51
|
Bajic D, Commons KG, Soriano SG. Morphine-enhanced apoptosis in selective brain regions of neonatal rats. Int J Dev Neurosci 2013; 31:258-66. [PMID: 23499314 DOI: 10.1016/j.ijdevneu.2013.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 02/09/2013] [Accepted: 02/28/2013] [Indexed: 12/12/2022] Open
Abstract
Prolonged neonatal opioid exposure has been associated with: antinociceptive tolerance, long-term neurodevelopmental delay, cognitive, and motor impairment. Morphine has also been shown to induce apoptotic cell death in vitro studies, but its in vivo effect in developing rat brain is unknown. Thus, we hypothesized that prolongued morphine administration in neonatal rats in a model of antinociceptive tolerance and dependence is associated with increased neuroapoptosis. We analyzed neonatal rats from the following groups (1) naïve group (n=6); (2) control group (normal saline (NS), n=5), and (3) morphine group (n=8). Morphine sulfate or equal volume of NS was injected subcutaneously twice daily for 6½ days starting on postnatal day (PD) 1. Development of antinociceptive tolerance was previously confirmed by Hot Plate test on the 7th day. Evidence of neuronal and glial apoptosis was determined by cleaved caspase-3 immunofluorescence combined with specific markers. At PD7, morphine administration after 6½ days significantly increased the density of apoptotic cells in the cortex and amygdala, but not in the hippocampus, hypothalamus, or periaqueductal gray. Apoptotic cells exhibited morphology analogous to neurons. Irrespective of the treatment, only a very few individual microglia but not astrocytes were caspase-3 positive. In summary, repeated morphine administration in neonatal rats (PD1-7) is associated with increased supraspinal apoptosis in distinct anatomical regions known to be important for sensory (cortex) and emotional memory processing (amygdala). Brain regions important for learning (hippocampus), and autonomic and nociceptive processing (hypothalamus and periaqueductal gray) were not affected. Lack of widespread glial apoptosis or robust glial activation following repeated morphine administration suggests that glia might not be affected by chronic morphine at this early age. Future studies should investigate long-term behavioral sequelae of demonstrated enhanced apoptosis associated with prolonged morphine administration in a neonatal rat model.
Collapse
Affiliation(s)
- Dusica Bajic
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Bader 3, Boston, MA 02115, USA.
| | | | | |
Collapse
|
52
|
Gene expression profiling reveals distinct cocaine-responsive genes in human fetal CNS cell types. J Addict Med 2012; 3:218-26. [PMID: 20948987 DOI: 10.1097/adm.0b013e318199d863] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Prenatal exposure to cocaine causes cytoarchitectural alterations in the developing neocortex. Previously, we reported that cocaine inhibits neural progenitor cell proliferation through oxidative endoplasmic reticulum stress and consequent down-regulation of cyclin A, whereas cyclin A expression was increased in astrocytes. In the present study, cell type-specific responses to cocaine were further explored. METHODS Gene expression profiles were examined in five types of cells obtained from the human fetal cerebral cortex at 20 weeks gestation. Cells were treated with 100 µM cocaine in vitro for 24 hr, followed by gene expression analysis using a human neural/stem cell/drug abuse-focused cDNA array, with verification by quantitative real-time RT-PCR. RESULTS Cocaine influenced transcription of distinct categories of genes in a cell type-specific manner. Cocaine down-regulated cytoskeleton-related genes including ezrin, γ2 actin, α3d tubulin and α8 tubulin in neural and/or A2B5+ progenitor cells. In contrast, cocaine modulated immune and cell death-related genes in microglia and astrocytes. In microglia, cocaine up-regulated the immunoregulatory and pro-apoptotic genes IL-1β and BAX. In astrocytes, cocaine down-regulated the immune response gene glucocorticoid receptor and up-regulated the anti-apoptotic genes 14-3-3 ε and HVEM. Therefore, cell types comprising the developing neocortex show differential responses to cocaine. CONCLUSIONS These data suggest that cocaine causes cytoskeletal abnormalities leading to disturbances in neural differentiation and migration in progenitor cells, while altering immune and apoptotic responses in glia. Understanding the mechanisms of cocaine's effects on human CNS cells may help in the development of therapeutic strategies to prevent or ameliorate cocaine-induced impairments in fetal brain development.
Collapse
|
53
|
Schwarz JM, Bilbo SD. Sex, glia, and development: interactions in health and disease. Horm Behav 2012; 62:243-53. [PMID: 22387107 PMCID: PMC3374064 DOI: 10.1016/j.yhbeh.2012.02.018] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 12/14/2022]
Abstract
Microglia and astrocytes are the primary immune cells within the central nervous system. Microglia influence processes including neural development, synaptic plasticity and cognition; while their activation and production of immune molecules can induce stereotyped sickness behaviors or pathologies including cognitive dysfunction. Given their role in health and disease, we propose that glia may also be a critical link in understanding the etiology of many neuropsychiatric disorders that present with a strong sex-bias in their symptoms or prevalence. Specifically, males are more likely to be diagnosed with disorders that have distinct developmental origins such as autism or schizophrenia. In contrast, females are more likely to be diagnosed with disorders that present later in life, after the onset of adolescence, such as depression and anxiety disorders. In this review we will summarize the evidence suggesting that sex differences in the colonization and function of glia within the normal developing brain may contribute to distinct windows of vulnerability between males and females. We will also highlight the current gaps in our knowledge as well as the future directions and considerations of research aimed at understanding the link between neuroimmune function and sex differences in mental health disorders.
Collapse
Affiliation(s)
- Jaclyn M Schwarz
- Department of Psychology and Neuroscience, Duke University, 572 Research Dr. Rm 3017, Durham, NC 27705, USA.
| | | |
Collapse
|
54
|
Bilbo SD, Schwarz JM. The immune system and developmental programming of brain and behavior. Front Neuroendocrinol 2012; 33:267-86. [PMID: 22982535 PMCID: PMC3484177 DOI: 10.1016/j.yfrne.2012.08.006] [Citation(s) in RCA: 402] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 12/16/2022]
Abstract
The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition.
Collapse
Affiliation(s)
- Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, 572 Research Drive, Box 91050, Durham, NC 27708, USA.
| | | |
Collapse
|
55
|
Gomez Perdiguero E, Schulz C, Geissmann F. Development and homeostasis of "resident" myeloid cells: the case of the microglia. Glia 2012; 61:112-20. [PMID: 22847963 DOI: 10.1002/glia.22393] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/26/2012] [Indexed: 12/12/2022]
Abstract
Microglia, macrophages of the central nervous system, play an important role in brain homeostasis. Their origin has been unclear. Recent fate-mapping experiments have established that microglia mostly originate from Myb-independent, FLT3-independent, but PU.1-dependent precursors that express the CSF1-receptor at E8.5 of embryonic development. These precursors are presumably located in the yolk sac (YS) at this time before invading the embryo between E9.5 and E10.5 and colonizing the fetal liver. Indeed, the E14.5 fetal liver contains a large population of Myb-independent YS-derived myeloid cells. This myeloid lineage is distinct from hematopoietic stem cells (HSCs), which require the transcription factor Myb for their development and maintenance. This "yolky" beginning and the independence from conventional HSCs are not unique to microglia. Indeed, several other populations of F4/80-positive macrophages develop also from YS Myb-independent precursors, such as Kupffer cells in the liver, Langerhans cells in the epidermis, and macrophages in the spleen, kidney, pancreas, and lung. Importantly, microglia and the other Myb-independent macrophages persist, at least in part, in adult mice and likely self-renew within their respective tissues of residence, independently of bone marrow HSCs. This suggests the existence of tissue resident macrophage "stem cells" within tissues such as the brain, and opens a new era for the molecular and cellular understanding of myeloid cells responses during acute and chronic inflammation.
Collapse
Affiliation(s)
- Elisa Gomez Perdiguero
- Centre for Molecular and Cellular Biology of Inflammation, King's College London, Great Maze Pond, London, United Kingdom
| | | | | |
Collapse
|
56
|
Jonakait GM, Pratt L, Acevedo G, Ni L. Microglial regulation of cholinergic differentiation in the basal forebrain. Dev Neurobiol 2012; 72:857-64. [DOI: 10.1002/dneu.20969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
57
|
Abstract
Microglia, the brain's innate immune cell type, are cells of mesodermal origin that populate the central nervous system (CNS) during development. Undifferentiated microglia, also called ameboid microglia, have the ability to proliferate, phagocytose apoptotic cells and migrate long distances toward their final destinations throughout all CNS regions, where they acquire a mature ramified morphological phenotype. Recent studies indicate that ameboid microglial cells not only have a scavenger role during development but can also promote the death of some neuronal populations. In the mature CNS, adult microglia have highly motile processes to scan their territorial domains, and they display a panoply of effects on neurons that range from sustaining their survival and differentiation contributing to their elimination. Hence, the fine tuning of these effects results in protection of the nervous tissue, whereas perturbations in the microglial response, such as the exacerbation of microglial activation or lack of microglial response, generate adverse situations for the organization and function of the CNS. This review discusses some aspects of the relationship between microglial cells and neuronal death/survival both during normal development and during the response to injury in adulthood.
Collapse
|
58
|
Schwarz JM, Sholar PW, Bilbo SD. Sex differences in microglial colonization of the developing rat brain. J Neurochem 2012; 120:948-63. [PMID: 22182318 DOI: 10.1111/j.1471-4159.2011.07630.x] [Citation(s) in RCA: 394] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microglia are the resident immune cells within the brain and their production of immune molecules such as cytokines and chemokines is critical for the processes of normal brain development including neurogenesis, axonal migration, synapse formation, and programmed cell death. Notably, sex differences exist in many of these processes throughout brain development; however, it is unknown whether a sex difference concurrently exists in the colonization, number, or morphology of microglia within the developing brain. We demonstrate for the first time that the number and morphology of microglia throughout development is dependent upon the sex and age of the individual, as well as the brain region of interest. Males have overall more microglia early in postnatal development [postnatal day (P) 4], whereas females have more microglia with an activated/amoeboid morphology later in development, as juveniles and adults (P30-60). Finally, gene expression of a large number of cytokines, chemokines and their receptors shifts dramatically over development, and is highly dependent upon sex. Taken together, these data warrant further research into the role that sex-dependent mechanisms may play in microglial colonization, number, and function, and their potential contribution to neural development, function, or potential dysfunction.
Collapse
Affiliation(s)
- Jaclyn M Schwarz
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA.
| | | | | |
Collapse
|
59
|
Mizutani M, Pino PA, Saederup N, Charo IF, Ransohoff RM, Cardona AE. The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. THE JOURNAL OF IMMUNOLOGY 2011; 188:29-36. [PMID: 22079990 DOI: 10.4049/jimmunol.1100421] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microglial cells are difficult to track during development because of the lack of specific reagents for myeloid subpopulations. To further understand how myeloid lineages differentiate during development to create microglial cells, we investigated CX3CR1 and CCR2 transcription unit activation in Cx3cr1(+/GFP)CCR2(+/RFP) knockin fluorescent protein reporter mice. The principal findings include: 1) CX3CR1(+) cells localized to the aorta-gonad-mesonephros region, and visualized at embryonic day (E)9.0 in the yolk sac and neuroectoderm; 2) at E10.5, CX3CR1 single-positive microglial cells were visualized penetrating the neuroepithelium; and 3) CX3CR1 and CCR2 distinguished infiltrating macrophages from resident surveillant or activated microglia within tissue sections and by flow cytometric analyses. Our results support the contribution of the yolk sac as a source of microglial precursors. We provide a novel model to monitor chemokine receptor expression changes in microglia and myeloid cells early (E8.0-E10.5) in development and during inflammatory conditions, which have been challenging to visualize in mammalian tissues.
Collapse
Affiliation(s)
- Makiko Mizutani
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | |
Collapse
|
60
|
Prinz M, Priller J, Sisodia SS, Ransohoff RM. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 2011; 14:1227-35. [DOI: 10.1038/nn.2923] [Citation(s) in RCA: 514] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
61
|
Ueno M, Yamashita T. Strategies for regenerating injured axons after spinal cord injury - insights from brain development. Biologics 2011; 2:253-64. [PMID: 19707358 PMCID: PMC2721354 DOI: 10.2147/btt.s2715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Axonal regeneration does not occur easily after an adult central nervous system (CNS) injury. Various attempts have partially succeeded in promoting axonal regeneration after the spinal cord injury (SCI). Interestingly, several recent therapeutic concepts have emerged from or been tightly linked to the researches on brain development. In a developing brain, remarkable and dynamic axonal elongation and sprouting occur even after the injury; this finding is essential to the development of a therapy for SCI. In this review, we overview the revealed mechanism of axonal tract formation and plasticity in the developing brain and compare the differences between a developing brain and a lesion site in an adult brain. One of the differences is that mature glial cells participate in the repair process in the case of adult injuries. Interestingly, these cells express inhibitory molecules that impede axonal regeneration such as myelin-associated proteins and the repulsive guidance molecules found originally in the developing brain for navigating axons to specific routes. Some reports have clearly elucidated that any treatment designed to suppress these inhibitory cues is beneficial for promoting regeneration and plasticity after an injury. Thus, understanding the developmental process will provide us with an important clue for designing therapeutic strategies for recovery from SCI.
Collapse
Affiliation(s)
- Masaki Ueno
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | | |
Collapse
|
62
|
Schwarz JM, Bilbo SD. LPS elicits a much larger and broader inflammatory response than Escherichia coli infection within the hippocampus of neonatal rats. Neurosci Lett 2011; 497:110-5. [PMID: 21536105 DOI: 10.1016/j.neulet.2011.04.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/14/2011] [Accepted: 04/17/2011] [Indexed: 01/08/2023]
Abstract
An immune challenge during the neonatal period can significantly affect the development of the nervous and immune systems, such that long-term abnormalities in immune function and behavior persist into adulthood. Given that immune activation and individual cytokines have been linked to the etiology of many developmental neuropsychiatric disorders, a complete characterization of the neonatal immune response within the brain is warranted. In this study, rats were treated peripherally on postnatal day (P) 4 with either a live Escherichia coli (E. coli) infection or lipopolysaccharide (LPS), two common models of neonatal immune activation. Inflammatory gene expression was measured within the hippocampus 2 and 24h later. We determined that E. coli and LPS produce very distinct inflammatory profiles within the brain. Infection with E. coli produced a robust, yet relatively IL-1 pathway focused activation of the neonatal immune system within the brain, while LPS produced a very broad and robust immune response within the brain. This analysis also identified common inflammatory genes up-regulated by both E. coli and LPS treatment.
Collapse
|
63
|
Verney C, Monier A, Fallet-Bianco C, Gressens P. Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J Anat 2011; 217:436-48. [PMID: 20557401 DOI: 10.1111/j.1469-7580.2010.01245.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Amoeboid microglial subpopulations visualized by antibodies against ionized calcium-binding adapter molecule 1, CD68, and CD45 enter the forebrain starting at 4.5 postovulatory or gestational weeks (gw). They penetrate the telencephalon and diencephalon via the meninges, choroid plexus, and ventricular zone. Early colonization by amoeboid microglia-macrophages is first restricted to the white matter, where these cells migrate and accumulate in patches at the junctions of white-matter pathways, such as the three junctions that the internal capsule makes with the thalamocortical projection, external capsule and cerebral peduncle, respectively. In the cerebral cortex anlage, migration is mainly radial and tangential towards the immature white matter, subplate layer, and cortical plate, whereas pial cells populate the prospective layer I. A second wave of microglial cells penetrates the brain via the vascular route at about 12-13 gw and remains confined to the white matter. Two main findings deserve emphasis. First, microglia accumulate at 10-12 gw at the cortical plate-subplate junction, where the first synapses are detected. Second, microglia accumulate in restricted laminar bands, most notably around 19-30 gw, at the axonal crossroads in the white matter (semiovale centre) rostrally, extending caudally in the immature white matter to the visual radiations. This accumulation of proliferating microglia is located at the site of white-matter injury in premature neonates. The spatiotemporal organization of microglia in the immature white and grey matter suggests that these cells may play active roles in developmental processes such as axonal guidance, synaptogenesis, and neurodevelopmental apoptosis as well as in injuries to the developing brain, in particular in the periventricular white-matter injury of preterm infants.
Collapse
Affiliation(s)
- Catherine Verney
- INSERM U676, Hôpital Robert Debré, 48 Boulevard Sérurier, Paris, France
| | | | | | | |
Collapse
|
64
|
Antony JM, Paquin A, Nutt SL, Kaplan DR, Miller FD. Endogenous microglia regulate development of embryonic cortical precursor cells. J Neurosci Res 2011; 89:286-98. [DOI: 10.1002/jnr.22533] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/02/2010] [Accepted: 09/16/2010] [Indexed: 11/09/2022]
|
65
|
|
66
|
Ransohoff RM, Cardona AE. The myeloid cells of the central nervous system parenchyma. Nature 2010; 468:253-62. [DOI: 10.1038/nature09615] [Citation(s) in RCA: 590] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
67
|
Abstract
Cytokines are pleotrophic proteins that coordinate the host response to infection as well as mediate normal, ongoing signaling between cells of nonimmune tissues, including the nervous system. As a consequence of this dual role, cytokines induced in response to maternal infection or prenatal hypoxia can profoundly impact fetal neurodevelopment. The neurodevelopmental roles of individual cytokine signaling pathways are being elucidated through gain- and loss-of-function studies in cell culture and model organisms. We review this work with a particular emphasis on studies where cytokines, their receptors, or components of their signaling pathways have been altered in vivo. The extensive and diverse requirements for properly regulated cytokine signaling during normal nervous system development revealed by these studies sets the foundation for ongoing and future work aimed at understanding how cytokines induced normally and pathologically during critical stages of fetal development alter nervous system function and behavior later in life.
Collapse
Affiliation(s)
- Benjamin E Deverman
- Division of Biology, California Institute of Technology, 1200 East California Boulevard M/C 216-76, Pasadena, CA 91125, USA
| | | |
Collapse
|
68
|
Calderó J, Brunet N, Ciutat D, Hereu M, Esquerda JE. Development of microglia in the chick embryo spinal cord: Implications in the regulation of motoneuronal survival and death. J Neurosci Res 2009; 87:2447-66. [DOI: 10.1002/jnr.22084] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
69
|
Mena MA, Casarejos MJ, Solano R, Rodríguez-Navarro JA, Gómez A, Rodal I, Medina M, de Yebenes JG. NP7 protects from cell death induced by oxidative stress in neuronal and glial midbrain cultures from parkin null mice. FEBS Lett 2008; 583:168-74. [PMID: 19084014 DOI: 10.1016/j.febslet.2008.11.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 11/19/2008] [Accepted: 11/27/2008] [Indexed: 11/29/2022]
Abstract
Parkin mutations produce Parkinson's disease (PD) in humans and nigrostriatal dopamine lesions related to increased free radicals in mice. We examined the effects of NP7, a synthetic, marine derived, free radical scavenger which enters the brain, on H(2)O(2) toxicity in cultured neurons and glia from wild-type (WT) and parkin null mice (PK-KO). NP7, 5-10 microM, prevented the H(2)O(2) induced apoptosis and necrosis of midbrain neuronal and glial cultures from WT and PK-KO mice. NP7 suppressed microglial activation and the H(2)O(2) induced drop-out of dopamine neurons(.) Furthermore, NP7 prevented the increased phosphorylation of ERK and AKT induced by H(2)O(2). NP7 may be a promising neuroprotector against oxidative stress in PD.
Collapse
Affiliation(s)
- M A Mena
- Departmento de Neurobiología-Investigación, CIBERned, Hospital Ramón y Cajal, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Tambuyzer BR, Ponsaerts P, Nouwen EJ. Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 2008; 85:352-70. [DOI: 10.1189/jlb.0608385] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
71
|
Abstract
Parkin mutations in humans produce parkinsonism whose pathogenesis is related to impaired protein degradation, increased free radicals, and abnormal neurotransmitter release. The role of glia in parkin deficiency is little known. We cultured midbrain glia from wild-type (WT) and parkin knock-out (PK-KO) mice. After 18-20 d in vitro, PK-KO glial cultures had less astrocytes, more microglia, reduced proliferation, and increased proapoptotic protein expression. PK-KO glia had greater levels of intracellular glutathione (GSH), increased mRNA expression of the GSH-synthesizing enzyme gamma-glutamylcysteine synthetase, and greater glutathione S-transferase and lower glutathione peroxidase activities than WT. The reverse happened in glia cultured in serum-free defined medium (EF12) or in old cultures. PK-KO glia was more susceptible than WT to transference to EF12 or neurotoxins (1-methyl-4-phenylpyridinium, blockers of GSH synthesis or catalase, inhibitors of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3 kinases), aging of the culture, or combination of these insults. PK-KO glia was less susceptible than WT to Fe2+ plus H2O2 and less responsive to protection by deferoxamine. Old WT glia increased the expression of heat shock protein 70, but PK-KO did not. Glia conditioned medium (GCM) from PK-KO was less neuroprotective and had lower levels of GSH than WT. GCM from WT increased the levels of dopamine markers in midbrain neuronal cultures transferred to EF12 more efficiently than GCM from PK-KO, and the difference was corrected by supplementation with GSH. PK-KO-GCM was a less powerful suppressor of apoptosis and microglia in neuronal cultures. Our data prove that abnormal glial function is critical in parkin mutations, and its role increases with aging.
Collapse
|
72
|
Jonakait GM. The effects of maternal inflammation on neuronal development: possible mechanisms. Int J Dev Neurosci 2007; 25:415-25. [DOI: 10.1016/j.ijdevneu.2007.08.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022] Open
Affiliation(s)
- G. Miller Jonakait
- Department of Biological SciencesNew Jersey Institute of Technology195 University AvenueNewarkNJ07102United States
| |
Collapse
|
73
|
Kaur C, Dheen ST, Ling EA. From blood to brain: amoeboid microglial cell, a nascent macrophage and its functions in developing brain. Acta Pharmacol Sin 2007; 28:1087-96. [PMID: 17640468 DOI: 10.1111/j.1745-7254.2007.00625.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Amoeboid microglial cells (AMC) in the developing brain are active macrophages. The macrophagic nature of these cells has been demonstrated by many methods, such as the localization of various hydrolytic enzymes and the presence of complement type 3 surface receptors in them. More importantly is the direct visualization of these cells engaged in the phagocytosis of degenerating cells at the ultrastructural level. Further evidence of them being active macrophages is the avid internalization of tracers administered by the intravenous or intraperitoneal routes in developing rats. The potential involvement of AMC in immune functions is supported by the induced expression of major histocompatibility complex class I and II antigens on them when challenged by lipopolysaccharide or interferon-gamma. Immunosuppressive drugs, such as glucocorticoids and immune function-enhancing drugs like melatonin, affect the expression of surface receptors and antigens and the release of cytokines by AMC. Recent studies in our laboratory have shown the expression of insulin-like growth factors, endothelins, 2',3'-cyclic nucleotide 3'-phosphodiesterase, and N-methyl-D-asparate receptors. This along with the release of chemokines, such as stromal derived factor-1a and monocyte chemoattractant protein-1, suggests multiple functional roles of AMC in early brain development.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | | | | |
Collapse
|
74
|
Monier A, Adle-Biassette H, Delezoide AL, Evrard P, Gressens P, Verney C. Entry and Distribution of Microglial Cells in Human Embryonic and Fetal Cerebral Cortex. J Neuropathol Exp Neurol 2007; 66:372-82. [PMID: 17483694 DOI: 10.1097/nen.0b013e3180517b46] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Microglial cells penetrate into and scatter throughout the human cortical grey and white matter according to a specific spatiotemporal pattern during the first 2 trimesters of gestation. Routes of entry were quantitatively and qualitatively different from those identified in the diencephalon. Starting at 4.5 gestational weeks, amoeboid microglial cells, characterized by different antibodies as Iba1, CD68, CD45, and MHC-II, entered the cerebral wall from the ventricular lumen and the leptomeninges. Migration was mainly radial and tangential toward the immature white matter, subplate layer, and cortical plate, whereas pial cells populated the prospective layer I. The intraparenchymal vascular route of entry was detectable only from 12 gestational weeks. Interestingly, microglial cells accumulated in restricted laminar bands particularly at 19 to 24 gestational weeks among the corona radiata fibers rostrally, extending caudally in the immature white matter to reach the visual radiations. This accumulation of proliferating MIB1-positive microglia (as shown by MIB1-Iba1 double immunolabeling) was located at the site of white matter injury in premature neonates. The spatiotemporal organization of microglia in the immature white and grey matter suggests that these cells may play active roles in developmental processes and in injury to the developing brain.
Collapse
Affiliation(s)
- Anne Monier
- Institut National de la Santé et de la Recherche Médicale U676, Paris, France
| | | | | | | | | | | |
Collapse
|
75
|
Xu H, Chen M, Mayer EJ, Forrester JV, Dick AD. Turnover of resident retinal microglia in the normal adult mouse. Glia 2007; 55:1189-98. [PMID: 17600341 DOI: 10.1002/glia.20535] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The retina contains two distinct populations of monocyte-derived cells: perivascular cells (macrophages) and parenchymal cells (microglia), important in homeostasis, neuroinflammation, degeneration, and injury. The turnover of these cells in the retina and their repopulation in normal physiological conditions have not been clarified. Bone marrow (BM) cells from EGFP-transgenic mice were adoptively transferred into lethally irradiated normal adult C57BL/6 mice. Eight, 14, and 26 weeks later mice were sacrificed and retinal flatmounts were prepared. Retinal microglia were identified by F4/80, CD45, and Iba-1 immunostaining. BrdU was injected into normal mice for 3-14 days and cell proliferation was examined by confocal microscopy of retinal flatmounts. Few (6.15 +/- 2.02 cells/retina) BrdU(+) cells were detected and of these some coexpressed CD11b (1.67 +/- 0.62 cells/retina) or F4/80 (0.57 +/- 0.30 cells/retina). BM-derived EGFP(+) cells were detected by 8-weeks post-transplantation. By 6 months, all retinal myeloid cells were EGFP(+). Consecutively, donor BM-EGFP(+) cells were demonstrated within the: (1) peripheral and juxtapapillary retina, (2) ganglion cell layer, (3) inner and outer plexiform layers, and (4) photoreceptor layer. EGFP(+) cells within the ganglion layer were amoeboid in shape and F4/80(high)CD45(high)Iba-1(high), whereas cells in the inner and outer plexiform layers were ramified and F4/80(low) CD45(low)Iba-1(low). Perivascular macrophages expressed less F4/80, CD45, and Iba-1 compared with parenchymal microglia. Our results suggest that BM-derived monocyte precursor cells are able to migrate across the BRB and replace retinal microglia/macrophages. The complete replacement of retinal microglia/macrophages takes about 6 months. In situ proliferation was predominantly of nonhemopoetic retinal cells.
Collapse
Affiliation(s)
- Heping Xu
- Department of Ophthalmology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| | | | | | | | | |
Collapse
|
76
|
Ni L, Acevedo G, Muralidharan B, Padala N, To J, Jonakait GM. Toll-like receptor ligands and CD154 stimulate microglia to produce a factor(s) that promotes excess cholinergic differentiation in the developing rat basal forebrain: implications for neurodevelopmental disorders. Pediatr Res 2007; 61:15-20. [PMID: 17211134 DOI: 10.1203/01.pdr.0000249981.70618.18] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Maternal inflammation plays a role in the etiology of certain neurodevelopmental disorders including autism and schizophrenia. Because maternal inflammation can lead to activation of fetal microglia, we have examined effects of inflamed microglia on cultured neural progenitors from rat embryonic septal region and basal forebrain. These cells give rise to cholinergic neurons projecting to cortex and hippocampus. Microglia stimulated with lipopolysaccharide (LPS), peptidoglycan, Poly I:C and CD154 produce conditioned media (CM) that promotes excessive numbers of cholinergic neurons and levels of choline acetyltransferase (ChAT) activity 6-8 times that of untreated cultures. Expression of the neural-specific transcription factor MATH1 increases substantially within 1 h of plating in LPS-CM. Untreated cultures do not attain equivalent levels until 6 h. By contrast, expression of glial-related transcription factors in LPS-CM-treated cultures never attains the elevated levels of untreated cultures. LPS-CM-treated clones derived from individual progenitors labeled with a LacZ-expressing retrovirus showed >2.5-fold increase in the percentage of cholinergic cells compared with untreated clones. Thus, CM from activated microglia prompts excess cholinergic differentiation from undifferentiated progenitors suggesting that microglial inflammation during critical stages can lead to aberrant brain development.
Collapse
Affiliation(s)
- Li Ni
- Federated Department of Biological Sciences, NJ Institute of Technology and Rutgers University, Newark, NJ 07102, USA
| | | | | | | | | | | |
Collapse
|
77
|
Ueno M, Katayama KI, Yamauchi H, Yasoshima A, Nakayama H, Doi K. Repair process of fetal brain after 5-azacytidine-induced damage. Eur J Neurosci 2006; 24:2758-68. [PMID: 17156202 DOI: 10.1111/j.1460-9568.2006.05161.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The fetal brain is susceptible to many extrinsic stresses. Some of these stresses induce excessive cell death in the prenatal stage, leading to anomalies in the neonatal brain. However, it is unclear how the developing brain responds to and repairs the prenatal tissue damage. We treated pregnant rats on day 13 of gestation with 5-azacytidine, one of the compounds that induces excessive cell death and inhibits proliferation in neural progenitor cells, to damage the fetal brain, and investigated the repair process up to 60 h after treatment. Histological analysis showed that 5-azacytidine induced strong apoptosis of neural cells. By 60 h, apoptotic cells disappeared and the tissue was repaired, although the telencephalic wall remained thinner than in controls. Flow cytometry analysis showed that the cell cycle distribution also returned to control levels at 60 h, suggesting that the repair process was completed around 60 h. During the repair period, amoeboid microglia infiltrated the brain and ingested the apoptotic cells. These microglial cells were positive for the multiple microglial markers, and mRNAs for the microglia-related cytokines tumor necrosis factor alpha, interleukin 1beta and macrophage colony stimulating factor (M-CSF) were up-regulated. DNA microarray analysis showed the up-regulation of genes relevant to glial cells, inflammation, the extracellular matrix, glycolysis, proliferation and neural development. We show here that the developing brain has the capacity to respond to the damage induced by extrinsic chemical stresses, including changing the expression of numerous genes and the induction of microglia to aid the repair process.
Collapse
Affiliation(s)
- Masaki Ueno
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | | | |
Collapse
|
78
|
Lee EJ, Gibo TL, Grzywacz NM. Dark-rearing-induced reduction of GABA and GAD and prevention of the effect by BDNF in the mouse retina. Eur J Neurosci 2006; 24:2118-34. [PMID: 17074038 DOI: 10.1111/j.1460-9568.2006.05078.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an important retinal neurotransmitter. We studied the expression of GABA, glutamate decarboxylase 65 (GAD65) and GAD67 by immunocytochemistry and Western blot, in the retinas of control and dark-reared C57BL/6J black mice. This study asked three questions. First, is visual input necessary for the normal expression of GABA, GAD65 and GAD67? Second, can the retina recover from the effects of dark-rearing if returned to a normal light-dark cycle? Third, does BDNF prevent the influence of dark-rearing on the expression of GABA and GAD? At postnatal day 10 (P10), before eye opening, GABA immunoreactivity was present in the ganglion cell layer (GCL), in the innermost rows of the inner nuclear layer (INL) and throughout the inner plexiform layer (IPL) of control and dark-reared retinas. In P30 control retinas, GABA immunoreactivity showed similar patterns to those at P10. However, in P30 dark-reared retinas, the density of GABA-immunoreactive cells was lower in both the INL and GCL than in control retinas. In addition, visual deprivation retarded GABA immunoreactivity in the IPL. Western blot analysis showed corresponding differences in the levels of GAD65 but not of GAD67 expression between control and dark-rearing conditions. In our study, dark-rearing effects were reversed when the mice were put in normal cyclic light-dark conditions for 2 weeks. Moreover, dark-reared retinas treated with BDNF showed normal expression of both GABA and GAD65. Our data indicate that normal expression of GABA and GAD65 is dependent on visual input. Furthermore, the data suggest that BDNF controls this dependence.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Biomedical Engineering, Neuroscience Graduate Program, and Center for Vision Science and Technology, University of Southern California, Denney Research Building 140, Los Angeles, CA 90089-1111, USA
| | | | | |
Collapse
|
79
|
Solano RM, Menéndez J, Casarejos MJ, Rodríguez-Navarro JA, García de Yébenes J, Mena MA. Midbrain neuronal cultures from parkin mutant mice are resistant to nitric oxide-induced toxicity. Neuropharmacology 2006; 51:327-40. [PMID: 16701721 DOI: 10.1016/j.neuropharm.2006.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 02/10/2006] [Accepted: 03/23/2006] [Indexed: 01/31/2023]
Abstract
Nitric oxide (NO) is a modulator of differentiation and survival of dopamine (DA) neurons. NO may play a role in the pathogenesis of Parkinson's disease (PD) since its levels are increased in parkinsonian brains and it can nitrosylate and alter the function of key proteins involved in the pathogenesis of PD. NO producing neurons are spared in parkinsonian brains suggesting that toxicity by NO can be compensated. Furthermore, the neurotoxic or neurotrophic effects of NO on DA neurons depend on the balance between NO levels and the intracellular levels of glutathione (GSH). We have investigated the effects of NO-donating agents on midbrain neuronal cultures from parkin-deficient mice. Parkin mutations are the most common genetic deficit observed in hereditary parkinsonism. These mice have abnormal DA release and metabolism, increased production of free radicals and a compensatory elevation of GSH. Cultures from parkin knockout (PK-KO) mice were more resistant than those of wild type (WT) to the neurotoxicity by NO, and the difference of susceptibility applied equally to DA, GABA and total number of neurons, and to astrocytes. NO-induced cell death was mainly apoptotic and could be reduced by caspase inhibitors. Cultures from PK-KO had greater levels of GSH than WT and, after treatment with NO, greater levels of S-nitrosoglutathione. The differences in susceptibility disappear when the synthesis of GSH is inhibited or the GSH chelated with diethyl maleate. Our data show that, contrary to the expectations, and related to the enhanced production of GSH in parkin knockout mice, parkin-deficient dopamine neurons are less susceptible to toxicity by NO.
Collapse
Affiliation(s)
- R M Solano
- Department of Neurobiology, Hospital Ramón y Cajal, Ctra. de Colmenar, Km. 9, 28034 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
80
|
Casarejos MJ, Menéndez J, Solano RM, Rodríguez-Navarro JA, García de Yébenes J, Mena MA. Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. J Neurochem 2006; 97:934-46. [PMID: 16573651 DOI: 10.1111/j.1471-4159.2006.03777.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder which is in most cases of unknown etiology. Mutations of the Park-2 gene are the most frequent cause of familial parkinsonism and parkin knockout (PK-KO) mice have abnormalities that resemble the clinical syndrome. We investigated the interaction of genetic and environmental factors, treating midbrain neuronal cultures from PK-KO and wild-type (WT) mice with rotenone (ROT). ROT (0.025-0.1 microm) produced a dose-dependent selective reduction of tyrosine hydroxylase-immunoreactive cells and of other neurons, as shown by the immunoreactivity to microtubule-associated protein 2 in PK-KO cultures, suggesting that the toxic effect of ROT involved dopamine and other types of neurons. Neuronal death was mainly apoptotic and suppressible by the caspase inhibitor t-butoxycarbonyl-Asp(OMe)-fluoromethyl ketone (Boc-D-FMK). PK-KO cultures were more susceptible to apoptosis induced by low doses of ROT than those from WT. ROT increased the proportion of astroglia and microglia more in PK-KO than in WT cultures. Indomethacin, a cyclo-oxygenase inhibitor, worsened the effects of ROT on tyrosine hydroxylase cells, apoptosis and astroglial (glial fibrillary acidic protein) cells. N-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase, increased ROT-induced apoptosis but did not change tyrosine hydroxylase-immunoreactive or glial fibrillary acidic protein area. Neither indomethacin nor N-nitro-L-arginine methyl ester had any effect on the reduction by ROT of the mitochondrial potential as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Microglial NADPH oxidase inhibition, however, protected against ROT. The roles of p38 MAPK and extracellular signal-regulated kinase signaling pathways were tested by treatment with SB20358 and PD98059, respectively. These compounds were inactive in ROT-naive cultures but PD98059 slightly increased cellular necrosis, as measured by lactate dehydrogenase levels, caused by ROT, without changing mitochondrial activity. SB20358 increased the mitochondrial failure and lactate dehydrogenase elevation induced by ROT. Minocycline, an inhibitor of microglia, prevented the dropout of tyrosine hydroxylase and apoptosis by ROT; the addition of microglia from PK-KO to WT neuronal cultures increased the sensitivity of dopaminergic neurons to ROT. PK-KO mice were more susceptible than WT to ROT and the combined effects of Park-2 suppression and ROT reproduced the cellular events observed in Parkinson's disease. These events were prevented by minocycline.
Collapse
Affiliation(s)
- M J Casarejos
- Department of Neurobiology, Hospital Ramon y Cajal, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
81
|
Monier A, Evrard P, Gressens P, Verney C. Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J Comp Neurol 2006; 499:565-82. [PMID: 17029271 DOI: 10.1002/cne.21123] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe the topographical distribution of microglial subpopulations during development of the human diencephalon and telencephalon. Brains from embryos and fetuses age 5-23.5 gestational weeks (gw) were subjected to single- and double-immunolabeling for lectin RCA-1 (Ricinus Communis Agglutinin 1), Iba1 (a microglial marker), CD68 (specific of macrophages), CD45 (marker for mononucleate cells of hematopoietic lineage), CD34 (expressed on endothelial cells), and MIB1 and Ki67 (markers for cell proliferation). At 5.5 gw the first intracerebral microglial cells were seen close to the meninges and choroid plexus near the di-telencephalic fissure. They were amoeboid and positive for Iba1, CD45, and RCA-1, whereas cells in the deep parenchyma expressed Iba1/CD68/RCA-1 and constituted clusters. In the developing diencephalon, microglial clusters were located in junctional regions of the white matter anlagen, most notably at the junctions of the internal capsule with the thalamic projections, the external capsule, and the cerebral peduncle. In the cortical anlagen, Iba1+/RCA-1/CD68+/CD45+ cells accumulated at 10-12 gw, constituting a tangential band at the junction between the cortical plate and the subplate. Between 10 and 16 gw microglial clusters increased markedly in size and cellular density. Contact between Iba1+ microglia and CD34+ blood vessels was clearly visible from 10-12 gw onward, first in microglial clusters of the white matter anlagen and subsequently throughout the parenchyma. From the middle of the second trimester onward microglial cells colonized the entire cerebral parenchyma, developed a ramified morphology, and downregulated their surface antigens, but remained more numerous in the white matter.
Collapse
|
82
|
Xiang Z, Burnstock G. Expression of P2X receptors on rat microglial cells during early development. Glia 2005; 52:119-26. [PMID: 15920729 DOI: 10.1002/glia.20227] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have used single- and double-labeling immunfluorescence and reverse transcription-polymerase chain reaction (RT-PCR) methods to examine expression of P2X receptor subtypes on microglial cells of brain in late embryonic and postnatal rat, in the N9 microglial cell line and primary cultured microglial cells. P2X1, P2X4, and P2X7 receptors were shown on microglial cells from late embryonic day 16. Almost all the microglial cells that were positive for the marker ED1, expressed P2X1 and P2X4 receptors, whereas only about 30% of the cells with ED1-immunoreactivity were found to express the P2X7 receptor. Positive cells were localized mainly in the white matter and around ventricles. From postnatal day 7, many microglial cells with P2X4 receptor-immunoreactivity were seen around the blood vessels. At postnatal day 30, microglial cells with P2X1 receptor-immunoreactivity disappeared and the cells with P2X4 receptor-immunoreactivity were mainly localized around blood vessels and lining the subarachnoid space. From postnatal day 30, the microglial cells with P2X7 receptor-immunoreactivity were found to be distributed widely in the forebrain. Cells with P2X7 receptor-immunoreactivity from P30 were not labeled by ED1, but some were labeled by isolectin B4. The expression of P2X1, P2X4, and P2X7 receptor mRNA and protein on primary cultures of rat microglial cells and on the N9 microglial cell line was demonstrated with immunocytochemistry and RT-PCR. This is the first report that the P2X1 receptor is expressed on microglial cells, at least in early development, before postnatal day 30.
Collapse
Affiliation(s)
- Zhenghua Xiang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 200433 Shanghai, People's Republic of China
| | | |
Collapse
|
83
|
Wen PH, De Gasperi R, Sosa MAG, Rocher AB, Friedrich VL, Hof PR, Elder GA. Selective expression of presenilin 1 in neural progenitor cells rescues the cerebral hemorrhages and cortical lamination defects in presenilin 1-null mutant mice. Development 2005; 132:3873-83. [PMID: 16079160 PMCID: PMC1698506 DOI: 10.1242/dev.01946] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mice with a null mutation of the presenilin 1 gene (Psen1(-/-)) die during late intrauterine life or shortly after birth and exhibit multiple CNS and non-CNS abnormalities, including cerebral hemorrhages and altered cortical development. The cellular and molecular basis for the developmental effects of Psen1 remain incompletely understood. Psen1 is expressed in neural progenitors in developing brain, as well as in postmitotic neurons. We crossed transgenic mice with either neuron-specific or neural progenitor-specific expression of Psen1 onto the Psen1(-/-) background. We show that neither neuron-specific nor neural progenitor-specific expression of Psen1 can rescue the embryonic lethality of the Psen1(-/-) embryo. Indeed neuron-specific expression rescued none of the abnormalities in Psen1(-/-) mice. However, Psen1 expression in neural progenitors rescued the cortical lamination defects, as well as the cerebral hemorrhages, and restored a normal vascular pattern in Psen1(-/-) embryos. Collectively, these studies demonstrate that Psen1 expression in neural progenitor cells is crucial for cortical development and reveal a novel role for neuroectodermal expression of Psen1 in development of the brain vasculature.
Collapse
Affiliation(s)
- Paul H Wen
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Casarejos MJ, Solano RM, Menéndez J, Rodríguez-Navarro JA, Correa C, García de Yébenes J, Mena MA. Differential effects of l-DOPA on monoamine metabolism, cell survival and glutathione production in midbrain neuronal-enriched cultures from parkin knockout and wild-type mice. J Neurochem 2005; 94:1005-14. [PMID: 16000163 DOI: 10.1111/j.1471-4159.2005.03249.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
l-DOPA is the most effective treatment for Parkinson's disease but in isolated neuronal cultures it is neurotoxic for dopamine (DA) neurones. Experiments in vivo and clinical studies have failed to show toxicity of l-DOPA in animals or patients but that does not exclude the possibility of a toxic effect of l-DOPA on patients with certain genetic risk factors. Mutations of the parkin gene are the most frequent cause of hereditary parkinsonism. Parkin null mice have a mild phenotype that could be modified by different neurotoxins. The aim of this study was to investigate whether the toxic effects of l-DOPA on DA neurones are amplified in parkin null mice. We have measured the effects of l-DOPA on cell viability, tyrosine hydroxylase (TH) expression, DA metabolism and glutathione levels of parkin knockout (PK-KO) midbrain cultures. Neuronal-enriched cultures from PK-KO mice have similar proportions of the different cell types with the exception of a significant increment of microglial cells. l-DOPA (400 microm for 24 h) reduced the number of TH-immunoreactive cells to 50% of baseline and increased twofold the percentage of apoptotic cells in cultures of wild-type (WT) animals. The PK-KO mice, however, are not only resistant to the l-DOPA-induced pro-apoptotic effects but they have an increased number of TH-immunoreactive neurones after treatment with l-DOPA, suggesting that l-DOPA is toxic for neurones of WT mice but not those of parkin null mice. MAPK and phosphatidylinositol-3 kinase signalling pathways are not involved in the differential l-DOPA effects in WT and PK-KO cultures. Intracellular levels of l-DOPA were not different in WT and parkin null mice but the intracellular and extracellular levels of DA and 3-4-dihydroxyphenylacetic acid, however, were significantly increased in parkin null animals. Furthermore, monoamine oxidase activity was significantly increased in parkin null mice, suggesting that these animals have an increased metabolism of DA. The levels of glutathione were further increased in parkin null mice than in controls both with and without treatment with l-DOPA, suggesting that a compensatory mechanism may protect DA neurones from neuronal death. This study opens new avenues for understanding the mechanisms of action of l-DOPA on DA neurones in patients with Park-2 mutations.
Collapse
Affiliation(s)
- M J Casarejos
- Department of Neurobiology, Hospital 'Ramón y Cajal', Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
85
|
Canals S, Casarejos MJ, de Bernardo S, Solano RM, Mena MA. Selective and persistent activation of extracellular signal-regulated protein kinase by nitric oxide in glial cells induces neuronal degeneration in glutathione-depleted midbrain cultures. Mol Cell Neurosci 2003; 24:1012-26. [PMID: 14697665 DOI: 10.1016/j.mcn.2003.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Intracellular glutathione (GSH) levels determine whether nitric oxide (NO) is neurotrophic for dopamine neurons or triggers a cell death cascade in primary midbrain cultures. We have investigated herein the role of the extracellular-signal regulated protein kinase (ERK) 1/2 pathway in this GSH switching effect. The short-lived NO donor DEA/NO induces a transient activation of ERK-1/2 that totally disappears 2 h after NO administration. The depletion of GSH increases and the supplementation of GSH suppresses ERK-1/2 activation in response to NO treatment. More interestingly, GSH depletion changes the kinetic of phosphorylation leading to a second prolonged phase of ERK-1/2 activation from 2 to 16 h after NO addition. This change of kinetic is ultimately responsible for NO toxicity under GSH-depleted conditions, because selective blockade of the second and persistent phase of activation prevents cell death. In addition, the only transient ERK activation, induced by NO under normal GSH conditions, did not cause ERK-dependent cell death. Immunocytochemical colocalization studies demonstrate that ERK activation takes place exclusively in glial cells, mainly in astrocytes and less frequently in oligodendrocytes and glial progenitors. Furthermore, glial cell elimination or inactivation in the culture, by gliotoxic drugs, abrogates NO-induced ERK activation. Our results indicate that neurotrophism of NO switches into neurotoxicity after GSH depletion due to persistent activation of the ERK-1/2 signaling pathway in glial cells. The implication of these results in pathological conditions like Parkinson's disease, where GSH depletion and NO overproduction have been documented, are discussed.
Collapse
Affiliation(s)
- Santiago Canals
- Departmento de Investigación, Servicio de Neurobiologia, Hospital Ramón y Cajal, Ctra. de Colmenar, Km. 9, 28034 Madrid, Spain
| | | | | | | | | |
Collapse
|
86
|
Dalmau I, Vela JM, González B, Finsen B, Castellano B. Dynamics of microglia in the developing rat brain. J Comp Neurol 2003; 458:144-57. [PMID: 12596255 DOI: 10.1002/cne.10572] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Entrance of mesodermal precursors into the developing CNS is the most well-accepted origin of microglia. However, the contribution of proliferation and death of recruited microglial precursors to the final microglial cell population remains to be elucidated. To investigate microglial proliferation and apoptosis during development, we combined proliferating cell nuclear antigen (PCNA) immunohistochemistry, in situ detection of nuclear DNA fragmentation (TUNEL), and caspase-3 immunohistochemistry with tomato lectin histochemistry, a selective microglial marker. The study was carried out in Wistar rats from embryonic day (E) 16 to postnatal day (P) 18 in cerebral cortex, subcortical white matter, and hippocampus. Proliferating microglial cells were found at all ages in the three brain regions and represented a significant fraction of the total microglial cell population. The percentage of microglia expressing PCNA progressively increased from the embryonic period (25-51% at E16) to a maximum at P9, when the great majority of microglia expressed PCNA (92-99%) in all the brain regions analyzed. In spite of the remarkable proliferation and expansion of the microglial population with time, the density of microglia remained quite constant in most brain regions because of the considerable growth of the brain during late prenatal and early postnatal periods. In contrast, apoptosis of microglia was detected only at certain times and was restricted to some ameboid cells in white matter and primitive ramified cells in gray matter, representing a small fraction of the microglial population. Therefore, our results point to proliferation of microglial precursors in the developing brain as a physiological mechanism contributing to the acquisition of the adult microglial cell population. In contrast, microglial apoptosis occurs only locally at certain developmental stages and thus seems less crucial for the establishment of the final density of microglia.
Collapse
Affiliation(s)
- Ishar Dalmau
- Departmet of Histology, Faculty of Medicine, Autonomous University of Barcelona, E-08193-Bellaterra, Spain
| | | | | | | | | |
Collapse
|
87
|
Eskes C, Juillerat-Jeanneret L, Leuba G, Honegger P, Monnet-Tschudi F. Involvement of microglia-neuron interactions in the tumor necrosis factor-alpha release, microglial activation, and neurodegeneration induced by trimethyltin. J Neurosci Res 2003; 71:583-90. [PMID: 12548715 DOI: 10.1002/jnr.10508] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Trimethyltin (TMT) is a neurotoxicant known to induce early microglial activation. The present study was undertaken to investigate the role played by these microglial cells in the TMT-induced neurotoxicity. The effects of TMT were investigated in monolayer cultures of isolated microglia or in neuron-enriched cultures and in neuron-microglia and astrocyte-microglia cocultures. The end points used were morphological criteria; evaluation of cell death and cell proliferation; and measurements of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and nitric oxide (NO) release in culture supernatant. The results showed that, in cultures of microglia, TMT (10(-6) M) caused, after a 5-day treatment, an increased release of TNF-alpha, without affecting microglial shape or cell viability. When microglia were cocultured with astrocytes, TNF-alpha release was decreased to undetectable levels. In contrast, in neuron-microglia cocultures, TNF-alpha levels were found to increase at lower concentrations of TMT (i.e., 10(-8) M). Moreover, at 10(-6) M of TMT, microglia displayed further morphological activation, as suggested by process retraction and by decrease in cell size. No morphological activation was observed in cultures of isolated microglial cells and in astrocyte-microglia cocultures. With regard to neurons, 10(-6) M of TMT induced about 30% of cell death, when applied to neuron-enriched cultures, whereas close to 100% of neuronal death was observed in neuron-microglia cocultures. In conclusion, whereas astrocytes may rather dampen the microglial activation by decreasing microglial TNF-alpha production, neuronal-microglial interactions lead to enhanced microglial activation. This microglial activation, in turn, exacerbates the neurotoxic effects of TMT. TNF-alpha may play a major role in such cell-cell communications.
Collapse
Affiliation(s)
- C Eskes
- Institute of Physiology, CHUV, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
88
|
|
89
|
Wierzba-Bobrowicz T, Kosno-Kruszewska E, Lewandowska E, Lechowicz W, Schmidt-Sidor B. Major histocompatibility complex class II (MHC II) expression during development of human fetal brain and haemopoietic organs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 495:93-101. [PMID: 11774614 DOI: 10.1007/978-1-4615-0685-0_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- T Wierzba-Bobrowicz
- Department of Neuropathology, Institute of Psychiatry and Neurology, Al. Sobieskiego 1/9, Warsaw, Poland
| | | | | | | | | |
Collapse
|
90
|
Rochefort N, Quenech'du N, Watroba L, Mallat M, Giaume C, Milleret C. Microglia and astrocytes may participate in the shaping of visual callosal projections during postnatal development. JOURNAL OF PHYSIOLOGY, PARIS 2002; 96:183-92. [PMID: 12445895 DOI: 10.1016/s0928-4257(02)00005-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the adult cat, axons running through the corpus callosum interconnect the border between the visual cortical areas 17 and 18 (A17 and A18) of both hemispheres. This specific pattern emerges during postnatal development, under normal viewing conditions (NR), from the elimination of initially exuberant callosal projections. In contrast, if the postnatal visual experience is monocular from birth (MD), juvenile callosal projections are stabilised throughout A17 and A18. The present study aimed at using such a model in vivo to find indications of a contribution of glial cells in the shaping of projections in the developing CNS through interactions with neurones, both in normal and pathological conditions. As a first stage, the distribution and the morphology of microglial cells and astrocytes were investigated from 2 weeks to adulthood. Microglial cells, stained with isolectin-B4, were clustered in the white matter below A17 and A18. Until one month, these clustered cells displayed an ameboid morphology in NR group, while they were more ramified in MD animals. Their phenotype thus depends on the postnatal visual experience, which indicates that microglial cells may interact with axons of visual neurones. It also suggests that they may differentially contribute to the elimination and the stabilisation of juvenile exuberant callosal fibres in NR and MD animals respectively. Beyond one month, microglial cells were very ramified in both experimental groups. Astrocytes were labelled with a GFAP-antibody. The distributions of connexins 43 (Cx43) and 30 (Cx30), the main proteic components of gap junction channels in astrocytes, were also investigated using specific antibodies. Both in NR and MD groups, until 1 month, GFAP-positive astrocytes and Cx43 were mainly localised within the subcortical white matter. Then GFAP, Cx43 and Cx30 stainings progressively appeared within the cortex, throughout A17 and A18 but with a differential laminar expression according to the age. Thus, the distributions of both astrocytes and connexins changed with age; however, the monocular occlusion had no visible effect. This suggests that astrocytes may contribute to the postnatal development of neuronal projections to the primary visual cortex, including visual callosal projections.
Collapse
Affiliation(s)
- N Rochefort
- Laboratoire de Physiologie de la Perception et de l'Action, UMR 7124, Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
91
|
Dheen S, Hao A, Ng Y, Ling E. Regulatory Factors and Functions of Microglia during Development. Neuroembryology Aging 2002. [DOI: 10.1159/000063529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This article reviews current knowledge on the origin and development of microglia as well as on regulatory factors that influence microglial development within the neural tube during embryogenesis. Ameboid microglia found in the developing neural tube originate from mesodermal precursors derived from the yolk sac. These microglial cells, which exhibit characteristic features of reactive microglia, undergo mitosis in situ in the nervous parenchyma and function as the full-blown phagocytes involved in the removal of cellular debris resulting from neural tube defect or normal cellular turnover. During embryogenesis, the microglia express various cytokines, growth factors and chemokines. Some of those factors together with other local factors may influence the proliferation and activation of microglia in the developing neural tube.
Collapse
|
92
|
Rezaie P, Male D. Differentiation, Ramification and Distribution of Microglia within the Central Nervous System Examined. Neuroembryology Aging 2001. [DOI: 10.1159/000051020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
93
|
Herbomel P, Thisse B, Thisse C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol 2001; 238:274-88. [PMID: 11784010 DOI: 10.1006/dbio.2001.0393] [Citation(s) in RCA: 435] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The origin of resident (noninflammatory) macrophages in vertebrate tissues is still poorly understood. In the zebrafish embryo, we recently described a specific lineage of early macrophages that differentiate in the yolk sac before the onset of blood circulation. We now show that these early macrophages spread in the whole cephalic mesenchyme, and from there invade epithelial tissues: epidermis, retina, and brain--especially the optic tectum. In the panther mutant, which lacks a functional fms (M-CSF receptor) gene, early macrophages differentiate and behave apparently normally in the yolk sac, but then fail to invade embryonic tissues. Our video recordings then document for the first time the behavior of macrophages in the invaded tissues, revealing the striking propensity of early macrophages in epidermis and brain to wander restlessly among epithelial cells. This unexpected behavior suggests that tissue macrophages may be constantly "patrolling" for immune and possibly also developmental and trophic surveillance. At 60 h post-fertilization, all macrophages in the brain and retina undergo a specific phenotypic transformation, into "early (amoeboid) microglia": they become more highly endocytic, they down-regulate the L-plastin gene, and abruptly start expressing high levels of apolipoprotein E, a well-known neurotrophic lipid carrier.
Collapse
Affiliation(s)
- P Herbomel
- Unité de Génétique des Déficits Sensoriels, URA 1968 du CNRS, Département des Biotechnologies, Institut Pasteur, 25 rue du Dr Roux, Paris Cedex 15, 75724, France.
| | | | | |
Collapse
|
94
|
Cuadros MA, Navascués J. Early origin and colonization of the developing central nervous system by microglial precursors. PROGRESS IN BRAIN RESEARCH 2001; 132:51-9. [PMID: 11545016 DOI: 10.1016/s0079-6123(01)32065-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- M A Cuadros
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| | | |
Collapse
|
95
|
Abstract
This paper reviews the various proposed hypotheses on the origin of microglia. The seminal study of del Rio-Hortega first stated that the cells were derived from the mesodermal pial cells that invaded the brain during embryonic development. Along with this was the description of precursor cells in the yolk sac in early development. Our results in the embryonic mouse brain have shown the occurrence of lectin-labelled precursor cells at the yolk sac that later appeared in the mesenchymal tissue associated with the neuroepithelium where they penetrated the nervous tissue to become the microglia. A second major view has held that microglia are of neuroectodermal origin; the cells either originate from glioblasts or the germinal matrix. Another school of thought is that microglia are derived from blood monocytes. In this connection, circulating monocytes enter the developing brain to assume the form as amoeboid microglia that subsequently evolve to become the ramified microglia. In traumatic brain lesions following an intravenous injection of colloidal carbon as a cytoplasmic marker for monocytes, it was found that carbon-labelled monocytes were the main source of brain macrophages, some of which transformed into microglia during the healing process. In conclusion, our results derived from the normal and altered brain development as well as from experimental lesions tend to favour the view of the monocytic nature of microglia. Recent studies by us also point to the possibility that some microglial cells may arise from the pial mesenchymal macrophages that appear to originate from the yolk sac precursors.
Collapse
Affiliation(s)
- C Kaur
- Department of Anatomy, Faculty of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
96
|
Abstract
The postnatal development of rat microglia is marked by an important increase in the number of microglial cells and the growth of their ramified processes. We studied the role of thyroid hormone in microglial development. The distribution and morphology of microglial cells stained with isolectin B4 or monoclonal antibody ED1 were analyzed in cortical and subcortical forebrain regions of developing rats rendered hypothyroid by prenatal and postnatal treatment with methyl-thiouracil. Microglial processes were markedly less abundant in hypothyroid pups than in age-matched normal animals, from postnatal day 4 up to the end of the third postnatal week of life. A delay in process extension and a decrease in the density of microglial cell bodies, as shown by cell counts in the developing cingulate cortex of normal and hypothyroid animals, were responsible for these differences. Conversely, neonatal rat hyperthyroidism, induced by daily injections of 3,5,3'-triiodothyronine (T3), accelerated the extension of microglial processes and increased the density of cortical microglial cell bodies above physiological levels during the first postnatal week of life. Reverse transcription-PCR and immunological analyses indicated that cultured cortical ameboid microglial cells expressed the alpha1 and beta1 isoforms of nuclear thyroid hormone receptors. Consistent with the trophic and morphogenetic effects of thyroid hormone observed in situ, T3 favored the survival of cultured purified microglial cells and the growth of their processes. These results demonstrate that thyroid hormone promotes the growth and morphological differentiation of microglia during development.
Collapse
|
97
|
Holman S, Collado P. Postnatal cell proliferation and death in a lateralized, gender-related, asymmetric nucleus. JOURNAL OF NEUROBIOLOGY 2001; 47:150-8. [PMID: 11291103 DOI: 10.1002/neu.1022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sexual differentiation and lateralization of neurone number in a discrete forebrain nucleus (SDApc) related to masculine vocal emission, occur contemporaneously in postnatal (P0-P15) gerbils. Stereological estimates of cell proliferation and death during SDApc organization were made by BrdU labelling and pyknosis, respectively. Results confirmed that rates of apoptosis were greater in females and lateralized in males. Immunoreactive BrdU cells, located in the SDApc at P0-P6, with low levels at P15, were not numerically different between the sexes. Only at one age, P0, in males, was a left-right difference seen in BrdU-immunoreactive cell numbers. Microglia, identified by isolectin immunostaining, were numerically similar to BrdU cells. We suggest that apoptosis, rather than neurogenesis, differentiates and lateralizes SDApc organization, and proliferating cells are microglia, phagocytosing debris.
Collapse
Affiliation(s)
- S Holman
- Department of Anatomy, University of Cambridge, Downing Site, Cambridge CB2 3DY, United Kingdom
| | | |
Collapse
|
98
|
Affiliation(s)
- S Parkkila
- Departments of Anatomy and Clinical Chemistry, University of Oulu, FIN-90220 Oulu, Finland
| |
Collapse
|
99
|
Hao AJ, Dheen ST, Ling EA. Response of amoeboid microglia/brain macrophages in fetal rat brain exposed to a teratogen. J Neurosci Res 2001; 64:79-93. [PMID: 11276054 DOI: 10.1002/jnr.1056] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study examined the time course response of amoeboid microglia/brain macrophages in the rat fetus induced by a single intraperitoneal injection of cyclophosphamide, a teratogen, into the mother rat at 13 days of gestation. Compared to the normal fetal brain, a marked increase in amoeboid microglia was observed in the telencephalon and diencephalon of experimental fetuses, especially in those killed at embryonic day 15. Conglomerations of microglia occurred in the dorsal and superior neuroepithelium of diencephalon, basal telencephalon, cortical neuroepithelium, and hippocampal formation as identified with OX-42, OX-18, and ED-1 by immunohistochemistry. Rhodamine isothiocynate (RhIc) as a tracer was injected via the tail vein into the pregnant rat to assess the phagocytic capability of these cells. Following the tracer injection, none of microglial cells in normal fetal brain was detectable. RhIc, however, was readily taken up by amoeboid microglia in fetal brain with injury insult. Double labeling has shown that the RhIc-labeled cells were immunoreactive with ED-1, OX-42, OX-18, and OX-6, confirming their microglial nature. Microglial proliferation was assessed by immunohistochemistry using bromodeoxyuridine, which showed a marked increase in mitotic activity. Confocal microscopic analysis revealed that a varying number of microglia coexpressed iNOS, macrophage colony-stimulating factor (M-CSF), and ICAM-1. RT-PCR analysis showed increased expression of M-CSF mRNA. Furthermore, colony-stimulating factor-1 receptor mRNA was localized in microglia by in situ hybridization. The present results suggest that NO along with M-CSF and ICAM-1 is involved in microglial proliferation in prenatal brain injury.
Collapse
Affiliation(s)
- A J Hao
- Molecular Neurobiology Laboratory, Department of Anatomy, Faculty of Medicine, National University of Singapore, Republic of Singapore 117597
| | | | | |
Collapse
|
100
|
Navascués J, Calvente R, Marín-Teva JL, Cuadros MA. Entry, dispersion and differentiation of microglia in the developing central nervous system. AN ACAD BRAS CIENC 2000; 72:91-102. [PMID: 10932110 DOI: 10.1590/s0001-37652000000100013] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microglial cells within the developing central nervous system (CNS) originate from mesodermic precursors of hematopoietic lineage that enter the nervous parenchyma from the meninges, ventricular space and/or blood stream. Once in the nervous parenchyma, microglial cells increase in number and disperse throughout the CNS; these cells finally differentiate to become fully ramified microglial cells. In this article we review present knowledge on these phases of microglial development and the factors that probably influence them.
Collapse
Affiliation(s)
- J Navascués
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Spain.
| | | | | | | |
Collapse
|