51
|
Virus-like nanoparticles (VLPs) based technology in the development of breast cancer vaccines. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
52
|
Norouzian M, Mehdipour F, Ashraf MJ, Khademi B, Ghaderi A. Regulatory and effector T cell subsets in tumor-draining lymph nodes of patients with squamous cell carcinoma of head and neck. BMC Immunol 2022; 23:56. [PMCID: PMC9664675 DOI: 10.1186/s12865-022-00530-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
A crucial role for the immune system has been proposed in the establishment and progression of head and neck squamous cell carcinoma (HNSCC). In this study, we investigated the cytokine and regulatory profiles of T cells in tumor draining lymph nodes (TDLNs) of patients with HNSCC.
Results
The frequencies of CD4+TNF-α+ and CD4+TNF-αhi negatively were associated with poor prognostic factors such as LN involvement (P = 0.015 and P = 0.019, respectively), stage of the disease (P = 0.032 and P = 0.010, respectively) and tumor size (P = 0.026 and P = 0.032, respectively). Frequencies of CD8+IFN-γ+ and CD8+IFN-γ+ TNF-α+ T cells showed negative relationship with tumor grade (P = 0.035 and P = 0.043, respectively). While, the frequencies of CD4+IL-4+, CD8+IL-10+, CD8+IL-4+T cells were higher in advanced stages of the disease (P = 0.042, P = 0.041 and P = 0.030, respectively) and CD4+IFN-γ+TNF-α−, CD8+IL-4+ and CD8+IFN-γ+TNF-α− T cells were higher in patients with larger tumor size (P = 0.026 and P = 0.032, respectively). Negative associations were found between the frequencies of CD4+CD25+Foxp3+ and CD4+CD25+Foxp3+CD127low/− Treg cells and cancer stage (P = 0.015 and P = 0.059).
Conclusion
This study shed more lights on the changes in immune profile of T cells in TDLNs of HNSCC. Larger tumor size and/or LN involvement were associated with lower frequencies of CD4+TNF-α+, CD8+IFN-γ+ and CD8+IFN-γ+TNF-α+ but higher frequency of CD4+IL-4+ T cells. Moreover, Foxp3+Tregs correlated with good prognostic indicators.
Collapse
|
53
|
Peng H, He X, Wang Q. Targeted drug delivery system for ovarian cancer microenvironment: Improving the effects of immunotherapy. Front Immunol 2022; 13:1035997. [PMID: 36405688 PMCID: PMC9670735 DOI: 10.3389/fimmu.2022.1035997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Immunotherapies have shown modest benefits in the current clinical trials for ovarian cancer. The tumor microenvironment (TME) in an immunosuppressive phenotype contributes to this “failure” of immunotherapy in ovarian cancer. Many stromal cell types in the TME (e.g., tumor-associated macrophages and fibroblasts) have been identified as having plasticity in pro- and antitumor activities and are responsible for suppressing the antitumor immune response. Thus, the TME is an extremely valuable target for adjuvant interventions to improve the effects of immunotherapy. The current strategies targeting the TME include: 1) eliminating immunosuppressive cells or transforming them into immunostimulatory phenotypes and 2) inhibiting their immunosuppressive or pro-tumor production. Most of the effective agents used in the above strategies are genetic materials (e.g., cDNA, mRNA, or miRNA), proteins, or other small molecules (e.g., peptides), which are limited in their target and instability. Various formulations of drug delivery system (DDS) have been designed to realize the controlled release and targeting delivery of these agents to the tumor sites. Nanoparticles and liposomes are the most frequently exploited materials. Based on current evidence from preclinical and clinical studies, the future of the DDS is promising in cancer immunotherapy since the combination of agents with a DDS has shown increased efficacy and decreased toxicities compared with free agents. In the future, more efforts are needed to further identify the hallmarks and biomarkers in the ovarian TME, which is crucial for the development of more effective, safe, and personalized DDSs.
Collapse
|
54
|
Cai Z, Liu R, Chan C, Lu Y, Winnik MA, Cescon DW, Reilly RM. 90Y-Labeled Gold Nanoparticle Depot (NPD) Combined with Anti-PD-L1 Antibodies Strongly Inhibits the Growth of 4T1 Tumors in Immunocompetent Mice and Induces an Abscopal Effect on a Distant Non-Irradiated Tumor. Mol Pharm 2022; 19:4199-4211. [PMID: 36287201 DOI: 10.1021/acs.molpharmaceut.2c00572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effectiveness and normal tissue toxicity of a novel nanoparticle depot (NPD) brachytherapy seed incorporating gold nanoparticles (AuNPs) labeled with β-particle emitting, 90Y (termed a "radiation nanomedicine"), were studied for the treatment of 4T1 triple-negative murine mammary carcinoma tumors in Balb/c mice and for inducing an abscopal effect on a distant non-irradiated tumor alone or combined with anti-PD-L1 immune checkpoint antibodies. Balb/c mice with two subcutaneous 4T1 tumors─a primary tumor and a distant secondary tumor were implanted intratumorally (i.t.) in the primary tumor with NPD incorporating 3.5 MBq of 90Y-AuNPs (1 × 1014 AuNPs) or unlabeled AuNPs, alone or combined with systemically administered anti-PD-L1 antibodies (200 μg i.p. three times/week for 2 weeks) or received anti-PD-L1 antibodies alone or no treatment. The primary tumor was strongly growth-inhibited over 14 d by NPD incorporating 90Y-AuNPs but only very modestly inhibited by NPD incorporating unlabeled AuNPs. Anti-PD-L1 antibodies alone were ineffective, and combining anti-PD-L1 antibodies with NPD incorporating 90Y-AuNPs did not further inhibit the growth of the primary tumor. Secondary tumor growth was inhibited by treatment of the primary tumor with NPD incorporating 90Y-AuNPs, and growth inhibition was enhanced by anti-PD-L1 antibodies. Treatment of the primary tumor with NPD incorporating unlabeled AuNPs or anti-PD-L1 antibodies alone had no effect on secondary tumor growth. Biodistribution studies showed high uptake of 90Y in the primary tumor [516-810% implanted dose/g (%ID/g)] but very low uptake in the secondary tumor (0.033-0.16% ID/g) and in normal tissues (<0.5% ID/g) except for kidneys (5-8% ID/g). Very high radiation absorbed doses were estimated for the primary tumor (472 Gy) but very low doses in the secondary tumor (0.13 Gy). There was highdose-heterogeneity in the primary tumor with doses as high as 9964 Gy in close proximity to the NPD, decreasing rapidly with distance from the NPD. Normal organ doses were low (<1 Gy) except for kidneys (4 Gy). No normal tissue toxicity was observed, but white blood cell counts (WBC) decreased in tumor-bearing mice treated with NPD incorporating 90Y-AuNPs. Decreased WBC counts were interpreted as tumor response and not toxicity since these were higher than that in healthy non-tumor-bearing mice, and there was a direct association between WBC counts and 4T1 tumor burden. We conclude that implantation of NPD incorporating 90Y-AuNPs into a primary 4T1 tumor in Balb/c mice strongly inhibited tumor growth and combined with anti-PD-L1 antibodies induced an abscopal effect on a distant secondary tumor. This radiation nanomedicine is promising for the local treatment of triple-negative breast cancer tumors in patients, and these therapeutic effects may extend to non-irradiated lesions, especially when combined with checkpoint immunotherapy.
Collapse
Affiliation(s)
- Zhongli Cai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, OntarioM5S 3M2, Canada
| | - Rella Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, OntarioM5S 3M2, Canada
| | - Conrad Chan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, OntarioM5S 3M2, Canada
| | - Yijie Lu
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| | - David W. Cescon
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2C1, Canada
| | - Raymond M. Reilly
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, OntarioM5S 3M2, Canada
- Department of Medical Imaging, Temerty Faculty of Medicine, University of Toronto, Toronto, OntarioM5S 1A8, Canada
- Joint Department of Medical Imaging and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2C1, Canada
| |
Collapse
|
55
|
Liu C, Mohan SC, Wei J, Seki E, Liu M, Basho R, Giuliano AE, Zhao Y, Cui X. Breast cancer liver metastasis: Pathogenesis and clinical implications. Front Oncol 2022; 12:1043771. [PMID: 36387238 PMCID: PMC9641291 DOI: 10.3389/fonc.2022.1043771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 09/30/2023] Open
Abstract
Breast cancer is the most common malignant disease in female patients worldwide and can spread to almost every place in the human body, most frequently metastasizing to lymph nodes, bones, lungs, liver and brain. The liver is a common metastatic location for solid cancers as a whole, and it is also the third most common metastatic site for breast cancer. Breast cancer liver metastasis (BCLM) is a complex process. Although the hepatic microenvironment and liver sinusoidal structure are crucial factors for the initial arrest of breast cancer and progression within the liver, the biological basis of BCLM remains to be elucidated. Importantly, further understanding of the interaction between breast cancer cells and hepatic microenvironment in the liver metastasis of breast cancer will suggest ways for the development of effective therapy and prevention strategies for BCLM. In this review, we provide an overview of the recent advances in the understanding of the molecular mechanisms of the hepatic microenvironment in BCLM formation and discuss current systemic therapies for treating patients with BCLM as well as potential therapeutic development based on the liver microenvironment-associated signaling proteins governing BCLM.
Collapse
Affiliation(s)
- Cuiwei Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Srivarshini C. Mohan
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jielin Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ekihiro Seki
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Reva Basho
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- The Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, United States
| | - Armando E. Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
56
|
Chen J, Zhu H, Yin Y, Jia S, Luo X. Colorectal cancer: Metabolic interactions reshape the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2022; 1877:188797. [DOI: 10.1016/j.bbcan.2022.188797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023]
|
57
|
Yu L, Gong C. Pancancer analysis of a potential gene mutation model in the prediction of immunotherapy outcomes. Front Genet 2022; 13:917118. [PMID: 36092890 PMCID: PMC9459043 DOI: 10.3389/fgene.2022.917118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Immune checkpoint blockade (ICB) represents a promising treatment for cancer, but predictive biomarkers are needed. We aimed to develop a cost-effective signature to predict immunotherapy benefits across cancers.Methods: We proposed a study framework to construct the signature. Specifically, we built a multivariate Cox proportional hazards regression model with LASSO using 80% of an ICB-treated cohort (n = 1661) from MSKCC. The desired signature named SIGP was the risk score of the model and was validated in the remaining 20% of patients and an external ICB-treated cohort (n = 249) from DFCI.Results: SIGP was based on 18 candidate genes (NOTCH3, CREBBP, RNF43, PTPRD, FAM46C, SETD2, PTPRT, TERT, TET1, ROS1, NTRK3, PAK7, BRAF, LATS1, IL7R, VHL, TP53, and STK11), and we classified patients into SIGP high (SIGP-H), SIGP low (SIGP-L) and SIGP wild type (SIGP-WT) groups according to the SIGP score. A multicohort validation demonstrated that patients in SIGP-L had significantly longer overall survival (OS) in the context of ICB therapy than those in SIGP-WT and SIGP-H (44.00 months versus 13.00 months and 14.00 months, p < 0.001 in the test set). The survival of patients grouped by SIGP in non-ICB-treated cohorts was different, and SIGP-WT performed better than the other groups. In addition, SIGP-L + TMB-L (approximately 15% of patients) had similar survivals to TMB-H, and patients with both SIGP-L and TMB-H had better survival. Further analysis on tumor-infiltrating lymphocytes demonstrated that the SIGP-L group had significantly increased abundances of CD8+ T cells.Conclusion: Our proposed model of the SIGP signature based on 18-gene mutations has good predictive value for the clinical benefit of ICB in pancancer patients. Additional patients without TMB-H were identified by SIGP as potential candidates for ICB, and the combination of both signatures showed better performance than the single signature.
Collapse
Affiliation(s)
- Lishan Yu
- Yanqi Lake Beijing Institute Mathematical Sciences and Applications, Beijing, China
- Yau Mathematical Sciences Center, Tsinghua University, Beijing, China
| | - Caifeng Gong
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Caifeng Gong,
| |
Collapse
|
58
|
Cao S, Hung YW, Wang YC, Chung Y, Qi Y, Ouyang C, Zhong X, Hu W, Coblentz A, Maghami E, Sun Z, Lin HH, Ann DK. Glutamine is essential for overcoming the immunosuppressive microenvironment in malignant salivary gland tumors. Theranostics 2022; 12:6038-6056. [PMID: 35966597 PMCID: PMC9373812 DOI: 10.7150/thno.73896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Rationale: Immunosuppression in the tumor microenvironment (TME) is key to the pathogenesis of solid tumors. Tumor cell-intrinsic autophagy is critical for sustaining both tumor cell metabolism and survival. However, the role of autophagy in the host immune system that allows cancer cells to escape immune destruction remains poorly understood. Here, we determined if attenuated host autophagy is sufficient to induce tumor rejection through reinforced adaptive immunity. Furthermore, we determined whether dietary glutamine supplementation, mimicking attenuated host autophagy, is capable of promoting antitumor immunity. Methods: A syngeneic orthotopic tumor model in Atg5+/+ and Atg5flox/flox mice was established to determine the impact of host autophagy on the antitumor effects against mouse malignant salivary gland tumors (MSTs). Multiple cohorts of immunocompetent mice were used for oncoimmunology studies, including inflammatory cytokine levels, macrophage, CD4+, and CD8+ cells tumor infiltration at 14 days and 28 days after MST inoculation. In vitro differentiation and in vivo dietary glutamine supplementation were used to assess the effects of glutamine on Treg differentiation and tumor expansion. Results: We showed that mice deficient in the essential autophagy gene, Atg5, rejected orthotopic allografts of isogenic MST cells. An enhanced antitumor immune response evidenced by reduction of both M1 and M2 macrophages, increased infiltration of CD8+ T cells, elevated IFN-γ production, as well as decreased inhibitory Tregs within TME and spleens of tumor-bearing Atg5flox/flox mice. Mechanistically, ATG5 deficiency increased glutamine level in tumors. We further demonstrated that dietary glutamine supplementation partially increased glutamine levels and restored potent antitumor responses in Atg5+/+ mice. Conclusions: Dietary glutamine supplementation exposes a previously undefined difference in plasticity between cancer cells, cytotoxic CD8+ T cells and Tregs.
Collapse
Affiliation(s)
- Shuting Cao
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yu-Wen Hung
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yi-Chang Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yiyin Chung
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yue Qi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Ching Ouyang
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Xiancai Zhong
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Weidong Hu
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Alaysia Coblentz
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Ellie Maghami
- Division of Head and Neck Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zuoming Sun
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - H. Helen Lin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - David K. Ann
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
59
|
Martin NG, Malacrino S, Wojciechowska M, Campo L, Jones H, Wedge DC, Holmes C, Sirinukunwattana K, Sailem H, Verrill C, Rittscher J. A Graph Based Neural Network Approach to Immune Profiling of Multiplexed Tissue Samples. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3063-3067. [PMID: 36085678 DOI: 10.1109/embc48229.2022.9871251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiplexed immunofluorescence provides an un-precedented opportunity for studying specific cell-to-cell and cell microenvironment interactions. We employ graph neural networks to combine features obtained from tissue morphology with measurements of protein expression to profile the tumour microenvironment associated with different tumour stages. Our framework presents a new approach to analysing and processing these complex multi-dimensional datasets that overcomes some of the key challenges in analysing these data and opens up the opportunity to abstract biologically meaningful interactions.
Collapse
|
60
|
Nong C, Guan P, Li L, Zhang H, Hu H. Tumor immunotherapy: Mechanisms and clinical applications. MEDCOMM – ONCOLOGY 2022. [DOI: 10.1002/mog2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cheng Nong
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Pengbo Guan
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Li
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Hongbo Hu
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- Chongqing International Institution for Immunology Chongqing China
| |
Collapse
|
61
|
Wang T, Denman D, Bacot SM, Feldman GM. Challenges and the Evolving Landscape of Assessing Blood-Based PD-L1 Expression as a Biomarker for Anti-PD-(L)1 Immunotherapy. Biomedicines 2022; 10:1181. [PMID: 35625917 PMCID: PMC9138337 DOI: 10.3390/biomedicines10051181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
While promising, PD-L1 expression on tumor tissues as assessed by immunohistochemistry has been shown to be an imperfect biomarker that only applies to a limited number of cancers, whereas many patients with PD-L1-negative tumors still respond to anti-PD-(L)1 immunotherapy. Recent studies using patient blood samples to assess immunotherapeutic responsiveness suggests a promising approach to the identification of novel and/or improved biomarkers for anti-PD-(L)1 immunotherapy. In this review, we discuss the advances in our evolving understanding of the regulation and function of PD-L1 expression, which is the foundation for developing blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy. We further discuss current knowledge and clinical study results for biomarker identification using PD-L1 expression on tumor and immune cells, exosomes, and soluble forms of PD-L1 in the peripheral blood. Finally, we discuss key challenges for the successful development of the potential use of blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy.
Collapse
Affiliation(s)
- Tao Wang
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (D.D.); (S.M.B.); (G.M.F.)
| | | | | | | |
Collapse
|
62
|
de Assis LVM, Lacerda JT, Moraes MN, Domínguez-Amorocho OA, Kinker GS, Mendes D, Silva MM, Menck CFM, Câmara NOS, Castrucci AMDL. Melanopsin (Opn4) is an oncogene in cutaneous melanoma. Commun Biol 2022; 5:461. [PMID: 35562405 PMCID: PMC9106662 DOI: 10.1038/s42003-022-03425-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/27/2022] [Indexed: 02/08/2023] Open
Abstract
The search for new therapeutical targets for cutaneous melanoma and other cancers is an ongoing task. We expanded this knowledge by evaluating whether opsins, light- and thermo-sensing proteins, could display tumor-modulatory effects on melanoma cancer. Using different experimental approaches, we show that melanoma cell proliferation is slower in the absence of Opn4, compared to Opn4WT due to an impaired cell cycle progression and reduced melanocyte inducing transcription factor (Mitf) expression. In vivo tumor progression of Opn4KO cells is remarkably reduced due to slower proliferation, and higher immune system response in Opn4KO tumors. Using pharmacological assays, we demonstrate that guanylyl cyclase activity is impaired in Opn4KO cells. Evaluation of Tumor Cancer Genome Atlas (TCGA) database confirms our experimental data as reduced MITF and OPN4 expression in human melanoma correlates with slower cell cycle progression and presence of immune cells in the tumor microenvironment (TME). Proteomic analyses of tumor bulk show that the reduced growth of Opn4KO tumors is associated with reduced Mitf signaling, higher translation of G2/M proteins, and impaired guanylyl cyclase activity. Conversely, in Opn4WT tumors increased small GTPase and an immune-suppressive TME are found. Such evidence points to OPN4 as an oncogene in melanoma, which could be pharmacologically targeted.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
- Institute of Neurobiology, Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany.
| | - José Thalles Lacerda
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathália Moraes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Gabriela Sarti Kinker
- Laboratory of Translational Immuno-Oncology A. C. Camargo Cancer Center - International Research Center, São Paulo, Brazil
| | - Davi Mendes
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Matheus Molina Silva
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Carlos Frederico Martins Menck
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
63
|
Damasceno KA, dos Santos-Conceição AM, Silva LP, Cardoso TMDS, Vieira-Filho CHDC, Figuerêdo SHS, Martins-Filho E, de Faria BGO, da Costa-Neto JM, Cassali GD, Estrela-Lima A. Factors related to the suppression of the antitumour immune response in female dogs with inflammatory mammary carcinoma. PLoS One 2022; 17:e0267648. [PMID: 35512031 PMCID: PMC9071162 DOI: 10.1371/journal.pone.0267648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Inflammatory mammary carcinoma (IMC), a neoplasia affecting women and female dogs, is considered an aggressive cancer with high metastatic potential and a low survival rate. Studies focused on the tumour microenvironment indicate that the aggressive behaviour of this tumour is primarily correlated with immunological factors as well as inflammation. The objective of this study was to analyse the possible strategies used by the tumour cells to suppress the immune response in female dogs with IMC. Forty-six female dogs were divided into three groups: control (C, n = 10), IMC (n = 14) and mammary carcinoma (MC, n = 22). Clinical-pathological evaluations, survival at follow-up, immunophenotyping of leukocytes in peripheral blood and tumours, and immunohistochemical evaluation of CD4+, granzyme B, perforin and FAS-L were performed. Clinical and pathological results showed a higher frequency of the primary form of neoplasia, solid arrays of tumor cells and a lower survival rate in the IMC group (30 days). Morphometric analysis of inflammatory infiltrate revealed more lymphocytes and macrophages in the IMC group. Immunophenotyping analysis of peripheral blood revealed a higher frequency of CD8+ T-cells (p = 0.0017), a lower frequency of CD4+ T-cells (p <0.0001), and significantly higher mean MHCI and MHCII CD14+ fluorescence intensity in the IMC group (p = 0.038 and p = 0.0117, respectively). The immunohistochemical evaluation of tumour sections showed fewer FAS-L-positive inflammatory cells in the IMC group. These results suggest the important contribution of CD8+ T-cells, macrophages and FAS-L in the aggressiveness of IMC.
Collapse
Affiliation(s)
- Karine Araújo Damasceno
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Salvador, Bahia, Brazil
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- * E-mail: (AE-L); (KAD)
| | - Aline Michelle dos Santos-Conceição
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program in Animal Science in the Tropics, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Laís Pereira Silva
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program in Animal Science in the Tropics, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | | | | | - Emanoel Martins-Filho
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program in Animal Science in the Tropics, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - João Moreira da Costa-Neto
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program in Animal Science in the Tropics, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Pathology, Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra Estrela-Lima
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program in Animal Science in the Tropics, Federal University of Bahia, Salvador, Bahia, Brazil
- * E-mail: (AE-L); (KAD)
| |
Collapse
|
64
|
Wang L, Yang G, Liu G, Pan Y. Identification of lncRNA Signature of Tumor-Infiltrating T Lymphocytes With Potential Implications for Prognosis and Chemotherapy of Head and Neck Squamous Cell Carcinoma. Front Pharmacol 2022; 12:795205. [PMID: 35242027 PMCID: PMC8886158 DOI: 10.3389/fphar.2021.795205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/30/2021] [Indexed: 02/02/2023] Open
Abstract
Purpose: We systematically analyzed HNSCC-infiltrating T lymphocytes lncRNAs (HILTlncRNAs) to assess their predictive value for the survival outcome and immunotherapy response of patients with anti-programmed death-1 (PD-1) therapy and to evaluate their predictive power to chemotherapeutic agents. Methods: HNSCC transcriptome and clinical information was obtained from The Cancer Genome Atlas (TCGA) database. Immunocell microarray data were obtained from the Gene Expression Omnibus (GEO) database. T-cell-specific lncRNAs were identified by differential expression analysis. Prognostic paired HILTlncRNAs (PHILTlncRNAs) were filtered and modeled by univariate cox, lasso and multivariate cox regression analysis. To construct lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) regulatory networks, differentially expressed mRNAs in HNSCC patients were incorporated, microRNAs and differentially expressed mRNAs interacting with T-cell-specific lncRNAs were filtered out based on miRcode, miRDB, miRTarBase, and TargetScan databases. Results: 75 T-cell-specific lncRNAs and 9 prognostic PHILTlncRNAs were identified. Low-risk HNSCC patients had a better prognosis and significant immune cell infiltration, driving the immune response. Differential expression of RNA-binding proteins (RBPs), PD-1 and programmed cell death 1 ligand 1 (PD-L1) was demonstrated in the high and low risk groups of HNSCC patients. In the high risk group, high expression of PD-1 improved patient prognosis, whereas the opposite was observed in the low-risk group. The promoter methylation levels of two RBPs (DNMT1 and ZC3H12D) were decreased in HNSCC patients compared with normal samples, their expression levels were positively correlated with PD-1 and PD-L1 levels and T-cell infiltration. Finally, we screened the sensitivity of HNSCC patients to chemotherapeutic agents and found it differed between high and low risk groups. Conclusion: HILTlncRNAs provided a theoretical basis for immune targeted therapy and drug development.
Collapse
Affiliation(s)
- Liping Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Gui Yang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
65
|
Iwahashi H, Miyamoto M, Ito T, Suminokura J, Hada T, Ishibashi H, Kakimoto S, Matsuura H, Suzuki R, Minabe S, Matsukuma S, Tsuda H, Takano M. Clinical significance of CD8-positive lymphocytes on tumor cell clusters of ascites cell block in ovarian high-grade serous carcinoma. Cancer Med 2022; 11:2085-2095. [PMID: 35137571 PMCID: PMC9119359 DOI: 10.1002/cam4.4592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 11/11/2022] Open
Abstract
Background The clinical significance of CD8‐positive (CD8+) lymphocytes on tumor cell clusters of ascites cell blocks in patients with ovarian high‐grade serous carcinoma (HGSC) was investigated. Methods Among HGSC patients who underwent surgery from January 2014 to December 2019, 38 patients with ascites cell block were selected. Using these cell blocks and primary ovarian tumor tissue, the presence of CD8+ lymphocytes and the expression of PD‐L1 were examined immunohistochemically. Tumor cell clusters were defined as cell clumps consisting of more than 10 malignant cells in cell block. Cases with at least one CD8+ lymphocyte in tumor cell cluster were defined as positive CD8+ lymphocytes (Group A); others were defined as negative CD8+ lymphocytes (Group B). The tumor tissue CD8+ lymphocytes were counted mechanically. Clinicopathological features were retrospectively compared between the two groups. Results In total, 38 cases were identified: 25 (65.8%) in Group A and 13 (34.2%) in Group B. More cases in Group A were positive for CD4 (p < 0.01), PD‐L1 (p = 0.02), FoxP3 (p = 0.02) and had a higher number of CD8+ lymphocytes in the tissue (p = 0.03). Patients in Group A had better progression‐free survival (p < 0.01) and overall survival (p = 0.04). In multivariate analysis, Group A was an independent prognostic factor for both progression‐free survival (hazard ratio, 0.24; p < 0.01) and overall survival (hazard ratio, 0.21; p = 0.03). Conclusion The presence of CD8+ lymphocytes in tumor cell clusters of ascites was associated with the status of immune reaction in the tissue and prognosis in patients with HGSC and might be useful information of the immune‐associated therapy.
Collapse
Affiliation(s)
- Hideki Iwahashi
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Morikazu Miyamoto
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Tsubasa Ito
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Jin Suminokura
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Taira Hada
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Hiroki Ishibashi
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Soichiro Kakimoto
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Hiroko Matsuura
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Rie Suzuki
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Shinya Minabe
- Department of Laboratory Medicine, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Susumu Matsukuma
- Department of Laboratory Medicine, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Masashi Takano
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Japan
| |
Collapse
|
66
|
Stephen B, Hajjar J. Immune System in Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:1-43. [PMID: 34972961 DOI: 10.1007/978-3-030-79308-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tumor exists as a complex network of structures with an ability to evolve and evade the host immune surveillance mechanism. The immune milieu which includes macrophages, dendritic cells, natural killer cells, neutrophils, mast cells, B cells, and T cells is found in the core, the invasive margin, or the adjacent stromal or lymphoid component of the tumor. The immune infiltrate is heterogeneous and varies within a patient and between patients of the same tumor histology. The location, density, functionality, and the crosstalk between the immune cells in the tumor microenvironment influence the nature of immune response, prognosis, and treatment outcomes in cancer patients. Therefore, an understanding of the characteristics of the immune cells and their role in tumor immune surveillance is of paramount importance to identify immune targets and to develop novel immune therapeutics in the war against cancer. In this chapter, we provide an overview of the individual components of the human immune system and the translational relevance of predictive biomarkers.
Collapse
Affiliation(s)
- Bettzy Stephen
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Joud Hajjar
- Assistant Professor, Service Chief of Adult Allergy & Immunology, Division of Immunology, Allergy & Retrovirology, Baylor College of Medicine and Texas Children' Hospital, Houston, TX, USA
| |
Collapse
|
67
|
Nakkina SP, Gitto SB, Beardsley JM, Pandey V, Rohr MW, Parikh JG, Phanstiel O, Altomare DA. DFMO Improves Survival and Increases Immune Cell Infiltration in Association with MYC Downregulation in the Pancreatic Tumor Microenvironment. Int J Mol Sci 2021; 22:13175. [PMID: 34947972 PMCID: PMC8706739 DOI: 10.3390/ijms222413175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor five-year survival rate of less than 10%. Immune suppression along with chemoresistance are obstacles for PDAC therapeutic treatment. Innate immune cells, such as tumor-associated macrophages, are recruited to the inflammatory environment of PDAC and adversely suppress cytotoxic T lymphocytes. KRAS and MYC are important oncogenes associated with immune suppression and pose a challenge to successful therapies. Here, we targeted KRAS, through inhibition of downstream c-RAF with GW5074, and MYC expression via difluoromethylornithine (DFMO). DFMO alone and with GW5074 reduced in vitro PDAC cell viability. Both DFMO and GW5074 showed efficacy in reducing in vivo PDAC growth in an immunocompromised model. Results in immunocompetent syngeneic tumor-bearing mice showed that DFMO and combination treatment markedly decreased tumor size, but only DFMO increased survival in mice. To further investigate, immunohistochemical staining showed DFMO diminished MYC expression and increased tumor infiltration of macrophages, CD86+ cells, CD4+ and CD8+ T lymphocytes. GW5074 was not as effective in modulating the tumor infiltration of total CD3+ lymphocytes or tumor progression and maintained MYC expression. Collectively, this study highlights that in contrast to GW5074, the inhibition of MYC through DFMO may be an effective treatment modality to modulate PDAC immunosuppression.
Collapse
Affiliation(s)
- Sai Preethi Nakkina
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA; (S.P.N.); (J.M.B.); (M.W.R.)
| | - Sarah B. Gitto
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.G.); (V.P.)
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jordan M. Beardsley
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA; (S.P.N.); (J.M.B.); (M.W.R.)
| | - Veethika Pandey
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.G.); (V.P.)
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael W. Rohr
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA; (S.P.N.); (J.M.B.); (M.W.R.)
| | - Jignesh G. Parikh
- Department of Pathology, Orlando VA Medical Center, 13800 Veterans Way, Orlando, FL 32827, USA;
| | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA;
| | - Deborah A. Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA; (S.P.N.); (J.M.B.); (M.W.R.)
| |
Collapse
|
68
|
de la Pinta C, Castillo ME, Collado M, Galindo-Pumariño C, Peña C. Radiogenomics: Hunting Down Liver Metastasis in Colorectal Cancer Patients. Cancers (Basel) 2021; 13:5547. [PMID: 34771709 PMCID: PMC8582778 DOI: 10.3390/cancers13215547] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Radiomics is a developing new discipline that analyzes conventional medical images to extract quantifiable data that can be mined for new biomarkers that show the biology of pathological processes at microscopic levels. These data can be converted into image-based signatures to improve diagnostic, prognostic and predictive accuracy in cancer patients. The combination of radiomics and molecular data, called radiogenomics, has clear implications for cancer patients' management. Though some studies have focused on radiogenomics signatures in hepatocellular carcinoma patients, only a few have examined colorectal cancer metastatic lesions in the liver. Moreover, the need to differentiate between liver lesions is fundamental for accurate diagnosis and treatment. In this review, we summarize the knowledge gained from radiomics and radiogenomics studies in hepatic metastatic colorectal cancer patients and their use in early diagnosis, response assessment and treatment decisions. We also investigate their value as possible prognostic biomarkers. In addition, the great potential of image mining to provide a comprehensive view of liver niche formation is examined thoroughly. Finally, new challenges and current limitations for the early detection of the liver premetastatic niche, based on radiomics and radiogenomics, are also discussed.
Collapse
Affiliation(s)
- Carolina de la Pinta
- Radiation Oncology Department, Ramón y Cajal University Hospital, IRYCIS, Alcalá University, 28034 Madrid, Spain
| | - María E. Castillo
- Medical Oncology Department, Ramón y Cajal University Hospital, IRYCIS, Alcalá University, 28034 Madrid, Spain; (M.E.C.); (M.C.); (C.G.-P.)
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
| | - Manuel Collado
- Medical Oncology Department, Ramón y Cajal University Hospital, IRYCIS, Alcalá University, 28034 Madrid, Spain; (M.E.C.); (M.C.); (C.G.-P.)
| | - Cristina Galindo-Pumariño
- Medical Oncology Department, Ramón y Cajal University Hospital, IRYCIS, Alcalá University, 28034 Madrid, Spain; (M.E.C.); (M.C.); (C.G.-P.)
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
| | - Cristina Peña
- Medical Oncology Department, Ramón y Cajal University Hospital, IRYCIS, Alcalá University, 28034 Madrid, Spain; (M.E.C.); (M.C.); (C.G.-P.)
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
69
|
Yu Z, Li G, Yu H, Asakawa T. Changes of immune cells in patients with hepatocellular carcinoma treated by radiofrequency ablation and hepatectomy, a pilot study. Open Life Sci 2021; 16:1002-1009. [PMID: 34616914 PMCID: PMC8450610 DOI: 10.1515/biol-2021-0105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/18/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
In this pilot study, we compared the dynamic changes of circulating immune cells between patients with hepatocellular carcinoma (HCC) who underwent radiofrequency ablation (RFA) and hepatectomy. Seventy-three patients were enrolled in this study. Flow cytometry assay was performed to determine the immune cells in the peripheral blood mononuclear cells (PBMCs) before treatment and on days 7, 14, and 28 after treatment. We found that in the RFA group, the circulating cluster of differentiation (CD)4+ cells, the CD4+/CD8+ ratio, and natural killer (NK) cells continued to increase, and the circulating CD8+ cells continued to decrease after the treatment. In contrast, in the surgery group, the circulating CD4+ cells and CD4+/CD8+ ratio decreased over the first seven postoperative days and then began to increase, and CD8+ cells decreased on the first 7 postoperative days and began to increase thereafter. The changes of immune cells in tumor tissues consisted of an increase in the number of CD4+ cells, CD8+ cells, CD3+ cells, and NK cells immediately after RFA. Our results show that postoperative immune function continued to improve after RFA, but after surgery, it decreased in the first week and started to improve thereafter. These findings are important for clinicians when selecting the appropriate therapy for HCC.
Collapse
Affiliation(s)
- Zusheng Yu
- Department of Hepatobiliary Surgery, The First People's Hospital of Fuyang Hangzhou, Hangzhou, 311400, China
| | - Guowei Li
- Department of Hepatobiliary Surgery, The First People's Hospital of Fuyang Hangzhou, Hangzhou, 311400, China
| | - Hang Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Tetsuya Asakawa
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shennanzhong Road 3025, Shenzhen, Guangdong·Province, 518033, China.,Department of Neurosurgery, Hamamatsu University School of Medicine, Handayama, Hamamatsu-city, Shizuoka, 4313192, Japan.,Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
70
|
Paşcalău AV, Cheregi CD, Mureşan MŞ, Şandor MI, Huniadi CA, Nikin Z, Judea Pusta CT, Bodog FD, Ionescu C, Pop OL. CD4+ CD25+ regulatory T-cells role in tumor microenvironment of the squamous cell carcinoma. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 62:249-253. [PMID: 34609428 PMCID: PMC8597358 DOI: 10.47162/rjme.62.1.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Introduction: Squamous cell carcinoma (SCC) is the most common skin cancer with a high rate of death. Different lymphocyte populations play an important role in modulating the immune response in the tumor microenvironment. The increase in the proportion of cluster of differentiation (CD)4+ CD25+ regulatory T-cell (Treg) lymphocytes is associated, in different studies, with the increase of the cell multiplication rate. Aim: To analyze the Treg lymphocyte subpopulations and to correlate the results with the presence of the CD8+ cytotoxic T-cell (Tc) lymphocyte population. Materials and Methods: Sixty primary skin SCC specimens were incubated with anti-CD8 (clone SP57) rabbit monoclonal antibody and anti-CD25 (clone 4C9) mouse monoclonal antibody. Results: The ratio of the intratumoral/peritumoral CD4+ CD25+ forkhead box protein p3 (Foxp3) lymphocytes was 0.46, emphasizing that at tumor margins, where tumor aggressiveness is higher, these lymphocytes subpopulations facilitate tumor progression. The comparative analysis of the tumor microenvironment profile revealed that in the case of intratumoral immune response, the number of Tc-type lymphocytes (CD8+) was 3.34 times higher compared to Treg lymphocytes (p<0001). In the peritumoral area, the number of Tc lymphocytes was 5.05 times higher compared to Treg lymphocytes (p<0001). Conclusions: Treg lymphocytes inhibition may cause the suppression of the antitumoral cell immune response in the tumor environment. We believe that Treg lymphocytes should represent a focus of interest for a new personalized therapy. New studies are needed to better understand the immune response in the tumor microenvironment.
Collapse
Affiliation(s)
- Andrei Vasile Paşcalău
- Department of Surgical Disciplines, Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Romania; ,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Hodi FS, Wolchok JD, Schadendorf D, Larkin J, Long GV, Qian X, Saci A, Young TC, Srinivasan S, Chang H, Tang H, Wind-Rotolo M, Rizzo JI, Jackson DG, Ascierto PA. TMB and Inflammatory Gene Expression Associated with Clinical Outcomes following Immunotherapy in Advanced Melanoma. Cancer Immunol Res 2021; 9:1202-1213. [PMID: 34389558 PMCID: PMC9414280 DOI: 10.1158/2326-6066.cir-20-0983] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/29/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023]
Abstract
Outcomes for patients with melanoma have improved over the past decade as a result of the development and FDA approval of immunotherapies targeting cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), and programmed death ligand 1 (PD-L1). However, these therapies do not benefit all patients, and an area of intensive research investigation is identifying biomarkers that can predict which patients are most likely to benefit from them. Here, we report exploratory analyses of the associations of tumor mutational burden (TMB), a 4-gene inflammatory gene expression signature, and BRAF mutation status with tumor response, progression-free survival, and overall survival in patients with advanced melanoma treated as part of the CheckMate 066 and 067 phase III clinical trials evaluating immuno-oncology therapies. In patients enrolled in CheckMate 067 receiving the anti-PD-1 inhibitor nivolumab (NIVO) alone or in combination with the anti-CTLA-4 inhibitor ipilimumab (IPI) or IPI alone, longer survival appeared to associate with high (>median) versus low (≤median) TMB and with high versus low inflammatory signature scores. For NIVO-treated patients, the results regarding TMB association were confirmed in CheckMate 066. In addition, improved survival was observed with high TMB and absence of BRAF mutation. Weak correlations were observed between PD-L1, TMB, and the inflammatory signature. Combined assessment of TMB, inflammatory gene expression signature, and BRAF mutation status may be predictive for response to immune checkpoint blockade in advanced melanoma.
Collapse
Affiliation(s)
- F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Corresponding Author: F. Stephen Hodi, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-5055; Fax: 617-632-6727; E-mail:
| | - Jedd D. Wolchok
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medicine, New York, New York.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - James Larkin
- Department of Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, Australia
| | - Xiaozhong Qian
- Department of Translational Medicine, Bristol Myers Squibb, Princeton, New Jersey
| | - Abdel Saci
- Department of Translational Medicine, Bristol Myers Squibb, Princeton, New Jersey
| | - Tina C. Young
- Global Biometrics and Data Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | - Sujaya Srinivasan
- Department of Translational Medicine, Bristol Myers Squibb, Princeton, New Jersey
| | - Han Chang
- Department of Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | - Hao Tang
- Department of Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | - Megan Wind-Rotolo
- Department of Translational Medicine, Bristol Myers Squibb, Princeton, New Jersey
| | - Jasmine I. Rizzo
- Oncology Clinical Development, Bristol Myers Squibb, Princeton, New Jersey
| | - Donald G. Jackson
- Department of Translational Medicine, Bristol Myers Squibb, Princeton, New Jersey
| | - Paolo A. Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
72
|
Sarasola MDLP, Táquez Delgado MA, Nicoud MB, Medina VA. Histamine in cancer immunology and immunotherapy. Current status and new perspectives. Pharmacol Res Perspect 2021; 9:e00778. [PMID: 34609067 PMCID: PMC8491460 DOI: 10.1002/prp2.778] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death globally and its incidence and mortality are rapidly increasing worldwide. The dynamic interaction of immune cells and tumor cells determines the clinical outcome of cancer. Immunotherapy comes to the forefront of cancer treatments, resulting in impressive and durable responses but only in a fraction of patients. Thus, understanding the characteristics and profiles of immune cells in the tumor microenvironment (TME) is a necessary step to move forward in the design of new immunomodulatory strategies that can boost the immune system to fight cancer. Histamine produces a complex and fine-tuned regulation of the phenotype and functions of the different immune cells, participating in multiple regulatory responses of the innate and adaptive immunity. Considering the important actions of histamine-producing immune cells in the TME, in this review we first address the most important immunomodulatory roles of histamine and histamine receptors in the context of cancer development and progression. In addition, this review highlights the current progress and foundational developments in the field of cancer immunotherapy in combination with histamine and pharmacological compounds targeting histamine receptors.
Collapse
Affiliation(s)
- María de la Paz Sarasola
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mónica A Táquez Delgado
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
73
|
Kobayashi M, Kojima K, Murayama K, Amano Y, Koyama T, Ogama N, Takeshita T, Fukuhara T, Tanaka N. MK-6, a novel not-α IL-2, elicits a potent antitumor activity by improving the effector to regulatory T cell balance. Cancer Sci 2021; 112:4478-4489. [PMID: 34545658 PMCID: PMC8586658 DOI: 10.1111/cas.15127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
IL-2 is a pleiotropic cytokine that regulates immune cell homeostasis. Its immunomodulatory function has been used clinically as an active immunotherapy agent for metastatic cancers. However, severe adverse effects, including the vascular leak syndrome and the preferential stimulation of anti-immunogenic Treg rather than effector T cells, have been obstacles. We newly designed a mutein IL-2, Mutakine-6 (MK-6), with reduced IL-2Rα-binding capability. MK-6 induced comparable cell growth potential toward IL-2Rβγ-positive T cells but was far less efficient in in vitro Treg proliferation and STAT5 activation. Unlike IL-2, in vivo administration of MK-6 produced minimal adverse effects. Using CT26 and B16F10-syngeneic tumor models, we found MK-6 was highly efficacious on tumor regression. Serum albumin conjugation to MK-6 prolonged in vivo half-life and accumulated in CT26 tumors, showing enhanced antitumor effect. Tumor-infiltrating leukocytes analysis revealed that albumin-fused MK-6 increased the ratio of effector CD8+ T cells to CD4+ Treg cells. These results demonstrated that MK-6 is an efficient immunomodulator potentially used for improved immunotherapy with decreased adverse effects and attenuated Treg stimulation.
Collapse
Affiliation(s)
- Maki Kobayashi
- Division of Tumor Immunobiology, Miyagi Cancer Center Research Institute, Natori, Japan.,Division of Tumor Immunobiology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Respiratory Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Respiratory Medicine, Miyagi Cancer Center Hospital, Natori, Japan
| | - Katsuhiko Kojima
- Department of Microbiology and Immunology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Yuji Amano
- Department of Microbiology and Immunology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takashi Koyama
- Division of Tumor Immunobiology, Miyagi Cancer Center Research Institute, Natori, Japan.,Division of Tumor Immunobiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoko Ogama
- Division of Tumor Immunobiology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Toshikazu Takeshita
- Department of Microbiology and Immunology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tatsuro Fukuhara
- Division of Respiratory Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Respiratory Medicine, Miyagi Cancer Center Hospital, Natori, Japan
| | - Nobuyuki Tanaka
- Division of Tumor Immunobiology, Miyagi Cancer Center Research Institute, Natori, Japan.,Division of Tumor Immunobiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
74
|
Proteomic Implications of Tumoral Infiltrating Lymphocytes in Melanoma: PD-L1, CD4 and CD8 - Short Review. ARS MEDICA TOMITANA 2021. [DOI: 10.2478/arsm-2020-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Melanoma is a tumor developed by malignancy of melanocytes, being one of the most lethal cancers. Usually, it is associated with exposure to ultraviolet radiations, being most common in the skin, but can also be located extracutaneously as in the digestive tract, leptomeninges or uvea. Histopathologically it presents a phase of radial growth and a vertical one, often accompanied by an intra and peritumoral inflammatory infiltrate. Immunohistochemically, the confirmation of the diagnosis of melanoma should be accompanied by the assessment of proteomic markers of lymphocytic infiltrate such as PD-L1, CD4 and CD8. Those have a role in evaluating the prognosis and a possible prediction of the immunotherapeutic response.
Collapse
|
75
|
Abstract
Despite the ability of immune-based interventions to dramatically increase the survival of patients with melanoma, a significant subset fail to benefit from this treatment, underscoring the need for accurate means to identify the patient population likely to respond to immunotherapy. Understanding how melanoma evades natural or manipulated immune responses could provide the information needed to identify such resistant individuals. Efforts to address this challenge are hampered by the vast immune diversity characterizing tumor microenvironments that remain largely understudied. It is thus important to more clearly elucidate the complex interactions that take place between the tumor microenvironment and host immune system.
Collapse
|
76
|
Porter RJ, Murray GI, Alnabulsi A, Humphries MP, James JA, Salto‐Tellez M, Craig SG, Wang JM, Yoshimura T, McLean MH. Colonic epithelial cathelicidin (LL-37) expression intensity is associated with progression of colorectal cancer and presence of CD8 + T cell infiltrate. J Pathol Clin Res 2021; 7:495-506. [PMID: 33988317 PMCID: PMC8363930 DOI: 10.1002/cjp2.222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer mortality. Here, we define the colonic epithelial expression of cathelicidin (LL-37) in CRC. Cathelicidin exerts pleotropic effects including anti-microbial and immunoregulatory functions. Genetic knockout of cathelicidin led to increased size and number of colorectal tumours in the azoxymethane-induced murine model of CRC. We aimed to translate this to human disease. The expression of LL-37 in a large (n = 650) fully characterised cohort of treatment-naïve primary human colorectal tumours and 50 matched normal mucosa samples with associated clinical and pathological data (patient age, gender, tumour site, tumour stage [UICC], presence or absence of extra-mural vascular invasion, tumour differentiation, mismatch repair protein status, and survival to 18 years) was assessed by immunohistochemistry. The biological consequences of LL-37 expression on the epithelial barrier and immune cell phenotype were assessed using targeted quantitative PCR gene expression of epithelial permeability (CLDN2, CLDN4, OCLN, CDH1, and TJP1) and cytokine (IL-1β, IL-18, IL-33, IL-10, IL-22, and IL-27) genes in a human colon organoid model, and CD3+ , CD4+ , and CD8+ lymphocyte phenotyping by immunohistochemistry, respectively. Our data reveal that loss of cathelicidin is associated with human CRC progression, with a switch in expression intensity an early feature of CRC. LL-37 expression intensity is associated with CD8+ T cell infiltrate, influenced by tumour characteristics including mismatch repair protein status. There was no effect on epithelial barrier gene expression. These data offer novel insights into the contribution of LL-37 to the pathogenesis of CRC and as a therapeutic molecule.
Collapse
Affiliation(s)
- Ross J Porter
- Centre for Inflammation Research, Queens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Graeme I Murray
- School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Abdo Alnabulsi
- School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Matthew P Humphries
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer ResearchQueen's UniversityBelfastUK
| | - Jacqueline A James
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer ResearchQueen's UniversityBelfastUK
| | - Manuel Salto‐Tellez
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer ResearchQueen's UniversityBelfastUK
- Integrated Pathology Programme, Division of Molecular PathologyThe Institute of Cancer ResearchLondonUK
| | - Stephanie G Craig
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer ResearchQueen's UniversityBelfastUK
| | - Ji M Wang
- Cancer and Inflammation Program, Center for Cancer ResearchNational Cancer Institute at FrederickFrederickMDUSA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Mairi H McLean
- Division of Molecular & Clinical Medicine, School of MedicineUniversity of DundeeDundeeUK
| |
Collapse
|
77
|
Peng Y, Dong S, Song Y, Hou D, Wang L, Li B, Wang H. Key sunitinib-related biomarkers for renal cell carcinoma. Cancer Med 2021; 10:6917-6930. [PMID: 34402193 PMCID: PMC8495283 DOI: 10.1002/cam4.4206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Background Renal cell carcinoma (RCC) contributed to 403,262 new cases worldwide in 2018, which constitutes 2.2% of global cancer, nevertheless, sunitinib, one of the major targeted therapeutic agent for RCC, often developed invalid due to resistance. Emerging evidences suggested sunitinib can impact tumor environment which has been proven to be a vital factor for tumor progression. Methods In the present study, we used ssGSEA to extract the immune infiltrating abundance of clear cell RCC (ccRCC) and normal control samples from GSE65615, TCGA, and GTEx; key immune cells were determined by Student's t‐test and univariable Cox analysis. Co‐expression network combined with differentially expressed analysis was then applied to derive key immune‐related genes for ccRCC, followed by the identification of hub genes using differential expression analysis. Subsequently, explorations and validations of the biological function and the immune‐related and sunitinib‐related characteristics were conducted in KEGG, TISIDB, Oncomine, ICGC, and GEO databases. Results We refined immature dendritic cells and central memory CD4 T cells which showed associations with sunitinib and ccRCC. Following, five hub genes (CRYBB1, RIMBP3C, CEACAM4, HAMP, and LYL1) were identified for their strong relationships with sunitinib and immune infiltration in ccRCC. Further validations in external data refined CRYBB1, CEACAM4, and HAMP which play a vital role in sunitinib resistance, immune infiltrations in ccRCC, and the development and progression of ccRCC. In conclusion, our findings could shed light on the resistance of sunitinib in ccRCC and provide novel biomarkers or drug targets for ccRCC.
Collapse
Affiliation(s)
- Yun Peng
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Shiqiang Dong
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Yuxuan Song
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Dingkun Hou
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Lili Wang
- Department of Oncology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Bowen Li
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Haitao Wang
- Department of Oncology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
78
|
Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem 2021; 224:113726. [PMID: 34364161 DOI: 10.1016/j.ejmech.2021.113726] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Biguanides have attracted much attention a century ago and showed resurgent interest in recent years after a long period of dormancy. They constitute an important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. Therapeutic indications of biguanides include antidiabetic, antimalarial, antiviral, antiplaque, and bactericidal applications. This review presents an extensive overview of the biological activity of biguanides and different mechanisms of action of currently marketed biguanide-containing drugs, as well as their pharmacological properties when applicable. We highlight the recent developments in research on biguanide compounds, with a primary focus on studies on metformin in the field of oncology. We aim to provide a critical overview of all main bioactive biguanide compounds and discuss future perspectives for the design of new drugs based on the biguanide fragment.
Collapse
|
79
|
Lei M, Siemers NO, Pandya D, Chang H, Sanchez T, Harbison C, Szabo PM, Janjigian Y, Ott PA, Sharma P, Bendell J, Evans TRJ, de Braud F, Chau I, Boyd Z. Analyses of PD-L1 and Inflammatory Gene Expression Association with Efficacy of Nivolumab ± Ipilimumab in Gastric Cancer/Gastroesophageal Junction Cancer. Clin Cancer Res 2021; 27:3926-3935. [PMID: 33782030 DOI: 10.1158/1078-0432.ccr-20-2790] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE In advanced gastric cancer/gastroesophageal junction cancer (GC/GEJC), there is a need to identify biomarkers of response to therapies, such as immune checkpoint inhibitors. PATIENTS AND METHODS In post hoc exploratory analyses from CheckMate 032 (GC/GEJC cohort), we evaluated associations between nivolumab ± ipilimumab (NIVO ± IPI) efficacy and programmed death ligand 1 (PD-L1) expression, defined by tumor cells (% TC) or combined positive score (CPS; sum of PD-L1-staining TCs + immune cells, divided by total viable TCs, × 100) using the Dako PD-L1 IHC 28-8 pharmDx assay, or inflammatory gene expression. RESULTS There was a trend toward increased efficacy (objective response and overall survival) when PD-L1 expression was determined by CPS compared with % TC at higher cutoffs of ≥5 and ≥10 in the pooled analysis of all treatment regimens. In this analysis, 19% and 26% of patients with PD-L1-positive tumors at a CPS cutoff of ≥5 and ≥10, respectively, had an objective response compared with 8% and 9% of patients at the equivalent % TC cutoffs. Longer survival was demonstrated in patients with PD-L1-positive (defined by CPS cutoffs of ≥5 and ≥10) versus PD-L1-negative status. Similar results were observed in the NIVO 1 mg/kg + IPI 3 mg/kg subgroup. Multiple inflammatory gene signatures/transcripts, including a signature consisting of four genes (CD274, CD8A, LAG3, and STAT1), showed associations with response to NIVO ± IPI. CONCLUSIONS This study suggests a greater association of PD-L1 expression by CPS with NIVO ± IPI efficacy compared with % TC PD-L1 expression in patients with GC/GEJC. Inflammatory signatures were also associated with NIVO ± IPI response, warranting further investigation.See related commentary by Moutafi and Rimm, p. 3812.
Collapse
Affiliation(s)
- Ming Lei
- Bristol Myers Squibb, Princeton, New Jersey.
| | | | | | - Han Chang
- Bristol Myers Squibb, Princeton, New Jersey
| | | | | | | | - Yelena Janjigian
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Padmanee Sharma
- Genitourinary Medical Oncology and Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Johanna Bendell
- Drug Development Unit, Sarah Cannon Research Institute at Tennessee Oncology, Nashville, Tennessee
| | - Thomas R Jeffry Evans
- Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, United Kingdom
| | - Filippo de Braud
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- University of Milan, Milan, Italy
| | - Ian Chau
- Department of Medicine, The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | | |
Collapse
|
80
|
Endothelial cell-derived Apelin inhibits tumor growth by altering immune cell localization. Sci Rep 2021; 11:14047. [PMID: 34234274 PMCID: PMC8263715 DOI: 10.1038/s41598-021-93619-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
The Apelin/APJ signalling pathway, involved in multiple physiological and pathological processes, has been attracting increasing interest recently. In our previous study, Apelin overexpression in colon26 tumor cells suppressed tumor growth by inducing vascular maturation. Here, we found that MC38 and LLC tumor growth were greater in the absence of Apelin than in wild-type (WT) mice, suggesting that Apelin acts as a tumor suppressor. Consistent with this, treating WT mice with [Pyr1]Apelin-13 inhibited tumor growth. In MC38 tumors, only endothelial cells (ECs) strongly express APJ, a cognate receptor for Apelin, indicating that EC-derived Apelin might regulate tumor formation in an autocrine manner. Comparing with WT mice, larger numbers of vessels with narrower diameters were observed in tumors of Apelin knockout mice and lack of Apelin enhanced tumor hypoxia. Investigating immune cells in the tumor revealed that [Pyr1]Apelin-13 infusion induced the accumulation of CD8+ and CD4+ T cells in central areas. Moreover, RNA-sequencing analysis showed that Apelin induces chemokine CCL8 expression in ECs. Thus, enhancing anti-tumor immunity might be one of the mechanisms by which Apelin is involved in tumor growth. Our result indicated that increased CCL8 expression might induce CD8 + T cells infiltration into tumor and tumor inhibition.
Collapse
|
81
|
Macrophage Polarization States in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22136995. [PMID: 34209703 PMCID: PMC8268869 DOI: 10.3390/ijms22136995] [Citation(s) in RCA: 893] [Impact Index Per Article: 223.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
The M1/M2 macrophage paradigm plays a key role in tumor progression. M1 macrophages are historically regarded as anti-tumor, while M2-polarized macrophages, commonly deemed tumor-associated macrophages (TAMs), are contributors to many pro-tumorigenic outcomes in cancer through angiogenic and lymphangiogenic regulation, immune suppression, hypoxia induction, tumor cell proliferation, and metastasis. The tumor microenvironment (TME) can influence macrophage recruitment and polarization, giving way to these pro-tumorigenic outcomes. Investigating TME-induced macrophage polarization is critical for further understanding of TAM-related pro-tumor outcomes and potential development of new therapeutic approaches. This review explores the current understanding of TME-induced macrophage polarization and the role of M2-polarized macrophages in promoting tumor progression.
Collapse
|
82
|
Tanno L, Naheed S, Dunbar J, Tod J, Lopez MA, Taylor J, Machado M, Green B, Ashton-Key M, Chee SJ, Wood O, Pearce NW, Thomas GJ, Friedmann PS, Cave J, Ottensmeier CH. Analysis of Immune Landscape in Pancreatic and Ileal Neuroendocrine Tumours Demonstrates an Immune Cold Tumour Microenvironment. Neuroendocrinology 2021; 112:370-383. [PMID: 34157710 DOI: 10.1159/000517688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/08/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Neuroendocrine tumours (NETs) are rare tumours with an increasing incidence. While low- and intermediate-grade pancreatic NET (PanNET) and small intestinal NET (siNET) are slow growing, they have a relatively high rate of metastasizing to the liver, leading to substantially worse outcomes. In many solid tumours, the outcome is determined by the quality of the antitumour immune response. However, the quality and significance of antitumour responses in NETs are incompletely understood. This study provides clinico-pathological analyses of the tumour immune microenvironment in PanNET and siNETs. METHODS Formalin-fixed paraffin-embedded tissue from consecutive resected PanNETs (61) and siNETs (131) was used to construct tissue microarrays (TMAs); 1-mm cores were taken from the tumour centre, stroma, tumour edge, and adjacent healthy tissue. TMAs were stained with antibodies against CD8, CD4, CD68, FoxP3, CD20, and NCR1. T-cell counts were compared with counts from lung cancers. RESULTS For PanNET, median counts were CD8+ 35.4 cells/mm2, CD4+ 7.6 cells/mm2, and CD68+ macrophages 117.7 cells/mm2. For siNET, there were CD8+ 39.2 cells/mm2, CD4+ 24.1 cells/mm2, and CD68+ 139.2 cells/mm2. The CD8+ cell density in the tumour and liver metastases were significantly lower than in the adjacent normal tissues, without evidence of a cell-rich area at the tumour edge that might have suggested immune exclusion. T-cell counts in lung cancer were significantly higher than those in PanNET and siNETs: CD8+ 541 cells/mm2 and CD4+ 861 cells/mm2 (p ≤ 0.0001). CONCLUSION PanNETs and siNETs are immune cold with no evidence of T cell exclusion; the low density of immune infiltrates indicates poor antitumour immune responses.
Collapse
Affiliation(s)
- Lulu Tanno
- School of Cancer Sciences, and CRUK and NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
- Department of Hepato-Pancreato-Biliary Surgery, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Salma Naheed
- School of Cancer Sciences, and CRUK and NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
- Department of Medical Oncology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jonathan Dunbar
- Department of Radiology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jo Tod
- Department of Gastroenterology, University Hospitals Dorset NHS Foundation Trust, Bournemouth, UK
| | - Maria A Lopez
- Department of Research Histology, University of Southampton, Southampton, UK
| | - Julian Taylor
- Department of Research Histology, University of Southampton, Southampton, UK
| | - Maria Machado
- Department of Research Histology, University of Southampton, Southampton, UK
| | - Bryan Green
- Department of Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Margaret Ashton-Key
- School of Cancer Sciences, and CRUK and NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
- Department of Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Serena J Chee
- School of Cancer Sciences, and CRUK and NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Oliver Wood
- School of Cancer Sciences, and CRUK and NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Neil W Pearce
- Department of Hepato-Pancreato-Biliary Surgery, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Gareth J Thomas
- School of Cancer Sciences, and CRUK and NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
- Department of Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Peter S Friedmann
- Division of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton, Southampton, UK
| | - Judith Cave
- School of Cancer Sciences, and CRUK and NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
- Department of Medical Oncology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Christian H Ottensmeier
- School of Cancer Sciences, and CRUK and NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
83
|
Mills JK, Henderson MA, Giuffrida L, Petrone P, Westwood JA, Darcy PK, Neeson PJ, Kershaw MH, Gyorki DE. Generating CAR T cells from tumor-infiltrating lymphocytes. Ther Adv Vaccines Immunother 2021; 9:25151355211017119. [PMID: 34159293 PMCID: PMC8186112 DOI: 10.1177/25151355211017119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/01/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T-cell therapies have demonstrated promising, though limited, efficacy against melanoma. Methods: We designed a model system to explore the efficacy of dual specific T cells derived from melanoma patient TILs by transduction with a Her2-specific CAR. Results: Metastatic melanoma cells in our biobank constitutively expressed Her2 antigen. CAR-TIL produced greater amounts of IFN compared with parental TIL, when co-cultured with Her2 expressing tumor lines, including autologous melanoma tumor lines, although no consistent increase in cytotoxicity by TIL was afforded by expression of a CAR. Results of an in vivo study in NSG mice demonstrated tumor shrinkage when CAR-TILs were used in an adoptive cell therapy protocol. Conclusion: Potential limitations of transduced TIL in our study included limited proliferative potential and a terminally differentiated phenotype, which would need addressing in further work before consideration of clinical translation.
Collapse
Affiliation(s)
- Jane K Mills
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Melissa A Henderson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Lauren Giuffrida
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Pasquale Petrone
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jennifer A Westwood
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Michael H Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - David E Gyorki
- Department of Cancer Surgery, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia
| |
Collapse
|
84
|
Peng Y, Dong S, Yang Z, Song Y, Ding J, Hou D, Wang L, Zhang Z, Li N, Wang H. Identification of docetaxel-related biomarkers for prostate cancer. Andrologia 2021; 53:e14079. [PMID: 34021502 DOI: 10.1111/and.14079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) which was the second commonly diagnosed malignancy, contributed to the top fifth carcinoma death in men. Nevertheless, the main chemotherapeutic agent docetaxel came to failure due to chemoresistance. Recently, increasing evidence suggested the importance of tumour microenvironment (TME) in PCa. The present study aimed to explore the specific TME in PCa and find biomarkers related to both immune infiltration and docetaxel. The docetaxel-specific genes and differential expression genes comparing PCa with normal control samples were derived using DESeq2 and zinbwave with GSE140440, TCGA and GTEx datasets. Immune-infiltration-related genes were identified using CIBERSORT and co-expression network analysis. Key genes related to both docetaxel and immune infiltrating in PCa, including nine genes, namely ZNF486, IFI6, TMOD2, HSPA4L, ITPR1, LRRC37A7P, APOC1, APOBEC3G, and ITGA2, were determined by overlapping above three gene sets. ITGA2 was then defined as the hub gene for its significant prognostic implications. Further validations conducted on Oncomine, GEO, TISIDB, MSigDB, and The Human Protein Atlas confirmed the docetaxel-specific and immune infiltrating characteristics of ITGA2. To sum up, our findings could provide a better understanding of immune infiltrating and docetaxel-resistance in PCa, mostly, ITGA2 could serve as potential prognosis biomarkers and targets for the combination of docetaxel.
Collapse
Affiliation(s)
- Yun Peng
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Shiqiang Dong
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Zhikai Yang
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Yuxuan Song
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jin Ding
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dingkun Hou
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Lili Wang
- Department of Oncology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Zheyu Zhang
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Nan Li
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Haitao Wang
- Department of Oncology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
85
|
Crump NT, Hadjinicolaou AV, Xia M, Walsby-Tickle J, Gileadi U, Chen JL, Setshedi M, Olsen LR, Lau IJ, Godfrey L, Quek L, Yu Z, Ballabio E, Barnkob MB, Napolitani G, Salio M, Koohy H, Kessler BM, Taylor S, Vyas P, McCullagh JSO, Milne TA, Cerundolo V. Chromatin accessibility governs the differential response of cancer and T cells to arginine starvation. Cell Rep 2021; 35:109101. [PMID: 33979616 PMCID: PMC8131582 DOI: 10.1016/j.celrep.2021.109101] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/01/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Depleting the microenvironment of important nutrients such as arginine is a key strategy for immune evasion by cancer cells. Many tumors overexpress arginase, but it is unclear how these cancers, but not T cells, tolerate arginine depletion. In this study, we show that tumor cells synthesize arginine from citrulline by upregulating argininosuccinate synthetase 1 (ASS1). Under arginine starvation, ASS1 transcription is induced by ATF4 and CEBPβ binding to an enhancer within ASS1. T cells cannot induce ASS1, despite the presence of active ATF4 and CEBPβ, as the gene is repressed. Arginine starvation drives global chromatin compaction and repressive histone methylation, which disrupts ATF4/CEBPβ binding and target gene transcription. We find that T cell activation is impaired in arginine-depleted conditions, with significant metabolic perturbation linked to incomplete chromatin remodeling and misregulation of key genes. Our results highlight a T cell behavior mediated by nutritional stress, exploited by cancer cells to enable pathological immune evasion.
Collapse
Affiliation(s)
- Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Andreas V Hadjinicolaou
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Meng Xia
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - John Walsby-Tickle
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Ji-Li Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Mashiko Setshedi
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lars R Olsen
- Section for Bioinformatics, DTU Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - I-Jun Lau
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Laura Godfrey
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lynn Quek
- School of Cancer and Pharmaceutical Sciences, King's College London, SGDP Centre, Memory Lane, London SE5 8AF, UK
| | - Zhanru Yu
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Erica Ballabio
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Mike B Barnkob
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Giorgio Napolitani
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Mariolina Salio
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Hashem Koohy
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Stephen Taylor
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
86
|
Fernandes ATG, Carvalho MOO, Avvad-Portari E, Rocha NP, Russomano F, Roma EH, Bonecini-Almeida MDG. A prognostic value of CD45RA +, CD45RO +, CCL20 + and CCR6 + expressing cells as 'immunoscore' to predict cervical cancer induced by HPV. Sci Rep 2021; 11:8782. [PMID: 33888832 PMCID: PMC8062468 DOI: 10.1038/s41598-021-88248-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
The interplay between cervical cancer (CC) and immune cells, mainly intratumoral lymphocytes, has a pivotal role in carcinogenesis. In this context, we evaluated the distribution of CD45RA+ and CD45RO+ cells as well as CCR6+ and CCL20+ cells in intraepithelial (IE) and marginal stroma (MS) areas from cervical intraepithelial neoplasia (CIN) I-III, and CC as 'immunoscore' for HPV-induced CC outcome. We observed increased CD45RA+ and CD45RO+ cells distribution in IE and MS areas in the CC group compared to CIN groups and healthy volunteers. Interestingly, there is a remarkable reduction of CCL20+ expressing cells distribution according to lesion severity. The CC group had a significant decrease in CCL20+ and CCR6+-expressing cells distribution in both IE and MS areas compared to all groups. Using the 'immunoscore' model, we observed an increased number of women presenting high CD45RA+/CD45RO+ and low CCL20+/CCR6+ 'immunoscore' in the CC group. Our results suggested a pattern in cervical inflammatory process with increasing CD45RA+/CD45RO+, and decreasing CCL20+/CCR6+ expression in accordance with CIN severity. Taken together, these markers could be evaluated as 'immunoscore' predictors to CC response. A more comprehensive analysis of longitudinal studies should be conducted to associate CD45RA+/CD45RO+ and CCL20+/CCR6+ 'immunoscore' to CC progression and validate its value as a prognosis method.
Collapse
Affiliation(s)
- Ana Teresa G Fernandes
- Laboratory of Immunology and Immunogenetics in Infectious Diseases at Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil.
| | - Maria Odete O Carvalho
- Laboratory of Immunology and Immunogenetics in Infectious Diseases at Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Elyzabeth Avvad-Portari
- Department of Pathologic Anatomy at Fernandes Figueira Woman, Child and Adolescent's Health National Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Natália P Rocha
- Laboratory of Immunology and Immunogenetics in Infectious Diseases at Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Fabio Russomano
- Department of Gynecology at Fernandes Figueira Woman, Child and Adolescent's Health National Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Eric Henrique Roma
- Laboratory of Immunology and Immunogenetics in Infectious Diseases at Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Maria da Gloria Bonecini-Almeida
- Laboratory of Immunology and Immunogenetics in Infectious Diseases at Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| |
Collapse
|
87
|
Hoekstra ME, Vijver SV, Schumacher TN. Modulation of the tumor micro-environment by CD8 + T cell-derived cytokines. Curr Opin Immunol 2021; 69:65-71. [PMID: 33862306 DOI: 10.1016/j.coi.2021.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023]
Abstract
Upon their activation, CD8+ T cells in the tumor micro-environment (TME) secrete cytokines such as IFNγ, TNFα, and IL-2. While over the past years a major interest has developed in the antigenic signals that induce such cytokine release, our understanding of the cells that subsequently sense these CD8+ T-cell secreted cytokines is modest. Here, we review the current insights into the spreading behavior of CD8+ T-cell-secreted cytokines in the TME. We argue for a model in which variation in the mode of cytokine secretion, cytokine half-life, receptor-mediated clearance, cytokine binding to extracellular components, and feedback or forward loops, between different cytokines or between individual tumors, sculpts the local tissue response to natural and therapy-induced T-cell activation in human cancer.
Collapse
Affiliation(s)
- Mirjam E Hoekstra
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Saskia V Vijver
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
88
|
Ganoderma lucidum polysaccharide (GLP) enhances antitumor immune response by regulating differentiation and inhibition of MDSCs via a CARD9-NF-κB-IDO pathway. Biosci Rep 2021; 40:225254. [PMID: 32530032 PMCID: PMC7313449 DOI: 10.1042/bsr20201170] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
A homogeneous polysaccharide (GLP), with an average molecular weight of 4.44 × 104 Da, was isolated and purified from the fruiting bodies of Ganoderma lucidum. In this work, we examined the antitumor activities of GLP using a mouse Lewis lung cancer (LLC) model and explored possible molecular pathways involved in its immunomodulatory mechanism on tumor-host interaction. GLP administration (25 and 100 mg/kg) significantly inhibited tumor growth, as evidenced by the decreased tumor volume and tumor weight, as well as histological features of tumor tissues with concomitant down-regulation of proliferating cell nuclear antigen (PCNA) proliferative marker. Less myeloid-derived suppressor cells (MDSCs) were accumulated in both spleen and tumor tissues from GLP-treated mice. In contrast, the percentage of CD4+ and CD8+ T cells together with the production of Th1-type cytokines (IFN-γ and IL-12) was increased in the spleen of LLC-bearing mice following GLP administration. Furthermore, GLP administration reversed the attenuated expression of CARD9, p-Syk and p-p65, and increased indoleamine 2,3-dioxygenase (IDO) protein expression in MDSCs of LLC-bearing mice. Collectively, our data demonstrated the first time that GLP induced the differentiation of MDSCs and inhibited the accumulation of MDSCs via CARD9-NF-κB-IDO pathway, thus prevented lung cancer development.
Collapse
|
89
|
Zając A, Król SK, Rutkowski P, Czarnecka AM. Biological Heterogeneity of Chondrosarcoma: From (Epi) Genetics through Stemness and Deregulated Signaling to Immunophenotype. Cancers (Basel) 2021; 13:1317. [PMID: 33804155 PMCID: PMC8001927 DOI: 10.3390/cancers13061317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Chondrosarcoma (ChS) is a primary malignant bone tumor. Due to its heterogeneity in clinical outcomes and resistance to chemo- and radiotherapies, there is a need to develop new potential therapies and molecular targets of drugs. Many genes and pathways are involved in in ChS progression. The most frequently mutated genes are isocitrate dehydrogenase ½ (IDH1/2), collagen type II alpha 1 chain (COL2A1), and TP53. Besides the point mutations in ChS, chromosomal aberrations, such as 12q13 (MDM2) amplification, the loss of 9p21 (CDKN21/p16/INK4A and INK4A-p14ARF), and several gene fusions, commonly occurring in sarcomas, have been found. ChS involves the hypermethylation of histone H3 and the decreased methylation of some transcription factors. In ChS progression, changes in the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K-AKT-mTOR) and hedgehog pathways are known to play a role in tumor growth and chondrocyte proliferation. Due to recent discoveries regarding the potential of immunotherapy in many cancers, in this review we summarize the current state of knowledge concerning cellular markers of ChS and tumor-associated immune cells. This review compares the latest discoveries in ChS biology from gene alterations to specific cellular markers, including advanced molecular pathways and tumor microenvironment, which can help in discovering new potential checkpoints in inhibitory therapy.
Collapse
Affiliation(s)
- Agnieszka Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Sylwia K. Król
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-176 Warsaw, Poland
| |
Collapse
|
90
|
Yoon Y, Kim G, Jeon BN, Fang S, Park H. Bifidobacterium Strain-Specific Enhances the Efficacy of Cancer Therapeutics in Tumor-Bearing Mice. Cancers (Basel) 2021; 13:957. [PMID: 33668827 PMCID: PMC7956760 DOI: 10.3390/cancers13050957] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer-related death in the world. The development of CRC is associated with smoking, diet, and microbial exposure. Previous studies have shown that dysbiosis of the gut microbiome affects cancer development, because it leads to inflammation and genotoxicity. Supplementation with specific microbiota induces anti-tumor effects by enhancing of anti-tumor immunity. Here, we observed that supplementation with either of two B. breve strains reduces tumor growth in MC38 colon carcinoma-bearing mice. Interestingly, only one B. breve strain boosted the efficacy of cancer therapeutics, including oxaliplatin and PD-1 blockade. Extensive immune profiling and transcriptomic analysis revealed that the boosting B. breve strain augments lymphocyte-mediated anti-cancer immunity. Our results suggest that supplementation with B. breve strains could potentially be used as a strategy to enhance the efficacy of CRC therapeutics.
Collapse
Affiliation(s)
- Youngmin Yoon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.Y.); (G.K.)
| | - Gihyeon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.Y.); (G.K.)
| | - Bu-Nam Jeon
- Genome and Company, Pangyo-ro 255, Bundang-gu, Seoungnam 13486, Korea;
| | - Sungsoon Fang
- Severance Biomedical Science Institute, BK21 PLUS Project for Medical Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.Y.); (G.K.)
- Genome and Company, Pangyo-ro 255, Bundang-gu, Seoungnam 13486, Korea;
| |
Collapse
|
91
|
Labani-Motlagh A, Naseri S, Wenthe J, Eriksson E, Loskog A. Systemic immunity upon local oncolytic virotherapy armed with immunostimulatory genes may be supported by tumor-derived exosomes. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:508-518. [PMID: 33738337 PMCID: PMC7940707 DOI: 10.1016/j.omto.2021.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
Immunostimulatory gene therapy utilizing oncolytic viruses (OVs) as gene vehicles is a promising immunotherapy for cancer. Since viruses are immunogenic, systemic delivery can be troublesome due to neutralizing antibodies. Nevertheless, local delivery by intratumoral injection seems to induce systemic immune reactions. In this study, we demonstrate a novel mechanism of action of armed OV therapy suggesting that exosomes released by tumor cells infected with armed OV may participate to activate the immune system and this may also support systemic immunity. Tumor cell-derived exosomes commonly exert immunosuppressive functions. We hypothesized that exosomes derived from OV-infected tumor cells may instead be immunostimulatory. Human melanoma cells were infected by OVs armed with costimulatory molecules CD40 ligand (CD40L) and 4-1BB ligand (4-1BBL). Exosomes were purified and investigated for the presence of CD40L/4-1BBL mRNA and protein, and for their capacity to stimulate immune responses. The results show that the exosomes cargo transgenes. The exosomes from CD40L/4-1BBL-expressing tumor cells, or the viruses themselves, could stimulate robust dendritic cell (DC) activation with an enhanced level of major histocompatibility complex (MHC) and costimulatory molecules. Hence, exosomes after OV infection can locally activate immune responses at the tumor site and encounter immune cells such as DCs.
Collapse
Affiliation(s)
- Alireza Labani-Motlagh
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sedigheh Naseri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Wenthe
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emma Eriksson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Lokon Pharma AB, 75185 Uppsala, Sweden
| |
Collapse
|
92
|
Udagawa K, Niki Y, Kikuchi T, Fukuhara Y, Takeda Y, Miyamoto T, Matsumoto M, Nakamura M. Overexpression of Interleukin-1α Suppresses Liver Metastasis of Lymphoma: Implications for Antitumor Effects of CD8+ T-cells. J Histochem Cytochem 2021; 69:245-255. [PMID: 33559519 DOI: 10.1369/0022155421991634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Interleukin (IL)-1 plays a key role in carcinogenesis, tumor progression, and metastasis. Although IL-1 may enhance the expansion of CD8+ T-cells, the pathological contribution of IL-1-activated CD8+ T-cells to tumor metastasis remains unclear. This study used a liver metastasis model of the EL4 T-cell lymphoma cells transplanted into human IL (hIL)-1α conditional transgenic (hIL-1α cTg) mice. Overproduction of hIL-1α suppressed both macroscopic and histological liver metastasis of EL4 T-cell lymphoma. The hIL-1α-induced inflammatory state increased the number of CD8+ T-cells both within and around metastatic tumors. Moreover, larger numbers of CD8+ T-cells showed greater infiltration of liver blood vessels in hIL-1α cTg mice than in control wild-type mice. Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining of liver tissue from hIL-1α cTg mice indicated increased apoptosis of cells in the tumor. Localization of apoptosis cells resembled that of CD8+ T-cells. In addition, cytotoxicity assay showed that CD8+ T-cell counts from tumor-bearing hIL-1α cTg mice correlated with cytotoxicity against EL4. In summary, IL-1α suppresses lymphoma metastasis, and IL-1α-activated CD8+ T-cells may play important roles in inhibiting both tumor metastasis and metastatic tumor growth.
Collapse
Affiliation(s)
- Kazuhiko Udagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasuo Niki
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Toshiyuki Kikuchi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.,National Hospital Organization Murayama Medical Center, Tokyo, Japan
| | - Yusuke Fukuhara
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Takeda
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Miyamoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Orthopaedic Surgery, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
93
|
Salazar Y, Zheng X, Brunn D, Raifer H, Picard F, Zhang Y, Winter H, Guenther S, Weigert A, Weigmann B, Dumoutier L, Renauld JC, Waisman A, Schmall A, Tufman A, Fink L, Brüne B, Bopp T, Grimminger F, Seeger W, Pullamsetti SS, Huber M, Savai R. Microenvironmental Th9 and Th17 lymphocytes induce metastatic spreading in lung cancer. J Clin Invest 2021; 130:3560-3575. [PMID: 32229721 DOI: 10.1172/jci124037] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/24/2020] [Indexed: 01/10/2023] Open
Abstract
Immune microenvironment plays a critical role in lung cancer control versus progression and metastasis. In this investigation, we explored the effect of tumor-infiltrating lymphocyte subpopulations on lung cancer biology by studying in vitro cocultures, in vivo mouse models, and human lung cancer tissue. Lymphocyte conditioned media (CM) induced epithelial-mesenchymal transition (EMT) and migration in both primary human lung cancer cells and cell lines. Correspondingly, major accumulation of Th9 and Th17 cells was detected in human lung cancer tissue and correlated with poor survival. Coculturing lung cancer cells with Th9/Th17 cells or exposing them to the respective CM induced EMT in cancer cells and modulated the expression profile of genes implicated in EMT and metastasis. These features were reproduced by the signatory cytokines IL-9 and IL-17, with gene regulatory profiles evoked by these cytokines partly overlapping and partly complementary. Coinjection of Th9/Th17 cells with tumor cells in WT, Rag1-/-, Il9r-/-, and Il17ra-/- mice altered tumor growth and metastasis. Accordingly, inhibition of IL-9 or IL-17 cytokines by neutralizing antibodies decreased EMT and slowed lung cancer progression and metastasis. In conclusion, Th9 and Th17 lymphocytes induce lung cancer cell EMT, thereby promoting migration and metastatic spreading and offering potentially novel therapeutic strategies.
Collapse
Affiliation(s)
- Ylia Salazar
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), member of Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Xiang Zheng
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), member of Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - David Brunn
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), member of Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Hartmann Raifer
- Institute for Medical Microbiology and.,CoreFacility Flow Cytometry, University of Marburg, Marburg, Germany
| | | | | | - Hauke Winter
- Translational Research Unit, Thoraxklinik at Heidelberg University, member of the DZL, Heidelberg, Germany
| | - Stefan Guenther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Benno Weigmann
- Department of Medicine 1, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Laure Dumoutier
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Anja Schmall
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), member of Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Amanda Tufman
- Respiratory Medicine and Thoracic Oncology, Internal Medicine V, Ludwig-Maximilians-University of Munich and Thoracic Oncology Centre, member of the DZL, Munich, Germany
| | - Ludger Fink
- Institute of Pathology and Cytology, Wetzlar, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany. Research Center for Immunotherapy and University Medical Center, Johannes Gutenberg-University, Mainz, Germany. German Cancer Consortium, Heidelberg, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, member of the DZL, member of CPI, Justus Liebig University, Giessen, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), member of Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, member of the DZL, member of CPI, Justus Liebig University, Giessen, Germany.,Institute or Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), member of Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, member of the DZL, member of CPI, Justus Liebig University, Giessen, Germany
| | | | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), member of Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.,Department of Internal Medicine, member of the DZL, member of CPI, Justus Liebig University, Giessen, Germany.,Institute or Lung Health (ILH), Justus Liebig University, Giessen, Germany
| |
Collapse
|
94
|
Sier VQ, de Vries MR, van der Vorst JR, Vahrmeijer AL, van Kooten C, Cruz LJ, de Geus-Oei LF, Ferreira V, Sier CFM, Alves F, Muthana M. Cell-Based Tracers as Trojan Horses for Image-Guided Surgery. Int J Mol Sci 2021; 22:E755. [PMID: 33451116 PMCID: PMC7828607 DOI: 10.3390/ijms22020755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Surgeons rely almost completely on their own vision and palpation to recognize affected tissues during surgery. Consequently, they are often unable to distinguish between different cells and tissue types. This makes accurate and complete resection cumbersome. Targeted image-guided surgery (IGS) provides a solution by enabling real-time tissue recognition. Most current targeting agents (tracers) consist of antibodies or peptides equipped with a radiolabel for Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT), magnetic resonance imaging (MRI) labels, or a near-infrared fluorescent (NIRF) dye. These tracers are preoperatively administered to patients, home in on targeted cells or tissues, and are visualized in the operating room via dedicated imaging systems. Instead of using these 'passive' tracers, there are other, more 'active' approaches of probe delivery conceivable by using living cells (macrophages/monocytes, neutrophils, T cells, mesenchymal stromal cells), cell(-derived) fragments (platelets, extracellular vesicles (exosomes)), and microorganisms (bacteria, viruses) or, alternatively, 'humanized' nanoparticles. Compared with current tracers, these active contrast agents might be more efficient for the specific targeting of tumors or other pathological tissues (e.g., atherosclerotic plaques). This review provides an overview of the arsenal of possibilities applicable for the concept of cell-based tracers for IGS.
Collapse
Affiliation(s)
- Vincent Q. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
| | - Margreet R. de Vries
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
| | - Joost R. van der Vorst
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
| | - Cornelis van Kooten
- Department of Nephrology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Luis J. Cruz
- Department of Radiology, Translational Nanomaterials and Imaging Group, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Valerie Ferreira
- Department of Research and Development, UniQure, 1100 DA Amsterdam, The Netherlands;
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
- Percuros B.V. Leiden, 2333 CL Leiden, The Netherlands
| | - Frauke Alves
- Translational Molecular Imaging, Clinic of Hematology and Medical Oncology, Institute of Diagnostic and Interventional Radiology, University Medicine Center Göttingen and Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany;
| | - Munitta Muthana
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, UK;
| |
Collapse
|
95
|
Joseph C, Alsaleem MA, Toss MS, Kariri YA, Althobiti M, Alsaeed S, Aljohani AI, Narasimha PL, Mongan NP, Green AR, Rakha EA. The ITIM-Containing Receptor: Leukocyte-Associated Immunoglobulin-Like Receptor-1 (LAIR-1) Modulates Immune Response and Confers Poor Prognosis in Invasive Breast Carcinoma. Cancers (Basel) 2020; 13:E80. [PMID: 33396670 PMCID: PMC7795350 DOI: 10.3390/cancers13010080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) plays a role in immune response homeostasis, extracellular matrix remodelling and it is overexpressed in many high-grade cancers. This study aimed to elucidate the biological and prognostic role of LAIR-1 in invasive breast cancer (BC). METHODS The biological and prognostic effect of LAIR-1 was evaluated at the mRNA and protein levels using well-characterised multiple BC cohorts. Related signalling pathways were evaluated using in silico differential gene expression and siRNA knockdown were used for functional analyses. RESULTS High LAIR-1 expression either in mRNA or protein levels were associated with high tumour grade, poor Nottingham Prognostic Index, hormone receptor negativity, immune cell infiltrates and extracellular matrix remodelling elements. High LAIR-1 protein expression was an independent predictor of shorter BC-specific survival and distant metastasis-free survival in the entire BC cohort and human epidermal growth factor receptor 2 (HER2)+ subtype. Pathway analysis highlights LAIR-1 association with extracellular matrix remodelling-receptor interaction, and cellular proliferation. Depletion of LAIR-1 using siRNA significantly reduced cell proliferation and invasion capability in HER2+ BC cell lines. CONCLUSION High expression of LAIR-1 is associated with poor clinical outcome in BC. Association with immune cells and immune checkpoint markers warrant further studies to assess the underlying mechanistic roles.
Collapse
Affiliation(s)
- Chitra Joseph
- School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham NG7 2RD, UK;
| | - Mansour A. Alsaleem
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
- Department of Applied Medical Sciences, Unayzah Community College, Qassim University, Unayzah 56435, Saudi Arabia
| | - Michael S. Toss
- School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham NG7 2RD, UK;
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
| | - Yousif A. Kariri
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
- Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Shaqra University 33, Shaqra 11961, Saudi Arabia
| | - Maryam Althobiti
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
- Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Shaqra University 33, Shaqra 11961, Saudi Arabia
| | - Sami Alsaeed
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
| | - Abrar I. Aljohani
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
| | - Pavan L. Narasimha
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
| | - Nigel P. Mongan
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
| | - Andrew R. Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
| | - Emad A. Rakha
- School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham NG7 2RD, UK;
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
| |
Collapse
|
96
|
Han X, Wang L, Li T, Zhang J, Zhang D, Li J, Xia Y, Liu Y, Tan W. Beyond Blocking: Engineering RNAi-Mediated Targeted Immune Checkpoint Nanoblocker Enables T-Cell-Independent Cancer Treatment. ACS NANO 2020; 14:17524-17534. [PMID: 33290659 DOI: 10.1021/acsnano.0c08022] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The emergence of immune checkpoint blockade to activate host T cells to attack tumor cells has revolutionized the cancer treatment landscape over the past decade. However, sustained response has only been achieved in a small proportion of patients. This can be attributed to physiological barriers, such as T-cell heterogeneity and immunosuppressive tumor microenvironments. To this can be added obstacles intrinsic to traditional antibody-driven blockade methods, including the inability to inhibit checkpoint translocation from cytoplasm, systemic immune toxicity, and "bite back" effect on T cells. Using non-small cell lung cancer (NSCLC) as the cancer model, here we report an unconventional, yet powerful, tumor-targeted checkpoint blocking strategy by RNAi nanoengineering for T-cell-independent cancer therapy. Unlike antibodies, such nanoblocker silences both membranous and cytoplasmic PD-L1 in cancer cells, thus eliminating the binding step. Moreover, it is demonstrated that silencing of PD-L1 by the nanoblocker can cause the direct programmed cell death of NSCLC H460 cells, without the need of T-cell intervention. In vivo results from xenograft tumor models further demonstrate that tumor-homing peptide modification enables the nanoblocker to accumulate in the tumor tissue, downregulate the PD-L1 expression, and inhibit the tumor growth more efficiently than the nontargeted group. These findings may offer an effective means toward overcoming barriers against traditional checkpoint blockade and provide different insights into the molecular mechanism(s) underlying immunotherapy.
Collapse
Affiliation(s)
- Xiaoyan Han
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Ting Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Jiahui Zhang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Dailiang Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Jili Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yinghao Xia
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200040, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
97
|
Dong X, Song J, Hu J, Zheng C, Zhang X, Liu H. T-Box Transcription Factor 22 Is an Immune Microenvironment-Related Biomarker Associated With the BRAF V600E Mutation in Papillary Thyroid Carcinoma. Front Cell Dev Biol 2020; 8:590898. [PMID: 33392186 PMCID: PMC7773934 DOI: 10.3389/fcell.2020.590898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 01/21/2023] Open
Abstract
Papillary thyroid cancer (PTC) is the most common malignant disease in endocrine systems. T-box transcription factor 22 (TBX22) is a phylogenetically conserved family member that has not been widely characterized in cancers. In this study, we explored the potential clinical significance and biological functions of TBX22 in PTC. Comprehensive analyses of TBX22 were based on the public databases and our local qRT-PCR cohort. We observed that TBX22 was significantly downregulated in PTC compared with normal tissues. TBX22 was associated with several clinicopathological factors in PTC. Low TBX22 expression correlated with BRAF V600E and TERT mutation. Functional enrichment analysis revealed that cancer-related pathways and immune progress were closely associated with TBX22 in PTC. In TBX22-low PTC, high immune infiltration levels with increased CD8+ T cells, natural killer, M1 macrophages, and T-regulatory cells were observed. TBX22 was negatively correlated with the activity of different steps of the anticancer immunity cycle. Functionally, overexpression of TBX22 inhibited the proliferation, invasion, and migration in PTC cells, while knocking down of TBX22 showed the opposite effects. The present findings disclose that TBX22, as an immune microenvironment-related biomarker, could be an important tumor suppresser gene and might inform the management of PTC patients better.
Collapse
Affiliation(s)
- Xubin Dong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Song
- Department of Children's Health Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Hu
- Department of Gastrointestinal Surgery, People's Hospital of Yueqing, Wenzhou, China
| | - Cheng Zheng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaohua Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiguang Liu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
98
|
Kaur K, Ko MW, Ohanian N, Cook J, Jewett A. Osteoclast-expanded super-charged NK-cells preferentially select and expand CD8+ T cells. Sci Rep 2020; 10:20363. [PMID: 33230147 PMCID: PMC7683603 DOI: 10.1038/s41598-020-76702-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoclasts (OCs) and much less dendritic cells (DCs) induce significant expansion and functional activation of NK cells, and furthermore, the OC-expanded NK cells preferentially increase the expansion and activation of CD8+ T cells by targeting CD4+ T cells. When autologous OCs were used to expand patient NK cells much lower percentages of expanded CD8+ T cells, decreased numbers of expanded NK cells and decreased functions of NK cells could be observed, and the addition of allogeneic healthy OCs increased the patients' NK function. Mechanistically, OC-expanded NK cells were found to lyse CD4+ T cells but not CD8+ T cells suggesting potential selection of CD8+ T cells before their expansion by OC activated NK cells. In agreement, Increased IFN-γ secretion, and NK cell-mediated cytotoxicity and higher percentages of CD8+ T cells, in various tissue compartments of oral tumor-bearing hu-BLT mice in response to immunotherapy by OC-expanded NK cells were observed. Thus, our results indicate an important relationship between NK and CD8+ T cells.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Oral Medicine, School of Dentistry and Medicine, Los Angeles, CA, USA
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry and Medicine, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Meng-Wei Ko
- Division of Oral Biology and Oral Medicine, School of Dentistry and Medicine, Los Angeles, CA, USA
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry and Medicine, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Nick Ohanian
- Division of Oral Biology and Oral Medicine, School of Dentistry and Medicine, Los Angeles, CA, USA
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry and Medicine, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Jessica Cook
- Division of Oral Biology and Oral Medicine, School of Dentistry and Medicine, Los Angeles, CA, USA
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry and Medicine, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Anahid Jewett
- Division of Oral Biology and Oral Medicine, School of Dentistry and Medicine, Los Angeles, CA, USA.
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry and Medicine, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.
- The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
99
|
Evaluations of CRC2631 toxicity, tumor colonization, and genetic stability in the TRAMP prostate cancer model. Oncotarget 2020; 11:3943-3958. [PMID: 33216833 PMCID: PMC7646835 DOI: 10.18632/oncotarget.27769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/24/2020] [Indexed: 01/10/2023] Open
Abstract
Conventional cancer chemotherapies are not fully efficacious and do not target tumors, leading to significant treatment-related morbidities. A number of genetically attenuated cancer-targeting bacteria are being developed to safely target tumors in vivo. Here we report the toxicological, tumor-targeting, and efficacy profiles of Salmonella enterica serovar Typhimurium CRC2631 in a syngeneic and autochthonous TRAMP model of aggressive prostate cancer. CRC2631 preferentially colonize primary and metastatic tumors in the TRAMP animals. In addition, longitudinal whole genome sequencing studies of CRC2631 recovered from prostate tumor tissues demonstrate that CRC2631 is genetically stable. Moreover, tumor-targeted CRC2631 generates an anti-tumor immune response. Combination of CRC2631 with checkpoint blockade reduces metastasis burden. Collectively, these findings demonstrate a potential for CRC2631 in cancer immunotherapy strategies.
Collapse
|
100
|
Chong ZX, Yeap SK, Ho WY. Roles of circulating microRNA(s) in human breast cancer. Arch Biochem Biophys 2020; 695:108583. [DOI: 10.1016/j.abb.2020.108583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
|