51
|
Choong XY, Tosh JL, Pulford LJ, Fisher EMC. Dissecting Alzheimer disease in Down syndrome using mouse models. Front Behav Neurosci 2015; 9:268. [PMID: 26528151 PMCID: PMC4602094 DOI: 10.3389/fnbeh.2015.00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/21/2015] [Indexed: 11/13/2022] Open
Abstract
Down syndrome (DS) is a common genetic condition caused by the presence of three copies of chromosome 21 (trisomy 21). This greatly increases the risk of Alzheimer disease (AD), but although virtually all people with DS have AD neuropathology by 40 years of age, not all develop dementia. To dissect the genetic contribution of trisomy 21 to DS phenotypes including those relevant to AD, a range of DS mouse models has been generated which are trisomic for chromosome segments syntenic to human chromosome 21. Here, we consider key characteristics of human AD in DS (AD-DS), and our current state of knowledge on related phenotypes in AD and DS mouse models. We go on to review important features needed in future models of AD-DS, to understand this type of dementia and so highlight pathogenic mechanisms relevant to all populations at risk of AD.
Collapse
Affiliation(s)
- Xun Yu Choong
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Justin L Tosh
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Laura J Pulford
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| |
Collapse
|
52
|
Rama Rao KV, Kielian T. Neuron-astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. ACTA ACUST UNITED AC 2015; 6:245-263. [PMID: 26543505 DOI: 10.1111/cen3.12237] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective neuron loss in discrete brain regions is a hallmark of various neurodegenerative disorders, although the mechanisms responsible for this regional vulnerability of neurons remain largely unknown. Earlier studies attributed neuron dysfunction and eventual loss during neurodegenerative diseases as exclusively cell autonomous. Although cell-intrinsic factors are one critical aspect in dictating neuron death, recent evidence also supports the involvement of other central nervous system cell types in propagating non-cell autonomous neuronal injury during neurodegenerative diseases. One such example is astrocytes, which support neuronal and synaptic function, but can also contribute to neuroinflammatory processes through robust chemokine secretion. Indeed, aberrations in astrocyte function have been shown to negatively impact neuronal integrity in several neurological diseases. The present review focuses on neuroinflammatory paradigms influenced by neuron-astrocyte cross-talk in the context of select neurodegenerative diseases.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
53
|
Nguyen TVV, Shen L, Vander Griend L, Quach LN, Belichenko NP, Saw N, Yang T, Shamloo M, Wyss-Coray T, Massa SM, Longo FM. Small molecule p75NTR ligands reduce pathological phosphorylation and misfolding of tau, inflammatory changes, cholinergic degeneration, and cognitive deficits in AβPP(L/S) transgenic mice. J Alzheimers Dis 2015; 42:459-83. [PMID: 24898660 DOI: 10.3233/jad-140036] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The p75 neurotrophin receptor (p75NTR) is involved in degenerative mechanisms related to Alzheimer's disease (AD). In addition, p75NTR levels are increased in AD and the receptor is expressed by neurons that are particularly vulnerable in the disease. Therefore, modulating p75NTR function may be a significant disease-modifying treatment approach. Prior studies indicated that the non-peptide, small molecule p75NTR ligands LM11A-31, and chemically unrelated LM11A-24, could block amyloid-β-induced deleterious signaling and neurodegeneration in vitro, and LM11A-31 was found to mitigate neuritic degeneration and behavioral deficits in a mouse model of AD. In this study, we determined whether these in vivo findings represent class effects of p75NTR ligands by examining LM11A-24 effects. In addition, the range of compound effects was further examined by evaluating tau pathology and neuroinflammation. Following oral administration, both ligands reached brain concentrations known to provide neuroprotection in vitro. Compound induction of p75NTR cleavage provided evidence for CNS target engagement. LM11A-31 and LM11A-24 reduced excessive phosphorylation of tau, and LM11A-31 also inhibited its aberrant folding. Both ligands decreased activation of microglia, while LM11A-31 attenuated reactive astrocytes. Along with decreased inflammatory responses, both ligands reduced cholinergic neurite degeneration. In addition to the amelioration of neuropathology in AD model mice, LM11A-31, but not LM11A-24, prevented impairments in water maze performance, while both ligands prevented deficits in fear conditioning. These findings support a role for p75NTR ligands in preventing fundamental tau-related pathologic mechanisms in AD, and further validate the development of these small molecules as a new class of therapeutic compounds.
Collapse
Affiliation(s)
- Thuy-Vi V Nguyen
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Lin Shen
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Lilith Vander Griend
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Lisa N Quach
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Nadia P Belichenko
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Nay Saw
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA Palo Alto Veterans Affairs Health Care System, Palo Alto, CA, USA
| | - Stephen M Massa
- Department of Veterans Affairs Medical Center, San Francisco, CA, USA Department of Neurology, University of California, San Francisco, CA, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
54
|
Tapia-Rojas C, Aranguiz F, Varela-Nallar L, Inestrosa NC. Voluntary Running Attenuates Memory Loss, Decreases Neuropathological Changes and Induces Neurogenesis in a Mouse Model of Alzheimer's Disease. Brain Pathol 2015; 26:62-74. [PMID: 25763997 DOI: 10.1111/bpa.12255] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/26/2015] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by loss of memory and cognitive abilities, and the appearance of amyloid plaques composed of the amyloid-β peptide (Aβ) and neurofibrillary tangles formed of tau protein. It has been suggested that exercise might ameliorate the disease; here, we evaluated the effect of voluntary running on several aspects of AD including amyloid deposition, tau phosphorylation, inflammatory reaction, neurogenesis and spatial memory in the double transgenic APPswe/PS1ΔE9 mouse model of AD. We report that voluntary wheel running for 10 weeks decreased Aβ burden, Thioflavin-S-positive plaques and Aβ oligomers in the hippocampus. In addition, runner APPswe/PS1ΔE9 mice showed fewer phosphorylated tau protein and decreased astrogliosis evidenced by lower staining of GFAP. Further, runner APPswe/PS1ΔE9 mice showed increased number of neurons in the hippocampus and exhibited increased cell proliferation and generation of cells positive for the immature neuronal protein doublecortin, indicating that running increased neurogenesis. Finally, runner APPswe/PS1ΔE9 mice showed improved spatial memory performance in the Morris water maze. Altogether, our findings indicate that in APPswe/PS1ΔE9 mice, voluntary running reduced all the neuropathological hallmarks of AD studied, reduced neuronal loss, increased hippocampal neurogenesis and reduced spatial memory loss. These findings support that voluntary exercise might have therapeutic value on AD.
Collapse
Affiliation(s)
- Cheril Tapia-Rojas
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Florencia Aranguiz
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena Varela-Nallar
- Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro UC Síndrome de Down, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
55
|
Liu P, Paulson JB, Forster CL, Shapiro SL, Ashe KH, Zahs KR. Characterization of a Novel Mouse Model of Alzheimer's Disease--Amyloid Pathology and Unique β-Amyloid Oligomer Profile. PLoS One 2015; 10:e0126317. [PMID: 25946042 PMCID: PMC4422728 DOI: 10.1371/journal.pone.0126317] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/31/2015] [Indexed: 12/02/2022] Open
Abstract
Amyloid plaques composed of β-amyloid (Aβ) protein are a pathological hallmark of Alzheimer’s disease. We here report the generation and characterization of a novel transgenic mouse model of Aβ toxicity. The rTg9191 mice harbor a transgene encoding the 695 amino-acid isoform of human amyloid precursor protein (APP) with the Swedish and London mutations (APPNLI) linked to familial Alzheimer’s disease, under the control of a tetracycline-response element, as well as a transgene encoding the tetracycline transactivator, under the control of the promoter for calcium-calmodulin kinase IIα. In these mice, APPNLI is expressed at a level four-fold that of endogenous mouse APP and its expression is restricted to forebrain regions. Transgene expression was suppressed by 87% after two months of doxycycline administration. Histologically, we showed that (1) Aβ plaques emerged in cerebral cortex and hippocampus as early as 8 and 10.5-12.5 months of age, respectively; (2) plaque deposition progressed in an age-dependent manner, occupying up to 19% of cortex at ~25 months of age; and (3) neuropathology—such as abnormal neuronal architecture, tau hyperphosphorylation and misfolding, and neuroinflammation—was observed in the vicinity of neuritic plaques. Biochemically, we determined total Aβ production at varied ages of mice, and we showed that mice produced primarily fibrillar Aβ assemblies recognized by conformation-selective OC antibodies, but few non-fibrillar oligomers (e.g., Aβ*56) detectable by A11 antibodies. Finally, we showed that expression of the tetracycline transactivator resulted in reduced brain weight and smaller dentate-gyrus size. Collectively, these data indicate that rTg9191 mice may serve as a model for studying the neurological effects of the fibrillar Aβ assemblies in situ.
Collapse
Affiliation(s)
- Peng Liu
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (PL); (KRZ)
| | - Jennifer B. Paulson
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Colleen L. Forster
- University of Minnesota Academic Health Center Biological Materials Procurement Network (BioNet), University of Minnesota, Minneapolis, Minnesota, United States of America
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Samantha L. Shapiro
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Karen H. Ashe
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Geriatric Research Education and Clinical Centers, Veterans Affairs Medical Center, Minneapolis, Minnesota, United States of America
| | - Kathleen R. Zahs
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (PL); (KRZ)
| |
Collapse
|
56
|
Collins JM, King AE, Woodhouse A, Kirkcaldie MTK, Vickers JC. The effect of focal brain injury on beta-amyloid plaque deposition, inflammation and synapses in the APP/PS1 mouse model of Alzheimer's disease. Exp Neurol 2015; 267:219-29. [PMID: 25747037 DOI: 10.1016/j.expneurol.2015.02.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/11/2015] [Accepted: 02/27/2015] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury is a risk factor for Alzheimer's disease (AD), however the effect of such neural damage on the onset and progression of beta-amyloid (Aβ) plaque pathology is not well understood. This study utilized an in vivo model of focal brain injury to examine how localized damage may acutely affect the onset and progression of Aβ plaque deposition as well as inflammatory and synaptic changes, in the APP/PS1 (APPSWE, PSEN1dE9) transgenic model of AD relative to wild-type (Wt) mice. Acute focal brain injury in 3- and 9-month-old APP/PS1 and Wt mice was induced by insertion of a needle into the somatosensory neocortex, as compared to sham surgery, and examined at 24h and 7d post-injury (PI). Focal brain injury did not induce thioflavine-S stained or (pan-Aβ antibody) MOAB-2-labeled plaques at either 24h or 7d PI in 3-month-old APP/PS1 mice or Wt mice. Nine-month-old APP/PS1 mice demonstrate cortical Aβ plaques but focal injury had no statistically significant (p>0.05) effect on thioflavine-S or MOAB-2 plaque load surrounding the injury site at 24h PI or 7d PI. There was a significant (p<0.001) increase in cross-sectional cortical area occupied by Iba-1 positive microglia in injured mice compared to sham animals, however this response did not differ between APP/PS1 and Wt mice (p>0.05). For both Wt and APP/PS1 mice alike, synaptophysin puncta near the injury site were significantly reduced 24h PI (compared to sites distant to the injury and the corresponding area in sham mice; p<0.01), but not after 7d PI (p>0.05). There was no significant effect of genotype on this response (p>0.05). These results indicate that focal brain injury and the associated microglial response do not acutely alter Aβ plaque deposition in the APP/PS1 mouse model. Furthermore the current study demonstrated that the brains of both Wt and APP/PS1 mice are capable of recovering lost synaptophysin immunoreactivity post-injury, the latter in the presence of Aβ plaque pathology that causes synaptic degeneration.
Collapse
Affiliation(s)
- Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Australia.
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, University of Tasmania, Australia
| | - Matthew T K Kirkcaldie
- Wicking Dementia Research and Education Centre, University of Tasmania, Australia; School of Medicine, University of Tasmania, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Australia; School of Medicine, University of Tasmania, Australia
| |
Collapse
|
57
|
GFAP antibodies show protective effect on oxidatively stressed neuroretinal cells via interaction with ERP57. J Pharmacol Sci 2015; 127:298-304. [DOI: 10.1016/j.jphs.2014.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/10/2014] [Accepted: 12/28/2014] [Indexed: 01/07/2023] Open
|
58
|
Pivtoraiko VN, Abrahamson EE, Leurgans SE, DeKosky ST, Mufson EJ, Ikonomovic MD. Cortical pyroglutamate amyloid-β levels and cognitive decline in Alzheimer's disease. Neurobiol Aging 2015; 36:12-9. [PMID: 25048160 PMCID: PMC4268150 DOI: 10.1016/j.neurobiolaging.2014.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 02/02/2023]
Abstract
Posterior cingulate cortex (PCC) accumulates amyloid-β (Aβ) early in Alzheimer's disease (AD). The relative concentrations of full-length Aβ and truncated, pyroglutamate-modified Aβ (NpE3) forms, and their correlations to cognitive dysfunction in AD, are unknown. We quantified AβNpE3-42, AβNpE3-40, Aβ1-42, and Aβ1-40 concentrations in soluble (nonfibrillar) and insoluble (fibrillar) pools in PCC from subjects with an antemortem clinical diagnosis of no cognitive impairment, mild cognitive impairment, or mild-moderate AD. In clinical AD, increased PCC concentrations of Aβ were observed for all Aβ forms in the insoluble pool but only for Aβ1-42 in the soluble pool. Lower Mini-Mental State Exam and episodic memory scores correlated most strongly with higher concentrations of soluble and insoluble Aβ1-42. Greater neuropathology severity by Consortium to Establish a Registry for Alzheimer's Disease and National Institute on Aging-Reagan pathologic criteria was associated with higher concentrations of all measured Aβ forms, except soluble AβNpE3-40. Low concentrations of soluble pyroglutamate Aβ across clinical groups likely reflect its rapid sequestration into plaques, thus, the conversion to fibrillar Aβ may be a therapeutic target.
Collapse
Affiliation(s)
| | - Eric E Abrahamson
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - Steven T DeKosky
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Elliott J Mufson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
59
|
Serrano FG, Tapia-Rojas C, Carvajal FJ, Hancke J, Cerpa W, Inestrosa NC. Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice. Mol Neurodegener 2014; 9:61. [PMID: 25524173 PMCID: PMC4414355 DOI: 10.1186/1750-1326-9-61] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/06/2014] [Indexed: 12/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder in which the amyloid-β (Aβ) oligomers are a key factor in synaptic impairment and in spatial memory decline associated with neuronal dysfunction. This impairment includes synaptic failure associated with the loss of synaptic proteins that contribute to AD progression. Interestingly, the use of natural compounds is an emergent conceptual strategy in the search for drugs with therapeutic potentials for treating neurodegenerative disorders. In the present study, we report that andrographolide (ANDRO), which is a labdane diterpene extracted from Andrographis paniculata, increases slope of field excitatory postsynaptic potentials (fEPSP) in the CA1 region of hippocampal slices and inhibits long-term depression (LTD), protecting the long-term potentiation (LTP) against the damage induced by Aβ oligomers in vitro, most likely by inhibiting glycogen synthase kinase-3β (GSK-3β). Additionally, ANDRO prevents changes in neuropathology in two different age groups (7- and 12-month-old mice) of an AβPPswe/PS-1 Alzheimer’s model. ANDRO reduces the Aβ levels, changing the ontogeny of amyloid plaques in hippocampi and cortices in 7-month-old mice, and reduces tau phosphorylation around the Aβ oligomeric species in both age groups. Additionally, we observed that ANDRO recovers spatial memory functions that correlate with protecting synaptic plasticity and synaptic proteins in two different age groups. Our results suggest that ANDRO could be used in a potential preventive therapy during AD progression.
Collapse
Affiliation(s)
- Felipe G Serrano
- Centro de Envejecimiento y Regeneración (CARE), Santiago, Chile.
| | | | - Francisco J Carvajal
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan Hancke
- Instituto de Farmacología y Morfofisiología, Universidad Austral de Chile, Valdivia, Chile.
| | - Waldo Cerpa
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Santiago, Chile. .,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Center of Healthy Brain Aging, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia. .,Centro UC Síndrome de Down, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile. .,CARE Biomedical Center, P. Catholic University of Chile, Postal code 8331150, PO Box 114-D, Santiago, Chile.
| |
Collapse
|
60
|
Kim HY, Kim HV, Yoon JH, Kang BR, Cho SM, Lee S, Kim JY, Kim JW, Cho Y, Woo J, Kim Y. Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer's disease. Sci Rep 2014; 4:7467. [PMID: 25502280 PMCID: PMC4264000 DOI: 10.1038/srep07467] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a lethal progressive neurological disorder affecting the memory. Recently, US Food and Drug Administration mitigated the standard for drug approval, allowing symptomatic drugs that only improve cognitive deficits to be allowed to accelerate on to clinical trials. Our study focuses on taurine, an endogenous amino acid found in high concentrations in humans. It has demonstrated neuroprotective properties against many forms of dementia. In this study, we assessed cognitively enhancing property of taurine in transgenic mouse model of AD. We orally administered taurine via drinking water to adult APP/PS1 transgenic mouse model for 6 weeks. Taurine treatment rescued cognitive deficits in APP/PS1 mice up to the age-matching wild-type mice in Y-maze and passive avoidance tests without modifying the behaviours of cognitively normal mice. In the cortex of APP/PS1 mice, taurine slightly decreased insoluble fraction of Aβ. While the exact mechanism of taurine in AD has not yet been ascertained, our results suggest that taurine can aid cognitive impairment and may inhibit Aβ-related damages.
Collapse
Affiliation(s)
- Hye Yun Kim
- 1] Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea [2] Biological Chemistry Program, Korea University of Science and Technology, Daejeon, Republic of Korea [3] Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Hyunjin V Kim
- 1] Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea [2] Biological Chemistry Program, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jin H Yoon
- 1] Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, U.S.A
| | - Bo Ram Kang
- 1] Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea [2] Biological Chemistry Program, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Soo Min Cho
- 1] Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea [2] Biological Chemistry Program, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Sejin Lee
- 1] Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea [2] Biological Chemistry Program, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Ji Yoon Kim
- 1] Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea [2] Biological Chemistry Program, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Joo Won Kim
- 1] Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea [2] Department of Applied Chemistry, Dongduk Women's University, Seoul, Republic of Korea
| | - Yakdol Cho
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jiwan Woo
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - YoungSoo Kim
- 1] Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea [2] Biological Chemistry Program, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
61
|
Drug Access to the Central Nervous System in Alzheimer’s Disease: Preclinical and Clinical Insights. Pharm Res 2014; 32:819-39. [DOI: 10.1007/s11095-014-1522-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022]
|
62
|
Examination of the clinicopathologic continuum of Alzheimer disease in the autopsy cohort of the National Alzheimer Coordinating Center. J Neuropathol Exp Neurol 2014; 72:1182-92. [PMID: 24226270 DOI: 10.1097/nen.0000000000000016] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To test the hypothesis that Alzheimer disease (AD) is a clinical and pathologic continuum between normal aging and end-stage dementia, we selected a convenience sample of subjects from the National Alzheimer Coordinating Center 2005 to 2012 autopsy cohort (n = 2,083) with the last clinical evaluation within 2 years before autopsy and no other primary neuropathologic diagnosis. Demographic and neuropathologic characteristics were correlated with the Clinical Dementia Rating-Sum of Boxes in the 835 subjects meeting these criteria. Both neuritic plaques and neurofibrillary tangles independently predicted Clinical Dementia Rating-Sum of Boxes. Severe small-vessel disease, severe amyloid angiopathy, and hippocampal sclerosis were also independently associated with the degree of cognitive impairment. By contrast, education was a strong independent protective factor against cognitive deficits. The cause of mild to moderate dementia remained uncertain in 14% of the patients. Inverse probability weighting suggests the generalizability of these results to nonautopsied cohorts. These data indicate that plaques and tangles independently contribute to cognitive impairment, that concurrent vascular disease strongly correlates with cognitive dysfunction even in a sample selected to represent the AD pathologic continuum, and that education further modifies clinical expression. Thus, multiple concomitant etiologies of brain damage and premorbid characteristics contribute to the uncertainty of AD clinicopathologic correlations based only on tangles and plaques.
Collapse
|
63
|
Díaz De León González E, Gutiérrez Hermosillo H, Cedillo Rodrígez JA, Reyes Romero MA, Camacho Luis A, Palacios Corona R, Burciaga Nava JA, Ríos Valles JA, Tamez Pérez HE. Association between polymorphism c.1-765G>C of the COX2 gene and cognitive impairment in individuals 65 years or more with diabetes from a Geriatric Service in Monterrey, Mexico. Med Clin (Barc) 2013; 143:381-5. [PMID: 24342014 DOI: 10.1016/j.medcli.2013.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Cognitive impairment and dementia are common geriatric syndromes in diabetic patients. Inflammation plays a crucial role in the pathophysiology of Alzheimer's disease and cognitive impairment. Cyclooxygenases (COX) 1 and 2 participate in inflammation. The polymorphism c.1-765G>C of the COX2 gene might be protective against cognitive decline in Mexicans with diabetes mellitus through its reduced promotor activity. To determine the association between polymorphism c.1-765G>C of the COX2 gene and cognitive impairment in elderly adults with diabetes. PATIENTS AND METHODS Case-control study. We included diabetic patients from the Geriatric Clinic of General Hospital No. 17 who were over 65 years and accepted to participate. Cases were patients with a score of 24 or less on the Mini Mental Status Examination (MMSE) and with DSM IV criteria for dementia. Controls were those with MMSE scores of 25 or greater. Results We included 97 patients (50 cases and 47 controls). There were no differences regarding clinical and laboratory characteristics between cases and controls. The frequency of the C allele and the CG genotype was higher in controls than in cases and this difference remained significant in a multivariate analysis with an odds ratio of 0.012 (95% CI 0.001-0.091) and 0.009 (95% CI 0.001-0.076) in the bivariate and multivariate analysis, respectively, using the GG genotype frequency as a reference. CONCLUSION Cognitive impairment in Mexican patients with diabetes is associated with less exposure to the CG genotype of the c.1-765G>C polymorphism of COX2.
Collapse
Affiliation(s)
- Enrique Díaz De León González
- Servicio de Geriatría, UMAE 21, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, México; Departamento de Posgrado, Universidad Juárez del Estado de Durango, México.
| | - Hugo Gutiérrez Hermosillo
- Departamento de Posgrado, Universidad Juárez del Estado de Durango, México; Centro Médico Nacional del Bajío No. 1, IMSS y Hospital Aranda de la Parra, León Guanajuato, México
| | | | | | | | - Rebeca Palacios Corona
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, México
| | | | | | - Hector Eloy Tamez Pérez
- Subdirección de Investigación, Facultad de Medicina, Universidad Autónoma de Nuevo León, México
| |
Collapse
|
64
|
Andrade-Moraes CH, Oliveira-Pinto AV, Castro-Fonseca E, da Silva CG, Guimarães DM, Szczupak D, Parente-Bruno DR, Carvalho LR, Polichiso L, Gomes BV, Oliveira LM, Rodriguez RD, Leite RE, Ferretti-Rebustini RE, Jacob-Filho W, Pasqualucci CA, Grinberg LT, Lent R. Cell number changes in Alzheimer's disease relate to dementia, not to plaques and tangles. Brain 2013; 136:3738-52. [PMID: 24136825 PMCID: PMC3859218 DOI: 10.1093/brain/awt273] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 08/04/2013] [Accepted: 08/04/2013] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease is the commonest cause of dementia in the elderly, but its pathological determinants are still debated. Amyloid-β plaques and neurofibrillary tangles have been implicated either directly as disruptors of neural function, or indirectly by precipitating neuronal death and thus causing a reduction in neuronal number. Alternatively, the initial cognitive decline has been attributed to subtle intracellular events caused by amyloid-β oligomers, resulting in dementia after massive synaptic dysfunction followed by neuronal degeneration and death. To investigate whether Alzheimer's disease is associated with changes in the absolute cell numbers of ageing brains, we used the isotropic fractionator, a novel technique designed to determine the absolute cellular composition of brain regions. We investigated whether plaques and tangles are associated with neuronal loss, or whether it is dementia that relates to changes of absolute cell composition, by comparing cell numbers in brains of patients severely demented with those of asymptomatic individuals-both groups histopathologically diagnosed as Alzheimer's-and normal subjects with no pathological signs of the disease. We found a great reduction of neuronal numbers in the hippocampus and cerebral cortex of demented patients with Alzheimer's disease, but not in asymptomatic subjects with Alzheimer's disease. We concluded that neuronal loss is associated with dementia and not the presence of plaques and tangles, which may explain why subjects with histopathological features of Alzheimer's disease can be asymptomatic; and exclude amyloid-β deposits as causes for the reduction of neuronal numbers in the brain. We found an increase of non-neuronal cell numbers in the cerebral cortex and subcortical white matter of demented patients with Alzheimer's disease when compared with asymptomatic subjects with Alzheimer's disease and control subjects, suggesting a reactive glial cell response in the former that may be related to the symptoms they present.
Collapse
Affiliation(s)
| | | | - Emily Castro-Fonseca
- 1 Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Camila G. da Silva
- 1 Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Daniel M. Guimarães
- 1 Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Diego Szczupak
- 1 Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | | | | | - Lívia Polichiso
- 2 Ageing Brain Study Group, Department of Pathology, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- 3 Department of Neurology, University of California, San Francisco, USA
| | - Bruna V. Gomes
- 1 Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Lays M. Oliveira
- 1 Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Roberta D. Rodriguez
- 2 Ageing Brain Study Group, Department of Pathology, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
| | - Renata E.P. Leite
- 2 Ageing Brain Study Group, Department of Pathology, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
| | - Renata E.L. Ferretti-Rebustini
- 2 Ageing Brain Study Group, Department of Pathology, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- 4 University of São Paulo Nursing School, São Paulo, Brazil
| | - Wilson Jacob-Filho
- 2 Ageing Brain Study Group, Department of Pathology, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- 5 Division of Geriatrics, University of São Paulo, Brazil
| | - Carlos A. Pasqualucci
- 2 Ageing Brain Study Group, Department of Pathology, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
| | - Lea T. Grinberg
- 2 Ageing Brain Study Group, Department of Pathology, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- 3 Department of Neurology, University of California, San Francisco, USA
| | - Roberto Lent
- 1 Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
- 6 National Institute of Translational Neuroscience, Ministry of Science and Technology, Brazil
| |
Collapse
|
65
|
Erickson MA, Banks WA. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease. J Cereb Blood Flow Metab 2013; 33:1500-13. [PMID: 23921899 PMCID: PMC3790938 DOI: 10.1038/jcbfm.2013.135] [Citation(s) in RCA: 414] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) plays critical roles in the maintenance of central nervous system (CNS) homeostasis. Dysfunction of the BBB occurs in a number of CNS diseases, including Alzheimer's disease (AD). A prevailing hypothesis in the AD field is the amyloid cascade hypothesis that states that amyloid-β (Aβ) deposition in the CNS initiates a cascade of molecular events that cause neurodegeneration, leading to AD onset and progression. In this review, the participation of the BBB in the amyloid cascade and in other mechanisms of AD neurodegeneration will be discussed. We will specifically focus on three aspects of BBB dysfunction: disruption, perturbation of transporters, and secretion of neurotoxic substances by the BBB. We will also discuss the interaction of the BBB with components of the neurovascular unit in relation to AD and the potential contribution of AD risk factors to aspects of BBB dysfunction. From the results discussed herein, we conclude that BBB dysfunction contributes to AD through a number of mechanisms that could be initiated in the presence or absence of Aβ pathology.
Collapse
Affiliation(s)
- Michelle A Erickson
- 1] GRECC, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA [2] Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington, USA [3] Department of Pathology, School of Dental Medicine, University of Pennsylvania, Seattle, Washington, USA
| | | |
Collapse
|
66
|
Serrano-Pozo A, Muzikansky A, Gómez-Isla T, Growdon JH, Betensky RA, Frosch MP, Hyman BT. Differential relationships of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease. J Neuropathol Exp Neurol 2013; 72:462-71. [PMID: 23656989 PMCID: PMC3661683 DOI: 10.1097/nen.0b013e3182933788] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although it is clear that astrocytes and microglia cluster around dense-core amyloid plaques in Alzheimer disease (AD), whether they are primarily attracted to amyloid deposits or are just reacting to plaque-associated neuritic damage remains elusive. We postulate that astrocytes and microglia may differentially respond to fibrillar amyloid β. Therefore, we quantified the size distribution of dense-core thioflavin-S (ThioS)-positive plaques in the temporal neocortex of 40 AD patients and the microglial and astrocyte responses in their vicinity (≤50 μm) and performed correlations between both measures. As expected, both astrocytes and microglia were clearly spatially associated with ThioS-positive plaques (p = 0.0001, ≤50 μm vs. >50 μm from their edge), but their relationship to ThioS-positive plaque size differed: larger ThioS-positive plaques were associated with more surrounding activated microglia (p = 0.0026), but this effect was not observed with reactive astrocytes. Microglial response to dense-core plaques seems to be proportional to their size, which we postulate reflects a chemotactic effect of amyloid β. By contrast, plaque-associated astrocytic response does not correlate with plaque size and seems to parallel the behavior of plaque-associated neuritic damage.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Massachusetts Alzheimer Disease Research Center, and Harvard Medical School, Charlestown, Massachusetts
| | - Alona Muzikansky
- Massachusetts General Hospital Biostatistics Center, Boston, Massachusetts
| | - Teresa Gómez-Isla
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Massachusetts Alzheimer Disease Research Center, and Harvard Medical School, Charlestown, Massachusetts
| | - John H. Growdon
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Massachusetts Alzheimer Disease Research Center, and Harvard Medical School, Charlestown, Massachusetts
| | - Rebecca A. Betensky
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Massachusetts Alzheimer Disease Research Center, and Harvard Medical School, Charlestown, Massachusetts
- Harvard School of Public Health, Boston, Massachusetts
| | - Matthew P. Frosch
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Massachusetts Alzheimer Disease Research Center, and Harvard Medical School, Charlestown, Massachusetts
- C. S. Kubik Laboratory for Neuropathology. Massachusetts General Hospital, Boston, Massachusetts
| | - Bradley T. Hyman
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Massachusetts Alzheimer Disease Research Center, and Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
67
|
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2013; 1:a006189. [PMID: 22229116 DOI: 10.1101/cshperspect.a006189] [Citation(s) in RCA: 2207] [Impact Index Per Article: 183.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The neuropathological hallmarks of Alzheimer disease (AD) include "positive" lesions such as amyloid plaques and cerebral amyloid angiopathy, neurofibrillary tangles, and glial responses, and "negative" lesions such as neuronal and synaptic loss. Despite their inherently cross-sectional nature, postmortem studies have enabled the staging of the progression of both amyloid and tangle pathologies, and, consequently, the development of diagnostic criteria that are now used worldwide. In addition, clinicopathological correlation studies have been crucial to generate hypotheses about the pathophysiology of the disease, by establishing that there is a continuum between "normal" aging and AD dementia, and that the amyloid plaque build-up occurs primarily before the onset of cognitive deficits, while neurofibrillary tangles, neuron loss, and particularly synaptic loss, parallel the progression of cognitive decline. Importantly, these cross-sectional neuropathological data have been largely validated by longitudinal in vivo studies using modern imaging biomarkers such as amyloid PET and volumetric MRI.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Alzheimer Research Unit of the MassGeneral Institute for Neurodegenerative Disease, Department of Neurology of the Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA, 02129-4404
| | | | | | | |
Collapse
|
68
|
Satoh K, Akatsu H, Yamamoto T, Kosaka K, Yokota H, Yamada T. Mitsugumin 29 is transcriptionally induced in senile plaque-associated astrocytes. Brain Res 2012; 1441:9-16. [DOI: 10.1016/j.brainres.2011.12.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 09/27/2011] [Accepted: 12/31/2011] [Indexed: 11/29/2022]
|
69
|
Basak JM, Verghese PB, Yoon H, Kim J, Holtzman DM. Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes. J Biol Chem 2012; 287:13959-71. [PMID: 22383525 DOI: 10.1074/jbc.m111.288746] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulation of the amyloid β (Aβ) peptide within the brain is hypothesized to be one of the main causes underlying the pathogenic events that occur in Alzheimer disease (AD). Consequently, identifying pathways by which Aβ is cleared from the brain is crucial for better understanding of the disease pathogenesis and developing novel therapeutics. Cellular uptake and degradation by glial cells is one means by which Aβ may be cleared from the brain. In the current study, we demonstrate that modulating levels of the low-density lipoprotein receptor (LDLR), a cell surface receptor that regulates the amount of apolipoprotein E (apoE) in the brain, altered both the uptake and degradation of Aβ by astrocytes. Deletion of LDLR caused a decrease in Aβ uptake, whereas increasing LDLR levels significantly enhanced both the uptake and clearance of Aβ. Increasing LDLR levels also enhanced the cellular degradation of Aβ and facilitated the vesicular transport of Aβ to lysosomes. Despite the fact that LDLR regulated the uptake of apoE by astrocytes, we found that the effect of LDLR on Aβ uptake and clearance occurred in the absence of apoE. Finally, we provide evidence that Aβ can directly bind to LDLR, suggesting that an interaction between LDLR and Aβ could be responsible for LDLR-mediated Aβ uptake. Therefore, these results identify LDLR as a receptor that mediates Aβ uptake and clearance by astrocytes, and provide evidence that increasing glial LDLR levels may promote Aβ degradation within the brain.
Collapse
Affiliation(s)
- Jacob M Basak
- Department of Neurology, Hope Center for Neurological Disorders, Charles F and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
70
|
Wittnam JL, Portelius E, Zetterberg H, Gustavsson MK, Schilling S, Koch B, Demuth HU, Blennow K, Wirths O, Bayer TA. Pyroglutamate amyloid β (Aβ) aggravates behavioral deficits in transgenic amyloid mouse model for Alzheimer disease. J Biol Chem 2012; 287:8154-62. [PMID: 22267726 DOI: 10.1074/jbc.m111.308601] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyroglutamate-modified Aβ peptides at amino acid position three (Aβ(pE3-42)) are gaining considerable attention as potential key players in the pathogenesis of Alzheimer disease (AD). Aβ(pE3-42) is abundant in AD brain and has a high aggregation propensity, stability and cellular toxicity. The aim of the present work was to study the direct effect of elevated Aβ(pE3-42) levels on ongoing AD pathology using transgenic mouse models. To this end, we generated a novel mouse model (TBA42) that produces Aβ(pE3-42). TBA42 mice showed age-dependent behavioral deficits and Aβ(pE3-42) accumulation. The Aβ profile of an established AD mouse model, 5XFAD, was characterized using immunoprecipitation followed by mass spectrometry. Brains from 5XFAD mice demonstrated a heterogeneous mixture of full-length, N-terminal truncated, and modified Aβ peptides: Aβ(1-42), Aβ(1-40), Aβ(pE3-40), Aβ(pE3-42), Aβ(3-42), Aβ(4-42), and Aβ(5-42). 5XFAD and TBA42 mice were then crossed to generate transgenic FAD42 mice. At 6 months of age, FAD42 mice showed an aggravated behavioral phenotype compared with single transgenic 5XFAD or TBA42 mice. ELISA and plaque load measurements revealed that Aβ(pE3) levels were elevated in FAD42 mice. No change in Aβ(x)(-42) or other Aβ isoforms was discovered by ELISA and mass spectrometry. These observations argue for a seeding effect of Aβ(pE-42) in FAD42 mice.
Collapse
Affiliation(s)
- Jessica L Wittnam
- Division of Molecular Psychiatry, Georg August University Göttingen, University Medicine Göttingen, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Costa AP, Tramontina AC, Biasibetti R, Batassini C, Lopes MW, Wartchow KM, Bernardi C, Tortorelli LS, Leal RB, Gonçalves CA. Neuroglial alterations in rats submitted to the okadaic acid-induced model of dementia. Behav Brain Res 2012; 226:420-7. [DOI: 10.1016/j.bbr.2011.09.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/20/2011] [Accepted: 09/26/2011] [Indexed: 12/26/2022]
|
72
|
Ashutosh, Kou W, Cotter R, Borgmann K, Wu L, Persidsky R, Sakhuja N, Ghorpade A. CXCL8 protects human neurons from amyloid-β-induced neurotoxicity: relevance to Alzheimer's disease. Biochem Biophys Res Commun 2011; 412:565-71. [PMID: 21840299 DOI: 10.1016/j.bbrc.2011.07.127] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by amyloid-β (Aβ) deposition in senile plaques colocalized with activated microglia and astrocytes. Recent studies suggest that CXCL8 is involved in the AD pathogenesis. The objective of this study was to determine the cellular sources of CXCL8 in the central nervous system during AD pathogenesis, and investigate the effects of CXCL8 on neuronal survival and/or functions. Our results showed significantly higher CXCL8 levels in AD brain tissue lysates as compared to those of age-matched controls. Upon Aβ and/or pro-inflammatory cytokine stimulation, microglia, astrocytes and neurons were all capable of CXCL8 production in vitro. Although CXCL8-alone did not alter neuronal survival, it did inhibit Aβ-induced neuronal apoptosis and increased neuronal brain-derived neurotrophic factor (BDNF) production. We conclude that microglia, astrocytes and neurons, all contribute to the enhanced CXCL8 levels in the CNS upon Aβ and/or pro-inflammatory cytokine stimulation. Further, CXCL8 protects neurons possibly by paracrine or autocrine loop and regulates neuronal functions, therefore, may play a protective role in the AD pathogenesis.
Collapse
Affiliation(s)
- Ashutosh
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Tetrahydrohyperforin prevents cognitive deficit, Aβ deposition, tau phosphorylation and synaptotoxicity in the APPswe/PSEN1ΔE9 model of Alzheimer's disease: a possible effect on APP processing. Transl Psychiatry 2011; 1:e20. [PMID: 22832522 PMCID: PMC3309512 DOI: 10.1038/tp.2011.19] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, amyloid-β peptide (Aβ) accumulation and synaptic alterations. Previous studies indicated that hyperforin, a component of the St John's Wort, prevents Aβ neurotoxicity and some behavioral impairments in a rat model of AD. In this study we examined the ability of tetrahydrohyperforin (IDN5607), a stable hyperforin derivative, to prevent the cognitive deficit and synaptic impairment in an in vivo model of AD. In double transgenic APPswe/PSEN1ΔE9 mice, IDN5706 improves memory and prevents the impairment of synaptic plasticity in a dose-dependent manner, inducing a recovery of long-term potentiation. In agreement with these findings, IDN5706 prevented the decrease in synaptic proteins in hippocampus and cortex. In addition, decreased levels of tau hyperphosphorylation, astrogliosis, and total fibrillar and oligomeric forms of Aβ were determined in double transgenic mice treated with IDN5706. In cultured cells, IDN5706 decreased the proteolytic processing of the amyloid precursor protein that leads to Aβ peptide generation. These findings indicate that IDN5706 ameliorates AD neuropathology and could be considered of therapeutic relevance in AD treatment.
Collapse
|
74
|
Aquaporin expression in the brains of patients with or without cerebral amyloid angiopathy. J Neuropathol Exp Neurol 2010; 69:1201-9. [PMID: 21107133 DOI: 10.1097/nen.0b013e3181fd252c] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Aquaporins have recently been identified as protein channels involved in water transport. These channels may play a role in the edema formation and alterations in microvascular function observed in Alzheimer disease (AD) and cerebral amyloid angiopathy (CAA). We investigated the expression of aquaporin 1 (AQP1) and aquaporin 4 (AQP4) in 24 human autopsy brains consisting of 18 with AD and varying degrees of CAA and 6 with no pathologic abnormalities using immunohistochemistry. In cases of AD and CAA, there was enhanced AQP4 expression compared with the age- and sex-matched controls. Aquaporin 4 immunoreactivity was prominent at the cerebrospinal fluid and brain interfaces, including subpial, subependymal, pericapillary, and periarteriolar spaces. Aquaporin 1 expression in AD and CAA cases was not different from that in age- and sex-matched controls. Double labeling studies demonstrated that both AQP1 and 4 were localized to astrocytes. Both enhanced AQP4 expression and its unique staining pattern suggest that these proteins may be important in the impaired water transport observed in AD and CAA.
Collapse
|
75
|
Hoppe JB, Frozza RL, Horn AP, Comiran RA, Bernardi A, Campos MM, Battastini AMO, Salbego C. Amyloid-beta neurotoxicity in organotypic culture is attenuated by melatonin: involvement of GSK-3beta, tau and neuroinflammation. J Pineal Res 2010; 48:230-238. [PMID: 20136701 DOI: 10.1111/j.1600-079x.2010.00747.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder marked by accumulation of extracellular deposits of amyloid-beta (Abeta) peptide in brain regions that are important for memory and cognition. The buildup of Abeta aggregates in the AD is followed by the formation of intracellular neurofibrillary tangles and activation of neuroinflammatory reactions. The present study investigated whether melatonin possesses a neuroprotective effect against Abeta-induced toxicity. For this purpose, organotypic hippocampal slices were cultured and exposed to 25 microm of Abeta(25-35) in the absence or in the presence of melatonin (25, 50, or 100 microm). In addition, the authors have investigated the involvement of GSK-3beta, tau protein, astroglial, and microglial activation, and cytokine levels in the melatonin protection against Abeta-induced neurotoxicity. Melatonin prevented the cell damage in hippocampus induced by the exposure to Abeta(25-35). In addition, melatonin significantly reduced the activation of GSK-3beta, the phosphorylation of tau protein, the glial activation and the Abeta-induced increase of TNF-alpha and IL-6 levels. On the basis of these findings, we speculate that melatonin may provide an effective therapeutic strategy for AD, by attenuating Abeta-induced phosphorylation of tau protein, and preventing GSK-3beta activation and neuroinflammation.
Collapse
Affiliation(s)
- Juliana Bender Hoppe
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rudimar Luiz Frozza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Horn
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ricardo Argenta Comiran
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andressa Bernardi
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Martha Campos
- Faculdade de Odontologia e Instituto de Toxicologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Christianne Salbego
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
76
|
Leskovjan AC, Kretlow A, Miller LM. Fourier transform infrared imaging showing reduced unsaturated lipid content in the hippocampus of a mouse model of Alzheimer's disease. Anal Chem 2010; 82:2711-6. [PMID: 20187625 PMCID: PMC2848295 DOI: 10.1021/ac1002728] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polyunsaturated fatty acids are essential to brain functions such as membrane fluidity, signal transduction, and cell survival. It is also thought that low levels of unsaturated lipid in the brain may contribute to Alzheimer's disease (AD) risk or severity. However, it is not known how accumulation of unsaturated lipids is affected in different regions of the hippocampus, which is a central target of AD plaque pathology, during aging. In this study, we used Fourier transform infrared imaging (FTIRI) to visualize the unsaturated lipid content in specific regions of the hippocampus in the PSAPP mouse model of AD as a function of plaque formation. Specifically, the unsaturated lipid content was imaged using the olefinic =CH stretching mode at 3012 cm(-1). The axonal, dendritic, and somatic layers of the hippocampus were examined in the mice at 13, 24, 40, and 56 weeks old. Results showed that lipid unsaturation in the axonal layer was significantly increased with normal aging in control (CNT) mice (p < 0.01) but remained low and relatively constant in PSAPP mice. Thus, these findings indicate that unsaturated lipid content is reduced in hippocampal white matter during amyloid pathogenesis and that maintaining unsaturated lipid content early in the disease may be critical in avoiding progression of the disease.
Collapse
Affiliation(s)
- Andreana C. Leskovjan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973
| | - Ariane Kretlow
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973
| | - Lisa M. Miller
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973
| |
Collapse
|
77
|
Perdan K, Lipnik‐Štangelj M, Kržan M. Chapter 8 The Impact of Astrocytes in the Clearance of Neurotransmitters by Uptake and Inactivation. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2009. [DOI: 10.1016/s1554-4516(09)09008-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
78
|
Ting KK, Brew B, Guillemin G. The involvement of astrocytes and kynurenine pathway in Alzheimer's disease. Neurotox Res 2008; 12:247-62. [PMID: 18201952 DOI: 10.1007/bf03033908] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The kynurenine pathway (KP) and several of its neuroactive products, especially quinolinic acid (QUIN), are considered to be involved in the neuropathogenesis of Alzheimer's disease (AD). There is growing evidence suggesting that astrocytes play a critical role in the regulation of the excitotoxicity and inflammatory processes that occur during the evolution of AD. This review focuses on the role of astrocytes through their relation with the KP to the different features associated with AD including cytokine, chemokine and adhesion molecule production, cytoskeletal changes, astrogliosis, excitotoxicity, apoptosis and neurodegeneration.
Collapse
Affiliation(s)
- Ka Ka Ting
- Centre for Immunology, St. Vincent's Hospital, Darlinghurst 2010, Sydney, NSW, Australia
| | | | | |
Collapse
|
79
|
Kam AYF, Tse TTM, Kwan DHT, Wong YH. Formyl peptide receptor like 1 differentially requires mitogen-activated protein kinases for the induction of glial fibrillary acidic protein and interleukin-1α in human U87 astrocytoma cells. Cell Signal 2007; 19:2106-17. [PMID: 17643960 DOI: 10.1016/j.cellsig.2007.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 06/08/2007] [Accepted: 06/12/2007] [Indexed: 11/21/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are not only pivotal mediators of signal transduction but they also regulate diverse biological processes ranging from survival, proliferation and differentiation to apoptosis. By using human U87 astrocytoma and transfected FPRL1/CHO cells, we have demonstrated that activation of FPRL1 with WKYMVM effectively phosphorylated JNK and ERK. Interestingly, p38 MAPK activation was only seen with FPRL1/CHO cells. The MAPK phosphorylations in response to WKYMVM were blocked by WRW(4) (a selective FPRL1 antagonist), but not cyclosporine H (a well-known FPR antagonist). The key signaling intermediates in the MAPK pathways were also delineated. G(i)/G(o) proteins, Src family tyrosine kinases, but not phosphatidylinositol-3 kinase, protein kinase C and calmodulin-dependent kinase II, were required to transmit signals from FPRL1 toward JNK, ERK and p38 MAPK. Furthermore, phospholipase Cbeta was distinctively involved in the regulation of JNK but not the other MAPKs. Importantly, WKYMVM-stimulated U87 cells triggered noticeable increases in glial fibrillary acidic protein (GFAP) and interleukin-1alpha (IL-1alpha), which are correlated with reactive astrocytosis. In contrast, GFAP expression was not altered following stimulation with N-formyl-methionyl-leucyl-phenylalanine. Moreover, inhibitions of G(i)/G(o) proteins and JNK completely abolished both GFAP and IL-1alpha upregulations by FPRL1, while blockade of the MEK/ERK cascade exclusively suppressed the GFAP production. Consistently, overexpression of MEK1 and constitutively active JNKK in U87 cells led to ERK and JNK activation, respectively, which was accompanied with markedly increased GFAP production. We have thus identified a possible linkage among FPRL1, MAPKs, astrocytic activation and the inflammatory response.
Collapse
Affiliation(s)
- Angel Y F Kam
- Department of Biochemistry, Molecular Neuroscience Center and Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
80
|
Mohri I, Kadoyama K, Kanekiyo T, Sato Y, Kagitani-Shimono K, Saito Y, Suzuki K, Kudo T, Takeda M, Urade Y, Murayama S, Taniike M. Hematopoietic prostaglandin D synthase and DP1 receptor are selectively upregulated in microglia and astrocytes within senile plaques from human patients and in a mouse model of Alzheimer disease. J Neuropathol Exp Neurol 2007; 66:469-80. [PMID: 17549007 DOI: 10.1097/01.jnen.0000240472.43038.27] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prostaglandin (PG) D2 is produced in activated microglia by the action of hematopoietic PGD synthase (HPGDS) and plays important roles in neuroinflammation. Because the fact that neuroinflammation accelerates progression of Alzheimer disease (AD) has been documented, we investigated whether PGD2 is also involved in the pathology of AD. Here, we report that the level of the mRNA of the receptor for PGD2 (DP1) was increased in AD brains compared with the level in non-AD brains. Immunocytochemical analysis showed HPGDS expression to be localized in the microglia surrounding senile plaques. In situ hybridization studies revealed that DP1 mRNA was specifically localized in microglia and reactive astrocytes within senile plaques of AD brains. In the brain of Tg2576 mice, a model of AD, HPGDS and DP1 proteins were mainly localized immunocytochemically in microglia and astrocytes in the plaques, and the levels of their mRNAs increased in parallel with amyloid beta deposition. These results indicate that PGD2 may act as a mediator of plaque-associated inflammation in AD brain and may explain the pharmacologic mechanisms underlying the favorable response of patients with AD to nonsteroidal anti-inflammatory drugs.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Alzheimer Disease/genetics
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Alzheimer Disease/physiopathology
- Amyloid beta-Peptides/metabolism
- Amyloid beta-Protein Precursor/genetics
- Animals
- Astrocytes/metabolism
- Astrocytes/pathology
- Brain/metabolism
- Brain/pathology
- Disease Models, Animal
- Female
- Hematopoiesis
- Humans
- Intramolecular Oxidoreductases/genetics
- Intramolecular Oxidoreductases/metabolism
- Lipocalins
- Male
- Mice
- Mice, Transgenic
- Microglia/metabolism
- Microglia/pathology
- Plaque, Amyloid/metabolism
- Plaque, Amyloid/pathology
- RNA, Messenger/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/metabolism
- Tissue Distribution
- Up-Regulation
Collapse
Affiliation(s)
- Ikuko Mohri
- FrDepartment of Mental Health and Environmental Effects Research, The Research Center for Child Mental Development, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Hewett SJ, Bell SC, Hewett JA. Contributions of cyclooxygenase-2 to neuroplasticity and neuropathology of the central nervous system. Pharmacol Ther 2006; 112:335-57. [PMID: 16750270 DOI: 10.1016/j.pharmthera.2005.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/19/2005] [Indexed: 01/08/2023]
Abstract
Cyclooxygenase (COX) enzymes, or prostaglandin-endoperoxide synthases (PTGS), are heme-containing bis-oxygenases that catalyze the first committed reaction in metabolism of arachidonic acid (AA) to the potent lipid mediators, prostanoids and thromboxanes. Two isozymes of COX enzymes (COX-1 and COX-2) have been identified to date. This review will focus specifically on the neurobiological and neuropathological consequences of AA metabolism via the COX-2 pathway and discuss the potential therapeutic benefit of COX-2 inhibition in the setting of neurological disease. However, given the controversy surrounding the use of COX-2 selective inhibitors with respect to cardiovascular health, it will be important to move beyond COX to identify which down-stream effectors are responsible for the deleterious and/or potentially protective effects of COX-2 activation in the setting of neurological disease. Important advances toward this goal are highlighted herein. Identification of unique effectors in AA metabolism could direct the development of new therapeutics holding significant promise for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sandra J Hewett
- Department of Neuroscience MC3401, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | | | | |
Collapse
|
82
|
Dinamarca MC, Cerpa W, Garrido J, Hancke JL, Inestrosa NC. Hyperforin prevents beta-amyloid neurotoxicity and spatial memory impairments by disaggregation of Alzheimer's amyloid-beta-deposits. Mol Psychiatry 2006; 11:1032-48. [PMID: 16880827 DOI: 10.1038/sj.mp.4001866] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The major protein constituent of amyloid deposits in Alzheimer's disease (AD) is the amyloid beta-peptide (Abeta). In the present work, we have determined the effect of hyperforin an acylphloroglucinol compound isolated from Hypericum perforatum (St John's Wort), on Abeta-induced spatial memory impairments and on Abeta neurotoxicity. We report here that hyperforin: (1) decreases amyloid deposit formation in rats injected with amyloid fibrils in the hippocampus; (2) decreases the neuropathological changes and behavioral impairments in a rat model of amyloidosis; (3) prevents Abeta-induced neurotoxicity in hippocampal neurons both from amyloid fibrils and Abeta oligomers, avoiding the increase in reactive oxidative species associated with amyloid toxicity. Both effects could be explained by the capacity of hyperforin to disaggregate amyloid deposits in a dose and time-dependent manner and to decrease Abeta aggregation and amyloid formation. Altogether these evidences suggest that hyperforin may be useful to decrease amyloid burden and toxicity in AD patients, and may be a putative therapeutic agent to fight the disease.
Collapse
Affiliation(s)
- M C Dinamarca
- Centro de Regulación Celular y Patología Joaquín V Luco, MIFAB, Santiago, Chile
| | | | | | | | | |
Collapse
|
83
|
Barron AM, Fuller SJ, Verdile G, Martins RN. Reproductive hormones modulate oxidative stress in Alzheimer's disease. Antioxid Redox Signal 2006; 8:2047-59. [PMID: 17034349 DOI: 10.1089/ars.2006.8.2047] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by gradual cognitive decline, impairments in speech and language, and dysfunction in the sensorimotor systems, culminating in complete reliance on nursing care. Oxidative stress, caused by an imbalance in the pro-oxidant/antioxidant mechanisms in the body, has been implicated in AD pathogenesis, as in many other age-associated diseases such as atherosclerosis, Parkinson disease, and amyotrophic lateral sclerosis. Although the hormones estrogen, progesterone, testosterone, and luteinizing hormone are best known for their roles in reproduction, many studies show these hormones have other roles, including neuroprotection. Changes in the levels of these hormones that occur in reproductive senescence are hypothesized to increase risk of AD, as a result of reduced protection against oxidative insults. The Abeta peptide, overproduction of which is thought to be a key pathogenic event in the development of AD, is neurotoxic, most likely due to its ability to promote oxidative stress. The reproductive hormones are known to influence Abeta metabolism, and this review discusses the beneficial and detrimental effects these hormones have on Abeta production and oxidative stress, and their relevance in potential AD therapies.
Collapse
Affiliation(s)
- Anna M Barron
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands, Australia
| | | | | | | |
Collapse
|
84
|
Moses GSD, Jensen MD, Lue LF, Walker DG, Sun AY, Simonyi A, Sun GY. Secretory PLA2-IIA: a new inflammatory factor for Alzheimer's disease. J Neuroinflammation 2006; 3:28. [PMID: 17026770 PMCID: PMC1613236 DOI: 10.1186/1742-2094-3-28] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 10/07/2006] [Indexed: 11/25/2022] Open
Abstract
Secretory phospholipase A2-IIA (sPLA2-IIA) is an inflammatory protein known to play a role in the pathogenesis of many inflammatory diseases. Although this enzyme has also been implicated in the pathogenesis of neurodegenerative diseases, there has not been a direct demonstration of its expression in diseased human brain. In this study, we show that sPLA2-IIA mRNA is up-regulated in Alzheimer's disease (AD) brains as compared to non-demented elderly brains (ND). We also report a higher percentage of sPLA2-IIA-immunoreactive astrocytes present in AD hippocampus and inferior temporal gyrus (ITG). In ITG, the majority of sPLA2-IIA-positive astrocytes were associated with amyloid β (Aβ)-containing plaques. Studies with human astrocytes in culture demonstrated the ability of oligomeric Aβ1–42 and interleukin-1β (IL-1β) to induce sPLA2-IIA mRNA expression, indicating that this gene is among those induced by inflammatory cytokines. Since exogenous sPLA2-IIA has been shown to cause neuronal injury, understanding the mechanism(s) and physiological consequences of sPLA2-IIA upregulation in AD brain may facilitate the development of novel therapeutic strategies to inhibit the inflammatory responses and to retard the progression of the disease.
Collapse
Affiliation(s)
- Guna SD Moses
- Laboratory of Neuroinflammation, Sun Health Research Institute, Sun City, AZ 85372, USA
| | - Michael D Jensen
- Biochemistry Department, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Lih-Fen Lue
- Laboratory of Neuroinflammation, Sun Health Research Institute, Sun City, AZ 85372, USA
| | - Douglas G Walker
- Laboratory of Neuroinflammation, Sun Health Research Institute, Sun City, AZ 85372, USA
| | - Albert Y Sun
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Agnes Simonyi
- Biochemistry Department, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Grace Y Sun
- Biochemistry Department, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
85
|
Satoh K, Hata M, Takahara S, Tsuzaki H, Yokota H, Akatsu H, Yamamoto T, Kosaka K, Yamada T. A novel membrane protein, encoded by the gene covering KIAA0233, is transcriptionally induced in senile plaque-associated astrocytes. Brain Res 2006; 1108:19-27. [PMID: 16854388 DOI: 10.1016/j.brainres.2006.06.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 06/07/2006] [Accepted: 06/11/2006] [Indexed: 11/24/2022]
Abstract
Beta-amyloid (Abeta) deposition and senile plaque-associated astrocytes are common neuropathological features of Alzheimer's disease (AD). Although the molecular mechanisms by which Abeta contributes to the progression of neuropathologic changes have not been entirely established, there is little doubt that the association of Abeta with astrocytes, the predominant cell type in brain, significantly influences exacerbation of the disease. In an effort to identify astrocyte-derived molecules that may be intimately associated with progression of AD, we identified a novel Abeta-induced rat gene, designated Mib, whose human counterpart covers KIAA0233. Mib-transfected C6 cells express Mib protein in the endoplasmic reticulum and endplasmic reticulum-Golgi-intermediate compartment. To evaluate roles of Mib in AD, we investigated its expression in the AD brain. In non-AD brains, Mib mRNA has been detected in neurons but not in quiescent astrocytes. On the contrary, in AD brains, Mib mRNA is expressed in activated astrocytes associated with senile plaques, but not expressed in neurons around lesions. From these observations, Mib appears to be a novel Abeta-responsive gene that may play a role in astrocyte inflammatory activation around senile plaques in the AD brain.
Collapse
Affiliation(s)
- Kazuki Satoh
- The Fifth Frontier Project, Daiichi Pharmaceutical Co., Ltd., Tokyo 134-8640, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Hüll M, Müksch B, Akundi RS, Waschbisch A, Hoozemans JJM, Veerhuis R, Fiebich BL. Amyloid β peptide (25–35) activates protein kinase C leading to cyclooxygenase-2 induction and prostaglandin E2 release in primary midbrain astrocytes. Neurochem Int 2006; 48:663-72. [PMID: 16546299 DOI: 10.1016/j.neuint.2005.08.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 08/30/2005] [Indexed: 11/15/2022]
Abstract
Prostaglandins (PGs) are generated by the enzymatic activity of cyclooxygenase-1 and -2 (COX-1/2) and modulate several functions in the CNS such as the generation of fever, the sleep/wake cycle, and the perception of pain. Moreover, the induction of COX-2 and the generation of PGs has been linked to neuroinflammatory aspects of Alzheimer's disease (AD). Non-steroidal anti-inflammatory drugs (NSAIDs) that block COX enzymatic activity have been shown to reduce the incidence of AD in various epidemiological studies. While several reports investigated the expression of COX-2 in neurons and microglia, expression of COX-2 in astroglial cells has not been investigated in detail. Here we show that amyloid beta peptide 25-35 (Abeta(25-35)) induces COX-2 mRNA and protein synthesis and a subsequent release of prostaglandin E(2) (PGE(2)) in primary midbrain astrocytes. We further demonstrate that protein kinase C (PKC) is involved in Abeta(25-35)-induced COX-2/PGE(2) synthesis. PKC-inhibitors prevent Abeta(25-35)-induced COX-2 and PGE(2) synthesis. Furthermore Abeta(25-35) rapidly induces the phosphorylation and enzymatic activation of PKC in primary rat midbrain glial cells and in primary human astrocytes from post mortem tissue. Our data suggest that the PKC isoforms alpha and/or beta are most probably involved in Abeta(25-35)-induced expression of COX-2 in midbrain astrocytes. The potential role of astroglial cells in the phagocytosis of amyloid and the involvement of PGs in this process suggests that a modulation of PGs synthesis may be a putative target in the prevention of amyloid deposition.
Collapse
Affiliation(s)
- Michael Hüll
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Hauptstrasse 5, D-79104 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
87
|
Kim SJ, Jeong HJ, Kim BK, Kim NH, Kim JS, Choi KS, Lee HJ, Kang ST, Shin SS, Kim WI, Eom HS, Lee KM, Um JY, Hong SH, Kim HM. Anti-inflammatory effect of jeongshintang through suppression of p38 activation in human astrocytoma, U373MG cells. Exp Mol Pathol 2006; 81:85-91. [PMID: 16698013 DOI: 10.1016/j.yexmp.2005.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 11/18/2005] [Accepted: 12/01/2005] [Indexed: 01/22/2023]
Abstract
Jeongshintang (JST) is a Korean herbal prescription, which has been successfully used for cerebral diseases. However, the anti-inflammatory effect of JST on Alzheimer's disease (AD) is still not fully understood. In this study, we investigated the effects of JST in attenuating the inflammatory response induced by interleukin (IL)-1beta plus beta-amyloid [1-42] fragment (A beta) in the human astrocyte cell line, U373MG. The production of IL-6, IL-8, and prostaglandin (PG)E2 was significantly increased by IL-1beta plus A beta (1-42) in a time-dependent manner (P < 0.05). JST significantly inhibited the IL-1beta plus A beta (1-42)-induced IL-6, IL-8, and PGE2 production at 24 h (P < 0.05). Maximal inhibition rate of IL-6, IL-8, and PGE2 production by JST was about 54.40%, 56.01%, and 44.06% respectively. JST (0.01-1 mg/ml) also attenuated the expression of cyclooxygenase (COX)-2 and activation of p38 MAPK induced by IL-1beta and A beta (1-42). These results demonstrated that JST has an anti-inflammatory effect, which might explain its beneficial effect in the treatment of various neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- S J Kim
- College of Oriental Medicine, Kyung Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Abdullah L, Ait-Ghezala G, Crawford F, Crowell TA, Barker WW, Duara R, Mullan M. The cyclooxygenase 2 -765 C promoter allele is a protective factor for Alzheimer's disease. Neurosci Lett 2005; 395:240-3. [PMID: 16309832 DOI: 10.1016/j.neulet.2005.10.090] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 10/23/2005] [Accepted: 10/31/2005] [Indexed: 11/23/2022]
Abstract
The cyclooxygenase-2 enzyme (COX-2) is of particular importance in the inflammatory response and recent findings have demonstrated a considerable role in Alzheimer's disease (AD) pathogenesis. In order to assess the possible putative role of a COX-2 polymorphism (765G/C) in AD, we examined its distribution in 161 community-based controls and 168 AD clinic-based cases previously recruited from memory disorder clinics in Tampa and Miami, Florida. There were no significant differences between the two groups in age/age of onset or gender. A significant difference was observed in the distribution of the COX-2 -765 alleles between AD cases and controls (chi(2) = 6.565, p = .010; OR = .596; CI = [.401-.888], p = .011), with the frequency of the C allele being higher in controls. In addition, a significant difference was observed for this polymorphism by genotype (chi(2) = 6.561, p = .038) and by presence or absence of C+ genotypes (chi(2) = 6.207, p = .013; OR = .464, CI = [.351-.885], p = .013). In this sample, the C allele of COX-2 -765 promoter polymorphism is associated with decreased risk of Alzheimer's disease, a finding which further supports the involvement of COX-2 in AD etiology.
Collapse
Affiliation(s)
- Laila Abdullah
- Roskamp Institute, 2040 Whitfield Ave. Sarasota, FL, USA.
| | | | | | | | | | | | | |
Collapse
|
89
|
Satoh K, Hata M, Shimizu T, Yokota H, Akatsu H, Yamamoto T, Kosaka K, Yamada T. Lib, transcriptionally induced in senile plaque-associated astrocytes, promotes glial migration through extracellular matrix. Biochem Biophys Res Commun 2005; 335:631-6. [PMID: 16098915 DOI: 10.1016/j.bbrc.2005.07.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 07/15/2005] [Indexed: 01/04/2023]
Abstract
In an effort to identify astrocyte-derived molecules that may be intimately associated with progression of Alzheimer's disease (AD), Lib, a type I transmembrane protein belonging to leucine-rich repeat superfamily, has been identified as a distinctly inducible gene, responsive to beta-amyloid as well as pro-inflammatory cytokines in astrocytes. To evaluate the roles of Lib in AD, we investigated Lib expression in AD brain. In non-AD brain, Lib mRNA has been detected in neurons but not in quiescent astrocytes. On the contrary, in AD brain, Lib mRNA is expressed in activated astrocytes associated with senile plaques, but not expressed in neurons around lesions. Lib-expressing glioma cells displayed promotion of migration ability through reconstituted extracellular matrix and recombinant Lib protein bound to constituents of extracellular matrix. These observations suggest that Lib may contribute to regulation of cell-matrix adhesion interactions with respect to astrocyte recruitment around senile plaques in AD brain.
Collapse
Affiliation(s)
- Kazuki Satoh
- The Fifth Frontier Project, Daiichi Pharmaceutical Co., Ltd., Tokyo 134-8640, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Johansson S, Radesäter AC, Cowburn RF, Thyberg J, Luthman J. Modelling of amyloid beta-peptide induced lesions using roller-drum incubation of hippocampal slice cultures from neonatal rats. Exp Brain Res 2005; 168:11-24. [PMID: 16175362 DOI: 10.1007/s00221-005-0069-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 05/12/2005] [Indexed: 11/24/2022]
Abstract
Pronounced neurodegeneration of hippocampal pyramidal neurons has been shown in Alzheimer's disease. The aim of this study was to establish an organotypic in vitro model for investigating effects of the amyloid beta (Abeta)-peptide on pyramidal neuron degeneration, glial cell activation and tau phosphorylation. Tissue cultures in a quasi-monolayer were obtained using roller-drum incubation of hippocampal slices from neonatal Sprague Dawley rats. Neuronal populations identified included N-methyl-D-aspartate (NMDA-R1) receptor immunoreactive pyramidal neurons, and neurons immunopositive for glutamic acid decarboxylase-65 (GAD65) or gamma amino butyric acid (GABA). Many neurons expressed phosphorylated tau as shown by pS(396), AD2 and PHF-tau immunostaining. Astrocytes, microglial cells and macrophages were also identified. The Abeta(25-35) peptide formed fibrillar networks within 2 days as demonstrated by electron microscopy. In the presence of the neurotoxic Abeta(25-35) peptide, but not Abeta(35-25), deposits developed in the tissue that were stainable with Thioflavine T and Congo red and showed the characteristic birefringence of Abeta plaques. Following Abeta(25-35) exposure, neurodegenerative cells were observed with Fluoro-Jade B staining. Further characterization of pyramidal neurons immunopositive for NMDA-R1 showed a decrease of cell number in the immediate surrounding of Abeta(25-35) deposits in a time- and concentration-dependent fashion. Similar effects on pyramidal neurons were obtained following exposure to the full-length, Abeta(1-40) peptide. Also, a loss of neuronal processes was seen with GAD65, but not GABA, immunohistochemistry after exposure to Abeta(25-35). Abeta(25-35)-exposed neurons immunopositive for phospho-tau showed degenerating, bent and often fragmented processes. Astrocytes showed increased GFAP-positive reactivity after Abeta(25-35) exposure and formation of large networks of processes. No obvious effect on microglial cells and macrophages could be seen after the Abeta(25-35) exposure. The developed in vitro system may constitute a useful tool for screening novel drugs against Abeta-induced alterations of tau and degeneration of hippocampal neurons.
Collapse
Affiliation(s)
- Sara Johansson
- Local Discovery Research Area CNS& Pain Control, AstraZeneca, S-151 85, Södertälje, Sweden.
| | | | | | | | | |
Collapse
|
91
|
Champagne D, Rochford J, Poirier J. Effect of apolipoprotein E deficiency on reactive sprouting in the dentate gyrus of the hippocampus following entorhinal cortex lesion: role of the astroglial response. Exp Neurol 2005; 194:31-42. [PMID: 15899241 DOI: 10.1016/j.expneurol.2005.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2003] [Revised: 09/23/2004] [Accepted: 01/18/2005] [Indexed: 10/25/2022]
Abstract
This study investigated the effect of apolipoporotein E (apoE) deficiency on hippocampal reactive sprouting responses of the septohippocampal cholinergic (SHC) and commissural/associational fibers (C/A) following an electrolytic lesion of the entorhinal cortex (ECL), using apoE knockout (apoEKO) and age-matched control wild-type mice. Based on recent evidence suggesting that apoE plays a role in the modulation of glial inflammation, we also tested the hypothesis that the pattern of the astroglial response to ECL might be related to the defective reinnervation previously reported in apoEKO mice. Consistent with our hypothesis, we report a differential pattern of astroglial response that concurred with impairments in the sprouting of the SHC and corresponding synaptic replacement in apoEKO mice at 14 and 30 days post-lesion (DPL), a time range covering the onset of axonal/terminal sprouting to synaptogenesis. We also report a limited sprouting of the C/A fiber system in apoEKO relative to control mice at 30 DPL, a period of active dendritic remodeling. The results of the present study confirm and extend previous findings that apoEKO mice display impaired regenerative capacity in response to ECL and argue that in addition to the effect of apoE on lipid trafficking, apoE may also influence the astroglial response to damage, and that both of these effects account for the defective reinnervation observed in apoEKO mice.
Collapse
Affiliation(s)
- D Champagne
- Leiden/Amsterdam Center for Drug Research, Department of Medical Pharmacology, Leiden University, Leiden, Netherlands
| | | | | |
Collapse
|
92
|
Alarcón R, Fuenzalida C, Santibáñez M, von Bernhardi R. Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound beta-amyloid. J Biol Chem 2005; 280:30406-15. [PMID: 15987691 DOI: 10.1074/jbc.m414686200] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Astrocytes and microglia associate to amyloid plaques, a pathological hallmark of Alzheimer disease. Microglia are activated by and can phagocytose beta-amyloid (Abeta). Scavenger receptors (SRs) are among the receptors mediating the uptake of fibrillar Abeta in vitro. However, little is known about the function of the astrocytes surrounding the plaques or the nature of their interaction with Abeta. It is unknown whether glial cells bind to nonfibrillar Abeta and if binding of astrocytes to Abeta depends on the same Scavenger receptors described for microglia. We determined the binding of glia to Abeta by an adhesion assay and evaluated the presence of scavenger receptors in glial cells by immunocytochemistry, immunohistochemistry of brain sections, and immunoblot. We found that astrocytes and microglia from neonatal rats adhered in a concentration-dependent manner to surfaces coated with fibrillar Abeta or nonfibrillar Abeta. Fucoidan and poly(I), known ligands for SR-type A, inhibited adhesion of microglia and astrocytes to Abeta and also inhibited Abeta phagocytosis. In contrast, a ligand for SR-type B like low density lipoprotein, did not compete glial adhesion to Abeta. Microglia presented immunodetectable SR-BI, SR-AI/AII, RAGE, and SR-MARCO (macrophage receptor with collagenous structure, a member of the SR-A family). Astrocytes presented SR-BI and SR-MARCO. To our knowledge, this is the first description of the presence of SR-MARCO in astrocytes. Our results indicate that both microglia and astrocytes adhere to fibrillar and nonfibrillar Abeta. Adhesion was mediated by a fucoidan-sensitive receptor. We propose that SR-MARCO could be the Scavenger receptor responsible for the adhesion of astrocytes and microglia to Abeta.
Collapse
MESH Headings
- Adenosine Triphosphate/chemistry
- Amyloid beta-Peptides/chemistry
- Animals
- Animals, Newborn
- Astrocytes/cytology
- Astrocytes/metabolism
- Binding, Competitive
- CD36 Antigens
- Cell Adhesion
- Cell Line, Tumor
- Cell Membrane/metabolism
- Cell Survival
- Dose-Response Relationship, Drug
- Humans
- Immunoblotting
- Immunohistochemistry
- Keratins/metabolism
- Ligands
- Microglia/metabolism
- Microscopy, Fluorescence
- Neuroglia/metabolism
- Peptides/chemistry
- Phagocytosis
- Phosphorylation
- Protein Kinase C/metabolism
- Rats
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/metabolism
- Receptors, Scavenger
- Scavenger Receptors, Class A
- Scavenger Receptors, Class B
- Stress, Mechanical
Collapse
Affiliation(s)
- Rodrigo Alarcón
- Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | | | | | | |
Collapse
|
93
|
Korolainen MA, Auriola S, Nyman TA, Alafuzoff I, Pirttilä T. Proteomic analysis of glial fibrillary acidic protein in Alzheimer's disease and aging brain. Neurobiol Dis 2005; 20:858-70. [PMID: 15979880 DOI: 10.1016/j.nbd.2005.05.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 05/12/2005] [Accepted: 05/17/2005] [Indexed: 01/04/2023] Open
Abstract
Chronic inflammation is known to play an important role in the heterogeneous pathogenesis of Alzheimer's disease (AD). Activated astrocytes expressing glial fibrillary acidic protein (GFAP) are closely associated with AD pathology, such as tangles, neuritic plaques and amyloid depositions. Altogether, 46 soluble isoforms of GFAP were separated and most of them quantified by two-dimensional immunoblotting in frontal cortices of AD patients and age-matched controls. A 60% increase in the amount of more acidic isoforms of GFAP was observed in AD and these isoforms were both phosphorylated and N-glycosylated, while more basic isoforms were O-glycosylated and exhibited no quantitative differences between post-mortem AD and control brains. These data highlight the importance of exploring isoform-specific levels of proteins in pathophysiological conditions since modifications of proteins determine their activity state, localization, turnover and interaction with other molecules. Mechanisms, structures and functional consequences of modification of GFAP isoforms remain to be clarified.
Collapse
Affiliation(s)
- Minna A Korolainen
- Department of Neuroscience and Neurology, University of Kuopio, Harjulantie 1D, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
94
|
Chang KA, Suh YH. Pathophysiological roles of amyloidogenic carboxy-terminal fragments of the beta-amyloid precursor protein in Alzheimer's disease. J Pharmacol Sci 2005; 97:461-71. [PMID: 15821343 DOI: 10.1254/jphs.cr0050014] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Several lines of evidence suggest that some of the neurotoxicity in Alzheimer's disease (AD) is attributed to proteolytic fragments of amyloid precursor protein (APP) and beta-amyloid (Abeta) may not be the sole active component involved in the pathogenesis of AD. The potential effects of other cleavage products of APP need to be explored. The CTFs, carboxy-terminal fragments of APP, have been found in AD patients' brain and reported to exhibit much higher neurotoxicity in a variety of preparations than Abeta. Furthermore CTFs are known to impair calcium homeostasis and learning and memory through blocking LTP, triggering a strong inflammatory reaction through MAPKs- and NF-kappaB-dependent astrocytosis and iNOS induction. Recently, it was reported that CTF translocated into the nucleus, binding with Fe65 and CP2, and in turn, affected transcription of genes including glycogen synthase kinase-3beta, which results in the induction of tau-rich neurofibrillary tangles and subsequently cell death. Spatial memory of transgenic (Tg) mice overexpressing CT100 was significantly impaired and CTFs were detected in the neurons as well as in plaques of the Tg mice and double Tg mice carrying CT100 and mutant tau. In this review, we summarize observations indicating that both CTF and Abeta may participate in the neuronal degeneration in the progress of AD by differential mechanisms.
Collapse
Affiliation(s)
- Keun-A Chang
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Center for Alzheimer's Dementia and Neuroscience Research Institute, MRC, Seoul National University, Korea
| | | |
Collapse
|
95
|
Jin JK, Choi JK, Wasco W, Buxbaum JD, Kozlowski PB, Carp RI, Kim YS, Choi EK. Expression of calsenilin in neurons and astrocytes in the Alzheimer??s disease brain. Neuroreport 2005; 16:451-5. [PMID: 15770150 DOI: 10.1097/00001756-200504040-00007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Calsenilin, a multifunctional Ca2+-binding protein, has been identified as an Alzheimer's disease-associated presenilin interactor. Here, we investigated the histochemical localization of calsenilin and its expression levels in the brains of sporadic Alzheimer's disease. Both messenger RNA and protein expression of calsenilin were observed in neurons of the cerebral cortex and hippocampus of control brains, and more intense staining was in Alzheimer's disease brains. Although calsenilin is primarily expressed in neurons, its immunoreactivity was also detected in reactive astrocytes of the Alzheimer's disease brains. In Alzheimer's disease brains, the caspase-derived fragment of calsenilin was only detected in cytosolic fraction. Our findings suggest that calsenilin overexpression in both neurons and reactive astrocytes may play an important role in apoptosis and in Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Jae-Kwang Jin
- Ilsong Institute of Life Science, Hallym University, Anyang, Kyonggi-do 431-060, Korea
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Kim SJ, Jeong HJ, Lee KM, Ryu HH, Lee KS, Moon BS, Cho KH, Kim HM. Zingansikpoongtang modulates beta-amyloid and IL-1beta-induced cytokine production and cyclooxygenase-2 expression in human astrocytoma cells U373MG. JOURNAL OF ETHNOPHARMACOLOGY 2005; 96:279-285. [PMID: 15588680 DOI: 10.1016/j.jep.2004.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 05/25/2004] [Accepted: 09/09/2004] [Indexed: 05/24/2023]
Abstract
Zingansikpoongtang (ZST) is a Korean herbal prescription, which has been successfully applied for the various neurodegenerative diseases. However, its effect remains unknown in the experimental models. In this study, we examined the effect of ZST on production of interleukin (IL)-6 and IL-8, and expression of cyclooxygenase (COX)-2 in IL-1beta and beta-amyloid [25-35] fragment (Abeta)-stimulated human astrocytoma cell line U373MG. We examined the biological effects of ZST in U373MG cells using MTT assay, enzyme-linked immunosorbent assay, and Western blotting. ZST alone had no effect on the cell viability. The production of IL-6 and IL-8 was dose-dependently inhibited by pretreatment with ZST (0.01-1 mg/ml) on IL-1beta and Abeta-stimulated U373MG cells. The expression level of COX-2 protein was up-regulated by IL-1beta and Abeta, but the increased level of COX-2 was partially down-regulated by pretreatment with ZST (1 mg/ml). These data indicate that ZST has a modulatory effect of cytokine production and COX-2 expression on IL-1beta and Abeta-stimulated U373MG cells, which might explain its beneficial effect in the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Su-Jin Kim
- Department of Pharmacology, College of Oriental Medicine, Kyung Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul 130 701, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Sweet RA, Hamilton RL, Butters MA, Mulsant BH, Pollock BG, Lewis DA, Lopez OL, DeKosky ST, Reynolds CF. Neuropathologic correlates of late-onset major depression. Neuropsychopharmacology 2004; 29:2242-50. [PMID: 15354182 DOI: 10.1038/sj.npp.1300554] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Late life major depression (LLMD) is frequently associated with cognitive impairment, and increases the risk for subsequent dementia. Cerebrovascular disease, Alzheimer's disease (AD), and dementia with Lewy bodies (DLB) have all been hypothesized to contribute to this increased risk, though prospective studies have yet to examine these hypotheses with autopsy confirmation of the clinical diagnoses. The aim of this study is to examine the rates of cerebrovascular, AD, and DLB pathology among the first 10 participants in an LLMD brain tissue donation program. Subjects' psychiatric diagnoses and cognitive status were prospectively determined during their participation in clinical research protocols of the Intervention Research Center for Late Life Mood Disorders. After death, final clinical diagnoses were made using all clinical information, while blind to neuropathologic diagnoses. Neuropathologic assessments were conducted blind to final clinical diagnoses. Rates of neuropathology were compared with those in a cohort of subjects with dementia, without a history of LLMD, participating in an Alzheimer Disease Research Center. Seven (70%) subjects had evidence of onset of a dementia prior to death. LLMD with dementia was significantly associated with a neuropathologic diagnosis of AD. Cerebrovascular disease and DLB pathology were also frequent in the LLMD subjects with dementia, and were found in an LLMD subject without dementia. Rates of AD, DLB, and cerebrovascular disease were similar to those in the comparison subjects. These preliminary findings suggest that AD is the predominant neuropathologic condition in LLMD subjects with dementia. Further assessment of the role of comorbid cerebrovascular disease and comorbid DLB is needed.
Collapse
Affiliation(s)
- Robert A Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Lascola CD, Song AW, Haystead TA, Warner DS, Verleysen K, Freed TA, Provenzale JM. Changes in Magnetization Transfer MRI Correlate with Spreading Depression–Induced Astroglial Reactivity and Increased Protein Expression in Mice. AJR Am J Roentgenol 2004; 183:1791-7. [PMID: 15547231 DOI: 10.2214/ajr.183.6.01831791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Gliosis refers to a range of glial cell transformations that vary according to specific brain pathologic states. Disease, however, is not a prerequisite for gliosis because glial reactivity may also be seen in regions of increased physiologic activity. Our study tests the hypothesis that high-field-strength magnetization transfer MRI is a sensitive technique for detecting transient glial reactivity after experimental spreading depression, a relatively benign perturbation unaccompanied by cell injury. MATERIALS AND METHODS Unilateral neocortical spreading depression was elicited in mouse cerebral hemispheres and confirmed by transcranial blood flow and extracellular potential measurements. After 3 days, mice were imaged at 4 T using magnetization transfer techniques. Astroglial reactivity was determined immunohistochemically, and protein expression in control and experimental hemispheres was compared using proteomic techniques. RESULTS Sixteen ([mean +/- SD] +/- 3) spreading depressions (n = 10) were recorded in experimental hemispheres. Spreading depression was never observed in control hemispheres. At 3 days, an 8% decrease (p < 0.05, n = 4) in magnetization transfer signal intensity was measured in experimental hemispheres, which was associated with a 37% increase (p < 0.001, n = 4) in the intensity of glial fibrillary acidic protein staining. Proteomic analysis performed 3 days after the induction of spreading depression showed upregulation of at least 56 proteins, including extracellular and intracellular elements. CONCLUSION Magnetization transfer at 4.0-T MRI is a sensitive method for detecting glial reactivity and changes in protein expression not associated with cell injury. These results suggest magnetization transfer MRI techniques may have potential for detecting glial reactivity in physiologic processes such as learning and in early disease states.
Collapse
Affiliation(s)
- Christopher D Lascola
- Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Reyes AE, Chacón MA, Dinamarca MC, Cerpa W, Morgan C, Inestrosa NC. Acetylcholinesterase-Abeta complexes are more toxic than Abeta fibrils in rat hippocampus: effect on rat beta-amyloid aggregation, laminin expression, reactive astrocytosis, and neuronal cell loss. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:2163-74. [PMID: 15161650 PMCID: PMC1615768 DOI: 10.1016/s0002-9440(10)63774-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuropathological changes generated by human amyloid-beta peptide (Abeta) fibrils and Abeta-acetylcholinesterase (Abeta-AChE) complexes were compared in rat hippocampus in vivo. Results showed that Abeta-AChE complexes trigger a more dramatic response in situ than Abeta fibrils alone as characterized by the following features observed 8 weeks after treatment: 1). amyloid deposits were larger than those produced in the absence of AChE. In fact, AChE strongly stimulates rat Abeta aggregation in vitro as shown by turbidity measurements, Congo Red binding, as well as electron microscopy, suggesting that Abeta-AChE deposits observed in vivo probably recruited endogenous Abeta peptide; 2). the appearance of laminin expressing neurons surrounding Abeta-AChE deposits (such deposits are resistant to disaggregation by laminin in vitro); 3). an extensive astrocytosis revealed by both glial fibrillary acidic protein immunoreactivity and number counting of reactive hypertrophic astrocytes; and 4). a stronger neuronal cell loss in comparison with Abeta-injected animals. We conclude that the hippocampal injection of Abeta-AChE complexes results in the appearance of some features reminiscent of Alzheimer-like lesions in rat brain. Our studies are consistent with the notion that Abeta-AChE complexes are more toxic than Abeta fibrils and that AChE triggered some of the neurodegenerative changes observed in Alzheimer's disease brains.
Collapse
Affiliation(s)
- Ariel E Reyes
- Centro de Regulación Celular y Patología "Joaquín V. Luco," Millennium Institute of Fundamental and Applied Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
100
|
Affiliation(s)
- Mark Noble
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|