51
|
Mourad FH, Barada KA, Bou Rached NA, Khoury CI, Saadé NE, Nassar CF. Inhibitory effect of experimental colitis on fluid absorption in rat jejunum: role of the enteric nervous system, VIP, and nitric oxide. Am J Physiol Gastrointest Liver Physiol 2006; 290:G262-G268. [PMID: 16123200 DOI: 10.1152/ajpgi.00271.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Impairment of small intestinal absorption has been described in patients with ulcerative colitis and in animal models of experimental colitis. The pathophysiology of this dysfunction has not been elucidated. The aim of this study was to investigate the effect of chemical colitis on jejunal fluid absorption and determine the role of the enteric nervous system and some putative neurotransmitters. In a rat model of iodoacetamide-induced colitis, jejunal net fluid absorption was evaluated by the in vivo single-pass perfusion technique. The effects of 1) tetrodotoxin (TTX), 2) benzylalkonium chloride (BAC), 3) capsaicin, 4) vasoactive intestinal polypeptide (VIP) antagonism, 5) nitric oxide (NO) synthase (NOS) inhibition, and 6) 5-hydroxytryptamine type 3 and 4 (5-HT(3) and 5-HT(4)) receptor antagonism on the changes in fluid movement were investigated. A significant decrease in jejunal net fluid absorption was found 2 and 4 days after colitis induction: 26 (SD 14) and 28 (SD 19) microl x min(-1) x g dry intestinal wt(-1), respectively [P < 0.0002 compared with sham rats at 61 (SD 6.5) microl x min(-1) x g dry intestinal wt(-1)]. No histological changes were evident in jejunal sections. TTX and BAC reversed this decrease in fluid absorption: 54 (SD 13) and 44 (SD 14) microl x min(-1) x g dry intestinal wt(-1) (P = 0.0005 and P = 0.019, respectively, compared with colitis). Ablation of capsaicin-sensitive primary afferent fibers had a partial effect: 45 (SD 5) microl x min(-1) x g dry intestinal wt(-1) (P = 0.001 and P = 0.003 compared with colitis and sham, respectively). Constitutive and neuronal NOS inhibition and VIP antagonism returned jejunal net fluid absorption to normal values: 66 (SD 19), 61 (SD 5), and 56 (SD 14) microl x min(-1) x g dry intestinal wt(-1), respectively. 5-HT(3) and 5-HT(4) receptor antagonism had no effect. Chemical colitis is associated with a significant decrease in jejunal net fluid absorption. This decrease is neurally mediated and involves VIP- and NO-related mechanisms.
Collapse
Affiliation(s)
- Fadi H Mourad
- American University of Beirut Medical Centre, PO Box 113-6044, Hamra 110-32090, Beirut, Lebanon.
| | | | | | | | | | | |
Collapse
|
52
|
Bartoo AC, Sprunger LK, Schneider DA. Expression of the sodium channel Nav1.2 in chemically identified myenteric neurons in the guinea pig. Cell Tissue Res 2005; 324:25-32. [PMID: 16372194 DOI: 10.1007/s00441-005-0107-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
Our purpose was to identify Na(v)1.2-expressing myenteric neurons of the small and large intestine of the guinea pig by using antibodies directed against Na(v)1.2 and selected neurochemical markers. Na(v)1.2-like immunoreactivity (-li) co-localized with immunoreactivity for choline acetyltransferase in all regions, representing 45%-67% of Na(v)1.2-positive neurons. Na(v)1.2-li co-localized with immunoreactivity for the neural form of nitric oxide synthase more frequently in the colon (20% of neurons exhibiting Na(v)1.2-li) than in the ileum (8%). Co-localization of Na(v)1.2-li with immunoreactivity for a form of neurofilament (NF145) was infrequently observed in the ileum and colon. Enkephalin-immunoreactive cell bodies co-localized with Na(v)1.2-li in all regions. Few myenteric cell bodies immunoreactive for neuropeptide Y were observed in the ileum, but all co-localized with Na(v)1.2-li. This and our previous data suggest that Na(v)1.2 is widely expressed within the guinea pig enteric nervous system, including the three main classes of myenteric neurons (sensory, motor, and interneurons), and is involved in both excitatory and inhibitory pathways. Notable exceptions include the excitatory motor neurons to the longitudinal smooth muscle, the ascending interneurons of the ileum, and the myenteric neurons immunoreactive for NF145, few of which are immunoreactive for Na(v)1.2.
Collapse
Affiliation(s)
- A C Bartoo
- Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | | | |
Collapse
|
53
|
Ohta T, Kubota A, Murakami M, Otsuguro KI, Ito S. P2X2 receptors are essential for [Ca2+]i increases in response to ATP in cultured rat myenteric neurons. Am J Physiol Gastrointest Liver Physiol 2005; 289:G935-48. [PMID: 15905416 DOI: 10.1152/ajpgi.00017.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We characterized ATP-induced changes in intracellular Ca2+ concentration ([Ca2+]i) and membrane current in cultured rat myenteric neurons using ratiometric Ca2+ imaging with fura-2 and the whole cell patch-clamp technique, respectively. Neuronal cells were functionally identified by [Ca2+]i responses to high K+ and nicotine, which occurred only in cells positive for neuron-specific protein gene product 9.5 immunoreactivity. ATP evoked a dose-dependent increase of [Ca2+]i that was greatly decreased by the removal of extracellular Ca2+ concentration ([Ca2+]o). The amplitude of the [Ca2+]i response to ATP was reduced by half in the presence of voltage-dependent Ca2+ channel blockers. In [Ca2+]o-free solution, ATP produced a small transient rise in [Ca2+]i similar to that induced by P2Y agonists. At -60 mV, ATP evoked a slowly inactivating inward current that was suppressed by the removal of extracellular Na+ concentration. The current-voltage relation for ATP showed an inward rectification with the reversal potential of about 0 mV. The apparent rank order of potency for the purinoceptor agonist-induced increases of [Ca2+]i was ATP > or = adenosine 5'-O-3-triphosphate > or = CTP > or = 2-methylthio-ATP > benzoylbenzoyl-ATP. A similar potency order was obtained with current responses to these agonists. P2 antagonists inhibited inward currents induced by ATP. Ca2+ and Mg2+ suppressed the ATP-induced current, and Zn2+, Cu2+, and protons potentiated it. RT-PCR and immunocytochemical studies showed the expression of P2X2 receptors in cultured rat myenteric neurons. These results suggest that ATP mainly activates ionotropic P2X2 receptors, resulting in a [Ca2+]i increase dependent on [Ca2+]o in rat myenteric neurons. A small part of the ATP-induced [Ca2+]i increase may be also mediated via a P2Y receptor-related mechanism.
Collapse
Affiliation(s)
- Toshio Ohta
- Laboratory of Pharmacology, Dept. of Biomedical Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | | | | | | | | |
Collapse
|
54
|
Ewald P, Neuhuber WL, Raab M. Vesicular glutamate transporter 1 immunoreactivity in extrinsic and intrinsic innervation of the rat esophagus. Histochem Cell Biol 2005; 125:377-95. [PMID: 16231188 DOI: 10.1007/s00418-005-0083-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2005] [Indexed: 01/19/2023]
Abstract
Encouraged by the recent finding of vesicular glutamate transporter 2 (VGLUT2) immunoreactivity (-ir) in intraganglionic laminar endings (IGLEs) of the rat esophagus, we investigated also the distribution and co-localization patterns of VGLUT1. Confocal imaging revealed substantial co-localization of VGLUT1-ir with selective markers of IGLEs, i.e., calretinin and VGLUT2, indicating that IGLEs contain both VGLUT1 and VGLUT2 within their synaptic vesicles. Besides IGLEs, we found VGLUT1-ir in both cholinergic and nitrergic myenteric neuronal cell bodies, in fibers of the muscularis mucosae, and in esophageal motor endplates. Skeletal neuromuscular junctions, in contrast, showed no VGLUT1-ir. We also tested for probable co-localization of VGLUT1-ir with markers of extrinsic and intrinsic esophageal innervation and glia. Within the myenteric neuropil we found, besides co-localization of VGLUT1 and substance P, no further co-localization of VGLUT1-ir with any of these markers. In the muscularis mucosae some VGLUT1-ir fibers were shown to contain neuronal nitric oxide synthase (nNOS)-ir. VGLUT1-ir in esophageal motor endplates was partly co-localized with vesicular acetylcholine transporter (VAChT)/choline acetyltransferase (ChAT)-ir, but VGLUT1-ir was also demonstrated in separately terminating fibers at motor endplates co-localized neither with ChAT/VAChT-ir nor with nNOS-ir, suggesting a hitherto unknown glutamatergic enteric co-innervation. Thus, VGLUT1-ir was found in extrinsic as well as intrinsic innervation of the rat esophagus.
Collapse
Affiliation(s)
- P Ewald
- Department of Anatomy I, University of Erlangen-Nuremberg, Krankenhausstr. 9, 91054, Erlangen, Germany
| | | | | |
Collapse
|
55
|
Onori L, Aggio A, D'Alo' S, Muzi P, Cifone MG, Mellillo G, Ciccocioppo R, Taddei G, Frieri G, Latella G. Role of nitric oxide in the impairment of circular muscle contractility of distended, uninflamed mid-colon in TNBS-induced acute distal colitis in rats. World J Gastroenterol 2005; 11:5677-84. [PMID: 16237764 PMCID: PMC4481487 DOI: 10.3748/wjg.v11.i36.5677] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the role of nitric oxide (NO) in the motor disorders of the dilated uninflamed mid-colon (DUMC) from trinitrobenzene sulfonic acid (TNBS)-induced acute distal colitis in rats.
METHODS: Colitis was induced in male Sprague-Dawley rats by a single intracolonic administration of TNBS. Control rats received an enema of 0.9% saline. The rats were killed 48 h after TNBS or saline administration. Macroscopic and histologic lesions of the colon were evaluated. Myeloperoxidase (MPO) and nitric oxide synthase (NOS) activity were measured on the colonic tissue. In TNBS rats, we evaluated spontaneous and evoked contractile activity in circular muscle strips derived from DUMC in comparison to the same colonic segment of control rats, both in the presence and in the absence of a non-selective NOS isoforms inhibitor N-nitro-L-arginine (L-NNA). Pharmacological characterization of electric field stimulation (EFS)-evoked contractile responses was also performed.
RESULTS: In TNBS rats, the distal colon showed severe histological lesions and a high MPO activity, while the DUMC exhibited normal histology and MPO activity. Constitutive NOS activity was similar in TNBS and control rats, whereas inducible NOS activity was significantly increased only in the injured distal colon of TNBS rats. Isometrically recorded mechanical activity of circular muscle strips from DUMC of TNBS rats showed a marked reduction of the force and frequency of spontaneous contractions compared to controls, as well as of the contractile responses to a contracting stimulus. In the presence of L-NNA, the contractile activity and responses displayed a significantly greater enhancement compared to controls. The pharmacological characterization of EFS contractile responses showed that a cooperative-like interaction between cholinergic muscarinic and tachykinergic neurokinin 1 and 2 receptors mediated transmission in DUMC of TNBS rats vs a simple additive interaction in controls.
CONCLUSION: The results of this study show that, during TNBS-induced acute distal colitis, circular muscle intrinsic contractile mechanisms and possible enteric neural excitatory activity are inhibited in the distended uninflamed mid-colon. Suppression of NO synthesis markedly improves spontaneous and evokes muscle contractions, in spite of any evident change in local NO activity.
Collapse
Affiliation(s)
- Luciano Onori
- Department of Internal Medicine and Public Health, University of L' Aquila, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Visceral hypersensitivity is considered one of the causes of functional gastrointestinal disorders. The objectives of this review are to provide a practical description of neuroanatomy and physiology of gut sensation, to describe the diverse tests of visceral sensation and the potential role of brain imaging to further our understanding of visceral sensitivity in health and disease. Changes in motor function in the gut may influence sensory levels, eg, during contractions or as a result of changes in viscus compliance. New insights on sensory end organs, such as intraganglionic laminar endings, and basic neurophysiologic studies showing afferent firing during changes in stretch rather than tension illustrate the importance of different types of stimuli, not just tension, to stimulate afferent sensation. These insights provide the basis for understanding visceral sensation in health and disease, which will be extensively discussed in subsequent articles.
Collapse
Affiliation(s)
- Silvia Delgado-Aros
- Clinical Enteric Neuroscience Translational and Epidemiological Research Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
57
|
LePard KJ. Choline acetyltransferase and inducible nitric oxide synthase are increased in myenteric plexus of diabetic guinea pig. Auton Neurosci 2005; 118:12-24. [PMID: 15795174 DOI: 10.1016/j.autneu.2004.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 12/08/2004] [Accepted: 12/11/2004] [Indexed: 12/16/2022]
Abstract
Alterations in enzymes in myenteric neurons from ileum were investigated in guinea pigs treated with either the pancreatic beta cell toxin streptozotocin or vehicle. After 5-6 weeks, expressions of choline acetyltransferase, neuronal nitric oxide synthase and inducible nitric oxide synthase were determined in longitudinal and myenteric plexus preparations using indirect immunohistochemistry. In ileum from streptozotocin-treated animals, the density of choline acetyltransferase-immunoreactive nerve fibers within the tertiary plexus and the percent total myenteric neurons expressing inducible nitric oxide synthase were increased, but the percent total myenteric neurons expressing neuronal nitric oxide synthase was not changed. Diabetes resulted in selective alterations in myenteric neurons including an increased density of cholinergic tertiary fibers and percentage of neurons expressing the inducible isoform of nitric oxide synthase. These adaptive changes by myenteric neurons to diabetes may contribute to gastrointestinal dysfunctions associated with diabetes.
Collapse
Affiliation(s)
- Kathy J LePard
- Department of Physiology, Chicago College of Osteopathic Medicine, Midwestern University, 555 West 31st Street, Downers Grove, IL 60515, USA.
| |
Collapse
|
58
|
Lin Z, Sandgren K, Ekblad E. Increased expression of nitric oxide synthase in cultured neurons from adult rat colonic submucous ganglia. Auton Neurosci 2004; 114:29-38. [PMID: 15331042 DOI: 10.1016/j.autneu.2004.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 05/27/2004] [Accepted: 06/14/2004] [Indexed: 02/09/2023]
Abstract
Neuronal plasticity in the enteric nervous system (ENS) is probably a key step in intestinal adaptation during growth, maturation and ageing as well as in several pathophysiological situations. Studies on cultured myenteric neurons have revealed an increased vasoactive intestinal peptide (VIP) expression in neuronal nitric oxide synthase (NOS)-expressing neurons. In addition, both VIP and nitric oxide (NO) promote survival of cultured myenteric neurons. The aim of the present study was to investigate possible changes in the expression of VIP and NOS in cultured submucous neurons from adult rat large intestine. Submucous neurons were cultured as explants or as dissociated neurons for 3 and 8 days. Immunocytochemistry was used to determine the proportions of neurons containing VIP or NOS in preparations of uncultured controls (reflects the conditions in vivo) and in cultured explants of submucosa and dissociated submucous neurons. In situ hybridization was used to determine changes in the expressions of NOS and VIP mRNA. The relative number of NOS-expressing neurons increased significantly during culturing. The percentage of all neurons expressing NOS was 22% in controls, while approximately 50% of the cultured submucous neurons expressed NOS. VIP-expressing neurons constituted approximately 80% of all submucous neurons in controls as well as in cultured explants or dissociated neurons. Studies on coexistence revealed that the VIP-containing neurons were the ones that started to express NOS during culture. The induced expression of NOS in cultured adult submucous neurons indicates that nitric oxide, possibly in cooperation with VIP, is important for neuronal adaptation, maintenance and survival.
Collapse
Affiliation(s)
- Zhong Lin
- Department of Internal Medicine, The Affiliated Hospital of Guilin Medical College, People's Republic of China
| | | | | |
Collapse
|
59
|
Arnhold S, When M, Labbé D, Andressen C, Addicks K. Transient expression of NOS-II during development of the murine enteric nervous system. J Mol Histol 2004; 35:741-8. [PMID: 15609086 DOI: 10.1007/s10735-004-5675-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 03/29/2004] [Indexed: 02/05/2023]
Abstract
In the enteric nervous system, nitric oxide (NO) is regarded as an important messenger for the non-adrenergic and non-cholinergic neurotransmission. Synthesized mainly by the constitutive nitric oxide synthase (NOS) isoforms NOS I and NOS III, this molecule exerts prejunctional inhibitory effects in the submucosal plexus as well as relaxation of enteric smooth muscles. In order to elucidate the role for NO during enteric development, we looked for the expression of all three NOS-isoforms in the enteric nervous system during mouse development from E8 to E20 using immunohistochemistry. Starting around midgestation, a transient expression of the NOS-II isoform during the very early development of enteric neurones was detected in parallel to that of HNK-1 exclusively in the myenteric plexus. Similar to findings for other neuronal systems, NOS-I and NOS III isoforms could be traced starting significantly later to increase toward the end of embryonic development when NOS II immunoreactivity faded and a strong expression of the vasointestinal peptide could be detected. In contrast to the NOSII expression, the constitutive isoforms can also be detected in the submucosal plexus. Altogether, these findings suggest NOS-II to be exclusively involved during early steps of enteric nervous system development. Absence of downstream signalling elements, such as sGC and cGMP both in neurons and in enteric muscle until the end of the second third of gestation, may indicate different effects executed by NO during development, expressed by Ca(2+) -dependent and Ca(2+) -independent NOS isoforms.
Collapse
Affiliation(s)
- S Arnhold
- Department of Anatomy I, University of Cologne, J.-Stelzmann Str. 9, 50931 Köln, Germany.
| | | | | | | | | |
Collapse
|
60
|
Raab M, Neuhuber WL. Intraganglionic laminar endings and their relationships with neuronal and glial structures of myenteric ganglia in the esophagus of rat and mouse. Histochem Cell Biol 2004; 122:445-59. [PMID: 15378379 DOI: 10.1007/s00418-004-0703-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2004] [Indexed: 12/15/2022]
Abstract
Intraganglionic laminar endings (IGLEs) represent the only vagal mechanosensory terminals in the tunica muscularis of the esophagus and may be involved in local reflex control. We recently detected extensive though not complete colocalization of the vesicular glutamate transporter 2 (VGLUT2) with markers for IGLEs. To elucidate this colocalization mismatch, this study aimed at identifying markers for nitrergic, cholinergic, peptidergic, and adrenergic neurons and glial cells, which may colocalize with VGLUT2 outside of IGLEs. Confocal imaging revealed, besides substantial colocalization of VGLUT2 and substance P (SP), no other significant colocalizations of VGLUT2 and immunoreactivity for any of these markers within the same varicosities. However, we found close contacts of VGLUT2-positive structures to vesicular acetylcholine transporter, choline acetyltransferase, neuronal nitric oxide synthase, galanin, neuropeptide Y, and vasoactive intestinal peptide immunoreactive cell bodies and varicosities, as well as to glial cells. Neuronal perikarya were never positive for VGLUT2. Thus, VGLUT2 was almost exclusively found in IGLEs and may serve as a specific marker for them. In addition, many IGLEs also contained SP. The close contacts established by IGLEs to myenteric cell bodies, dendrites, and varicose fibers suggest that IGLEs modulate various types of enteric neurons and vice versa.
Collapse
Affiliation(s)
- M Raab
- Department of Anatomy I, University of Erlangen-Nuremberg, Lehrstuhl I, Krankenhausstrasse 9, 91054, Erlangen, Germany.
| | | |
Collapse
|
61
|
Vannucchi MG, Corsani L, Azzena GB, Faussone-Pellegrini MS, Mancinelli R. Functional activity and expression of inducible nitric oxide synthase (iNOS) in muscle of the isolated distal colon of mdx mice. Muscle Nerve 2004; 29:795-803. [PMID: 15170612 DOI: 10.1002/mus.20010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The inducible isoform of nitric oxide (NO) synthase (iNOS), expressed in endothelium, epithelium, and inflammatory cells, produces a large amount of NO. Previous studies on mouse intestine indicate that a muscular iNOS may have a role in the storage of intraluminal content. In this study we investigated the presence and function of iNOS in the colonic smooth muscle cells of 2- and 12-month-old dystrophic (mdx) mice. By using an in vitro isovolumic technique, and immunohistochemical and Western blot analysis, we demonstrated that iNOS is expressed and active in the smooth muscle cells of normal mouse and defective in young adult (2-month-old) mdx mice. Therefore, an altered activity of the muscle iNOS might explain the motility disorders observed in the colon of mdx mice and, from a clinical point of view, the impairment of intestinal function in dystrophic patients.
Collapse
MESH Headings
- Animals
- Colon/cytology
- Colon/enzymology
- Colon/physiopathology
- Gene Expression Regulation, Enzymologic
- Immunohistochemistry
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle, Smooth/cytology
- Muscle, Smooth/enzymology
- Muscle, Smooth/physiopathology
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Myocytes, Smooth Muscle/enzymology
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II
- Peristalsis/physiology
Collapse
Affiliation(s)
- Maria Giuliana Vannucchi
- Department of Anatomy, Histology, and Forensic Medicine, University of Florence, Florence, Italy
| | | | | | | | | |
Collapse
|
62
|
Abstract
The distinction between metabolic and structural changes occurring in autonomic neurons during diabetes has not been fully clarified. Here we demonstrate that nitric oxide synthase-containing (nitrergic) neurons innervating the penis and gastric pylorus of streptozotocin-induced diabetic rats undergo a selective degenerative process in two phases. In the first phase, nitrergic nerve fibers lose some of their neuronal nitric oxide synthase content and function. In the second phase, nitrergic degeneration takes place in the cell bodies in the ganglia, leading to complete loss of nitrergic function. The changes in the first phase are reversible with insulin replacement; however, the neurodegeneration in the second phase is irreversible. Neurodegeneration is due to apoptotic cell death in the ganglia, which is selective for the nitrergic neurones.
Collapse
Affiliation(s)
- Selim Cellek
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| | | | | |
Collapse
|
63
|
Lin Z, Sandgren K, Ekblad E. Increased expression of vasoactive intestinal polypeptide in cultured myenteric neurons from adult rat small intestine. Auton Neurosci 2003; 107:9-19. [PMID: 12927222 DOI: 10.1016/s1566-0702(03)00077-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Adult neurons possess the ability to adapt to a changing environment. Loss of target-derived neurotrophic factors due to axotomy or isolation by culturing is known to induce changes in neuropeptide expression in several types of peripheral neurons. The aim of the present study was to investigate changes in the expression of vasoactive intestinal polypeptide (VIP) and nitric oxide synthase (NOS) in cultured myenteric ganglia and dissociated neurons. Myenteric ganglia and neurons from rat small intestine were dissociated and cultured for up to 21 days. Immunocytochemistry was used to determine the total number of neurons and the proportions of subpopulations containing VIP or NOS or both in preparations of whole mounts (controls used to determine the conditions in vivo), myenteric ganglion culture and dissociated myenteric neuronal culture. In situ hybridization was used to determine changes in the expressions of NOS and VIP mRNA. The relative number of VIP-expressing neurons increased significantly during culturing. The percentage of all neurons expressing VIP was 3.6+/-0.3% in whole mounts, 22-24% in cultured myenteric ganglia, and up to 35% in cultured dissociated neurons. NOS-expressing neurons constituted approximately 30-40% of all neurons in whole mounts as well as in cultured ganglia or dissociated neurons. A dramatic increase in NOS/VIP-containing neurons were detected in cultured neurons irrespective of whether they were arranged in ganglia or dissociated, as compared to whole mount preparations. This suggests that the NOS-containing neurons are the ones that increase their VIP expression. The induced expression of VIP in cultured adult myenteric neurons indicates that VIP is important for neuronal adaptation, maintenance and survival.
Collapse
Affiliation(s)
- Zhong Lin
- Department of Physiological Sciences, Division of Neuroendocrine Cell Biology, Lund University, BMC F10, SE-221 84, Lund, Sweden.
| | | | | |
Collapse
|
64
|
Onori L, Aggio A, Taddei G, Loreto MF, Ciccocioppo R, Vicini R, Tonini M. Peristalsis regulation by tachykinin NK1 receptors in the rabbit isolated distal colon. Am J Physiol Gastrointest Liver Physiol 2003; 285:G325-31. [PMID: 12660141 DOI: 10.1152/ajpgi.00411.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the gastrointestinal tract, tachykinin NK1 receptors are widely distributed in a number of neuronal and nonneuronal cells involved in the control of gut motor activity. In particular, in the rabbit isolated distal colon, which is a suitable model system to investigate the contribution of tachykinins as noncholinergic excitatory transmitters, the influence of NK1 receptors in the regulation of peristalsis is not known. The selective NK1-receptor antagonists SR-140333 (0.3 and 1 nM) and MEN-10930 (0.3-10 nM) significantly enhanced the velocity of rabbit colonic propulsion to submaximal stimulation. The prokinetic effect of SR-140333 was prevented by N(omega)-nitro-L-arginine (L-NNA), a nitric oxide synthase inhibitor, indicating that NK1 receptors located on nitrergic innervation exert a functional inhibitory restraint on the circular muscle and probably on descending excitatory and inhibitory pathways during propulsion. Conversely, the selective NK1-receptor agonist septide (3-10 nM) significantly inhibited colonic propulsion. In the presence of L-NNA, the inhibitory effect of septide was reverted into a prokinetic effect, which is probably mediated by the activation of postjunctional excitatory NK1 receptors.
Collapse
Affiliation(s)
- Luciano Onori
- Dept. of Internal Medicine and Public Health, Univ. of L'Aquila, Italy.
| | | | | | | | | | | | | |
Collapse
|
65
|
Mourad FH, Barada KA, Abdel-Malak N, Bou Rached NA, Khoury CI, Saade NE, Nassar CF. Interplay between nitric oxide and vasoactive intestinal polypeptide in inducing fluid secretion in rat jejunum. J Physiol 2003; 550:863-871. [PMID: 12794180 PMCID: PMC2343080 DOI: 10.1113/jphysiol.2003.043737] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Accepted: 05/02/2003] [Indexed: 12/31/2022] Open
Abstract
Nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) interact in the regulation of neuromuscular function in the gut. They are also potent intestinal secretogogues that coexist in the enteric nervous system. The aims of this study were: (1) to investigate the interaction between NO and VIP in inducing fluid secretion in the rat jejunum, and (2) to determine whether the NO effect on intestinal fluid movement is neurally mediated. The single pass perfusion technique was used to study fluid movement in a 25 cm segment of rat jejunum in vivo. A solution containing 20 mM L-arginine, a NO precursor, was perfused into the segment. The effect of the NO synthase inhibitors (L-NAME and L-nitroindazole (L-NI)) and the VIP antagonist ([4Cl-D-Phe6,Leu17]VIP (VIPa)) on L-arginine-induced changes in fluid movement, expressed as microl min(-1) (g dry intestinal weight)(-1), was determined. In addition, the effect of neuronal blockade by tetrodotoxin (TTX) and ablation of the myenteric plexus by benzalkonium chloride (BAC) was studied. In parallel groups of rats, the effect of L-NAME and L-NI on VIP-induced intestinal fluid secretion was also examined. Basal fluid absorption in control rats was (median (interquartile range)) 65 (45-78). L-Arginine induced a significant fluid secretion (-14 (-20 to -5); P<0.01). This effect was reversed completely by L-NAME (60 (36-65); P<0.01) and L-NI (46 (39-75); P<0.01) and partially by VIPa (37 (14-47); P<0.01). TTX and BAC partially inhibited the effect of L-arginine (22 (15-32) and 15 (10-26), respectively; P<0.05). The effect of VIP on fluid movement (-23 (-26 to -14)) was partially reversed by L-NAME (24 (8.4-35.5); P<0.01) and L-NI (29 (4-44); P<0.01). The inhibition of VIP or NO synthase prevented L-arginine- and VIP-induced intestinal fluid secretion through a neural mechanism. The data suggest that NO enhances the release of VIP from nerve terminals and vice versa. Subsequently, each potentiates the other's effect in inducing intestinal fluid secretion.
Collapse
Affiliation(s)
- F H Mourad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Lebanon.
| | | | | | | | | | | | | |
Collapse
|
66
|
Sandgren K, Lin Z, Fex Svenningsen A, Ekblad E. Vasoactive intestinal peptide and nitric oxide promote survival of adult rat myenteric neurons in culture. J Neurosci Res 2003; 72:595-602. [PMID: 12749024 DOI: 10.1002/jnr.10612] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Several motility disorders originate in the enteric nervous system (ENS). Our knowledge of factors governing survival of the ENS is poor. Changes in the expression of vasoactive intestinal peptide (VIP) and nitric oxide synthase (NOS) in enteric neurons occur after neuronal injury and in intestinal adaptation. The aim of this study was to evaluate whether VIP and nitric oxide (NO) influence survival of cultured, dissociated myenteric neurons. Neuronal survival was evaluated after 0, 4, and 8 days in culture. Influence of VIP and NO on neuronal survival was examined after culturing in the presence of VIP, NO donor, VIP antiserum, or NOS inhibitor. A marked loss of neurons was noted during culturing. VIP and NO significantly promoted neuronal survival. Corroborating this was the finding of an enhanced neuronal cell loss when cultures were grown in the presence of VIP antiserum or NOS inhibitor.
Collapse
Affiliation(s)
- Katarina Sandgren
- Department of Physiological Sciences, Neuroendocrine Cell Biology, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
67
|
Abstract
Cholecystokinin (CCK) is a peptide hormone released from the I-cells of the upper small intestine. CCK evokes a variety of physiological responses, such as stimulation of pancreatic secretion, reduction of food intake and inhibition of gastric emptying. Previously, we reported that CCK activates enteric neurons in the rat. However the specific subpopulations of enteric neurons activated by CCK have not been identified. In the work reported here, we utilized immunohistochemical detection of nuclear Fos, a marker for neuronal activation, and selected phenotypic markers to identify some of the neuronal subpopulations activated by CCK. The phenotypic markers that we examined were: nitric oxide synthase (NOS), neurokinin-1 receptor (NK-1R), calbindin (Cal), Calretinin (Calr), and neurofilament-M (NF-M). We found that in the myenteric plexus of the rat duodenum and jejunum, CCK activated NOS immunoreactive neurons. In the submucosal plexus of duodenum and jejunum, CCK activated Cal, Calr and NF-M immunoreactive neurons. CCK failed to activate NK-1R immunoreactive neurons in either plexus. Our results indicate that CCK activates distinct enteric neurons in the rat upper small intestine. Furthermore the fact that NOS immunoreactive neurons were activated suggests that CCK modulates the activity of inhibitory motor neurons in the myenteric plexus. Expression of Fos immunoreactivity in Calr and Cal immunoreactive neurons is consistent with a role for CCK in modulation of intrinsic sensory and/or secretomotor neuronal activity in the submucosal plexus.
Collapse
Affiliation(s)
- Ayman I Sayegh
- Gastroenterology Laboratory, Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, 36088, Tuskegee, AL, USA.
| | | |
Collapse
|
68
|
Abstract
Enteric glial cells (EGCs) represent an extensive but relatively poorly described cell population within the gastrointestinal tract. Accumulating data suggest that EGCs represent the morphological and functional equivalent of CNS astrocytes within the enteric nervous system (ENS). The EGC network has trophic and protective functions toward enteric neurons and is fully implicated in the integration and the modulation of neuronal activities. Moreover, EGCs seem to be active elements of the ENS during intestinal inflammatory and immune responses, sharing with astrocytes the ability to act as antigen-presenting cells and interacting with the mucosal immune system via the expression of cytokines and cytokine receptors. Transgenic mouse systems have demonstrated that specific ablation of EGC by chemical ablation or autoimmune T-cell targeting induces an intestinal pathology that shows similarities to the early intestinal immunopathology of Crohn's disease. EGCs may also share with astrocytes the ability to regulate tissue integrity, thereby postulating that similar interactions to those observed for the blood-brain barrier may also be partly responsible for regulating mucosal and vascular permeability in the gastrointestinal tract. Disruption of the EGC network in Crohn's disease patients may represent one possible cause for the enhanced mucosal permeability state and vascular dysfunction that are thought to favor mucosal inflammation.
Collapse
Affiliation(s)
- Julie Cabarrocas
- Institut National de la Santé et de la Recherche Médicale U546, Pitié-Salpêtrière Hospital, Paris, France
| | | | | |
Collapse
|
69
|
Function and dysfunction of enteric glia. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
70
|
Allen JP, Canty AJ, Schulz S, Humphrey PPA, Emson PC, Young HM. Identification of cells expressing somatostatin receptor 2 in the gastrointestinal tract of Sstr2 knockout/lacZ knockin mice. J Comp Neurol 2002; 454:329-40. [PMID: 12442323 DOI: 10.1002/cne.10466] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Somatostatin is found in neurons and endocrine cells in the gastrointestinal tract. The actions of somatostatin are mediated by a family of G-protein-coupled receptors that compose five subtypes (SSTR1-5), each of which is encoded by a separate gene. lacZ "knockin" mice, in which the reporter gene lacZ was engineered into the genomic locus of Sstr2 by gene targeting, were used to examine the expression pattern of Sstr2 and identify potential targets for neurally released and hormonal somatostatin in the gastrointestinal tract. In the body of the stomach, a large proportion of epithelial cells and subpopulations of myenteric neurons expressed Sstr2. Double- or triple-labeling with antisera to H(+)K(+)ATPase (to identify parietal cells) and/or histidine decarboxylase (to identify enterochromaffin-like [ECL] cells) combined with beta-galactosidase staining revealed that both parietal cells and ECL cells expressed Sstr2, and these two cell types accounted for almost all of the Sstr2-expressing epithelial cells. Somatostatin inhibits gastric acid secretion. The presence of SSTR2 on both parietal and ECL cells suggests that somatostatin acting on SSTR2 may reduce acid secretion by both acting directly on parietal cells and by reducing histamine release from ECL cells. In the small and large intestine, subpopulations of neurons in the myenteric and submucosal plexuses expressed Sstr2, and many of the Sstr2-expressing myenteric neurons also showed SSTR2(a) immunostaining. Most of Sstr2-expressing neurons in the myenteric plexus showed nitric oxide synthase (NOS) immunoreactivity. Previous studies have shown that NOS neurons are descending interneurons and anally projecting, inhibitory motor neurons. Thus, somatostatin acting at SSTR2 receptors on NOS neurons might modulate descending relaxation.
Collapse
Affiliation(s)
- Jeremy P Allen
- Department of Neurobiology, The Babraham Institute, Babraham, Cambridge, CB2 4AT, United Kingdom
| | | | | | | | | | | |
Collapse
|
71
|
Chino Y, Fujimura M, Kitahama K, Fujimiya M. Colocalization of NO and VIP in neurons of the submucous plexus in the rat intestine. Peptides 2002; 23:2245-50. [PMID: 12535705 DOI: 10.1016/s0196-9781(02)00264-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since very few previous studies have carried out the quantitative analysis for the colocalization of nitric oxide (NO) and vasoactive intestinal peptide (VIP) in the submucous neurons in the rat digestive tract, we applied in vivo treatment of colchicine to enhance the immunoreactivity and examined the colocalization of NO synthase (nNOS) and VIP in neurons of the submucous plexus throughout the rat digestive tract. The density of nNOS-containing neurons in the submucous plexus in the stomach corpus (103+/-25 cells/cm(2), n=3) and that in the antrum (157+/-9 cells/cm(2), n=3) were significantly lower than those in small and large intestine. However no difference was detected in the cell density among duodenum (1967+/-188 cells/cm(2), n=3), jejunum (2640+/-140 cells/cm(2), n=3), ileum (2070+/-42 cells/cm(2), n=3), proximal colon (2243+/-138 cells/cm(2), n=3) and distal colon (2633+/-376 cells/cm(2), n=3). The proportion of nNOS-immunoreactive (IR), nNOS/VIP-IR and VIP-IR neurons to the total number of submucous neurons was examined. nNOS/VIP-IR neurons comprised 45-55% of total number of submucous neurons from the duodenum to the proximal colon, however those comprised 66.4+/-5.1% in the distal colon. The results showed that the dense distribution of nNOS-containing neurons was found in the submucous plexus throughout the small and large intestine, and large population of submucous neurons co-stored nNOS and VIP.
Collapse
Affiliation(s)
- Yoshihide Chino
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | | | | | | |
Collapse
|
72
|
Newgreen D, Young HM. Enteric nervous system: development and developmental disturbances--part 2. Pediatr Dev Pathol 2002; 5:329-49. [PMID: 12016531 DOI: 10.1007/s10024-002-0002-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2001] [Accepted: 08/01/2001] [Indexed: 01/26/2023]
Abstract
This review, which is presented in two parts, summarizes and synthesizes current views on the genetic, molecular, and cell biological underpinnings of the early embryonic phases of enteric nervous system (ENS) formation and its defects. Accurate descriptions of the phenotype of ENS dysplasias, and knowledge of genes which, when mutated, give rise to the disorders (see Part 1 in the previous issue of this journal), are not sufficient to give a real understanding of how these abnormalities arise. The often indirect link between genotype and phenotype must be sought in the early embryonic development of the ENS. Therefore, in this, the second part, we provide a description of the development of the ENS, concentrating mainly on the origin of the ENS precursor cells and on the cell migration by which they become distributed throughout the gastrointestinal tract. This section also includes experimental evidence on the controls of ENS formation derived from classic embryological, cell culture, and molecular genetic approaches. In addition, for reasons of completeness, we also briefly describe the origins of the interstitial cells of Cajal, a cell population closely related anatomically and functionally to the ENS. Finally, a brief sketch is presented of current notions on the developmental processes between the genes and the morphogenesis of the ENS, and of the means by which the known genetic abnormalities might result in the ENS phenotype observed in Hirschsprung's disease.
Collapse
Affiliation(s)
- Donald Newgreen
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, 3052, Victoria, Australia.
| | | |
Collapse
|
73
|
Matsuyama H, Unno T, El-Mahmoudy AM, Komori S, Kobayashi H, Thapaliya S, Takewaki T. Peptidergic and nitrergic inhibitory neurotransmissions in the hamster jejunum: regulation of vasoactive intestinal peptide release by nitric oxide. Neuroscience 2002; 110:779-88. [PMID: 11934484 DOI: 10.1016/s0306-4522(01)00580-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Regulation of vasoactive intestinal peptide (VIP) release by nitric oxide (NO) was investigated in the hamster jejunum. Electrical field stimulation and applied NO (3-100 microM) evoked biphasic hyperpolarizations consisting of an initial transient hyperpolarizing component followed by a second more slowly developing component (late component). The NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (200 microM) abolished the biphasic inhibitory junction potential evoked by electrical field stimulation. The NO scavenger oxyhemoglobin (50 microM) and the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ; 10 microM) abolished both components of the inhibitory junction potentials and the NO-induced hyperpolarizations. VIP(6-28) (1 microM), which abolished VIP (3 microM)-induced hyperpolarizations, also inhibited the late components of the inhibitory junction potentials and the NO-induced hyperpolarizations. ODQ inhibited VIP release and cAMP production by electrical field stimulation and NO application. N(6)-2,0-Dibutyryladenosine 3',5'-cyclic monophosphate (0.1-3 mM) caused a membrane hyperpolarization. These results suggest that NO may stimulate VIP release from enteric nerves in the hamster jejunum. In addition, we propose that NO and NO-stimulated VIP contribute to the early and late components of the inhibitory junction potentials, respectively, in the circular smooth muscle cells of the hamster jejunum.
Collapse
Affiliation(s)
- H Matsuyama
- Department of Pathogenetic Veterinary Science, The United Graduate School, Gifu University, Yanagido 1-1, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|
74
|
Olsson C. Distribution and effects of PACAP, VIP, nitric oxide and GABA in the gut of the African clawed frog Xenopus laevis. J Exp Biol 2002; 205:1123-34. [PMID: 11919271 DOI: 10.1242/jeb.205.8.1123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The distribution and possible effects on gastrointestinal motility of pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP), nitric oxide and γ-amino-butyric acid(GABA) were investigated in the African clawed frog (Xenopus laevis)using immunohistochemistry and in vitro strip preparations. PACAP-and VIP-immunoreactive nerve fibres were common in the myenteric plexus as well as in the longitudinal and circular muscle layers all along the gastrointestinal tract. Double labelling demonstrated a close correlation between PACAP and VIP immunoreactivities, indicating that the two neurotransmitters are colocalised within the enteric nervous system. Occasionally, PACAP- and VIP-positive nerve cell bodies were seen in the myenteric or submucous plexa. In addition, VIP immunoreactivity coexisted with helospectin immunoreactivity. Nitric oxide synthase (NOS)-immunoreactive nerve cells were found in the myenteric plexus at an average density for the whole gastrointestinal tract of 4584±540 cells cm-2. The NOS-immunoreactive nerve cells were usually multipolar with an average size of 11.3±3.7 × 23.2±6.6 μm. Some NOS-immunoreactive nerve fibres were VIP-immunoreactive but not all VIP-positive fibres showed NOS immunoreactivity. GABA immunoreactivity was found in nerve fibres and nerve cells in the myenteric plexus of all regions of the gut. Few GABA-immunoreactive nerve fibres were VIP-immunoreactive. PACAP 27, VIP,sodium nitroprusside (a nitric oxide donor; NaNP) and GABA caused similar responses on spontaneously contracting circular preparations of the cardiac stomach of X. laevis. The mean force developed was decreased, mainly by a reduction in resting tension, while the amplitude of contractions was not necessarily affected. The NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) increased the mean force developed, indicating a nitrergic tone in the preparations. In contrast, PACAP 27, VIP, NaNP, GABA and L-NAME had no significant effect on longitudinal strip preparations from the duodenum. These results indicate that PACAP, VIP, nitric oxide and GABA, which are known to be important inhibitory neurotransmitters in other vertebrates, are widely spread in the enteric nervous system of Xenopus laevis and may be involved in the inhibitory control of gastric motility. Although no effect of PACAP,VIP, nitric oxide or GABA on the longitudinal strips of the duodenum was seen in this study, this does not rule out the possibility that they might play an important role in controlling intestinal motility as well.
Collapse
Affiliation(s)
- Catharina Olsson
- Department of Zoophysiology, Göteborg University, Box 463, S-405 30 Göteborg, Sweden.
| |
Collapse
|
75
|
Abdu F, Hicks GA, Hennig G, Allen JP, Grundy D. Somatostatin sst(2) receptors inhibit peristalsis in the rat and mouse jejunum. Am J Physiol Gastrointest Liver Physiol 2002; 282:G624-33. [PMID: 11897621 DOI: 10.1152/ajpgi.00354.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Somatostatin [somatotropin release-inhibitory factor (SRIF)] has widespread actions throughout the gastrointestinal tract, but the receptor mechanisms involved are not fully characterized. We have examined the effect of selective SRIF-receptor ligands on intestinal peristalsis by studying migrating motor complexes (MMCs) in isolated segments of jejunum from rats, mice, and sst(2)-receptor knockout mice. MMCs were recorded in 4- to 5-cm segments of jejunum mounted horizontally in vitro. MMCs occurred in rat and mouse jejunum with intervals of 104.4 +/- 10 and 131.2 +/- 8 s, respectively. SRIF, octreotide, and BIM-23027 increased the interval between MMCs, an effect fully or partially antagonized by the sst(2)-receptor antagonist Cyanamid154806. A non-sst(2) receptor-mediated component was evident in mouse as confirmed by the observation of an inhibitory action of SRIF in sst(2) knockout tissue. Blocking nitric oxide generation abolished the response to SRIF in rat but not mouse jejunum. sst(2) Receptors mediate inhibition of peristalsis in both rat and mouse jejunum, but a non-sst(2) component also exists in the mouse. Nitrergic mechanisms are differentially involved in rat and mouse jejunum.
Collapse
Affiliation(s)
- Faiza Abdu
- Department of Biomedical Science, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
76
|
Fletcher EL, Clark MJ, Senior P, Furness JB. Gene expression and localization of GABA(C) receptors in neurons of the rat gastrointestinal tract. Neuroscience 2002; 107:181-9. [PMID: 11744257 DOI: 10.1016/s0306-4522(01)00339-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of GABA in the CNS are mediated by three different GABA receptors: GABA(A), GABA(B) and GABA(C) receptors. GABA(A) and GABA(B) receptors, but not yet GABA(C) receptors, have been demonstrated in the enteric nervous system, where GABA has been proposed to be a transmitter. The purpose of this study was to determine whether GABA(C) receptors are present and thus may play a role in mediating the effects of GABA in the myenteric plexus of the rat gastrointestinal tract. We examined the expression of the three known GABA(C) receptor subunits, rho1, rho2 and rho3, in the rat duodenum, ileum and colon using the reverse transcriptase-polymerase chain reaction. We determined the localization of GABA(C) receptors in the myenteric plexus of these regions using two different antisera directed against GABA(C) receptor subunits. The polymerase chain reaction revealed that all three subunits were expressed in the gastrointestinal tract. When the layers of the intestine were separated and the layer containing myenteric neurons was assayed, the rho3 subunit was found in the ileum and colon, whereas rho1 was expressed in the duodenum and weakly in the colon and rho2 was expressed in the ileum. Immunocytochemistry revealed numerous labeled neurons in the myenteric plexus of each region. Colocalization showed that a large proportion of calbindin plus calretinin immunoreactive neurons (intrinsic primary afferent neurons) were immunoreactive for the GABA(C) receptor, and that 56% of nitric oxide synthase immunoreactive neurons (inhibitory motor neurons) exhibited the receptor. These results indicate that GABA(C) receptors of differing subunit compositions are expressed by neurons in the rat gastrointestinal tract. The effects of GABA on intrinsic sensory and on inhibitory motor neurons are likely to be mediated in part through GABA(C) receptors.
Collapse
Affiliation(s)
- E L Fletcher
- Department of Anatomy and Cell Biology, The University of Melbourne, Grattan Street, 3010, Parkville, Vic, Australia
| | | | | | | |
Collapse
|
77
|
Onaga T, Okada H, Hagiwara S, Nagashima C, Inoue H, Korczynski W, Kato S. Effects of nitric oxide donor and nitric oxide synthase inhibitor on ruminal contractions in conscious sheep. Res Vet Sci 2001; 71:189-95. [PMID: 11798293 DOI: 10.1053/rvsc.2001.0507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study was planned to evaluate a role of nitric oxide (NO) in the regulation of regular ruminal contractions in conscious sheep. Intravenous infusion of S-nitroso-acetyl-DL-penicillamine (SNAP) at doses of 3-30 nmol kg(-1) min(-1)for 30 minutes inhibited both the amplitude and frequency of ruminal contractions in a dose-dependent manner. However, intravenous infusion of Nomega-nitro-L-arginine-methyl ester (L-NAME) at doses of 0.3-3.0 micromol kg(-1) min(-1)did not alter the basal tone of intraruminal pressure and the amplitude of ruminal contractions. The frequency of contractions was slightly inhibited by L-NAME infusion at 1.0 micromol kg(-1)min(-1). The effects of L-NAME were abolished by simultaneous infusion of L -arginine at 30 micromol kg(-1) min(-1). These results suggest that exogenous NO can diminish the ruminal contractions, while endogenous NO is not involved in the regulatory mechanism of basal tone and regular phasic contractions of the rumen in healthy sheep.
Collapse
Affiliation(s)
- T Onaga
- Veterinary Physiology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
78
|
Mancinelli R, Fabrizi A, Vargiu R, Morrone L, Bagetta G, Azzena GB. Functional role of inducible nitric oxide synthase on mouse colonic motility. Neurosci Lett 2001; 311:101-4. [PMID: 11567788 DOI: 10.1016/s0304-3940(01)02156-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A possible functional role of inducible isoform of nitric oxide synthase (iNOS) was explored in vitro on the motility of mouse distal colon. Using an isotonic - non-isovolumic technique, peristaltic activity and video images of the external wall of colonic segments were recorded before and after addition to the medium of Aminoguanidine (AG) and N-(3-(aminomethyl)benzyl) acetamidine (W1400) [10(-7) M-10(-4) M], two iNOS inhibitors. AG and W1400 induced an hyperexcitability of visceral smooth muscle characterised by an increase of basal tone and spontaneous phasic activity. As a consequence of these effects, the peristaltic activity declined and disappeared at the highest concentrations. These findings indicated a removal of inhibitory action performed by NO synthesised by iNOS in the colonic segment. The implications of results are discussed in term of tonic relaxation of intestinal smooth muscle to allow intraluminal content accommodation.
Collapse
Affiliation(s)
- R Mancinelli
- Department of Sciences Applied to Biosystem, Section of Human Physiology, University of Cagliari, Via Porcell 4, I- 09124, Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
79
|
Abstract
Neurotrophin-3 (NT-3) promotes enteric neuronal development in vitro; nevertheless, an enteric nervous system (ENS) is present in mice lacking NT-3 or TrkC. We thus analyzed the physiological significance of NT-3 in ENS development. Subsets of neurons developing in vitro in response to NT-3 became NT-3 dependent; NT-3 withdrawal led to apoptosis, selectively in TrkC-expressing neurons. Antibodies to NT-3, which blocked the developmental response of enteric crest-derived cells to exogenous NT-3, did not inhibit neuronal development in cultures of isolated crest-derived cells but did so in mixed cultures of crest- and non-neural crest-derived cells; therefore, the endogenous NT-3 that supports enteric neuronal development is probably obtained from noncrest-derived mesenchymal cells. In mature animals, retrograde transport of (125)I-NT-3, injected into the mucosa, labeled neurons in ganglia of the submucosal but not myenteric plexus; injections of (125)I-NT-3 into myenteric ganglia, the tertiary plexus, and muscle, labeled neurons in underlying submucosal and distant myenteric ganglia. The labeling pattern suggests that NT-3-dependent submucosal neurons may be intrinsic primary afferent and/or secretomotor, whereas NT-3-dependent myenteric neurons innervate other myenteric ganglia and/or the longitudinal muscle. Myenteric neurons were increased in number and size in transgenic mice that overexpress NT-3 directed to myenteric ganglia by the promoter for dopamine beta-hydroxylase. The numbers of neurons were regionally reduced in both plexuses in mice lacking NT-3 or TrkC. A neuropoietic cytokine (CNTF) interacted with NT-3 in vitro, and if applied sequentially, compensated for NT-3 withdrawal. These observations indicate that NT-3 is required for the normal development of the ENS.
Collapse
|
80
|
van Ginneken C, van Meir F, Sys S, Weyns A. Stereologic description of the changing expression of constitutive nitric oxide synthase and heme oxygenase in the enteric plexuses of the pig small intestine during development. J Comp Neurol 2001; 437:118-28. [PMID: 11477601 DOI: 10.1002/cne.1274] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The similarities between heme oxygenase-2 (HO-2) and nitric oxide synthase (nNOS) and the transient expression of nNOS during development led us to investigate whether both systems are similarly affected by changes that occur during development and by regional differences along the small intestine. By combining NADPH diaphorase histochemistry and HO-2 immunohistochemistry on whole-mount preparations and by using stereologic methods, a qualitative and quantitative description of HO-2 and nNOS expression was obtained. Examinations were carried out on the small intestine of fetal, 1-2-day and 5-6-week-old pigs. In all age groups, three enteric plexuses were distinguished. The presence of HO-2-immunoreactive (HO-2-IR) and NADPH diaphorase-positive neurons corresponded to earlier morphological and physiological reports. Nevertheless, the total number of nitrergic neurons remained constant or decreased in the enteric plexuses, whereas the total number of HO-2-IR neurons displayed an overall increase. Changing concentrations of glucocorticoids, target-derived signals, presynaptic input, and an effect of HO-2 activity on nNOS synthesis are likely to play roles in the observed developmental changes. The numerical density of HO-2-IR neurons remained relatively constant along the intestinal tract; in contrast, the nitrergic neurons were most numerous in the inner submucous and myenteric plexus in the duodenum and ileum, respectively. It is believed that the duodenal nitrergic neurons in the inner submucous plexus could be involved in the regulation of duodenal secretion processes, whereas the region-dependent density in the myenteric plexus possibly forms the morphological basis for a regionally different participation of NO in the relaxation of the small intestine.
Collapse
Affiliation(s)
- C van Ginneken
- Laboratory of Veterinary Anatomy and Embryology, Faculty of Medical and Pharmaceutical Sciences, University of Antwerp, Slachthuislaan 68, 2060 Antwerp, Belgium.
| | | | | | | |
Collapse
|
81
|
Van Ginneken C, Van Meir F, Sys S, Weyns A. Developmental changes in heme-oxygenase-2 and bNOS expression in enteric neurons in the pig duodenum. Auton Neurosci 2001; 91:16-25. [PMID: 11515797 DOI: 10.1016/s1566-0702(01)00293-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There exists much parallelism between carbon monoxide- and nitric oxide-generating systems. Therefore, we wondered whether developmental and functional differences along the duodenum similarly affect, part of them, namely, heme oxygenase-2-(HO-2) and neural isoform of nitric oxide synthase- (nNOS) expressing neurons. By applying NADPH diaphorase histochemistry and HO-2 immunohistochemistry on whole-mount preparations and by using stereologic methods, a qualitative and quantitative description of HO-2 and nNOS expression was obtained. Examinations were carried out on the duodenum of fetal, neonatal and weaned pigs. At all ages, three enteric plexuses were readily distinguished. The presence of both enzymes fits in with other morphological and physiological reports. However, the expression of both enzymes significantly changed during development. The number of HO-2-IR neurons increased approximately 20-fold in the inner submucous and almost doubled in the myenteric plexus. In addition, the number of nNOS-expressing neurons displayed a significant decrease in the outer submucous plexus after weaning. High levels of glucocorticoids may cause the perinatally increased HO-2 expression, whereas an influence on nNOS expression is doubtful. Therefore, it seems that notwithstanding the high similarity between both systems, their expression is regulated differently in the pig duodenum.
Collapse
Affiliation(s)
- C Van Ginneken
- Laboratory of Veterinary Anatomy and Embryology, University of Antwerp,
| | | | | | | |
Collapse
|
82
|
Kurjak M, Fritsch R, Saur D, Schusdziarra V, Allescher HD. Functional coupling between nitric oxide synthesis and VIP release within enteric nerve terminals of the rat: involvement of protein kinase G and phosphodiesterase 5. J Physiol 2001; 534:827-36. [PMID: 11483712 PMCID: PMC2278726 DOI: 10.1111/j.1469-7793.2001.00827.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
1. The subcellular mechanisms involved in the effect of nitric oxide (NO) on the release of vasoactive intestinal polypeptide (VIP) were examined in synaptosomes isolated from rat small intestine. 2. VIP release was stimulated by the NO donor SNAP (10(-7)-10(-4) M) in an oxyhaemoglobin-sensitive manner. The presence of the guanylate cyclase inhibitor ODQ (10(-5) M), or inhibition of protein kinase G (PKG) by KT 5823 (3 x 10(-6) M) or Rp-8Br-PET-cGMPS (5 x 10(-7) M), antagonized the SNAP-induced VIP release, suggesting a regulatory role of PKG, confirming previously published data from enteric ganglia. This finding was further supported by the fact that direct PKG activation by the stable cGMP analogue 8-pCPT-cGMP stimulated VIP secretion to the same extent as SNAP. 3. Basal VIP secretion was enhanced in the presence of zaprinast, an inhibitor of cGMP-dependent phosphodiesterase 5 (PDE 5), suggesting a functional role of PDE 5 in NO-cGMP signalling. Supportive evidence for this finding was obtained by demonstration of the presence of PDE 5 using RT-PCR. 4. Stimulation of endogenous NO production by L-arginine was also effective in releasing VIP. The effect was abolished in the presence of KT 5823, but was insensitive to oxyhaemoglobin (10(-3) M), suggesting that an interaction between NO and VIP is likely to occur within the same nerve terminal rather than between terminals. 5. NO synthesis was not affected by VIP (10(-8)-10(-5) M), suggesting that there is no feedback regulation between the NO and the VIP pathways. 6. These findings support the notion that an anatomical and functional interrelationship exists between NO and VIP in enteric nerve terminals and that complex signalling mechanisms involving PKG and PDE 5 contribute to NO-induced VIP release.
Collapse
Affiliation(s)
- M Kurjak
- Department of Internal Medicine II, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | | | | | | | | |
Collapse
|
83
|
Holmberg K, Steinbusch HM, de Vente J, Hökfelt T. Distribution of cGMP in guinea pig autonomic ganglia after stimulation with sodium nitroprusside. Auton Neurosci 2001; 89:7-15. [PMID: 11474649 DOI: 10.1016/s1566-0702(01)00242-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nitric oxide (NO) is an intercellular messenger molecule in the nervous system and exerts its action in many regions by generating cyclic GMP (cGMP) via soluble guanylyl cyclase. In this study, on the male guinea pig, we have analyzed the localization of cGMP in some autonomic ganglia with immunohistochemistry after stimulation with sodium nitroprusside (SNP) as NO donor, and made correlations with the NO synthesizing enzyme NO synthase (NOS), tyrosine hydroxylase (TH) and some neuropeptides. The putative target neurons for NO were examined in the anterior pelvic ganglia (APGs), as well as some pre- and paravertebral sympathetic ganglia. The results show that cGMP-like immunoreactivity (LI) in the APG was in most cases observed in the TH-positive, NOS-negative neuron population after SNP stimulation, whereas the NOS-expressing cholinergic population mostly lacked detectable cGMP-LI. In the pre- and paravertebral ganglia, SNP stimulation increased cGMP levels to a much lesser extent than in the APGs. cGMP was also observed in blood vessels, in the ganglion capsule, and in some cases. possibly in satellite cells. We propose, as one alternative, that there is a functional, intraganglionic regulatory loop between the parasympathetic and sympathetic divisions of the APG, using the NO/cGMP pathway.
Collapse
Affiliation(s)
- K Holmberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
84
|
Onori L, Aggio A, Taddei G, Ciccocioppo R, Severi C, Carnicelli V, Tonini M. Contribution of NK3 tachykinin receptors to propulsion in the rabbit isolated distal colon. Neurogastroenterol Motil 2001; 13:211-9. [PMID: 11437983 DOI: 10.1046/j.1365-2982.2001.00261.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The role of NK3 receptors in rabbit colonic propulsion has been investigated in vitro with the selective agonist, senktide, and two selective antagonists, SR142801 and SB222200. Peristalsis was elicited by distending a rubber balloon with 0.3 and 1.0 mL of water leading to a velocity of 2.2 and 2.8 mm s-1, respectively. At concentrations of 1 nM, senktide inhibited propulsion evoked by both distensions (range 25-40%), whereas at 6 and 60 nmol L-1 facilitated 'submaximal' propulsion by 30%. In the presence of Nomega-nitro-L-arginine (L-NNA, 200 micromol L-1), which per se caused a slight prokinetic effect, 1 nmol L-1 senktide markedly accelerated propulsion (range 35-50%). Hexamethonium (200 micromol L-1) had minor effects on propulsion. In its presence, 60 nmol L-1 senktide significantly inhibited propulsion induced by both stimuli (range 20-50%). SR142801 (0.3, 3 nmol L-1) and SB222200 (30, 300 nmol L-1) facilitated 'submaximal' propulsion (range 20-40%). Conversely, higher antagonist concentrations (SR142801: 30, 300 nM; SB222200: 1, 10 micromol L-1) inhibited propulsion to both distensions by 20%. A combination of SR142801 (300 nmol L-1) plus hexamethonium (200 micromol L-1) induced an approximately four-fold greater inhibition of propulsion than that induced by SR142801 alone. In conclusion, in the rabbit-isolated distal colon, a subset of NK3 receptors located on descending pathways mediates an inhibitory effect on propulsion by activating a NO-dependent mechanism. Another subset of NK3 receptors, located on ascending pathways mediates a facilitative effect involving a synergistic interaction with cholinergic nicotinic receptors.
Collapse
Affiliation(s)
- L Onori
- Department of Internal Medicine and Public Health, University of L'Aquila, L'Aquila, Italy.
| | | | | | | | | | | | | |
Collapse
|
85
|
Shah S, Nathan L, Singh R, Fu YS, Chaudhuri G. E2 and not P4 increases NO release from NANC nerves of the gastrointestinal tract: implications in pregnancy. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1546-54. [PMID: 11294780 DOI: 10.1152/ajpregu.2001.280.5.r1546] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In women, during pregnancy, there is decreased motility of the gastrointestinal tract leading to a delay in gastric emptying and an increase in colonic transit time. Whether the rise in estradiol (E2) or progesterone (P4) is responsible for this effect is controversial. As the nitrergic component of the nonadrenergic, noncholinergic (NANC) nerves is responsible for modulating gastrointestinal motility in vivo, the purpose of this study was to evaluate whether the increased release of nitric oxide (NO) from the nitrergic component of the NANC nerves innervating the gastric fundus and colon that occurs during late pregnancy in rats is mediated by E2 or P4. Ovariectomized rats treated with E2 or P4 alone or in combination were used for our studies. We also wanted to assess the cellular and molecular mechanisms involved. The NANC activity was studied by assessing changes in tone after application of electric field stimulation (EFS). The role of NO was determined by observing the effects of EFS in the presence and absence of the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) and the reversibility of the effects of L-NAME by L-arginine. Our studies indicated that there was increased magnitude of relaxation of isolated strips of rat gastric fundus and rat colon after application of EFS to tissues obtained from animals treated with E2 alone or a combination of E2 + P4 but not from those treated with P4 alone. L-NAME attenuated relaxation responses in E2- and E2 + P4-treated animals. To elucidate whether the increased NO release may be due to an increase in neuronal NOS (nNOS) protein, we used both Western blot analysis and immunohistochemistry. We also used RT-PCR to determine whether there was an increase in nNOS mRNA after treatment with sex steroids. In nonpregnant animals, nNOS was detected by Western blot in the fundus and the colon and was barely detectable in the ileum. In pregnancy, there was an increase in nNOS in both the gastric fundus and the colon. The nNOS protein was also increased in ovariectomized animals treated with either E2 alone or E2 + P4 but not P4 alone when compared with ovariectomized animals receiving vehicle. Our results indicated that there was an increase in nNOS protein that was localized to the neurons of the myenteric plexus in the gastric fundus and colon in E2- and E2 + P4-treated animals, but this increase was not observed in animals treated with P4 alone. This increase in nNOS protein was accompanied by an increase in nNOS mRNA. These results suggest the possibility that E2, rather than P4, may be responsible for the delay in gastric emptying and increase in colonic transit time observed in pregnancy.
Collapse
Affiliation(s)
- S Shah
- Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
86
|
Nagahama M, Semba R, Tsuzuki M, Ozaki T. Distribution of peripheral nerve terminals in the small and large intestine of congenital aganglionosis rats (Hirschsprung's disease rats). Pathol Int 2001; 51:145-57. [PMID: 11328529 DOI: 10.1046/j.1440-1827.2001.01187.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The congenital aganglionosis rat is considered to be an animal model of Hirschsprung's disease. The mutants had a long constricted segment (from distal ileum to rectum) below the dilated distal ileum. In the dilated region, synaptophysin-immunoreactivity (IR) was almost preserved in all layers of the intestinal wall. In the constricted distal ileum and oral proximal colon, synaptophysin-IR was scarce in all layers, including the circular and longitudinal muscle layers. In the anal proximal and distal colon, synaptophysin-IR was almost scarce in the circular muscle layer (CML). An ultrastructural study confirmed that almost no terminals were found in the CML of any regions of constricted intestine. Therefore, the CML in any region of a constricted segment, is presumed to be poor innervation. However, a few synaptophysin-IR were found in the longitudinal muscle layer (LML) of an anal part of a constricted segment. An ultrastructural study also confirmed that some terminals were observed in the LML of this segment. The present study suggested that denervated CML is related to the production of constricted segment, irrespective of the presence or absence of terminals in the LML.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Disease Models, Animal
- Ganglia/physiology
- Hirschsprung Disease/pathology
- Immunohistochemistry
- Intestine, Large/innervation
- Intestine, Large/pathology
- Intestine, Small/innervation
- Intestine, Small/pathology
- Microscopy, Electron
- Muscle, Smooth/chemistry
- Muscle, Smooth/pathology
- Myenteric Plexus/chemistry
- Myenteric Plexus/pathology
- Presynaptic Terminals/chemistry
- Presynaptic Terminals/ultrastructure
- Rats
- Rats, Mutant Strains
- Synaptophysin/analysis
Collapse
Affiliation(s)
- M Nagahama
- Department of Anatomy II, Mie University School of Medicine, 174-2 Edobashi, Tsu, Mie 514-8507, Japan.
| | | | | | | |
Collapse
|
87
|
Abstract
Gut motility in non-mammalian vertebrates as in mammals is controlled by the presence of food, by autonomic nerves and by hormones. Feeding and the presence of food initiates contractions of the stomach wall and subsequently gastric emptying, peristalsis, migrating motor complexes and other patterns of motility follow. This overview will give examples of similarities and differences in control systems between species. Gastric receptive relaxation occurs in fish and is an enteric reflex. Cholecystokinin reduces the rate of gastric emptying in fish as in mammals. Inhibitory control of peristalsis is exerted, e.g. by VIP, PACAP, NO in fish and amphibians, while excitatory stimuli arise from nerves releasing tachykinins, acetylcholine or serotonin (5-HT). In crocodiles, we have found the presence of the same nerve types, although the effects on peristalsis have not been studied. Recent studies on signal transduction in the gut smooth muscle of fish and amphibians suggest that external Ca2+ is of great importance, but not the only source of Ca2+ recruitment in tachykinin-, acetylcholine- or serotonin-induced contractions of rainbow trout and Xenopus gastrointestinal smooth muscle. The effect of acetylcholine involves reduction of cAMP-levels in the smooth muscle cells. It is concluded that, in general, the control systems in non-mammalian vertebrates are amazingly similar between species and animal groups and in comparison with mammals.
Collapse
Affiliation(s)
- C Olsson
- Department of Zoophysiology, University of Göteborg, Box 463, SE 405 30, Göteborg, Sweden
| | | |
Collapse
|
88
|
Abstract
Neuroanatomical tracing techniques, and retrograde labelling in particular, are widely used tools for the analysis of neuronal pathways in the central and peripheral nervous system. Over the last 10 years, these techniques have been used extensively to identify enteric neuronal pathways. In combination with multiple-labelling immunohistochemistry, quantitative data about the projections and neurochemical profile of many functional classes of cells have been acquired. These data have revealed a high degree of organization of the neuronal plexuses, even though the different classes of nerve cell bodies appear to be randomly assorted in ganglia. Each class of neurone has a predictable target, length and polarity of axonal projection, a particular combination of neurochemicals in its cell body and distinctive morphological characteristics. The combination of retrograde labelling with targeted intracellular recording has made it possible to target small populations of cells that would rarely be sampled during random impalements. These neuroanatomical techniques have also been applied successfully to human tissue and are gradually unravelling the complexity of the human enteric nervous system.
Collapse
Affiliation(s)
- S Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University, South Australia.
| |
Collapse
|
89
|
O'Donnell AM, Ellis LM, Riedl MS, Elde RP, Mawe GM. Distribution and chemical coding of orphanin FQ/nociceptin-immunoreactive neurons in the myenteric plexus of guinea pig intestines and sphincter of Oddi. J Comp Neurol 2001; 430:1-11. [PMID: 11135242 DOI: 10.1002/1096-9861(20010129)430:1<1::aid-cne1011>3.0.co;2-h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Longitudinal muscle-myenteric plexus preparations of guinea pig intestines and sphincter of Oddi (SO) were immunostained for orphanin FQ/nociceptin. Orphanin FQ-immunoreactive (OFQ-IR) neurons and nerve fibers were relatively abundant in the SO, duodenum, ileum, cecum, and distal colon, with fewer neurons and nerve fibers observed in the proximal colon. Double staining with antibodies directed against the neuron-specific RNA binding protein Hu revealed that while the numbers of OFQ-IR neurons per ganglion decreased along the gut tube, similar proportions (7-9%) of neurons in these regions were OFQ-IR, whereas <1% of the neurons in the proximal colon were OFQ positive. In the ileum, where 8% of the myenteric neurons were OFQ-IR, all OFQ-IR neurons expressed choline acetyltransferase. In addition, multiple-label immunohistochemistry demonstrated that 58% of the OFQ-IR neurons were calretinin-IR, 52% were substance P-IR, and 28% were enkephalin-IR. Nitric oxide synthase immunoreactivity was observed in about 5% of OFQ-IR neurons, or 0.4% of the total population, and a similar proportion of the OFQ-IR neurons was positive for vasoactive intestinal peptide. No OFQ-IR neurons were immunoreactive for calbindin, somatostatin, or serotonin. These results, combined with previous studies of chemical coding and projection patterns in the guinea pig myenteric plexus, indicate that OFQ-IR is expressed preferentially in excitatory motor neurons projecting to the longitudinal and circular muscle layers, as well as a small subgroup of descending interneurons. Because OFQ is expressed by excitatory motor neurons, and because this peptide inhibits excitatory neurotransmission in the guinea pig ileum, it is likely that OFQ acts through a feedback autoinhibitory mechanism.
Collapse
Affiliation(s)
- A M O'Donnell
- Department of Anatomy and Neurobiology, The University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
90
|
Abstract
The guinea-pig small intestine has been very widely used to study the physiology, pharmacology and morphology of the enteric nervous system. It also provides an ideal, simple mammalian preparation for studying how nerve cells are organised into functional circuits underlying simple behaviours. Many different types of nerve cells are present in the enteric nervous system and they show characteristic combinations of morphological features, projections, biophysical properties, neurochemicals, and receptors. To identify the different functional classes is an important prerequisite for systematic analysis of how the enteric nervous system controls normal gut behaviour. Based on combinations of multiple-labelling immunohistochemistry and retrograde tracing, it has been possible to account quantitatively for all of the neurones in the guinea-pig small intestine. This article summarises that account and updates it in the light of recent data. A total of 18 classes of neurones are currently distinguishable, including primary afferent neurones, motor neurones, interneurones, secretomotor and vasomotor neurones. It is now possible to take an individual nerve cell and use a few carefully chosen criteria to assign it to a functional class. This provides a firm anatomical foundation for the systematic analysis of how the enteric nervous system normally functions and how it goes wrong in various clinically important disorders.
Collapse
Affiliation(s)
- S J Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia 5001.
| |
Collapse
|
91
|
Mirabella N, Lamanna C, Assisi L, Botte V, Cecio A. The relationships of nicotinamide adenine dinucleotide phosphate-d to nitric oxide synthase, vasoactive intestinal polypeptide, galanin and pituitary adenylate activating polypeptide in pigeon gut neurons. Neurosci Lett 2000; 293:147-51. [PMID: 11027855 DOI: 10.1016/s0304-3940(00)01450-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The distribution of nicotinamide adenine dinucleotide phosphate (NADPH)-d neurons and their relationship with nitric oxide synthase (NOS), vasoactive intestinal polypeptide (VIP), pituitary adenylate activating polypeptide (PACAP) and galanin (Gal) were examined in the gastrointestinal (GI) tract of the pigeon Columbia livia. NADPH-d-histochemistry, indirect immunofluorescence and confocal analysis were applied to cryosections. Western blot analysis was also applied on pigeon gut. NADPH-d neurons were found throughout the pigeon GI tract and they were evident in the myenteric, circular muscle and submucous plexuses. Positive varicose nerve fibres were also distributed within the longitudinal muscle layers and in the lamina propria of the mucosa. The stomach was the segment richest in positivities. The copresence VIP/Gal/NOS as well as PACAP/VIP were revealed in some NADPH-d-neurons. We suppose that the nitrergic nerve population of the pigeon GI tract belong to the muscle motility regulation as an inhibitory descending nerve pathway. Moreover the presence of VIP, Gal and PACAP in some NADPH-d-containing neurons enhances the inhibitory actions of these neurotransmitters whereas PACAP and Gal role is actually unknown.
Collapse
Affiliation(s)
- N Mirabella
- Department of Biological Structures, Functions and Technology, University of Naples 'Federico II' via Veterinaria 1, 80137, Naples, Italy
| | | | | | | | | |
Collapse
|
92
|
Abstract
Peptides involved in the endocrine and enteric nervous systems as well as in the central nervous system exert concerted action on gastrointestinal motility. Mechanical and chemical stimuli which induce peptide release from the epithelial endocrine cells are the earliest step in the initiation of peristaltic activities. Gut peptides exert hormonal effects, but peptide-containing stimulatory (Ach/substance P/tachykinin) and inhibitory (VIP/PACAP/NO) neurons are also involved in the induction of ascending contraction and descending relaxation, respectively. The dorsal vagal complex (DVC), located in the medulla of the brainstem, constitutes the basic neural circuitry of vago-vagal reflex control of gastrointestinal motility. Several gut peptides act on the DVC to modify vagal cholinergic reflexes directly (PYY and PP) or indirectly via afferent fibers in the periphery (CCK and GLP-1). The DVC is also a primary site of action of many neuropeptides (such as TRH and NPY) in mediating gastrointestinal motor activities. The identification over the last few years of a number of neuropeptide systems has greatly changed the field of feeding and body weight regulation. By exploring the brain and gut systems that employ recently identified peptidergic molecules, it will be possible to elaborate on the central and peripheral pathways involved in the regulation of gastrointestinal motility.
Collapse
Affiliation(s)
- M Fujimiya
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | |
Collapse
|
93
|
Shah S, Hobbs A, Singh R, Cuevas J, Ignarro LJ, Chaudhuri G. Gastrointestinal motility during pregnancy: role of nitrergic component of NANC nerves. Am J Physiol Regul Integr Comp Physiol 2000; 279:R1478-85. [PMID: 11004018 DOI: 10.1152/ajpregu.2000.279.4.r1478] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated whether increased release of nitric oxide (NO) from the nitrergic component of the nonadrenergic, noncholinergic (NANC) nerves may be partly responsible for the decrease in gastrointestinal motility observed during pregnancy. Segments of fundal strip, ileum, and colon were obtained from nonpregnant rats, rats in midpregnancy (days 9-11), and rats in late pregnancy (days 18-20). NANC activity was studied by assessing changes in tone after application of electric field stimulation (EFS). The role of NO was determined by observing the effects of EFS in the presence and absence of the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) and the reversibility of the effects of L-NAME by L-arginine. The magnitude of change in cGMP levels in the tissues after application of EFS was also assessed. Our studies indicate that there was increased magnitude of relaxation of isolated strips of rat gastric fundus and rat colon, after application of EFS to tissues obtained only from animals in late pregnancy. These results paralleled the changes in cGMP levels in tissues. NOS activity in the gastric fundus was significantly increased in animals in late pregnancy compared with nonpregnant controls. Our studies suggest that the delay in gastric emptying and increase in colonic transit time observed in rats during pregnancy may be caused in part by increased activity of the nitrergic component of the NANC nerves innervating these organs.
Collapse
Affiliation(s)
- S Shah
- Department of Obstetrics and Gynecology, University of California, Los Angeles, California 90095-1740, USA
| | | | | | | | | | | |
Collapse
|
94
|
Watkins CC, Sawa A, Jaffrey S, Blackshaw S, Barrow RK, Snyder SH, Ferris CD. Insulin restores neuronal nitric oxide synthase expression and function that is lost in diabetic gastropathy. J Clin Invest 2000; 106:373-84. [PMID: 10930440 PMCID: PMC314323 DOI: 10.1172/jci8273] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal dysfunction is common in diabetic patients. In genetic (nonobese diabetic) and toxin-elicited (streptozotocin) models of diabetes in mice, we demonstrate defects in gastric emptying and nonadrenergic, noncholinergic relaxation of pyloric muscle, which resemble defects in mice harboring a deletion of the neuronal nitric oxide synthase gene (nNOS). The diabetic mice manifest pronounced reduction in pyloric nNOS protein and mRNA. The decline of nNOS in diabetic mice does not result from loss of myenteric neurons. nNOS expression and pyloric function are restored to normal levels by insulin treatment. Thus diabetic gastropathy in mice reflects an insulin-sensitive reversible loss of nNOS. In diabetic animals, delayed gastric emptying can be reversed with a phosphodiesterase inhibitor, sildenafil. These findings have implications for novel therapeutic approaches and may clarify the etiology of diabetic gastropathy.
Collapse
MESH Headings
- Animals
- Diabetes Complications
- Diabetes Mellitus/drug therapy
- Diabetes Mellitus/enzymology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/enzymology
- Gastric Emptying/drug effects
- Gastric Emptying/physiology
- Gene Expression/drug effects
- Humans
- Insulin/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Nitric Oxide/physiology
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type I
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Stomach Diseases/drug therapy
- Stomach Diseases/enzymology
- Stomach Diseases/etiology
Collapse
Affiliation(s)
- C C Watkins
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Tonini M, De Giorgio R, De Ponti F, Sternini C, Spelta V, Dionigi P, Barbara G, Stanghellini V, Corinaldesi R. Role of nitric oxide- and vasoactive intestinal polypeptide-containing neurones in human gastric fundus strip relaxations. Br J Pharmacol 2000; 129:12-20. [PMID: 10694197 PMCID: PMC1621112 DOI: 10.1038/sj.bjp.0702977] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The morphological pattern and motor correlates of nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) innervation in the human isolated gastric fundus was explored. By using the nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-diaphorase and specific rabbit polyclonal NO-synthase (NOS) and VIP antisera, NOS- and VIP-containing varicose nerve fibres were identified throughout the muscle layer or wrapping ganglion cell bodies of the myenteric plexus. NOS-immunoreactive (IR) neural cell bodies were more abundant than those positive for VIP-IR. The majority of myenteric neurones containing VIP coexpressed NADPH-diaphorase. Electrical stimulation of fundus strips caused frequency-dependent NANC relaxations. N(G)-nitro-L-arginine (L-NOARG: 300 microM) enhanced the basal tone, abolished relaxations to 0.3 - 3 Hz (5 s) and those to 1 Hz (5 min), markedly reduced ( approximately 50%) those elicited by 10 - 50 Hz, and unmasked or potentiated excitatory cholinergic responses at frequencies > or =1 Hz. L-NOARG-resistant relaxations were virtually abolished by VIP (100 nM) desensitization at all frequencies. Relaxations to graded low mechanical distension (< or =1 g) were insensitive to tetrodotoxin (TTX: 1 microM) and L-NOARG (300 microM), while those to higher distensions (2 g) were slightly inhibited by both agents to the same extent ( approximately 25%). In the human gastric fundus, NOS- and VIP immunoreactivities are colocalized in the majority of myenteric neurones. NO and VIP mediate electrically evoked relaxations: low frequency stimulation, irrespective of the duration, caused NO release only, whereas shortlasting stimulation at high frequencies induced NO and VIP release. Relaxations to graded mechanical distension were mostly due to passive viscoelastic properties, with a slight NO-mediated neurogenic component at 2 g distension. The difference between NO and VIP release suggests that in human fundus accommodation is initiated by NO. British Journal of Pharmacology (2000) 129, 12 - 20
Collapse
Affiliation(s)
- M Tonini
- Department of Internal Medicine and Therapeutics, Division of Experimental and Clinical Pharmacology, University of Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
This paper reviews the work related to nitric oxide (NO) done by the author and his postgraduates and colleagues in the past 7 years in the National University of Singapore. Our work shows that (i) NADPH-d and NO synthase (NOS) are often but not always identical; (ii) NO (as indicated by NADPH-d histochemistry and NOS immunohistochemistry) is generated in some endocrine (thyroid, parathyroid and ultimobranchial glands) and immune (thymus and bursa of Fabricius) organs and the cochlea. It is noted from the above studies that NO could possibly regulate blood flow through the various organs via its presence in the vascular endothelial cells and also via nitrergic neurons innervating the blood vessels. It could also regulate the activity of the secretary cells of these organs by being present in them, as well as acting through nitrergic neurons closely related to them. The paper also examines the Janus-faced nature of NO as a neuroprotective and neurodestructive agent, and the apparent noninvolvement of peroxynitrite and inducible NOS in neuronal death occurring in the red nucleus and nucleus dorsalis after spinal cord hemisection.
Collapse
Affiliation(s)
- S K Leong
- Department of Anatomy, Faculty of Medicine, National University of Singapore, Singapore
| |
Collapse
|
97
|
Heinemann A, Holzer P. Intestinal motor depression by 7-nitroindazole through an action unrelated to nitric oxide synthase inhibition. Pharmacology 1999; 59:310-20. [PMID: 10575325 DOI: 10.1159/000028334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nitric oxide (NO) is a cotransmitter of inhibitory motor neurons of the enteric nervous system. This study examined the effect of 7-nitroindazole (7-NI), an inhibitor of neuronal NO synthase (NOS), on intestinal peristalsis and muscle activity and compared 7-NI with N(G)-nitro-L-arginine methyl ester (L-NAME), a nonselective inhibitor of NOS isoforms. Peristalsis in isolated segments of the guinea pig small intestine was triggered by a perfusion-induced rise of the intraluminal pressure. While L-NAME (10-300 micromol/l) lowered the peristaltic pressure threshold (PPT) at which propulsive muscle contractions were elicited, 7-NI (10-300 micromol/l) caused a concentration-related increase in PPT. L-Arginine (1-3 mmol/l) failed to reverse peristaltic motor depression evoked by 7-NI but annulled the L-NAME-evoked stimulation of peristalsis. Drugs which stimulated peristalsis, such as L-NAME, naloxone, apamin and suramin plus pyridoxal phosphate-6-azophenyl-2'-4'-disulphonic acid counteracted the inhibitory effect of submaximally effective concentrations of 7-NI on peristalsis. 7-NI (100-300 micromol/l) inhibited circular muscle contractions evoked by cholecystokinin octapeptide, the NK(1) receptor agonist GR-73,632 and indomethacin whereas L-NAME (100-300 micromol/l) failed to inhibit any drug-evoked contraction. These data show that 7-NI, unlike L-NAME, inhibits circular muscle contractions of the gut and depresses intestinal peristalsis. It is concluded that the inhibitory motor action of 7-NI is unrelated to inhibition of neuronal NOS and arises from depression of smooth muscle activity.
Collapse
Affiliation(s)
- A Heinemann
- Department of Experimental and Clinical Pharmacology, University of Graz, Austria
| | | |
Collapse
|
98
|
Lénárd L, Halmai V, Barthó L. Morphine contracts the guinea pig ileal circular muscle by interfering with a nitric oxide mediated tonic inhibition. Digestion 1999; 60:562-6. [PMID: 10545727 DOI: 10.1159/000007707] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of morphine was examined on the circular muscle of guinea pig ileal segments in vitro, with special regard to its interaction with enteric nitric oxide (NO) releasing neurons. In the presence of atropine (10(-6) M), morphine (10(-6) M) caused tonic contraction (approximately 7% of the maximal spasm) which was reversed by naloxone (10(-6) M). Tetrodotoxin (TTX; 10(-6) M) also caused contraction (14% of maximum); morphine completely lost its effect in the presence of TTX. Likewise, the NO synthase inhibitor N(G)-nitro-L-arginine (L-NOARG, 10(-4) M) elicited a tonic circular muscle contraction (12% of maximum) and completely prevented the excitatory action of TTX or morphine. The NO donor sodium nitroprusside (10(-7) to 10(-4) M) caused relaxation. In longitudinally oriented preparations in the presence of atropine (10(-6) M), no change in tone was observed upon administration of morphine (10(-6) M), TTX (10(-6) M), or L-NOARG (10(-4) M). In the circular muscle in the absence of atropine, cholecystokinin octapeptide (CCK-8; 10(-9) M) evoked a tonic-phasic contractile response which spontaneously faded away within 3 min. L-NOARG (10(-4) M) failed to affect intensity or duration of the response to CCK-8. It is concluded that NO-releasing myenteric neurons exert a tonic inhibitory influence upon the circular, but not longitudinal muscle of the guinea pig ileum. Morphine and TTX probably contract the circular muscle by reducing the amount of NO released. A release of NO seems to play no role in the contractile effect of CCK-8 or in its spontaneous termination.
Collapse
Affiliation(s)
- L Lénárd
- Department of Pharmacology and Pharmacotherapy, University Medical School of Pécs, Hungary
| | | | | |
Collapse
|
99
|
Kurjak M, Koppitz P, Schusdziarra V, Allescher HD. Evidence for a feedback inhibition of NO synthesis in enteric synaptosomes via a nitrosothiol intermediate. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G875-84. [PMID: 10516155 DOI: 10.1152/ajpgi.1999.277.4.g875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The exact mechanisms controlling nitric oxide synthase (NOS) activity within enteric neurons are largely unknown. In this study, the effect of exogenous nitric oxide (NO) on NOS activity was investigated in enteric synaptosomes of rat ileum. 3-Morpholinosydnonimine (SIN-1; 10(-4) M) and S-nitroso-N-acetylpenicillamine (SNAP; 10(-4) M) significantly inhibited NOS activity by 53% and 48%, respectively. However, superoxide dismutase (SOD; 160 U/ml) as well as the NO scavenger oxyhemoglobin (10(-3) M) did not influence NO donor-induced inhibition. In contrast, the inhibitory effect was antagonized by diethyldithiocarbamate (3 x 10(-4) M), an inhibitor of endogenous Cu/Zn SOD. Inhibition of NOS by exogenous NO was dependent on glutathione (GSH), since the inhibitory effect was augmented in the presence of GSH (5 x 10(-4) M) and antagonized by the GSH-depletor DL-buthionine-SR-sulfoximine (5 x 10(-4) M), suggesting that NO might be protected from extracellular breakdown by reaction with GSH. The reaction product of SIN-1/SNAP and GSH was identified as a nitrosothiol. In the presence of the Cu(+)-chelator neocuproine (10(-5) M), inhibition of NOS by SNAP/SIN-1 was reversed, suggesting that nitrosothiol formation is intermediary. These findings are indicative of a feedback inhibition of enteric NOS, presumably via formation of a nitrosothiol intermediate.
Collapse
Affiliation(s)
- M Kurjak
- Department of Internal Medicine II, Technical University of Munich, 81675 Munich, Germany
| | | | | | | |
Collapse
|
100
|
Abstract
1. We report the first simultaneous mechanical reflex responses of the longitudinal muscle (LM) and circular muscle (CM) layers of the guinea-pig ileum following mucosal stimulation and distension in vitro. 2. Dissection techniques were used to prevent mechanical interaction between the LM and CM layers both oral and anal to a stimulus site. 3. All graded stimuli produced graded contractions of both the LM and CM orally and anally to the stimulus. Contractions occurred synchronously in the LM and CM and under no circumstances were inhibitory responses recorded in either muscle layer, despite the presence of ongoing cholinergic tone in both the LM and CM. Contractions were abolished by tetrodotoxin (1.6 microM). 4. Local brush stroking of the mucosa evoked a peristaltic wave which readily conducted distally over 13 cm, without the presence of fluid in the lumen. No descending relaxation was observed. 5. Apamin (300 nM) disrupted evoked peristaltic waves and significantly increased the rate-of-rise of the LM and CM contractions anal to a stimulus, and the LM oral to a stimulus. 6. Nomega-nitro-L-arginine (100 microM), a nitric oxide synthesis inhibitor, had no overall significant effect on the characteristics of the LM and CM contractions, although on occasion an enhancement in their peak amplitude was noted. 7. It is suggested that the guinea-pig ileum does not conform to the 'law of the intestine' as postulated by Bayliss & Starling (1899). Rather, local physiological stimulation of the ileum elicits a contraction both orally and anally to a stimulus, which occurs synchronously in both the CM and LM layers. Apamin-sensitive inhibitory neurotransmission modulates the rate-of-rise of the anal contraction of the CM, possibly to generate distal propulsion.
Collapse
Affiliation(s)
- N Spencer
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | |
Collapse
|