51
|
Kurjak M, Sennefelder A, Aigner M, Schusdziarra V, Allescher HD. Characterizing voltage-dependent Ca(2+) channels coupled to VIP release and NO synthesis in enteric synaptosomes. Am J Physiol Gastrointest Liver Physiol 2002; 283:G1027-34. [PMID: 12381515 DOI: 10.1152/ajpgi.00400.2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In enteric synaptosomes of the rat, the role of voltage-dependent Ca(2+) channels in K(+)-induced VIP release and nitric oxide (NO) synthesis was investigated. Basal VIP release was 39 +/- 4 pg/mg, and cofactor-substituted NO synthase activity was 7.0 +/- 0.8 fmol. mg(-1). min(-1). K(+) depolarization (65 mM) stimulated VIP release Ca(2+) dependently (basal, 100%; K(+), 172.2 +/- 16.2%; P < 0.05, n = 5). K(+)-stimulated VIP release was reduced by blockers of the P-type (omega-agatoxin-IVA, 3 x 10(-8) M) and N-type (omega-conotoxin-GVIA, 10(-6) M) Ca(2+) channels by ~50 and 25%, respectively, but not by blockers of the L-type (isradipine, 10(-8) M), Q-type (omega-conotoxin-MVIIC, 10(-6) M), or T-type (Ni(2+), 10(-6) M) Ca(2+) channels. In contrast, NO synthesis was suppressed by omega-agatoxin-IVA, omega-conotoxin-GVIA, and isradipine by ~79, 70, and 70%, respectively, whereas Ni(2+) and omega-conotoxin-MVIIC had no effect. These findings are suggestive of a coupling of depolarization-induced VIP release primarily to the P- and N-type Ca(2+) channels, whereas NO synthesis is presumably dependent on Ca(2+) influx not only via the P- and N- but also via the L-type Ca(2+) channel. In contrast, none of the Ca(2+) channel blockers affected VIP release evoked by exogenous NO, suggesting that NO induces VIP secretion by a different mechanism, presumably involving intracellular Ca(2+) stores.
Collapse
Affiliation(s)
- M Kurjak
- Department of Internal Medicine II, Technical University Munich, 81675 Munich, Germany.
| | | | | | | | | |
Collapse
|
52
|
Minson JB, Arnolda LF, Llewellyn-Smith IJ. Neurochemistry of nerve fibers apposing sympathetic preganglionic neurons activated by sustained hypotension. J Comp Neurol 2002; 449:307-18. [PMID: 12115667 DOI: 10.1002/cne.10282] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sympathetic preganglionic neurons (SPN) in rat spinal cord were activated by the reflex stimulation of bulbospinal sympathetic neuronal pathways after a nitroprusside-induced hypotension. Hypotension-sensitive SPN, identified by immunoreactivity (IR) to the product of the immediate early gene c-fos and to choline acetyltransferase, were localized in the intermediolateral cell column of thoracic and upper lumbar cord, particularly middle to lower thoracic cord. Putative neurotransmitters, or their markers, in varicose fiber networks around SPN were identified. Nearly all hypotension-sensitive (Fos-IR) SPN were apposed by varicose fibers immunoreactive for tyrosine hydroxylase, serotonin, substance P, or enkephalin. Neuropeptide Y (NPY)- or phenylethanolamine-N-methyl transferase (PNMT)-IR varicose fibers apposed Fos-IR SPN in the upper and middle thoracic spinal cord, but in lower thoracic segments some Fos-IR SPN lacked these appositions. In thoracic segment 12, 51% +/- 5% of Fos-IR SPN (n = 9 rats) lacked PNMT contacts and 25% +/- 3% of Fos-IR SPN (n = 8 rats) lacked NPY contacts. In contrast to other chemically defined afferents, galanin-IR varicose fibers apposed fewer than half of the Fos-IR SPN in the middle to lower thoracic cord. Neurotransmitters/neuromodulators that might influence the activity of SPN acting in the baroreflex-mediated control of blood pressure have been identified. Uniformity in the neurochemistry of some fibers making connections with Fos-IR SPN, regardless of their segmental origin, suggests that common sets of neurons provide convergent inputs to all hypotension-sensitive SPN. Other fibers show topographic differences in their contacts with Fos-IR SPN, suggesting that subgroups of hypotension-sensitive SPN are targeted by particular neuron groups.
Collapse
Affiliation(s)
- Jane B Minson
- Cardiovascular Neuroscience Group, Cardiovascular Medicine and Centre for Neuroscience, Flinders University of South Australia, Bedford Park, Adelaide, South Australia 5042, Australia.
| | | | | |
Collapse
|
53
|
Storr M, Folmer R, Kurjak M, Schusdziarra V, Allescher HD. Okadaic acid inhibits relaxant neural transmission in rat gastric fundus in vitro. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 175:29-36. [PMID: 11982502 DOI: 10.1046/j.1365-201x.2002.00959.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of the present study was to characterize the influence of the phosphatase type 1 and 2A inhibitor okadaic acid on non-adrenergic, non-cholinergic (NANC) neurotransmission in the rat gastric fundus. Okadaic acid (10-6 M), an inhibitor of protein phosphatases 1 and 2A, did not show any influence on the basal tonus or on a contraction plateau induced by 5-HT (10-7 M) within 30 min of observation. When okadaic acid (10-6 M) was applied 10 min prior to 5-HT (10-7 M), the contraction plateau of serotonin was unchanged. To investigate the inhibitory neurotransmission, the muscle strips were pre-contracted using 5-HT (10-7 M), and inhibitory stimuli were applied at the contraction plateau, which was stable over 30 min. The inhibitory effects of vasoactive intestinal peptide (VIP), nitric oxide (NO) and electrical field stimulation (EFS, 40 V, 0.5 ms, frequencies ranging from 0.5 to 16 Hz) were examined. When okadaic acid (10-6 M) was applied prior to EFS-induced NANC relaxation, significant attenuation of the inhibitory response was demonstrated (16 Hz: control: -92.4 +/- 1.9%; okadaic acid 10-7 M: -60.7 +/- 6.1%; okadaic acid 10-6 M: -25.3 +/- 3.4%; n=11; P < 0.01). By contrast, neither the concentration-dependent inhibitory actions of VIP (10-11-10-8 M) (VIP 10-8 M: -100%; VIP 10-8 M + okadaic acid 10-6 M: -89.9 +/- 8.3%; n=8; n.s) nor that of diethylamine nitric oxide (DEA-NO) (3 x 10-7-10-4 M) (DEA-NO 10-4 M: -95.3 +/- 8.4%; DEA-NO 10-4 M + okadaic acid 10-7 M: -98.3 +/- 6.3%; DEA-NO 10-4 M + okadaic acid 10-6 M: 96.5 +/- 7.6%; n=9; n.s.) on 5-HT induced contraction were altered by pre-incubation with okadaic acid (10-6 M). This is the first report that supports the concept that protein phosphatases 1 and 2A may contribute to the regulation of rat gastric fundus motility. The protein phosphatase inhibitor okadaic acid significantly reduces electrically induced inhibitory NANC responses, while leaving direct muscular effects of the inhibitory NANC neurotransmitters VIP and NO unaffected - suggesting a neural site of action. The potential roles of protein phosphatases on NANC neurotransmission remain to be clarified in detail, as this might offer a new pathway for modulating smooth-muscle function.
Collapse
Affiliation(s)
- M Storr
- GAP, Department of Internal Medicine II, Technical University of Munich, Ismaningerstr. 22, Munich, Germany
| | | | | | | | | |
Collapse
|
54
|
Lin Z, Gao N, Hu HZ, Liu S, Gao C, Kim G, Ren J, Xia Y, Peck OC, Wood JD. Immunoreactivity of Hu proteins facilitates identification of myenteric neurones in guinea-pig small intestine. Neurogastroenterol Motil 2002; 14:197-204. [PMID: 11975720 DOI: 10.1046/j.1365-2982.2002.00317.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hu proteins, together with neurone-specific enolase (NSE), protein gene product 9.5 (PGP-9.5), microtubule-associated protein-2 (MAP-2) and tubulin beta III isoform, were evaluated immunohistochemically as neuronal markers in whole-mount preparations and cultures obtained from the myenteric plexus of guinea-pig small intestine. Anti-Hu immunostaining marked the ganglion cell somas and nuclei without staining of the neuronal processes in the whole-mounts and cultures. The ganglion cell bodies were not obscured by staining of multiple neuronal fibres and this facilitated accurate counting of the neurones. MAP2 immunostaining also provided clear images of individual neurones in both whole mounts and cultures. Immunoreactivity for NSE, PGP-9.5 and tubulin beta III isoform provided sharp images of the ganglion cells in culture, but not in whole-mount preparations. Strong staining of the neuronal processes in the whole-mount preparations obscured the profiles of the ganglion cell bodies to such an extent that accurate counting of the total neuronal population was compromised. Anti-Hu immunostaining was judged to be an acceptable method for obtaining reliable estimates of total numbers of myenteric neurones in relation to other specific histochemical properties such as histamine binding.
Collapse
Affiliation(s)
- Z Lin
- Department of Physiology and Cell Biology, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Affiliation(s)
- Juan V Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Spain.
| |
Collapse
|
56
|
Murthy KS. Activation of phosphodiesterase 5 and inhibition of guanylate cyclase by cGMP-dependent protein kinase in smooth muscle. Biochem J 2001; 360:199-208. [PMID: 11696008 PMCID: PMC1222218 DOI: 10.1042/0264-6021:3600199] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The regulation of cGMP-specific phosphodiesterase (PDE) 5 and soluble guanylate cyclase (GC) by cGMP- and cAMP-dependent protein kinases (PKG and PKA respectively) was examined in gastric smooth muscle. The NO donor, sodium nitroprusside (SNP), stimulated PDE5 phosphorylation and activity, which was blocked by the selective PKG inhibitor, KT5823, resulting in an elevation of cGMP levels. Activation of PKA either directly by Sp-5,6-dichloro-1-beta-d-ribofuranosyl benzimidazole 3',5'-cyclic monophosphothioate, or via isoproterenol- and forskolin-dependent increase in cAMP, also caused an increase in PDE5 phosphorylation and activity, but only in the presence of cGMP; consistent with the dependence of PDE5 phosphorylation and activity on cGMP binding to allosteric sites in the regulatory domain of PDE5. The selective PKA inhibitors, myristoylated protein kinase inhibitor and H-89, blocked the increase in PDE5 phosphorylation and activity induced by PKA. SNP also stimulated soluble GC phosphorylation and activity. KT5823 abolished phosphorylation and augmented soluble GC activity, implying feedback inhibition of soluble GC by PKG-dependent phosphorylation. Phosphorylation by PKG was direct and could be induced in vitro. Activation of PKA had no effect on soluble GC. Thus cGMP levels are regulated by PKG- and PKA-dependent activation of PDE5 and PKG-specific inhibition of soluble GC.
Collapse
Affiliation(s)
- K S Murthy
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0711, USA.
| |
Collapse
|
57
|
Schicho R, Schemann M, Holzer P, Lippe IT. Mucosal acid challenge activates nitrergic neurons in myenteric plexus of rat stomach. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1316-21. [PMID: 11668041 DOI: 10.1152/ajpgi.2001.281.5.g1316] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We tested the hypothesis that intrinsic neurons of the rat gastric myenteric plexus can be activated by an acid (HCl) challenge of the mucosa. Activated neurons were visualized by immunohistochemical detection of c-Fos, a marker for neuronal excitation. The neurochemical identity of the neurons activated by the HCl challenge was determined by colocalizing c-Fos with a marker for excitatory pathways, choline acetyltransferase (ChAT), and a marker for inhibitory pathways, nitric oxide synthase (NOS). Two hours after intragastric administration of HCl or saline, stomachs were removed and immunofluorescence triple labeling of myenteric neurons was carried out on whole mount preparations. Treatment with 0.35, 0.5, and 0.7 M HCl induced c-Fos in 8%, 56%, and 64%, respectively, of NOS-positive but not ChAT-positive neurons. c-Fos was also seen in glial cells of HCl-treated rats, whereas in saline-treated animals c-Fos was absent from the myenteric plexus. HCl treatment did not change the proportion of ChAT- and NOS-immunoreactive neurons in the myenteric ganglia. It is concluded that gastric acid challenge concentration-dependently stimulates a subpopulation of nitrergic, but not cholinergic, myenteric plexus neurons, which may play a role in muscle relaxation, vasodilatation, and/or secretion.
Collapse
Affiliation(s)
- R Schicho
- Department of Experimental and Clinical Pharmacology, University of Graz, A-8010 Graz, Austria.
| | | | | | | |
Collapse
|
58
|
Zyromski NJ, Duenes JA, Kendrick ML, Balsiger BM, Farrugia G, Sarr MG. Mechanism mediating nitric oxide-induced inhibition in human jejunal longitudinal smooth muscle. Surgery 2001; 130:489-96. [PMID: 11562674 DOI: 10.1067/msy.2001.116414] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Enteric neurotransmission is a complex process involving multiple neurotransmitters, including nitric oxide (NO). Our aim was to evaluate the role and mechanism(s) of action of NO in normal human jejunal longitudinal smooth muscle. METHODS Transmural strips of normal human jejunum obtained from subjects undergoing gastric bypass were studied in organ chambers. Effects of exogenous NO (7 x 10(-6) mol/L to 7 x 10(-5) mol/L) and electrical field stimulation (nonspecific release of endogenous neurotransmitters) on spontaneous contractile activity and on precontracted muscle strips (substance P, 10(-5) mol/L) were evaluated in the presence and absence of the competitive NO synthase inhibitor N(G)-amino-L-arginine (L-NNA, 10(-3) mol/L) and the specific soluble guanylyl cyclase inhibitor 1H-[1,2,4]-oxadiazaolo-[4,3-a]-quinoxalin-1-one (ODQ, 10(-5) mol/L and 10(-4) mol/L). RESULTS Exogenous NO dose-dependently inhibited spontaneous contractility and relaxed precontracted smooth muscle strips. The effects of NO were markedly attenuated or completely inhibited in the presence of ODQ. Electric field stimulation under nonadrenergic, noncholinergic conditions also inhibited spontaneous contractility and relaxed precontracted smooth muscle strips; both of these effects were attenuated, but not completely inhibited, in the presence of both ODQ and L-NNA. CONCLUSIONS NO is an endogenous inhibitory neurotransmitter in human jejunal longitudinal smooth muscle, acting at least in part via a mechanism mediated by guanylyl cyclase. Other (non-nitrergic) nonadrenergic, noncholinergic inhibitory neurotransmitters are likely active in this portion of the human gut.
Collapse
Affiliation(s)
- N J Zyromski
- Gastroenterology Research Unit, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
59
|
Storr M, Geisler F, Neuhuber WL, Schusdziarra V, Allescher HD. Characterization of vagal input to the rat esophageal muscle. Auton Neurosci 2001; 91:1-9. [PMID: 11515794 DOI: 10.1016/s1566-0702(01)00290-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
There is recent morphological evidence for an interaction of autonomic nerve fibers and extrinsic motor nerves of the rat esophagus. The aim of the present study was to investigate a possible functional role of this autonomic innervation of vagal motor fibers on rat esophageal smooth and striated muscle function in vitro. The entire esophagus with both Nn vagi, including the Nn recurrentes, was dissected and placed in an organ bath with oxygenated Krebs-Ringer buffer. Contractile activity was measured in longitudinal direction with a force transducer. Both Nn vagi were placed on a bipolar platinum electrode 2 cm apart from the esophagus. Vagal stimulation, applied for 1 s (40 V, 0.5 ms, 20 Hz) resulted in a biphasic contractile response, which was completely blocked by tetrodotoxin (10(-6) M). The first part consisted of a tetanic striated muscle contraction, which was abolished by tubocurarin (10(-5) M) but unaffected by atropine (10(-6) M) or hexamethonium (10(-4) M). In contrast, the second part was completely abolished by hexamethonium (10(-4) M) and atropine (10(-6) M), whereas tubocurarine (10(-5) M) showed no influence, suggesting a stimulation of preganglionic nerve fibers supplying esophageal smooth muscle (muscularis mucosae). In order to characterize possible autonomic transmitters of the ENS of the esophagus, the following experiments were carried out. The magnitude of the striated muscle response was unaffected by VIP (10(-7) M), 5-HT (10(-6) M) and galanin (10(-8) - 10(-7) M), whereas they caused an inhibition of the smooth muscle response (VIP: -53.8 +/- 4.2%; galanin 10(-8) M: - 18.5 +/- 2.2%; 10(-7) M: -40.4 +/- 2.9%; 5-HT: -78.2 +/- 2.1%). The inhibitory effects of VIP and galanin on smooth muscle were reversible by the antagonists VIP 10-28 and galanin 1-15. In the presence of the nitric oxide synthase (NOS) inhibitor L-NNA (10(-4) M), the smooth and striated muscle contraction were not significantly influenced. Exogenous application of the NO-donor DEA-NO (10(-4) M) reduced the smooth muscle contraction by -81.6 +/- 7.4%, but had no significant effect on the striated muscle contraction. Though immunohistochemical findings are highly suggestive of an nitrergic autonomic modulation of striated muscle contraction by enteric neurons, we could not demonstrate a NO-mediated action on striated muscle activity. Therefore, the physiological relevance of the immunohistochemical findings remain unclear.
Collapse
Affiliation(s)
- M Storr
- Department of Internal Medicine II, Technical University of Munich, Germany.
| | | | | | | | | |
Collapse
|
60
|
Kurjak M, Fritsch R, Saur D, Schusdziarra V, Allescher HD. Functional coupling between nitric oxide synthesis and VIP release within enteric nerve terminals of the rat: involvement of protein kinase G and phosphodiesterase 5. J Physiol 2001; 534:827-36. [PMID: 11483712 PMCID: PMC2278726 DOI: 10.1111/j.1469-7793.2001.00827.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
1. The subcellular mechanisms involved in the effect of nitric oxide (NO) on the release of vasoactive intestinal polypeptide (VIP) were examined in synaptosomes isolated from rat small intestine. 2. VIP release was stimulated by the NO donor SNAP (10(-7)-10(-4) M) in an oxyhaemoglobin-sensitive manner. The presence of the guanylate cyclase inhibitor ODQ (10(-5) M), or inhibition of protein kinase G (PKG) by KT 5823 (3 x 10(-6) M) or Rp-8Br-PET-cGMPS (5 x 10(-7) M), antagonized the SNAP-induced VIP release, suggesting a regulatory role of PKG, confirming previously published data from enteric ganglia. This finding was further supported by the fact that direct PKG activation by the stable cGMP analogue 8-pCPT-cGMP stimulated VIP secretion to the same extent as SNAP. 3. Basal VIP secretion was enhanced in the presence of zaprinast, an inhibitor of cGMP-dependent phosphodiesterase 5 (PDE 5), suggesting a functional role of PDE 5 in NO-cGMP signalling. Supportive evidence for this finding was obtained by demonstration of the presence of PDE 5 using RT-PCR. 4. Stimulation of endogenous NO production by L-arginine was also effective in releasing VIP. The effect was abolished in the presence of KT 5823, but was insensitive to oxyhaemoglobin (10(-3) M), suggesting that an interaction between NO and VIP is likely to occur within the same nerve terminal rather than between terminals. 5. NO synthesis was not affected by VIP (10(-8)-10(-5) M), suggesting that there is no feedback regulation between the NO and the VIP pathways. 6. These findings support the notion that an anatomical and functional interrelationship exists between NO and VIP in enteric nerve terminals and that complex signalling mechanisms involving PKG and PDE 5 contribute to NO-induced VIP release.
Collapse
Affiliation(s)
- M Kurjak
- Department of Internal Medicine II, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | | | | | | | | |
Collapse
|
61
|
Alex G, Kunze WA, Furness JB, Clerc N. Comparison of the effects of neurokinin-3 receptor blockade on two forms of slow synaptic transmission in myenteric AH neurons. Neuroscience 2001; 104:263-9. [PMID: 11311548 DOI: 10.1016/s0306-4522(01)00064-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AH neurons are intrinsic sensory neurons of the intestine that exhibit two types of slow synaptic event: slow excitatory postsynaptic potentials which increase their excitability for about 2-4 min, and sustained slow postsynaptic excitation which can persist for several hours, and may be involved in long-term changes in the sensitivity of the intestine to sensory stimuli. The effects of the neurokinin-3 tachykinin receptor antagonist, SR142801, on these two types of synaptic event in AH neurons of the myenteric ganglia of guinea-pig small intestine were compared. Slow excitatory postsynaptic potentials were evoked by stimulation of synaptic inputs at 10-20 Hz for 1s, and sustained slow postsynaptic excitation was evoked by stimulation of inputs at 1Hz for 4 min. SR142801 (1microM) reduced the amplitude of the slow excitatory postsynaptic potential to 26% of control, and also reduced the increase in input resistance and the extent of anode break excitation associated with the slow excitatory postsynaptic potential. In contrast, SR142801 did not reduce the increase in excitability, the increase in input resistance or the depolarisation that occur during the sustained slow postsynaptic excitation. SR142801 did not change the resting membrane potential or the resting input resistance. We conclude that tachykinins, acting through neurokinin-3 receptors, are involved in the generation of the slow excitatory postsynaptic potential, but not in the sustained slow postsynaptic excitation, and that the release of transmitters from synaptic inputs to AH neurons is frequency coded.
Collapse
Affiliation(s)
- G Alex
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3052, Parkville, Australia
| | | | | | | |
Collapse
|
62
|
Treepongkaruna S, Hutson JM, Hughes J, Cook D, Catto-Smith AG, Chow CW, Oliver MR. Gastrointestinal transit and anorectal manometry in children with colonic substance P deficiency. J Gastroenterol Hepatol 2001; 16:624-30. [PMID: 11422614 DOI: 10.1046/j.1440-1746.2001.02500.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS Severe intractable constipation in children may be associated with a reduction of substance P (SP)- containing fibers in colonic circular muscle. The aim of this study was to characterize gastrointestinal transit (GIT), anorectal manometry (ARM) and electromyographic (EMG) changes in these children. METHODS Seromuscular laparoscopic biopsies of the colon were obtained from 35 children with severe constipation. Immunofluorescent staining for SP and vasoactive intestinal peptide (VIP) were then performed on these specimens. The cohort of patients studied included a SP-deficient group (SPD, n = 25) who had reduced numbers of SP-immunoreactive nerve fibers. The other group consisted of patients with normal staining for both SP and VIP (SPN, n = 10). Gastrointestinal transit studies (gastric emptying, orocecal and colonic transit) suitable for analysis were available for 17 patients (SPD, n = 9 and SPN, n = 8). The colon was divided into segments and radioactivity counts in each segment were expressed as a percentage of the total colonic count at each time point (6, 24, 32 and 48 h). The geometric center (GC), ARM, EMG, clinical and demographic data characteristics of both groups of patients were compared. RESULTS There were no differences in demographic data, gastric emptying, orocecal transit or geometric center of transit in the colon between the two patient groups. The ARM and EMG studies suggested that the SPN group have a higher mean threshold volume of balloon distension required to initiate a rectoanal inhibitory reflex, and a higher incidence of anismus; however, this did not reach statistical significance. CONCLUSIONS These data suggest a trend that the SPN patients have a greater problem with obstructive defecation and abnormal rectal sensation than those with SPD. We were unable to confirm any defect in colonic transit in the SPD patients compared with the SPN group.
Collapse
Affiliation(s)
- S Treepongkaruna
- Departments of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
63
|
O'Donnell AM, Ellis LM, Riedl MS, Elde RP, Mawe GM. Distribution and chemical coding of orphanin FQ/nociceptin-immunoreactive neurons in the myenteric plexus of guinea pig intestines and sphincter of Oddi. J Comp Neurol 2001; 430:1-11. [PMID: 11135242 DOI: 10.1002/1096-9861(20010129)430:1<1::aid-cne1011>3.0.co;2-h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Longitudinal muscle-myenteric plexus preparations of guinea pig intestines and sphincter of Oddi (SO) were immunostained for orphanin FQ/nociceptin. Orphanin FQ-immunoreactive (OFQ-IR) neurons and nerve fibers were relatively abundant in the SO, duodenum, ileum, cecum, and distal colon, with fewer neurons and nerve fibers observed in the proximal colon. Double staining with antibodies directed against the neuron-specific RNA binding protein Hu revealed that while the numbers of OFQ-IR neurons per ganglion decreased along the gut tube, similar proportions (7-9%) of neurons in these regions were OFQ-IR, whereas <1% of the neurons in the proximal colon were OFQ positive. In the ileum, where 8% of the myenteric neurons were OFQ-IR, all OFQ-IR neurons expressed choline acetyltransferase. In addition, multiple-label immunohistochemistry demonstrated that 58% of the OFQ-IR neurons were calretinin-IR, 52% were substance P-IR, and 28% were enkephalin-IR. Nitric oxide synthase immunoreactivity was observed in about 5% of OFQ-IR neurons, or 0.4% of the total population, and a similar proportion of the OFQ-IR neurons was positive for vasoactive intestinal peptide. No OFQ-IR neurons were immunoreactive for calbindin, somatostatin, or serotonin. These results, combined with previous studies of chemical coding and projection patterns in the guinea pig myenteric plexus, indicate that OFQ-IR is expressed preferentially in excitatory motor neurons projecting to the longitudinal and circular muscle layers, as well as a small subgroup of descending interneurons. Because OFQ is expressed by excitatory motor neurons, and because this peptide inhibits excitatory neurotransmission in the guinea pig ileum, it is likely that OFQ acts through a feedback autoinhibitory mechanism.
Collapse
Affiliation(s)
- A M O'Donnell
- Department of Anatomy and Neurobiology, The University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
64
|
Abstract
This report summarises the characteristics of target specific projection and neurochemical coding patterns of motor and interneuronal pathways in the gastric enteric nervous system (ENS) which are involved in the innervation of the mucosa, the circular and the longitudinal muscle. The pathways were identified by retrograde tracing and further characterised by optical and intracellular recordings of the synaptic activation of muscle motor neurones, and by recordings of pathway-specific muscle responses. All motor pathways had polarised projections consisting of ascending cholinergic and descending nitrergic populations. Thus, both muscle layers were innervated by excitatory and inhibitory motor neurones. Their projections indicated the presence of intrinsic circuits that mediate excitatory and inhibitory components of a peristaltic reflex and/or are involved in reflex mediated changes in gastric tone. Although polarised projections were also identified for interneuronal pathways, a substantial proportion of descending interneurones was cholinergic. Interneurones and longitudinal muscle motor pathways had longitudinal projection preferences whereas circular muscle motor pathways had circumferential projection preferences. Target-specific coding was primarily revealed for cholinergic populations; ChAT/ENK/+/-SP neurones projected to the muscle layers, ChAT/NPY/+/-VIP projected to the mucosa and ChAT/+/-SP/+/-5-HT/+/-Calret/+/-Calb were interneurones. Muscle strip recordings revealed the functional significance of ascending excitatory and descending inhibitory pathways to the circular muscle and the prominent influence of ascending and descending cholinergic interneurones which activated excitatory and inhibitory circular muscle motor neurones through nicotinic synapses. It is concluded that enteric pathways in the stomach have region specific features which reflect structural and functional adaptation of the gastric ENS.
Collapse
Affiliation(s)
- M Schemann
- Department of Physiology, School of Veterinary Medicine, D-30173 Hannover, Germany.
| | | | | |
Collapse
|
65
|
Sharkey KA, Kroese AB. Consequences of intestinal inflammation on the enteric nervous system: neuronal activation induced by inflammatory mediators. THE ANATOMICAL RECORD 2001; 262:79-90. [PMID: 11146431 DOI: 10.1002/1097-0185(20010101)262:1<79::aid-ar1013>3.0.co;2-k] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ENS is responsible for the regulation and control of all gastrointestinal functions. Because of this critical role, and probably as a consequence of its remarkable plasticity, the ENS is often relatively well preserved in conditions where the architecture of the intestine is seriously disrupted, such as in IBD. There are structural and functional changes in the enteric innervation in animal models of experimental intestinal inflammation and in IBD. These include both up and down regulation of transmitter expression and the induction of new genes in enteric neurons. Using Fos expression as a surrogate marker of neuronal activation it is now well established that enteric neurons (and also enteric glia) respond to inflammation. Whether this "activation" is limited to a short-term functional response, such as increased neuronal excitability, or reflects a long-term change in some aspect of the neuronal phenotype (or both) has yet to be firmly established, but it appears that enteric neurons are highly plastic in their response to inflammation.
Collapse
Affiliation(s)
- K A Sharkey
- Neuroscience and Gastrointestinal Research Groups, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | |
Collapse
|
66
|
Imaji R, Kubota Y, Hengel P, Hutson JM, Chow CW. Rectal mucosal biopsy compared with laparoscopic seromuscular biopsy in the diagnosis of intestinal neuronal dysplasia in children with slow-transit constipation. J Pediatr Surg 2000; 35:1724-7. [PMID: 11101723 DOI: 10.1053/jpsu.2000.19228] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND/PURPOSE Intestinal neuronal dysplasia (IND) as a cause for severe chronic constipation remains controversial. The aim of this study is to examine the correlation between a deficiency of substance P (SP) immunoreactive nerve fibers in the colon and enzyme histochemistry of rectal biopsies in children with slow-transit constipation. METHODS Fifty children with intractable constipation have been assessed by rectal biopsies examined with histochemical staining for lactate dehydrogenase, and 32 children among those 50 have been studied by laparoscopic seromuscular biopsy of the colon labelled with antibodies to SP using immunofluorescence methods. RESULTS Four children have evidence of IND. Fifteen children, including all 4 IND cases, showed a deficiency of SP immunoreactivity. There is a significant correlation between giant ganglia and SP deficiency (P <.01). CONCLUSION This study is attempting to propose that a deficiency of SP immunoreactivity in colonic circular muscle nerves may be used as a histologic marker for slow-transit constipation and that IND may be a small subset of patients with SP deficiency.
Collapse
Affiliation(s)
- R Imaji
- F. Douglas Stephens Surgical Research Laboratory, Royal Children's Hospital Research Institute, Melbourne, Australia
| | | | | | | | | |
Collapse
|
67
|
Sulaiman H, Gabella G, Davis C, Mutsaers SE, Boulos P, Laurent GJ, Herrick SE. Growth of nerve fibres into murine peritoneal adhesions. J Pathol 2000; 192:396-403. [PMID: 11054724 DOI: 10.1002/1096-9896(2000)9999:9999<::aid-path710>3.0.co;2-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adhesions in the peritoneal cavity have been implicated in the cause of intestinal obstruction and infertility, but their role in the aetiology of chronic pelvic pain is unclear. Nerves have been demonstrated in human pelvic adhesions, but the presence of pain-conducting fibres has not been established. The purpose of this study was to use an animal model to examine the growth of nerves during adhesion formation at various times following injury and to characterize the types of fibres present. Adhesions were generated in mice by injuring the surface of the caecum and adjacent abdominal wall, with apposition. At 1-8 weeks post-surgery, adhesions were processed and nerve fibres characterized histologically, immunohistochemically, and ultrastructurally. Peritoneal adhesions had consistently formed by 1 week after surgery and from 2 weeks onwards, all adhesions contained some nerve fibres which were synaptophysin, calcitonin gene-related peptide, and substance P-immunoreactive, and were seen to originate from the caecum. By 4 weeks post-surgery, nerve fibres were found to originate from both the caecum and the abdominal wall, and as demonstrated by acetylcholinesterase histochemistry, many traversed the entire adhesion. Ultrastructural analysis showed both myelinated and non-myelinated nerve fibres within the adhesion. This study provides the first direct evidence for the growth of sensory nerve fibres within abdominal visceral adhesions in a murine model and suggests that there may be nerve fibres involved in the conduction of pain stimuli.
Collapse
Affiliation(s)
- H Sulaiman
- Department of Medicine, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
68
|
Worley DS, Pisano JM, Choi ED, Walus L, Hession CA, Cate RL, Sanicola M, Birren SJ. Developmental regulation of GDNF response and receptor expression in the enteric nervous system. Development 2000; 127:4383-93. [PMID: 11003838 DOI: 10.1242/dev.127.20.4383] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of the enteric nervous system is dependent upon the actions of glial cell line-derived neurotrophic factor (GDNF) on neural crest-derived precursor cells in the embryonic gut. GDNF treatment of cultured enteric precursor cells leads to an increase in the number of neurons that develop and/or survive. Here we demonstrate that, although GDNF promoted an increase in neuron number at all embryonic ages examined, there was a developmental shift from a mitogenic to a trophic response by the developing enteric neurons. The timing of this shift corresponded to developmental changes in gut expression of GFR alpha-1, a co-receptor in the GDNF-Ret signaling complex. GFR alpha-1 was broadly expressed in the gut at early developmental stages, at which times soluble GFR alpha-1 was released into the medium by cultured gut cells. At later times, GFR alpha-1 became restricted to neural crest-derived cells. GFR alpha-1 could participate in GDNF signaling when expressed in cis on the surface of enteric precursor cells, or as a soluble protein. The GDNF-mediated response was greater when cell surface, compared with soluble, GFR alpha-1 was present, with the maximal response seen the presence of both cis and trans forms of GFR alpha-1. In addition to contributing to GDNF signaling, cell-surface GFR alpha-1 modulated the specificity of interactions between GDNF and soluble GFR alphas. These experiments demonstrate that complex, developmentally regulated, signaling interactions contribute to the GDNF-dependent development of enteric neurons.
Collapse
Affiliation(s)
- D S Worley
- Department of Molecular Genetics, Biogen, Inc., Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Storr M, Franck H, Saur D, Schusdziarra V, Allescher HD. Mechanisms of alpha,beta-methylene atp-induced inhibition in rat ileal smooth muscle: involvement of intracellular Ca2+ stores in purinergic inhibition. Clin Exp Pharmacol Physiol 2000; 27:771-9. [PMID: 11022968 DOI: 10.1046/j.1440-1681.2000.03334.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
1. In order to investigate purinergic effects on rat ileal smooth muscle, we used alpha,beta-methylene ATP (alpha,beta-MeATP), ATP, ADP and UTP. alpha,beta-Methylene ATP and ATP were the only agonists that caused a concentration-dependent inhibition of carbachol-precontracted smooth muscle. The inhibitory effect of alpha,beta-MeATP was completely blocked by pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (3 x 10(-5) mol/L), a selective antagonist of the P2X > > P2Y receptor. 2. Using reverse transcription-polymerase chain reaction we demonstrated the presence of both, P2X and P2Y receptor mRNA within the rat ileal longitudinal muscle/myenteric plexus layer preparation. 3. The alpha,beta-MeATP-induced inhibition was blocked in a concentration-dependent manner in the presence of the K+ channel blocker apamin, but was unaffected by other K+ channel blockers, such as charybdotoxin (10(-7) mol/L), 4-aminopyridine (10(-4)mol/L), glibenclamide (10(-5) mol/L) and tetraethylammonium (10(-3) mol/L). 4. The alpha,beta-MeATP-induced inhibition was unaffected by pretreatment with atropine (10(-6) mol/L), phentolamine (10(-6) mol/L), propranolol (10(-6) mol/L), nitrendipine (10(-7) mol/L), pertussis toxin (10(-6) mol/L) NG-nitro-L-arginine (3 x 10(-4) mol/L) and tetrodotoxin (10(-6) mol/L), excluding an involvement of adrenergic, cholinergic, neural, nitrinergic or G-protein involvement in purinergic-mediated inhibition. 5. In order to investigate whether the internal Ca2+ stores participated in the inhibitory effect observed, we depleted internal Ca2+ stores with cyclopiazonic acid, a specific Ca2+-ATPase inhibitor. The inhibitory effect of alpha,beta-MeATP was completely abolished after depletion of the intracellular Ca2+ stores. 6. This is in contrast with the effects seen for neurotensin, where neurotensin-induced inhibition was unchanged after depletion of intracellular Ca2+ stores, suggesting at least two different pathways of apamin-sensitive non-adrenergic, non-cholinergic inhibition in rat ileal smooth muscle. 7. According to our results, the inhibitory effect of alpha,beta-MeATP in rat ileum longitudinal smooth muscle is mediated via a P2 purinoceptor, most likely a P2X receptor, involves G-protein-independent activation of an apamin-sensitive K+ channel and requires filled intracellular Ca+ stores.
Collapse
Affiliation(s)
- M Storr
- Department of Internal Medicine, Technical University of Munich, Germany.
| | | | | | | | | |
Collapse
|
70
|
Abstract
This paper, written for the symposium in honour of more than 40 years' contribution to autonomic research by Professor Geoffrey Burnstock, highlights the progress made in understanding the organisation of the enteric nervous system over this time. Forty years ago, the prevailing view was that the neurons within the gut wall were post-ganglionic neurons of parasympathetic pathways. This view was replaced as evidence accrued that the neurons are part of the enteric nervous system and are involved in reflex and integrative activities that can occur even in the absence of neuronal influence from extrinsic sources. Work in Burnstock's laboratory led to the discovery of intrinsic inhibitory neurons with then novel pharmacology of transmission, and precipitated investigation of neuron types in the enteric nervous system. All the types of neurons in the enteric nervous system of the small intestine of the guinea-pig have now been identified in terms of their morphologies, projections, primary neurotransmitters and physiological identification. In this region there are 14 functionally defined neuron types, each with a characteristic combination of morphological, neurochemical and biophysical properties. The nerve circuits underlying effects on motility, blood flow and secretion that are mediated through the enteric nervous system are constructed from these neurons. The circuits for simple motility reflexes are now known, and progress has been made in analysing those involved in local control of blood flow and transmucosal fluid movement in the small intestine.
Collapse
Affiliation(s)
- J B Furness
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3010, Parkville, Australia.
| |
Collapse
|
71
|
Abstract
The enteric nervous system contains intrinsic primary afferent neurons that allow mucosal stimulation to initiate reflexes without CNS input. We tested the hypothesis that submucosal primary afferent neurons are activated by 5-hydroxytryptamine (5-HT) released from the stimulated mucosa. Fast and/or slow EPSPs were recorded in submucosal neurons after the delivery of exogenous 5-HT, WAY100325 (a 5-HT(1P) agonist), mechanical, or electrical stimuli to the mucosa of myenteric plexus-free preparations (+/- extrinsic denervation). These events were responses of second-order cells to transmitters released by excited primary afferent neurons. After all stimuli, fast and slow EPSPs were abolished by a 5-HT(1P) antagonist, N-acetyl-5-hydroxytryptophyl-5-hydroxytryptophan amide, and by 1.0 microM tropisetron, but not by 5-HT(4)-selective antagonists (SB204070 and GR113808A) or 5-HT(3)-selective antagonists (ondansetron and 0.3 microM tropisetron). Fast EPSPs in second-order neurons were blocked by hexamethonium, and most slow EPSPs were blocked by an antagonist of human calcitonin gene-related peptide (hCGRP(8-37)). hCGRP(8-37) also inhibited the spread of excitation in the submucosal plexus, assessed by measuring the uptake of FM2-10 and induction of c-fos. In summary, data are consistent with the hypothesis that 5-HT from enterochromaffin cells in response to mucosal stimuli initiates reflexes by stimulating 5-HT(1P) receptors on submucosal primary afferent neurons. Second-order neurons respond to these cholinergic/CGRP-containing cells with nicotinic fast EPSPs and/or CGRP-mediated slow EPSPs. Slow EPSPs are necessary for excitation to spread within the submucosal plexus. Because some second-order neurons contain also CGRP, primary afferent neurons may be multifunctional and also serve as interneurons.
Collapse
|
72
|
Pfannkuche H, Firzlaff U, Sann H, Reiche D, Schemann M. Neurochemical coding and projection patterns of gastrin-releasing peptide-immunoreactive myenteric neurone subpopulations in the guinea-pig gastric fundus. J Chem Neuroanat 2000; 19:93-104. [PMID: 10936745 DOI: 10.1016/s0891-0618(00)00057-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this study was to characterise the projection and neurochemical coding patterns of gastrin-releasing peptide (GRP)-containing subpopulations of myenteric neurones in the guinea-pig gastric fundus. For this purpose, we used retrograde tracing with the dye DiI and immunohistochemistry against GRP, choline acetyltransferase (ChAT), enkephalin (ENK), substance P (SP) and neuropeptide Y (NPY). Cell counts revealed that 44% of the myenteric neurones were GRP-positive. Of the GRP-positive neurones, 92% were ChAT-positive and, hence, 8% were presumptively nitric oxide synthase positive (NOS). The GRP-positive subpopulations were ChAT/GRP (40% of all GRP neurones), ChAT/NPY/GRP (25%), ChAT/SP/GRP/+/-ENK (20%), ChAT/ENK/GRP (8%), NOS/NPY/GRP/+/-ENK (5%) and NOS/GRP (3%). The tracing experiments revealed the relative contributions of the various GRP-positive subpopulations to the innervation of the circular muscle and the mucosa. GRP immunoreactivity was detected in 46 and 38% of the DiI-labelled muscle and mucosa neurones, respectively. GRP was almost exclusively found in ascending ChAT-positive mucosa and muscle neurones. The populations encoded ChAT/SP/GRP/+/-ENK and ChAT/ENK/GRP projected predominantly to the circular muscle, whereas the ChAT/NPY/GRP and ChAT/GRP populations had primarily projections to the mucosa. GRP was colocalised with ChAT, ENK and/or SP in varicose nerve fibres innervating the circular muscle and the muscularis mucosae, whereas in the mucosal epithelium GRP was mainly present in nerve fibres containing ChAT and NPY. The data suggest that in the guinea-pig gastric fundus, the ChAT/SP/GRP/+/-ENK and ChAT/ENK/GRP neurones are ascending excitatory muscle motor neurones, whereas the ChAT/NPY/GRP and ChAT/GRP neurones are very likely involved in the regulation of mucosal functions.
Collapse
Affiliation(s)
- H Pfannkuche
- Department of Physiology, School of Veterinary Medicine, Bischofsholer Damm 15/102, 30173 Hannover, Germany
| | | | | | | | | |
Collapse
|
73
|
Rakestraw PC, Snyder JR, Sanders KM, Shuttleworth WC. Intracellular microelectrode recording to characterize inhibitory neuromuscular transmission in jejunum of horses. Am J Vet Res 2000; 61:362-8. [PMID: 10772098 DOI: 10.2460/ajvr.2000.61.362] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate electrical activity of jejunal circular muscle in horses and characterize electrical responses to stimulation by intrinsic inhibitory neurons. SAMPLE POPULATION Portions of jejunum obtained from horses euthanatized for reasons other than gastrointestinal tract disease. PROCEDURE Isolated circular muscle preparations were perfused with oxygenated modified Krebs solution. Glass microelectrodes were used for intracellular recording of membrane potentials from single smooth muscle cells. Electrical activity and responses to electrical field stimulation (EFS) of intrinsic neurons in the presence of guanethidine and atropine were recorded. Mediators of responses to nerve stimulation were also evaluated, using N-nitro-L-arginine methyl ester (L-NAME) and apamin. RESULTS Mean resting membrane potential (RMP) was 41.5+/-1.8 mV. Small membrane potential oscillations were observed in muscle cells. Single or multiple action potentials were often superimposed on the peaks of these oscillations. Spontaneous oscillations and action potentials were blocked by nifedipine. Transient hyperpolarizations of smooth muscle cell membrane potentials (inhibitory junction potentials [IJP]) were observed in response to electrical field stimulation. The IJP evoked by stimulus trains consisted of an initial fast component followed by a slow component. The L-NAME did not have a significant effect on RMP and did not significantly affect the fast component of IJP at any stimulus frequency tested. In contrast, L-NAME abolished the slow component of IJP observed after trains of pulses. In the continued presence of L-NAME, apamin had no significant effect on RMP but effectively reduced the fast component of IJP. CONCLUSIONS AND CLINICAL RELEVANCE Findings suggest that inhibitory neurotransmitters supplying equine jejunum act through different ionic mechanisms. Understanding these mechanisms may suggest new therapeutic targets for treatment of motility disorders.
Collapse
Affiliation(s)
- P C Rakestraw
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|
74
|
Forsgren S, Höckerfelt U, Norrgård O, Henriksson R, Franzén L. Pronounced substance P innervation in irradiation-induced enteropathy--a study on human colon. REGULATORY PEPTIDES 2000; 88:1-13. [PMID: 10706946 DOI: 10.1016/s0167-0115(99)00106-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The immunohistochemical expression of various neuropeptides, including substance P (SP), and the substance P receptor (SPR), was examined in irradiation-induced enteropathy in man. Samples from irradiated and non-irradiated patients operated on for rectal carcinoma were examined. The samples were from the sigmoid and corresponded macroscopically to non-cancerous sigmoid colon. There was a marked atrophy, ulcerations and inflammatory reactions in the irradiation-influenced mucosa. In this mucosa, there was a very pronounced innervation of varicose nerve fibers showing SP-like immunoreactivity (LI). The degree of SP-LI in the ganglionic cells of the submucous plexus was increased as compared to non-irradiated patients. There were only few or no nerve fibers showing immunoreaction for other neuropeptides examined (CGRP, enkephalin, NPY) in the irradiation-influenced mucosa. A marked SPR immunoreaction was detected in cells in the lamina propria which were interpreted as representing polymorphonuclear leukocytes. The marked expression of SP in the irradiation-damaged mucosa and the presence of SPR immunoreactive leukocytes suggest that SP is highly involved in the inflammatory reactions that occur in response to radiotherapy. The observations also suggest that SP, but not NPY, CGRP and enkephalin, has an important role in the reorganisation processes that take place in the mucosa in irradiation-induced enteropathy.
Collapse
Affiliation(s)
- S Forsgren
- Department of Integrative Medical Biology, Section of Anatomy, Umeâ University, S-901 87, Umeå, Sweden.
| | | | | | | | | |
Collapse
|
75
|
De Giorgio R, Stanghellini V, Barbara G, Corinaldesi R, De Ponti F, Tonini M, Bassotti G, Sternini C. Primary enteric neuropathies underlying gastrointestinal motor dysfunction. Scand J Gastroenterol 2000; 35:114-22. [PMID: 10720107 DOI: 10.1080/003655200750024263] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- R De Giorgio
- Dept. of Internal Medicine and Gastroenterology, University of Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Ekblad E. Pharmacological evidence for both neuronal and smooth muscular PAC1 receptors and a VIP-specific receptor in rat colon. REGULATORY PEPTIDES 1999; 85:87-92. [PMID: 10651061 DOI: 10.1016/s0167-0115(99)00080-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UNLABELLED The receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide (PACAP) were characterised in vitro on rat colon longitudinal smooth muscle with adherent myenteric ganglia. VIP, PACAP-38 and PACAP-27 all caused concentration-dependent relaxations. PACAP-27 and PACAP-38 were equipotent, while VIP was less potent. Tetrodotoxin (10(-6) M), L-NAME (10(-4) M), 7-NINA (10(-5) M) and ODQ (3 x 10(-6) M) reduced the amplitude of the relaxatory responses to PACAP-38 but did not affect relaxations induced by VIP or PACAP-27. Apamin (10(-6) M) almost totally abolished the PACAP-27- and PACAP-38-induced relaxations, while VIP-induced relaxations were only slightly reduced. Tetraethylammonium (TEA) reduced VIP- but not PACAP-27-induced relaxations, while charybdotoxin was ineffective. Cross-desensitisation between PACAP-27, PACAP-38 and VIP could be revealed to some extent. IN CONCLUSION VIP, PACAP-27 and PACAP-38 are effective relaxants in rat colon longitudinal muscle. The receptors involved are classified as: (1) a neuronal PAC1 receptor localised on NO-synthesising neurones, the preferred ligand being PACAP-38. Activation of this receptor leads to an increased NO production. (2) A smooth muscle PAC1 receptor, the preferred ligand being PACAP-27. However, also PACAP-38 and, to a less extent, VIP activate this receptor. The relaxatory responses elicited by both PACAP-27 and PACAP-38 are abolished by apamin and thus mediated through small conductance Ca2+-activated K+ channels. (3) A VIP-specific receptor localised on smooth muscle cells. The mechanisms whereby this receptor elicits a relaxatory response involve, at least to some extent, TEA-sensitive K+ channels.
Collapse
MESH Headings
- Animals
- Apamin/pharmacology
- Colon/drug effects
- Colon/innervation
- Colon/physiology
- Female
- Indazoles/pharmacology
- Muscle Relaxation/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/innervation
- Muscle, Smooth/physiology
- Myenteric Plexus/drug effects
- Myenteric Plexus/physiology
- NG-Nitroarginine Methyl Ester/pharmacology
- Neuropeptides/pharmacology
- Nitric Oxide/biosynthesis
- Oxadiazoles/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Quinoxalines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/drug effects
- Receptors, Pituitary Hormone/physiology
- Receptors, Vasoactive Intestinal Peptide/drug effects
- Receptors, Vasoactive Intestinal Peptide/physiology
- Tetrodotoxin/pharmacology
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- E Ekblad
- Department of Physiological Sciences, Lund University Hospital, Sweden.
| |
Collapse
|
77
|
Keast JR. Unusual autonomic ganglia: connections, chemistry, and plasticity of pelvic ganglia. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 193:1-69. [PMID: 10494620 DOI: 10.1016/s0074-7696(08)61778-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pelvic ganglia provide the majority of the autonomic nerve supply to reproductive organs, urinary bladder, and lower bowel. Of all autonomic ganglia, they are probably the least understood because in many species their anatomy is particularly complex. Furthermore, they are unusual autonomic ganglia in many ways, including their connections, structure, chemistry, and hormone sensitivity. This review will compare and contrast the normal structure and function of pelvic ganglia with other types of autonomic ganglia (sympathetic, parasympathetic, and enteric). Two aspects of plasticity in the pelvic pathways will also be discussed. First, the influence of gonadal steroids on the maturation and maintenance of pelvic reflex circuits will be considered. Second, the consequences of nerve injury will be discussed, particularly in the context of the pelvic ganglia receiving distributed spinal inputs. The review demonstrates that in many ways the pelvic ganglia differ substantially from other autonomic ganglia. Pelvic ganglia may also provide a useful system in which to study many fundamental neurobiological questions of broader relevance.
Collapse
Affiliation(s)
- J R Keast
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| |
Collapse
|
78
|
Mannon PJ, Kanungo A, Mannon RB, Ludwig KA. Peptide YY/neuropeptide Y Y1 receptor expression in the epithelium and mucosal nerves of the human colon. REGULATORY PEPTIDES 1999; 83:11-9. [PMID: 10498339 DOI: 10.1016/s0167-0115(99)00035-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Peptide YY is an abundant distal gut hormone which regulates secretion, motility, and possibly epithelial proliferation in the gut. Though messenger RNA for the peptide YY Y1 receptor subtype occurs in the basal colonic crypts of humans, peptide YY receptors themselves have not been clearly localized within the adult human gastrointestinal tract. Using an antiserum directed against the C-terminus of the Y1 receptor we determined the actual extent of Y1 receptor protein expression in the human colon in order to identify areas targeted for peptide YY effects and suggest additional physiological roles for PYY in the human gut. RESULTS Y1 receptor protein expression was seen throughout the colonic epithelium along its basolateral aspect. There was an unexpected dense distribution of Y1 receptor immunoreactivity in varicose fibers within the mucosa. Staining was also noted in nerve fibers of the muscularis mucosae, in the submucous and myenteric plexuses, and in nerves in the muscularis propria. CONCLUSIONS Widespread distribution of Y1 receptors in the colonic epithelium and mucosal nerve fibers suggests diverse regulatory roles for peptide YY in modulating epithelial function as well as secretomotor reflexes in response to lumenal peptide YY-release signals.
Collapse
Affiliation(s)
- P J Mannon
- Department of Medicine, Durham Veterans Affairs Medical Center, NC 27710, USA.
| | | | | | | |
Collapse
|
79
|
Reiche D, Schemann M. Mucosa of the guinea pig gastric corpus is innervated by myenteric neurones with specific neurochemical coding and projection preferences. J Comp Neurol 1999; 410:489-502. [PMID: 10404414 DOI: 10.1002/(sici)1096-9861(19990802)410:3<489::aid-cne10>3.0.co;2-s] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study identified and characterised myenteric neurones involved in the innervation of the gastric mucosa. We applied retrograde neuronal tracing methods by using the dye DiI (1,1'-didodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorat) in combination with the immunohistochemical demonstration of choline acetyltransferase (ChAT), enkephalin (ENK), neuropeptide Y (NPY), nitric oxide synthase (NOS), substance P (SP), and vasoactive intestinal peptide (VIP). This method showed distinct neurochemical coding of DiI-labelled neurones with projections to the mucosa (mucosa neurones): ChAT/- (indicating the presence of ChAT only, 32%), ChAT/NPY/ +/- VIP (22%), NOS/NPY/ +/- VIP (19%), ChAT/SP/ +/- ENK (12%), NOS/- (indicating the presence of NOS only, 8%), or ChAT/ENK (4.6%). DiI-labelled mucosa neurones did not contain calretinin, serotonin, or somatostatin. All ChAT population had primarily ascending projections, whereas the NOS populations had mainly descending projections. Both were further classified as longitudinally and circumferentially projecting neurones, the latter having projection preferences towards the lesser or greater curvature. All subpopulations exhibited projection preferences. Nitrergic projections primarily arose from cell bodies located at the lesser curvature. ChAT/- projections, which dominated the cholinergic pathway, mainly arose from cell bodies located at the greater curvature. The other major cholinergic pathway with the code ChAT/NPY/ +/- VIP consisted of neurones located mainly at the lesser curvature. The results suggest specific coding of gastric myenteric neurones with projections to the mucosa. Polarised projections consisted of ascending cholinergic and descending nitrergic neurones; the additional presence of NPY/VIP was a prominent feature in both pathways. Chemical coding, polarity, and projection preferences of enteric pathways to the gastric mucosa are remarkably different from those of other regions in the gut.
Collapse
Affiliation(s)
- D Reiche
- Department of Physiology, School of Veterinary Medicine, Hannover, Germany
| | | |
Collapse
|
80
|
Kirchgessner AL, Liu MT. Differential localization of Ca2+ channel alpha1 subunits in the enteric nervous system: presence of alpha1B channel-like immunoreactivity in intrinsic primary afferent neurons. J Comp Neurol 1999; 409:85-104. [PMID: 10363713 DOI: 10.1002/(sici)1096-9861(19990621)409:1<85::aid-cne7>3.0.co;2-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Immunocytochemistry was employed to locate calcium (Ca2+) channel proteins in the enteric nervous system (ENS) of the rat and guinea pig. Anti-peptide antibodies that specifically recognize the alpha1 subunits of class A (P/Q-type), B (N-type), C and D (L-type) Ca2+ channels were utilized. Alpha1B channel-like immunoreactivity was abundant in both enteric plexuses, the mucosa, and circular and longitudinal muscle layers. Immunoreactivity was predominantly found in cholinergic varicosities, supporting a role for Ca2+ channels, which contain the alpha1B subunit, in acetylcholine release. Immunoreactivity was also associated with the cell soma of calbindin-immunoreactive submucosal and myenteric neurons, cells that have been proposed to be intrinsic primary afferent neurons. Alpha1C channel-like immunoreactivity was distributed diffusely in the cell membrane of a large subset of neuronal cell bodies and processes, whereas alpha1D was found mainly in the cell soma and proximal dendrites ofvasoactive intestinal polypeptide-immunoreactive neurons in the guinea pig gut. Alpha1A channel-like immunoreactivity was found in a small subset of cell bodies and processes in the rat ENS. The differential localization of the alpha1 subunits of Ca2+ channels in the ENS implies that they serve distinct roles in neuronal excitation and signaling within the bowel. The presence of alpha1B channel-like immunoreactivity in putative intrinsic primary afferent neurons suggested that class B Ca2+ channels play a role in enteric sensory neurotransmission; therefore, we determined the effects of the N-type Ca2+ channel blocker, omega-conotoxin GVIA (omega-CTx GVIA), on the reflex-evoked activity of enteric neurons. Demonstrating the phosphorylation of cyclic AMP (cAMP)-responsive element-binding protein (pCREB) identified neurons that became active in response to distension. Distension elicited hexamethonium-resistant pCREB immunoreactivity in calbindin-immunoreactive neurons in each plexus; however, in preparations stimulated in the presence of omega-CTx GVIA, pCREB immunoreactivity was found only in calbindin-immunoreactive neurons in the submucosal plexus and not in myenteric ganglia. These data confirm that intrinsic primary afferent neurons are located in the submucosal plexus and that N-type Ca2+ channels play a role in sensory neurotransmission.
Collapse
Affiliation(s)
- A L Kirchgessner
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|
81
|
Vannucchi MG, Corsani L, Faussone-Pellegrini MS. Substance P immunoreactive nerves and interstitial cells of Cajal in the rat and guinea-pig ileum. A histochemical and quantitative study. Neurosci Lett 1999; 268:49-52. [PMID: 10400075 DOI: 10.1016/s0304-3940(99)00366-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The substance P (SP)-containing nerves at the deep (DMP) and myenteric (MP) plexuses and the related interstitial cells of Cajal (ICC-DMP and ICC-MP) were immunohistochemically studied in rat and guinea-pig ileum. All the ICC expressed SP-preferred receptor NK1r: the ICC-DMP showed an intense and the ICC-MP a faint NK1r-immunoreactivity(IR). c-kit-labeling confirmed that they were ICC. The SP-IR nerves at the DMP were significantly more numerous in the guinea-pig than in the rat, and more numerous than those at the MP in both animal species. All the ICC-DMP in the guinea-pig and half of them in the rat were close to SP-IR nerves. The ICC-MP were rarely near to SP-IR nerves in either species. The SP-innervation shows interspecies differences at the DMP that imply a different tachykinergic control of the local ICC.
Collapse
Affiliation(s)
- M G Vannucchi
- Department of Anatomy, Histology and Forensic Medicine, University of Florence, Italy
| | | | | |
Collapse
|
82
|
Abstract
BACKGROUND/PURPOSE Intestinal neuronal dysplasia (IND) as a cause for severe chronic constipation remains controversial. The authors have identified a deficiency of substance P (SP) immunoreactivity in the colonic nerve fibres of some children with severe constipation, and aim to correlate this with clinical features and transit studies. METHODS Over 100 children with intractable constipation with or without soiling have been assessed by clinical questionnaire, nuclear transit study, and laparoscopic seromuscular biopsy of the colon labelled with antibodies to SP and vasoactive intestinal peptide (VIP) using immunofluorescence. RESULTS More than 30% of children had delayed passage of meconium, and symptoms of constipation appeared by the age of 1 year in 63%. More than 80% had significant delay in colonic transit, and of these, about 80% had reduced SP immunoreactivity in the axons of the colonic circular muscle. A further 6% had heterotopic ganglion cells or hypoplastic ganglia on routine histology. CONCLUSIONS In children with intractable constipation, features of early onset and delayed colonic transit correlated with deficiency of SP in myenteric axons. The authors propose that deficient SP immunoreactivity may be used as a histological marker for severe constipation. Defective excitatory neuromuscular transmission may be the cause of slow colonic transit.
Collapse
Affiliation(s)
- J M Wheatley
- Royal Children's Hospital Research Institute, and the Department of Pathology, Royal Children's Hospital, Melbourne, Australia
| | | | | | | | | |
Collapse
|
83
|
Liu CY, Jamaleddin AJ, Zhang H, Christofi FL. FlCRhR/cyclic AMP signaling in myenteric ganglia and calbindin-D28 intrinsic primary afferent neurons involves adenylyl cyclases I, III and IV. Brain Res 1999; 826:253-69. [PMID: 10224303 DOI: 10.1016/s0006-8993(99)01269-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aims of this study were to improve insight into cAMP signaling in myenteric neurons and glia and identify the adenylyl cyclase (AC) isoforms expressed in myenteric ganglia of the guinea-pig small intestine. An increase in the intracellular cAMP levels was measured indirectly by an increase in the 520 nm/580 nm fluorescence emission ratio of the protein kinase A fluorosensor FlCRhR. Forskolin or pituitary adenylyl cyclase activating peptide caused an increase in cAMP levels in cell somas and neurites and elicited a slow EPSP-like response in myenteric AH/Type 2 neurons, whereas the inactive form of forskolin was without these effects. Glia displayed similar cAMP responses. Immunoblot analysis showed that AC I, III and IV were present in myenteric ganglia, with AC I being detected as two bands of 160 kDa and 185 kDa, AC III as two bands near 220 kDa, and AC IV as two bands of greater than 220 kDa. Pretreatment with N-ethylmaleimide and N-glycosidase F revealed an AC IV band at 115 kDa. Preabsorption with specific blocking peptides prevented detection of AC I or AC IV immunoreactive proteins. In ganglia which expressed strong AC IV immunoreactivity, no immunoreactive bands were detected for AC II, AC V/VI, AC VII or AC VIII. The amount of AC isoforms expressed in myenteric ganglia followed the order of AC IV&z.Gt;III>I. Immunofluorescent labeling studies revealed that AC I, AC III and AC IV were variably expressed in myenteric neurons and glia of the duodenum, jejunum and ileum. In the guinea-pig ileum, AC I, III and IV immunoreactivities were respectively present in 26%, 58% and 89% of calbindin-D28-colabeled myenteric neurons. These findings suggest that (1) AC I, AC III and AC IV variably contribute to cAMP signaling in myenteric ganglia, (2) AC I, AC III and AC IV may be differentially expressed in distinct subsets of calbindin-D28 neurons which may represent intrinsic primary afferent myenteric neurons. Our study also provides direct evidence for activation of cAMP-dependent protein kinase.
Collapse
Affiliation(s)
- C Y Liu
- Department of Anesthesiology, Medical Research Facility, Rm 226, 420 W. 12th Avenue, College of Medicine, The Ohio State University, Columbus, OH 43210-1228, USA
| | | | | | | |
Collapse
|
84
|
Cottrell DF, McGorum BC, Pearson GT. The neurology and enterology of equine grass sickness: a review of basic mechanisms. Neurogastroenterol Motil 1999; 11:79-92. [PMID: 10320588 DOI: 10.1046/j.1365-2982.1999.00140.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Autonomic dysfunction constitutes a prominent clinical feature of equine grass sickness (EGS). Significant injury to the nervous control of the alimentary system is life threatening, partly because of dysphagia but also because of the failure of the unique regulatory mechanisms in equine digestion involving water and electrolyte balance. The neuropathology also indicates the presence of a somatic polyneuropathy. The morphological features of EGS are similar to those of excitotoxic neuronal degeneration, which resembles neuronal apoptosis. It is difficult to ascertain from published accounts the degree of damage to central neurones: the distribution is well documented and selective but the proportion of damage is poorly quantified. If lesions involve a significant number of regulatory neurones they should produce functional deficits. Any clinical assessment of horses, especially those with chronic EGS, should include a thorough neurological examination. Although this will not necessarily improve the outcome of the case, it may enable the rational selection of animals with a reasonable prognosis for recovery which is partly determined by the extent of CNS lesions. The evidence supports the following pathogenesis. There is an initial lesion in the enteric nervous system of susceptible horses. In the acute form of EGS, massive enteric neuronal damage occurs first functionally, then structurally leading to generalized alimentary smooth muscle atony, enhanced secretions and altered fluid fluxes. Severe distension of the stomach and small intestines rapidly develops, which augments the intestinal ileus by intersegmental inhibitory reflexes and causes colic and dehydration. In subacute cases, failure of intestinal bicarbonate buffer together with alimentary stasis rapidly reduces caecal-colonic fermentation. Thus the osmolality of large intestinal digesta reduces and water travels out of the bowel along osmotic gradients. Water returns to the circulation, but is eventually lost in the gastric and small intestinal secretions. The observation that pathological lesions may not be seen in the prevertebral ganglia within the first few days of acute cases supports the view that a functional deficit precedes structural lesions which may be secondary to a retrograde degeneration. It is therefore possible to resolve the observations that less damage may be seen in prevertebral ganglia and elsewhere in peracute and acute cases with the more common finding that greater neuronal damage is present in acute than in chronic cases. These different observations are probably time dependent. Chronic EGS occurs when there is less initial enteric nerve damage which may lead to less secondary prevertebral ganglionic pathology, and more time for functional and structural compensatory mechanisms to develop. Denervation hypersensitivity develops at target sites both in the gut and in peripheral somatic nerves which may account, in part, for the clinical signs of patchy sweating and muscle tremors. Raised circulating adrenaline levels may also account for generalized sweating, may contribute to gastrointestinal atony and may affect pacemakers at the pelvic flexure. Many of the features of EGS make worthwhile the re-investigation of Clostridium botulinum Group III toxins, which are known to prevent vesicular exocytosis, stimulate neurosecretion, produce neuronal chromatolysis and inhibit neutrophil migration. Also, evidence from other species suggests that increased nitrergic neuronal activity can account for many of the clinical signs of EGS, namely dysphagia, generalized ileus, gastric dilatation, sweating, peripheral vasodilatation, tachycardia, salivary hypersecretion, muscle wastage and cachexia.
Collapse
Affiliation(s)
- D F Cottrell
- Equine Grass Sickness Group, Royal School of Veterinary Studies, University of Edinburgh, Summerhall, UK
| | | | | |
Collapse
|
85
|
Abstract
The enteric nervous system exerts local control over mixing and propulsive movements in the small intestine. When digestion is in progress, intrinsic primary afferent neurons (IPANs) are activated by the contents of the intestine. The IPANs that have been physiologically characterized are in the intrinsic myenteric ganglia. They are numerous, about 650/mm length of small intestine in the guinea pig, and communicate with each other through slow excitatory transmission to form self-reinforcing assemblies. High proportions of these neurons respond to chemicals in the lumen or to tension in the muscle; physiological stimuli activate assemblies of hundreds or thousands of IPANs. The IPANs make direct connections with muscle motor neurons and with ascending and descending interneurons. The circular muscle contracts as an annulus, about 2-3 mm in minimum oral-to-anal extent in the guinea pig small intestine. The smooth muscle cells form an electrical syncytium that is innervated by about 300 excitatory and 400 inhibitory motor neurons per mm length. The intrinsic nerve circuits that control mixing and propulsion in the small intestine are now known, but it remains to be determined how they are programmed to generate the motility patterns that are observed.
Collapse
Affiliation(s)
- W A Kunze
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
86
|
Knight GE, Burnstock G. NANC relaxation of the circular smooth muscle of the oesophagus of the Agama lizard involves the L-arginine-nitric oxide synthase pathway. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1999; 122:165-71. [PMID: 10190041 DOI: 10.1016/s0742-8413(98)10100-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
On carbachol (CCh; 10-30 microM) pre-contracted circular muscle strips of the Agama lizard oesophagus, electrical field stimulation evoked frequency-dependent relaxations in the presence of guanethidine (1 microM) and indomethacin (1 microM). These non-adrenergic inhibitory responses were concentration-dependently inhibited by the nitric oxide synthase (NOS) inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) within a concentration range of 30-300 microM but not D-NAME (up to 300 microM), although a component remained at 4-16 Hz even with 300 microM L-NAME. The inhibition by L-NAME (300 microM) was completely prevented when L-arginine (L-Arg; 15 mM) but not D-Arg (up to 15 mM) was applied simultaneously with L-NAME (300 microM). Increasing the L-NAME concentration to 1 mM had no additional inhibitory effect. Sodium nitroprusside (SNP) concentration-dependently relaxed pre-contracted oesophageal strips, L-NAME (up to 300 microM) had no effect. Neither adenosine 5'-triphosphate (up to 0.1 mM) nor vasoactive intestinal polypeptide (up to 0.1 microM) caused the pre-contracted oesophagus to relax. This study has shown that the NANC inhibitory response of the Agama lizard oesophagus circular muscle largely involves the L-Arg-NOS pathway as seen by the effect of L-NAME, L-Arg and SNP. The identity of the L-NAME-resistant component(s) and the lack of effect of tetrodotoxin (up to 3 microM) and omega-conotoxin GVIA (up to 0.1 microM) in relation to the nature of the inhibitory response are discussed.
Collapse
Affiliation(s)
- G E Knight
- Autonomic Neuroscience Institute, Royal Free Hospital School of Medicine, London, UK
| | | |
Collapse
|
87
|
Maifrino LBM, Liberti EA, Souza RRD. Vasoactive-intestinal-peptide- and substance-P-immunoreactive nerve fibres in the myenteric plexus of mouse colon during the chronic phase of Trypanosoma cruziinfection. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 1999. [DOI: 10.1080/00034983.1999.11813394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
88
|
Ekblad E, Ekelund M, Sundler F. Relaxant responses of VIP and PACAP in rat ileum: receptors and adaptive supersensitivity. Ann N Y Acad Sci 1998; 865:393-6. [PMID: 9928037 DOI: 10.1111/j.1749-6632.1998.tb11203.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- E Ekblad
- Department of Physiology and Neuroscience, University Hospital, Experimental Research Center, Lund, Sweden.
| | | | | |
Collapse
|
89
|
Rae MG, Khoyi MA, Keef KD. Modulation of cholinergic neuromuscular transmission by nitric oxide in canine colonic circular smooth muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G1324-32. [PMID: 9843769 DOI: 10.1152/ajpgi.1998.275.6.g1324] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
This study examines the effect of nitric oxide (NO) on cholinergic transmission in strips of canine colonic circular muscle in which neural plexus-pacemaker regions had been removed. Electrical field stimulation gave rise to atropine- and TTX-sensitive excitatory junction potentials (EJPs), the amplitude of which were frequency dependent. In 47% of control muscles, the EJP was followed by an inhibitory junction potential (IJP), whereas in the presence of atropine all preparations exhibited only IJPs. The NO synthase inhibitor Nomega-nitro-L-arginine (L-NNA), the guanylyl cyclase inhibitor 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxaline-1-one (ODQ), and the protein kinase G (PKG) antagonist Rp-8-bromo-PET-cGMPS all significantly increased EJP amplitude and reduced or abolished IJPs. The potentiation of EJPs by L-NNA was reversed by the NO donors sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine in a manner blocked by ODQ. [14C]ACh overflow was also measured to evaluate the possible prejunctional effects of NO. Both norepinephrine and TTX significantly decreased [14C]ACh overflow; however, L-NNA, ODQ, and SNP were without effect. These data suggest that both cholinergic and nitrergic motoneurons functionally innervate the interior of the circular muscle layer. The inhibitory actions of NO on cholinergic transmission appear to be post- rather than prejunctional and to involve guanylyl cyclase as well as possibly PKG.
Collapse
Affiliation(s)
- M G Rae
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
90
|
Junquera C, Martínez-Ciriano C, Blasco J, Aisa J, Peg MT, Azanza MJ. Distribution of NADPH diaphorase-positive neurons in the enteric nervous system of the rabbit intestine. Neurochem Res 1998; 23:1233-40. [PMID: 9804278 DOI: 10.1023/a:1020783830811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nitric oxide (NO) has been proposed as an inhibitory transmitter in gastrointestinal muscle relaxation. We analyzed the distribution of nitric-oxide producing neurons in the rabbit intestine through nicotinamide-adenine-dinucleotide-phosphate-diaphorase histochemistry. By this reliable and convenient method, we visualized neuronal nitric-oxide-synthase, the enzyme responsible for nitric oxide generation, in the rabbit intestine. In the ileum and rectum, nitric-oxide-synthase-related diaphorase activity was present in the myenteric plexus ganglion cells, and in the nerve fibers in the internodal strand, secondary, and tertiary plexuses. These fibers were particularly abundant in the deep circular rather than in the outer longitudinal muscle layer. In the inner submucosal plexus, we found scarce labeled neurons. Labeled neural somata showed a range of sizes and shapes suggesting different functional roles. The present basic information is required to use the rabbit as an experimental animal in neurochemical NO enteric research.
Collapse
Affiliation(s)
- C Junquera
- Dpto. de Ciencias Morfológicas, Facultad de Medicine de Zaragoza, Spain.
| | | | | | | | | | | |
Collapse
|
91
|
Young HM, Torihashi S, Ciampoli D, Sanders KM. Identification of neurons that express stem cell factor in the mouse small intestine. Gastroenterology 1998; 115:898-908. [PMID: 9753493 DOI: 10.1016/s0016-5085(98)70262-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Enteric neurons in the murine intestine express stem cell factor (SCF), which may provide an important signal in the development of the interstitial cells of Cajal (ICC). Our aim was to identify the subpopulation(s) of myenteric neurons that express SCF. METHODS Myenteric plexus preparations from postnatal SCF-lacZ mice were processed for beta-galactosidase histochemistry followed by immunohistochemistry. RESULTS Approximately 60% of the nitric oxide synthase-immunoreactive neurons, which projected to myenteric ganglia and to circular muscle, expressed SCF, and more than 80% of the calbindin-immunoreactive neurons, which projected exclusively to myenteric ganglia, expressed SCF. A small subpopulation of calretinin-immunoreactive neurons expressed SCF transiently. Many of the remainder of SCF-expressing neurons were choline acetyltransferase immunoreactive, but their projections are unknown. CONCLUSIONS SCF-expressing neurons that project within the myenteric plexus may be an important source of SCF for the development of Kit-expressing ICC at this level. The only possible neuronal source of SCF for the ICC of the deep muscular plexus is a subpopulation of nitric oxide synthase-immunoreactive neurons.
Collapse
Affiliation(s)
- H M Young
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia.
| | | | | | | |
Collapse
|
92
|
Clerc N, Furness JB, Li ZS, Bornstein JC, Kunze WA. Morphological and immunohistochemical identification of neurons and their targets in the guinea-pig duodenum. Neuroscience 1998; 86:679-94. [PMID: 9881879 DOI: 10.1016/s0306-4522(98)00025-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nerve circuits within the proximal duodenum were investigated using a combination of immunohistochemistry for individual neuron markers and lesion of intrinsic nerve pathways to determine axon projections. Cell shapes and axonal projections were also studied in cells that had been injected with a marker substance. Several major neuron populations were identified. Calbindin immunoreactivity occurred in a population of myenteric nerve cells with Dogiel type II morphology. These had axons that projected to other myenteric ganglia, to the circular muscle and to the mucosa. All were immunoreactive for the synthesizing enzyme for acetylcholine, choline acetyltransferase, and some were also immunoreactive for calretinin. Myenteric neurons with nitric oxide synthase immunoreactivity projected anally to the circular muscle. These were also immunoreactive for vasoactive intestinal peptide, and proportions of them had enkephalin and/or neuropeptide Y immunoreactivity. It is suggested that they are inhibitory motor neurons to the circular muscle. A very few (about 2%) of nitric oxide synthase-immunoreactive neurons had choline acetyltransferase immunoreactivity. Tachykinin (substance P)-immunoreactive nerve cells were numerous in the myenteric plexus. Some of these projected orally to the circular muscle and are concluded to be excitatory motor neurons. Others projected to the tertiary plexus which innervates the longitudinal muscle and others provided terminals in the myenteric plexus. Two groups of descending interneurons were identified, one with somatostatin immunoreactivity and one with vasoactive intestinal peptide immunoreactivity. The two most common nerve cells in submucous ganglia were neuropeptide Y- and vasoactive intestinal peptide-immunoreactive nerve cells. Both provided innervation of the mucosa. There was also a population of calretinin-immunoreactive submucous neurons that innervated the mucosal glands, but not the villi. Comparison with the ileum reveals similarities in the chemistries and projections of neurons. Differences include the almost complete absence of nitric oxide synthase immunoreactivity from vasoactive intestinal peptide-immunoreactive interneurons in the duodenum, the projection of calbindin-immunoreactive Dogiel type II neurons to the circular muscle and the absence of tachykinin-immunoreactivity from these neurons.
Collapse
Affiliation(s)
- N Clerc
- Laboratoire de Neurobiologie, CNRS, Marseille, France
| | | | | | | | | |
Collapse
|
93
|
Sang Q, Young HM. The identification and chemical coding of cholinergic neurons in the small and large intestine of the mouse. ACTA ACUST UNITED AC 1998. [PMID: 9624448 DOI: 10.1002/(sici)1097-0185(199806)251:2%3c185::aid-ar6%3e3.0.co;2-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND The recent availability of antisera to the vesicular acetylcholine transporter (VAChT) and choline acetyltransferase (ChAT) that demonstrate peripheral cholinergic neurons has made possible the anatomical identification of cholinergic neurons in the enteric nervous system. In this study, we localised cholinergic neurons in the mouse small and large intestine and identified which substances are found colocalised in the cholinergic neurons. METHODS Immunohistochemical single and double staining techniques were used on whole mount preparations and frozen sections to examine the localisation and chemical coding of cholinergic neurons in the small and large intestine of the mouse. Cholinergic neurons were identified using antisera to ChAT or VAChT. RESULTS In both the small and large intestine, numerous ChAT-immunoreactive nerve cell bodies were present in the myenteric and submucous ganglia, and ChAT- and VAChT-immunoreactive nerve terminals were abundant in the myenteric and submucous plexuses and the external muscle. Previous studies have identified two major classes of myenteric neurons in the small intestine of the mouse--those containing calretinin plus substance P, and those containing nitric oxide synthase (NOS) plus vasoactive intestinal peptide (VIP). Double-label studies showed that the vast majority of the calretinin/substance P neurons were cholinergic neurons, whereas only a small proportion of the NOS/VIP cells were cholinergic; the noncholinergic NOS/VIP neurons were motor neurons or interneurons, whereas the cholinergic NOS/VIP neurons appeared to be exclusively interneurons. In the small intestine, all of the 5-HT-loaded neurons and a subpopulation of the calbindin neurons were also cholinergic. In the large intestine, there was a pattern of overlaps similar to that found in the small intestine, except that in the large intestine approximately 25% of the calretinin cells were not cholinergic. Only approximately one third of the GABA-loaded neurons in the large intestine were cholinergic. CONCLUSIONS Large subpopulations of motor neurons and interneurons in the mouse small intestine are cholinergic neurons.
Collapse
Affiliation(s)
- Q Sang
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
94
|
Hällgren A, Flemström G, Nylander O. Interaction between neurokinin A, VIP, prostanoids, and enteric nerves in regulation of duodenal function. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G95-103. [PMID: 9655689 DOI: 10.1152/ajpgi.1998.275.1.g95] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neurokinin A (NKA) induces duodenal motility and increases mucosal permeability and bicarbonate secretion in the in situ perfused duodenum in anesthetized rats. In the present study, the NKA-induced increase in mucosal permeability was potentiated by luminal perfusion with lidocaine and diminished by vasoactive intestinal peptide (VIP) but unaltered by elevated intraluminal pressure. Elevation of intraluminal pressure, however, potentiated the stimulatory effect of NKA on bicarbonate secretion. In contrast, the tachykinin decreased the rate of alkalinization in rats subjected to elevated intraluminal pressure and treated with indomethacin. Similarly, NKA partially inhibited the VIP-stimulated bicarbonate secretion. Luminal lidocaine did not affect the secretory response to NKA. The motility induced by NKA was unaffected by VIP or lidocaine but decreased by elevated intraluminal pressure. It is concluded that the NKA-induced increase in duodenal mucosal bicarbonate secretion is independent of neurons and possibly mediated by prostanoids. The increase in mucosal permeability in response to NKA may be suppressed by mucosal nerves, perhaps utilizing VIP as one of the transmitters.
Collapse
Affiliation(s)
- A Hällgren
- Department of Physiology, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
95
|
Sang Q, Young HM. The identification and chemical coding of cholinergic neurons in the small and large intestine of the mouse. Anat Rec (Hoboken) 1998; 251:185-99. [PMID: 9624448 DOI: 10.1002/(sici)1097-0185(199806)251:2<185::aid-ar6>3.0.co;2-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The recent availability of antisera to the vesicular acetylcholine transporter (VAChT) and choline acetyltransferase (ChAT) that demonstrate peripheral cholinergic neurons has made possible the anatomical identification of cholinergic neurons in the enteric nervous system. In this study, we localised cholinergic neurons in the mouse small and large intestine and identified which substances are found colocalised in the cholinergic neurons. METHODS Immunohistochemical single and double staining techniques were used on whole mount preparations and frozen sections to examine the localisation and chemical coding of cholinergic neurons in the small and large intestine of the mouse. Cholinergic neurons were identified using antisera to ChAT or VAChT. RESULTS In both the small and large intestine, numerous ChAT-immunoreactive nerve cell bodies were present in the myenteric and submucous ganglia, and ChAT- and VAChT-immunoreactive nerve terminals were abundant in the myenteric and submucous plexuses and the external muscle. Previous studies have identified two major classes of myenteric neurons in the small intestine of the mouse--those containing calretinin plus substance P, and those containing nitric oxide synthase (NOS) plus vasoactive intestinal peptide (VIP). Double-label studies showed that the vast majority of the calretinin/substance P neurons were cholinergic neurons, whereas only a small proportion of the NOS/VIP cells were cholinergic; the noncholinergic NOS/VIP neurons were motor neurons or interneurons, whereas the cholinergic NOS/VIP neurons appeared to be exclusively interneurons. In the small intestine, all of the 5-HT-loaded neurons and a subpopulation of the calbindin neurons were also cholinergic. In the large intestine, there was a pattern of overlaps similar to that found in the small intestine, except that in the large intestine approximately 25% of the calretinin cells were not cholinergic. Only approximately one third of the GABA-loaded neurons in the large intestine were cholinergic. CONCLUSIONS Large subpopulations of motor neurons and interneurons in the mouse small intestine are cholinergic neurons.
Collapse
Affiliation(s)
- Q Sang
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
96
|
Luckensmeyer GB, Keast JR. Projections of pelvic autonomic neurons within the lower bowel of the male rat: an anterograde labelling study. Neuroscience 1998; 84:263-80. [PMID: 9522380 DOI: 10.1016/s0306-4522(97)89502-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tissues of the large intestine which receive an innervation by neurons of the major pelvic ganglia were identified following in vivo and in vitro anterograde labelling with the lipophilic tracer 1,1'didodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate in the male rat. The primary target in the gut of major pelvic ganglion neurons is the myenteric plexus of the distal colon and the rectum. The serosal ganglia, on the surface of the most distal region of the rectum and the circular muscle of the distal colon and rectum were less densely innervated. The pelvic ganglia do not innervate the longitudinal muscle, submucosal blood vessels, submucosal plexus, or mucosa. The pelvic supply reaches the bowel via two groups of rectal nerves and branches of the penile nerves. All of these connections also carry the axons of viscerofugal neurons from the bowel, some of which have terminal axons in the major pelvic ganglia. Finally, the different nerves supplied different targets. In particular, while the rectal nerves carried pelvic axons supplying the myenteric plexus, circular muscle, and serosal ganglia, the penile nerves only innervated the serosal ganglia. In addition, the two groups of rectal nerves innervated slightly different regions of the bowel and provided different projection patterns. However, successful in vivo labelling was achieved in only 6/12 animals and while all in vitro experiments resulted in successful labelling, it was clear that only a proportion of pelvic projections in any given nerve were labelled. These studies have shown that the major pelvic ganglia are primarily involved in the control of motility, but not of vascular and secretomotor functions. Thus pelvic neurons do not innervate the same range of target tissues within the bowel as the prevertebral ganglia. This study has also shown that the different pathways to the gut from the major pelvic ganglia innervate different tissues, suggesting that the autonomic innervation of the gut is not homogeneous along its length.
Collapse
Affiliation(s)
- G B Luckensmeyer
- Department of Physiology and Pharmacology, University of Queensland, St Lucia, Australia
| | | |
Collapse
|
97
|
Lecci A, Giuliani S, Tramontana M, Giorgio RD, Maggi CA. The role of tachykinin NK1 and NK2 receptors in atropine-resistant colonic propulsion in anaesthetized guinea-pigs. Br J Pharmacol 1998; 124:27-34. [PMID: 9630339 PMCID: PMC1565351 DOI: 10.1038/sj.bjp.0701789] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. The role of endogenous tachykinins on guinea-pig colonic propulsion was investigated by using potent and selective tachykinin NK1 and NK2 receptor antagonists. Colonic propulsion and contractions were determined by means of a balloon-catheter device, inserted into the rectum of guanethidine (68 micromol kg(-1), s.c., 18 and 2 h before)-pretreated, urethane-anaesthetized guinea-pigs. Propulsion of the device (dynamic model) was determined by measuring the length of the catheter expelled during 60 min filling of the balloon (flow rate 5 microl min(-1)). 2. In control conditions the tachykinin NK1 receptor antagonist SR 140333 (1 micromol kg(-1), i.v.) did not affect either colonic propulsion or the amplitude of contractions. The tachykinin NK2 receptor antagonists MEN 10627 and MEN 11420 (1 micromol kg(-1), i.v.) increased colonic propulsion at 10 min (+120% and 150%, respectively) but at 60 min the effect was significant only for MEN 10627 (+84%). SR 48968 (1 micromol kg(-1), i.v.) did not significantly enhance the colonic propulsion. None of these tachykinin NK2 receptor antagonists modified the amplitude of colonic contractions. In contrast, both atropine (6 micromol kg(-1), i.v., plus infusion of 1.8 micromol h(-1)) and hexamethonium (55 micromol kg(-1), i.v., plus infusion of 17 micromol h(-1)) abolished propulsion (81% and 87% inhibition, respectively) and decreased the amplitude of contractions (68% inhibition for either treatment). 3. In atropine-treated animals (6 micromol kg(-1), i.v., plus infusion of 1.8 micromol h(-1)), apamin (30 nmol kg(-1), i.v.) restored colonic propulsion (+416%) and increased the amplitude of contractions (+367% as compared to atropine alone). Hexamethonium (55 micromol kg(-1), i.v., plus infusion of 17 micromol h(-1)) abolished the apamin-induced, atropine-resistant colonic propulsion (97% inhibition) and reduced the amplitude of the atropine-resistant contractions (52% inhibition). 4. The apamin-induced, atropine-resistant colonic propulsion was inhibited by SR 140333 (-69% at 1 micromol kg(-1)), SR 48968 (-78% at 1 micromol kg(-1)), MEN 11420 (-59% at 1 micromol kg(-1)) and MEN 10627 (-50% at 1 micromol kg(-1)), although the latter effect was not statistically significant. The combined administration of SR 140,333 and MEN 10,627 (1 micromol kg(-1) for each antagonist) almost completely abolished colonic propulsion (90% inhibition). The amplitude of colonic contractions was also reduced by SR 140333 (-42%), SR 48968 (-29%), MEN 11420 (-45%) but not by MEN 10627 (-16%). The combined administration of SR 140333 and MEN 10,627 reduced the amplitude of contractions by 47%. SR 140603 (1 micromol kg(-1), i.v.), the less potent enantiomer of SR 140333, was inactive. 5. In control animals, apamin (30 nmol kg(-1), i.v.) enhanced colonic propulsion (+84%) and increased the amplitude of contractions (+68%), as compared to the vehicle. Hexamethonium (55 micromol kg(-1), i.v. plus infusion of 17 micromol h(-1)) inhibited propulsion (86% inhibition) and decreased the amplitude of contractions (49% inhibition). SR 140333, SR 48968, MEN 11420, MEN 10627, or the coadministration of SR 140333 and MEN 10627 had no effect. 6. In a separate series of experiments, the mean amplitude of colonic contractions was also recorded under isovolumetric conditions through the balloon-catheter device kept in place at 75 mm from the anal sphincter (static model). In control conditions, neither SR 140333 nor MEN 11420 modified the amplitude of contractions. In atropine-pretreated guinea-pigs, SR 140333 and MEN 11420 (0.1-1 micromol kg(-1)) dose-dependently decreased the amplitude of contractions. In apamin- and atropine-pretreated animals, only the highest (1 micromol kg(-1)) dose of SR 140333 or MEN 11420 significantly decreased the amplitude of contractions. The inhibitory potency of atropine (0.3-1 micromol kg(-1)) was similar in apamin-pretreated animals and in controls. 7. It was concluded that, in anaesthetized guinea-pigs, endogenous tachykinins, acting through both NK(1) and NK(2) receptors, act as non-cholinergic excitatory neurotransmitters in promoting an apamin-evoked reflex propulsive activity of the distal colon.
Collapse
Affiliation(s)
- A Lecci
- Pharmacology Research Department, Menarini Ricerche s.p.a., Florence, Italy
| | | | | | | | | |
Collapse
|
98
|
Junquera C, Martínez-Ciriano C, Castiella T, Aisa J, Blasco J, Peg MT, Azanza MJ. Intrinsic innervation of a reptilian esophagus (Podarcis hispanica). Neurochem Res 1998; 23:493-504. [PMID: 9566583 DOI: 10.1023/a:1022474316475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We study the esophagus of Podarcis hispanica through different methods to clarify the structure and affinities of its wall innervation. The acetylcholinesterase method reveals cholinesterase activity in two submucosal nervous plexuses, with an increasing degree of structural complexity in the reptilian esophagus, compared with amphibians. Noradrenergic innervation, detected through fluorescence induced by formol, widely spreads its network in both the myenteric and submucosal plexuses (around the blood vessels in the external submucosal plexus, and to the glandular lamina propria in the inner submucosal plexus). Immunohistochemistry for vasoactive intestinal peptide shows a widespread innervation, with neurons clustered in ganglia and also scattered through the VIPergic network, only at the myenteric plexus. Immunohistochemistry for substance P shows a rich innervation along the entire wall of the esophagus, more concentrated in its caudal region, around the blood vessels. Electron microscopy shows the enteric neuronal ultrastructure and its relationship with the esophagus wall.
Collapse
Affiliation(s)
- C Junquera
- Dpto. de Ciencias Morfológicas, Facultad de Medicina de Zaragoza, Spain.
| | | | | | | | | | | | | |
Collapse
|
99
|
Sann H, Hoppe S, Baldwin L, Grundy D, Schemann M. Presence of putative neurotransmitters in the myenteric plexus of the gastrointestinal tract and in the musculature of the urinary bladder of the ferret. Neurogastroenterol Motil 1998; 10:35-47. [PMID: 9507249 DOI: 10.1046/j.1365-2982.1998.00083.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The innervation of the musculature in the ferret stomach, ileum, colon and urinary bladder was investigated using immunohistochemistry in noncolchicin-treated tissues. In the gastrointestinal tract two main subpopulations of myenteric neurones were found: cholinergic neurones expressing choline acetyltransferase (ChAT), which made up 68, 67 and 67% of the neurones in the stomach, ileum and colon, respectively, and nitrergic neurones containing nitric oxide synthase and NADPH-diaphorase (stomach: 23%, ileum: 21%, colon: 26%). In the stomach, cholinergic neurones expressed substance P (SP, 2% of all neurones), dopamine-beta-hydroxylase (DBH, 19%) but not tyrosine hydroxylase (TH) or vasoactive intestinal polypeptide (VIP), while nitrergic neurones contained VIP and neuropeptide Y (NPY). TH- but not DBH-immunoreactivity was observed in 4% of gastric neurones. Intense immunoreactivity in the musculature suggests that part of ChAT/SP- and NOS/NPY/VIP-positive neurones function as motorneurones. In the ileum, a high number (32%) of DBH-positive neurones was demonstrated. About half of the SP-positive neurones in the ileum also contained calcitonin gene-related peptide (CGRP). In the urinary bladder, only few intramural ganglia were observed. The smooth muscle was densely innervated by ChAT, NPY and DBH immunoreactive fibres. The data showed that the innervation of the ferret viscera exhibited similarities but also differences as compared with other mammalian species. Some of the chemical coding of myenteric neurones is remarkably similar to that observed in other mammals.
Collapse
Affiliation(s)
- H Sann
- Physiologisches Institut, Tierärztliche Hochschule, Hannover, Germany
| | | | | | | | | |
Collapse
|
100
|
Neunlist M, Frieling T, Rupprecht C, Schemann M. Polarized enteric submucosal circuits involved in secretory responses of the guinea-pig proximal colon. J Physiol 1998; 506 ( Pt 2):539-50. [PMID: 9490877 PMCID: PMC2230723 DOI: 10.1111/j.1469-7793.1998.539bw.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. Neuronal retrograde tracing with the dye DiI (1,1'-didodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate), in combination with immunohistochemical detection of choline acetyltransferase (ChAT) and vasoactive intestinal peptide (VIP), were used to identify the innervation of the mucosa of the guinea-pig proximal colon by submucosal neurones. Ussing chamber experiments were performed to measure changes in short circuit current (delta Isc) evoked by electrical stimulation of the oral or anal end of the preparation. 2. The tracing studies revealed that the mucosa was primarily innervated by descending neurones (78%); the vast majority of these were VIP positive (85%). The numerically smaller ascending pathway (13%) was predominantly ChAT positive (69%). A small population (9%) of DiI-labelled neurones projected circumferentially. 3. Ussing chamber experiments revealed that oral electrical stimulation induced a significantly larger delta Isc than anal stimulation. The VIP antagonist VIP(6-28) significantly reduced only orally induced delta Isc. Anally induced delta Isc were significantly more atropine sensitive that orally induced delta Isc. Tissue incubation with carbachol or VIP significantly potentiated delta Isc induced by VIP and carbachol, respectively, indicating cross-potentiation. 4. This study provides the first functional demonstration of polarized innervation patterns from submucosal neurones to enteric mucosa. The ascending ChAT and descending VIP pathways suggest the existence of reflexes resulting in preferential release of VIP or acetylcholine. The distinct pathways might favour the observed cross-potentiation of cholinergic and VIPergic mediated secretion.
Collapse
Affiliation(s)
- M Neunlist
- Department of Physiology, School of Veterinary Medicine, Hannover, Germany
| | | | | | | |
Collapse
|