51
|
Medina E, Rueda C, Batlle D. FSGS and COVID-19 in Non-African American Patients. KIDNEY360 2023; 4:687-699. [PMID: 37229730 PMCID: PMC10371264 DOI: 10.34067/kid.0000000000000104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/10/2023] [Indexed: 05/27/2023]
Abstract
Collapsing Focal Segmental Glomerulosclerosis (FSGS) has been reported relatively frequently in African American (AA) patients with coronavirus disease 2019 (COVID-19), and it is associated almost always with Apolipoprotein L gen 1 (APOL1) high-risk variants. We reviewed the published literature from April 2020 to November 2022 searching for non-African American (non-AA) patients with FSGS associated with COVID-19 (eight White patients, six Hispanic patients, three Asian patients, one Indian patient, and one Asian Indian patient). The following histologic patterns were found: collapsing (n=11), not otherwise specified (n=5), tip (n=2), and perihilar (n=1). Fifteen of the 19 patients had AKI. The APOL1 genotype was reported in only six of the 19 non-AA patients. Three of them (two Hispanic patients and one White patient) with collapsing FSGS had high-risk APOL1 variants. The other three patients (two White patients and one Hispanic patient with the collapsing variant, tip variant, and not otherwise specified) had low-risk APOL1 variants. Among 53 African American patients with collapsing FSGS associated with COVID-19, 48 had high-risk APOL1 variants and five had low-risk APOL1 variants. We conclude that in non-AA patients, FSGS is a rare complication of COVID-19. FSGS associated with COVID-19 can occur rarely with low-risk APOL1 variants in non-AA and AA patients. Non-AA patients reported to be associated with high-risk APOL1 variants possibly reflect inaccuracy of self-reported race with AA admixture because of unknown ancestry. Given the importance of APOL1 in the pathogenesis of FSGS associated with viral infection and to avoid racial bias, it seems appropriate that APOL1 testing be considered in patients with FSGS associated with COVID-19, regardless of self-reported race.
Collapse
Affiliation(s)
- Elba Medina
- Division of Nephrology, General Hospital of México, Eduardo Liceaga, México City, México
- Master's and PhD Program in Dental and Health Medical Sciences, Universidad Nacional Autónoma de México, México City, México
| | - Carlos Rueda
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
52
|
Thomas CP, Daloul R, Lentine KL, Gohh R, Anand PM, Rasouly HM, Sharfuddin AA, Schlondorff JS, Rodig NM, Freese ME, Garg N, Lee BK, Caliskan Y. Genetic evaluation of living kidney donor candidates: A review and recommendations for best practices. Am J Transplant 2023; 23:597-607. [PMID: 36868514 DOI: 10.1016/j.ajt.2023.02.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/25/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023]
Abstract
The growing accessibility and falling costs of genetic sequencing techniques has expanded the utilization of genetic testing in clinical practice. For living kidney donation, genetic evaluation has been increasingly used to identify genetic kidney disease in potential candidates, especially in those of younger ages. However, genetic testing on asymptomatic living kidney donors remains fraught with many challenges and uncertainties. Not all transplant practitioners are aware of the limitations of genetic testing, are comfortable with selecting testing methods, comprehending test results, or providing counsel, and many do not have access to a renal genetic counselor or a clinical geneticist. Although genetic testing can be a valuable tool in living kidney donor evaluation, its overall benefit in donor evaluation has not been demonstrated and it can also lead to confusion, inappropriate donor exclusion, or misleading reassurance. Until more published data become available, this practice resource should provide guidance for centers and transplant practitioners on the responsible use of genetic testing in the evaluation of living kidney donor candidates.
Collapse
Affiliation(s)
- Christie P Thomas
- Department of of Internal Medicine and Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA; VA Medical Center, Iowa City, Iowa, USA.
| | - Reem Daloul
- Division of Nephrology, Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
| | - Krista L Lentine
- Saint Louis University Transplant Center, SSM Health Saint Louis University Hospital, St. Louis, Missouri, USA
| | - Reginald Gohh
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Prince M Anand
- Mid-Carolinas Transplant Center, Medical University of South Carolina, Lancaster, South Carolina, USA
| | - Hila Milo Rasouly
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University, New York City, New York, USA
| | - Asif A Sharfuddin
- Division of Nephrology and Transplant, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Johannes S Schlondorff
- Department of Internal Medicine, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Nancy M Rodig
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret E Freese
- Department of of Internal Medicine and Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Neetika Garg
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Brian K Lee
- Kidney/Pancreas Transplant Center, Dell Seton Medical Center, University of Texas at Austin, Austin, Texas, USA
| | - Yasar Caliskan
- Saint Louis University Transplant Center, SSM Health Saint Louis University Hospital, St. Louis, Missouri, USA
| |
Collapse
|
53
|
Kopp JB, Yoshida T. Phenotypes of APOL1 High-Risk Status Subjects. J Am Soc Nephrol 2023; 34:735-736. [PMID: 37126670 PMCID: PMC10371258 DOI: 10.1681/asn.0000000000000123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Affiliation(s)
- Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, MD
| | | |
Collapse
|
54
|
Delrue C, De Bruyne S, Speeckaert MM. The Potential Use of Near- and Mid-Infrared Spectroscopy in Kidney Diseases. Int J Mol Sci 2023; 24:ijms24076740. [PMID: 37047712 PMCID: PMC10094824 DOI: 10.3390/ijms24076740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Traditional renal biomarkers such as serum creatinine and albuminuria/proteinuria are rather insensitive since they change later in the course of the disease. In order to determine the extent and type of kidney injury, as well as to administer the proper therapy and enhance patient management, new techniques for the detection of deterioration of the kidney function are urgently needed. Infrared spectroscopy is a label-free and non-destructive technique having the potential to be a vital tool for quick and inexpensive routine clinical diagnosis of kidney disorders. The aim of this review is to provide an overview of near- and mid-infrared spectroscopy applications in patients with acute kidney injury and chronic kidney disease (e.g., diabetic nephropathy and glomerulonephritis).
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sander De Bruyne
- Department of Diagnostic Sciences, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
55
|
Yoshida T, Latt KZ, Santo BA, Shrivastav S, Zhao Y, Fenaroli P, Chung JY, Hewitt SM, Tutino VM, Sarder P, Rosenberg AZ, Winkler CA, Kopp JB. APOL1 kidney risk variants in glomerular diseases modeled in transgenic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534273. [PMID: 37090576 PMCID: PMC10120684 DOI: 10.1101/2023.03.27.534273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
APOL1 high-risk variants partially explain the high kidney disease prevalence among African ancestry individuals. Many mechanisms have been reported in cell culture models, but few have been demonstrated in mouse models. Here we characterize two models: (1) HIV-associated nephropathy (HIVAN) Tg26 mice crossed with bacterial artificial chromosome (BAC)/APOL1 transgenic mice and (2) interferon-γ administered to BAC/APOL1 mice. Both models showed exacerbated glomerular disease in APOL1-G1 compared to APOL1-G0 mice. HIVAN model glomerular bulk RNA-seq identified synergistic podocyte-damaging pathways activated by the APOL1-G1 allele and by HIV transgenes. Single-nuclear RNA-seq revealed podocyte-specific patterns of differentially-expressed genes as a function of APOL1 alleles. Eukaryotic Initiation factor-2 pathway was the most activated pathway in the interferon-γ model and the most deactivated pathway in the HIVAN model. HIVAN mouse model podocyte single-nuclear RNA-seq data showed similarity to human focal segmental glomerulosclerosis (FSGS) glomerular bulk RNA-seq data. Furthermore, single-nuclear RNA-seq data from interferon-γ mouse model podocytes (in vivo) showed similarity to human FSGS single-cell RNA-seq data from urine podocytes (ex vivo) and from human podocyte cell lines (in vitro) using bulk RNA-seq. These data highlight differences in the transcriptional effects of the APOL1-G1 risk variant in a model specific manner. Shared differentially expressed genes in podocytes in both mouse models suggest possible novel glomerular damage markers in APOL1 variant-induced diseases. Transcription factor Zbtb16 was downregulated in podocytes and endothelial cells in both models, possibly contributing to glucocorticoid-resistance. In summary, these findings in two mouse models suggest both shared and distinct therapeutic opportunities for APOL1 glomerulopathies.
Collapse
Affiliation(s)
- Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, MD
| | - Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, MD
| | - Briana A. Santo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Shashi Shrivastav
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, MD
| | - Yongmei Zhao
- Frederick National Laboratory for Cancer Research, NCI, NIH, Frederick, MD
| | - Paride Fenaroli
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
- S.C. Nefrologia e Dialisi, AUSL-IRCCS, Reggio Emilia, Italy
| | | | | | - Vincent M. Tutino
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY
- College of Medicine, University of Florida, Gainesville, FL
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Cheryl A. Winkler
- Frederick National Laboratory for Cancer Research, NCI, NIH, Frederick, MD
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, MD
| |
Collapse
|
56
|
|
57
|
Vandorpe DH, Heneghan JF, Waitzman JS, McCarthy GM, Blasio A, Magraner JM, Donovan OG, Schaller LB, Shah SS, Subramanian B, Riella CV, Friedman DJ, Pollak MR, Alper SL. Apolipoprotein L1 (APOL1) cation current in HEK-293 cells and in human podocytes. Pflugers Arch 2023; 475:323-341. [PMID: 36449077 DOI: 10.1007/s00424-022-02767-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022]
Abstract
Two heterozygous missense variants (G1 and G2) of Apolipoprotein L1 (APOL1) found in individuals of recent African ancestry can attenuate the severity of infection by some forms of Trypanosoma brucei. However, these two variants within a broader African haplotype also increase the risk of kidney disease in Americans of African descent. Although overexpression of either variant G1 or G2 causes multiple pathogenic changes in cultured cells and transgenic mouse models, the mechanism(s) promoting kidney disease remain unclear. Human serum APOL1 kills trypanosomes through its cation channel activity, and cation channel activity of recombinant APOL1 has been reconstituted in lipid bilayers and proteoliposomes. Although APOL1 overexpression increases whole cell cation currents in HEK-293 cells, the ion channel activity of APOL1 has not been assessed in glomerular podocytes, the major site of APOL1-associated kidney diseases. We characterize APOL1-associated whole cell and on-cell cation currents in HEK-293 T-Rex cells and demonstrate partial inhibition of currents by anti-APOL antibodies. We detect in primary human podocytes a similar cation current inducible by interferon-γ (IFNγ) and sensitive to inhibition by anti-APOL antibody as well as by a fragment of T. brucei Serum Resistance-Associated protein (SRA). CRISPR knockout of APOL1 in human primary podocytes abrogates the IFNγ-induced, antibody-sensitive current. Our novel characterization in HEK-293 cells of heterologous APOL1-associated cation conductance inhibited by anti-APOL antibody and our documentation in primary human glomerular podocytes of endogenous IFNγ-stimulated, APOL1-mediated, SRA and anti-APOL-sensitive ion channel activity together support APOL1-mediated channel activity as a therapeutic target for treatment of APOL1-associated kidney diseases.
Collapse
Affiliation(s)
- David H Vandorpe
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - John F Heneghan
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Joshua S Waitzman
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Gizelle M McCarthy
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Vertex Pharmaceuticals, Boston, MA, 02210, USA
| | - Angelo Blasio
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Vertex Pharmaceuticals, Boston, MA, 02210, USA
| | - Jose M Magraner
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,, San Diego, CA, USA
| | - Olivia G Donovan
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA
| | - Lena B Schaller
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Ludwig-Maximilians-Universitaet, 80336, Munich, Germany
| | - Shrijal S Shah
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Chroma Medicine, Cambridge, MA, 02142, USA
| | - Balajikarthick Subramanian
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Cristian V Riella
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - David J Friedman
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
| | - Martin R Pollak
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
| | - Seth L Alper
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA.
| |
Collapse
|
58
|
Chen DP, Henderson CD, Anguiano J, Aiello CP, Collie MM, Moreno V, Hu Y, Hogan SL, Falk RJ. Kidney Disease Progression in Membranous Nephropathy among Black Participants with High-Risk APOL1 Genotype. Clin J Am Soc Nephrol 2023; 18:337-343. [PMID: 36763808 PMCID: PMC10103220 DOI: 10.2215/cjn.0000000000000070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Disparity in CKD progression among Black individuals persists in glomerular diseases. Genetic variants in the apolipoprotein L1 ( APOL1 ) gene in the Black population contribute to kidney disease, but the influence in membranous nephropathy remains unknown. METHODS Longitudinally followed participants enrolled in the Glomerular Disease Collaborative Network or Cure Glomerulonephropathy Network were included if they had DNA or genotyping available for APOL1 (Black participants with membranous nephropathy) or had membranous nephropathy but were not Black. eGFR slopes were estimated using linear mixed-effects models with random effects and adjusting for covariates and interaction terms of covariates. Fisher exact test, Kruskal-Wallis test, and Kaplan-Meier curves with log-rank tests were used to compare groups. RESULTS Among 118 Black membranous nephropathy participants, 16 (14%) had high-risk APOL1 genotype (two risk alleles) and 102 (86%) had low-risk APOL1 genotype (zero or one risk alleles, n =53 and n =49, respectively). High-risk APOL1 membranous nephropathy participants were notably younger at disease onset than low-risk APOL1 and membranous nephropathy participants that were not Black ( n =572). eGFR at disease onset was not different between groups, although eGFR decline (slope) was steeper in participants with high-risk APOL1 genotype (-16±2 [±SE] ml/min per 1.73 m 2 per year) compared with low-risk APOL1 genotype (-4±0.8 ml/min per 1.73 m 2 per year) or membranous nephropathy participants that did not identify themselves as Black (-2.0±0.4 ml/min per 1.73 m 2 per year) ( P <0.0001). Time to kidney failure was faster in the high-risk APOL1 genotype than low-risk APOL1 genotype or membranous nephropathy participants that were not Black. CONCLUSIONS The prevalence of high-risk APOL1 variant among Black membranous nephropathy participants is comparable with the general Black population (10%-15%), yet the high-risk genotype was associated with worse eGFR decline and faster time to kidney failure compared with low-risk genotype and participants that were not Black.
Collapse
Affiliation(s)
- Dhruti P. Chen
- UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Candace D. Henderson
- UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Jaeline Anguiano
- UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Claudia P. Aiello
- UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Mary M. Collie
- UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Vanessa Moreno
- Department of Pathology, University of North Carolina, Chapel Hill, North Carolina
| | - Yichun Hu
- UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Susan L. Hogan
- UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ronald J. Falk
- UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
59
|
Grobe N, Scheiber J, Zhang H, Garbe C, Wang X. Omics and Artificial Intelligence in Kidney Diseases. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:47-52. [PMID: 36723282 DOI: 10.1053/j.akdh.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 01/20/2023]
Abstract
Omics applications in nephrology may have relevance in the future to improve clinical care of kidney disease patients. In a short term, patients will benefit from specific measurement and computational analyses around biomarkers identified at various omics-levels. In mid term and long term, these approaches will need to be integrated into a holistic representation of the kidney and all its influencing factors for individualized patient care. Research demonstrates robust data to justify the application of omics for better understanding, risk stratification, and individualized treatment of kidney disease patients. Despite these advances in the research setting, there is still a lack of evidence showing the combination of omics technologies with artificial intelligence and its application in clinical diagnostics and care of patients with kidney disease.
Collapse
Affiliation(s)
| | | | | | - Christian Garbe
- Frankfurter Innovationszentrum Biotechnologie, Frankfurt am Main, Germany
| | | |
Collapse
|
60
|
Olabisi OA, Nicholas SB, Norris KC. Race, Ancestry, and Genetic Risk for Kidney Failure. Am J Kidney Dis 2022; 80:801-804. [PMID: 36100174 PMCID: PMC10832888 DOI: 10.1053/j.ajkd.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/31/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Opeyemi A Olabisi
- Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Susanne B Nicholas
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Keith C Norris
- Department of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
61
|
Abdu A, Duarte R, Dickens C, Dix-Peek T, Bala SM, Ademola B, Naicker S. High risk APOL1 genotypes and kidney disease among treatment naïve HIV patients at Kano, Nigeria. PLoS One 2022; 17:e0275949. [PMID: 36227935 PMCID: PMC9560498 DOI: 10.1371/journal.pone.0275949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction Racial disparities are known in the occurrence of kidney disease with excess risks found among people of African descent. Apolipoprotein L1 (APOL1) gene variants G1 and G2 are associated with kidney disease among HIV infected individuals of African descent in the USA as well as among black population in South Africa. We set out to investigate the prevalence of these high-risk variants and their effects on kidney disease among HIV infected patients in Northern Nigeria with hitherto limited information despite earlier reports of high population frequencies of these alleles from the Southern part of the country. Methods DNA samples obtained from the whole blood of 142 participants were genotyped for APOL1 G1 and G2 variants after initial baseline investigations including assessment of kidney function. Participants comprised 50 HIV positive patients with no evidence of kidney disease, 52 HIV negative individuals with no kidney disease and 40 HIV positive patients with chronic kidney disease (CKD) evidenced by persistent proteinuria and/or reduced eGFR, who also had a kidney biopsy. All the HIV positive patients were newly diagnosed and treatment naïve. Results The distribution of the APOL1 genotypes among the study participants revealed that 24.6% had a G1 risk allele and 19.0% a G2. The frequency of the High Risk Genotype (HRG) was 12.5% among those with CKD compared to 5.8% in the HIV negative group and zero in the HIV positive no CKD group. Having the HRG was associated with a higher odds for developing HIV Associated Nephropathy (HIVAN) (2 vs 0 risk alleles: OR 10.83, 95% CI 1.38–84.52; P = 0.023; 2 vs 0 or 1 risk alleles: OR 5.5, 95% CI 0.83–36.29; P = 0.07). The HRG was also associated with higher odds for Focal Segmental Glomerulosclerosis (FSGS) (2 vs 0 risk alleles: OR 13.0, 95% CI 2.06–81.91; P = 0.006 and 2 vs 0 or 1 risk alleles: OR 9.0, 95%CI 1.62–50.12; P = 0.01) when compared to the control group. Conclusion This study showed a high population frequency of the individual risk alleles of the APOL1 gene with higher frequencies noted among HIV positive patients with kidney disease. There is high association with the presence of kidney disease and especially FSGS and HIVAN among treatment naive HIV patients carrying two copies of the HRG.
Collapse
Affiliation(s)
- Aliyu Abdu
- Department of Medicine Aminu Kano Teaching Hospital/ Bayero University Kano, Kano, Nigeria
- * E-mail:
| | - Raquel Duarte
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline Dickens
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Therese Dix-Peek
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sunusi M. Bala
- Department of Medicine, M.A. Wase Teaching Hospital, Kano, Nigeria
| | - Babatunde Ademola
- Department of Medicine Aminu Kano Teaching Hospital/ Bayero University Kano, Kano, Nigeria
| | - Saraladevi Naicker
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
62
|
Ilori TO, Liu J, Rodan AR, Verma A, Mills KT, He J, Winkler CA, Dupuis J, Anderson CA, Waikar SS. Apolipoprotein L1 Genotypes and the Association of Urinary Potassium Excretion with CKD Progression. Clin J Am Soc Nephrol 2022; 17:1477-1486. [PMID: 36400568 PMCID: PMC9528272 DOI: 10.2215/cjn.02680322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/12/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Progressive CKD in Black individuals is strongly associated with polymorphisms in the APOL1 gene, but it is unknown whether dietary risk factors for CKD progression vary in high- versus low-risk APOL1 genotypes. We investigated if APOL1 genotypes modify associations of dietary potassium and sodium with CKD progression and death. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We analyzed 1399 self-identified Black participants enrolled in the Chronic Renal Insufficiency Cohort from April 2003 to September 2008. Exposures were calibrated 24-hour urine potassium and sodium excretion. The primary outcome was CKD progression defined as the time to 50% decline in eGFR or kidney failure. The secondary outcome was CKD progression or death. We tested for an interaction between urinary potassium and sodium excretion and APOL1 genotypes. RESULTS Median 24-hour urinary sodium and potassium excretions in Black participants were 150 mmol (interquartile range, 118-188) and 43 mmol (interquartile range, 35-54), respectively. Individuals with high- and low-risk APOL1 genotypes numbered 276 (20%) and 1104 (79%), respectively. After a median follow-up of 5.23 years, CKD progression events equaled 605, and after 7.29 years, CKD progression and death events equaled 868. There was significant interaction between APOL1 genotypes and urinary potassium excretion with CKD progression and CKD progression or death (P=0.003 and P=0.03, respectively). In those with high-risk APOL1 genotypes, higher urinary potassium excretion was associated with a lower risk of CKD progression (quartiles 2-4 versus 1: hazard ratio, 0.83; 95% confidence interval, 0.50 to 1.39; hazard ratio, 0.54; 95% confidence interval, 0.31 to 0.93; and hazard ratio, 0.50; 95% confidence interval, 0.27 to 0.93, respectively). In the low-risk APOL1 genotypes, higher urinary potassium excretion was associated with a higher risk of CKD progression (quartiles 2-4 versus 1: hazard ratio, 1.01; 95% confidence interval, 0.75 to 1.36; hazard ratio, 1.23; 95% confidence interval, 0.91 to 1.66; and hazard ratio, 1.53; 95% confidence interval, 1.12 to 2.09, respectively). We found no interaction between APOL1 genotypes and urinary sodium excretion with CKD outcomes. CONCLUSIONS Higher urinary potassium excretion was associated with lower versus higher risk of CKD progression in APOL1 high-risk and low-risk genotypes, respectively.
Collapse
Affiliation(s)
- Titilayo O. Ilori
- Section of Nephrology, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Jing Liu
- Renal Division, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Aylin R. Rodan
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
- Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| | - Ashish Verma
- Section of Nephrology, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Katherine T. Mills
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Cheryl A. Winkler
- Basic Research Program, Frederick National Laboratory for Cancer Research and the Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Cheryl A.M. Anderson
- Department of Public Health, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California
| | - Sushrut S. Waikar
- Section of Nephrology, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
63
|
Lucas A, Wyatt CM. HIV at 40: kidney disease in HIV treatment, prevention, and cure. Kidney Int 2022; 102:740-749. [PMID: 35850290 PMCID: PMC9509437 DOI: 10.1016/j.kint.2022.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/06/2022] [Accepted: 06/03/2022] [Indexed: 10/17/2022]
Abstract
Four decades after the first cases of HIV were reported, kidney disease remains an important comorbidity in people with HIV (PWH). Both HIV-associated nephropathy and immune complex kidney disease were recognized as complications of HIV infection in the early years before treatment was available. Although the introduction of effective antiretroviral therapy in the late 1990s resulted in dramatic improvements in survival and health in PWH, several commonly used antiretroviral agents have been associated with kidney injury. HIV infection and treatment may also promote the progression of comorbid chronic kidney disease due to traditional risk factors such as diabetes, and HIV is one of the strongest "second hits" for the high-risk APOL1 genotype. Unique considerations in the management of chronic kidney disease in PWH are largely related to the need for lifelong antiretroviral therapy, with potential for toxicity, drug-drug interactions, and polypharmacy. PWH who develop progressive chronic kidney disease are candidates for all modalities of kidney replacement therapy, including kidney transplantation, and at some centers, PWH may be candidates to serve as donors for recipients with HIV. Transplantation of kidney allografts from donors with HIV also offers a unique opportunity to study viral dynamics in the kidney, with implications for kidney health and for research toward HIV cure. In addition, HIV-transgenic animal models have provided important insights into kidney disease pathogenesis beyond HIV, and experience with HIV and HIV-related kidney disease has provided important lessons for future pandemics.
Collapse
Affiliation(s)
- Anika Lucas
- Department of Medicine, Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christina M Wyatt
- Department of Medicine, Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
64
|
Hassan MO, Balogun RA. The Effects of Race on Acute Kidney Injury. J Clin Med 2022; 11:5822. [PMID: 36233687 PMCID: PMC9573379 DOI: 10.3390/jcm11195822] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022] Open
Abstract
Racial disparities in incidence and outcomes of acute kidney injury (AKI) are pervasive and are driven in part by social inequities and other factors. It is well-documented that Black patients face higher risk of AKI and seemingly have a survival advantage compared to White counterparts. Various explanations have been advanced and suggested to account for this, including differences in susceptibility to kidney injury, severity of illness, and socioeconomic factors. In this review, we try to understand and further explore the link between race and AKI using the incidence, diagnosis, and management of AKI to illustrate how race is directly related to AKI outcomes, with a focus on Black and White individuals with AKI. In particular, we explore the effect of race-adjusted estimated glomerular filtration rate (eGFR) equation on AKI prediction and discuss racial disparities in the management of AKI and how this might contribute to racial differences in AKI-related mortality among Blacks with AKI. We also identify some opportunities for future research and advocacy.
Collapse
Affiliation(s)
- Muzamil Olamide Hassan
- Department of Medicine, Obafemi Awolowo University, Ile-Ife 220005, Nigeria
- Division of Nephrology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Rasheed Abiodun Balogun
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
65
|
Chaudhary NS, Armstrong ND, Hidalgo BA, Gutiérrez OM, Hellwege JN, Limdi NA, Reynolds RJ, Judd SE, Nadkarni GN, Lange L, Winkler CA, Kopp JB, Arnett DK, Tiwari HK, Irvin MR. SMOC2 gene interacts with APOL1 in the development of end-stage kidney disease: A genome-wide association study. Front Med (Lausanne) 2022; 9:971297. [PMID: 36250097 PMCID: PMC9554233 DOI: 10.3389/fmed.2022.971297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Some but not all African-Americans (AA) who carry APOL1 nephropathy risk variants (APOL1) develop kidney failure (end-stage kidney disease, ESKD). To identify genetic modifiers, we assessed gene-gene interactions in a large prospective cohort of the REasons for Geographic and Racial Differences in Stroke (REGARDS) study. Methods Genotypes from 8,074 AA participants were obtained from Illumina Infinium Multi-Ethnic AMR/AFR Extended BeadChip. We compared 388 incident ESKD cases with 7,686 non-ESKD controls, using a two-locus interaction approach. Logistic regression was used to examine the effect of APOL1 risk status (using recessive and additive models), single nucleotide polymorphism (SNP), and APOL1*SNP interaction on incident ESKD, adjusting for age, sex, and ancestry. APOL1 *SNP interactions that met the threshold of 1.0 × 10-5 were replicated in the Genetics of Hypertension Associated Treatment (GenHAT) study (626 ESKD cases and 6,165 controls). In a sensitivity analysis, models were additionally adjusted for diabetes status. We conducted additional replication in the BioVU study. Results Two APOL1 risk alleles prevalence (recessive model) was similar in the REGARDS and GenHAT studies. Only one APOL1-SNP interaction, for rs7067944 on chromosome 10, ~10 KB from the PCAT5 gene met the genome-wide statistical threshold (P interaction = 3.4 × 10-8), but this interaction was not replicated in the GenHAT study. Among other relevant top findings (with P interaction < 1.0 × 10-5), a variant (rs2181251) near SMOC2 on chromosome six interacted with APOL1 risk status (additive) on ESKD outcomes (REGARDS study, P interaction =5.3 × 10-6) but the association was not replicated (GenHAT study, P interaction = 0.07, BioVU study, P interaction = 0.53). The association with the locus near SMOC2 persisted further in stratified analyses. Among those who inherited ≥1 alternate allele of rs2181251, APOL1 was associated with an increased risk of incident ESKD (OR [95%CI] = 2.27[1.53, 3.37]) but APOL1 was not associated with ESKD in the absence of the alternate allele (OR [95%CI] = 1.34[0.96, 1.85]) in the REGARDS study. The associations were consistent after adjusting for diabetes. Conclusion In a large genome-wide association study of AAs, a locus SMOC2 exhibited a significant interaction with the APOL1 locus. SMOC2 contributes to the progression of fibrosis after kidney injury and the interaction with APOL1 variants may contribute to an explanation for why only some APOLI high-risk individuals develop ESKD.
Collapse
Affiliation(s)
- Ninad S. Chaudhary
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nicole D. Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bertha A. Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Orlando M. Gutiérrez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jacklyn N. Hellwege
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nita A. Limdi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Richard J. Reynolds
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Suzanne E. Judd
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Girish N. Nadkarni
- Division of Data-Driven and Digital Medicine (D3M), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Leslie Lange
- Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Denver, CO, United States
| | - Cheryl A. Winkler
- Basic Research Program, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jeffrey B. Kopp
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Donna K. Arnett
- Deans Office, College of Public Health, University of Kentucky, Lexington, KY, United States
| | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
66
|
Abstract
PURPOSE OF REVIEW More than 5 million African-Americans, and millions more in Africa and worldwide, possess apolipoprotein L1 gene (APOL1) high-risk genotypes with an increased risk for chronic kidney disease. This manuscript reviews treatment approaches for slowing the progression of APOL1-associated nephropathy. RECENT FINDINGS Since the 2010 discovery of APOL1 as a cause of nondiabetic nephropathy in individuals with sub-Saharan African ancestry, it has become apparent that aggressive hypertension control, renin-angiotensin system blockade, steroids and conventional immunosuppressive agents are suboptimal treatments. In contrast, APOL1-mediated collapsing glomerulopathy due to interferon treatment and HIV infection, respectively, often resolve with cessation of interferon or antiretroviral therapy. Targeted therapies, including APOL1 small molecule inhibitors, APOL1 antisense oligonucleotides (ASO) and inhibitors of APOL1-associated inflammatory pathways, hold promise for these diseases. Evolving therapies and the need for clinical trials support the importance of increased use of APOL1 genotyping and kidney biopsy. SUMMARY APOL1-associated nephropathy includes a group of related phenotypes that are driven by the same two genetic variants in APOL1. Clinical trials of small molecule inhibitors, ASO, and inflammatory pathway inhibitors may improve outcomes in patients with primary forms of APOL1-associated nephropathy.
Collapse
|
67
|
Sambharia M, Rastogi P, Thomas CP. Monogenic focal segmental glomerulosclerosis: A conceptual framework for identification and management of a heterogeneous disease. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:377-398. [PMID: 35894442 PMCID: PMC9796580 DOI: 10.1002/ajmg.c.31990] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 01/29/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is not a disease, rather a pattern of histological injury occurring from a variety of causes. The exact pathogenesis has yet to be fully elucidated but is likely varied based on the type of injury and the primary target of that injury. However, the approach to treatment is often based on the degree of podocyte foot process effacement and clinical presentation without sufficient attention paid to etiology. In this regard, there are many monogenic causes of FSGS with variable presentation from nephrotic syndrome with histological features of primary podocytopathy to more modest degrees of proteinuria with limited evidence of podocyte foot process injury. It is likely that genetic causes are largely underdiagnosed, as the role and the timing of genetic testing in FSGS is not established and genetic counseling, testing options, and interpretation of genotype in the context of phenotype may be outside the scope of practice for both nephrologists and geneticists. Yet most clinicians believe that a genetic diagnosis can lead to targeted therapy, limit the use of high-dose corticosteroids as a therapeutic trial, and allow the prediction of the natural history and risk for recurrence in the transplanted kidney. In this manuscript, we emphasize that genetic FSGS is not monolithic in its presentation, opine on the importance of genetic testing and provide an algorithmic approach to deployment of genetic testing in a timely fashion when faced with a patient with FSGS.
Collapse
Affiliation(s)
- Meenakshi Sambharia
- Division of Nephrology, Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Prerna Rastogi
- Department of PathologyUniversity of IowaIowa CityIowaUSA
| | - Christie P. Thomas
- Division of Nephrology, Department of Internal MedicineUniversity of IowaIowa CityIowaUSA,Department of PediatricsUniversity of IowaIowa CityIowaUSA,The Iowa Institute of Human GeneticsUniversity of IowaIowa CityIowaUSA,Medical ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
| |
Collapse
|
68
|
Miller DV, Watson KE, Wang H, Fyfe-Kirschner B, Heide RSV. Racially Related Risk Factors for Cardiovascular Disease: Society for Cardiovascular Pathology Symposium 2022. Cardiovasc Pathol 2022; 61:107470. [PMID: 36029934 DOI: 10.1016/j.carpath.2022.107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Dylan V Miller
- Department of Pathology, University of Utah and Intermountain Central Laboratory, Salt Lake City, UT, USA
| | - Karol E Watson
- Department of Medicine (Cardiology), UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - He Wang
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Billie Fyfe-Kirschner
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Richard S Vander Heide
- Department of Pathology and Laboratory Medicine, Marshfield Clinic Health System, Marshfield, WI, USA
| |
Collapse
|
69
|
McNulty MT, Fermin D, Eichinger F, Jang D, Kretzler M, Burtt NP, Pollak MR, Flannick J, Weins A, Friedman DJ, Sampson MG. A glomerular transcriptomic landscape of apolipoprotein L1 in Black patients with focal segmental glomerulosclerosis. Kidney Int 2022; 102:136-148. [PMID: 34929253 PMCID: PMC9206042 DOI: 10.1016/j.kint.2021.10.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
Apolipoprotein L1 (APOL1)-associated focal segmental glomerulosclerosis (FSGS) is the dominant form of FSGS in Black individuals. There are no targeted therapies for this condition, in part because the molecular mechanisms underlying APOL1's pathogenic contribution to FSGS are incompletely understood. Studying the transcriptomic landscape of APOL1 FSGS in patient kidneys is an important way to discover genes and molecular behaviors that are unique or most relevant to the human disease. With the hypothesis that the pathology driven by the high-risk APOL1 genotype is reflected in alteration of gene expression across the glomerular transcriptome, we compared expression and co-expression profiles of 15,703 genes in 16 Black patients with FSGS at high-risk vs 14 Black patients with a low-risk APOL1 genotype. Expression data from APOL1-inducible HEK293 cells and normal human glomeruli were used to pursue genes and molecular pathways uncovered in these studies. We discovered increased expression of APOL1 and nine other significant differentially expressed genes in high-risk patients. This included stanniocalcin, which has a role in mitochondrial and calcium-related processes along with differential correlations between high- and low-risk APOL1 and metabolism pathway genes. There were similar correlations with extracellular matrix- and immune-related genes, but significant loss of co-expression of mitochondrial genes in high-risk FSGS, and an NF-κB-down regulating gene, NKIRAS1, as the most significant hub gene with strong differential correlations with NDUF family (mitochondrial respiratory genes) and immune-related (JAK-STAT) genes. Thus, differences in mitochondrial gene regulation appear to underlie many differences observed between high- and low-risk Black patients with FSGS.
Collapse
Affiliation(s)
- Michelle T McNulty
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts, USA; Kidney Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA
| | - Damian Fermin
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Felix Eichinger
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Dongkeun Jang
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Noël P Burtt
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA; Metabolism Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Martin R Pollak
- Harvard Medical School, Boston, Massachusetts, USA; Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason Flannick
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA; Metabolism Program, Broad Institute, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Division of Genetics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Astrid Weins
- Harvard Medical School, Boston, Massachusetts, USA
| | - David J Friedman
- Harvard Medical School, Boston, Massachusetts, USA; Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew G Sampson
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts, USA; Kidney Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
70
|
Determinants of severity in sickle cell disease. Blood Rev 2022; 56:100983. [PMID: 35750558 DOI: 10.1016/j.blre.2022.100983] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022]
Abstract
Sickle cell disease is a very variable condition, with outcomes ranging from death in childhood to living relatively symptom free into the 8th decade. Much of this variability is unexplained. The co-inheritance of α thalassaemia and factors determining HbF levels significantly modify the phenotype, but few other significant genetic variants have been identified, despite extensive studies. Environmental factors are undoubtedly important, with socio-economics and access to basic medical care explaining the huge differences in outcomes between many low- and high-income countries. Exposure to cold and windy weather seems to precipitate acute complications in many people, although these effects are unpredictable and vary with geography. Many studies have tried to identify prognostic factors which can be used to predict outcomes, particularly when applied in infancy. Overall, low haemoglobin, low haemoglobin F percentage and high reticulocytes in childhood are associated with worse outcomes, although again these effects are fairly weak and inconsistent.
Collapse
|
71
|
Gerstner L, Chen M, Kampf LL, Milosavljevic J, Lang K, Schneider R, Hildebrandt F, Helmstädter M, Walz G, Hermle T. Inhibition of endoplasmic reticulum stress signaling rescues cytotoxicity of human apolipoprotein-L1 risk variants in Drosophila. Kidney Int 2022; 101:1216-1231. [PMID: 35120995 PMCID: PMC10061223 DOI: 10.1016/j.kint.2021.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 01/01/2023]
Abstract
Risk variants of the apolipoprotein-L1 (APOL1) gene are associated with severe kidney disease, putting homozygous carriers at risk. Since APOL1 lacks orthologs in all major model organisms, a wide range of mechanisms frequently in conflict have been described for APOL1-associated nephropathies. The genetic toolkit in Drosophila allows unique in vivo insights into disrupted cellular homeostasis. To perform a mechanistic analysis, we expressed human APOL1 control and gain-of-function kidney risk variants in the podocyte-like garland cells of Drosophila nephrocytes and a wing precursor tissue. Expression of APOL1 risk variants was found to elevate endocytic function of garland cell nephrocytes that simultaneously showed early signs of cell death. Wild-type APOL1 had a significantly milder effect, while a control transgene with deletion of the short BH3 domain showed no overt phenotype. Nephrocyte endo-lysosomal function and slit diaphragm architecture remained unaffected by APOL1 risk variants, but endoplasmic reticulum (ER) swelling, chaperone induction, and expression of the reporter Xbp1-EGFP suggested an ER stress response. Pharmacological inhibition of ER stress diminished APOL1-mediated cell death and direct ER stress induction enhanced nephrocyte endocytic function similar to expression of APOL1 risk variants. We confirmed APOL1-dependent ER stress in the Drosophila wing precursor where silencing the IRE1-dependent branch of ER stress signaling by inhibition with Xbp1-RNAi abrogated cell death, representing the first rescue of APOL1-associated cytotoxicity in vivo. Thus, we uncovered ER stress as an essential consequence of APOL1 risk variant expression in vivo in Drosophila, suggesting a central role of this pathway in the pathogenesis of APOL1-associated nephropathies.
Collapse
Affiliation(s)
- Lea Gerstner
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Mengmeng Chen
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Lina L Kampf
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Julian Milosavljevic
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Konrad Lang
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Ronen Schneider
- Renal Division, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Renal Division, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany.
| |
Collapse
|
72
|
Brandenburg JT, Govender MA, Winkler CA, Boua PR, Agongo G, Fabian J, Ramsay M. Apolipoprotein L1 High-Risk Genotypes and Albuminuria in Sub-Saharan African Populations. Clin J Am Soc Nephrol 2022; 17:798-808. [PMID: 35577564 PMCID: PMC9269651 DOI: 10.2215/cjn.14321121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/30/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Recessive inheritance of African-specific APOL1 kidney risk variants is associated with higher risk of nondiabetic kidney disease, progression to kidney failure, and early-onset albuminuria that precedes eGFR decline. The effect of APOL1 risk variants on kidney disease in continental Africans is understudied. Objectives of this study were to determine APOL1 risk allele prevalence and associations between APOL1 genotypes and kidney disease in West, East, and South Africa. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This cross-sectional population-based study in four African countries included 10,769 participants largely aged 40-60 years with sociodemographic and health information, anthropometry data, and blood and urine tests for biomarkers of kidney disease. APOL1 risk alleles were imputed from the H3Africa genotyping array, APOL1 risk allele and genotype frequencies were determined, and genetic associations were assessed for kidney disease. Kidney disease was defined as the presence of eGFR <60 ml/min per 1.73 m2, albuminuria, or a composite end point including eGFR <60 ml/min per 1.73 m2 and/or albuminuria. RESULTS High G1 allele frequencies occurred in South and West Africa (approximately 7%-13%). G2 allele frequencies were highest in South Africa (15%-24%), followed by West Africa (9%-12%). Associations between APOL1 risk variants and albuminuria were significant for recessive (odds ratio, 1.63; 95% confidence interval, 1.25 to 2.12) and additive (odds ratio, 1.39; 95% confidence interval, 1.09 to 1.76) models. Associations were stronger for APOL1 G1/G1 genotypes versus G0/G0 (odds ratio, 3.87; 95% confidence interval, 2.16 to 6.93) compared with either G2/G2 (odds ratio, 1.65; 95% confidence interval, 1.09 to 2.51) or G1/G2 (odds ratio, 1.24; 95% confidence interval, 0.83 to 1.87). No association between APOL1 risk variants and eGFR <60 ml/min per 1.73 m2 was observed. CONCLUSIONS APOL1 G1 and G2 alleles and high-risk genotype frequencies differed between and within West and South Africa and were almost absent from East Africa. APOL1 risk variants were associated with albuminuria but not eGFR <60 ml/min per 1.73 m2. There may be differential effects of homozygous G1 and G2 genotypes on albuminuria that require further investigation. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_05_16_CJN14321121.mp3.
Collapse
Affiliation(s)
- Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Melanie A Govender
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl A Winkler
- Molecular Genetic Epidemiology Section, Basic Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Palwende Romuald Boua
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé-DRCO, Nanoro, Burkina Faso
| | - Godfred Agongo
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana.,Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C.K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - June Fabian
- Wits Donald Gordon Medical Centre, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Medical Research Council/Wits University Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa .,Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
73
|
Chen TK, Coca SG, Estrella MM, Appel LJ, Coresh J, Thiessen Philbrook H, Obeid W, Fried LF, Heerspink HJ, Ix JH, Shlipak MG, Kimmel PL, Parikh CR, Grams ME. Longitudinal TNFR1 and TNFR2 and Kidney Outcomes: Results from AASK and VA NEPHRON-D. J Am Soc Nephrol 2022; 33:996-1010. [PMID: 35314457 PMCID: PMC9063900 DOI: 10.1681/asn.2021060735] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Higher baseline levels of soluble TNF receptors (TNFR1 and TNFR2) have been associated with progressive CKD. Whether longitudinal changes in these biomarkers of inflammation are also associated with worse kidney outcomes has been less studied. METHODS We evaluated associations of longitudinal changes in TNFR1 and TNFR2 with ESKD in the African American Study of Kidney Disease and Hypertension (AASK; 38% female; 0% diabetes) and kidney function decline (first occurrence of ≥30 ml/min per 1.73 m2 or ≥50% eGFR decline if randomization eGFR ≥60 or <60 ml/min per 1.73 m2, respectively; ESKD) in the Veterans Affairs Nephropathy in Diabetes trial (VA NEPHRON-D; 99% male; 100% diabetes) using Cox models. Biomarkers were measured from samples collected at 0-, 12-, and 24-month visits for AASK (serum) and 0- and 12-month visits for VA NEPHRON-D (plasma). Biomarker slopes (AASK) were estimated using linear mixed-effects models. Covariates included sociodemographic/clinical factors, baseline biomarker level, and kidney function. RESULTS There were 129 ESKD events over a median of 7.0 years in AASK (n=418) and 118 kidney function decline events over a median of 1.5 years in VA NEPHRON-D (n=754). In AASK, each 1 SD increase in TNFR1 and TNFR2 slope was associated with 2.98- and 1.87-fold higher risks of ESKD, respectively. In VA NEPHRON-D, each 1 SD increase in TNFR1 and TNFR2 was associated with 3.20- and 1.43-fold higher risks of kidney function decline, respectively. CONCLUSIONS Among individuals with and without diabetes, longitudinal increases in TNFR1 and TNFR2 were each associated with progressive CKD, independent of initial biomarker level and kidney function.
Collapse
Affiliation(s)
- Teresa K. Chen
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Steven G. Coca
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Michelle M. Estrella
- Kidney Health Research Collaborative and Division of Nephrology, Department of Medicine, University of California and San Francisco VA Health Care System, San Francisco, California
| | - Lawrence J. Appel
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Josef Coresh
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Wassim Obeid
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Linda F. Fried
- Renal Section, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
- Departments of Medicine, Epidemiology, and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Joachim H. Ix
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Michael G. Shlipak
- Kidney Health Research Collaborative and Division of Nephrology, Department of Medicine, University of California and San Francisco VA Health Care System, San Francisco, California
| | - Paul L. Kimmel
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Chirag R. Parikh
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Morgan E. Grams
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
74
|
Chen TK, Surapaneni AL, Arking DE, Ballantyne CM, Boerwinkle E, Chen J, Coresh J, Köttgen A, Susztak K, Tin A, Yu B, Grams ME. APOL1 Kidney Risk Variants and Proteomics. Clin J Am Soc Nephrol 2022; 17:684-692. [PMID: 35474272 PMCID: PMC9269576 DOI: 10.2215/cjn.14701121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/17/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVES The APOL1 risk variants (G1 and G2) are associated with kidney disease among Black adults, but the clinical presentation is heterogeneous. In mouse models and cell systems, increased gene expression of G1 and G2 confers cytotoxicity. How APOL1 risk variants relate to the circulating proteome warrants further investigation. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Among 461 African American Study of Kidney Disease and Hypertension (AASK) participants (mean age: 54 years; 41% women; mean GFR: 46 ml/min per 1.73 m2), we evaluated associations of APOL1 risk variants with 6790 serum proteins (measured via SOMAscan) using linear regression models. Covariates included age, sex, percentage of European ancestry, and protein principal components 1-5. Associated proteins were then evaluated as mediators of APOL1-associated risk for kidney failure. Findings were replicated among 875 Atherosclerosis Risk in Communities (ARIC) study Black participants (mean age: 75 years; 66% women; mean eGFR: 67 ml/min per 1.73 m2). RESULTS In the AASK study, having two (versus zero or one) APOL1 risk alleles was associated with lower serum levels of APOL1 (P=3.11E-13; P=3.12E-06 [two aptamers]), APOL2 (P=1.45E-10), CLSTN2 (P=2.66E-06), MMP-2 (P=2.96E-06), SPOCK2 (P=2.57E-05), and TIMP-2 (P=2.98E-05) proteins. In the ARIC study, APOL1 risk alleles were associated with APOL1 (P=1.28E-11); MMP-2 (P=0.004) and TIMP-2 (P=0.007) were associated only in an additive model, and APOL2 was not available. APOL1 high-risk status was associated with a 1.6-fold greater risk of kidney failure in the AASK study; none of the identified proteins mediated this association. APOL1 protein levels were not associated with kidney failure in either cohort. CONCLUSIONS APOL1 risk variants were strongly associated with lower circulating levels of APOL1 and other proteins, but none mediated the APOL1-associated risk for kidney failure. APOL1 protein level was also not associated with kidney failure.
Collapse
Affiliation(s)
- Teresa K. Chen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Aditya L. Surapaneni
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Jingsha Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Josef Coresh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Anna Köttgen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Data Driven Medicine, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Katalin Susztak
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Adrienne Tin
- Department of Medicine, The University of Mississippi Medical Center, Jackson, Mississippi
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Morgan E. Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Medicine, New York University Langone School of Medicine, New York, New York
| |
Collapse
|
75
|
Chun J, Riella CV, Chung H, Shah SS, Wang M, Magraner JM, Ribas GT, Ribas HT, Zhang JY, Alper SL, Friedman DJ, Pollak MR. DGAT2 Inhibition Potentiates Lipid Droplet Formation To Reduce Cytotoxicity in APOL1 Kidney Risk Variants. J Am Soc Nephrol 2022; 33:889-907. [PMID: 35232775 PMCID: PMC9063887 DOI: 10.1681/asn.2021050723] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/22/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Two variants in the gene encoding apolipoprotein L1 (APOL1) that are highly associated with African ancestry are major contributors to the large racial disparity in rates of human kidney disease. We previously demonstrated that recruitment of APOL1 risk variants G1 and G2 from the endoplasmic reticulum to lipid droplets leads to reduced APOL1-mediated cytotoxicity in human podocytes. METHODS We used CRISPR-Cas9 gene editing of induced pluripotent stem cells to develop human-derived APOL1G0/G0 and APOL1G2/G2 kidney organoids on an isogenic background, and performed bulk RNA sequencing of organoids before and after treatment with IFN-γ. We examined the number and distribution of lipid droplets in response to treatment with inhibitors of diacylglycerol O-acyltransferases 1 and 2 (DGAT1 and DGAT2) in kidney cells and organoids. RESULTS APOL1 was highly upregulated in response to IFN-γ in human kidney organoids, with greater increases in organoids of high-risk G1 and G2 genotypes compared with wild-type (G0) organoids. RNA sequencing of organoids revealed that high-risk APOL1G2/G2 organoids exhibited downregulation of a number of genes involved in lipogenesis and lipid droplet biogenesis, as well as upregulation of genes involved in fatty acid oxidation. There were fewer lipid droplets in unstimulated high-risk APOL1G2/G2 kidney organoids than in wild-type APOL1G0/G0 organoids. Whereas DGAT1 inhibition reduced kidney organoid lipid droplet number, DGAT2 inhibition unexpectedly increased organoid lipid droplet number. DGAT2 inhibition promoted the recruitment of APOL1 to lipid droplets, with associated reduction in cytotoxicity. CONCLUSIONS Lipogenesis and lipid droplet formation are important modulators of APOL1-associated cytotoxicity. Inhibition of DGAT2 may offer a potential therapeutic strategy to attenuate cytotoxic effects of APOL1 risk variants.
Collapse
Affiliation(s)
- Justin Chun
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Division of Nephrology, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Cristian V. Riella
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Hyunjae Chung
- Department of Medicine, Division of Nephrology, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Shrijal S. Shah
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Minxian Wang
- Cardiovascular Disease Initiative and the Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jose M. Magraner
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Guilherme T. Ribas
- Professional and Technological Education Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Hennrique T. Ribas
- Professional and Technological Education Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Jia-Yue Zhang
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Seth. L. Alper
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - David J. Friedman
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Martin R. Pollak
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
76
|
Harris DD, Fleishman A, Pavlakis M, Pollak MR, Baliga PK, Rohan V, Kayler LK, Rodrigue JR. Apolipoprotein L1 Opinions of African American Living Kidney Donors, Kidney Transplant Patients, and Nonpatients. J Surg Res 2022; 277:116-124. [PMID: 35489216 DOI: 10.1016/j.jss.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The discovery of apolipoprotein L1 (ApoL1) has raised important ethical and clinical questions about genetic testing in the context of living and deceased kidney donation. Largely missing from this discussion are the perspectives of those African Americans (AA) most likely to be impacted by ApoL1 testing. METHODS We surveyed 331 AA potential and former living kidney donors (LKDs), kidney transplant candidates and recipients, and nonpatients at three United States transplant programs about their ApoL1 testing attitudes. RESULTS Overall, 72% felt that transplant programs should offer ApoL1 testing to AA potential LKDs. If a potential LKD has the high-risk genotype, 79% felt that the LKD should be allowed to make their own donation decision or participate in shared decision-making with transplant doctors. More than half of the potential LKDs (58%) would undergo ApoL1 testing and 81% of former LKDs would take the test now if offered. Most transplant candidates expressed a low likelihood of accepting a kidney from a LKD (79%) or a deceased donor (67%) with the high-risk genotype. CONCLUSIONS There is strong support among LKDs and transplant patients for ApoL1 testing when evaluating potential kidney donors of African ancestry. Inclusion of AA stakeholders in developing guidelines and educational programs for ApoL1 testing is critical.
Collapse
Affiliation(s)
- Dwight D Harris
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Aaron Fleishman
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Martha Pavlakis
- Department of Surgery, Harvard Medical School, Boston, Massachusetts; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Martin R Pollak
- Department of Surgery, Harvard Medical School, Boston, Massachusetts; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Prabhakar K Baliga
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Vinayak Rohan
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Liise K Kayler
- Department of Surgery, University at Buffalo (SUNY) Jacobs School of Medicine & Biomedical Sciences and Erie County Medical Center, Buffalo, New York
| | - James R Rodrigue
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts; Department of Surgery, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
77
|
Nystrom SE, Li G, Datta S, Soldano K, Silas D, Weins A, Hall G, Thomas DB, Olabisi OA. JAK inhibitor blocks COVID-19-cytokine-induced JAK-STAT-APOL1 signaling in glomerular cells and podocytopathy in human kidney organoids. JCI Insight 2022; 7:157432. [PMID: 35472001 PMCID: PMC9220952 DOI: 10.1172/jci.insight.157432] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
COVID-19 infection causes collapse of glomerular capillaries and loss of podocytes, culminating in a severe kidney disease called COVID-19–associated nephropathy (COVAN). The underlying mechanism of COVAN is unknown. We hypothesized that cytokines induced by COVID-19 trigger expression of pathogenic APOL1 via JAK/STAT signaling, resulting in podocyte loss and COVAN phenotype. Here, based on 9 biopsy-proven COVAN cases, we demonstrated for the first time, to the best of our knowledge, that APOL1 protein was abundantly expressed in podocytes and glomerular endothelial cells (GECs) of COVAN kidneys but not in controls. Moreover, a majority of patients with COVAN carried 2 APOL1 risk alleles. We show that recombinant cytokines induced by SARS-CoV-2 acted synergistically to drive APOL1 expression through the JAK/STAT pathway in primary human podocytes, GECs, and kidney micro-organoids derived from a carrier of 2 APOL1 risk alleles, but expression was blocked by a JAK1/2 inhibitor, baricitinib. We demonstrate that cytokine-induced JAK/STAT/APOL1 signaling reduced the viability of kidney organoid podocytes but was rescued by baricitinib. Together, our results support the conclusion that COVID-19–induced cytokines are sufficient to drive COVAN-associated podocytopathy via JAK/STAT/APOL1 signaling and that JAK inhibitors could block this pathogenic process. These findings suggest JAK inhibitors may have therapeutic benefits for managing cytokine-induced, APOL1-mediated podocytopathy.
Collapse
Affiliation(s)
- Sarah E Nystrom
- Division of Nephrology, Duke University School of Medicine, Durham, United States of America
| | - Guojie Li
- Division of Nephrology, Duke University School of Medicine, Durham, United States of America
| | - Somenath Datta
- Division of Nephrology, Duke University School of Medicine, Durham, United States of America
| | - Karen Soldano
- Division of Nephrology, Duke University School of Medicine, Durham, United States of America
| | - Daniel Silas
- Division of Nephrology, Duke University School of Medicine, Durham, United States of America
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States of America
| | - Gentzon Hall
- Division of Nephrology, Duke University School of Medicine, Durham, United States of America
| | - David B Thomas
- Department of Pathology, Nephrocor, Memphis, United States of America
| | - Opeyemi A Olabisi
- Division of Nephrology, Duke University School of Medicine, Durham, United States of America
| |
Collapse
|
78
|
Yang YW, Poudel B, Frederick J, Dhillon P, Shrestha R, Ma Z, Wu J, Okamoto K, Kopp JB, Booten SL, Gattis D, Watt AT, Palmer M, Aghajan M, Susztak K. Antisense oligonucleotides ameliorate kidney dysfunction in podocyte specific APOL1 risk variant mice. Mol Ther 2022; 30:2491-2504. [PMID: 35450819 DOI: 10.1016/j.ymthe.2022.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022] Open
Abstract
Coding variants (named G1 and G2) in Apolipoprotein L1 (APOL1) can explain the most excess risk of kidney disease observed in African Americans. It has been proposed that risk variant APOL1 dose, such as increased risk variant APOL1 level serves as a trigger (second hit) for disease development. The goal of this study was to determine whether lowering risk variant APOL1 levels protects from disease development in podocyte specific transgenic mouse disease model. We administered antisense oligonucleotides (ASO) targeting APOL1 to podocyte specific G2APOL1 mice and observed efficient reduction of APOL1 levels. APOL1 ASO1, which more efficiently lowered APOL1 transcript levels, protected mice from albuminuria, glomerulosclerosis, tubulointerstitial fibrosis, and renal failure. The administration of APOL1 ASO1 was effective even for established disease in the NEFTA-rtTA/TRE-G2APOL1 (NEFTA/G2APOL1) mice. We observed a strong correlation between APOL1 transcript level and disease severity. We concluded that an APOL1 ASO1 may be an effective therapeutic approach for APOL1-associated glomerular disease.
Collapse
Affiliation(s)
- Ya-Wen Yang
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Bibek Poudel
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Julia Frederick
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Poonam Dhillon
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Rojesh Shrestha
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ziyuan Ma
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Junnan Wu
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Koji Okamoto
- Kidney Disease Section, NIDDK, NIH, Bethesda, MD, USA
| | | | | | | | | | - Matthew Palmer
- Department of Pathology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Katalin Susztak
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
79
|
Kaplan JM, Fullerton SM. Polygenic risk, population structure and ongoing difficulties with race in human genetics. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200427. [PMID: 35430888 PMCID: PMC9014185 DOI: 10.1098/rstb.2020.0427] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
‘The Apportionment of Human Diversity’ stands as a noteworthy intervention, both for the field of human population genetics as well as in the annals of public communication of science. Despite the widespread uptake of Lewontin's conclusion that racial classification is of ‘virtually no genetic or taxonomic significance’, the biomedical research community continues to grapple with whether and how best to account for race in its work. Nowhere is this struggle more apparent than in the latest attempts to translate genetic associations with complex disease risk to clinical use in the form of polygenic risk scores, or PRS. In this perspective piece, we trace current challenges surrounding the appropriate development and clinical application of PRS in diverse patient cohorts to ongoing difficulties deciding which facets of population structure matter, and for what reasons, to human health. Despite numerous analytical innovations, there are reasons that emerge from Lewontin's work to remain sceptical that accounting for population structure in the context of polygenic risk estimation will allow us to more effectively identify and intervene on the significant health disparities which plague marginalized populations around the world. This article is part of the theme issue ‘Celebrating 50 years since Lewontin's apportionment of human diversity’.
Collapse
Affiliation(s)
| | - Stephanie M. Fullerton
- Department of Bioethics and Humanities, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
80
|
Hung AM, Shah SC, Bick AG, Yu Z, Chen HC, Hunt CM, Wendt F, Wilson O, Greevy RA, Chung CP, Suzuki A, Ho YL, Akwo E, Polimanti R, Zhou J, Reaven P, Tsao PS, Gaziano JM, Huffman JE, Joseph J, Luoh SW, Iyengar S, Chang KM, Casas JP, Matheny ME, O’Donnell CJ, Cho K, Tao R, Susztak K, Robinson-Cohen C, Tuteja S, Siew ED. APOL1 Risk Variants, Acute Kidney Injury, and Death in Participants With African Ancestry Hospitalized With COVID-19 From the Million Veteran Program. JAMA Intern Med 2022; 182:386-395. [PMID: 35089317 PMCID: PMC8980930 DOI: 10.1001/jamainternmed.2021.8538] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/25/2021] [Indexed: 01/30/2023]
Abstract
IMPORTANCE Coronavirus disease 2019 (COVID-19) confers significant risk of acute kidney injury (AKI). Patients with COVID-19 with AKI have high mortality rates. OBJECTIVE Individuals with African ancestry with 2 copies of apolipoprotein L1 (APOL1) variants G1 or G2 (high-risk group) have significantly increased rates of kidney disease. We tested the hypothesis that the APOL1 high-risk group is associated with a higher-risk of COVID-19-associated AKI and death. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study included 990 participants with African ancestry enrolled in the Million Veteran Program who were hospitalized with COVID-19 between March 2020 and January 2021 with available genetic information. EXPOSURES The primary exposure was having 2 APOL1 risk variants (RV) (APOL1 high-risk group), compared with having 1 or 0 risk variants (APOL1 low-risk group). MAIN OUTCOMES AND MEASURES The primary outcome was AKI. The secondary outcomes were stages of AKI severity and death. Multivariable logistic regression analyses adjusted for preexisting comorbidities, medications, and inpatient AKI risk factors; 10 principal components of ancestry were performed to study these associations. We performed a subgroup analysis in individuals with normal kidney function prior to hospitalization (estimated glomerular filtration rate ≥60 mL/min/1.73 m2). RESULTS Of the 990 participants with African ancestry, 905 (91.4%) were male with a median (IQR) age of 68 (60-73) years. Overall, 392 (39.6%) patients developed AKI, 141 (14%) developed stages 2 or 3 AKI, 28 (3%) required dialysis, and 122 (12.3%) died. One hundred twenty-five (12.6%) of the participants were in the APOL1 high-risk group. Patients categorized as APOL1 high-risk group had significantly higher odds of AKI (adjusted odds ratio [OR], 1.95; 95% CI, 1.27-3.02; P = .002), higher AKI severity stages (OR, 2.03; 95% CI, 1.37-2.99; P < .001), and death (OR, 2.15; 95% CI, 1.22-3.72; P = .007). The association with AKI persisted in the subgroup with normal kidney function (OR, 1.93; 95% CI, 1.15-3.26; P = .01). Data analysis was conducted between February 2021 and April 2021. CONCLUSIONS AND RELEVANCE In this cohort study of veterans with African ancestry hospitalized with COVID-19 infection, APOL1 kidney risk variants were associated with higher odds of AKI, AKI severity, and death, even among individuals with prior normal kidney function.
Collapse
Affiliation(s)
- Adriana M. Hung
- Tennessee Valley Healthcare System, Nashville Campus, Nashville
- Division of Nephrology & Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shailja C. Shah
- GI Section, VA San Diego Healthcare System, San Diego, California
- Division of Gastroenterology, University of California, San Diego, San Diego
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zhihong Yu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine M. Hunt
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina
- VA Cooperative Studies Program Epidemiology Center, Durham VA Health Care System, Durham, North Carolina
| | - Frank Wendt
- Department of Psychiatry, Yale University School of Medicine, West Haven, Connecticut
- VA CT Healthcare Center, West Haven, Connecticut
| | - Otis Wilson
- Division of Nephrology & Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert A. Greevy
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cecilia P. Chung
- Division of Rheumatology and Division of Clinical Pharmacology, Vanderbilt University Medical Center, Rheumatology Section, Veterans Affairs, Nashville, Tennessee
| | - Ayako Suzuki
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina
- VA Cooperative Studies Program Epidemiology Center, Durham VA Health Care System, Durham, North Carolina
| | - Yuk-Lam Ho
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston
| | - Elvis Akwo
- Division of Nephrology & Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, Connecticut
- VA CT Healthcare Center, West Haven, Connecticut
| | - Jin Zhou
- Department of Epidemiology and Biostatistics, University of Arizona, Phoenix
- Phoenix VA Health Care System, Phoenix, Arizona
| | - Peter Reaven
- Phoenix VA Health Care System, Phoenix, Arizona
- Division of Endocrinology, Department of Medicine, University of Arizona, Phoenix
| | - Philip S. Tsao
- Epidemiology Research and Information Center (ERIC), VA Palo Alto Health Care System, Palo Alto, California
- Department of Medicine, Stanford University School of Medicine, Palo Alto, California
| | - J. Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston
- Division of Aging, Brigham & Women’s Hospital, Boston, Massachusetts
| | - Jennifer E. Huffman
- Center for Population Genomics, Massachusetts Veterans Epidemiology Research & Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts
| | - Jacob Joseph
- Cardiology Section, Veterans Affairs Boston, Boston, Massachusetts
- Division of Cardiovascular Medicine, Brigham & Women’s Hospital, Boston, Massachusetts
| | - Shiuh-Wen Luoh
- VA Portland Health Care System, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland
| | - Sudha Iyengar
- Department of Population and Quantitative Health Sciences, Case Western Reserve University and Louis Stoke, Cleveland VA, Cleveland, Ohio
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| | - Kyong-Mi Chang
- The Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
| | - Juan P. Casas
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston
- Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts
| | - Michael E. Matheny
- Departments of Biomedical Informatics, Biostatistics, and Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- GREEC, TVHS VA, Nashville, Tennessee
| | - Christopher J. O’Donnell
- Cardiology, VA Boston Healthcare System, Boston, Massachusetts
- Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Novartis
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston
- Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Cassianne Robinson-Cohen
- Division of Nephrology & Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sony Tuteja
- The Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edward D. Siew
- Division of Nephrology & Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Tennessee Valley Healthcare System, Nashville VA Medical Center, Nashville, Tennessee
| |
Collapse
|
81
|
Caliskan Y, Lee B, Whelan AM, Abualrub F, Lentine KL, Jittirat A. Evaluation of Genetic Kidney Diseases in Living Donor Kidney Transplantation: Towards Precision Genomic Medicine in Donor Risk Assessment. CURRENT TRANSPLANTATION REPORTS 2022; 9:127-142. [DOI: 10.1007/s40472-021-00340-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Purpose of Review
To provide a comprehensive update on the role of genetic testing for the evaluation of kidney transplant recipient and living donor candidates.
Recent Findings
The evaluation of candidates for living donor transplantation and their potential donors occurs within an ever-changing landscape impacted by new evidence and risk assessment techniques. Criteria that were once considered contraindications to living kidney donation are now viewed as standard of care, while new tools identify novel risk markers that were unrecognized in past decades. Recent work suggests that nearly 10% of a cohort of patients with chronic/end-stage kidney disease had an identifiable genetic etiology, many whose original cause of renal disease was either unknown or misdiagnosed. Some also had an incidentally found genetic variant, unrelated to their nephropathy, but medically actionable. These patterns illustrate the substantial potential for genetic testing to better guide the selection of living donors and recipients, but guidance on the proper application and interpretation of novel technologies is in its infancy. In this review, we examine the utility of genetic testing in various kidney conditions, and discuss risks and unresolved challenges. Suggested algorithms in the context of related and unrelated donation are offered.
Summary
Genetic testing is a rapidly evolving strategy for the evaluation of candidates for living donor transplantation and their potential donors that has potential to improve risk assessment and optimize the safety of donation.
Collapse
|
82
|
Daneshpajouhnejad P, Kopp JB, Winkler CA, Rosenberg AZ. The evolving story of apolipoprotein L1 nephropathy: the end of the beginning. Nat Rev Nephrol 2022; 18:307-320. [PMID: 35217848 PMCID: PMC8877744 DOI: 10.1038/s41581-022-00538-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 01/13/2023]
Abstract
Genetic coding variants in APOL1, which encodes apolipoprotein L1 (APOL1), were identified in 2010 and are relatively common among individuals of sub-Saharan African ancestry. Approximately 13% of African Americans carry two APOL1 risk alleles. These variants, termed G1 and G2, are a frequent cause of kidney disease — termed APOL1 nephropathy — that typically manifests as focal segmental glomerulosclerosis and the clinical syndrome of hypertension and arterionephrosclerosis. Cell culture studies suggest that APOL1 variants cause cell dysfunction through several processes, including alterations in cation channel activity, inflammasome activation, increased endoplasmic reticulum stress, activation of protein kinase R, mitochondrial dysfunction and disruption of APOL1 ubiquitinylation. Risk of APOL1 nephropathy is mostly confined to individuals with two APOL1 risk variants. However, only a minority of individuals with two APOL1 risk alleles develop kidney disease, suggesting the need for a ‘second hit’. The best recognized factor responsible for this ‘second hit’ is a chronic viral infection, particularly HIV-1, resulting in interferon-mediated activation of the APOL1 promoter, although most individuals with APOL1 nephropathy do not have an obvious cofactor. Current therapies for APOL1 nephropathies are not adequate to halt progression of chronic kidney disease, and new targeted molecular therapies are in clinical trials. This Review summarizes current understanding of the role of APOL1 variants in kidney disease. The authors discuss the genetics, protein structure and biological functions of APOL1 variants and provide an overview of promising therapeutic strategies. In contrast to other APOL family members, which are primarily intracellular, APOL1 contains a unique secretory signal peptide, resulting in its secretion into plasma. APOL1 renal risk alleles provide protection from African human trypanosomiasis but are a risk factor for progressive kidney disease in those carrying two risk alleles. APOL1 risk allele frequency is ~35% in the African American population in the United States, with ~13% of individuals having two risk alleles; the highest allele frequencies are found in West African populations and their descendants. Cell and mouse models implicate endolysosomal and mitochondrial dysfunction, altered ion channel activity, altered autophagy, and activation of protein kinase R in the pathogenesis of APOL1-associated kidney disease; however, the relevance of these injury pathways to human disease has not been resolved. APOL1 kidney disease tends to be progressive, and current standard therapies are generally ineffective; targeted therapeutic strategies hold the most promise.
Collapse
Affiliation(s)
- Parnaz Daneshpajouhnejad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Pennsylvania Hospital, Philadelphia, PA, USA
| | | | - Cheryl A Winkler
- Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
83
|
Piras D, Lepori N, Cabiddu G, Pani A. How Genetics Can Improve Clinical Practice in Chronic Kidney Disease: From Bench to Bedside. J Pers Med 2022; 12:jpm12020193. [PMID: 35207681 PMCID: PMC8875178 DOI: 10.3390/jpm12020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Chronic kidney disease (CKD) is considered a major global health problem with high socio-economic costs: the risk of CKD in individuals with an affected first degree relative has been found to be three times higher than in the general population. Genetic factors are known to be involved in CKD pathogenesis, both due to the possible presence of monogenic pathologies as causes of CKD, and to the role of numerous gene variants in determining susceptibility to the development of CKD. The genetic study of CKD patients can represent a useful tool in the hands of the clinician; not only in the diagnostic and prognostic field, but potentially also in guiding therapeutic choices and in designing clinical trials. In this review we discuss the various aspects of the role of genetic analysis on clinical management of patients with CKD with a focus on clinical applications. Several topics are discussed in an effort to provide useful information for daily clinical practice: definition of susceptibility to the development of CKD, identification of unrecognized monogenic diseases, reclassification of the etiological diagnosis, role of pharmacogenetics.
Collapse
Affiliation(s)
- Doloretta Piras
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Correspondence:
| | - Nicola Lepori
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
| | - Gianfranca Cabiddu
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09134 Cagliari, Italy
| | - Antonello Pani
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09134 Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerce (CNR), 09042 Monserrato, Italy
| |
Collapse
|
84
|
Comparative Analysis of the APOL1 Variants in the Genetic Landscape of Renal Carcinoma Cells. Cancers (Basel) 2022; 14:cancers14030733. [PMID: 35159001 PMCID: PMC8833631 DOI: 10.3390/cancers14030733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Renal cell carcinoma (RCC) occurs at higher frequency in individuals of African ancestry, with well-recorded documentation in this community. This is most prominent in the context of chronic kidney disease. In turn, many forms of progressive chronic kidney disease are more common in populations of Sub-Saharan African ancestry. This disparity has been attributed to well-defined allelic variants and has risen in the parental populations to high frequency under evolutionary pressure. Mechanisms of increased kidney disease risk and cell injury, causally associated with these APOL1 gene variants, have been extensively studied. Most studies have compared the effects of ectopic overexpression of the parental non-risk APOL1 with the mutated risk variants in cellular and organismal platforms. In the current study, we have used CRISPR/Cas9 genetic engineering to knock out or modify the sequence of endogenous APOL1 in RCC to mimic and examine the effects of these naturally occurring kidney disease risk allelic variants. Remarkably, these modifications to endogenous APOL1 genes in RCC resulted in a set of prominent effects on mitochondrial integrity and metabolic pathways and disrupted tumorigenesis. These findings both clarify pathways of cell injury of APOL1 risk variants in cells of kidney origin and motivate further studies to examine the potential central role of APOL1 in the pathogenesis of renal cell carcinoma and its relation to chronic kidney disease in genotypically at-risk African ancestry individuals. Abstract Although the relative risk of renal cell carcinoma associated with chronic kidney injury is particularly high among sub-Saharan African ancestry populations, it is unclear yet whether the APOL1 gene risk variants (RV) for kidney disease additionally elevate this risk. APOL1 G1 and G2 RV contribute to increased risk for kidney disease in black populations, although the disease mechanism has still not been fully deciphered. While high expression levels of all three APOL1 allelic variants, G0 (the wild type allele), G1, and G2 are injurious to normal human cells, renal carcinoma cells (RCC) naturally tolerate inherent high expression levels of APOL1. We utilized CRISPR/Cas9 gene editing to generate isogenic RCC clones expressing APOL1 G1 or G2 risk variants on a similar genetic background, thus enabling a reliable comparison between the phenotypes elicited in RCC by each of the APOL1 variants. Here, we demonstrate that knocking in the G1 or G2 APOL1 alleles, or complete elimination of APOL1 expression, has major effects on proliferation capacity, mitochondrial morphology, cell metabolism, autophagy levels, and the tumorigenic potential of RCC cells. The most striking effect of the APOL1 RV effect was demonstrated in vivo by the complete abolishment of tumor growth in immunodeficient mice. Our findings suggest that, in contrast to the WT APOL1 variant, APOL1 RV are toxic for RCC cells and may act to suppress cancer cell growth. We conclude that the inherent expression of non-risk APOL1 G0 is required for RCC tumorigenicity. RCC cancer cells can hardly tolerate increased APOL1 risk variants expression levels as opposed to APOL1 G0.
Collapse
|
85
|
Kruzel-Davila E, Bavli-Kertselli I, Ofir A, Cheatham AM, Shemer R, Zaknoun E, Chornyy S, Tabachnikov O, Davis SE, Khatua AK, Skorecki K, Popik W. Endoplasmic reticulum-translocation is essential for APOL1 cellular toxicity. iScience 2022; 25:103717. [PMID: 35072009 PMCID: PMC8762391 DOI: 10.1016/j.isci.2021.103717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022] Open
Abstract
Two variants at the APOL1 gene, encoding apolipoprotein L1, account for more than 70% of the increased risk for chronic kidney disease in individuals of African ancestry. While the initiating event for APOL1 risk variant cell injury remains to be clarified, we explored the possibility of blocking APOL1 toxicity at a more upstream level. We demonstrate that deletion of the first six amino acids of exon 4 abrogates APOL1 cytotoxicity by impairing APOL1 translocation to the lumen of ER and splicing of the signal peptide. Likewise, in orthologous systems, APOL1 lethality was partially abrogated in yeast strains and flies with reduced dosage of genes encoding ER translocon proteins. An inhibitor of ER to Golgi trafficking reduced lethality as well. We suggest that targeting the MSALFL sequence or exon 4 skipping may serve as potential therapeutic approaches to mitigate the risk of CKD caused by APOL1 renal risk variants.
Collapse
Affiliation(s)
- Etty Kruzel-Davila
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | | | - Ayala Ofir
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel
| | - Amber M. Cheatham
- Meharry Medical College, Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, 1005 D. B. Todd Boulevard, Nashville, TN 37028, USA
| | - Revital Shemer
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Eid Zaknoun
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Sergiy Chornyy
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Orly Tabachnikov
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel
| | - Shamara E. Davis
- Meharry Medical College, Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, 1005 D. B. Todd Boulevard, Nashville, TN 37028, USA
| | - Atanu K. Khatua
- Meharry Medical College, Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, 1005 D. B. Todd Boulevard, Nashville, TN 37028, USA
| | - Karl Skorecki
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Waldemar Popik
- Meharry Medical College, Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, 1005 D. B. Todd Boulevard, Nashville, TN 37028, USA
- Department of Internal Medicine, 1005 D. B. Todd Boulevard, Nashville, TN 37028, USA
| |
Collapse
|
86
|
Dhande IS, Braun MC, Doris PA. Emerging Insights Into Chronic Renal Disease Pathogenesis in Hypertension From Human and Animal Genomic Studies. Hypertension 2021; 78:1689-1700. [PMID: 34757770 PMCID: PMC8577298 DOI: 10.1161/hypertensionaha.121.18112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The pathogenic links between elevated blood pressure and chronic kidney disease remain obscure. This article examines progress in population genetics and in animal models of hypertension and chronic kidney disease. It also provides a critique of the application of genome-wide association studies to understanding the heritability of renal function. Emerging themes identified indicate that heritable risk of chronic kidney disease in hypertension can arise from genetic variation in (1) glomerular and tubular protein handling mechanisms; (2) autoregulatory capacity of the renal vasculature; and (3) innate and adaptive immune mechanisms. Increased prevalence of hypertension-associated chronic kidney disease that occurs with aging may reflect amplification of heritable risks by normal aging processes affecting immunity and autoregulation.
Collapse
Affiliation(s)
- Isha S. Dhande
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas HSC, Houston (I.S.D., P.A.D.)
| | - Michael C. Braun
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston (M.C.B.)
| | - Peter A. Doris
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas HSC, Houston (I.S.D., P.A.D.)
| |
Collapse
|
87
|
Larsen CP, Wickman TJ, Braga JR, Matute-Trochez LA, Hasty AE, Buckner LR, Arthur JM, Haun RS, Velez JCQ. APOL1 Risk Variants and Acute Kidney Injury in Black Americans with COVID-19. Clin J Am Soc Nephrol 2021; 16:1790-1796. [PMID: 36630401 PMCID: PMC8729502 DOI: 10.2215/cjn.01070121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND OBJECTIVES Black Americans have a higher incidence of kidney disease compared with populations that do not have recent African ancestry. Two risk variants in the APOL1 are responsible for a portion of this higher risk. We sought to assess the odds of AKI conferred by APOL1 risk alleles in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Black Americans who tested positive for coronavirus disease 2019 (COVID-19) were genotyped to determine APOL1 risk allele status. We assessed the incidence of AKI, persistent AKI, and AKI requiring KRT within 21 days of the PCR-based diagnosis. Outcomes were adjusted for age, sex, body mass index, hypertension, eGFR, and use of angiotensin-converting enzyme inhibitor/angiotensin receptor blocker. RESULTS In total, 126 cases of SARS-CoV-2 infection were included within a 5-month period, with 16 (13%) and 110 (87%) cases with two and zero/one APOL1 high-risk alleles, respectively. AKI occurred in 11 (69%) patients with two APOL1 high-risk alleles and 39 (35%) patients with zero/one high-risk alleles (adjusted odds ratio, 4.41; 95% confidence interval, 1.11 to 17.52; P=0.04). Persistent AKI occurred in eight (50%) patients with two APOL1 high-risk alleles and 21 (19%) of those with zero/one high-risk alleles (adjusted odds ratio, 3.53; 95% confidence interval, 1.8 to 11.57; P=0.04). AKI KRT occurred in four (25%) of those with two APOL1 high-risk alleles and eight (7%) of those with zero/one high-risk alleles (adjusted odds ratio, 4.99; 95% confidence interval, 1.02 to 24.4, P=0.05). CONCLUSIONS APOL1 high-risk alleles are associated with greater odds of AKI in Black American patients with COVID-19.
Collapse
Affiliation(s)
| | | | - Juarez R Braga
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Anna E Hasty
- Department of Nephrology, Ochsner Health, New Orleans, Louisiana
| | - Lyndsey R Buckner
- Ochsner Biorepository Unit, Department of Research, Ochsner Health System, New Orleans, Louisiana
| | - John M Arthur
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Juan Carlos Q Velez
- Department of Nephrology, Ochsner Health, New Orleans, Louisiana
- Ochsner Clinical School/The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
88
|
Wu J, Ma Z, Raman A, Beckerman P, Dhillon P, Mukhi D, Palmer M, Chen HC, Cohen CR, Dunn T, Reilly J, Meyer N, Shashaty M, Arany Z, Haskó G, Laudanski K, Hung A, Susztak K. APOL1 risk variants in individuals of African genetic ancestry drive endothelial cell defects that exacerbate sepsis. Immunity 2021; 54:2632-2649.e6. [PMID: 34715018 PMCID: PMC9338439 DOI: 10.1016/j.immuni.2021.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/18/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022]
Abstract
The incidence and severity of sepsis is higher among individuals of African versus European ancestry. We found that genetic risk variants (RVs) in the trypanolytic factor apolipoprotein L1 (APOL1), present only in individuals of African ancestry, were associated with increased sepsis incidence and severity. Serum APOL1 levels correlated with sepsis and COVID-19 severity, and single-cell sequencing in human kidneys revealed high expression of APOL1 in endothelial cells. Analysis of mice with endothelial-specific expression of RV APOL1 and in vitro studies demonstrated that RV APOL1 interfered with mitophagy, leading to cytosolic release of mitochondrial DNA and activation of the inflammasome (NLRP3) and the cytosolic nucleotide sensing pathways (STING). Genetic deletion or pharmacological inhibition of NLRP3 and STING protected mice from RV APOL1-induced permeability defects and proinflammatory endothelial changes in sepsis. Our studies identify the inflammasome and STING pathways as potential targets to reduce APOL1-associated health disparities in sepsis and COVID-19.
Collapse
Affiliation(s)
- Junnan Wu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ziyuan Ma
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Archana Raman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Pazit Beckerman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Poonam Dhillon
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew Palmer
- Department of Pathology and Laboratory Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hua Chang Chen
- Division of Nephrology & Hypertension, Tennessee Valley Healthcare System, Nashville Campus and Vanderbilt University Medical Centre, Nashville, TN, USA; Division of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cassiane Robinson Cohen
- Division of Nephrology & Hypertension, Tennessee Valley Healthcare System, Nashville Campus and Vanderbilt University Medical Centre, Nashville, TN, USA; Division of Nephrology & Hypertension, Vanderbilt Precision Nephrology Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas Dunn
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Reilly
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nuala Meyer
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Shashaty
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adriana Hung
- Division of Nephrology & Hypertension, Tennessee Valley Healthcare System, Nashville Campus and Vanderbilt University Medical Centre, Nashville, TN, USA; Division of Nephrology & Hypertension, Vanderbilt Precision Nephrology Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
89
|
Govender MA, Brandenburg JT, Fabian J, Ramsay M. The Use of 'Omics for Diagnosing and Predicting Progression of Chronic Kidney Disease: A Scoping Review. Front Genet 2021; 12:682929. [PMID: 34819944 PMCID: PMC8606569 DOI: 10.3389/fgene.2021.682929] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Globally, chronic kidney disease (CKD) contributes substantial morbidity and mortality. Recently, various 'omics platforms have provided insight into the molecular basis of kidney dysfunction. This scoping review is a synthesis of the current literature on the use of different 'omics platforms to identify biomarkers that could be used to detect early-stage CKD, predict disease progression, and identify pathways leading to CKD. This review includes 123 articles published from January 2007 to May 2021, following a structured selection process. The most common type of 'omic platform was proteomics, appearing in 55 of the studies and two of these included a metabolomics component. Most studies (n = 91) reported on CKD associated with diabetes mellitus. Thirteen studies that provided information on the biomarkers associated with CKD and explored potential pathways involved in CKD are discussed. The biomarkers that are associated with risk or early detection of CKD are SNPs in the MYH9/APOL1 and UMOD genes, the proteomic CKD273 biomarker panel and metabolite pantothenic acid. Pantothenic acid and the CKD273 biomarker panel were also involved in predicting CKD progression. Retinoic acid pathway genes, UMOD, and pantothenic acid provided insight into potential pathways leading to CKD. The biomarkers were mainly used to detect CKD and predict progression in high-income, European ancestry populations, highlighting the need for representative 'omics research in other populations with disparate socio-economic strata, including Africans, since disease etiologies may differ across ethnic groups. To assess the transferability of findings, it is essential to do research in diverse populations.
Collapse
Affiliation(s)
- Melanie A. Govender
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - June Fabian
- Wits Donald Gordon Medical Centre, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
90
|
Young BA, Wilson JG, Reiner A, Kestenbaum B, Franceschini N, Bansal N, Correa A, Himmelfarb J, Katz R. APOL1, Sickle Cell Trait, and CKD in the Jackson Heart Study. Kidney Med 2021; 3:962-973.e1. [PMID: 34939005 PMCID: PMC8664705 DOI: 10.1016/j.xkme.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
RATIONALE & OBJECTIVE Apolipoprotein L1 (APOL1) high-risk variants are associated with an increased risk for chronic kidney disease (CKD) among African Americans. Less is known regarding the risk for the development of CKD and kidney failure (end-stage kidney disease [ESKD]) among African Americans with only 1 APOL1 risk variant or whether the risk is modified by sickle cell trait. STUDY DESIGN The Jackson Heart Study is a community-based longitudinal cohort study. SETTING & PARTICIPANTS Self-reported African Americans in the Jackson Heart Study (n = 5,306). EXPOSURES APOL1 G1 and G2 genotypes and sickle cell trait. OUTCOMES Incident CKD (estimated glomerular filtration rate < 60 mL/min/1.73 m2), albuminuria (urinary albumin-creatinine ratio ≥ 30 mg/g), continuous and rapid kidney function decline (≥30% decline), and incident ESKD. ANALYTICAL APPROACH Multivariable linear and logistic regression, and Cox proportional hazards models adjusted for age, sex, hypertension, diabetes, ancestry informative markers, and sickle cell trait. RESULTS Of 2,300 participants, 41.3% had zero, 45.1% had 1, and 13.6% had 2 APOL1 risk variants. Sickle cell trait was present in 8.5%. Compared with participants with zero APOL1 risk variants, those with 2 alleles had an increased risk for incident albuminuria (adjusted HR [aHR], 1.88; 95% CI, 1.04 to 3.40), ESKD (aHR, 9.05; 95% CI, 1.79 to 45.85), incident CKD (aHR, 1.65; 95% CI, 1.06 to 2.57), continuous decline (β = -1.90; 95% CI, -3.35 to -0.45), and rapid kidney function decline (OR, 2.21; 95% CI, 1.22 to 4.00) after adjustment for sickle cell trait, with similar results after adjustment for ancestry informative markers. Having 1 APOL1 risk variant was not associated with CKD outcomes and there was no interaction of APOL1 with sickle cell trait. LIMITATIONS Single-site recruitment of African American individuals with APOL1 and sickle cell trait. CONCLUSIONS The presence of 1 APOL1 risk allele was not associated with increased risk for CKD outcomes, whereas 2 risk alleles were associated with incident albuminuria, CKD, ESKD, and rapid and continuous kidney function decline. Additional studies are needed to determine factors that might alter the risk for adverse kidney outcomes among individuals with high-risk APOL1 genotypes.
Collapse
Affiliation(s)
- Bessie A. Young
- UW Office of Healthcare Equity, Justice, Equity, Diversity, and Inclusion Center for Transformational Research (UW JEDI-CTR), University of Washington, Seattle WA
- Nephrology Section, Hospital and Specialty Medicine, Center for Innovation, Veterans Affairs Puget Sound Health Care System, Seattle WA
- Kidney Research Institute, University of Washington, Seattle, WA
- Division of Nephrology, University of Washington, Seattle, WA
| | - James G. Wilson
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Alex Reiner
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Bryan Kestenbaum
- Kidney Research Institute, University of Washington, Seattle, WA
- Division of Nephrology, University of Washington, Seattle, WA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
| | - Nisha Bansal
- Kidney Research Institute, University of Washington, Seattle, WA
- Division of Nephrology, University of Washington, Seattle, WA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Jonathan Himmelfarb
- Kidney Research Institute, University of Washington, Seattle, WA
- Division of Nephrology, University of Washington, Seattle, WA
| | - Ronit Katz
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| |
Collapse
|
91
|
Müller D, Schmitz J, Fischer K, Granado D, Groh AC, Krausel V, Lüttgenau SM, Amelung TM, Pavenstädt H, Weide T. Evolution of Renal-Disease Factor APOL1 Results in Cis and Trans Orientations at the Endoplasmic Reticulum That Both Show Cytotoxic Effects. Mol Biol Evol 2021; 38:4962-4976. [PMID: 34323996 PMCID: PMC8557400 DOI: 10.1093/molbev/msab220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The recent and exclusively in humans and a few other higher primates expressed APOL1 (apolipoprotein L1) gene is linked to African human trypanosomiasis (also known as African sleeping sickness) as well as to different forms of kidney diseases. Whereas APOL1's role as a trypanolytic factor is well established, pathobiological mechanisms explaining its cytotoxicity in renal cells remain unclear. In this study, we compared the APOL family members using a combination of evolutionary studies and cell biological experiments to detect unique features causal for APOL1 nephrotoxic effects. We investigated available primate and mouse genome and transcriptome data to apply comparative phylogenetic and maximum likelihood selection analyses. We suggest that the APOL gene family evolved early in vertebrates and initial splitting occurred in ancestral mammals. Diversification and differentiation of functional domains continued in primates, including developing the two members APOL1 and APOL2. Their close relationship could be diagnosed by sequence similarity and a shared ancestral insertion of an AluY transposable element. Live-cell imaging analyses showed that both expressed proteins show a strong preference to localize at the endoplasmic reticulum (ER). However, glycosylation and secretion assays revealed that-unlike APOL2-APOL1 membrane insertion or association occurs in different orientations at the ER, with the disease-associated mutants facing either the luminal (cis) or cytoplasmic (trans) side of the ER. The various pools of APOL1 at the ER offer a novel perspective in explaining the broad spectrum of its observed toxic effects.
Collapse
Affiliation(s)
- Daria Müller
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany
| | - Katharina Fischer
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Daniel Granado
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Ann-Christin Groh
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Vanessa Krausel
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Simona Mareike Lüttgenau
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Till Maximilian Amelung
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Hermann Pavenstädt
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Thomas Weide
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| |
Collapse
|
92
|
Smith P, Bramham K. APOL1 genotypes: Do they contribute to ethnicity-associated biological health inequalities in pregnancy? Obstet Med 2021; 15:238-242. [DOI: 10.1177/1753495x211043750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Inferior health outcomes for people of African and Afro-Caribbean ancestry compared to those of European ancestry are well recognised. There is a disproportionate impact within these communities compared to other ethnic groups including pregnancy outcomes, hypertension, kidney disease and diabetes. The ‘Black Lives Matter’ movement has highlighted that it is imperative to examine all factors contributing to this inequity and to strive to explore multifaceted ways, including social, economic, psychological and biological to improve overall health equity. It is within this context that we discuss the novel finding of Apolipoprotein 1 genetic polymorphisms which have been identified in some populations of African ancestry. We will explore the history and evolutionary advantages of Apolipoprotein 1 polymorphisms and the pathophysiology resulting from these adaptations and examine the impact of Apolipoprotein 1 on pregnancy outcomes, the risks and benefits of screening for high-risk Apolipoprotein 1 alleles in black communities and potential treatments currently being investigated.
Collapse
Affiliation(s)
- Priscilla Smith
- King’s Kidney Care, King’s College Hospital NHS Foundation Trust, London, UK
| | - Kate Bramham
- Department of Women and Children’s Health, King’s College London, London, UK
| |
Collapse
|
93
|
Guha A, Wang X, Harris RA, Nelson AG, Stepp D, Klaassen Z, Raval P, Cortes J, Coughlin SS, Bogdanov VY, Moore JX, Desai N, Miller DD, Lu XY, Kim HW, Weintraub NL. Obesity and the Bidirectional Risk of Cancer and Cardiovascular Diseases in African Americans: Disparity vs. Ancestry. Front Cardiovasc Med 2021; 8:761488. [PMID: 34733899 PMCID: PMC8558482 DOI: 10.3389/fcvm.2021.761488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular disease (CVD) and cancer often occur in the same individuals, in part due to the shared risk factors such as obesity. Obesity promotes adipose inflammation, which is pathogenically linked to both cardiovascular disease and cancer. Compared with Caucasians, the prevalence of obesity is significantly higher in African Americans (AA), who exhibit more pronounced inflammation and, in turn, suffer from a higher burden of CVD and cancer-related mortality. The mechanisms that underlie this association among obesity, inflammation, and the bidirectional risk of CVD and cancer, particularly in AA, remain to be determined. Socio-economic disparities such as lack of access to healthy and affordable food may promote obesity and exacerbate hypertension and other CVD risk factors in AA. In turn, the resulting pro-inflammatory milieu contributes to the higher burden of CVD and cancer in AA. Additionally, biological factors that regulate systemic inflammation may be contributory. Mutations in atypical chemokine receptor 1 (ACKR1), otherwise known as the Duffy antigen receptor for chemokines (DARC), confer protection against malaria. Many AAs carry a mutation in the gene encoding this receptor, resulting in loss of its expression. ACKR1 functions as a decoy chemokine receptor, thus dampening chemokine receptor activation and inflammation. Published and preliminary data in humans and mice genetically deficient in ACKR1 suggest that this common gene mutation may contribute to ethnic susceptibility to obesity-related disease, CVD, and cancer. In this narrative review, we present the evidence regarding obesity-related disparities in the bidirectional risk of CVD and cancer and also discuss the potential association of gene polymorphisms in AAs with emphasis on ACKR1.
Collapse
Affiliation(s)
- Avirup Guha
- Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, OH, United States
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Xiaoling Wang
- Georgia Prevention Institute, Augusta University, Augusta, GA, United States
| | - Ryan A. Harris
- Georgia Prevention Institute, Augusta University, Augusta, GA, United States
| | - Anna-Gay Nelson
- Department of Chemistry, Paine College, Augusta, GA, United States
| | - David Stepp
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Zachary Klaassen
- Section of Urology, Department of Surgery, Medical College of Georgia at Augusta University, Georgia Cancer Center, Augusta, GA, United States
| | - Priyanka Raval
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Jorge Cortes
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Steven S. Coughlin
- Department of Population Health Sciences, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | | | - Justin X. Moore
- Cancer Prevention, Control, and Population Health Program, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Nihar Desai
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Center for Outcomes Research and Evaluation, New Haven, CT, United States
| | - D. Douglas Miller
- Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Ha Won Kim
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Neal L. Weintraub
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
94
|
Masimango MI, Jadoul M, Binns-Roemer EA, David VA, Sumaili EK, Winkler CA, Limou S. APOL1 Renal Risk Variants and Sickle Cell Trait Associations With Reduced Kidney Function in a Large Congolese Population-Based Study. Kidney Int Rep 2021; 7:474-482. [PMID: 35257060 PMCID: PMC8897685 DOI: 10.1016/j.ekir.2021.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
Affiliation(s)
- Mannix Imani Masimango
- Department of Internal Medicine, Hôpital Provincial Général de Référence de Bukavu, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
- Department of Nephrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Michel Jadoul
- Department of Nephrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Elizabeth A. Binns-Roemer
- Basic Science Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Victor A. David
- Basic Science Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Ernest Kiswaya Sumaili
- Department of Nephrology, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Cheryl A. Winkler
- Basic Science Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Sophie Limou
- Basic Science Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, USA
- Institute for Transplantation in Urology-Nephrology, Centre de Recherche en Transplantation et Immunologie, UMR1064, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Nantes, France
- Ecole Centrale de Nantes, Computer sciences and Mathematics in Biology Department, Nantes, France
- Correspondence: Sophie Limou, Centre de Recherche en Transplantation et Immunologie, Institut National de la Santé et de la Recherche Médicale, UMR1064 - Team 5, 30 bd Jean Monnet, 44093 Nantes Cedex 1, France.
| |
Collapse
|
95
|
Zheng F, Xu H, Huang S, Zhang C, Li S, Wang K, Dai W, Zhang X, Tang D, Dai Y. The Landscape and Potential Regulatory Mechanism of Lysine 2-Hydroxyisobutyrylation of Protein in End-Stage Renal Disease. Nephron Clin Pract 2021; 145:760-769. [PMID: 34515164 DOI: 10.1159/000518424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/07/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acetylation has a vital role in the pathogenesis of end-stage renal disease (ESRD). Lysine 2-hydroxyisobutyrylation (Khib) is a novel type of acetylation. In this study, we aimed to reveal the key features of Khib in peripheral blood monocytes (PBMCs) of patients with ESRD. METHOD We combined TMT labeling with LC-MS/MS analysis to compare Khib modification of PBMCs between 20 ESRD patients and 20 healthy controls. The pan 2-hydroxyisobutyrylation antibody-based affinity enrichment method was used to reveal the features of Khib, and the bioinformatics analysis was conducted to analyze the pathology of these Khib-modified proteins. RESULT Compared to healthy controls, we identified 440 upregulated proteins and 552 downregulated proteins in PBMCs of ESRD, among which 579 Khib sites on 324 upregulated proteins and 287 Khib sites on 188 downregulated proteins were identified. The site abundance, distribution, and function of the Khib protein were further analyzed. The bioinformatics analysis revealed that the Rho/ROCK signaling pathway was highly enriched in ESRD, suggesting that it might contribute to renal fibrosis in ESRD patients. CONCLUSION In this study, we found that Khib-modified proteins correlated with the occurrence and progression of ESRD.
Collapse
Affiliation(s)
- Fengping Zheng
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China, .,Department of Clinical Medical Research Center, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China,
| | - Huixuan Xu
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China
| | - Shaoying Huang
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China
| | - Cantong Zhang
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China
| | - Shanshan Li
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China
| | - Kang Wang
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China
| | - Weier Dai
- College of Natural Science, the University of Texas at Austin, Austin, Texas, USA
| | - Xinzhou Zhang
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China
| | - Donge Tang
- Department of Clinical Medical Research Center, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China
| | - Yong Dai
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China.,Department of Clinical Medical Research Center, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
96
|
APOL1 genotype-associated morphologic changes among patients with focal segmental glomerulosclerosis. Pediatr Nephrol 2021; 36:2747-2757. [PMID: 33646395 PMCID: PMC8524347 DOI: 10.1007/s00467-021-04990-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND The G1 and G2 alleles of apolipoprotein L1 (APOL1) are common in the Black population and associated with increased risk of focal segmental glomerulosclerosis (FSGS). The molecular mechanisms linking APOL1 risk variants with FSGS are not clearly understood, and APOL1's natural absence in laboratory animals makes studying its pathobiology challenging. METHODS In a cohort of 90 Black patients with either FSGS or minimal change disease (MCD) enrolled in the Nephrotic Syndrome Study Network (58% pediatric onset), we used kidney biopsy traits as an intermediate outcome to help illuminate tissue-based consequences of APOL1 risk variants and expression. We tested associations between APOL1 risk alleles or glomerular APOL1 mRNA expression and 83 light- or electron-microscopy traits measuring structural and cellular kidney changes. RESULTS Under both recessive and dominant models in the FSGS patient subgroup (61%), APOL1 risk variants were significantly correlated (defined as FDR <0.1) with decreased global mesangial hypercellularity, decreased condensation of cytoskeleton, and increased tubular microcysts. No significant correlations were detected in MCD cohort. Independent of risk alleles, glomerular APOL1 expression in FSGS patients was not correlated with morphologic features. CONCLUSIONS While APOL1-associated FSGS is associated with two risk alleles, both one and two risk alleles are associated with cellular/tissue changes in this study of FSGS patients. Our lack of discovery of a large group of tissue differences in FSGS and no significant difference in MCD may be due to the lack of power but also supports investigating whether machine learning methods may more sensitively detect APOL1-associated changes.
Collapse
|
97
|
Kruzel-Davila E, Sankofi BM, Kubi Amos-Abanyie E, Ghansah A, Nyarko A, Agyemang S, Awandare GA, Szwarcwort-Cohen M, Reiner-Benaim A, Hijazi B, Ulasi I, Raji YR, Boima V, Osafo C, May Adabayeri V, Matekole M, Olanrewaju TO, Ajayi S, Mamven M, Antwi S, Ademola AD, Plange-Rhule J, Arogundade F, Akyaw PA, Winkler CA, Salako BL, Ojo A, Skorecki K, Adu D. HIV Viremia Is Associated With APOL1 Variants and Reduced JC-Viruria. Front Med (Lausanne) 2021; 8:718300. [PMID: 34513880 PMCID: PMC8429812 DOI: 10.3389/fmed.2021.718300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/05/2021] [Indexed: 11/23/2022] Open
Abstract
Variants in the Apolipoprotein L1 (APOL1) gene (G1-rs60910145, rs73885319, G2-rs71785313) are common in Africans and in individuals of recent African ancestry and are associated with an increased risk of non-diabetic chronic kidney disease (CKD) and in particular of HIV associated nephropathy (HIVAN). In light of the significantly increased risk of HIVAN in carriers of two APOL1 risk alleles, a role in HIV infectivity has been postulated in the mechanism of APOL1 associated kidney disease. Herein, we aim to explore the association between HIV viremia and APOL1 genotype. In addition, we investigated interaction between BK and JC viruria, CKD and HIV viremia. A total of 199 persons living with HIV/AIDS (comprising 82 CKD cases and 117 controls) from among the participants in the ongoing Human Heredity and Health in Africa (H3Africa) Kidney Disease Research Network case control study have been recruited. The two APOL1 renal risk alleles (RRA) genotypes were associated with a higher risk of CKD (OR 12.6, 95% CI 3.89-40.8, p < 0.0001). Even a single APOL1 RRA was associated with CKD risk (OR 4.42, 95% CI 1.49-13.15, p = 0.007). The 2 APOL1 RRA genotypes were associated with an increased probability of having HIV viremia (OR 2.37 95% CI 1.0-5.63, p = 0.05). HIV viremia was associated with increased CKD risk (OR 7.45, 95% CI 1.66-33.35, P = 0.009) and with a significant reduction of JC virus urine shedding (OR 0.35, 95% CI 0.12-0.98, p = 0.046). In contrast to prior studies, JC viruria was not associated with CKD but was restricted in patients with HIV viremia, regardless of CKD status. These findings suggest a role of APOL1 variants in HIV infectivity and emphasize that JC viruria can serve as biomarker for innate immune system activation.
Collapse
Affiliation(s)
- Etty Kruzel-Davila
- Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Nephrology Department, Rambam Health Care Campus, Haifa, Israel
| | - Barbara Mensah Sankofi
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Ernestine Kubi Amos-Abanyie
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Anita Ghansah
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Alexander Nyarko
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Seth Agyemang
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | | | | | - Basem Hijazi
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ifeoma Ulasi
- Department of Medicine, College of Health Sciences University of Nigeria, Enugu, Nigeria
| | | | - Vincent Boima
- University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Charlotte Osafo
- University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Victoria May Adabayeri
- University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Michael Matekole
- University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Timothy O. Olanrewaju
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel Ajayi
- Department of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Manmak Mamven
- Department of Medicine, University of Abuja, Abuja, Nigeria
| | - Sampson Antwi
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Jacob Plange-Rhule
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Priscilla Abena Akyaw
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Cheryl A. Winkler
- Department of Medicine, Frederick National Laboratory for Cancer Research (NIH), Frederick, MD, United States
| | | | - Akinlolu Ojo
- School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Karl Skorecki
- Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Rambam Health Care Campus, Haifa, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dwomoa Adu
- University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
98
|
Ray PE, Li J, Das JR, Tang P. Childhood HIV-associated nephropathy: 36 years later. Pediatr Nephrol 2021; 36:2189-2201. [PMID: 33044676 PMCID: PMC8061423 DOI: 10.1007/s00467-020-04756-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 11/10/2022]
Abstract
HIV-associated nephropathy (HIVAN) predominantly affects people of African ancestry living with HIV who do not receive appropriate antiretroviral therapy (ART). Childhood HIVAN is characterized by heavy proteinuria and decreased kidney function. Kidney histology shows mesangial expansion, classic or collapsing glomerulosclerosis, and microcystic renal tubular dilatation leading to kidney enlargement. The pathogenesis of HIVAN involves the kidney recruitment of inflammatory cells and the infection of kidney epithelial cells. In addition, both viral and genetic factors play key roles in this disease. Modern ART has improved the outcome and decreased the prevalence of childhood HIVAN. However, physicians have had modest success providing chronic ART to children and adolescents, and we continue to see children with HIVAN all over the world. This article discusses the progress made during the last decade in our understanding of the pathogenesis and treatment of childhood HIVAN, placing particular emphasis on the mechanisms that mediate the infection of kidney epithelial cells, and the roles of cytokines, the HIV-Tat gene, and the Apolipoprotein-1 (APOL1) gene risk variants in this disease. In view of the large number of children living with HIV at risk of developing HIVAN, better prevention and treatment programs are needed to eradicate this disease.
Collapse
Affiliation(s)
- Patricio E Ray
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Room 2120, MR4 Building, 409 Lane Road, Charlottesville, VA, 22908, USA. .,Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA.
| | - Jinliang Li
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA.,The George Washington University Health Center, Washington, DC, 20010, USA
| | - Jharna R Das
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA.,The George Washington University Health Center, Washington, DC, 20010, USA
| | - Pingtao Tang
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA.,The George Washington University Health Center, Washington, DC, 20010, USA
| |
Collapse
|
99
|
McCarthy GM, Blasio A, Donovan OG, Schaller LB, Bock-Hughes A, Magraner JM, Suh JH, Tattersfield CF, Stillman IE, Shah SS, Zsengeller ZK, Subramanian B, Friedman DJ, Pollak MR. Recessive, gain-of-function toxicity in an APOL1 BAC transgenic mouse model mirrors human APOL1 kidney disease. Dis Model Mech 2021; 14:dmm048952. [PMID: 34350953 PMCID: PMC8353097 DOI: 10.1242/dmm.048952] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
People of recent sub-Saharan African ancestry develop kidney failure much more frequently than other groups. A large fraction of this disparity is due to two coding sequence variants in the APOL1 gene. Inheriting two copies of these APOL1 risk variants, known as G1 and G2, causes high rates of focal segmental glomerulosclerosis (FSGS), HIV-associated nephropathy and hypertension-associated end-stage kidney disease. Disease risk follows a recessive mode of inheritance, which is puzzling given the considerable data that G1 and G2 are toxic gain-of-function variants. We developed coisogenic bacterial artificial chromosome (BAC) transgenic mice harboring either the wild-type (G0), G1 or G2 forms of human APOL1. Expression of interferon gamma (IFN-γ) via plasmid tail vein injection results in upregulation of APOL1 protein levels together with robust induction of heavy proteinuria and glomerulosclerosis in G1/G1 and G2/G2 but not G0/G0 mice. The disease phenotype was greater in G2/G2 mice. Neither heterozygous (G1/G0 or G2/G0) risk variant mice nor hemizygous (G1/-, G2/-) mice had significant kidney injury in response to IFN-γ, although the heterozygous mice had a greater proteinuric response than the hemizygous mice, suggesting that the lack of significant disease in humans heterozygous for G1 or G2 is not due to G0 rescue of G1 or G2 toxicity. Studies using additional mice (multicopy G2 and a non-isogenic G0 mouse) supported the notion that disease is largely a function of the level of risk variant APOL1 expression. Together, these findings shed light on the recessive nature of APOL1-nephropathy and present an important model for future studies.
Collapse
Affiliation(s)
- Gizelle M. McCarthy
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Angelo Blasio
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Olivia G. Donovan
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Lena B. Schaller
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Althea Bock-Hughes
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jose M. Magraner
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jung Hee Suh
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Calum F. Tattersfield
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Isaac E. Stillman
- Dept. of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Shrijal S. Shah
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Zsuzsanna K. Zsengeller
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Balajikarthick Subramanian
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - David J. Friedman
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Martin R. Pollak
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
100
|
Pant J, Giovinazzo JA, Tuka LS, Peña D, Raper J, Thomson R. Apolipoproteins L1-6 share key cation channel-regulating residues but have different membrane insertion and ion conductance properties. J Biol Chem 2021; 297:100951. [PMID: 34252458 PMCID: PMC8358165 DOI: 10.1016/j.jbc.2021.100951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 01/01/2023] Open
Abstract
The human apolipoprotein L gene family encodes the apolipoprotein L1-6 (APOL1-6) proteins, which are effectors of the innate immune response to viruses, bacteria and protozoan parasites. Due to a high degree of similarity between APOL proteins, it is often assumed that they have similar functions to APOL1, which forms cation channels in planar lipid bilayers and membranes resulting in cytolytic activity. However, the channel properties of the remaining APOL proteins have not been reported. Here, we used transient overexpression and a planar lipid bilayer system to study the function of APOL proteins. By measuring lactate dehydrogenase release, we found that APOL1, APOL3, and APOL6 were cytolytic, whereas APOL2, APOL4, and APOL5 were not. Cells expressing APOL1 or APOL3, but not APOL6, developed a distinctive swollen morphology. In planar lipid bilayers, recombinant APOL1 and APOL2 required an acidic environment for the insertion of each protein into the membrane bilayer to form an ion conductance channel. In contrast, recombinant APOL3, APOL4, and APOL5 readily inserted into bilayers to form ion conductance at neutral pH, but required a positive voltage on the side of insertion. Despite these differences in membrane insertion properties, the ion conductances formed by APOL1-4 were similarly pH-dependent and cation-selective, consistent with conservation of the pore-lining region in each protein. Thus, despite structural conservation, the APOL proteins are functionally different. We propose that these proteins interact with different membranes and under different voltage and pH conditions within a cell to effect innate immunity to different microbial pathogens.
Collapse
Affiliation(s)
- Jyoti Pant
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA.
| | - Joseph A Giovinazzo
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lilit S Tuka
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
| | - Darwin Peña
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
| | - Jayne Raper
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA; PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA
| | - Russell Thomson
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA.
| |
Collapse
|