51
|
|
52
|
Guyon A, Conductier G, Rovere C, Enfissi A, Nahon JL. Melanin-concentrating hormone producing neurons: Activities and modulations. Peptides 2009; 30:2031-9. [PMID: 19524001 DOI: 10.1016/j.peptides.2009.05.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/25/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
Abstract
Regulation of energy homeostasis in animals involves adaptation of energy intake to its loss, through a perfect regulation of feeding behavior and energy storage/expenditure. Factors from the periphery modulate brain activity in order to adjust food intake as needed. Particularly, "first order" neurons from arcuate nucleus are able to detect modifications in homeostatic parameters and to transmit information to "second order" neurons, partly located in the lateral hypothalamic area. These "second order" neurons have widespread projections throughout the brain and their proper activation leads them to a coordinated response associated to an adapted behavior. Among these neurons, melanin-concentrating hormone (MCH) expressing neurons play an integrative role of the various factors arising from periphery, first order neurons and extra-hypothalamic arousal systems neurons and modulate regulation of feeding, drinking and seeking behaviors. As regulation of MCH release is correlated to regulation of MCH neuronal activity, we focused this review on the electrophysiological properties of MCH neurons from the lateral hypothalamic area. We first reviewed the knowledge on the endogenous electrical properties of MCH neurons identified according to various criteria which are described. Then, we dealt with the modulations of the electrical activity of MCH neurons by different factors such as glucose, glutamate and GABA, peptides and hormones regulating feeding and transmitters of extra-hypothalamic arousal systems. Finally, we described the current knowledge on the modulation of MCH neuronal activity by cytokines and chemokines. Because of such regulation, MCH neurons are some of the best candidate to account for infection-induced anorexia, but also obesity.
Collapse
Affiliation(s)
- Alice Guyon
- Institut de Pharmacologie Moléculaire et Cellulaire, Univrsité de Nice-Sophia Antipolis, Centre National de la Recherche Scientifique, Valbonne, France.
| | | | | | | | | |
Collapse
|
53
|
|
54
|
Abstract
Growing evidence suggests that food intake, energy expenditure and endogenous glucose production are regulated by hypothalamic areas that respond to a variety of peripheral signals. Therefore, in response to a reduction in energy stores or circulating nutrients, the brain initiates responses in order to promote positive energy balance to restore and maintain energy and glucose homeostasis. In contrast, in times of nutrient abundance and excess energy storage, key hypothalamic areas activate responses to promote negative energy balance (i.e. reduced food intake and increased energy expenditure) and decreased nutrient availability (reduced endogenous glucose production). Accordingly, impaired responses or 'resistance' to afferent input from these hormonal or nutrient-related signals would be predicted to favour weight gain and insulin resistance and may contribute to the development of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Gregory J Morton
- Department of Medicine, Harbourview Medical Center, University of Washington, Seattle, WA 98104, USA.
| |
Collapse
|
55
|
Aimé P, Duchamp-Viret P, Chaput MA, Savigner A, Mahfouz M, Julliard AK. Fasting increases and satiation decreases olfactory detection for a neutral odor in rats. Behav Brain Res 2007; 179:258-64. [PMID: 17367877 DOI: 10.1016/j.bbr.2007.02.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/08/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
Olfaction plays a fundamental role in feeding behavior, but changes in olfactory acuity according to feeding states have never been precisely demonstrated in animals. The present study assesses the olfactory detection performance of fasted or satiated rats placed under a strictly controlled food-intake regimen. We did this using a conditioned odor aversion (COA) protocol which induced in rats an almost total aversion to an ISO-odorized drink at 10(-5) (1 microl in 100 ml of water). The rats (either fasted or satiated) were then presented with different concentrations of ISO-odorized water to compare their ability to detect and so avoid the ISO drink. In both states, the rats consumed significantly larger volumes of ISO at 10(-10), 10(-9) and 10(-8) than at 10(-5), suggesting lower detection at these three concentrations, although the fasted rats consumed significantly less ISO drink than did the satiated ones, showing better ISO detection at these concentrations. These experiments provide original data demonstrating the expected fact that olfactory sensitivity increases in fasted animals. Since these results were obtained using a neutral odor, we suggest that olfactory acuity increases during fasting, enabling animals to more easily detect both food and environmental odors such as those of predators. This would have an obvious eco-ethological role by increasing the relevance of olfactory inputs when seeking food.
Collapse
Affiliation(s)
- P Aimé
- Laboratoire de Neurosciences Sensorielles, Comportement, Cognition, CNRS, UMR 5020, Université Claude Bernard Lyon 1, 50 Avenue Tony Garnier, 69366 Lyon Cedex 07, France
| | | | | | | | | | | |
Collapse
|
56
|
Ishii T, Muranaka R, Tashiro O, Nishimura M. Chronic intracerebroventricular administration of anti-neuropeptide Y antibody stimulates starvation-induced feeding via compensatory responses in the hypothalamus. Brain Res 2007; 1144:91-100. [PMID: 17320051 DOI: 10.1016/j.brainres.2007.01.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/19/2007] [Accepted: 01/24/2007] [Indexed: 10/23/2022]
Abstract
To investigate how compensatory responses develop after the onset of inhibition of NPY signaling, we examined the effect of continuous intracerebroventricular (ICV) injection of neutralizing NPY antibodies (NPY-ab) on daily and fast-induced food intake in mice. A single ICV injection of NPY-ab reduced food intake in fasted mice. In contrast to a single injection, continuous ICV injection of NPY-ab for 13 days increased fast-induced food intake, although daily food intake was unaffected by continuous administration of NPY-ab. Immunohistochemistry indicated that the expression of NPY protein increases in the arcuate nucleus, lateral hypothalamic area, and paraventricular nucleus 7 days after onset of continuous NPY-ab infusion and remains at an elevated level, whereas the expression of the NPY Y1 receptor transiently increases in the same areas for 3 days and then gradually decreases. Similar results were obtained for the expression of NPY and NPY Y1 receptor mRNA. The mRNA level of agouti-related protein, another orexigenic neuropeptide, also increased in parallel with NPY, whereas that of pro-opiomelanocortin did not change over the 13 days of the NPY-ab administration. These results suggest that chronic central inhibition of NPY immediately activates orexigenic signaling in first-order hypothalamic neurons and that this compensatory mechanism normalizes the regulation of feeding and energy expenditure to maintain energy homeostasis. On the other hand, in mice that have acquired this compensation, fast-induced food intake further increases even after the energy deficit is corrected because of the dominant orexigenic signal.
Collapse
Affiliation(s)
- Toshiaki Ishii
- Department of Pathobiological Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro Hokkaido 080-8555, Japan.
| | | | | | | |
Collapse
|
57
|
Dikkes P, Hawkes C, Kar S, Lopez MF. Effect of kainic acid treatment on insulin-like growth factor-2 receptors in the IGF2-deficient adult mouse brain. Brain Res 2006; 1131:77-87. [PMID: 17184742 DOI: 10.1016/j.brainres.2006.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/25/2006] [Accepted: 11/05/2006] [Indexed: 12/31/2022]
Abstract
Insulin-like growth factor-2 (IGF2) is a member of the insulin gene family with known neurotrophic properties. The actions of IGF2 are mediated via the IGF type 1 and type 2 receptors as well as through the insulin receptors, all of which are widely expressed throughout the brain. Since IGF2 is up-regulated in the brain after injury, we wanted to determine whether the absence of IGF2 can lead to any alteration on brain morphology and/or in the response of its receptor binding sites following a neurotoxic insult. No morphological differences were observed between the brains of IGF2 knockout (IGF2(-/-)) and wild-type control (IGF2(+/+)) mice. However, our in vitro receptor autoradiography results indicate that IGF2(-/-) mice had lower endogenous levels of [(125)I]IGF1 and [(125)I]insulin receptor binding sites in the hippocampus and cerebellum as compared to IGF2(+/+) mice, while endogenous [(125)I]IGF2 receptor binding showed a decrease only in the cerebellum. Seven days after kainic acid administration, the [(125)I]insulin receptor binding sites were significantly decreased in all brain regions of the IGF2(+/+) mice, while the levels of [(125)I]IGF1 and [(125)I]IGF2 binding sites were decreased only in select brain areas. The IGF2(-/-) mice, on the other hand, showed increased [(125)I]IGF1 and [(125)I]IGF2 and [(125)I]insulin receptor binding sites in selected regions such as the hippocampus and cerebellum. These results, taken together, suggest that deletion of IGF2 gene does not affect gross morphology of the brain but does selectively alter endogenous [(125)I]IGF1, [(125)I]IGF2 and [(125)I]insulin receptor binding sites and their response to neurotoxicity.
Collapse
MESH Headings
- Age Factors
- Animals
- Binding Sites/drug effects
- Binding Sites/physiology
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Brain/drug effects
- Brain/embryology
- Brain/metabolism
- Brain Damage, Chronic/genetics
- Brain Damage, Chronic/metabolism
- Brain Damage, Chronic/physiopathology
- Cerebellum/drug effects
- Cerebellum/embryology
- Cerebellum/metabolism
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Drug Resistance/genetics
- Hippocampus/drug effects
- Hippocampus/embryology
- Hippocampus/metabolism
- Insulin-Like Growth Factor I/metabolism
- Insulin-Like Growth Factor II/genetics
- Iodine Radioisotopes
- Kainic Acid/pharmacology
- Male
- Mice
- Mice, Knockout
- Neurotoxins/pharmacology
- Radioligand Assay
- Receptor, IGF Type 2/drug effects
- Receptor, IGF Type 2/metabolism
- Receptor, Insulin/drug effects
- Receptor, Insulin/metabolism
Collapse
Affiliation(s)
- P Dikkes
- Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
58
|
Zulian SE, Ilincheta de Boschero MG, Giusto NM. Insulin promotes diacylglycerol kinase activation by different mechanisms in rat cerebral cortex synaptosomes. J Neurosci Res 2006; 84:1012-9. [PMID: 16886188 DOI: 10.1002/jnr.21010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanism by which insulin increases diacylglycerol kinase (DAGK) activity has been studied in cerebral cortex (CC) synaptosomes from adult (3-4 months of age) rats. The purpose of this study was to identify the role of phospholipases C and D (PLC and PLD) in DAGK activation by insulin. Neomycin, an inhibitor of PLC phosphatidylinositol-bisphosphate (PIP2) specific; ethanol, an inhibitor of phosphatidic acid (PA) formation by the promotion of a transphosphatidyl reaction of phosphatidylcholine phospholipase D (PC-PLD); and DL propranolol, an inhibitor of phosphatidate phosphohydrolase (PAP), were used in this study. Insulin (0.1 microM) shielded an increase in PA synthesis by [32P] incorporation using [gamma-32P]ATP as substrate and endogenous diacylglycerol (DAG) as co-substrate. This activated synthesis was strongly inhibited either by ethanol or DL propranolol. Pulse chase experiments also showed a PIP2-PLC activation within 1 min exposure to insulin. When exogenous unsaturated 18:0-20:4 DAG was present, insulin increased PA synthesis significantly. However, this stimulatory effect was not observed in the presence of exogenous saturated (di-16:0). In the presence of R59022, a selective DAGK inhibitor, insulin exerted no stimulatory effect on [32P]PA formation, suggesting a strong relationship between increased PA formation by insulin and DAGK activity. These data indicate that the increased synthesis of PA by insulin could be mediated by the activation of both a PC-PLD pathway to provide DAG and a direct DAGK activation that is associated to the use of 18:0-20:4 DAG species. PIP2-PLC activation may contribute at least partly to the insulin effect on DAGK activity.
Collapse
Affiliation(s)
- Sandra E Zulian
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Cientificas y Técnicas, Bahía Blanca, Argentina
| | | | | |
Collapse
|
59
|
Komatsu T, Chiba T, Yamaza H, To K, Toyama H, Higami Y, Shimokawa I. Effect of leptin on hypothalamic gene expression in calorie-restricted rats. J Gerontol A Biol Sci Med Sci 2006; 61:890-8. [PMID: 16960019 DOI: 10.1093/gerona/61.9.890] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Diminished leptin signaling to the arcuate nucleus of hypothalamus (ARH) may induce calorie restriction (CR)-specific neuroendocrine and metabolic adaptation, which is potentially relevant to the effect of CR. The present study investigated whether restoration of leptin signaling to the ARH could reverse CR-induced alterations in neuropeptide gene expression in rats. Male F344 rats, fed ad libitum or a 30% CR diet from 6 weeks of age, received leptin or vehicle intracerebroventricularly for 14 days via osmotic mini-pumps implanted in the subcutis at 34 weeks of age. The messenger RNA levels were quantified by real-time reverse transcription-polymerase chain reaction using total RNA extracted from microdissected tissues containing the ARH. The results indicated that leptin administration reversed the upregulated expression of neuropeptide Y and agouti-related protein genes in CR rats, suggesting the possibility of a role for the leptin-ARH pathway in the effect of CR.
Collapse
Affiliation(s)
- Toshimitsu Komatsu
- Department of Pathology & Gerontology, Nagasaki University Graduate School of Biomedical Science, 1-12-4 Sakamoto, Nagasaki City 852-8523, Japan
| | | | | | | | | | | | | |
Collapse
|
60
|
Lustig RH. Childhood obesity: behavioral aberration or biochemical drive? Reinterpreting the First Law of Thermodynamics. ACTA ACUST UNITED AC 2006; 2:447-58. [PMID: 16932334 DOI: 10.1038/ncpendmet0220] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 03/23/2006] [Indexed: 01/07/2023]
Abstract
Childhood obesity has become epidemic over the past 30 years. The First Law of Thermodynamics is routinely interpreted to imply that weight gain is secondary to increased caloric intake and/or decreased energy expenditure, two behaviors that have been documented during this interval; nonetheless, lifestyle interventions are notoriously ineffective at promoting weight loss. Obesity is characterized by hyperinsulinemia. Although hyperinsulinemia is usually thought to be secondary to obesity, it can instead be primary, due to autonomic dysfunction. Obesity is also a state of leptin resistance, in which defective leptin signal transduction promotes excess energy intake, to maintain normal energy expenditure. Insulin and leptin share a common central signaling pathway, and it seems that insulin functions as an endogenous leptin antagonist. Suppressing insulin ameliorates leptin resistance, with ensuing reduction of caloric intake, increased spontaneous activity, and improved quality of life. Hyperinsulinemia also interferes with dopamine clearance in the ventral tegmental area and nucleus accumbens, promoting increased food reward. Accordingly, the First Law of Thermodynamics can be reinterpreted, such that the behaviors of increased caloric intake and decreased energy expenditure are secondary to obligate weight gain. This weight gain is driven by the hyperinsulinemic state, through three mechanisms: energy partitioning into adipose tissue; interference with leptin signal transduction; and interference with extinction of the hedonic response to food.
Collapse
Affiliation(s)
- Robert H Lustig
- Division of Endocrinology, University of California San Francisco, San Francisco, CA 94143-0434, USA.
| |
Collapse
|
61
|
Barbano MF, Cador M. Various aspects of feeding behavior can be partially dissociated in the rat by the incentive properties of food and the physiological state. Behav Neurosci 2006; 119:1244-53. [PMID: 16300432 DOI: 10.1037/0735-7044.119.5.1244] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The authors investigated the role of food incentive properties and homeostatic state on the motivational, anticipatory, and consummatory aspects of feeding. Behavioral tests were carried out on food-sated and food-restricted rats that were presented with 2 kinds of food differing in their palatability level. Both food-sated and food-restricted rats consumed large quantities and were highly motivated when presented with very palatable food. In contrast, only food-restricted rats developed anticipatory responses, regardless of the kind of food presented. These data suggest that food incentive properties play a key role in the control of consummatory and motivational components of feeding but seem less involved in the regulation of anticipatory behavior.
Collapse
Affiliation(s)
- M Flavia Barbano
- Laboratoire de Neuropsychobiologie des Désadaptations, Centre National de la Recherche Scientifique, CNRS, Unité Mixte de Recherche, Université Victor Segalen Bordeaux 2, 33076 Bordeaux, Cedex, France.
| | | |
Collapse
|
62
|
Heald AH, Kärvestedt L, Anderson SG, McLaughlin J, Knowles A, Wong L, Grill V, Cruickshank JK, White A, Gibson JM, Brismar K. Low insulin-like growth factor-II levels predict weight gain in normal weight subjects with type 2 diabetes. Am J Med 2006; 119:167.e9-15. [PMID: 16443426 DOI: 10.1016/j.amjmed.2005.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 08/03/2005] [Accepted: 08/03/2005] [Indexed: 11/24/2022]
Abstract
PURPOSE Insulin-like growth factor (IGF)-I and IGF-II are important in the regulation of metabolism and growth. We previously reported in normoglycemic individuals of normal weight that low circulating IGF-II predicts future weight gain. We subsequently investigated whether such relationships persisted in circumstances of type 2 diabetes. METHODS In 224 subjects with type 2 diabetes we assessed the association between baseline IGF-II levels and risk of weight gain (>2.0 kg) at the 5-year follow-up. RESULTS At follow-up, 90 participants (40.2%) gained more than 2.0 kg in body weight. For subjects (body mass index <26) at baseline, mean IGF-II levels were significantly lower in those who gained more than 2 kg in weight than in subjects of stable weight, 454 ng/mL (95% confidence interval 349-559) versus 620 ng/mL (534-705) (F=7.4, P=.01). For this subgroup low circulating IGF-II at baseline strongly correlated with weight gain (Spearman rho=-0.52, P <.001). With increasing weight, the relationship no longer prevailed. Logistic regression showed that for body mass index less than 26, individuals at baseline for each 100 ng/mL increase in baseline IGF-II there was a 47% decreased risk of gaining 2.0 kg or more in weight. Adjustment for treatment group did not materially alter this relationship. There was no difference in baseline IGF-II by treatment group. There was no difference between the group with weight gain and the group with stable weight in those who additionally received insulin or sulfonylurea treatment in the 5 years between the baseline visit and the follow-up. CONCLUSIONS In subjects of normal weight with type 2 diabetes, baseline IGF-II concentration is inversely related to future weight gain, independent of treatment effect, strengthening the putative role for IGF-II in regulating fat mass. We propose that IGF-II measurement has potential utility in this group for targeting such individuals for early intervention.
Collapse
Affiliation(s)
- Adrian H Heald
- Department of Diabetes and Endocrinology, Salford Royal Hospitals University Trust, Salford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
The worsening global obesity epidemic, particularly the increase in childhood obesity, has prompted research into the mechanisms of appetite regulation. Complex pathways modulate energy balance, involving appetite centres in the hypothalamus and brain stem, and hormonal signals of energy status released by the gut and by the periphery. Better understanding of appetite regulation improves understanding of the aetiology of obesity. Manipulation of this homoeostatic system offers potentially useful treatments for obesity.
Collapse
Affiliation(s)
- M Druce
- Department of Metabolic Medicine, Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | |
Collapse
|
64
|
Affiliation(s)
- Robert H Lustig
- Division of Endocrinology, University of California San Francisco, 94143, USA.
| |
Collapse
|
65
|
Tighe S, Dinan T. An overview of the central control of weight regulation and the effect of antipsychotic medication. J Psychopharmacol 2005; 19:36-46. [PMID: 16280336 DOI: 10.1177/0269881105058679] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Weight regulation is a complex system necessary for maintaining health. Obesity and cachexia are consequences of dysregulation and cause significant physical morbidity and mortality. In the developed world, obesity is a growing epidemic. A greater understanding of the neuroanatomy of weight regulation has been gained through advances in imaging and neural mapping techniques. The neural connections between key hypothalamic and other central nuclei have been elucidated. Advances in molecular biology have led to the identification and cloning of important peripheral and central weight regulating peptides. Weight gain as a consequence of antipsychotic use is increasingly being recognized as a serious clinical issue. The weight regulation system provides a framework upon which antipsychotics exert their weight-inducing effects. Some studies have sought, with inconsistent results, to establish associations between antipsychotic use and levels of weight regulating mediators. The receptor pharmacology of antipsychotics known to increase weight can be studied with a view to establishing genetic variants contributing to the risk. To date, the 5-HT(2C) receptor 759C/T polymorphism shows most promise. Further studies are required to replicate previous findings and establish new associations.
Collapse
Affiliation(s)
- Sheila Tighe
- Alimentary Pharmacobiotic Centre and Department of Psychiatry, University College Cork, Cork, Ireland
| | | |
Collapse
|
66
|
Aquilani R, Iadarola P, Contardi A, Boselli M, Verri M, Pastoris O, Boschi F, Arcidiaco P, Viglio S. Branched-chain amino acids enhance the cognitive recovery of patients with severe traumatic brain injury. Arch Phys Med Rehabil 2005; 86:1729-35. [PMID: 16181934 DOI: 10.1016/j.apmr.2005.03.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate whether supplementation with branched-chain amino acids (BCAAs) in patients with severe traumatic brain injury (TBI) improves recovery of cognition and influences plasma concentrations of tyrosine and tryptophan, which are precursors of, respectively, catecholamine and serotonin neurotransmitters in the brain. DESIGN Forty patients with TBI were randomly assigned to 15 days of intravenous BCAA supplementation (19.6g/d) (n=20) or an isonitrogenous placebo (n=20). SETTING Tertiary care rehabilitation setting in Italy. PARTICIPANTS Forty men (mean age, 32+/-15 y) with TBI and 20 healthy subjects (controls) matched for age, sex, and sedentary lifestyle. INTERVENTION Supplementation with BCAAs. MAIN OUTCOME MEASURES Disability Rating Scale (DRS) and plasma concentrations of BCAAs, tyrosine, and tryptophan. RESULTS Fifteen days after admission to the rehabilitation department, the DRS score had improved significantly in both the placebo group (P<.05 vs baseline) and in the BCAA-supplemented group (P<.01 vs baseline). The difference between the 2 groups was significant (P<.004). Plasma tyrosine concentration improved in the group given BCAA supplementation, and tryptophan concentration increased in patients receiving placebo. CONCLUSIONS Supplemental BCAAs enhance the retrieval of DRS without causing negative effects on tyrosine and tryptophan concentration.
Collapse
Affiliation(s)
- Roberto Aquilani
- Servizio di Fisiopatologia Metabolico-Nutrizionale e Nutrizione Clinica
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Murphy KG, Bloom SR. Peripheral influences on central melanocortin neurons. Peptides 2005; 26:1744-52. [PMID: 15970358 DOI: 10.1016/j.peptides.2004.12.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 12/10/2004] [Indexed: 11/21/2022]
Abstract
The melanocortins are peptide products of post-translational processing of the pro-opiomelanocortin precursor protein. Melanocortin-expressing neurons are found in the arcuate nucleus of the hypothalamus and the nucleus of the solitary tract in the brain stem. The central melanocortin system is involved in a number of biological functions, including regulation of energy homeostasis. Hypothalamic and brain stem circuits interpret and integrate a number of peripheral inputs to provide a coordinated central response. This review examines the effect of these peripheral signals on central melanocortin signaling.
Collapse
Affiliation(s)
- K G Murphy
- Department of Metabolic Medicine, Imperial College Faculty of Medicine, Hammersmith Campus, Du Cane Road, London W12 ONN, UK
| | | |
Collapse
|
68
|
Nagaraja TN, Patel P, Gorski M, Gorevic PD, Patlak CS, Fenstermacher JD. In normal rat, intraventricularly administered insulin-like growth factor-1 is rapidly cleared from CSF with limited distribution into brain. Cerebrospinal Fluid Res 2005; 2:5. [PMID: 16045806 PMCID: PMC1190198 DOI: 10.1186/1743-8454-2-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 07/26/2005] [Indexed: 01/23/2023] Open
Abstract
Background Putatively active drugs are often intraventricularly administered to gain direct access to brain and circumvent the blood-brain barrier. A few studies on the normal central nervous system (CNS) have shown, however, that the distribution of materials after intraventricular injections is much more limited than presumed and their exit from cerebrospinal fluid (CSF) is more rapid than generally believed. In this study, we report the intracranial distribution and the clearance from CSF and adjacent CNS tissue of radiolabeled insulin-like growth factor-1 after injection into one lateral ventricle of the normal rat brain. Methods Under barbiturate anesthesia, 125I-labeled insulin-like growth factor-1 (IGF-1) was injected into one lateral ventricle of normal Sprague-Dawley rats. The subsequent distribution of IGF-1 through the cerebrospinal fluid (CSF) system and into brain, cerebral blood vessels, and systemic blood was measured over time by gamma counting and quantitative autoradiography (QAR). Results Within 5 min of infusion, IGF-1 had spread from the infused lateral ventricle into and through the third and fourth ventricles. At this time, 25% of the infused IGF-1 had disappeared from the CSF-brain-meningeal system; the half time of this loss was 12 min. The plasma concentration of cleared IGF-1 was, however, very low from 2 to 9 min and only began to rise markedly after 20 min. This delay between loss and gain plus the lack of radiotracer in the cortical subarachnoid space suggested that much of the IGF-1 was cleared into blood via the cranial and/or spinal nerve roots and their associated lymphatic systems rather than periventricular tissue and arachnoid villi. Less than 10% of the injected radioactivity remained in the CSF-brain system after 180 min. The CSF and arteries and arterioles within the subarachnoid cisterns were labeled with IGF-1 within 10 min. Between 60 and 180 min, most of the radioactivity within the cranium was retained within and around these blood vessels and by periaqueductal gray matter. Tissue profiles at two sites next to ventricular CSF showed that IGF-1 penetrated less than 1.25 mm into brain tissue and appreciable 125I-activity remained at the tissue-ventricular CSF interface after 180 min. Conclusion Our findings suggest that entry of IGF-1 into normal brain parenchyma after lateral ventricle administration is limited by rapid clearance from CSF and brain and slow movement, apparently by diffusion, into the periventricular tissue. Various growth factors and other neuroactive agents have been reported to be neuroprotective within the injured brain after intraventricular administration. It is postulated that the delivery of such factors to neurons and glia in the injured brain may be facilitated by abnormal CSF flow. These several observations suggest that the flow of CSF and entrained solutes may differ considerably between normal and abnormal brain and even among various neuropathologies.
Collapse
Affiliation(s)
| | - Padma Patel
- Department of Anesthesiology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Martin Gorski
- Department of Anesthesiology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Peter D Gorevic
- Department of Medicine, Mt. Sinai School of Medicine, New York, NY 10029, USA
| | - Clifford S Patlak
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
69
|
Bienvenu G, Seurin D, Le Bouc Y, Even P, Babajko S, Magnan C. Dysregulation of energy homeostasis in mice overexpressing insulin-like growth factor-binding protein 6 in the brain. Diabetologia 2005; 48:1189-97. [PMID: 15889232 DOI: 10.1007/s00125-005-1767-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 01/16/2005] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS IGFs, IGF receptors and IGF binding proteins (IGFBPs) are widely expressed in the central nervous system. To investigate the physiological significance of IGFBP-6 in the brain we established two transgenic mouse lines overexpressing human (h)-IGFBP-6 under the control of glial fibrillary acidic protein promoter. Increasing evidence suggests that insulin/IGF signalling pathways could be implicated in the neuroendocrine regulation of energy homeostasis. We explored the impact of brain IGFBP-6 overexpression on the regulation of food intake and energy balance. METHODS Transgenic mice were fed either a control diet or a high-fat diet for up to 3 months. Glucose and insulin tolerance tests were carried out before and after the diet period. Plasma parameters (insulin, leptin, glucose, NEFAs and triglycerides) were measured, and uncoupling protein 1 (UCP-1) expression was quantified in brown adipose tissue. Oxygen consumption was also measured in both groups. RESULTS The transgenic mice fed a high-fat diet for 3 months developed obesity, showing increases in plasma leptin, glucose and insulin levels and mild insulin resistance. As compared with wild-type mice, no significant differences were found in the quantity of food intake. However, UCP-1 expression was down-regulated in the brown adipose tissue of the transgenic mice. CONCLUSIONS/INTERPRETATION Our results show that brain IGFBP-6 has an impact on the regulation of energy homeostasis. These transgenic h-IGFBP-6 mice may be considered a new tool for studies of the involvement of the brain IGF system in metabolism control and obesity.
Collapse
Affiliation(s)
- G Bienvenu
- National Institute of Health and Medical Research (INSERM) Unit 515, St-Antoine Hospital, University of Paris, Paris, France
| | | | | | | | | | | |
Collapse
|
70
|
Paranjape SA, Briski KP. Recurrent insulin-induced hypoglycemia causes site-specific patterns of habituation or amplification of CNS neuronal genomic activation. Neuroscience 2005; 130:957-70. [PMID: 15652993 DOI: 10.1016/j.neuroscience.2004.09.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2004] [Indexed: 11/22/2022]
Abstract
Antecedent hypoglycemia is a primary factor in hypoglycemia-associated autonomic failure, a pathophysiological condition characterized by impaired glucose counterregulatory function. Conventional therapeutic strategies involving administration of intermediate dosage-release formulations of insulin in the management of insulin-dependent diabetes mellitus result in frequent iatrogenic hypoglycemia. This study investigated the neuroanatomical location, direction, and magnitude of CNS neuronal genomic activation by singular versus repeated induction of hypoglycemic bouts of greater than 6 h duration achieved by administration of the intermediate-acting insulin, humulin neutral protamine Hagedorn (NPH). Adult male rats injected subcutaneously with Humulin NPH exhibited robust immunolabeling for the nuclear transcription factor, Fos, in discrete telencephalic, diencephalic, midbrain, and caudal hindbrain loci in a pattern that was not identical to that described for regular insulin. Administration of four doses of insulin on as many days significantly diminished or extinguished Fos immunostaining within the parvocellular hypothalamic paraventricular nucleus, lateral hypothalamic area, dorsomedial hypothalamic nucleus, thalamic paraventricular nucleus, nucleus tractus solitarius, and area postrema, but did not modify labeling of other metabolic loci. However, numbers of Fos-immunoreactivity-positive magnocellular neurons in the hypothalamic paraventricular and supraoptic nuclei were significantly increased after the second and fourth insulin doses, relative to the single-dose group. Concurrent observations of exacerbated hypoglycemia and modified patterns of glucoregulatory hormone secretion after serial injections of intermediate-acting insulin suggest that central mechanisms governing compensatory endocrine responses, specifically glucagon, become habituated to repetitive hypoglycemia of extended duration. Resultant alterations in CNS-islet and -adrenomedullary output and hypothalamic-pituitary-adrenal activity may reflect diminished neuronal activation within one or more of the brain loci characterized here by nonuniform transcriptional activation. The current studies provide a neuroanatomical foundation for further investigation of the neurochemical phenotypes and interconnectivity of functionally adaptive neurons, underlying cellular and molecular mechanisms of diminished or enhanced activation, as well as the impact of these modified cellular responses on glucose counterregulation during administration of intermediate-acting insulin.
Collapse
Affiliation(s)
- S A Paranjape
- Department of Basic Pharmaceutical Sciences, Graduate Studies and Research, School of Pharmacy, College of Health Sciences, 356A Sugar Hall, 580 University Avenue, University of Louisiana-Monroe, Monroe, LA 71209, USA
| | | |
Collapse
|
71
|
Paulus K, Schulz C, Lehnert H. Central nervous effects of leptin and insulin on hippocampal leptin and insulin receptor expression following a learning task in Wistar rats. Neuropsychobiology 2005; 51:100-6. [PMID: 15741751 DOI: 10.1159/000084167] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Insulin and leptin are well known to be involved in the regulation of food intake and body weight. Recent studies have suggested that both hormones may also affect memory and learning processes. We explored whether the intrahippocampal administration of insulin or leptin improved spatial memory formation in rats following a radial maze task and whether the insulin and leptin receptor expression in different areas of the hippocampus was affected. Animals without a learning task were also investigated in order to differentiate between the influence of spatial learning and hormone application on receptor expression. Spatial memory formation was found unaltered following the different applications. The application of insulin increased the expression of the long form of the leptin receptor in the Ammon's horn and dentate gyrus region of the hippocampus in the learning group only. These data clearly show that learning is a prerequisite for the effect of insulin on leptin receptor expression.
Collapse
Affiliation(s)
- K Paulus
- Department of Endocrinology and Metabolism, Magdeburg University Medical School, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | | |
Collapse
|
72
|
Guan J, Thomas GB, Lin H, Mathai S, Bachelor DC, George S, Gluckman PD. Neuroprotective effects of the N-terminal tripeptide of insulin-like growth factor-1, glycine-proline-glutamate (GPE) following intravenous infusion in hypoxic-ischemic adult rats. Neuropharmacology 2005; 47:892-903. [PMID: 15527823 DOI: 10.1016/j.neuropharm.2004.07.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 06/11/2004] [Accepted: 06/30/2004] [Indexed: 11/24/2022]
Abstract
The N-terminal tripeptide of insulin-like growth factor-1, GPE is neuroprotective when given intracerebroventricularly 2 h after hypoxic-ischemic (HI) brain injury in rats. We have now examined whether GPE can cross the blood-brain barrier and exert neuroprotective actions following intravenous administration. Following a single bolus intravenous injection, GPE was rapidly metabolized and cleared from the circulation. The short half-life (<2 min) in blood was subsequently associated with modest and inconsistent neuroprotection. In contrast, potent neuroprotection of GPE was consistently observed in all brain regions examined following 4 h intravenous infusion (12 mg/kg). The neuroprotective effects of GPE after infusion showed a broad effective dose range (1.2-120 mg/kg) and an extended window of treatment to 7-11 h after injury. The central penetration of GPE after intravenous infusion was injury-dependent. GPE also improved long-term somatofunction with a comparable neuronal outcome. GPE reduced both caspase-3-dependent and -independent apoptosis in the hippocampus. Treatment with GPE also inhibited microglial proliferation and prevented the injury-induced loss of astrocytes. In conclusion, the neuroprotective actions of GPE infusion were global, robust and displayed a broad effective dose range and treatment window. GPE's activity included the prevention of neuronal apoptosis, promotion of astrocyte survival and inhibition of microglial proliferation. With injury specific central penetration, GPE has considerable promise as a systemic neuroprotective treatment after acute encephalopathies.
Collapse
Affiliation(s)
- J Guan
- The Liggins Institute, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, 2-6 Park Avenue, Grafton, Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
73
|
Lai MYH, Brimble MA, Callis DJ, Harris PWR, Levi MS, Sieg F. Synthesis and pharmacological evaluation of glycine-modified analogues of the neuroprotective agent glycyl-l-prolyl-l-glutamic acid (GPE). Bioorg Med Chem 2005; 13:533-48. [PMID: 15598574 DOI: 10.1016/j.bmc.2004.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 10/01/2004] [Accepted: 10/04/2004] [Indexed: 11/18/2022]
Abstract
The synthesis of 10 G*PE analogues, wherein the glycine residue has been modified, is described by coupling readily accessible dibenzyl-L-prolyl-L-glutamate 2 with various analogues of glycine. Pharmacological evaluation of the novel compounds was undertaken to further understand the role of the glycine residue on the observed neuroprotective properties of the endogenous tripeptide GPE.
Collapse
Affiliation(s)
- Michelle Y H Lai
- Neuren Pharmaceuticals Medicinal Chemistry Group, Department of Chemistry, University of Auckland, 23 Symonds Street, Auckland 1000, New Zealand
| | | | | | | | | | | |
Collapse
|
74
|
Trotter NS, Brimble MA, Harris PWR, Callis DJ, Sieg F. Synthesis and neuroprotective activity of analogues of glycyl-l-prolyl-l-glutamic acid (GPE) modified at the α-carboxylic acid. Bioorg Med Chem 2005; 13:501-17. [PMID: 15598572 DOI: 10.1016/j.bmc.2004.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 10/01/2004] [Accepted: 10/04/2004] [Indexed: 11/16/2022]
Abstract
The synthesis of nine GPE* analogues, wherein the alpha-carboxylic acid group of glutamic acid has been modified, is described by coupling readily accessible N-benzyloxycarbonyl-glycyl-L-proline 2 with various analogues of glutamic acid. Pharmacological evaluation of the novel compounds was undertaken to further understand the role of the glutamate residue on the observed neuroprotective properties of the endogenous tripeptide GPE.
Collapse
Affiliation(s)
- Nicholas S Trotter
- Neuren Pharmaceuticals Medicinal Chemistry Group, Department of Chemistry, University of Auckland, 23 Symonds Street, Auckland 1000, New Zealand
| | | | | | | | | |
Collapse
|
75
|
Brimble MA, Trotter NS, Harris PWR, Sieg F. Synthesis and pharmacological evaluation of side chain modified glutamic acid analogues of the neuroprotective agent glycyl-l-prolyl-l-glutamic acid (GPE). Bioorg Med Chem 2005; 13:519-32. [PMID: 15598573 DOI: 10.1016/j.bmc.2004.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 10/01/2004] [Accepted: 10/04/2004] [Indexed: 11/16/2022]
Abstract
The synthesis of eight GPE* analogues, wherein the gamma-carboxylic moiety of the glutamic residue has been modified, is described by coupling readily accessible N-benzyloxycarbonyl-glycyl-L-proline with various analogues of glutamic acid. Pharmacological evaluation of the novel compounds was undertaken to further understand the role of the glutamate residue on the observed neuroprotective properties of the endogenous tripeptide GPE.
Collapse
Affiliation(s)
- Margaret A Brimble
- Neuren Pharmaceuticals, Medicinal Chemistry Group, Department of Chemistry, University of Auckland, 23 Symonds Street, Auckland 1000, New Zealand.
| | | | | | | |
Collapse
|
76
|
Milosevic A, Goldman JE. Potential of progenitors from postnatal cerebellar neuroepithelium and white matter: lineage specified vs. multipotent fate. Mol Cell Neurosci 2004; 26:342-53. [PMID: 15207858 DOI: 10.1016/j.mcn.2004.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 02/20/2004] [Accepted: 02/20/2004] [Indexed: 10/26/2022] Open
Abstract
Progenitors that migrate through the white matter of the postnatal cerebellum give rise to interneurons, astrocytes, and oligodendrocytes. To investigate the lineage potential of progenitors from the neuroepithelium and the white matter, we performed an in vitro clonal analysis in the presence or absence of various growth factors. Clonal progeny of cells labeled with a green fluorescent protein (GFP)-expressing retrovirus was characterized using morphological features and lineage markers. The large majority of clones were homogeneous, containing astrocytes, oligodendrocytes, neurons, or hybrid progenitors-cells labeled with markers for astrocytes and oligodendrocytes. Heterogeneous clones consisted of astrocytes and oligodendrocytes, with only a few mixed glial-neuronal clones. The neuroepithelium contains a higher number of multipotent progenitors than the white matter, pointing to a lineage specification of most of the cerebellar progenitors before their migration to the white matter.
Collapse
Affiliation(s)
- Ana Milosevic
- Division of Neuropathology, Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
77
|
Gale SM, Castracane VD, Mantzoros CS. Energy homeostasis, obesity and eating disorders: recent advances in endocrinology. J Nutr 2004; 134:295-8. [PMID: 14747663 DOI: 10.1093/jn/134.2.295] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Health problems resulting from obesity could offset many of the recent health gains achieved by modern medicine, and obesity may replace tobacco as the number one health risk for developed societies. An estimated 300,000 deaths per year and significant morbidity are directly attributable to obesity, mainly due to heart disease, diabetes, cancer, asthma, sleep apnea, arthritis, reproductive complications and psychological disturbances. In parallel with the increasing prevalence of obesity, there has been a dramatic increase in the number of scientific and clinical studies on the control of energy homeostasis and the pathogenesis of obesity to further our understanding of energy balance. It is now recognized that there are many central and peripheral factors involved in energy homeostasis, and it is expected that the understanding of these mechanisms should lead to effective treatments for the control of obesity. This brief review discusses the potential role of several recently discovered molecular pathways involved in the control of energy homeostasis, obesity and eating disorders.
Collapse
Affiliation(s)
- Susan M Gale
- Diagnostic Systems Laboratories, Incorporated, Webster, TX 77598, USA
| | | | | |
Collapse
|
78
|
Kim KU, Xiao J, Ni HT, Cho KH, Spellman SR, Low WC, Hall WA. Changes in expression of transferrin, insulin-like growth factor 1, and interleukin 4 receptors after irradiation of cells of primary malignant brain tumor cell lines. Radiat Res 2003; 160:224-31. [PMID: 12859234 DOI: 10.1667/rr3040] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Various immunotoxins have been developed for the treatment of cancer. The toxin is internalized by target cells through cell-surface receptors, and it is essential for these receptors to be expressed for the immunotoxin to have specific anti-tumor activity. Radiation therapy is one of the main treatment modalities for primary malignant brain tumors. The purpose of this study was to determine whether radiation influences the expression of cell-surface receptors. Cells of one human medulloblastoma (Daoy) and two glioblastoma (U373-MG and T98-G) cell lines were tested by exposing the cells to a single dose of 5 Gy gamma rays. Expression of transferrin receptors, type-1 insulin-like growth factor receptors (IGF1R), and interleukin 4 receptors (IL4R) was measured by flow cytometry analysis on unirradiated cells and on cells 3 to 120 h after irradiation. In Daoy cells, the absolute expression index of transferrin receptors increased during the 24 h after irradiation with the greatest change of 26% above control at 9 h. The absolute expression index of IGF1R increased 26.5% above control at 12 h. The absolute expression index of IL4R decreased 9 h after irradiation. In U373-MG cells the absolute expression index of transferrin receptors increased during the 24 h after irradiation, and the greatest increase was 45% above control at 9 h. The absolute expression index of IGF1R increased during the 12 h after irradiation with a maximum increase of 33% above control at 6 h. The absolute expression index of IL4R decreased with time after irradiation. In T98-G cells, the absolute expression index of both transferrin receptors and IL4R decreased after irradiation. The results suggest that the expression of growth factor receptors on brain tumor cells may be influenced by radiation. The effect of ionizing radiation on receptor expression should be considered when administration of targeted toxin is combined with radiation. Similar studies with other growth factor receptors used in targeted toxin therapy are recommended.
Collapse
MESH Headings
- Brain Neoplasms/metabolism
- Brain Neoplasms/pathology
- Flow Cytometry/methods
- Gene Expression Regulation, Neoplastic/radiation effects
- Glioblastoma/metabolism
- Glioblastoma/pathology
- Medulloblastoma/metabolism
- Medulloblastoma/pathology
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Interleukin-4/genetics
- Receptors, Interleukin-4/metabolism
- Receptors, Transferrin/genetics
- Receptors, Transferrin/metabolism
- Transferrin
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/radiation effects
Collapse
Affiliation(s)
- Ki-Uk Kim
- Department of Neurosurgery, Therapeutic Radiology-Radiation Oncology, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Sandhu MS, Gibson JM, Heald AH, Dunger DB, Wareham NJ. Low circulating IGF-II concentrations predict weight gain and obesity in humans. Diabetes 2003; 52:1403-8. [PMID: 12765950 DOI: 10.2337/diabetes.52.6.1403] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Results from experimental and gene-association studies suggest that IGF-II may influence body weight regulation and that individuals with low IGF-II levels may be more susceptible to weight gain and obesity. We therefore assessed the association between circulating concentrations of IGF-II and subsequent weight gain and progression to obesity. Participants in this study were 463 nonobese men and women aged between 45 and 60 years with normal glucose tolerance and with metabolic and anthropometric assessments at baseline and follow-up clinic visits. We examined the association between baseline concentrations of fasting serum IGF-II and risk of gaining > or =2.5 kg body wt or developing obesity using unconditional logistic regression. A total of 217 participants gained > or =2.5 kg body wt, and 29 developed obesity after >4 years of follow-up. In multivariate analysis, baseline IGF-II levels were significantly lower in participants who subsequently gained weight compared with individuals who remained stable or lost weight (P = 0.010). Similarly, individuals who developed obesity had lower baseline IGF-II levels (P = 0.006). Relatively higher IGF-II levels were also associated with a reduced risk of gaining weight (P for trend across quintiles of IGF-II = 0.006). Our data suggest that circulating IGF-II levels may play a role in body weight regulation and development of obesity in men and women with normal glucose tolerance.
Collapse
Affiliation(s)
- Manjinder S Sandhu
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, U.K.
| | | | | | | | | |
Collapse
|
80
|
Affiliation(s)
- Robert H Lustig
- Division of Endocrinology, University of California, San Francisco, CA 94143-0136, USA.
| |
Collapse
|
81
|
Abstract
1. While many questions remained unanswered, it is now well documented that, contrary to earlier views, insulin is an important neuromodulator, contributing to neurobiological processes, in particular energy homeostasis and cognition. A specific role on cognitive functions related to feeding is proposed, and it is suggested that brain insulin from different sources might be involved in the above vital functions in health and disease. 2. A molecule identical to pancreatic insulin, and specific insulin receptors, are found widely distributed in the central nervous system networks related to feeding, reproduction, or cognition. 3. The actions of insulin in the central nervous system may be under both multilevel and multifactorial controls. The amount of blood insulin reaching the brain, brain insulin stores and secretion, potential local biosynthesis and degradation of the peptide, and insulin receptors and signal transduction can be affected by metabolic factors induced by nutrients, hormones, neurotransmitters, and regulatory peptides, peripherally or in the central nervous system. 4. Glucose and serotonin regulate insulin directly in the hypothalamus and may be of importance for its biological effects. Central mechanisms regulating glucose-induced insulin secretion show some analogy with the mechanisms operating in the pancreas. 5. A cross-talk between insulin and leptin receptors has been observed in the brain, and a regulation of central insulin actions, potentially via serotonin modulation, by leptin, galanin, melancortins, and neuropeptide Y (NPY) is suggested. 6. A more complete knowledge of the biological role of insulin in brain function and dysfunction, and of the regulatory mechanisms involved in these processes, constitutes a real advancement in the understanding of the pathophysiology of metabolic and mental diseases and could lead to important medical benefits.
Collapse
|
82
|
De Yébenes JG, Sánchez M, Mena MA. Neurotrophic factors for the investigation and treatment of movement disorders. Neurotox Res 2003; 5:119-38. [PMID: 12832227 DOI: 10.1007/bf03033377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurotrophic factors (NFs) are proteins that enhance neuronal survival, differentiation, neurotransmitter function and resistance to neurotoxins and lesions. For these reasons the NFs are considered as a new potential therapeutic tool for the treatment of neurodegenerative disorders, a group of diseases that produce the most important cause for disability in the Western world. Some NFs prevent or even reverse the behavioral, biochemical, pharmacological and histological abnormalities observed in several in vitro and in vivo models of neurodegenerative disorders, namely Parkinson's disease. Several NFs have been investigated in primate models of neurological disorders and some of them have been used for patients with these diseases. The results so far obtained in humans have been disappointing for several reasons, including technical problems for delivery, unbearable side effects or lack of efficacy. Future approaches for the use of NFs in humans should include the following: (1) Investigation of the putative compounds in animal models more related to the pathophysiology of each disease, such as in genetic models of neurodegenerative diseases; (2) New methods of delivery including genetic engineering by viral vectors and administration through implantable devices; (3) More precise methods of continuous response evaluation, including the novel neuroimaging techniques; (4) Investigation of the effects of behavioral stimulation and conventional pharmacotherapy on the metabolism of NFs.
Collapse
|
83
|
Abstract
Energy homeostasis is controlled by a complex neuroendocrine system consisting of peripheral signals like leptin and central signals, in particular, neuropeptides. Several neuropeptides with anorexigenic (POMC, CART, and CRH) as well as orexigenic (NPY, AgRP, and MCH) actions are involved in this complex (partly redundant) controlling system. Starvation as well as overfeeding lead to changes in expression levels of these neuropeptides, which act downstream of leptin, resulting in a physiological response. In this review the role of several anorexigenic and orexigenic (hypothalamic) neuropeptides on food intake and body weight regulation is summarized.
Collapse
Affiliation(s)
- J J G Hillebrand
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | |
Collapse
|
84
|
Abstract
The anorexia of aging is a syndrome characterized by unexplained losses in food intake and body weight that occur near the end of life. Proposed etiologies cover a wide range of biological and psychological conditions. The observation of this phenomenon in older laboratory animals suggests that physiological changes play a significant causal role. Research on the neurochemical control of energy balance has received much attention in recent years, and age-related alterations in the neuropeptidergic effectors of food intake have been implicated in the anorexia of aging. This review provides an update on putative mechanisms underlying this dysregulation of feeding during advanced age.
Collapse
Affiliation(s)
- Barbara A Horwitz
- Section of Neurobiology, Physiology, and Behavior, Division of Biological Sciences, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
85
|
Speakman JR, Stubbs RJ, Mercer JG. Does body mass play a role in the regulation of food intake? Proc Nutr Soc 2002; 61:473-87. [PMID: 12691177 DOI: 10.1079/pns2002194] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is widely believed that body fatness (and hence total body mass) is regulated by a lipostatic feedback system. This system is suggested to involve at least one peripheral signalling compound, which signals to the brain the current size of body fat stores. In the brain the level of the signal is compared with a desirable target level, and food intake and energy expenditure are then regulated to effect changes in the size of body fat stores. There is considerable support for this theory at several different levels of investigation. Patterns of body-mass change in subjects forced into energy imbalance seem to demonstrate homeostasis, and long-term changes in body mass are minor compared with the potential changes that might result from energy imbalance. Molecular studies of signalling compounds have suggested a putative lipostatic signal (leptin) and a complex network of downstream processing events in the brain, polymorphisms of which lead to disruption of body-mass regulation. This network of neuropeptides provides a rich seam of potential pharmaceutical targets for the control of obesity. Despite this consistent explanation for the observed phenomena at several different levels of enquiry, there are alternative explanations. In the present paper we explore the possibility that the existence of lipostatic regulation of body fatness is an illusion generated by the links between body mass and energy expenditure and responses to energy imbalance that are independent of body mass. Using computer-based models of temporal patterns in energy balance we show that common patterns of change in body mass following perturbation can be adequately explained by this 'non-lipostatic' model. This model has some important implications for the interpretations that we place on the molecular events in the brain, and ultimately in the search for pharmaceutical agents for alleviation of obesity.
Collapse
Affiliation(s)
- John R Speakman
- Aberdeen Centre for Energy Regulation and Obesity, Division of Appetite and Energy Balance, Rowett Research Institute, Aberdeen AB21 9SB, UK.
| | | | | |
Collapse
|
86
|
Abstract
The dual center hypothesis in the central control of energy balance originates from the first observations performed more than 5 decades ago with brain lesioning and stimulation experiments. On the basis of these studies the "satiety center" was located in the ventromedial hypothalamic nucleus, since lesions of this region caused overfeeding and excessive weight gain, while its electrical stimulation suppressed eating. On the contrary, lesioning or stimulation of the lateral hypothalamus elicited the opposite set of responses, thus leading to the conclusion that this area represented the "feeding center". The subsequent expansion of our knowledge of specific neuronal subpopulations involved in energy homeostasis has replaced the notion of specific "centers" controlling energy balance with that of discrete neuronal pathways fully integrated in a more complex neuronal network. The advancement of our knowledge on the anatomical structure and the function of the hypothalamic regions reveals the great complexity of this system. Given the aim of this review, we will focus on the major structures involved in the control of energy balance.
Collapse
Affiliation(s)
- R Vettor
- Internal Medicine, Department of Medical and Surgical Sciences, University of Padova, Padova, Italy.
| | | | | | | |
Collapse
|
87
|
Wilczak N, Kühl N, Chesik D, Geerts A, Luiten P, De Keyser J. Insulin-like growth factor (IGF)-I binding to a cell membrane associated IGF binding protein-3 acid-labile subunit complex in human anterior pituitary gland. J Neurochem 2002; 82:430-8. [PMID: 12124444 DOI: 10.1046/j.1471-4159.2002.00979.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The binding characteristics of [(125) I]insulin-like growth factor (IGF)-I were studied in human brain and pituitary gland. Competition binding studies with DES(1-3)IGF-I and R(3) -IGF-I, which display high affinity for the IGF-I receptor and low affinity for IGF binding proteins (IGFBPs), were performed to distinguish [(125) I]IGF-I binding to IGF-I receptors and IGFBPs. Specific [(125) I]IGF-I binding in brain regions and the posterior pituitary was completely displaced by DES(1-3)IGF-I and R(3) -IGF-I, indicating binding to IGF-I receptors. In contrast, [(125) I]IGF-I binding in the anterior pituitary was not displaced by DES(1-3)IGF-I and R(3) -IGF-I, suggesting binding to an IGF-binding site that is different from the IGF-I receptor. Binding affinity of IGF-I to this site was about 10-fold lower than for the IGF-I receptor. Using western immunoblotting we were also unable to detect IGF-I receptors in human anterior pituitary. Instead, western immunoblotting and immunoprecipitation experiments showed a 150-kDa IGFBP-3-acid labile subunit (ALS) complex in the anterior pituitary and not in the posterior pituitary and other brain regions. RT-PCR experiments showed the expression of ALS mRNA in human anterior pituitary indicating that the anterior pituitary synthesizes ALS. In the brain regions and posterior pituitary, IGFBP-3 was easily washed away during pre-incubation procedures as used in the [(125) I]IGF-I binding experiments. In contrast, the IGFBP-3 complex in the anterior pituitary could not be removed by these washing procedures. Our results indicate that the human anterior pituitary contains a not previously described tightly cell membrane-bound 150-kDa IGFBP-3-ALS complex that is absent in brain and posterior pituitary.
Collapse
Affiliation(s)
- Nadine Wilczak
- Department of Neurology, Academisch Ziekenhuis Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
88
|
|
89
|
|
90
|
Nordqvist ACS, Mathiesen T. Expression of IGF-II, IGFBP-2, -5, and -6 in meningiomas with different brain invasiveness. J Neurooncol 2002; 57:19-26. [PMID: 12125963 DOI: 10.1023/a:1015765613544] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Meningiomas show clinical characteristics that vary from very benign to clearly malignant with rapid invasive growth and metastases. This study was undertaken to analyze the expression of members in the insulin-like growth factor (IGF) system in meningiomas showing different degrees of brain invasion. Tissue samples from 16 meningiomas were analyzed for members in the IGF family by mRNA in situ hybridization. The meningiomas comprised three groups: I. Benign meningiomas that did not interfere with the arachnoid plane and showed no edema. II. Benign meningiomas that did not respect the arachnoid plane and tumors that caused edema. III. Aggressive and malignant meningiomas that caused edema and showed brain invasion. IGF-II mRNA was identified in all tumors analyzed, and with a clear increase in expression observed in group III tumors. IGFBP-2 mRNA was detected in equal levels in all tumors. IGFBP-5 mRNA levels were highest in the benign group without edema (I) of meningiomas whereas IGFBP-6 mRNA levels were highest in the group with brain invasion (III). Brain invasiveness in degrees from respect of the arachnoid membrane progressing to frank brain invasion correlated with increases in IGF-II and IGFBP-6 expression. High levels of IGFBP-6 may not inhibit IGF-II actions, which is known to be growth promoting in tumors. Instead, IGFBP-6 appears to have an importance for the characteristics of edema and brain invasion in meningiomas.
Collapse
|
91
|
Guan J, Miller OT, Waugh KM, McCarthy DC, Gluckman PD. Insulin-like growth factor-1 improves somatosensory function and reduces the extent of cortical infarction and ongoing neuronal loss after hypoxia-ischemia in rats. Neuroscience 2002; 105:299-306. [PMID: 11672597 DOI: 10.1016/s0306-4522(01)00145-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Treatment with insulin-like growth factor-1 has been demonstrated to reduce the extent of cortical infarction 5 days after hypoxic-ischemic brain injury. As neuronal death can be progressive and long lasting after initial injury, the present study examined the long-term effects of insulin-like growth factor-1 on late neuronal loss 20 days after hypoxic-ischemic injury, together with evaluating neurobehavioral outcome as assumed by somatosensory function. Unilateral brain injury was induced in adult rats by carotid artery ligation followed by 10 min of hypoxia (6% O2). A single dose of insulin-like growth factor-1 (50 microg) was administered intracerebroventricularly via a stereotaxically pre-fixed cannula 2 h after injury. A bilateral tactile stimulation test was used to examine the degree of somatosensory function at 3, 5, 10 and 20 days after the hypoxia in both insulin-like growth factor-1- (n=12) and its vehicle- (n=12) treated rats, along with sham-operated rats (n=9). Cortical infarction and percentage of selective neuronal loss in the cerebral cortex were examined 20 days after the hypoxic-ischemic injury in both treatment groups. Hypoxic-ischemic injury resulted in a significant delay in the time taken to contact the patch over the period examined (left/right ratio 5.1+/-0.79), particularly at 3 days (7.0+/-2.8) after the hypoxia, compared to sham-operated rats (1.1+/-0.9, P<0.05). The overall effect of insulin-like growth factor-1 in reducing the time taken to contact the patch was significant (P=0.03, 2.6+/-0.79) compared to the vehicle group. There was a trend towards a reduction of cortical infarction after insulin-like growth factor-1 treatment (P=0.058), however insulin-like growth factor-1 significantly reduced the percentage of selective neuronal loss (P=0.027) 20 days following the hypoxia. From these data we suggest that insulin-like growth factor-1 improves somatosensory function by reducing both the extent of cortical infarction and ongoing progressive neuronal death during brain recovery from hypoxic-ischemic injury.
Collapse
Affiliation(s)
- J Guan
- Liggins Institute, Faculty of Medicine and Health Sciences, The University of Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
92
|
Havel PJ. Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp Biol Med (Maywood) 2001; 226:963-77. [PMID: 11743131 DOI: 10.1177/153537020122601102] [Citation(s) in RCA: 321] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Numerous peripheral signals contribute to the regulation of food intake and energy homeostasis. Mechano- and chemoreceptors signaling the presence and energy density of food in the gastrointestinal (GI) tract contribute to satiety in the immediate postprandial period. Changes in circulating glucose concentrations appear to elicit meal initiation and termination by regulating activity of specific hypothalamic neurons that respond to glucose. Other nutrients (e.g., amino acids and fatty acids) and GI peptide hormones, most notably cholecystokinin, are also involved in short-term regulation of food intake. However, the energy density of food and short-term hormonal signals by themselves are insufficient to produce sustained changes in energy balance and body adiposity. Rather, these signals interact with long-term regulators (i.e., insulin, leptin, and possibly the orexigenic gastric peptide, ghrelin) to maintain energy homeostasis. Insulin and leptin are transported into the brain where they modulate expression of hypothalamic neuropeptides known to regulate feeding behavior and body weight. Circulating insulin and leptin concentrations are proportional to body fat content; however, their secretion and circulating levels are also influenced by recent energy intake and dietary macronutrient content. Insulin and leptin concentrations decrease during fasting and energy-restricted diets, independent of body fat changes, ensuring that feeding is triggered before body energy stores become depleted. Dietary fat and fructose do not stimulate insulin secretion and leptin production. Therefore, attenuated production of insulin and leptin could lead to increased energy intake and contribute to weight gain and obesity during long-term consumption of diets high in fat and/or fructose. Transcription of the leptin gene and leptin secretion are regulated by insulin-mediated increases of glucose utilization and appear to require aerobic metabolism of glucose beyond pyruvate. Other adipocyte-derived hormones and proteins that regulate adipocyte metabolism, including acylation stimulating protein, adiponectin, diacylglycerol acyltransferase, and perilipin, are likely to have significant roles in energy homeostasis.
Collapse
Affiliation(s)
- P J Havel
- Department of Nutrition, University of California, Davis, California 95616, USA.
| |
Collapse
|
93
|
Fernandes ML, Saad MJ, Velloso LA. Effects of age on elements of insulin-signaling pathway in central nervous system of rats. Endocrine 2001; 16:227-34. [PMID: 11954667 DOI: 10.1385/endo:16:3:227] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Insulin resistance is known to play a pivotal role in type 2 diabetes. Senile individuals, besides being prone to insulin resistance and, consequently, to type 2 diabetes, manifest diseases of the central nervous system (CNS) that may be influenced by disturbances of insulin signaling in the brain, such as memory impairment, Parkinson disease, and Alzheimer disease. We investigated the expression and response to insulin of elements involved in the insulin-signaling pathway in the forebrain cortex and cerebellum of rats ages 1 d to 60 wk. The protein content of insulin receptors and SRC homology adaptor protein (SHC) did not change significantly along the time frame analyzed. However, insulin-induced tyrosine phosphorylation of the insulin receptor and SHC, and the association of SHC/growth factor receptor binding protein-2 (GRB2) decreased significantly from d 1 to wk 60 of life in both types of tissues. Moreover, the expression of SH protein tyrosine phosphatase-2 (SHP2), a tyrosine phosphatase involved in insulin signal transduction and regulation of the insulin signal, decreased significantly with age progression, in both the forebrain cortex and the cerebellum of rats. Thus, elements involved in the insulin-signaling pathway are regulated at the expression and/or functional level in the CNS, and this regulation may play a role in insulin resistance in the brain.
Collapse
Affiliation(s)
- M L Fernandes
- Department of Internal Medicine, State University of Campinas, SP, Brazil
| | | | | |
Collapse
|
94
|
Williams G, Bing C, Cai XJ, Harrold JA, King PJ, Liu XH. The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol Behav 2001; 74:683-701. [PMID: 11790431 DOI: 10.1016/s0031-9384(01)00612-6] [Citation(s) in RCA: 389] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hypothalamus regulates many aspects of energy homeostasis, adjusting both the drive to eat and the expenditure of energy in response to a wide range of nutritional and other signals. It is becoming clear that various neural circuits operate to different degrees and probably serve specific functions under particular conditions of altered feeding behaviour. This review will discuss this functional diversity by illustrating hypothalamic neurones that express neuropeptide Y (NPY), the melanocortin-4 receptor (MC4-R) and the orexins. NPY neurones in the arcuate nucleus (ARC) release NPY, a powerful inducer of feeding and obesity, in the paraventricular nucleus (PVN) and the lateral hypothalamic area (LHA). ARC-NPY neurones are inhibited by leptin and insulin and become overactive when levels of these hormones fall during undernutrition. They may function physiologically to protect against starvation. With disruption of the inhibitory leptin signals due to gene mutations, the NPY neurones are overactive, which contributes to hyperphagia and obesity in the ob/ob and db/db mice and fa/fa Zucker rat. The MC4-R is activated by alpha-melanocyte-stimulating hormone [alpha-MSH; a cleavage product of pro-opiomelanocortin (POMC), which is expressed in the other ARC neurones] and inhibits feeding. This effect is antagonised by agouti gene-related peptide (AGRP), which is coexpressed by the ARC-NPY neurones only. Activation of MC4-R, possibly mediated by blockade of AGRP release, appears to restrain overeating of a palatable diet. This response may be programmed by a transient rise in leptin soon after presentation of palatable food, and rats that fail to do this will overeat and become obese. Orexin-A and -B (corresponding to hypocretins 1 and 2) are expressed in specific LHA neurones. These have extensive reciprocal connections with many areas involved in appetite control, including the nucleus of the solitary tracts (NTS), which relays vagal afferent satiety signals from the viscera. Orexin neurones also have close anatomical connections with LHA glucose-sensitive neurones. Orexin-A induces acute feeding but does not cause obesity. Orexin neurones are stimulated by hypoglycaemia partly via the NTS and inhibited by food ingestion. These neurones may therefore be involved in the severe hyperphagia of hypoglycaemia and short-term control of feeding.
Collapse
Affiliation(s)
- G Williams
- Diabetes and Endocrinology Research Group, Department of Medicine, University of Liverpool, Duncan Building, Daulby Street, L69 3GA, Liverpool, UK.
| | | | | | | | | | | |
Collapse
|
95
|
Schober A, Unsicker K. Growth and neurotrophic factors regulating development and maintenance of sympathetic preganglionic neurons. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 205:37-76. [PMID: 11336393 DOI: 10.1016/s0074-7696(01)05002-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The functional anatomy of sympathetic preganglionic neurons is described at molecular, cellular, and system levels. Preganglionic sympathetic neurons located in the intermediolateral column of the spinal cord connect the central nervous system with peripheral sympathetic ganglia and chromaffin cells inside and outside the adrenal gland. Current knowledge is reviewed of the development of these neurons, which share their origin with progenitor cells, giving rise to somatic motoneurons in the ventral horn. Their connectivities, transmitters involved, and growth factor receptors are described. Finally, we review the distribution and functions of trophic molecules that may have relevance for development and maintenance of preganglionic sympathetic neurons.
Collapse
Affiliation(s)
- A Schober
- Department of Neuroanatomy and Interdisciplinary Center for Neuroscience, University of Heidelberg, Germany
| | | |
Collapse
|
96
|
Abstract
The regulation of energy balance is enormously complex, with numerous genetic, hormonal, neural/behavioral, and societal influences. Although the current epidemic of obesity has its underpinnings in the changes in culture during the last half century, the role of the neuroendocrine system in the genesis of obesity is physiologically and therapeutically unavoidable. Increased understanding of this system has suggested organic etiologies (and therapies) for some rare and not-so-rare forms of obesity. With so many inputs, it is not implausible that dysfunction of other parts of this feedback system will be found to explain other forms of obesity in the future. Fortunately or unfortunately, diet and exercise remain the mainstays of obesity therapy. Most diet-exercise programs result in an acute 11-kg weight loss in adults; the question is whether it can be sustained without significant long-term behavior modification. In the European Sibutramine Trial of Obesity Reduction and Maintenance (STORM), 42% of treated patients dropped out; of those remaining, 77% of subjects lost more than 5% of initial body weight, but only 43% of these individuals maintained greater than 80% of this loss over 2 years. Could there be an organic component in persons who do not respond? Obesity pharmacotherapies sometimes have beneficial acute effects, but these effects are impermanent; discontinuation tends to result in a rebound weight gain, suggesting that the etiology of the obesity is still present. A useful guiding principle is that patients who do not respond to diet and exercise should undergo an initial medical evaluation, including assessments of birth weight, past medical history, weight history, family history, diet, exercise, and fasting insulin and thyroid levels. As the nosology of obesity improves, diagnostic efficiency and therapeutic success should increase, leading to a decrease in associated morbidity, mortality, and socioeconomic ramifications.
Collapse
Affiliation(s)
- R H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
97
|
Gerozissis K, Rouch C, Lemierre S, Nicolaidis S, Orosco M. A potential role of central insulin in learning and memory related to feeding. Cell Mol Neurobiol 2001; 21:389-401. [PMID: 11775068 PMCID: PMC11533830 DOI: 10.1023/a:1012606206116] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Hypothalamic insulin (HI) is well known for its role in feeding regulation. In addition, its concentration is modified in response to meals. Recent studies suggest that brain insulin participates in memory processes, possibly through stimulation by glucose. 2. The present microdialysis study focused on local in vivo regulation of HI by glucose and on the effects of aging on HI, since aging is characterized by deterioration of memory, body weight regulation, and central glucose utilization. Glucose (8 mM) infused for 5 min increased extracellular HI levels rapidly, by 4.6-fold, and cerebellar insulin levels by 0.4-fold only, suggesting a specific area-dependent regulation of HI by glucose. Neither insulinemia nor glycemia were affected, suggesting a central mechanism. The same dose of glucose induced a modest (0.4-fold), delayed (45 min) increase in hypothalamic serotonin, suggesting that the effect of glucose on HI is independent of a previously defined local serotonin-induced insulin release. HI levels in old normal weight rats were half the levels of young rats. In genetically old obese (fa/fa) Zucker rats, HI concentration was 30% of that in young normal rats, suggesting a deterioration of HI availability when aging and obesity are combined. 3. The above results, in line with recent considerations on a potential role of central insulin in learning and memory, suggest particular effects of HI on feeding and memory and probably on a specific "memory for food."
Collapse
Affiliation(s)
- K Gerozissis
- Laboratoire de Physiopathologie de la Nutrition, Université Paris 7, France.
| | | | | | | | | |
Collapse
|
98
|
Naidu KA, Tang JL, Naidu KA, Prockop LD, Nicosia SV, Coppola D. Antiproliferative and apoptotic effect of ascorbyl stearate in human glioblastoma multiforme cells: modulation of insulin-like growth factor-I receptor (IGF-IR) expression. J Neurooncol 2001; 54:15-22. [PMID: 11763418 DOI: 10.1023/a:1012545311054] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human glioblastomas (gliomas) are characterized as highly invasive and rapidly growing brain tumors. In this study, we present data on in vitro effect of ascorbyl stearate (Asc-S), a liphophilic derivative of ascorbic acid on cell proliferation, transformation, apoptosis and modulation of expression of insulin-like growth factor-I receptor (IGF-IR) in human glioblastoma multiforme (T98G) cells. Asc-S showed significant inhibition of fetal bovine serum and human recombinant insulin-like growth factor-I (IGF-I) dependent cell proliferation in a dose dependent manner. Treatment of T98G cells with 0, 50, 100 and 150 microM Asc-S for 24h slowed down the cell multiplication cycle with significant accumulation of cells at late S/G2-M phase of cycle. Asc-S treatment (100 microM) reversed the transformed phenotype as determined by clonogenecity in soft agar and also induced apoptosis of T98G. These changes were found to be associated with significant decrease in IGF-IR expression in dose and time dependent manner compared to untreated controls. The data clearly demonstrate that Asc-S has antiproliferative and apoptotic effect on T98G cells probably through modulation of IGF-IR expression and consequent facilitation of programmed cell death.
Collapse
Affiliation(s)
- K A Naidu
- Department of Neurology, H. Lee Moffitt Cancer Center and Research Institute, College of Medicine, University of South Florida, Tampa, USA.
| | | | | | | | | | | |
Collapse
|
99
|
Abstract
The regulation of energy balance is enormously complex, with numerous genetic, hormonal, neural and behavioral, and societal influences. Although the current epidemic of obesity clearly has its underpinnings in the changes in culture during the past half-century (see other articles in this issue), the role of the neuroendocrine system in the genesis of obesity, as described in this article, is physiologically and therapeutically unavoidable. An understanding of this system has suggested organic causes (and therapies) for some rare and not-so-rare forms of obesity. With so many inputs, it is not far-fetched to assume that dysfunction of other parts of this feedback system will be found to explain other forms of obesity in the future. What does this mean for obese children entering the pediatrician's office? Fortunately or unfortunately, diet and exercise are the mainstays of obesity therapy for children and adults. Most diet-exercise programs result in an acute 11-kg weight loss in adults; the question is whether it can be sustained without significant long-term behavioral modification. For instance, the European Sibutramine Trial of Obesity Reduction and Maintenance trial showed that 42% of treated subjects drop out; of those remaining, 77% of subjects lost more than 5% of initial body weight, but only 43% of those maintained more than 80% of this over 2 years. Could there be an organic component in those who do not respond? Of course, obesity pharmacotherapies sometimes have beneficial acute effects, but these drugs work for only as long as they are consumed; discontinuation tends to result in a "rebound" weight gain, suggesting that the cause of the obesity is still present. Furthermore, in 2001, there are no obesity drugs approved for children. A useful guiding principle is that children deserve at the minimum an initial medical evaluation, including birth weight, medical history, family history, dietary evaluation, and exercise assessment. Perhaps the most important feature that can distinguish "organic" from "behavioral" weight gain in childhood is the age of the "adiposity rebound." The Centers for Disease Control and Prevention now supplies BMI charts for boys and girls at www.cdc.gov/growthcharts. Plotting of the BMI versus age allows pediatricians to determine the age at which the BMI starts to increase (mean, 5.5 years). The earlier the adiposity rebound, the more likely the child will be obese as an adult, and the more likely that an organic cause can be determined. In such patients, thyroid levels and fasting insulin and leptin levels should be measured. An initial attempt at diet and exercise is essential; patients who do not respond with BMI stabilization should be investigated for a more ominous cause of their obesity. As the nosology of obesity improves, pediatricians will be able to increase the diagnostic efficiency and therapeutic success of this unfortunate, debilitating, and expensive epidemic.
Collapse
Affiliation(s)
- R H Lustig
- Division of Endocrinology and Metabolism, Departments of Pediatrics and Anatomy and Neurobiology, University of Tennessee Health Science Center and St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
100
|
Abstract
Evidence has been accumulating recently that the hormone insulin may modulate cognitive activity by acting in the central nervous system. Initially derived from the observation that insulin and insulin receptors are found in specific brain areas, this evidence also includes cognitive assessments of humans in insulin-deficient and insulin-resistant disease states and experimental manipulation of rodent models. Additional support is derived from in vivo and in vitro systems that are used to investigate the neurophysiological basis of learning and memory. This article is a brief review of the literature that suggests a connection between insulin and memory and draws together some of the findings relevant to possible physiological mechanisms for this cognitive effect.
Collapse
Affiliation(s)
- C R Park
- Research Service, James A. Haley Veteran's Hospital, 13000 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|