51
|
Wang S, Yao Z, Wang J, Ai Y, Li D, Zhang Y, Mao J, Gu H, Ruan Y, Mao J. Evidence for a distinct group of nestin-immunoreactive neurons within the basal forebrain of adult rats. Neuroscience 2006; 142:1209-19. [PMID: 16997483 DOI: 10.1016/j.neuroscience.2006.07.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 07/05/2006] [Accepted: 07/19/2006] [Indexed: 11/19/2022]
Abstract
Nestin is an intermediate filament protein serving as a marker for neuroprogenitor and stem cells. Here we report that a cluster of previously unrecognized nestin immunoreactive (nestin-ir) neurons was located in the medial septum-diagonal band of Broca (MS-DBB) of the basal forebrain in adult rats. Nestin-ir neurons were exclusively located in the MS-DBB and intermingled with choline acetyltransferase-ir (ChAT-ir), parvalbumin-ir (PV-ir), or nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase reactive (NADPHd-reactive) neurons. However, there was no colocalization between nestin-ir and PV-ir in single neurons in MS-DBB; only about 35% of nestin-ir neurons were ChAT-ir, and 8%-12% of nestin-ir neurons were NADPHd-reactive. Morphologically, nestin-ir neurons showed a larger size of somata than that of ChAT-ir or PV-ir neurons and the distribution of nestin-ir neurons spread across the rostro-caudal extent of the MS-DBB. Moreover, retrograde tracing revealed that a significant portion of these nestin-ir neurons projected to the thalamus and hippocampus. These results, for the first time, provide strong evidence that there exists a cluster of previously unrecognized nestin-ir neurons in MS-DBB of the basal forebrain in adult rats and that these nestin-ir neurons are distinguishable from ChAT-ir, PV-ir, and NADPHd-reactive neurons.
Collapse
Affiliation(s)
- S Wang
- Department of Anatomy and Neurobiology, Zhongshan Medical College, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080 PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Ogren SO, Kuteeva E, Hökfelt T, Kehr J. Galanin receptor antagonists : a potential novel pharmacological treatment for mood disorders. CNS Drugs 2006; 20:633-54. [PMID: 16863269 DOI: 10.2165/00023210-200620080-00003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The pathophysiology of mood disorders involves several genetic and social predisposing factors, as well as a dysregulated response to chronic stress. Accumulated evidence during the last two decades has implicated disturbances in brain serotonin and/or noradrenaline (norepinephrine) neurotransmission in the aetiology of depression. In fact, current pharmacological treatment for mood disorders is based on the use of drugs that act mainly by enhancing brain serotonin and noradrenaline neurotransmission by blockade of the active reuptake mechanism for these neurotransmitters. However, current antidepressant drugs have a delayed onset of therapeutic action, and a substantial number of patients do not respond adequately to them. In addition, these drugs have a number of adverse effects that limit patient compliance. In view of this, there is an intense search to identify novel (receptor) targets for antidepressant therapy. Recent studies have indicated that several neuropeptides and their receptors are potential candidates for the development of novel antidepressant treatment. In this context, galanin is of particular interest, since it is co-localised with serotonin in the dorsal raphe nucleus and with noradrenaline in the locus coeruleus, nuclei known to play a major role in affective disorders and in the action of antidepressant drugs. The actions of galanin are mediated by three receptor subtypes (GAL1, GAL2 and GAL3), which are coupled to different intracellular effector systems. Studies in rats have shown that galanin administered intracerebroventricularly is a potent inhibitor of mesencephalic serotonergic neurotransmission, as indicated by a long-lasting reduction in the release of serotonin in the hippocampus. This inhibitory effect is related to activation of the galanin receptors located on the dorsal raphe neurons. Moreover, intracerebroventricular galanin alters the gene expression of serotonin 5-HT1A autoreceptors in the dorsal raphe and also changes their functional activity. In addition, galanin produces a functional blockade of postsynaptic 5-HT1A receptor-mediated responses. Both pharmacological and genetic studies suggest a role for galanin in depression-like behaviour in rodent models. Transgenic mice overexpressing galanin under the control of the platelet-derived growth factor-beta promoter display increased immobility in the forced swim test. Intracerebroventricular administration of galanin in the rat increases depression-like behaviour, and this is fully blocked by the nonselective peptide galanin receptor antagonist M35. Importantly, M35 alone administered intracerebroventricularly produces an antidepressant-like effect. Recently, newly developed receptor-specific nonpeptidergic galanin GAL3 receptor antagonists (SNAP-37889 and SNAP-398299), which cross the blood-brain barrier after systemic administration, have shown antidepressant-like activity in several animal models. On the other hand, stimulation of the GAL2 receptor at the raphe level by local application of the GAL2 receptor agonist galanin (2-11) has been shown to increase serotonin levels in the hippocampus and dorsal raphe. These results indicate an important (mainly inhibitory) role of galanin as a regulator of brain serotonin and 5-HT1A receptor-mediated transmission, which may be of potential importance for understanding mood disorders and for the development of antidepressant drugs. Taken together, the present evidence suggests that antidepressant efficacy may be associated with compounds acting as antagonists at the GAL3 and/or possibly GAL1 receptors, and/or agonists at the GAL2 receptor.
Collapse
Affiliation(s)
- Sven Ove Ogren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
53
|
Badie-Mahdavi H, Lu X, Behrens MM, Bartfai T. Role of galanin receptor 1 and galanin receptor 2 activation in synaptic plasticity associated with 3',5'-cyclic AMP response element-binding protein phosphorylation in the dentate gyrus: studies with a galanin receptor 2 agonist and galanin receptor 1 knockout mice. Neuroscience 2005; 133:591-604. [PMID: 15885916 DOI: 10.1016/j.neuroscience.2005.02.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 02/16/2005] [Accepted: 02/20/2005] [Indexed: 11/25/2022]
Abstract
The neuropeptide galanin was shown to impair cognitive performance and reduce hippocampal CA1 long-term potentiation (LTP) in rodents. However, the contribution of the two main galanin receptors; GalR1 and GalR2, present in the hippocampus to these effects is not known. In the present study, we determined the protein expression levels of GalR1 and GalR2 in the mouse dentate gyrus (DG) and used galanin (2-11), a recently introduced GalR2 agonist, and GalR1 knockout mice to examine the contribution of GalR1 and GalR2 to the modulation of LTP and 3',5'-cyclic AMP response element-binding protein (CREB)-dependent signaling cascades. In the DG, 57+/-5% of the galanin binding sites were GalR2, and the remaining population corresponded to GalR1. In hippocampal slices, galanin (2-11) fully blocked the induction of DG LTP, whereas galanin (1-29), a high affinity agonist for both GalR1 and GalR2, strongly but not fully attenuated the late phase of LTP by 80+/-1.5%. Application of galanin (1-29) or galanin (2-11) after LTP induction caused a transient reduction in the maintenance phase of LTP, with the larger effect displayed by superfusion of galanin (2-11). The induction and maintenance of DG LTP was not altered in the GalR1 knockout mice. Superfusion of galanin (1-29) or galanin (2-11) blocked the LTP induction to the same degree indicating a role for GalR2 in the induction phase of DG LTP. Furthermore, we analyzed the effects of GalR1 and/or GalR2 activation on DG LTP-induced CREB phosphorylation, associated with the late transcriptional effects of LTP. In the lateral part of the granule cell layer, high-frequency trains stimulation caused a significant increase in the level of CREB phosphorylation, which was significantly reduced by application of either galanin (1-29) or galanin (2-11), indicating that both GalR1 and/or GalR2 can mediate some of their effects on LTP through inhibition of CREB-related signaling cascades.
Collapse
MESH Headings
- Animals
- Cyclic AMP Response Element-Binding Protein/metabolism
- Dentate Gyrus/metabolism
- Electric Stimulation/methods
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Excitatory Postsynaptic Potentials/radiation effects
- Fluorescent Antibody Technique/methods
- Galanin/chemistry
- Galanin/pharmacokinetics
- Galanin/pharmacology
- In Vitro Techniques
- Iodine Isotopes/pharmacokinetics
- Long-Term Potentiation/drug effects
- Long-Term Potentiation/physiology
- Long-Term Potentiation/radiation effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Peptide Fragments/pharmacology
- Phosphorylation
- Protein Binding
- Receptor, Galanin, Type 1/deficiency
- Receptor, Galanin, Type 1/physiology
- Receptor, Galanin, Type 2/agonists
- Receptor, Galanin, Type 2/physiology
- Time Factors
Collapse
Affiliation(s)
- H Badie-Mahdavi
- The Scripps Research Institute, Department of Neuropharmacology, The Harold L. Dorris Neurological Research Center, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
54
|
Wilson DN, Chung H, Elliott RC, Bremer E, George D, Koh S. Microarray analysis of postictal transcriptional regulation of neuropeptides. J Mol Neurosci 2005; 25:285-98. [PMID: 15800381 DOI: 10.1385/jmn:25:3:285] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 11/12/2004] [Indexed: 11/11/2022]
Abstract
Unlike adults, kainic acid (KA)-induced status epilepticus (SE) in immature rats causes neither cell death nor recurrent spontaneous seizures. To elucidate the mechanisms of these distinct responses, transcriptional changes in neuropeptides were examined following KA-induced SE. We aimed to determine whether neuropeptides with anticonvulsant/neuroprotective properties were preferentially increased in immature rats while those with a proconvulsant/neurotoxic role were elevated to a greater extent in mature rats. We used high-density oligonucleotide gene arrays and directly compared transcriptional regulation of seven select neuropeptides at P15 and P30 over five time points. Total RNAs were isolated from hippocampi of 12 animals and pooled to hybridize to triplicate Affymetrix Genechips. Microarray results were validated by real-time quantitative RT-PCR (qRT-PCR). Independent individual RNA samples were purified for triplicate runs of qRT-PCR. Neuropeptides are significantly regulated by seizures in both immature and mature hippocampus. The magnitude of increase is significantly higher at P30 compared with that at P15, not only for neuropeptides with neurotoxic/proconvulsant properties but also for those with neuroprotective/ anticonvulsant properties. Galanin is induced at 24 h only in P30 rats. CST shows high expression in immature hippocampus and is further increased after KA-induced SE only in P15. The expression trends seen in the microarray data are confirmed by qRT-PCR for all six neuropeptides analyzed. CST might play a neuroprotective role in immature rats, and its overexpression might prevent neuronal loss after seizure in adults. Also, suppression of tachykinin and corticotropin-releasing hormone might be effective in alleviating seizure-induced neuronal damage.
Collapse
Affiliation(s)
- Dawn N Wilson
- Division of Neurology, Children's Memorial Hospital, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614, USA
| | | | | | | | | | | |
Collapse
|
55
|
Yoder RM, Pang KCH. Involvement of GABAergic and cholinergic medial septal neurons in hippocampal theta rhythm. Hippocampus 2005; 15:381-92. [PMID: 15630696 DOI: 10.1002/hipo.20062] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hippocampal theta rhythm (HPCtheta) may be important for various phenomena, including attention and acquisition of sensory information. Two types of HPCtheta (types I and II) exist based on pharmacological, behavioral, and electrophysiological characteristics. Both types occur during locomotion, whereas only type II (atropine-sensitive) is present under urethane anesthesia. The circuit of HPCtheta synchronization includes the medial septum-diagonal band of Broca (MSDB), with cholinergic and gamma-aminobutyric acid (GABA)ergic neurons comprising the two main projections from MSDB to HPC. The primary aim of the present study was to assess the effects of GABAergic MSDB lesions on urethane- and locomotion-related HPCtheta, and compare these effects to those of cholinergic MSDB lesions. Saline, kainic acid (KA), or 192 IgG-saporin (SAP) was injected into MSDB before recording. KA preferentially destroys GABAergic MSDB neurons, whereas SAP selectively eliminates cholinergic MSDB neurons. A fixed recording electrode was placed in the dentate mid-molecular layer, and stimulating electrodes were placed in the posterior hypothalamus (PH), and medial perforant path (PP). Under urethane anesthesia, HPCtheta was induced by tail pinch, PH stimulation, and systemic physostigmine; none of the rats with KA or SAP showed HPCtheta in any of these conditions. During locomotion, HPCtheta was attenuated, but not eliminated, in rats with KA or SAP lesions. Intraseptal KA in combination with either intraseptal SAP or PP lesions reduced locomotion-related HPCtheta beyond that observed with each lesion alone, virtually eliminating HPCtheta. In contrast, intraseptal SAP combined with PP lesions did not reduce HPCtheta beyond the effect of each lesion alone. We conclude that both GABAergic and cholinergic MSDB neurons are necessary for HPCtheta under urethane, and that each of these septohippocampal projections contributes to HPCtheta during locomotion.
Collapse
Affiliation(s)
- Ryan M Yoder
- Department of Psychology, J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | | |
Collapse
|
56
|
Badie-Mahdavi H, Behrens MM, Rebek J, Bartfai T. Effect of galnon on induction of long-term potentiation in dentate gyrus of C57BL/6 mice. Neuropeptides 2005; 39:249-51. [PMID: 15944018 DOI: 10.1016/j.npep.2004.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022]
Abstract
The impairment of cognitive performance by galanin administration in rodents indicates a possible modulating effect of this neuropeptide on long-term potentiation (LTP) induction in the hippocampal formation. Galnon is a non-peptide, systemically active galanin receptor agonist which has been tested in feeding, seizure and forced swim task in in vivo rodent experimental models. Similarly to galanin (1-29) (i.c.v.), galnon (i.p.) has exhibited anticonvulsant effects in rats. We have investigated the effect of galnon on the synaptic transmission and plasticity in hippocampal dentate gyrus (DG) of C57Bl/6 mice and compared the galnon effects to the effect of galanin (1-29) and galmic, a non-peptide galanin receptor agonist. Similarly to galanin (1-29) and galmic, superfusion of galnon did not alter the input-output responses in DG. Administration of galnon (1 microM) significantly attenuated the LTP induction by 85.5 +/- 1% by 51 min after high frequency trains stimulation. This result was very similar to the effect of galanin (1-29) and galmic, which caused an 80 +/- 1.5% and 94 +/- 2% reduction in the level of field potentiation, respectively. The PPF responses, however, were not altered due to galnon superfusion which is in contrast to the effect of galanin (1-29) or galmic. In summary, these data indicate that the systemically active, non-peptide galanin receptor agonist, galnon can exert similar effects to galanin (1-29) in attenuation of DG LTP in mice.
Collapse
Affiliation(s)
- H Badie-Mahdavi
- The Scripps Research Institute, Harold L. Dorris Neurological Research Institute, Department of Neuropharmacology, 10550 North Torrey Pines Road, SR307, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
57
|
Zheng K, Kuteeva E, Xia S, Bartfai T, Hökfelt T, Xu ZQD. Age-related impairments of synaptic plasticity in the lateral perforant path input to the dentate gyrus of galanin overexpressing mice. Neuropeptides 2005; 39:259-67. [PMID: 15944020 DOI: 10.1016/j.npep.2005.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 02/15/2005] [Indexed: 11/17/2022]
Abstract
In the present study, electrophysiological recordings were made from hippocampal slices obtained from mice overexpressing galanin under the promoter for the platelet-derived growth factor-B (GalOE mice). In these mice, a particularly strong galanin expression is seen in the granule cell layer/mossy fibers. Paired-pulse facilitation (PPF) of excitatory postsynaptic field potentials (fEPSPs) at the lateral perforant path (LPP)-dentate gyrus synapses was elicited in the dentate gyrus after stimulation with different interpulse intervals. Slices from young adult wild-type (WT) animals showed significant PPF of the 2nd EPSP evoked with paired-pulse stimuli, while PPF was reduced in slices from young adult GalOE mice, as well as aged WT mice, but were not observed at all in slices from aged GalOE animals. Application of the putative galanin antagonist M35 increased PPF in slices from aged WT mice as well as from adult and aged GalOE mice, but had no effect in slices taken from young adult WT mice. These data indicate that galanin is involved in hippocampal synaptic plasticity, in particular in age-related reduction of synaptic plasticity in the LPP input to the dentate gyrus. Galaninergic mechanisms may therefore represent therapeutic targets for treatment of age-related memory deficits and Alzheimer's disease.
Collapse
Affiliation(s)
- Kang Zheng
- Department of Neuroscience, Karolinska Institutet, S-171 71, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
58
|
Xu ZQD, Zheng K, Hökfelt T. Electrophysiological studies on galanin effects in brain--progress during the last six years. Neuropeptides 2005; 39:269-75. [PMID: 15944021 DOI: 10.1016/j.npep.2005.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 02/03/2005] [Indexed: 11/27/2022]
Abstract
The effects of galanin and galanin fragments have been studied on neurons in various brain regions of rodents using electrophysiological techniques. Here, we mainly review reports published during the last six years, that is after the second galanin symposium in 1998. These papers deal with locus coeruleus (LC), the hippocampal formation (HF), hypothalamus, the nucleus of the diagonal band of Broca (DBB) and the dorsal vagal complex (DVC). In most cases galanin has an inhibitory effect by increasing a potassium conductance or reducing a calcium conductance. In LC, beside a direct inhibitory effect, galanin exerts an indirect effect enhancing the noradrenaline-induced hyperpolarization. In the HF, galanin (1-15), but not galanin (1-29), induces hyperpolarization in CA3 pyramidal neurons. Inhibitory effects of galanin on several forms of synaptic plasticity including long-term potentiation, frequency facilitation and paired-pulse facilitation have also been demonstrated in normal and transgenic animals. In the hypothalamic arcuate nucleus galanin has a presynaptic action inhibiting glutamate release, as well as a postsynaptic effect via the galanin R1 receptor. In the DVC, galanin inhibits dorsal vagal motor neurons projecting to the stomach by activation of a postsynaptic galanin receptor. However, excitatory effects of galanin have also been reported in several regions, such as the DBB nucleus, where galanin increases excitability by decreasing a K+ conductance. Taken together, electrophysiological studies have further supported the role of galanin as a neurotransmitter/neuromodulator in the brain.
Collapse
Affiliation(s)
- Zhi-Qing David Xu
- Department of Neuroscience, Karolinska Institutet, S-171 71, Stockholm, Sweden.
| | | | | |
Collapse
|
59
|
|
60
|
Kuteeva E, Hökfelt T, Ogren SO. Behavioural characterisation of young adult transgenic mice overexpressing galanin under the PDGF-B promoter. ACTA ACUST UNITED AC 2005; 125:67-78. [PMID: 15582716 DOI: 10.1016/j.regpep.2004.07.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 07/15/2004] [Accepted: 07/26/2004] [Indexed: 01/14/2023]
Abstract
The behavioural phenotype of transgenic mice (3- to 5-months old) overexpressing galanin (GalOE) under the platelet-derived growth factor B (PDGF-B) promoter was evaluated in a battery of tests, including open field, locomotor cages, light-dark exploration test, elevated plus-maze and the Porsolt forced swim test. Learning and memory were assessed in the passive avoidance and the Morris water maze tasks. No difference between genotypes was found in exploratory activity in the open field. GalOE mice showed a slight increase in spontaneous locomotor activity assessed in the locomotor cages, but the amphetamine-induced increase in locomotor activity was somewhat lower in GalOE mice. Anxiety-like behaviour in the three different tests including open field, light-dark exploration and elevated plus-maze did not differ between genotypes. In the Porsolt forced swim test, GalOE mice displayed an increased time of immobility, indicative of increased learned helplessness possibly reflecting increased stress-susceptibility and/or depression-like behaviour. GalOE mice showed normal learning and memory retention in the passive avoidance and the Morris water maze tasks. These data support the hypothesis that galanin may have a role in functions related to mood states including affective disorders.
Collapse
Affiliation(s)
- Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm S-171 77, Sweden
| | | | | |
Collapse
|
61
|
Kuteeva E, Calza L, Holmberg K, Theodorsson E, Ogren SO, Hökfelt T. Distribution of galanin and galanin transcript in the brain of a galanin-overexpressing transgenic mouse. J Chem Neuroanat 2004; 28:185-216. [PMID: 15531132 DOI: 10.1016/j.jchemneu.2004.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 06/21/2004] [Accepted: 06/21/2004] [Indexed: 10/26/2022]
Abstract
The distribution of galanin mRNA-expressing cells and galanin-immunoreactive (IR) cell bodies and processes was studied in the brain of mice overexpressing galanin under the PDGF-B promoter (GalOE mice) and of wild type (WT) mice, both in colchicine-treated and non-treated animals. In this abstract, we only describe the results in GalOE mouse. A widespread ectopic expression of galanin (both mRNA and peptide) was found, that is a situation when neither transcript nor peptide could be seen in WT mice, not even after colchicine treatment. However, in some regions, such as claustrum, basolateral amygdala, thalamus, CA1 pyramidal cells, and Purkinje cells only galanin mRNA could be detected. In the forebrain galanin was seen in the mitral cells of the olfactory bulb, throughout the cortex, in the basolateral amygdaloid nucleus, claustrum, granular and pyramidal cell layers of the hippocampus, subiculum and presubiculum. In the thalamus, the anterodorsal, mediodorsal, intermediodorsal and mediodorsal lateral nuclei, the reuniens and reticular nuclei showed ectopic expression of galanin. Within the hypothalamus, neurons of the suprachiasmatic nucleus contained galanin. In the mesencephalon, the geniculate nucleus, nucleus ruber, the mesencephalic trigeminal and reticulotegmental nuclei ectopically expressed galanin. In the cerebellum, galanin was observed in the Purkinje cells and in the lateral and interposed cerebellar nuclei. In the pons, sensory and motor nuclei of the trigeminal nerve, the laterodorsal and dorsal tegmental nuclei, the pontine, reticulotegmental and gigantocellular reticular nuclei expressed galanin. Within the medulla oblongata, labeled cells were detected in the facial, ambiguus, prepositus, lateral paragigantocellular and lateral reticular nuclei, and spinal trigeminal nucleus. High densities of galanin-IR fibers were found in the axonal terminals of the lateral olfactory tract, the hippocampal and presumably the cerebellar mossy fibers system, in several thalamic and hypothalamic regions and the lower brain stem. Possible functional consequences of galanin overexpression are discussed.
Collapse
Affiliation(s)
- Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, S-17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
62
|
Kart E, Jocham G, Müller CP, Schlömer C, Brandão ML, Huston JP, de Souza Silva MA. Neurokinin-1 receptor antagonism by SR140333: enhanced in vivo ACh in the hippocampus and promnestic post-trial effects. Peptides 2004; 25:1959-69. [PMID: 15501528 DOI: 10.1016/j.peptides.2004.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 07/10/2004] [Accepted: 07/13/2004] [Indexed: 11/21/2022]
Abstract
Substance P (SP) has memory-promoting, reinforcing and anxiolytic-like effects when applied systemically or centrally. Such effects may be mediated by the neurokinin-1 (NK-1) receptor, since SP preferentially binds to this receptor. We measured the effects of a selective non-peptide NK-1 receptor antagonist, SR140333 (1, 3 and 9 mg/kg i.p.) on ACh levels in frontal cortex, amygdala and hippocampus by microdialysis and HPLC. Levels of ACh in the hippocampus increased dose-dependently immediately after treatment. The same doses of SR140333 given post-trial had minor facilitative effects on inhibitory avoidance learning and open-field habituation, but did not have reinforcing effects in a conditioned place preference (CPP) task. The selective action of NK-1 receptor antagonism on hippocampal ACh may be related to its positive influence on learning.
Collapse
Affiliation(s)
- Emriye Kart
- Institute of Physiological Psychology, Center for Biological and Medical Research, University of Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
63
|
Parent MB, Baxter MG. Septohippocampal acetylcholine: involved in but not necessary for learning and memory? Learn Mem 2004; 11:9-20. [PMID: 14747512 PMCID: PMC1668717 DOI: 10.1101/lm.69104] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neurotransmitter acetylcholine (ACh) has been accorded an important role in supporting learning and memory processes in the hippocampus. Cholinergic activity in the hippocampus is correlated with memory, and restoration of ACh in the hippocampus after disruption of the septohippocampal pathway is sufficient to rescue memory. However, selective ablation of cholinergic septohippocampal projections is largely without effect on hippocampal-dependent learning and memory processes. We consider the evidence underlying each of these statements, and the contradictions they pose for understanding the functional role of hippocampal ACh in memory. We suggest that although hippocampal ACh is involved in memory in the intact brain, it is not necessary for many aspects of hippocampal memory function.
Collapse
Affiliation(s)
- Marise B Parent
- Department of Psychology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30303, USA.
| | | |
Collapse
|
64
|
Colgin LL, Kramár EA, Gall CM, Lynch G. Septal modulation of excitatory transmission in hippocampus. J Neurophysiol 2003; 90:2358-66. [PMID: 12840078 DOI: 10.1152/jn.00262.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Application of the acetylcholinesterase inhibitor physostigmine to conventional hippocampal slices caused a significant reduction of field excitatory postsynaptic potentials (EPSPs) elicited by single pulse stimulation to the medial perforant path. Similar but smaller effects were obtained in the lateral perforant path and other excitatory pathways within hippocampus. The reductions were blocked by atropine, were not accompanied by evident changes in the EPSP waveform, and were eliminated by lesions to the cholinergic septo-hippocampal projections. Antidromic responses to mossy fiber stimulation, recorded in stratum granulosum, were not affected by the drug. However, paired-pulse facilitation was reliably increased, indicating that the depressed synaptic responses were secondary to reductions in transmitter release. The absence of cholinergic axo-axonic connections in the molecular layer suggests that physostigmine reduces presynaptic release by increasing retrograde signaling from the granule cells. In accord with this, an antagonist of the CB1 cannabinoid receptor eliminated the effects of physostigmine on synaptic responses, while an antagonist of the presynaptically located m2 muscarinic acetylcholine receptor did not. This is in contrast to previously reported effects involving application of cholinergic agonists, in which presynaptic inhibition likely results from direct activation of presynaptically located muscarinic receptors. In summary, it is proposed that the cholinergic inputs from the septum to the middle molecular layer modulate, via endocannabinoid release, the potency of the primary excitatory afferent of hippocampus.
Collapse
Affiliation(s)
- Laura Lee Colgin
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92612, USA.
| | | | | | | |
Collapse
|
65
|
Shen PJ, Larm JA, Gundlach AL. Expression and plasticity of galanin systems in cortical neurons, oligodendrocyte progenitors and proliferative zones in normal brain and after spreading depression. Eur J Neurosci 2003; 18:1362-76. [PMID: 14511317 DOI: 10.1046/j.1460-9568.2003.02860.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neocortex contains very few galanin neurons but receives a moderate galanin innervation from various subcortical loci. Recent data suggest that galanin helps regulate the tonic neuronal excitability of hippocampus and probably cerebral cortex but relatively little is known about the anatomy and functional regulation of cortical galanin systems. Therefore, we examined, in the rat, the effect of the intense but benign stimulus, cortical spreading depression (CSD), on the expression of galanin and galanin receptors (GalR1 and GalR2) in the neocortex and associated regions, revealing complex, multicellular responses. Thus, following acute, unilateral KCl-induced CSD, a delayed and transient induction (onset after 48 h, lasting approximately 24 h) of galanin mRNA and peptide production occurred across the ipsilateral cerebral cortex in activated oligodendrocyte progenitor cells (OPCs), identified by specific NG2 proteoglycan immunostaining. An increase in GalR1 mRNA, immunoreactivity and receptor binding occurred in neurons within layers II and V of neocortex and in piriform cortex at 7-28 days after CSD, associated with a long-lasting depletion of galanin-positive nerve fibres in these regions. In contrast, GalR2 mRNA expression was largely unaltered after CSD. Additional novel findings in normal, adult brain were the detection of galanin mRNA and immunoreactivity in OPCs within the medial corpus callosum and in immature progenitor cells in the subventricular zone and rostral migratory stream. GalR1 and GalR2 mRNA was also present in these latter regions. These findings and the complex modulation of galanin and galanin receptors in multiple cell types (neurons/OPCs) following acute cortical activation/depression further demonstrate the potential plasticity of neuronal and non-neuronal galanin systems under physiological and pathological conditions and strongly suggest additional functions for this pleiotropic peptide in mammalian brain.
Collapse
Affiliation(s)
- Pei-Juan Shen
- Howard Florey Institute of Experimental Physiology and Medicine, Austin and Repatriation Medical Centre, The University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
66
|
Skyers PS, Einheber S, Pierce JP, Milner TA. Increased mu-opioid receptor labeling is found on inner molecular layer terminals of the dentate gyrus following seizures. Exp Neurol 2003; 179:200-9. [PMID: 12618127 DOI: 10.1016/s0014-4886(02)00018-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The hippocampal formation is a brain region sensitive to seizure development, a phenomenon thought to be mediated in part by mu-opioid receptor (MOR) activation. Previous studies have found a delayed increase in MOR immunoreactivity (IR) in the inner molecular layer (IML) of the dentate gyrus after experimentally induced seizures. However, whether these increases in MOR-IR are restricted to certain cell types or cellular compartments (i.e., presynaptic, postsynaptic, or glial profiles) has not been determined. Thus, the present study examined which subcellular profiles demonstrate changes in MOR-IR after kainic acid (KA)-induced seizures. Light microscopic (LM) analysis demonstrated seizure-induced increases in MOR-IR at three points of the IML (dorsal blade, ventral blade, and crest) at three levels of section (septal, mid-septotemporal, and temporal). Electron microscopic analysis of the IML revealed that MOR-IR was present in the same types of cellular profiles in both control and KA-treated rats. However, a significant increase in the number of MOR-labeled terminal profiles was revealed in KA-treated rats compared to controls. Additionally, some MOR-labeled terminals in KA-treated rats possessed excitatory-type morphology and contained enkephalin or dynorphin, peptides found in mossy fiber terminals. These data suggest that most of the seizure-induced increases in MOR expression in the IML are associated with terminals originating from several different neuronal populations, including granule cells, and possibly, surviving GABAergic interneurons, septal cholinergic, and/or supramamillary projection neurons.
Collapse
Affiliation(s)
- P S Skyers
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
67
|
Liu HL, Cao R, Jin L, Chen LW. Immunocytochemical localization of substance P receptor in hypothalamic oxytocin-containing neurons of C57 mice. Brain Res 2002; 948:175-9. [PMID: 12383972 DOI: 10.1016/s0006-8993(02)03146-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
With the use of double immunofluorescence, we have examined the distribution of oxytocin-containing neurons that express substance P receptor (SPR) in the hypothalamus of C57 mice. The distribution of oxytocin-like immunoreactive neurons overlapped with that of SPR-like immunoreactive neurons in the paraventricular nucleus and supraoptic nucleus of the hypothalamus. Neurons showing both oxytocin- and SPR-like immunoreactivities were predominantly found in both nuclei. A few neurons that were double-labeled with oxytocin- and SPR-like immunoreactivities were also scattered in the hypothalamic periventricular and preoptic regions. Semi-quantitative analysis indicated that about 94% of the oxytocin-like neurons displayed SPR-like immunoreactivity. These double-labeled cells constituted about 91% of the SPR-like neurons in the aforementioned regions. The present study provides morphological evidence for tachykinin-induced modulation of oxytocin-containing neurons as mediated by substance P receptor in the hypothalamus of mammals.
Collapse
Affiliation(s)
- Hui-Ling Liu
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an 710032, PR China
| | | | | | | |
Collapse
|
68
|
Pang KC, Nocera R, Secor AJ, Yoder RM. GABAergic septohippocampal neurons are not necessary for spatial memory. Hippocampus 2002; 11:814-27. [PMID: 11811676 DOI: 10.1002/hipo.1097] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The medial septum/vertical limb of the diagonal band of Broca (MSDB) provides a major input to the hippocampus and is important for spatial memory. Both cholinergic and GABAergic MSDB neurons project to the hippocampus, and nonselective lesions of the MSDB or transections of the septohippocampal pathway impair spatial memory. However, selective lesions of cholinergic MSDB neurons using 192-IgG saporin (SAP) do not impair or only mildly impair spatial memory. Previously, intraseptal kainic acid was found to reduce levels of glutamic acid decarboxylase, a marker of GABAergic neurons, but not to alter the levels of choline acetyltransferase, a marker of cholinergic neurons. The present study further characterized the effects of kainic acid on GABAergic MSDB neurons and examined the effects of intraseptal kainic acid on spatial memory. Saline, kainic acid, SAP, or the combination of kainic acid and SAP was administered into the MSDB of rats. Spatial memory was assessed in an eight-arm radial maze and a water maze. Kainic acid destroyed GABAergic septohippocampal neurons, but spared cholinergic neurons. SAP eliminated MSDB cholinergic neurons, sparing noncholinergic neurons. Coadministration of kainic acid and SAP destroyed GABAergic and cholinergic MSDB neurons. Acquisition of the radial maze task and performance on this task with 4-h delays were unimpaired by intraseptal kainic acid or SAP, but were impaired by coadministration of kainic acid and SAP. Acquisition of the water maze task was unaffected by intraseptal kainic acid, delayed slightly by SAP, and impaired severely by coadministration of kainic acid and SAP. These results provide evidence that kainic acid at appropriate concentrations effectively destroys GABAergic septohippocampal neurons, while sparing cholinergic MSDB neurons. Furthermore, lesions of the GABAergic septohippocampal neurons do not impair spatial memory. While lesions of cholinergic MSDB neurons may mildly impair spatial memory, the combined lesion of GABAergic and cholinergic septohippocampal neurons resulted in a memory impairment that was greater than that observed after a selective lesion to either population. Thus, damage of GABAergic or cholinergic MSDB neurons, which together comprise the majority of the septohippocampal pathway, cannot totally account for the spatial memory impairment that is observed after nonselective lesions of the MSDB.
Collapse
Affiliation(s)
- K C Pang
- Department of Psychology, J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Ohio 43403, USA.
| | | | | | | |
Collapse
|
69
|
Bacciottini L, Passani MB, Giovannelli L, Cangioli I, Mannaioni PF, Schunack W, Blandina P. Endogenous histamine in the medial septum-diagonal band complex increases the release of acetylcholine from the hippocampus: a dual-probe microdialysis study in the freely moving rat. Eur J Neurosci 2002; 15:1669-80. [PMID: 12059975 DOI: 10.1046/j.1460-9568.2002.02005.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of histaminergic ligands on both ACh spontaneous release from the hippocampus and the expression of c-fos in the medial septum-diagonal band (MSA-DB) of freely moving rats were investigated. Because the majority of cholinergic innervation to the hippocampus is provided by MSA-DB neurons, we used the dual-probe microdialysis technique to apply drugs to the MSA-DB and record the induced effects in the projection area. Perfusion of MSA-DB with high-KCl medium strongly stimulated hippocampal ACh release which, conversely, was significantly reduced by intra-MSA-DB administration of tetrodotoxin. Histamine or the H2 receptor agonist dimaprit, applied directly to the hippocampus, failed to alter ACh release. Conversely, perfusion of MSA-DB with these two compounds increased ACh release from the hippocampus. Also, thioperamide and ciproxifan, two H3 receptor antagonists, administered into MSA-DB, increased the release of hippocampal ACh, whereas R-alpha-methylhistamine, an H3 receptor agonist, produced the opposite effect. The blockade of MSA-DB H2 receptors, caused by local perfusion with the H2 receptor antagonist cimetidine, moderated the spontaneous release of hippocampal ACh and antagonized the facilitation produced by H3 receptor antagonists. Triprolidine, an H1 receptor antagonist, was without effect. Moreover, cells expressing c-fos immunoreactivity were significantly more numerous in ciproxifan- or thioperamide-treated rats than in controls, although no colocalization of anti-c-fos and anti-ChAT immunoreactivity was observed. These results indicate a role for endogenous histamine in modulating the cholinergic tone in the hippocampus.
Collapse
Affiliation(s)
- Lucia Bacciottini
- Dipartimento di Farmacologia Preclinica e Clinica, Universitá di Firenze, V.le G. Pieraccini 6, Italy
| | | | | | | | | | | | | |
Collapse
|
70
|
Nakamura N, Fujita H, Kawata M. Effects of gonadectomy on immunoreactivity for choline acetyltransferase in the cortex, hippocampus, and basal forebrain of adult male rats. Neuroscience 2002; 109:473-85. [PMID: 11823060 DOI: 10.1016/s0306-4522(01)00513-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Androgens are known to affect cognitive and mnemonic aspects of spatial processing. The cholinergic system is thought to play an important role in cognition and memory, but little is known about the interaction between androgen and cholinergic neurons. The present study focused on the effects of testosterone on the cholinergic neurons in the anterior cingulate cortex, the posterior parietal cortex, the hippocampus, and the basal forebrain including the medial septum, i.e., regions related to spatial processing. We examined choline acetyltransferase (ChAT) immunoreactivity in three groups of adult male rats: sham-operated (Sham), 28-day gonadectomized (GDX), and 28-day gonadectomized with immediate implantation of testosterone propionate (GDX+TP). Comparison of the Sham and GDX+TP groups demonstrated that the GDX group had significantly decreased cell counts of ChAT-immunoreactive neurons in anterior cingulate cortex layer II/III, posterior parietal cortex layer II/III, and the medial septum, but not in the other basal forebrain subregions examined (the horizontal part of the diagonal band of Broca and the substantia innominata). The GDX group also had significantly reduced hippocampal ChAT-immunoreactive fiber pixel density. The GDX+TP group maintained ChAT-immunoreactive cell counts in the anterior cingulate cortex, posterior parietal cortex, and medial septum equivalent to those in the Sham group. Less than 1% of identified cells showed colocalization of immunoreactivity for ChAT and androgen receptor in the cell bodies of the cortex and basal forebrain. Our observations demonstrate that the presence or absence of testosterone for 4 weeks influenced the cholinergic population region-specifically in the adult rat brain.
Collapse
Affiliation(s)
- N Nakamura
- Department of Anatomy and Neurobiology, Kyoto Perfectural University of Medicine, Kyoto, Japan
| | | | | |
Collapse
|
71
|
Abstract
Galanin is a neuroendocrine peptide involved in the regulation of feeding, pain, sexual behavior, learning, and memory. The recent discovery, that galanin antagonized excitatory glutamatergic neurotransmission in the hippocampus, provided a rationale for its possible antiepileptic effects. Here we summarize the data on the effects of galanin on seizure activity in several animal models of epilepsy. Pharmacological and molecular biological evidence suggest potent anticonvulsant effects of galanin. Exogenous administration of galanin receptor agonists attenuated seizures, whereas application of galanin receptor antagonists potentiated seizure expression. Genetically engineered mice, with either deletion or overexpression of galanin gene, showed altered resistance to seizures, which was in direct correlation with galanin gene expression. Possible mechanisms of the anticonvulsant action of galanin include its effects on synaptic potentiation in hippocampal circuits and inhibition of the release of the excitatory neurotransmitter glutamate from principal hippocampal neurons.
Collapse
Affiliation(s)
- A Mazarati
- Department of Neurology, UCLA School of Medicine and West LA VA Medical Center, Los Angeles, CA 90073, USA.
| | | | | |
Collapse
|
72
|
Ferreira G, Meurisse M, Tillet Y, Lévy F. Distribution and co-localization of choline acetyltransferase and p75 neurotrophin receptors in the sheep basal forebrain: implications for the use of a specific cholinergic immunotoxin. Neuroscience 2001; 104:419-39. [PMID: 11377845 DOI: 10.1016/s0306-4522(01)00075-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The basal forebrain cholinergic system is involved in different forms of memory. To study its role in social memory in sheep, an immunotoxin, ME20.4 immunoglobulin G (IgG)-saporin, was developed that is specific to basal forebrain cholinergic neurons bearing the p75 neurotrophin receptor. The distribution of sheep cholinergic neurons was mapped with an antibody against choline acetyltransferase. To assess the localization of the p75 receptor on basal forebrain cholinergic neurons, the distribution of p75 receptor-immunoreactive neurons with ME20.4 IgG was examined, and a double-labeling study with antibodies against choline acetyltransferase and p75 receptor was undertaken. The loss of basal forebrain cholinergic neurons and acetylcholinesterase fibers in basal forebrain projection areas was assessed in ewes that had received intracerebroventricular injections of the immunotoxin (50, 100 or 150 microg) alone, as well as, in some of the ewes treated with the highest dose, with bilateral immunotoxin injections in the nucleus basalis (11 microg/side). Results indicated that choline acetyltransferase- and p75 receptor-immunoreactive cells had similar distributions in the medial septum, the vertical and horizontal limbs of the band of Broca, and the nucleus basalis. The double-labeling procedure revealed that 100% of the cholinergic neurons are also p75 receptor positive in the medial septum and in the vertical and horizontal limbs of the band of Broca, and 82% in the nucleus basalis. Moreover, 100% of the p75 receptor-immunoreactive cells of these four nuclei were cholinergic. Combined immunotoxin injections into ventricles and the nucleus basalis produced a near complete loss (80-95%) of basal forebrain cholinergic neurons and acetylcholinesterase-positive fibers in the hippocampus, olfactory bulb and entorhinal cortex. This study provides the first anatomical data concerning the basal forebrain cholinergic system in ungulates. The availability of a selective cholinergic immunotoxin effective in sheep provides a new tool to probe the involvement of basal forebrain cholinergic neurons in cognitive processes in this species.
Collapse
Affiliation(s)
- G Ferreira
- Laboratoire de Comportement Animal, Station PRC, UMR 6073 INRA, CNRS, Université de Tours, 37380, Nouzilly, France
| | | | | | | |
Collapse
|
73
|
Martínez-Morales JR, López-Coviella I, Hernández-Jiménez JG, Reyes R, Bello AR, Hernández G, Blusztajn JK, Alonso R. Sex steroids modulate luteinizing hormone-releasing hormone secretion in a cholinergic cell line from the basal forebrain. Neuroscience 2001; 103:1025-31. [PMID: 11301209 DOI: 10.1016/s0306-4522(01)00023-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The function of a particular neuronal population is in part determined by its neurotransmitter phenotype. We have found that a neuronal-derived septal cell line (SN56), known for its cholinergic properties, also synthesizes and releases luteinizing hormone-releasing hormone. In addition, these cells express the messenger RNAs encoding estrogen and progesterone receptors. The activation of these receptors by their respective ligands cooperatively modulates the depolarization-induced release of luteinizing hormone-releasing hormone in these cells. We have also found that a number of septal neurons in postnatal (1-week-old) mice are immunoreactive to both choline acetyltransferase and luteinizing hormone-releasing hormone. These results indicate that both neurotransmitters, acetylcholine and luteinizing hormone-releasing hormone, may co-exist in septal neurons of the CNS and that they could be modulated by gonadal hormones, and suggest that luteinizing hormone-releasing hormone could be involved in some of the actions of sex steroids on cholinergic neurotransmission.
Collapse
Affiliation(s)
- J R Martínez-Morales
- Laboratory of Cellular Neurobiology, Department of Physiology, University of La Laguna School of Medicine, 38071, S/C de Tenerife, Spain
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Sohrabji F, Peeples KW, Marroquin OA. Local and cortical effects of olfactory bulb lesions on trophic support and cholinergic function and their modulation by estrogen. JOURNAL OF NEUROBIOLOGY 2000; 45:61-74. [PMID: 11018768 DOI: 10.1002/1097-4695(20001105)45:2<61::aid-neu1>3.0.co;2-l] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study determined whether olfactory bulb lesions would affect trophic support to its afferent, the horizontal limb of the diagonal band of Broca (hIDBB), and if estrogen would ameliorate the effects of neural injury in this circuit. NMDA injections into the olfactory bulb resulted in neural injury as indicated by cell loss and increased glial fibrillary acidic protein immunoreactivity. Olfactory bulb lesions severely reduced BDNF expression in its afferent, the hIDBB, while NGF was only reduced in lesioned animals deprived of estrogen. In the olfactory bulb itself, lesions increased BDNF expression, but not NGF. Paradoxically, bulb lesions up-regulated both NGF and BDNF in another target of the hIDBB, the cingulate cortex. Moreover, olfactory bulb lesions affected choline uptake and ChAT activity locally, as well as in the cingulate cortex. Estrogen significantly attenuated the lesion-induced loss of choline uptake in the cingulate cortex, but not at the primary lesion site. Collectively, these results indicate that neural injury to one limb of the forebrain cholinergic system may result in collateral damage to other limbs of this system, suggesting a mechanism for the progression of neurodegenerative diseases, such as Alzheimer's disease, that involve the cholinergic system. Furthermore, these data also indicate that estrogen selectively attenuates certain lesion-induced deficits.
Collapse
Affiliation(s)
- F Sohrabji
- Department of Human Anatomy and Neurobiology, 228, Reynolds Medical Building, Texas A&M System Health Science Center, College Station, Texas 77843-1114, USA.
| | | | | |
Collapse
|
75
|
Semba K. Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behav Brain Res 2000; 115:117-41. [PMID: 11000416 DOI: 10.1016/s0166-4328(00)00254-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies over the last decade have shown that the basal forebrain (BF) consists of more than its cholinergic neurons. The BF also contains non-cholinergic neurons, including gamma-aminobutyric acid-ergic neurons which co-distribute and co-project with the cholinergic neurons. Both types of neuron project, in variable proportions, to the cerebral cortex, hippocampus, thalamus, amygdala, and olfactory bulb, whereas descending projections to the posterior hypothalamus and brainstem nuclei are predominantly non-cholinergic. Some of the cholinergic and non-cholinergic projection neurons contain neuropeptides such as galanin, nitric oxide synthase, and possibly glutamate. To understand better the function of the BF, the organization of the multiple ascending and descending projections of BF neurons is reviewed along with their neurochemical heterogeneity, and possible functions of individual pathways are discussed. It is proposed that BF neurons belong to multiple systems with distinct cognitive, motivational, emotional, motor, and regulatory functions, and that through these pathways, the BF plays a role in controlling both cognitive and non-cognitive aspects of vigilance.
Collapse
Affiliation(s)
- K Semba
- Department of Anatomy and Neurobiology, Dalhousie University, B3H 4H7, Halifax, NS, Canada.
| |
Collapse
|
76
|
Abstract
Previous studies have shown that the expression of the neuropeptide galanin in the hippocampus is altered by seizures and that exogenous administration of galanin into the hippocampus attenuates seizure severity. To address the role of endogenous galanin in modulation of hippocampal excitability and its possible role in seizure mechanisms, we studied two types of transgenic mice: mice with a targeted disruption of the galanin gene (GalKO) and mice that overexpress the galanin gene under a dopamine-beta-hydroxylase promoter (GalOE). GalKO mice showed increased propensity to develop status epilepticus after perforant path stimulation or systemic kainic acid, as well as greater severity of pentylenetetrazol-induced convulsions. By contrast, GalOE mice had increased resistance to seizure induction in all three models. Physiological tests of hippocampal excitability revealed enhanced perforant path-dentate gyrus long-term potentiation (LTP) in GalKO and reduced LTP in GalOE. GalKO showed increased duration of afterdischarge (AD) evoked from the dentate gyrus by perforant path simulation, whereas GalOE had increased threshold for AD induction. Depolarization-induced glutamate release from hippocampal slices was greater in GalKO and lower in GalOE, suggesting that alterations of physiological and seizure responses in galanin transgenic animals may be mediated through modulation of glutamate release. Our data provide further evidence that hippocampal galanin acts as an endogenous anticonvulsant and suggest that genetically induced changes in galanin expression modulate both hippocampal excitability and predisposition to epileptic seizures.
Collapse
|
77
|
Gonzalo-Ruiz A, Morte L. Localization of amino acids, neuropeptides and cholinergic markers in neurons of the septum-diagonal band complex projecting to the retrosplenial granular cortex of the rat. Brain Res Bull 2000; 52:499-510. [PMID: 10974489 DOI: 10.1016/s0361-9230(00)00287-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Retrograde labelling was combined with immunohistochemistry to localize neurons containing choline acetyltransferase, gamma-aminobutyric acid (GABA), glutamate, leu-enkephalin, neurotensin, and substance P-like immunoreactivity in the projection pathways from the septum-diagonal band complex to the retrosplenial granular cortex in the rat. Injections of horseradish peroxidase conjugated to subunit B of cholera toxin (CT-HRP) into the retrosplenial granular cortex resulted in retrogradely labelled neurons in the ipsilateral nuclei of the diagonal band of Broca, especially in the horizonatal nucleus of the diagonal band, and small numbers of CT-HRP-labelled neurons were also found in the medial septal nucleus. In the horizontal and vertical nuclei of the diagonal band of Broca, 90-95% of CT-HRP-labelled neurons (35-45 per section) were immunoreactive for choline acetyltransferase and small numbers of retrogradely labelled neurons (2 to 4-5 per section) were also immunoreactive for GABA, glutamate, neurotensin, leu-enkephalin, or substance P. In the medial septal nucleus approximately 75-80% of the retrogradely labelled neurons (8-10 per section) were immunoreactive for choline acetyltransferase and up to 25% of the CT-HRP labelled neurons (1-3 per section) in the medial septal nucleus also displayed GABA-, glutamate-, neurotensin-, leu-enkephalin-, or substance P-immunoreactivity. These results suggest that the complexity of the neurotransmitter(s)/neuromodulator(s) of septum-diagonal band complex projections to the retrosplenial granular cortex should be taken into account when considering the mechanisms of cortical activation.
Collapse
Affiliation(s)
- A Gonzalo-Ruiz
- Laboratory of Neuroanatomy, Institute of Neuroscience of Castilla and Leon, Valladolid University, Soria,
| | | |
Collapse
|
78
|
Schött PA, Hökfelt T, Ogren SO. Galanin and spatial learning in the rat. Evidence for a differential role for galanin in subregions of the hippocampal formation. Neuropharmacology 2000; 39:1386-403. [PMID: 10818255 DOI: 10.1016/s0028-3908(00)00053-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anatomical, neurochemical and behavioural evidence support a role for galanin in hippocampally mediated functions such as spatial learning and memory. To obtain more precise information on this role, galanin (3 nmol/rat) was infused via bilateral chronic cannulae into different areas of the hippocampal formation which are characterized by different galanin receptor subtypes and also by different galanin innervation patterns. The effects of infused galanin on spatial learning were examined in the Morris swim maze. Infusions of galanin into both the dorsal and ventral dentate gyrus, which mainly contain GAL-R2 receptor mRNA and a high degree of galanin-noradrenaline coexistence, significantly retarded spatial acquisition without affecting swim speed or performance in the visible platform test. This spatial learning deficit was fully blocked by pretreatment with the non-selective galanin antagonist M35. Analysis of retention performance suggested that the major effect of intrahippocampal galanin is mediated via a specific disruption of acquisition mechanisms of importance for performance in the probe trial. Galanin infused into the ventral CA1 (a mainly GAL-R1 receptor mRNA expressing region) or into anterior, ventral CA3 regions did not produce any deficits in spatial learning compared to control animals. These results suggest that galanin mediates its action on spatial learning mainly through the GAL-R2 receptor subtype in areas where most of the galanin is present in noradrenergic terminals. A possible role for the GAL-R1 receptor subtype in cognition in the dorsal and ventral hippocampus remains to be defined. The results suggest a differential functional role for galanin and galanin receptor subtypes within subregions of the hippocampal formation.
Collapse
Affiliation(s)
- P A Schött
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | | | | |
Collapse
|
79
|
Carre GP, Harley CW. Glutamatergic activation of the medial septum complex: an enhancement of the dentate gyrus population spike and accompanying EEG and unit changes. Brain Res 2000; 861:16-25. [PMID: 10751561 DOI: 10.1016/s0006-8993(99)02482-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A large number of cells from the medial septum complex (MSC) innervate the dentate gyrus of the hippocampus. Electrical prestimulation of the MSC enhances perforant path-dentate gyrus evoked field potentials. Considering the large number of fibres that pass through this region, the effects glutamatergic stimulation of the MSC had on dentate gyrus field potentials, and accompanying changes in units, and EEG, was investigated in urethane-anaesthetized rats. The perforant path was stimulated at a rate of 0.1 Hz, evoking an EPSP and a population spike recorded in the dentate gyrus granule cell layer. L-glutamate was delivered by pressure ejection. Glutamate ejection to the MSC produced a significant enhancement of the population spike. The duration of enhancement ranged from 1 to 49 min ( approximately =10.5 min). A consistent, but relatively short increase in the EPSP slope was also demonstrated. MSC activation induced a theta rhythm in 7 of 10 animals (duration=20-112 s). Theta rhythm induction preceded spike enhancement and occurred for a shorter duration than the enhancement. The effects on spontaneous unit activity were mixed. However, all changes in firing rate preceded spike enhancement, and their duration rarely coincided with the duration of the spike enhancement. The population spike enhancement usually occurred without evidence of a change in paired-pulse inhibition.
Collapse
Affiliation(s)
- G P Carre
- Department of Behavioural and Life Sciences, University College of Cape Breton, P.O. Box 5300, Sydney, Nova Scotia, Canada.
| | | |
Collapse
|
80
|
Tomitaka S, Tomitaka M, Tolliver BK, Sharp FR. Bilateral blockade of NMDA receptors in anterior thalamus by dizocilpine (MK-801) injures pyramidal neurons in rat retrosplenial cortex. Eur J Neurosci 2000; 12:1420-30. [PMID: 10762370 DOI: 10.1046/j.1460-9568.2000.00018.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists, ketamine, phencyclidine (PCP) and dizocilpine (MK-801), produce psychosis in people. In rodents they produce cytoplasmic vacuoles in injured retrosplenial cortical neurons that express HSP70 heat shock protein. This study examined possible circuits and receptors that mediate this neuronal injury. Bilateral, but not unilateral, injection of dizocilpine (5, 10, 15, 20 microg/microL per side) into the anterior thalamus induced HSP70 protein in pyramidal neurons in deep layer III of rat retrosplenial cortex 24 h later. In contrast, bilateral dizocilpine injections (5, 10, 15, 20 microg/microL per side) into the retrosplenial cortex or into the diagonal band of Broca did not induce HSP70. Bilateral injections of muscimol (0.1, 1, 10 microg/microL per side), a GABAA (gamma-aminobutyric acid) agonist, into the anterior thalamus blocked HSP70 induction in the retrosplenial cortex produced by systemic dizocilpine (1 mg/kg). Bilateral thalamic injections of baclofen (0.1, 1, 10 microg/microL per side), a GABAB agonist, were ineffective. Anterograde tracer studies confirmed that neurons in the anterior thalamus project to superficial layer III of the retrosplenial cortex where the dendrites of HSP70-immunostained neurons in deep layer III reside. Bilateral blockade of NMDA receptors on GABA neurons in the reticular nuclei of the thalamus is proposed to decrease GABA neuronal firing, decrease GABA release and decrease activation of GABAA receptors. This activates thalamic projection neurons that damage retrosplenial cortical neurons presumably via unblocked cortical glutamate alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and kainate receptors. The increases of blood flow that occur in the thalamus and retrosplenial cortex of people that have psychosis produced by NMDA antagonists could be related to thalamic excitation of the retrosplenial cortex produced by these drugs.
Collapse
Affiliation(s)
- S Tomitaka
- Departments of Neurology, University of California at San Francisco, San Francisco, CA 94121, USA
| | | | | | | |
Collapse
|
81
|
Farr SA, Uezu K, Creonte TA, Flood JF, Morley JE. Modulation of memory processing in the cingulate cortex of mice. Pharmacol Biochem Behav 2000; 65:363-8. [PMID: 10683474 DOI: 10.1016/s0091-3057(99)00226-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To evaluate the possible role of the cingulate cortex in memory processing for training using a noxious stimulus, we trained mice on foot shock avoidance in a T-maze. Cholinergic, GABAergic, serotonergic, and glutamatergic agonists and antagonists were administered into the cingulate cortex immediately after training. Retention for the foot shock avoidance training was tested 1 week later. The results indicate that muscarinic and nicotinic agonists improved retention, while antagonists impaired it. GABA and serotonin agonists impaired retention, while antagonists improved it. Drugs acting on GABA(A) and GABA(B) receptors had similar effects on retention, as did drugs acting on serotonin 1 and 2 receptor subtypes. Glutamate improved retention, and AP5, an antagonist of the excitatory amino acid site of the NMDA receptor, impaired retention. The cingulate cortex, like other parts of the limbic system, is involved in memory processing that occurs shortly after training.
Collapse
Affiliation(s)
- S A Farr
- Geriatric Research Education and Clinical Center (GRECC), VA Medical Center, St. Louis, MO 63106, USA
| | | | | | | | | |
Collapse
|
82
|
Cholinergic septal afferent terminals preferentially contact neuropeptide Y-containing interneurons compared to parvalbumin-containing interneurons in the rat dentate gyrus. J Neurosci 1999. [PMID: 10559422 DOI: 10.1523/jneurosci.19-22-10140.1999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Septal cholinergic neurons may affect hippocampal memory encoding and retrieval by differentially targeting parvalbumin (PARV)-containing basket cells and neuropeptide Y (NPY) interneurons. Thus, the cellular associations of cholinergic efferents, identified by the low-affinity, p75 neurotrophin receptor (p75(NTR)), with interneurons containing either PARV or NPY in the hilus of the rat dentate gyrus were examined in single sections using dual labeling immunoelectron microscopy. Most profiles immunoreactive (IR) for PARV and NPY were perikaryal and dendritic and found within the infragranular and central hilar regions, respectively, whereas most profiles with p75(NTR)-labeling were unmyelinated axons and axon terminals. Although PARV-labeled profiles were more numerous, p75(NTR)-labeled axons and terminals contacted few PARV-IR profiles compared to NPY-labeled profiles (2% of 561 for PARV vs 12% of 433 for NPY). Moreover, structures targeted by p75(NTR)-IR axon terminals varied depending on the presence of PARV or NPY immunoreactivity. p75(NTR)-IR terminals primarily contacted PARV-IR dendrites (87%) compared to somata (13%); however, they contacted more NPY-IR somata (57%) than dendrites (43%). p75(NTR)-labeled terminals formed exclusively symmetric (inhibitory-type) synapses with PARV-IR somata and dendrites; however, they formed mostly symmetric but also asymmetric (excitatory-type) synapses with NPY-IR somata and dendrites. These results suggest that septal cholinergic efferents in the dentate gyrus: (1) preferentially innervate NPY-containing interneurons compared to PARV-containing basket cells; and (2) may provide a more powerful (i.e., somatic contacts), yet functionally diverse (i.e., asymmetric and symmetric synapses), modulation of NPY-containing interneurons. Moreover, they provide evidence that neurochemical subsets of hippocampal interneurons can be distinguished by afferent input.
Collapse
|
83
|
Abstract
The main olfactory bulb is a critical relay step between the olfactory epithelium and the olfactory cortex. A marked feature of the bulb is its massive innervation by cholinergic inputs from the basal forebrain. In this study, we addressed the functional interaction between cholinergic inputs and intrinsic bulbar circuitry. Determining the roles of acetylcholine (ACh) requires the characterization of cholinergic effects on both neural excitability and synaptic transmission. For this purpose, we used electrophysiological techniques to localize and characterize the diverse roles of ACh in mouse olfactory bulb slices. We found that cholinergic inputs have a surprising number of target receptor populations that are expressed on three different neuronal types in the bulb. Specifically, nicotinic acetylcholine receptors excite both the output neurons of the bulb, i.e., the mitral cells, as well as interneurons located in the periglomerular regions. These nicotine-induced responses in interneurons are short lasting, whereas responses in mitral cells are long lasting. In contrast, muscarinic receptors have an inhibitory effect on the firing rate of interneurons from a deeper layer, granule cells, while at the same time they increase the degree of activity-independent transmitter release from these cells onto mitral cells. Cholinergic signaling thus was found to have multiple and opposing roles in the olfactory bulb. These dual cholinergic effects on mitral cells and interneurons may be important in modulating olfactory bulb output to central structures required for driven behaviors and may be relevant to understanding mechanisms underlying the perturbations of cholinergic inputs to cortex that occur in Alzheimer's disease.
Collapse
|
84
|
Abstract
The neuropeptide galanin (Gal) is found throughout the central nervous system. Of particular interest is the fact that Gal is present within the majority of noradrenergic locus coeruleus (LC) neurons. However, very few, if any, Gal-immunoreactive fibers have been identified in many of the major efferent targets of LC, including sensory neocortex and dorsal thalamus. The goal of the present study was to examine the Gal fiber innervation of the rodent trigeminal somatosensory system and its connection to the LC. Our results show that at least two different morphological profiles of Gal-immunoreactive fibers are present within relay nuclei along the ascending trigeminal pathway. Numerous small caliber Gal-immunoreactive fibers with bouton-like swellings were noted within the barrel cortex, the ventroposterior medial (VPM) nucleus, the posterior medial (POm) nucleus, the zona incerta (ZI), the reticular nucleus (nRT) of the thalamus, and the principal (PrV) and spinal (SpV) nuclei of the trigeminal complex. Immunoreactive fibers were prevalent in, but not restricted to, layer I of the barrel cortex. Within the somatosensory thalamus, the density of Gal-immunoreactive fibers was higher in POm than in VPM. Laminae I and II of SpV and the nRT and ZI also contained dense, large-diameter Gal-immunoreactive fibers. These large-diameter Gal-immunoreactive fibers did not co-contain dopamine beta-hydroxylase (DBH). In contrast, virtually every small-caliber Gal-immunoreactive fiber colocalized with DBH. To determine whether Gal-immunoreactive fibers originated from LC, we combined immunohistochemical procedures with fluorescent tracing techniques. After retrograde tracer injections into several trigeminal relay nuclei, we observed that approximately 50% of the labeled LC neuronal population was immunoreactive for Gal. Our results suggest an extensive Gal-immunoreactive fiber innervation of the rodent trigeminal system, much of which may originate from LC neurons in the brainstem.
Collapse
Affiliation(s)
- K L Simpson
- Department of Neurobiology and Anatomy, MCP-Hahnemann University, Philadelphia, Pennsylvania 19129, USA
| | | | | |
Collapse
|
85
|
Milner TA, Hammel JR, Ghorbani TT, Wiley RG, Pierce JP. Septal cholinergic deafferentation of the dentate gyrus results in a loss of a subset of neuropeptide Y somata and an increase in synaptic area on remaining neuropeptide Y dendrites. Brain Res 1999; 831:322-36. [PMID: 10412016 DOI: 10.1016/s0006-8993(99)01493-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Removal of cholinergic septal inputs using the immunotoxin 192 IgG-saporin reduces the number of interneurons containing neuropeptide Y (NPY)-immunoreactivity in the rat dentate gyrus by approximately 30% [Milner et al., J. Comp. Neurol. 386 (1997) 48-59]. The goal of the present study was to determine if NPY-containing neurons that survive deafferentation have any distinguishing morphological and/or microenvironmental features. For this, 2 or 24 weeks after intracerebroventricular injections of 192 IgG-saporin, NPY-immunolabeled neurons in the hilus of the dentate gyrus were examined by electron microscopy. Neither the size nor morphological traits of NPY-labeled perikaryal or dendritic profiles from lesioned compared to control rats at either time-point differed significantly. However, at both time-points, NPY-containing somatal profiles from immunolesioned rats compared to controls had a reduced percentage of their plasmalemmal surface apposed to unmyelinated axon profiles and an increased percentage of their surface occupied by astrocytic profiles. At the 24 week time-point, these differences were statistically significant. The primary contributing factor for these changes was the absence of a subgroup of NPY-labeled somatal profiles in lesioned rats compared to controls which was: (a) distinguished by frequent appositions of unmyelinated axons (from 15 to 35%) to the plasmalemmal surface; and (b) located primarily in the central hilar region. Unlike NPY-containing somata, changes associated with NPY-labeled dendritic profiles were exclusively related to associated presynaptic profiles at the 24 week time-point. In lesioned rats compared to controls at this time-point, NPY-containing dendritic profiles had a concurrent increase in the percentage of the plasmalemmal surface occupied by active zones and the size of terminals contacting them. The present results combined with those of our earlier study suggest that septal cholinergic deafferentation results in: (a) the loss of a distinct subpopulation of hippocampal NPY-containing neurons; and (b) an increase in total active zone area suggesting a strengthening of synaptic connections to the surviving population of NPY-containing neurons in the long term.
Collapse
Affiliation(s)
- T A Milner
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th Street, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
86
|
Lévy F, Meurisse M, Ferreira G, Thibault J, Tillet Y. Afferents to the rostral olfactory bulb in sheep with special emphasis on the cholinergic, noradrenergic and serotonergic connections. J Chem Neuroanat 1999; 16:245-63. [PMID: 10450873 DOI: 10.1016/s0891-0618(99)00005-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The olfactory bulb (OB) is involved in the processing of olfactory information particularly through the activation of its afferents. To localize their cell origin in sheep, a specific retrograde fluorescent tracer, Fluoro-Gold, was injected into the olfactory bulb of seven ewes. By using immunocytochemical techniques, retrogradely labeled neurons were colocalized with choline acetyltransferase, tyrosine hydroxylase, dopamine-beta-hydroxylase and serotonin to characterize cholinergic, noradrenergic and serotonergic Fluoro-Gold-labeled neurons. Most afferents originated from the ipsilateral side of the injection site. The OB received major inputs from the anterior olfactory nucleus (AON), the piriform cortex (PC), the olfactory tubercle, the diagonal band of Broca (DBB) and the amygdala. Other retrogradely labeled neurons were observed in the taenia tecta, the septum, the nucleus of the lateral olfactory tract, the preoptic area, the lateral hypothalamic area, the mediobasal hypothalamus, the lateral part of the premammillary nucleus, the paraventricular nucleus of the hypothalamus, the paraventricular thalamic nucleus, the central grey, the substantia nigra (SN), the ventral tegmental area (VTA), the lateral nucleus to the interpeduncular nucleus (IIP), the raphe and the locus coeruleus (LC). Contralateral labeling was also found in the AON, the PC, the SN compacta, the VTA, the IIP and the LC. Cholinergic Fluoro-Gold-labeled neurons belonged to the horizontal and vertical branch of the DBB. Noradrenergic afferents came from the LC and serotoninergic afferents came from the medial raphe nuclei and the 1IP. These data are discussed in relation with olfactory learning in the context of maternal behavior in sheep.
Collapse
Affiliation(s)
- F Lévy
- Laboratoire de Comportement Animal, INRA/CNRS URA 1291, Nouzilly, France.
| | | | | | | | | |
Collapse
|
87
|
Affiliation(s)
- D Y von Cramon
- Max-Planck-Institute of Cognitive Neuroscience, Department of Neurology, Leipzig, Germany
| | | |
Collapse
|
88
|
Smiley JF, Mesulam MM. Cholinergic neurons of the nucleus basalis of Meynert receive cholinergic, catecholaminergic and GABAergic synapses: an electron microscopic investigation in the monkey. Neuroscience 1999; 88:241-55. [PMID: 10051204 DOI: 10.1016/s0306-4522(98)00202-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An electron microscopic analysis of the nucleus basalis in the macaque monkey was carried out following the immunohistochemical labeling of choline acetyltransferase, either by itself or in conjunction with glutamate decarboxylase or tyrosine hydroxylase. Cholinergic axon varicosities were frequently encountered, and formed large, usually asymmetric, synapses on both choline acetyltransferase-immunopositive and -immunonegative dendrites of nucleus basalis neurons. Catecholaminergic (tyrosine hydroxylase-immunoreactive) axon varicosities formed synapses which in most cases were classified as asymmetric, and glutamate decarboxylase-immunoreactive (GABAergic) axons formed clearly symmetric synapses, each on to choline acetyltransferase-immunopositive or -immunonegative dendrites. These findings indicate that cholinergic cells in the nucleus basalis of the monkey, also known as Ch4 neurons, receive numerous synaptic inputs from cholinergic, catecholaminergic and GABAergic axons.
Collapse
Affiliation(s)
- J F Smiley
- The Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Medical School, Chicago, IL 60611, USA
| | | |
Collapse
|
89
|
Katona I, Acsády L, Freund TF. Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus. Neuroscience 1999; 88:37-55. [PMID: 10051188 DOI: 10.1016/s0306-4522(98)00302-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two characteristic interneuron types in the hippocampus, the so-called hilar perforant path-associated cells in the dentate gyrus and stratum oriens/lacunosum-moleculare neurons in the CA3 and CA1 regions, were suggested to be involved in feedback circuits. In the present study, interneurons identical to these cell populations were visualized by somatostatin-immunostaining, then reconstructed, and processed for double-immunostaining and electron microscopy to establish their postsynaptic target selectivity. A combination of somatostatin-immunostaining with immunostaining for GABA or other interneuron markers revealed a quasi-random termination pattern. The vast majority of postsynaptic targets were GABA-negative dendritic shafts and spines of principal cells (76%), whereas other target elements contained GABA (8%). All of the examined neurochemically defined interneuron types (parvalbumin-, calretinin-, vasoactive intestinal polypeptide-, cholecystokinin-, substance P receptor-immunoreactive neurons) received innervation from somatostatin-positive boutons. Recent anatomical and electrophysiological data showed that the main excitatory inputs of somatostatin-positive interneurons originate from local principal cells. The present data revealed a massive GABAergic innervation of distal dendrites of local principal cells by these feedback driven neurons, which are proposed to control the efficacy and plasticity of entorhinal synaptic input as a function of local principal cell activity and synchrony.
Collapse
Affiliation(s)
- I Katona
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest
| | | | | |
Collapse
|
90
|
Ogren SO, Schött PA, Kehr J, Yoshitake T, Misane I, Mannström P, Sandin J. Modulation of acetylcholine and serotonin transmission by galanin. Relationship to spatial and aversive learning. Ann N Y Acad Sci 1998; 863:342-63. [PMID: 9928182 DOI: 10.1111/j.1749-6632.1998.tb10706.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper presents evidence that galanin is a potent in vivo modulator of basal acetylcholine release in the rat brain with qualitatively and quantitatively differential effects in the dorsal and ventral hippocampus. Galanin perfused through the microdialysis probe decreased basal acetylcholine release in the ventral hippocampus, while it enhanced acetylcholine release in the dorsal hippocampus. Galanin (3 nmol/rat) infused into the ventral hippocampus impaired spatial learning acquisition, while it tended to facilitate acquisition when injected into the dorsal hippocampus. These effects appear to be related to activation of GAL-R1 (ventral hippocampus) and GAL-R2 (dorsal hippocampus) receptors, respectively. However, the effects of galanin on acetylcholine release and on spatial learning appear not to be directly related to cholinergic mechanisms, but they may also involve interactions with noradrenaline and/or glutamate transmission. Galanin administered into the lateral ventricle failed to affect acetylcholine release, while this route of administration produced a long-lasting reduction in 5-HT release in the ventral hippocampus, indicating that galanin is a potent inhibitor of mesencephalic 5-HT neurotransmission in vivo. Subsequent studies supported this hypothesis, showing that the effects on 5-HT release in vivo are most likely mediated by a galanin receptor in the dorsal raphe. The implications of these findings are discussed in relation to the role of acetylcholine in cognitive functions in the forebrain and the role of the raphe 5-HT neurons in affective disorders.
Collapse
Affiliation(s)
- S O Ogren
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
91
|
Galanin modulation of seizures and seizure modulation of hippocampal galanin in animal models of status epilepticus. J Neurosci 1998. [PMID: 9822761 DOI: 10.1523/jneurosci.18-23-10070.1998] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the role of hippocampal galanin in an animal model of status epilepticus (SE). Control rats showed abundant galanin-immunoreactive (Gal-IR) fibers in the dentate hilus, whereas no Gal-IR neurons were observed. Three hours after the onset of self-sustaining SE (SSSE), induced either by intermittent stimulation of the perforant path for 30 min (PPS) or by injection of lithium and pilocarpine, Gal-IR fibers disappeared in the hilus and remained absent for up to 1 week afterward. Twelve hours after the induction of SE by PPS or 3 hr after pilocarpine administration, Gal-IR neurons appeared in the hilus; these neurons increased in number after 1 d and gradually declined 3 and 7 d later. Galanin concentration in the hippocampus, measured by ELISA, significantly decreased on the plateau of SSSE and increased 24 hr after PPS. Galanin (0.05 nmol) injected into the hilus prevented the induction of SSSE, and 0.5 nmol of galanin stopped established SSSE. These effects were attenuated by galanin receptor antagonists (M35 > M40 >/= M15). 2-Ala-galanin (5 nmol), a putative agonist of galanin type 2 receptors, prevented but was unable to stop SSSE. M35 facilitated the development of SSSE when given before PPS. We suggest that hippocampal galanin acts as an endogenous anticonvulsant via galanin receptors. SE-induced galanin depletion in the hippocampus may contribute to the maintenance of seizure activity, whereas the increase of galanin concentration and the appearance of galanin-immunoreactive neurons may favor the cessation of SSSE. The seizure-protecting action of galanin SSSE opens new perspectives in the treatment of SE.
Collapse
|
92
|
Stefani MR, Gold PE. Intra-septal injections of glucose and glibenclamide attenuate galanin-induced spontaneous alternation performance deficits in the rat. Brain Res 1998; 813:50-6. [PMID: 9824666 DOI: 10.1016/s0006-8993(98)00876-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Injection of the neuroactive peptide galanin into the rat hippocampus and medial septal area impairs spatial memory and cholinergic system activity. Conversely, injection of glucose into these same brain regions enhances spatial memory and cholinergic system activity. Glucose and galanin may both modulate neuronal activity via opposing actions at ATP-sensitive K+ (K-ATP) channels. The experiments described in this report tested the ability of glucose and the direct K-ATP channel blocker glibenclamide to attenuate galanin-induced impairments in spontaneous alternation performance in the rat. Intra-septal injection of galanin (2.5 microgram), 30 min prior to plus-maze spontaneous alternation performance, significantly decreased alternation scores compared to those of rats receiving injections of vehicle solution. Co-injection of glucose (20 nmol) or the K-ATP channel blocker glibenclamide (5 nmol) attenuated the galanin-induced performance deficits. Glibenclamide produced an inverted-U dose-response curve in its interaction with galanin, with doses of 0.5 and 10 nmol having no effect on galanin-induced spontaneous alternation deficits. Drug treatments did not alter motor activity, as measured by overall number of arm entries during spontaneous alternation testing, relative to vehicle injected controls. These findings support the hypothesis that, in the septal region, galanin and glucose act via K-ATP channels to modulate neural function and behavior.
Collapse
Affiliation(s)
- M R Stefani
- Neuroscience Graduate Program and Department of Psychology, University of Virginia, Charlottesville, VA 22903, USA
| | | |
Collapse
|
93
|
Durand M, Coronas V, Jourdan F, Quirion R. Developmental and aging aspects of the cholinergic innervation of the olfactory bulb. Int J Dev Neurosci 1998; 16:777-85. [PMID: 10198824 DOI: 10.1016/s0736-5748(98)00087-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The olfactory bulb is a limbic paleocortex which receives monosynaptic sensory afferents from the olfactory mucosa, and a strong direct cholinergic input from the basal forebrain. This review focuses on the rat olfactory bulb as a suitable model to study cholinergic involvements in cortical processing, during development, adulthood and aging. Anatomical and biochemical data show that cholinergic influences upon the bulbar neuronal network are exerted through several types of target cells and receptors (muscarinic and nicotinic). Functional data indicate that cholinergic afferents to the olfactory bulb are involved in local events related to olfactory learning. Neurodegenerative disorders such as Alzheimer's disease involve early olfactory deficits and typical histopathological lesions in the olfactory bulb. In summary, with its exclusively extrinsic cholinergic innervation and direct sensory input, the rat olfactory bulb offers the opportunity to study the cellular and molecular mechanisms of cholinergic influences on cortical processing, in both normal and pathological conditions.
Collapse
Affiliation(s)
- M Durand
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | | | | | | |
Collapse
|
94
|
Schött PA, Bjelke B, Ogren SO. Distribution and kinetics of galanin infused into the ventral hippocampus of the rat: relationship to spatial learning. Neuroscience 1998; 83:123-36. [PMID: 9466403 DOI: 10.1016/s0306-4522(97)00360-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A recent study has shown that ventral hippocampal galanin plays a role in spatial learning and that it has an inhibitory effect on basal acetylcholine release [Ogren S. O. et al. (1996) Neuroscience 75, 1127-1140]. The present studies were designed to compare the in vivo tissue distribution and kinetics of infused galanin (porcine) with the temporal effect of galanin on spatial learning in the rat. Daily bilateral microinfusions of galanin (1.5 nmol/side for five days) via chronic cannulae placed in the ventral hippocampus produced a significant impairment of acquisition of the spatial task when infused 20 min, but not 5 or 60 min, before the daily training session. No overall impairment of memory retention (examined 24 h after the last training session) was observed in the galanin-treated rats. These results indicate that galanin given in the ventral hippocampus produces a time-dependent effect on acquisition. Using an antibody to porcine galanin and immunohistochemistry, galanin infused in the ventral hippocampus was found to be distributed mainly within the ventral part of the hippocampus and around the infusion site. The infused galanin was rapidly cleared from the extracellular space between 5 and 20 min after infusion. Five minutes after infusion of galanin, a number of cells in the ventral hippocampus, both within and outside the zone of extracellularly located galanin, showed a positive galanin-like immunoreactivity. These cells appear morphologically to be medium-sized neurons with a similar position as cells showing neuropeptide Y-like immunoreactivity. At 20 and 60 min after infusion of galanin, no cells with detectable levels of galanin-like immunoreactivity could be seen. These results indicate that the temporal kinetics and distribution of infused galanin are of major importance for its behavioural effect in the ventral hippocampus. The rapid clearance of the infused galanin and its internalization by neuronal endocytotic mechanisms may be important for its effect on cognition.
Collapse
Affiliation(s)
- P A Schött
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
95
|
Xu ZQ, Shi TJ, Hökfelt T. Galanin/GMAP- and NPY-like immunoreactivities in locus coeruleus and noradrenergic nerve terminals in the hippocampal formation and cortex with notes on the galanin-R1 and -R2 receptors. J Comp Neurol 1998; 392:227-51. [PMID: 9512271 DOI: 10.1002/(sici)1096-9861(19980309)392:2<227::aid-cne6>3.0.co;2-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
By using immunofluorescence methodology, extensive galanin (GAL) and GAL message-associated peptide (GMAP)-positive terminal networks were observed in the hippocampal formation. The majority of the GAL/GMAP fibers were dopamine beta-hydroxylase- (DBH) positive, that is, they were noradrenergic. This finding was established with GAL/GMAP-DBH double-staining and with 6-hydroxy-dopamine treatment, which totally abolished all fibers in which GAL/GMAP and DBH coexisted. Also, reserpine treatment caused a marked depletion of GAL. No evidence for GAL/GMAP coexistence with 5-hydroxytryptamine was obtained. In the ventral hippocampus, GAL/GMAP-, DBH-negative fibers were seen in the stratum oriens, the anterior stratum radiatum, along the granule cell layer and in the strata oriens and alveus. In the locus coeruleus (LC), around 80% of the GMAP-positive neurons contained neuropeptide tyrosine (NPY), and about 40% of the NPY-positive neurons expressed GMAP. GAL-R1 receptor mRNA was expressed in Barrington's nucleus (close to the LC), but was not detected in the hippocampal formation/dorsal cortical areas. GAL-R2 receptor mRNA was found in the granule cell layer in the dentate gyrus. The present results show that most, but not all, immunohistochemically detectable GAL/GMAP in the hippocampal formation/dorsal cortex is present in noradrenergic nerve terminals originating in the LC, which has a robust GAL/GMAP synthesis. The functional role of GAL may be related to noradrenaline, possibly by a presynaptic action. However, the presence of GAL in other systems and of GAL-R2 receptor mRNA in granule cells also indicates other targets.
Collapse
Affiliation(s)
- Z Q Xu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
96
|
Miller MA, Kolb PE, Raskind MA. GALR1 galanin receptor mRNA is co-expressed by galanin neurons but not cholinergic neurons in the rat basal forebrain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 52:121-9. [PMID: 9450684 DOI: 10.1016/s0169-328x(97)00250-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The neuropeptide galanin (GAL) has been proposed to be an inhibitory modulator of cholinergic transmission in the hippocampus and may impair memory by directly affecting the activity of basal forebrain (BF) cholinergic neurons. Alternatively, GAL may act indirectly and modulate the activity of other neurotransmitter systems which, in turn, influence cholinergic transmission. We have used double in situ hybridization histochemistry to evaluate the co-expression of the GAL receptor subtype, GALR1, within cholinergic neurons in the medial septum/diagonal band of adult male rats. In alternate brain sections, we assessed the co-expression of GALR1 mRNA within another forebrain cell group implicated in memory functions, the neurons of the bed nucleus of the stria terminalis (BNST) and medial amygdala (AMe) which co-express vasopressin (VP) and GAL and project to septo-hippocampus. Despite the abundance of GALR1 mRNA-expressing neurons in the cholinergic BF, we found no evidence for the co-expression of this receptor subtype within cholinergic neurons in the medial septum/diagonal band. In contrast, we detected an extensive co-expression (95%) of GALR1 mRNA within extrahypothalamic VP/GAL neurons. These results do not support the idea that GAL, acting via the GALR1 receptor, directly impairs BF cholinergic neurons but suggest, instead, that non-cholinergic neurons in the BF may play a role in mediating the inhibitory actions of GAL on cholinergic function. However, our findings provide anatomical evidence that GAL could directly modulate the activity and/or secretion pattern of extrahypothalmic VP/GAL neurons into septo-hippocampal regions.
Collapse
Affiliation(s)
- M A Miller
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
97
|
Milner TA, Wiley RG, Kurucz OS, Prince SR, Pierce JP. Selective changes in hippocampal neuropeptide Y neurons following removal of the cholinergic septal inputs. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970915)386:1<46::aid-cne6>3.0.co;2-d] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
98
|
Antoniou K, Kehr J, Snitt K, Ogren SO. Differential effects of the neuropeptide galanin on striatal acetylcholine release in anaesthetized and awake rats. Br J Pharmacol 1997; 121:1180-6. [PMID: 9249255 PMCID: PMC1564793 DOI: 10.1038/sj.bjp.0701233] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. In the present study the mechanisms were examined by which the neuropeptide galanin modulates the extracellular concentrations of striatal acetylcholine (ACh) in enflurane anaesthetized and in freely moving male rats by use of in vivo microdialysis and high performance liquid chromatography. 2. The perfusion of galanin through the microdialysis probe (0.3 nmol microl(-1), flow rate: 2 microl min(-1)) caused a statistically significant increase in the basal striatal ACh levels in anaesthetized but a decrease in awake animals. No significant effect was revealed after a low dose (0.1 nmol microl(-1), flow rate: 2 microl min(-1)) of galanin perfusion. Both the stimulating and inhibitory effects of galanin on basal ACh release were reversible. 3. The muscarinic antagonist scopolamine (0.1 mg kg(-1), subcutaneously (s.c.)) caused a significant increase in ACh release in both anaesthetized and awake animals. 4. The combination of galanin plus scopolamine attenuated the stimulant effect on ACh release caused by scopolamine alone in awake animals. 5. The putative galanin receptor antagonist M35 at 0.3 nmol microl(-1) but not at 0.1 nmol microl(-1) caused a significant reduction (20%) in ACh release, supporting the view that M35 at higher concentrations behaves as a partial agonist at the galanin receptor. When M35 (0.1 nmol microl(-1)) was co-infused with galanin (0.3 nmol microl(-1)) the galanin-evoked decrease in ACh release was completely blocked. 6. Taken together, these results indicate that galanin affects basal ACh release via stimulation of galanin receptors within the striatum. The mechanism involved is dependent on the anaesthesia procedure which may act via enhancement of gamma-aminobutyric acidA (GABA(A)) mediated transmission within striatal and/or output neurones. In addition, anaesthesia may also decrease the activity of glutamatergic striatal afferents. The results with M35 indicate that the role of galanin perfused in striatum is permissive in the normal rat. Furthermore, galanin is a potent inhibitory modulator of basal ACh release also in the striatum, as recently was shown in the ventral hippocampus in awake animals.
Collapse
Affiliation(s)
- K Antoniou
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
99
|
Kiss J, Maglóczky Z, Somogyi J, Freund TF. Distribution of calretinin-containing neurons relative to other neurochemically identified cell types in the medial septum of the rat. Neuroscience 1997; 78:399-410. [PMID: 9145797 DOI: 10.1016/s0306-4522(96)00508-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The topographic distribution of calretinin-immunoreactive neurons was studied in the medial septum diagonal band of Broca complex of the rat, in relation to the localization of other neurochemically identified cell groups containing choline acetyltransferase, parvalbumin or calbindin D28k. Double-labelling experiments revealed that these four antigen-containing cells formed distinct dorsoventrally running lamellae overlayed on top of each other similar to onion leaves. There was only a slight overlapping of the various cell groups. None of the four antigens were co-localized in the same cells. The lamella occupied by calretinin-positive neurons is situated at the border of the medial septum and the intermediolateral septal nucleus, and shows some overlap with the area occupied by cholinergic neurons. Retrograde transport of horseradish peroxidase from the hippocampus combined with immunostaining for calretinin revealed that calretinin-containing neurons do not participate in the septohippocampal projection. The lack of projection to the amygdala was also confirmed. Thus, calretinin-containing neurons represent a distinct cell group in the medial septal region, which either projects to subcortical areas, or may function as interneurons relaying hippocampal feedback to the medial septal projection neurons.
Collapse
Affiliation(s)
- J Kiss
- Department of Human Morphology, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | |
Collapse
|
100
|
Li YJ, Low WC. Intra-retrosplenial cortical grafts of cholinergic neurons: functional incorporation and restoration of high affinity choline uptake. Neurochem Res 1997; 22:589-95. [PMID: 9131638 DOI: 10.1023/a:1022422103674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fetal septal neurons transplanted into the deafferented retrosplenial cortex (RSC) of rats have been shown to reinnervate the host brain and ameliorate spatial memory deficits. In the present study we examined the effects of implanting cholinergic neurons on high affinity choline uptake (HACU) in the denervated RSC and the correlational relationship between this cholinergic parameter and the level of behavioral recovery. Three groups of animals were used: 1) normal control rats (NC), 2) rats with lesions of the fornix and cingulate pathways (FX), and 3) lesioned rats with fetal septal grafts in the RSC (RSCsep-TPL). We found that intra-RSC septal grafts produced significant increases in HACU, and that recovery of HACU was significantly correlated with the improvements in the performance of spatial reference memory, spatial navigation, and spatial working memory tasks. We have also investigated the ability of the host brain to modulate the activity of the implanted neurons. In particular we evaluated the effect of the animals' performance in a 6-arm radial maze task on high affinity choline uptake (HACU). Animals in each of the NC, FX, and RSCsep-TPL groups were randomly assigned one of the following subgroups: 1) rats that performed the maze task before the determination of HACU (BEH), or 2) rats that did not perform the maze task before the determination of HACU (NON-BEH). Significant increases were observed in the NC and RSCsep-TPL groups, but not in the FX animals, indicating that fetal septal grafts in the RSC can become functionally incorporated with the host neural circuitry, and that the activity of the implanted cholinergic neurons can be modulated by the host brain.
Collapse
Affiliation(s)
- Y J Li
- Dept. of Neurosurgery, University of Minnesota Medical School Minneapolis 55455, USA
| | | |
Collapse
|