TCF7L2, GLIS3, HNF1B and SLC30A8. Additionally, genes in glycolysis/gluconeogenesis, pyruvate metabolism, fatty acid metabolism, glutathione metabolism and one carbon pool by folate were differentially expressed in palmitate-treated human islets. Palmitate treatment altered the global DNA methylation level and DNA methylation levels of CpG island shelves and shores, 5'UTR, 3'UTR and gene body regions in human islets. Moreover, 290 genes with differential expression had a corresponding change in DNA methylation, for example, TCF7L2 and GLIS3. Importantly, out of the genes differentially expressed due to palmitate treatment in human islets, 67 were also associated with BMI and 37 were differentially expressed in islets from T2D patients. CONCLUSION Our study demonstrates that palmitate treatment of human pancreatic islets gives rise to epigenetic modifications that together with altered gene expression may contribute to impaired insulin secretion and T2D.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, CRC, Lund University, Scania University Hospital, Malmö, Sweden.
| |
Collapse
|
69
|
Vickers MH. Early life nutrition, epigenetics and programming of later life disease. Nutrients 2014; 6:2165-78. [PMID: 24892374 PMCID: PMC4073141 DOI: 10.3390/nu6062165] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/21/2014] [Accepted: 05/19/2014] [Indexed: 12/13/2022] Open
Abstract
The global pandemic of obesity and type 2 diabetes is often causally linked to marked changes in diet and lifestyle; namely marked increases in dietary intakes of high energy diets and concomitant reductions in physical activity levels. However, less attention has been paid to the role of developmental plasticity and alterations in phenotypic outcomes resulting from altered environmental conditions during the early life period. Human and experimental animal studies have highlighted the link between alterations in the early life environment and increased risk of obesity and metabolic disorders in later life. This link is conceptualised as the developmental programming hypothesis whereby environmental influences during critical periods of developmental plasticity can elicit lifelong effects on the health and well-being of the offspring. In particular, the nutritional environment in which the fetus or infant develops influences the risk of metabolic disorders in offspring. The late onset of such diseases in response to earlier transient experiences has led to the suggestion that developmental programming may have an epigenetic component, as epigenetic marks such as DNA methylation or histone tail modifications could provide a persistent memory of earlier nutritional states. Moreover, evidence exists, at least from animal models, that such epigenetic programming should be viewed as a transgenerational phenomenon. However, the mechanisms by which early environmental insults can have long-term effects on offspring are relatively unclear. Thus far, these mechanisms include permanent structural changes to the organ caused by suboptimal levels of an important factor during a critical developmental period, changes in gene expression caused by epigenetic modifications (including DNA methylation, histone modification, and microRNA) and permanent changes in cellular ageing. A better understanding of the epigenetic basis of developmental programming and how these effects may be transmitted across generations is essential for the implementation of initiatives aimed at curbing the current obesity and diabetes crisis.
Collapse
Affiliation(s)
- Mark H Vickers
- Liggins Institute and Gravida, National Centre for Growth and Development, University of Auckland, 85 Park Road, Grafton, Auckland 1142, New Zealand.
| |
Collapse
|
70
|
Gao Q, Tang J, Chen J, Jiang L, Zhu X, Xu Z. Epigenetic code and potential epigenetic-based therapies against chronic diseases in developmental origins. Drug Discov Today 2014; 19:1744-1750. [PMID: 24880107 DOI: 10.1016/j.drudis.2014.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/05/2014] [Accepted: 05/07/2014] [Indexed: 12/14/2022]
Abstract
Accumulated findings have demonstrated that the epigenetic code provides a potential link between prenatal stress and changes in gene expression that could be involved in the developmental programming of various chronic diseases in later life. Meanwhile, based on the fact that epigenetic modifications are reversible and can be manipulated, this provides a unique chance to develop multiple novel epigenetic-based therapeutic strategies against many chronic diseases in early developmental periods. This article will give a short review of recent findings of prenatal insult-induced epigenetic changes in developmental origins of several chronic diseases, and will attempt to provide an overview of the current epigenetic-based strategies applied in the early prevention, diagnosis and possible therapies for human chronic diseases.
Collapse
Affiliation(s)
- Qinqin Gao
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China
| | - Jiaqi Tang
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China
| | - Jie Chen
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China
| | - Lin Jiang
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China
| | - Xiaolin Zhu
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China
| | - Zhice Xu
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China; Center for Prenatal Biology, Loma Linda University, CA 92350, USA.
| |
Collapse
|
71
|
Heerboth S, Lapinska K, Snyder N, Leary M, Rollinson S, Sarkar S. Use of epigenetic drugs in disease: an overview. GENETICS & EPIGENETICS 2014; 6:9-19. [PMID: 25512710 PMCID: PMC4251063 DOI: 10.4137/geg.s12270] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/16/2014] [Accepted: 04/22/2014] [Indexed: 11/26/2022]
Abstract
Epigenetic changes such as DNA methylation and histone methylation and acetylation alter gene expression at the level of transcription by upregulating, downregulating, or silencing genes completely. Dysregulation of epigenetic events can be pathological, leading to cardiovascular disease, neurological disorders, metabolic disorders, and cancer development. Therefore, identifying drugs that inhibit these epigenetic changes are of great clinical interest. In this review, we summarize the epigenetic events associated with different disorders and diseases including cardiovascular, neurological, and metabolic disorders, and cancer. Knowledge of the specific epigenetic changes associated with these types of diseases facilitates the development of specific inhibitors, which can be used as epigenetic drugs. In this review, we discuss the major classes of epigenetic drugs currently in use, such as DNA methylation inhibiting drugs, bromodomain inhibitors, histone acetyl transferase inhibitors, histone deacetylase inhibitors, protein methyltransferase inhibitors, and histone methylation inhibitors and their role in reversing epigenetic changes and treating disease.
Collapse
Affiliation(s)
- Sarah Heerboth
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Karolina Lapinska
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nicole Snyder
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Meghan Leary
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sarah Rollinson
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sibaji Sarkar
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
72
|
Sterns JD, Smith CB, Steele JR, Stevenson KL, Gallicano GI. Epigenetics and type II diabetes mellitus: underlying mechanisms of prenatal predisposition. Front Cell Dev Biol 2014; 2:15. [PMID: 25364722 PMCID: PMC4207047 DOI: 10.3389/fcell.2014.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/12/2014] [Indexed: 11/13/2022] Open
Abstract
Type II diabetes mellitus (T2DM) is a widespread metabolic disorder characterized by insulin resistance precipitating abnormally high blood glucose levels. While the onset of T2DM is known to be the consequence of a multifactorial interplay with a strong genetic component, emerging research has demonstrated the additional role of a variety of epigenetic mechanisms in the development of this disorder. Heritable epigenetic modifications, such as DNA methylation and histone modifications, play a vital role in many important cellular processes, including pancreatic cellular differentiation and maintenance of normal β-cell function. Recent studies have found possible epigenetic mechanisms to explain observed risk factors, such as altered atherogenic lipid profiles, elevated body mass index (BMI), and impaired glucose tolerance (IGT), for later development of T2DM in children born to mothers experiencing both famine and hyperglycemic conditions. It is suggested that these epigenetic influences happen early during gestation and are less susceptible to the effects of postnatal environmental modification as was previously thought, highlighting the importance of early preventative measures in minimizing the global burden of T2DM.
Collapse
Affiliation(s)
- J David Sterns
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine Washington, DC, USA
| | - Colin B Smith
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine Washington, DC, USA
| | - John R Steele
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine Washington, DC, USA
| | - Kimberly L Stevenson
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine Washington, DC, USA
| | - G Ian Gallicano
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine Washington, DC, USA
| |
Collapse
|
73
|
An evolving scientific basis for the prevention and treatment of pediatric obesity. Int J Obes (Lond) 2014; 38:887-905. [PMID: 24662696 DOI: 10.1038/ijo.2014.49] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/10/2014] [Indexed: 12/11/2022]
Abstract
The 2013 Pennington Biomedical Research Center's Scientific Symposium focused on the treatment and management of pediatric obesity and was designed to (i) review recent scientific advances in the prevention, clinical treatment and management of pediatric obesity, (ii) integrate the latest published and unpublished findings and (iii) explore how these advances can be integrated into clinical and public health approaches. The symposium provided an overview of important new advances in the field, which led to several recommendations for incorporating the scientific evidence into practice. The science presented covered a range of topics related to pediatric obesity, including the role of genetic differences, epigenetic events influenced by in utero development, pre-pregnancy maternal obesity status, maternal nutrition and maternal weight gain on developmental programming of adiposity in offspring. Finally, the relative merits of a range of various behavioral approaches targeted at pediatric obesity were covered, together with the specific roles of pharmacotherapy and bariatric surgery in pediatric populations. In summary, pediatric obesity is a very challenging problem that is unprecedented in evolutionary terms; one which has the capacity to negate many of the health benefits that have contributed to the increased longevity observed in the developed world.
Collapse
|
74
|
Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 2014; 10:e1004160. [PMID: 24603685 PMCID: PMC3945174 DOI: 10.1371/journal.pgen.1004160] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 12/20/2013] [Indexed: 01/09/2023] Open
Abstract
Impaired insulin secretion is a hallmark of type 2 diabetes (T2D). Epigenetics may affect disease susceptibility. To describe the human methylome in pancreatic islets and determine the epigenetic basis of T2D, we analyzed DNA methylation of 479,927 CpG sites and the transcriptome in pancreatic islets from T2D and non-diabetic donors. We provide a detailed map of the global DNA methylation pattern in human islets, β- and α-cells. Genomic regions close to the transcription start site showed low degrees of methylation and regions further away from the transcription start site such as the gene body, 3'UTR and intergenic regions showed a higher degree of methylation. While CpG islands were hypomethylated, the surrounding 2 kb shores showed an intermediate degree of methylation, whereas regions further away (shelves and open sea) were hypermethylated in human islets, β- and α-cells. We identified 1,649 CpG sites and 853 genes, including TCF7L2, FTO and KCNQ1, with differential DNA methylation in T2D islets after correction for multiple testing. The majority of the differentially methylated CpG sites had an intermediate degree of methylation and were underrepresented in CpG islands (∼ 7%) and overrepresented in the open sea (∼ 60%). 102 of the differentially methylated genes, including CDKN1A, PDE7B, SEPT9 and EXOC3L2, were differentially expressed in T2D islets. Methylation of CDKN1A and PDE7B promoters in vitro suppressed their transcriptional activity. Functional analyses demonstrated that identified candidate genes affect pancreatic β- and α-cells as Exoc3l silencing reduced exocytosis and overexpression of Cdkn1a, Pde7b and Sept9 perturbed insulin and glucagon secretion in clonal β- and α-cells, respectively. Together, our data can serve as a reference methylome in human islets. We provide new target genes with altered DNA methylation and expression in human T2D islets that contribute to perturbed insulin and glucagon secretion. These results highlight the importance of epigenetics in the pathogenesis of T2D.
Collapse
|
75
|
Waldman LA, Chia DJ. Towards identification of molecular mechanisms of short stature. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2013; 2013:19. [PMID: 24257104 PMCID: PMC3835394 DOI: 10.1186/1687-9856-2013-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/08/2013] [Indexed: 12/02/2022]
Abstract
Growth evaluations are among the most common referrals to pediatric endocrinologists. Although a number of pathologies, both primary endocrine and non-endocrine, can present with short stature, an estimated 80% of evaluations fail to identify a clear etiology, leaving a default designation of idiopathic short stature (ISS). As a group, several features among children with ISS are suggestive of pathophysiology of the GH–IGF-1 axis, including low serum levels of IGF-1 despite normal GH secretion. Candidate gene analysis of rare cases has demonstrated that severe mutations of genes of the GH–IGF-1 axis can present with a profound height phenotype, leading to speculation that a collection of mild mutations or polymorphisms of these genes can explain poor growth in a larger proportion of patients. Recent genome-wide association studies have identified ~180 genomic loci associated with height that together account for approximately 10% of height variation. With only modest representation of the GH–IGF-1 axis, there is little support for the long-held hypothesis that common genetic variants of the hormone pathway provide the molecular mechanism for poor growth in a substantial proportion of individuals. The height-associated common variants are not observed in the anticipated frequency in the shortest individuals, suggesting rare genetic factors with large effect are more plausible in this group. As we advance towards establishing a molecular mechanism for poor growth in a greater percentage of those currently labeled ISS, we highlight two strategies that will likely be offered with increasing frequency: (1) unbiased genetic technologies including array analysis for copy number variation and whole exome/genome sequencing and (2) epigenetic alterations of key genomic loci. Ultimately data from subsets with similar molecular etiologies may emerge that will allow tailored interventions to achieve the best clinical outcome.
Collapse
Affiliation(s)
- Lindsey A Waldman
- Institutional addresses: Division of Pediatric Endocrinology & Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L, Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|
76
|
Portha B, Fournier A, Kioon MDA, Mezger V, Movassat J. Early environmental factors, alteration of epigenetic marks and metabolic disease susceptibility. Biochimie 2013; 97:1-15. [PMID: 24139903 DOI: 10.1016/j.biochi.2013.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/07/2013] [Indexed: 12/11/2022]
Abstract
The environmental conditions that are experienced in early life can profoundly influence human biology and long-term health. Early-life nutrition and stress are among the best documented examples of such conditions because they influence the adult risk of developing metabolic diseases, such as type 2 diabetes mellitus (T2D) and cardiovascular diseases. It is now becoming increasingly accepted that environmental compounds including nutrients can produce changes in the genome activity that in spite of not altering DNA sequence can produce important, stable and transgenerational alterations in the phenotype. Epigenetic changes, in particular DNA methylation and histone acetylation/methylation, provide a 'memory' of developmental plastic responses to early environment and are central to the generation of phenotypes and their stability throughout the life course. Their effects may only become manifest later in life, e.g. in terms of altered responses to environmental challenges.
Collapse
Affiliation(s)
- B Portha
- Université Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), CNRS EAC 4413, Bâtiment BUFFON, 5ème étage, 4 Rue Lagroua Weill Hallé, Case 7126, F-75205 Paris Cedex 13, France.
| | - A Fournier
- Univ ParisDiderot, Sorbonne-Paris-Cité, Unité EDC (Epigénétique et Destin Cellulaire), CNRS UMR7216, F-75205 Paris Cedex 13, Paris, France
| | - M D Ah Kioon
- Université Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), CNRS EAC 4413, Bâtiment BUFFON, 5ème étage, 4 Rue Lagroua Weill Hallé, Case 7126, F-75205 Paris Cedex 13, France
| | - V Mezger
- Univ ParisDiderot, Sorbonne-Paris-Cité, Unité EDC (Epigénétique et Destin Cellulaire), CNRS UMR7216, F-75205 Paris Cedex 13, Paris, France
| | - J Movassat
- Université Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), CNRS EAC 4413, Bâtiment BUFFON, 5ème étage, 4 Rue Lagroua Weill Hallé, Case 7126, F-75205 Paris Cedex 13, France
| |
Collapse
|
77
|
O'Dowd JF, Stocker CJ. Endocrine pancreatic development: impact of obesity and diet. Front Physiol 2013; 4:170. [PMID: 23882220 PMCID: PMC3714448 DOI: 10.3389/fphys.2013.00170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/18/2013] [Indexed: 12/16/2022] Open
Abstract
During embryonic development, multipotent endodermal cells differentiate to form the pancreas. Islet cell clusters arising from the pancreatic bud form the acini tissue and exocrine ducts whilst pancreatic islets form around the edges of the clusters. The successive steps of islet differentiation are controlled by a complex network of transcription factors and signals that influence cell differentiation, growth and lineage. A Westernized lifestyle has led to an increased consumption of a high saturated fat diet, and an increase in maternal obesity. The developing fetus is highly sensitive to the intrauterine environment, therefore any alteration in maternal nutrition during gestation and lactation which affects the in-utero environment during the key developmental phases of the pancreas may change the factors controlling β-cell development and β-cell mass. Whilst the molecular mechanisms behind the adaptive programming of β-cells are still poorly understood it is established that changes arising from maternal obesity and/or over-nutrition may affect the ability to maintain fetal β-cell mass resulting in an increased risk of type 2 diabetes in adulthood.
Collapse
Affiliation(s)
- Jacqueline F O'Dowd
- Metabolic Diseases Group, Clore Laboratory, University of Buckingham Buckingham, UK
| | | |
Collapse
|
78
|
Abstract
Intrauterine growth retardation has been linked to the development of type 2 diabetes later in life and the mechanisms underlying this phenomena are unknown. Epidemiological studies in humans show a distinct link with the exposure to an intrauterine insult that results in low birth weight and the development of type 2 diabetes in adulthood. Intrauterine growth retardation can be induced in rodent models by exposing the pregnant rat to a low protein diet, total calorie restriction, high dose glucocorticoids or inducing uteroplacental insufficiency, all which result in abnormalities in glucose homeostasis in the offspring later in life. Animal models of intrauterine growth retardation allow for a better characterization of changes in glucose homeostasis and corresponding changes in gene expression that can provide insight in the mechanisms by which intrauterine growth retardation leads to type 2 diabetes.
Collapse
|
79
|
Abstract
PURPOSE OF REVIEW Intrauterine growth restriction (IUGR) occurs when fetal growth rate falls below the genetic potential and affects a significant number of pregnancies, but still no therapy has been developed for this pregnancy disease. This article reviews the most recent findings concerning maternal characteristics and behaviours predisposing to IUGR as well as maternal early markers of the disease. A comprehensive understanding of factors associated with IUGR will help in providing important tools for preventing and understanding adverse outcomes. RECENT FINDINGS Maternal nutritional status, diet and exposure to environmental factors are increasingly acknowledged as potential factors affecting fetal growth both by altering nutrient availability to the fetus and by modulating placental gene expression, thus modifying placental function. SUMMARY Assessing nutritional and environmental factors associated with IUGR, and the molecular mechanisms by which they may have a role in the disease onset, is necessary to provide comprehensive and common guidelines for maternal care and recommended behaviours. Moreover, maternal genetic predispositions and early serum markers may allow a better and more specific monitoring of high risk pregnancies, optimizing the timing of delivery.
Collapse
Affiliation(s)
- Irene Cetin
- Department of Biomedical and Clinical Sciences L.Sacco, University of Milan, Milan, Italy.
| | | | | |
Collapse
|
80
|
Kirchner H, Osler ME, Krook A, Zierath JR. Epigenetic flexibility in metabolic regulation: disease cause and prevention? Trends Cell Biol 2013; 23:203-9. [DOI: 10.1016/j.tcb.2012.11.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/21/2022]
|
81
|
Epigenetic origins of metabolic disease: The impact of the maternal condition to the offspring epigenome and later health consequences. FOOD SCIENCE AND HUMAN WELLNESS 2013. [DOI: 10.1016/j.fshw.2013.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
82
|
Gatford KL, Sulaiman SA, Mohammad SNB, De Blasio MJ, Harland ML, Simmons RA, Owens JA. Neonatal exendin-4 reduces growth, fat deposition and glucose tolerance during treatment in the intrauterine growth-restricted lamb. PLoS One 2013; 8:e56553. [PMID: 23424667 PMCID: PMC3570470 DOI: 10.1371/journal.pone.0056553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 01/15/2013] [Indexed: 11/24/2022] Open
Abstract
Background IUGR increases the risk of type 2 diabetes mellitus (T2DM) in later life, due to reduced insulin sensitivity and impaired adaptation of insulin secretion. In IUGR rats, development of T2DM can be prevented by neonatal administration of the GLP-1 analogue exendin-4. We therefore investigated effects of neonatal exendin-4 administration on insulin action and β-cell mass and function in the IUGR neonate in the sheep, a species with a more developed pancreas at birth. Methods Twin IUGR lambs were injected s.c. daily with vehicle (IUGR+Veh, n = 8) or exendin-4 (1 nmol.kg-1, IUGR+Ex-4, n = 8), and singleton control lambs were injected with vehicle (CON, n = 7), from d 1 to 16 of age. Glucose-stimulated insulin secretion and insulin sensitivity were measured in vivo during treatment (d 12–14). Body composition, β-cell mass and in vitro insulin secretion of isolated pancreatic islets were measured at d 16. Principal Findings IUGR+Veh did not alter in vivo insulin secretion or insulin sensitivity or β-cell mass, but increased glucose-stimulated insulin secretion in vitro. Exendin-4 treatment of the IUGR lamb impaired glucose tolerance in vivo, reflecting reduced insulin sensitivity, and normalised glucose-stimulated insulin secretion in vitro. Exendin-4 also reduced neonatal growth and visceral fat accumulation in IUGR lambs, known risk factors for later T2DM. Conclusions Neonatal exendin-4 induces changes in IUGR lambs that might improve later insulin action. Whether these effects of exendin-4 lead to improved insulin action in adult life after IUGR in the sheep, as in the PR rat, requires further investigation.
Collapse
Affiliation(s)
- Kathryn L Gatford
- Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Metabolic syndrome (MS) has reached epidemic proportions worldwide among children. Early life "programming" is now thought to be important in the etiology of obesity, type 2 diabetes, cardiovascular disease and MS. Nutritional imbalance and exposures to endocrine disruptor chemicals during development can increase risk for MS later in life. Epigenetic marks may be reprogrammed in response to both stochastic and environmental stimuli, such as changes in diet and the in utero environment, therefore, determination of targets for early life effects on epigenetic gene regulation provides insight into the molecular mechanisms involved in the epigenetic transgenerational inheritance of a variety of adult onset disease phenotypes. The perinatal period is a crucial time of growth, development and physiological changes in mother and child, which provides a window of opportunity for early intervention that may induce beneficial physiological alternations.
Collapse
|
84
|
Jiménez-Chillarón JC, Díaz R, Martínez D, Pentinat T, Ramón-Krauel M, Ribó S, Plösch T. The role of nutrition on epigenetic modifications and their implications on health. Biochimie 2012; 94:2242-63. [DOI: 10.1016/j.biochi.2012.06.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/11/2012] [Indexed: 02/06/2023]
|
85
|
Ma N, Hardy DB. The fetal origins of the metabolic syndrome: can we intervene? J Pregnancy 2012; 2012:482690. [PMID: 23029616 PMCID: PMC3457612 DOI: 10.1155/2012/482690] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/23/2012] [Accepted: 08/08/2012] [Indexed: 12/15/2022] Open
Abstract
Epidemiological studies have suggested that metabolic programming begins during fetal life and adverse events in utero are a critical factor in the etiology of chronic diseases and overall health. While the underlying molecular mechanisms linking impaired fetal development to these adult diseases are being elucidated, little is known about how we can intervene early in life to diminish the incidence and severity of these long-term diseases. This paper highlights the latest clinical and pharmaceutical studies addressing how dietary intervention in fetal and neonatal life may be able to prevent aspects of the metabolic syndrome associated with IUGR pregnancies.
Collapse
Affiliation(s)
- Noelle Ma
- The Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada N6A 5C1
- The Department of Obstetrics & Gynecology, The University of Western Ontario, London, ON, Canada N6A 5C1
- The Children's Health Research Institute, The Lawson Health Research Institute, London, ON, Canada N6A 4V2
| | - Daniel B. Hardy
- The Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada N6A 5C1
- The Department of Obstetrics & Gynecology, The University of Western Ontario, London, ON, Canada N6A 5C1
- The Children's Health Research Institute, The Lawson Health Research Institute, London, ON, Canada N6A 4V2
| |
Collapse
|
86
|
Reddy MA, Park JT, Natarajan R. Epigenetic modifications and diabetic nephropathy. Kidney Res Clin Pract 2012; 31:139-50. [PMID: 26894019 PMCID: PMC4716094 DOI: 10.1016/j.krcp.2012.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/30/2012] [Accepted: 07/09/2012] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy (DN) is a major complication associated with both type 1 and type 2 diabetes, and a leading cause of end-stage renal disease. Conventional therapeutic strategies are not fully efficacious in the treatment of DN, suggesting an incomplete understanding of the gene regulation mechanisms involved in its pathogenesis. Furthermore, evidence from clinical trials has demonstrated a "metabolic memory" of prior exposure to hyperglycemia that continues to persist despite subsequent glycemic control. This remains a major challenge in the treatment of DN and other vascular complications. Epigenetic mechanisms such as DNA methylation, nucleosomal histone modifications, and noncoding RNAs control gene expression through regulation of chromatin structure and function and post-transcriptional mechanisms without altering the underlying DNA sequence. Emerging evidence indicates that multiple factors involved in the etiology of diabetes can alter epigenetic mechanisms and regulate the susceptibility to diabetes complications. Recent studies have demonstrated the involvement of histone lysine methylation in the regulation of key fibrotic and inflammatory genes related to diabetes complications including DN. Interestingly, histone lysine methylation persisted in vascular cells even after withdrawal from the diabetic milieu, demonstrating a potential role of epigenetic modifications in metabolic memory. Rapid advances in high-throughput technologies in the fields of genomics and epigenomics can lead to the identification of genome-wide alterations in key epigenetic modifications in vascular and renal cells in diabetes. Altogether, these findings can lead to the identification of potential predictive biomarkers and development of novel epigenetic therapies for diabetes and its associated complications.
Collapse
Affiliation(s)
| | | | - Rama Natarajan
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
87
|
Gilbert ER, Liu D. Epigenetics: the missing link to understanding β-cell dysfunction in the pathogenesis of type 2 diabetes. Epigenetics 2012; 7:841-52. [PMID: 22810088 PMCID: PMC3427279 DOI: 10.4161/epi.21238] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes (T2D) is a growing health problem worldwide. While peripheral insulin resistance is common during obesity and aging in both animals and people, progression to T2D is largely due to insulin secretory dysfunction and significant apoptosis of functional β-cells, leading to an inability to compensate for insulin resistance. It is recognized that environmental factors and nutrition play an important role in the pathogenesis of diabetes. However, our knowledge surrounding molecular mechanisms by which these factors trigger β-cell dysfunction and diabetes is still limited. Recent discoveries raise the possibility that epigenetic changes in response to environmental stimuli may play an important role in the development of diabetes. In this paper, we review emerging knowledge regarding epigenetic mechanisms that may be involved in β-cell dysfunction and pathogenesis of diabetes, including the role of nutrition, oxidative stress and inflammation. We will mainly focus on the role of DNA methylation and histone modifications but will also briefly review data on miRNA effects on the pancreatic islets. Further studies aimed at better understanding how epigenetic regulation of gene expression controls β-cell function may reveal potential therapeutic targets for prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Elizabeth R. Gilbert
- Department of Animal and Poultry Sciences; College of Agriculture and Life Sciences; Virginia Tech; Blacksburg, VA USA
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise; College of Agriculture and Life Sciences; Virginia Tech; Blacksburg, VA USA
| |
Collapse
|
88
|
Vickers MH, Sloboda DM. Strategies for reversing the effects of metabolic disorders induced as a consequence of developmental programming. Front Physiol 2012; 3:242. [PMID: 22783205 PMCID: PMC3387724 DOI: 10.3389/fphys.2012.00242] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/13/2012] [Indexed: 01/21/2023] Open
Abstract
Obesity and the metabolic syndrome have reached epidemic proportions worldwide with far-reaching health care and economic implications. The rapid increase in the prevalence of these disorders suggests that environmental and behavioral influences, rather than genetic causes, are fueling the epidemic. The developmental origins of health and disease hypothesis has highlighted the link between the periconceptual, fetal, and early infant phases of life and the subsequent development of metabolic disorders in later life. In particular, the impact of poor maternal nutrition on susceptibility to later life metabolic disease in offspring is now well documented. Several studies have now shown, at least in experimental animal models, that some components of the metabolic syndrome, induced as a consequence of developmental programming, are potentially reversible by nutritional or targeted therapeutic interventions during windows of developmental plasticity. This review will focus on critical windows of development and possible therapeutic avenues that may reduce metabolic and obesogenic risk following an adverse early life environment.
Collapse
Affiliation(s)
- M H Vickers
- National Research Centre for Growth and Development, Liggins Institute, University of Auckland Auckland, New Zealand
| | | |
Collapse
|
89
|
Vo T, Hardy DB. Molecular mechanisms underlying the fetal programming of adult disease. J Cell Commun Signal 2012; 6:139-53. [PMID: 22623025 DOI: 10.1007/s12079-012-0165-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 05/02/2012] [Indexed: 12/30/2022] Open
Abstract
Adverse events in utero can be critical in determining quality of life and overall health. It is estimated that up to 50 % of metabolic syndrome diseases can be linked to an adverse fetal environment. However, the mechanisms linking impaired fetal development to these adult diseases remain elusive. This review uncovers some of the molecular mechanisms underlying how normal physiology may be impaired in fetal and postnatal life due to maternal insults in pregnancy. By understanding the mechanisms, which include epigenetic, transcriptional, endoplasmic reticulum (ER) stress, and reactive oxygen species (ROS), we also highlight how intervention in fetal and neonatal life may be able to prevent these diseases long-term.
Collapse
Affiliation(s)
- Thin Vo
- The Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | | |
Collapse
|
90
|
Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S, Jing X, Renström E, Wollheim CB, Nitert MD, Ling C. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 2012; 26:1203-12. [PMID: 22570331 DOI: 10.1210/me.2012-1004] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in pancreatic duodenal homeobox 1 (PDX-1) can cause a monogenic form of diabetes (maturity onset diabetes of the young 4) in humans, and silencing Pdx-1 in pancreatic β-cells of mice causes diabetes. However, it is not established whether epigenetic alterations of PDX-1 influence type 2 diabetes (T2D) in humans. Here we analyzed mRNA expression and DNA methylation of PDX-1 in human pancreatic islets from 55 nondiabetic donors and nine patients with T2D. We further studied epigenetic regulation of PDX-1 in clonal β-cells. PDX-1 expression was decreased in pancreatic islets from patients with T2D compared with nondiabetic donors (P = 0.0002) and correlated positively with insulin expression (rho = 0.59, P = 0.000001) and glucose-stimulated insulin secretion (rho = 0.41, P = 0.005) in the human islets. Ten CpG sites in the distal PDX-1 promoter and enhancer regions exhibited significantly increased DNA methylation in islets from patients with T2D compared with nondiabetic donors. DNA methylation of PDX-1 correlated negatively with its gene expression in the human islets (rho = -0.64, P = 0.0000029). Moreover, methylation of the human PDX-1 promoter and enhancer regions suppressed reporter gene expression in clonal β-cells (P = 0.04). Our data further indicate that hyperglycemia decreases gene expression and increases DNA methylation of PDX-1 because glycosylated hemoglobin (HbA1c) correlates negatively with mRNA expression (rho = -0.50, P = 0.0004) and positively with DNA methylation (rho = 0.54, P = 0.00024) of PDX-1 in the human islets. Furthermore, while Pdx-1 expression decreased, Pdx-1 methylation and Dnmt1 expression increased in clonal β-cells exposed to high glucose. Overall, epigenetic modifications of PDX-1 may play a role in the development of T2D, given that pancreatic islets from patients with T2D and β-cells exposed to hyperglycemia exhibited increased DNA methylation and decreased expression of PDX-1. The expression levels of PDX-1 were further associated with insulin secretion in the human islets.
Collapse
Affiliation(s)
- Beatrice T Yang
- Department of Clinical Sciences, Unit of Epigenetics and Diabetes, Lund University Diabetes Centre, Scania University Hospital, 205 02 Malmoe, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Seki Y, Williams L, Vuguin PM, Charron MJ. Minireview: Epigenetic programming of diabetes and obesity: animal models. Endocrinology 2012; 153:1031-8. [PMID: 22253432 PMCID: PMC3281534 DOI: 10.1210/en.2011-1805] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A growing body of evidence suggests that the intrauterine (IU) environment has a significant and lasting effect on the long-term health of the growing fetus and the development of metabolic disease in later life as put forth in the fetal origins of disease hypothesis. Metabolic diseases have been associated with alterations in the epigenome that occur without changes in the DNA sequence, such as cytosine methylation of DNA, histone posttranslational modifications, and micro-RNA. Animal models of epigenetic modifications secondary to an altered IU milieu are an invaluable tool to study the mechanisms that determine the development of metabolic diseases, such as diabetes and obesity. Rodent and nonlitter bearing animals are good models for the study of disease, because they have similar embryology, anatomy, and physiology to humans. Thus, it is feasible to monitor and modify the IU environment of animal models in order to gain insight into the molecular basis of human metabolic disease pathogenesis. In this review, the database of PubMed was searched for articles published between 1999 and 2011. Key words included epigenetic modifications, IU growth retardation, small for gestational age, animal models, metabolic disease, and obesity. The inclusion criteria used to select studies included animal models of epigenetic modifications during fetal and neonatal development associated with adult metabolic syndrome. Experimental manipulations included: changes in the nutritional status of the pregnant female (calorie-restricted, high-fat, or low-protein diets during pregnancy), as well as the father; interference with placenta function, or uterine blood flow, environmental toxin exposure during pregnancy, as well as dietary modifications during the neonatal (lactation) as well as pubertal period. This review article is focused solely on studies in animal models that demonstrate epigenetic changes that are correlated with manifestation of metabolic disease, including diabetes and/or obesity.
Collapse
Affiliation(s)
- Yoshinori Seki
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
92
|
Abstract
Intrauterine growth restriction (IUGR) is prevalent worldwide and affects children and adults in multiple ways. These include predisposition to type 2 diabetes mellitus, the metabolic syndrome, cardiovascular disease, persistent reduction in stature, and possibly changes in the pattern of puberty. A review of recent literature confirms that the metabolic effects of being born small for gestational age are evident in the very young, persist with age, and are amplified by adiposity. Furthermore, the pattern of growth in the first few years of life has a significant bearing on a person's later health, with those that show increasing weight gain being at the greatest risk for future metabolic dysfunction. Treatment with exogenous human GH is used to improve height in children who remain short after being small for gestational age at birth, but the response of individuals remains variable and difficult to predict. The mechanisms involved in the metabolic programming of IUGR children are just beginning to be explored. It appears that IUGR leads to widespread changes in DNA methylation and that specific "epigenetic signatures" for IUGR are likely to be found in various fetal tissues. The challenge is to link such alterations with modifications in gene expression and ultimately the metabolic abnormalities of adulthood, and it represents one of the frontiers for research in the field.
Collapse
Affiliation(s)
- Steven D Chernausek
- Department of Pediatrics, University of Oklahoma Health Sciences Center, 1200 North Phillips Avenue, Suite 4500, Oklahoma City, Oklahoma 73104-4600, USA.
| |
Collapse
|
93
|
Abstract
The link between an adverse intrauterine environment and the development of disease later in life has been observed in offspring of pregnancies complicated by obesity and diabetes, but the molecular mechanisms underlying this phenomenon are unknown. In this review, we highlight recent publications exploring the role of gestational diabetes mellitus in the programming of disease in the offspring. We also review recent publications aiming to identify mechanisms responsible for the "programming effect" that results from exposure to diabetes in utero. Finally, we highlight research on the role of epigenetic regulation of gene expression in an animal model of uteroplacental insufficiency where the offspring develop diabetes as a model by which an exposure to the mother can alter epigenetic modifications that affect expression of key genes and ultimately lead to the development of diabetes in the offspring.
Collapse
Affiliation(s)
- Sara E Pinney
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
94
|
|
95
|
Abstract
Clinical and experimental studies suggest that early life experiences, perhaps spanning multiple generations, affect lifelong risk of metabolic dysfunction through epigenetic mechanisms. Data published in 2011 suggest that epigenetic analysis could potentially have utility as a marker of early metabolic pathology and might enable early life prophylaxis.
Collapse
Affiliation(s)
- Peter D Gluckman
- Liggins Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|