51
|
Galindo LE, Garín-Aguilar ME, Medina AC, Serafín N, Quirarte GL, Prado-Alcalá RA. Acquisition and retention of enhanced active avoidance are unaffected by interference with serotonergic activity. Behav Brain Res 2008; 195:153-8. [DOI: 10.1016/j.bbr.2008.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 01/21/2008] [Accepted: 01/21/2008] [Indexed: 11/24/2022]
|
52
|
Cavallaro S. Genomic analysis of serotonin receptors in learning and memory. Behav Brain Res 2008; 195:2-6. [DOI: 10.1016/j.bbr.2007.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 12/03/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
|
53
|
Sigmund JC, Vogler C, Huynh KD, de Quervain DJF, Papassotiropoulos A. Fine-mapping at the HTR2A locus reveals multiple episodic memory-related variants. Biol Psychol 2008; 79:239-42. [DOI: 10.1016/j.biopsycho.2008.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 01/07/2023]
|
54
|
Jackisch R, Gansser S, Cassel JC. Noradrenergic denervation facilitates the release of acetylcholine and serotonin in the hippocampus: Towards a mechanism underlying upregulations described in MCI patients? Exp Neurol 2008; 213:345-53. [DOI: 10.1016/j.expneurol.2008.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/12/2008] [Accepted: 06/14/2008] [Indexed: 12/25/2022]
|
55
|
da Silva AL, Ferreira JG, da Silva Martins B, Oliveira S, Mai N, Nunes DS, Elisabetsky E. Serotonin receptors contribute to the promnesic effects of P. olacoides (Marapuama). Physiol Behav 2008; 95:88-92. [DOI: 10.1016/j.physbeh.2008.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 02/29/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
|
56
|
Piperine, the potential functional food for mood and cognitive disorders. Food Chem Toxicol 2008; 46:3106-10. [DOI: 10.1016/j.fct.2008.06.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 05/27/2008] [Accepted: 06/23/2008] [Indexed: 11/20/2022]
|
57
|
Riegert C, Rothmaier AK, Leemhuis J, Sexton TJ, Neumaier JF, Cassel JC, Jackisch R. Increased expression of 5-HT(1B) receptors by Herpes simplex virus gene transfer in septal neurons: New in vitro and in vivo models to study 5-HT(1B) receptor function. Brain Res Bull 2008; 76:439-53. [PMID: 18502320 PMCID: PMC2667131 DOI: 10.1016/j.brainresbull.2008.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/10/2008] [Accepted: 01/15/2008] [Indexed: 11/29/2022]
Abstract
Serotonergic modulation of acetylcholine (ACh) release after neuron-specific increase of the expression of 5-HT(1B) receptors by gene transfer was studied in vitro and in vivo. The increased expression of the 5-HT(1B) receptor in vitro was induced by treating rat primary fetal septal cell cultures for 3 days with a viral vector inducing the expression of green fluorescent protein (GFP) vector alone, or, in addition, of 5-HT(1B) receptors (HA1B/GFP vector). The transfection resulted in a high number of GFP-positive cells, part of which being immunopositive for choline acetyltransferase. In HA1B/GFP-cultures (vs. GFP-cultures), electrically evoked ACh release was significantly more sensitive to the inhibitory action of the 5-HT(1B) agonist CP-93,129. Increased expression of the 5-HT(1B) receptor in vivo was induced by stereotaxic injections of the vectors into the rat septal region. Three days later, electrically evoked release of ACh in hippocampal slices of HA1B/GFP-treated rats was lower than in their GFP-treated counterparts, showing a higher inhibitory efficacy of endogenous 5-HT on cholinergic terminals after transfection. Moreover, CP-93,129 had a higher inhibitory potency. In conclusion, the HA1B/GFP vector reveals a useful tool to induce a targeted increase of 5-HT(1B) heteroreceptors on cholinergic neurons in selected CNS regions, which provides interesting perspectives for functional approaches at more integrated levels.
Collapse
Affiliation(s)
- Céline Riegert
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Universität Freiburg, Neuropharmakologisches Labor, Hansastrasse 9A, D-79104 Freiburg, Germany
- Laboratoire d’Imagerie et de Neurosciences Cognitives, UMR 7191 CNRS Université Louis Pasteur, GDR CNRS 2905, IFR 37 Neurosciences, 12, rue Goethe, F-67000 Strasbourg, France
| | - Anna Katharina Rothmaier
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Universität Freiburg, Neuropharmakologisches Labor, Hansastrasse 9A, D-79104 Freiburg, Germany
| | - Jost Leemhuis
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Universität Freiburg, Abteilung I, Albertstrasse 25, D-79104 Freiburg, Germany
| | - Timothy J. Sexton
- Department of Psychiatry and Behavioral Sciences, Harborview Medical Center, University of Washington, Seattle, Washington 98195
| | - John F. Neumaier
- Department of Psychiatry and Behavioral Sciences, Harborview Medical Center, University of Washington, Seattle, Washington 98195
| | - Jean-Christophe Cassel
- Laboratoire d’Imagerie et de Neurosciences Cognitives, UMR 7191 CNRS Université Louis Pasteur, GDR CNRS 2905, IFR 37 Neurosciences, 12, rue Goethe, F-67000 Strasbourg, France
| | - Rolf Jackisch
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Universität Freiburg, Neuropharmakologisches Labor, Hansastrasse 9A, D-79104 Freiburg, Germany
| |
Collapse
|
58
|
Adams W, Kusljic S, van den Buuse M. Serotonin depletion in the dorsal and ventral hippocampus: effects on locomotor hyperactivity, prepulse inhibition and learning and memory. Neuropharmacology 2008; 55:1048-55. [PMID: 18634810 DOI: 10.1016/j.neuropharm.2008.06.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/17/2008] [Accepted: 06/19/2008] [Indexed: 12/20/2022]
Abstract
We present an overview of our studies on the differential role of serotonergic projections from the median raphe nucleus (MRN) and dorsal raphe nucleus (DRN) in behavioural animal models with relevance to schizophrenia. Stereotaxic microinjection of the serotonin neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) into the MRN or one of its main projections regions, the dorsal hippocampus, induced a marked enhancement of phencyclidine-induced locomotor hyperactivity and a disruption of prepulse inhibition (PPI) in rats. There was no enhancement of locomotor hyperactivity induced by amphetamine or MK-801 or after 5,7-DHT lesions of the DRN or ventral hippocampus. Rats with dorsal hippocampus lesions did not show significant changes in the Y-maze test for short-term spatial memory, the Morris water maze for long-term spatial memory, or in the T-maze delayed alternation test for working memory. These chronic lesion studies suggest a modulatory influence of serotonergic projections from the MRN to the dorsal hippocampus on phencyclidine effects and prepulse inhibition, but not on different forms of learning and memory. The results provide new insight into the role of serotonin in the dorsal hippocampus in aspects of schizophrenia.
Collapse
Affiliation(s)
- Wendy Adams
- Behavioural Neuroscience Laboratory, Mental Health Research Institute of Victoria, 155 Oak Street, Parkville, Melbourne, Victoria 3052, Australia
| | | | | |
Collapse
|
59
|
A study on the correlation between IL1RAPL1 and human cognitive ability. Neurosci Lett 2008; 438:163-7. [DOI: 10.1016/j.neulet.2008.03.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 03/26/2008] [Accepted: 03/28/2008] [Indexed: 11/24/2022]
|
60
|
Dumont GJH, Wezenberg E, Valkenberg MMGJ, de Jong CAJ, Buitelaar JK, van Gerven JMA, Verkes RJ. Acute neuropsychological effects of MDMA and ethanol (co-)administration in healthy volunteers. Psychopharmacology (Berl) 2008; 197:465-74. [PMID: 18305926 PMCID: PMC2270918 DOI: 10.1007/s00213-007-1056-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 12/19/2007] [Indexed: 10/27/2022]
Abstract
RATIONALE In Western societies, a considerable percentage of young people expose themselves to 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy"). Commonly, ecstasy is used in combination with other substances, in particular alcohol (ethanol). MDMA induces both arousing as well as hallucinogenic effects, whereas ethanol is a general central nervous system depressant. OBJECTIVE The aim of the present study is to assess the acute effects of single and co-administration of MDMA and ethanol on executive, memory, psychomotor, visuomotor, visuospatial and attention function, as well as on subjective experience. MATERIALS AND METHODS We performed a four-way, double-blind, randomised, crossover, placebo-controlled study in 16 healthy volunteers (nine male, seven female) between the ages of 18-29. MDMA was given orally (100 mg) and blood alcohol concentration was maintained at 0.6 per thousand by an ethanol infusion regime. RESULTS Co-administration of MDMA and ethanol was well tolerated and did not show greater impairment of performance compared to the single-drug conditions. Impaired memory function was consistently observed after all drug conditions, whereas impairment of psychomotor function and attention was less consistent across drug conditions. CONCLUSIONS Co-administration of MDMA and ethanol did not exacerbate the effects of either drug alone. Although the impairment of performance by all drug conditions was relatively moderate, all induced significant impairment of cognitive function.
Collapse
Affiliation(s)
- G. J. H. Dumont
- Unit for Clinical Psychopharmacology and Neuropsychiatry (UCPN), Department of Psychiatry, University Medical Centre St Radboud, Nijmegen, The Netherlands ,University Medical Centre Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - E. Wezenberg
- Unit for Clinical Psychopharmacology and Neuropsychiatry (UCPN), Department of Psychiatry, University Medical Centre St Radboud, Nijmegen, The Netherlands
| | - M. M. G. J. Valkenberg
- Unit for Clinical Psychopharmacology and Neuropsychiatry (UCPN), Department of Psychiatry, University Medical Centre St Radboud, Nijmegen, The Netherlands
| | - C. A. J. de Jong
- Nijmegen Institute for Science Practitioners in Addiction, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - J. K. Buitelaar
- Unit for Clinical Psychopharmacology and Neuropsychiatry (UCPN), Department of Psychiatry, University Medical Centre St Radboud, Nijmegen, The Netherlands
| | | | - R. J. Verkes
- Unit for Clinical Psychopharmacology and Neuropsychiatry (UCPN), Department of Psychiatry, University Medical Centre St Radboud, Nijmegen, The Netherlands
| |
Collapse
|
61
|
Koenig J, Cosquer B, Cassel JC. Activation of septal 5-HT1A receptors alters spatial memory encoding, interferes with consolidation, but does not affect retrieval in rats subjected to a water-maze task. Hippocampus 2008; 18:99-118. [PMID: 17924524 DOI: 10.1002/hipo.20368] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using Long-Evans rats tested in a water maze, this study assessed the role of 5-HT1A/5-HT7 receptors of the medial septum in encoding, consolidation, and retrieval of spatial information. The testing protocol (acquisition: daily four-trial sessions over three consecutive days; retention: probe trial on day 4) was first validated by showing that intraseptal infusions of lidocaine (LIDO; 40 microg/0.5 microL) disrupted acquisition and retrieval of the task. 8-OH-DPAT (4 microg/0.5 microL) infused before each acquisition session prevented learning/retention of the platform location, an effect attenuated by pretreatment with the 5-HT1A receptor antagonist WAY 100635. With the 5-HT7 antagonist SB 269970, the 8-OH-DPAT-induced acquisition deficit seemed attenuated, but there was no subsequent retention. When infused immediately, 1, 4, or 6 h after each acquisition session, 8-OH-DPAT did not hinder consolidation. When the infusions were performed 2 h postacquisition, however, consolidation was disrupted. Finally, when infused before a probe trial after drug-free acquisition, 8-OH-DPAT had no effect, suggesting no interference with retrieval processes. We also established that 8-OH-DPAT had no effects when the platform was visible, and altered neither home-cage activity nor anxiety-related behavior (elevated plus-maze). Altogether, these results show that 5-HT1A receptors in the septal region contribute both to declarative-like information encoding and subsequently, within a given postacquisition time window, to its consolidation. They do not participate in the retrieval of recently learned declarative-like information. These observations suggest that 5-HT1A receptors of the medial septum contribute to a serotonin-mediated mechanism involved in the encoding and consolidation, not the retrieval of spatial hippocampal-dependent knowledge. These results might have some relevance to approaches aimed at modifying serotonergic functions in the brain for the treatment of disorders such as depression, anxiety, post-traumatic stress, and amnesia.
Collapse
Affiliation(s)
- Julie Koenig
- LINC UMR 7191, CNRS-Université Louis Pasteur, Institut Fédérératif de Recherche 37-GDR CNRS 2905, 12 rue Goethe, Strasbourg, France
| | | | | |
Collapse
|
62
|
Ogren SO, Eriksson TM, Elvander-Tottie E, D'Addario C, Ekström JC, Svenningsson P, Meister B, Kehr J, Stiedl O. The role of 5-HT(1A) receptors in learning and memory. Behav Brain Res 2008; 195:54-77. [PMID: 18394726 DOI: 10.1016/j.bbr.2008.02.023] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/13/2008] [Accepted: 02/13/2008] [Indexed: 12/12/2022]
Abstract
The ascending serotonin (5-HT) neurons innervate the cerebral cortex, hippocampus, septum and amygdala, all representing brain regions associated with various domains of cognition. The 5-HT innervation is diffuse and extensively arborized with few synaptic contacts, which indicates that 5-HT can affect a large number of neurons in a paracrine mode. Serotonin signaling is mediated by 14 receptor subtypes with different functional and transductional properties. The 5-HT(1A) subtype is of particular interest, since it is one of the main mediators of the action of 5-HT. Moreover, the 5-HT(1A) receptor regulates the activity of 5-HT neurons via autoreceptors, and it regulates the function of several neurotransmitter systems via postsynaptic receptors (heteroreceptors). This review assesses the pharmacological and genetic evidence that implicates the 5-HT(1A) receptor in learning and memory. The 5-HT(1A) receptors are in the position to influence the activity of glutamatergic, cholinergic and possibly GABAergic neurons in the cerebral cortex, hippocampus and in the septohippocampal projection, thereby affecting declarative and non-declarative memory functions. Moreover, the 5-HT(1A) receptor regulates several transduction mechanisms such as kinases and immediate early genes implicated in memory formation. Based on studies in rodents the stimulation of 5-HT(1A) receptors generally produces learning impairments by interfering with memory-encoding mechanisms. In contrast, antagonists of 5-HT(1A) receptors facilitate certain types of memory by enhancing hippocampal/cortical cholinergic and/or glutamatergic neurotransmission. Some data also support a potential role for the 5-HT(1A) receptor in memory consolidation. Available results also implicate the 5-HT(1A) receptor in the retrieval of aversive or emotional memories, supporting an involvement in reconsolidation. The contribution of 5-HT(1A) receptors in cognitive impairments in various psychiatric disorders is still unclear. However, there is evidence that 5-HT(1A) receptors may play differential roles in normal brain function and in psychopathological states. Taken together, the evidence indicates that the 5-HT(1A) receptor is a target for novel therapeutic advances in several neuropsychiatric disorders characterized by various cognitive deficits.
Collapse
Affiliation(s)
- Sven Ove Ogren
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Compton J, Travis MJ, Norbury R, Erlandsson K, van Amelsvoort T, Daly E, Waddington W, Matthiasson P, Eersels JLH, Whitehead M, Kerwin RW, Ell PJ, Murphy DGM. Long-term estrogen therapy and 5-HT(2A) receptor binding in postmenopausal women; a single photon emission tomography (SPET) study. Horm Behav 2008; 53:61-8. [PMID: 17956758 DOI: 10.1016/j.yhbeh.2007.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 08/20/2007] [Accepted: 08/21/2007] [Indexed: 11/23/2022]
Abstract
Variation in estrogen level is reported by some to affect brain maturation and memory. The neurobiological basis for this may include modulation of the serotonergic system. No neuroimaging studies have directly examined the effect of extended estrogen therapy (ET), on the 5-HT(2A) receptor in human brain. We investigated the effect of long-term ET on cortical 5-HT(2A) receptor availability in postmenopausal women. In a cross-sectional study, we compared cortical 5-HT(2A) receptor availability in 17 postmenopausal ERT-naive women and 17 long-term oophorectomised estrogen-users, age- and IQ-matched using single photon emission tomography and the selective 5-HT(2A) receptor ligand (123)I-5-I-R91150. Also, we used the Revised Wechsler Memory Scale to relate memory function to 5-HT(2A) receptor availability. Never-users had significantly higher 5-HT(2A) receptor availability than estrogen-users in hippocampus (1.17 vs. 1.11, respectively, p=0.02), although this did not remain significant after correction for multiple comparisons. Hippocampal 5-HT(2A) receptor availability correlated negatively with verbal and general memory and delayed recall (r=-0.45, p=0.01; r=-0.40, p=0.02; r=-0.36, p=0.04). Right superior temporal 5-HT(2A) receptor availability correlated negatively with verbal memory (r=-0.36, p=0.04). In estrogen-users, receptor availability correlated negatively with verbal and general memory (r=-0.70, p=0.002; r=-0.69, p=0.002); and in never-users, receptor availability negatively correlated with attention and concentration (r=-0.54, p=0.02). Long-term ET may be associated with lower 5-HT(2A) receptor availability in hippocampus. This may reflect increased activity within the serotonergic pathway leading to down-regulation of post-synaptic receptor. Also, increased availability of the 5-HT(2A) receptor in hippocampus is associated with poorer memory function.
Collapse
Affiliation(s)
- J Compton
- Department of Psychological Medicine, Institute of Psychiatry, Denmark Hill, London SE5 8AF, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
Presynaptic receptors for dopamine, histamine and serotonin that are located on dopaminergic, histaminergic and sertonergic axon terminals, respectively, function as autoreceptors. Presynaptic receptors also occur as heteroreceptors on other axon terminals. Auto- and heteroreceptors mainly affect Ca(2+) -dependent exocytosis from the receptor-bearing nerve ending. Some additionally subserve other presynaptic functions.Presynaptic dopamine, histamine and serotonin receptors are involved in various (patho)physiological conditions. Examples are the following:Dopamine autoreceptors play a role in Parkinson's disease, schizophrenia and drug addiction. Dopamine heteroreceptors affecting the release of acetylcholine and of amino acid neurotransmitters in the basal ganglia are also relevant for Parkinson's disease. Peripheral dopamine heteroreceptors on postganglionic sympathetic terminals influence heart rate and vascular resistance through modulation of noradrenaline release. Blockade of histamine autoreceptors increases histamine synthesis and release and may support higher CNS functions such as arousal, cognition and learning. Peripheral histamine heteroreceptors on C fiber and on postganglionic sympathetic fiber terminals diminish neuropeptide and noradrenaline release, respectively. Both inhibititory effects are beneficial in myocardial ischemia. The inhibition of neuropeptide release also explains the antimigraine effects of some agonists of presynaptic histamine receptors. Upregulation of presynaptic serotonin autoreceptors is probably involved in the pathogenesis of major depression. Correspondingly, antidepressant treatments can be linked with a reduced density of 5-HT autoreceptors. 5-HT Heteroreceptor activation diminishes acetylcholine and GABA release and may therefore increase anxiety. In the periphery, presynaptic 5-HT heteroreceptor agonists shorten migraine attacks by inhibition of the release of neuropeptides from trigeminal afferents, apart from their constrictive action on meningeal vessels.
Collapse
MESH Headings
- Animals
- Dopamine/metabolism
- Dopamine Agents/pharmacology
- Dopamine Agents/therapeutic use
- Histamine Antagonists/pharmacology
- Histamine Antagonists/therapeutic use
- Humans
- Nervous System Diseases/drug therapy
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/metabolism
- Receptors, Dopamine/physiology
- Receptors, Histamine/drug effects
- Receptors, Histamine/metabolism
- Receptors, Histamine/physiology
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/metabolism
- Receptors, Presynaptic/physiology
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
- Receptors, Serotonin/physiology
- Serotonin Agents/pharmacology
- Serotonin Agents/therapeutic use
Collapse
Affiliation(s)
- Thomas J Feuerstein
- Neurochirurgische Universitätsklinik Breisacherstrasse, 64 D - 79106, Freiburg, Germany.
| |
Collapse
|
65
|
Abstract
Serotoninergic neurons in the central nervous system impinge on many other neurons and modulate their neurotransmitter release. This review focuses on 1) the function of presynaptic 5-hydroxytryptamine (5-HT) heteroreceptors on axon terminals of central cholinergic, dopaminergic, noradrenergic, or GABAergic neurons and 2) the role of GABAergic interneurons expressing 5-HT heteroreceptors in the regulation of acetylcholine, dopamine, or noradrenaline release. In vitro studies on slices or synaptosomes and in vivo microdialysis experiments have shown that 5-HT(1A), 5-HT(1B), 5-HT(2A), 5-HT(2C), 5-HT(3), and/or 5-HT(4) heteroreceptors mediate this modulation. 5-HT(1B) receptors on neocortical cholinergic, striatal dopaminergic, or hippocampal GABAergic axon terminals are examples for release-inhibiting 5-HT heteroreceptors; 5-HT(3) receptors on hippocampal GABAergic or 5-HT(4) receptors on hippocampal cholinergic axon terminals are examples for release-facilitating 5-HT heteroreceptors. GABA released from GABAergic interneurons upon activation of facilitatory 5-HT receptors, e.g., 5-HT(2A) or 5-HT(3) receptors, mediates inhibition of the release of other neurotransmitters such as prefrontal neocortical dopamine or neocortical acetylcholine release, respectively. Conversely, attenuated GABA release in response to activation of inhibitory 5-HT heteroreceptors, e.g., 5-HT(1A) or 5-HT(1B) receptors on GABAergic interneurons is involved in paradoxical facilitation of hippocampal acetylcholine and striatal dopamine release, respectively. Such 5-HT heteroreceptors are considered potential targets for appropriate 5-HT receptor ligands which, by enhancing the release of a relevant neurotransmitter, can compensate for its hypothesized deficiency in distinct brain areas. Examples for such deficiencies are the impaired release of hippocampal or neocortical acetylcholine, striatal dopamine, and hippocampal or neocortical noradrenaline in disorders such as Alzheimer's disease, Parkinson's disease, and major depression, respectively.
Collapse
Affiliation(s)
- Klaus B Fink
- Department of Pharmacology, Bonn University Clinic, Reuterstr. 2b, 53113 Bonn, Germany.
| | | |
Collapse
|
66
|
|
67
|
Hritcu L, Clicinschi M, Nabeshima T. Brain serotonin depletion impairs short-term memory, but not long-term memory in rats. Physiol Behav 2007; 91:652-7. [PMID: 17481676 DOI: 10.1016/j.physbeh.2007.03.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 03/23/2007] [Accepted: 03/27/2007] [Indexed: 11/20/2022]
Abstract
Intracerebroventricular injection of 5,7-dihydroxytryptamine (5,7-DHT) (150 microg; 4.5 microl/ventricle), a serotonergic neurotoxin, significantly decreased spontaneous alternation in Y-maze task and working memory in radial 8 arm-maze task, suggesting effects on short-term memory, without affecting long-term memory, explored by reference memory in radial 8 arm-maze task and step-through latency in multi-trial passive avoidance task. Parachlorophenylalanine (PCPA) (3 days treatment 200 microg, i.c.v.), a serotonin synthesis inhibitor, did not impair step-through-latency in multi-trial passive avoidance task, suggesting no effects on long-term memory. These results suggest that serotonin, among other neurotransmitters, play an important role in cognitive functions, especially short-term memory.
Collapse
Affiliation(s)
- Lucian Hritcu
- Alexandru Ioan Cuza University, Department of Physiology, Blv Carol I no 20A, 700506, Iasi, Romania.
| | | | | |
Collapse
|
68
|
Bonsi P, Cuomo D, Ding J, Sciamanna G, Ulrich S, Tscherter A, Bernardi G, Surmeier DJ, Pisani A. Endogenous serotonin excites striatal cholinergic interneurons via the activation of 5-HT 2C, 5-HT6, and 5-HT7 serotonin receptors: implications for extrapyramidal side effects of serotonin reuptake inhibitors. Neuropsychopharmacology 2007; 32:1840-54. [PMID: 17203014 DOI: 10.1038/sj.npp.1301294] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The striatum is richly innervated by serotonergic afferents from the raphe nucleus. We explored the effects of this input on striatal cholinergic interneurons from rat brain slices, by means of both conventional intracellular and whole-cell patch-clamp recordings. Bath-applied serotonin (5-HT, 3-300 microM), induced a dose-dependent membrane depolarization and increased the rate of spiking. This effect was mimicked by the 5-HT reuptake blockers citalopram and fluvoxamine. In voltage-clamped neurons, 5-HT induced an inward current, whose reversal potential was close to the K(+) equilibrium potential. Accordingly, the involvement of K(+) channels was confirmed either by increasing extracellular K(+) concentration and by blockade of K(+) channels with barium. Single-cell reverse transcriptase-polymerase chain reaction (RT-PCR) profiling demonstrated the presence of 5-HT2C, 5-HT6, and 5-HT7 receptor mRNAs in identified cholinergic interneurons. The depolarization/inward current induced by 5-HT was partially mimicked by the 5-HT2 receptor agonist 2,5-dimethoxy-4-iodoamphetamine and antagonized by both ketanserin and the selective 5-HT2C antagonist RS102221, whereas the selective 5-HT3 and 5-HT4 receptor antagonists tropisetron and RS23597-190 had no effect. The depolarizing response to 5-HT was also reduced by the selective 5-HT6 and 5-HT7 receptor antagonists SB258585 and SB269970, respectively, and mimicked by the 5-HT7 agonist, 5-CT. Accordingly, activation of either 5-HT6 or 5-HT7 receptor induced an inward current. The 5-HT response was attenuated by U73122, blocker of phospholipase C, and by SQ22,536, an inhibitor of adenylyl cyclase. These results suggest that 5-HT released by serotonergic fibers originating in the raphe nuclei has a potent excitatory effect on striatal cholinergic interneurons.
Collapse
Affiliation(s)
- Paola Bonsi
- Fondazione Santa Lucia I.R.C.C.S., European Brain Research Institute, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Kumari A, Sreetama S, Mohanakumar KP. Atropine, a muscarinic cholinergic receptor antagonist increases serotonin, but not dopamine levels in discrete brain regions of mice. Neurosci Lett 2007; 423:100-3. [PMID: 17689188 DOI: 10.1016/j.neulet.2007.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/10/2007] [Accepted: 06/19/2007] [Indexed: 01/14/2023]
Abstract
We investigated the effects of atropine, a muscarinic acetylcholine (ACh) receptor antagonist, on the level of serotonin in discrete brain regions, the nucleus raphe dorsalis (NRD), nucleus caudatus putamen (NCP), cerebral cortex and the cerebellum. Biogenic amines were assayed employing HPLC electrochemistry in these regions 30 min following different doses of atropine (5, 10, 25mg/kg; i.p.), and at various time points (15, 30, 60, 120 min) after 25mg/kg of the drug. The cholinergic receptor antagonist caused a dose-dependent alteration in the level of serotonin in NRD, but the increase was not dose-dependent for other regions studied. The metabolite of serotonin, 5-hydroxyindoleacetic acid was unaffected. Atropine did not affect the levels of dopamine or its metabolites dihydroxyphenyl acetic acid and homovanillic acid. The present study suggests significant effect of this antimuscarinic agent on the synthesis of serotonin in the central serotoninergic pathways, which may have clinical relevance.
Collapse
Affiliation(s)
- Amrita Kumari
- Laboratory of Clinical & Experimental Neuroscience, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | | | |
Collapse
|
70
|
Cannizzaro C, Plescia F, Gagliano M, Cannizzaro G, Provenzano G, Mantia G, Cannizzaro E. Effects of pre- and postnatal exposure to 5-methoxytryptamine and early handling on an object-place association learning task in adolescent rat offspring. Neurosci Res 2007; 59:74-80. [PMID: 17601618 DOI: 10.1016/j.neures.2007.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 05/15/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
A reduction in 5-HT1A receptor response enhances learning and memory performance in rats. Pre- and postnatal treatment with 5-methoxytryptamine (5MT), a non-selective serotonergic agonist, and early handling, reduce the number of 5-HT1A receptors in neonatal and pre-pubertal rat progeny. The aim of this study was to investigate in adolescent male rats the consequences of pre- and postnatal treatment with 5MT and its interaction with early handling on an object-place association learning task, the "Can test", a motivated, non-aversive, spatial/object discrimination task. Results show that a single daily injection of 5MT from gestational days 12 to 21 (1 mg/kg s.c.) and from postnatal days 2 to 18 to pups (0.5 mg/kg s.c.), increases the level of activity and the number of correct responses, and decreases the number of reference memory errors in the progeny as adolescent, compared to vehicle-treated rats. Similar effects are observed following a daily, brief, maternal separation of the pups from postnatal days 2 until 21. Furthermore, when 5MT-treated rats underwent to early handling procedure, the effects induced by 5MT increased handling-induced facilitation of the object-place association. These results suggest that pre- and postnatal treatment with 5MT enhances learning in the "Can test", probably due to a reduction in 5-HT1A receptors in the hippocampus. Whether the potentiation exerted by pre- and postnatal 5MT on early handling effects may be related to a further damping of 5-HT1A receptor response is not yet assessed; however, our data demonstrate that this association is able to induce long-term facilitative effects on spatial learning performance in a non-aversive spatial/object discrimination task in the adolescent rat offspring.
Collapse
Affiliation(s)
- Carla Cannizzaro
- Dipartimento di Scienze Farmacologiche, Università di Palermo, V. Vespro 129, 90127 Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
71
|
O'Hara R, Schröder CM, Mahadevan R, Schatzberg AF, Lindley S, Fox S, Weiner M, Kraemer HC, Noda A, Lin X, Gray HL, Hallmayer JF. Serotonin transporter polymorphism, memory and hippocampal volume in the elderly: association and interaction with cortisol. Mol Psychiatry 2007; 12:544-55. [PMID: 17353910 PMCID: PMC2084475 DOI: 10.1038/sj.mp.4001978] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The s allele variant of the serotonin transporter gene (5-HTT) has recently been observed to moderate the relationship of stress to depression and anxiety. To date no study has considered interactive effects of 5-HTT genotype, stress and hypothalamic-pituitary-adrenal (HPA) function on cognition in healthy, older adults, which may reflect developmental, functional or neurodegenerative effects of the serotonin transporter polymorphism. We investigated whether 5-HTT genotype interacts with cumulative life stress and HPA-axis measures of waking and diurnal cortisol slope to impact cognition in 154 non-depressed, older adults. Structural images of hippocampal volume were acquired on a subsample of 56 participants. The 5-HTT s allele was associated with both significantly lower delayed recall and higher waking cortisol levels. Presence of the s allele interacted with higher waking cortisol to negatively impact memory. We also observed a significant interaction of higher waking cortisol and the s allele on lower hippocampal volume. Smaller hippocampi and higher cortisol were associated with lower delayed recall only in s allele carriers. No impact or interactions of cumulative life stress with 5-HTT or cortisol were observed. This is the first investigation to identify an association of the 5-HTT s allele with poorer memory function in older adults. The interactive effects of the s allele and waking cortisol levels on reduced hippocampal volume and lower memory suggest that the negative effect of the serotonin polymorphism on memory is mediated by the HPA axis. Further, given the significant association of the s allele with higher waking cortisol in our investigation, future studies may be needed to evaluate the impact of the serotonin transporter polymorphism on any neuropsychiatric or behavioral outcome which is influenced by HPA axis function in older adults.
Collapse
Affiliation(s)
- R O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA 94305-5550, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
The behavioral effects of enriched housing are not altered by serotonin depletion but enrichment alters hippocampal neurochemistry. Neurobiol Learn Mem 2007; 88:1-10. [PMID: 17493843 DOI: 10.1016/j.nlm.2007.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 03/08/2007] [Accepted: 03/29/2007] [Indexed: 11/19/2022]
Abstract
To assess a possible role for serotonin in the mediation of the behavioral changes induced by enriched housing conditions (EC), adult female Long-Evans rats sustaining a serotonin depletion (150 microg of 5,7-dihydroxytryptamine, icv) and sham-operated rats were housed postoperatively for 30 days in enriched (12 rats/large cage containing various objects) or standard housing conditions (2 rats/standard laboratory cage). Thereafter, anxiety responses (elevated plus-maze), locomotor activity (in the home-cage), sensori-motor capabilities (beam-walking task), and spatial memory (eight-arm radial maze) were assessed. Monoamine levels were subsequently measured in the frontoparietal cortex and the hippocampus. Overall, EC reduced anxiety-related responses, enhanced sensori-motor performance and improved the memory span in the initial stage of the spatial memory task. Despite a substantial reduction of serotonergic markers in the hippocampus (82%) and the cortex (74%), these positive effects of EC were not altered by the lesion. EC reduced the serotonin levels in the ventral hippocampus (particularly in unlesioned rats: -23%), increased serotonin turnover in the entire hippocampus (particularly in lesioned rats: +36%) and augmented the norepinephrine levels in the dorsal hippocampus (+68% in unlesioned and +49% in lesioned rats); no such alterations were found in the frontoparietal cortex. Our data suggest that an intact serotonergic system is not a prerequisite for the induction of positive behavioral effects by EC. The neurochemical changes found in the hippocampus of EC rats, however, show that the monoaminergic innervation of the hippocampus is a target of EC.
Collapse
|
73
|
Ehret A, Birthelmer A, Rutz S, Riegert C, Rothmaier AK, Jackisch R. Agonist-mediated regulation of presynaptic receptor function during development of rat septal neurons in culture. J Neurochem 2007; 102:1071-82. [PMID: 17472710 DOI: 10.1111/j.1471-4159.2007.04598.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Presynaptic receptors modulating the release of acetylcholine (ACh) were studied in fetal septal neurons cultured in a growth medium to which various drugs were added from day 3 in vitro (DIV 3) to DIV 14. The influence of these drugs on the function of the presynaptic muscarinic (M-) autoreceptor was determined at DIV 14 by measuring the inhibitory effect of the M-agonist oxotremorine on the electrically-evoked release of [(3)H]ACh from cultures pre-incubated with [(3)H]choline. The presence of the M-agonists oxotremorine (100 micromol/L) or carbachol (100 micromol/L) from DIV 3 to DIV 14, or from DIV 13 to DIV 14, abolished M-autoreceptor function at DIV 14, whereas the presence of the M-antagonist atropine (10 micromol/L from DIV 3 to DIV 14) during growth left M-autoreceptor function unaltered. Inhibition of ACh esterase by donepezil (1 micromol/L from DIV 3 to DIV 14) weakly decreased M-autoreceptor function at DIV 14; inhibition of neuronal firing by 0.1 tetrodotoxin (0.1 micromol/L from DIV 3 to DIV 14) did not tend to affect M-autoreceptor function at DIV 14. Co-cultivation of fetal septal and raphe neurons for 2 weeks yielded cell cultures containing both vesicular ACh transporter- and tryptophan hydroxylase-immunopositive cells. From these cultures, the release of both [(3)H]ACh and [(3)H]5-HT could be induced by electrical field stimulation. In co-cultured neurons versus septal-only ones the inhibitory effect of oxotremorine on the evoked release of [(3)H]ACh appeared almost normal, whereas that of the selective 5-HT(1B) agonist 3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrollo[3,2-b]pyrid-5-one (CP-93,129) was completely abolished. The effects of CP-93,129 were also absent on DIV 14 in septal mono-cultures grown in the presence of CP-93,129 (10 micromol/L) from DIV 3 to DIV 14. It is therefore concluded that the regulation of presynaptic receptor function strongly depends on the concentrations of endogenous transmitters in the neuronal environment.
Collapse
Affiliation(s)
- Andreas Ehret
- Laboratory of Neuropharmacology, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Hansastrasse, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
74
|
Rutz S, Riegert C, Rothmaier AK, Jackisch R. Presynaptic modulation of 5-HT release in the rat septal region. Neuroscience 2007; 146:643-58. [PMID: 17383104 DOI: 10.1016/j.neuroscience.2007.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 02/06/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
5-HT released from serotonergic axon terminals in the septal nuclei modulates the activity of septal output neurons (e.g. septohippocampal cholinergic neurons) bearing somatodendritic 5-HT receptors. Therefore, we studied the mechanisms involved in the presynaptic modulation of 5-HT release in the lateral (LS) and medial septum (MS), and the diagonal band of Broca (DB). HPLC analysis showed that tissue concentrations of noradrenaline, dopamine and 5-HT were highest in DB (DB>MS>LS). Slices prepared from LS, MS and DB regions were preincubated with [(3)H]5-HT, superfused in the presence of 6-nitro-2-(1-piperazinyl)-quinoline (6-nitroquipazine) and electrically stimulated up to three times (first electrical stimulation period (S(1)), S(2), S(3); 360 pulses, 3 Hz, 2 ms, 26-28 mA). In all septal regions the Ca(2+)-dependent and tetrodotoxin-sensitive electrically-evoked overflow of [(3)H] was inhibited by the 5-HT(1B) agonist CP-93,129 and the alpha(2)-adrenoceptor agonist 5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline tartrate (UK-14,304). Also the mu- and kappa-opioid receptor agonists (d-Ala(2), N-Me-Phe(4), glycinol(5))-enkephalin (DAMGO) and [trans-(1S,2S(-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl) cyclohexyl]-benzenacetamide hydro-chloride] (U-50,488H), respectively, acted inhibitory (although less potently), whereas the delta-opioid receptor agonist (d-Pen(2), d-Pen(5))-enkephalin (DPDPE), the dopamine D(2) receptor agonist quinpirole and the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine were all ineffective; the GABA(B) receptor agonist baclofen had weak effects. All inhibitory effects of the agonists were antagonized by the corresponding antagonists (3-[3-(dimethylamino)propyl]-4-hydroxy-N-[4-(4-pyridinyl)phenyl]benzamide dihydrochloride (GR-55,562), idazoxan, naloxone, nor-binaltorphimine), which also significantly enhanced the evoked release of 5-HT at S(1). It is concluded that 5-HT release in septal nuclei of the rat is modulated by presynaptic 5-HT(1B) autoreceptors, as well as by alpha(2)-, mu- and kappa-opioid heteroreceptors. All of these receptors seem to be under a tonic inhibitory influence of the corresponding endogenous agonists and show qualitatively comparable modulatory properties along the dorso-ventral distribution of the 5-HT terminals.
Collapse
Affiliation(s)
- S Rutz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Laboratory of Neuropharmacology, University of Freiburg, Hansastrasse 9A, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
75
|
Dere E, Huston JP, De Souza Silva MA. The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 2007; 31:673-704. [PMID: 17368764 DOI: 10.1016/j.neubiorev.2007.01.005] [Citation(s) in RCA: 530] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 01/08/2007] [Accepted: 01/18/2007] [Indexed: 01/31/2023]
Abstract
Rats and mice are attracted by novel objects. They readily approach novel objects and explore them with their vibrissae, nose and forepaws. It is assumed that such a single explorative episode leaves a lasting and complex memory trace, which includes information about the features of the object explored, as well as where and even when the object was encountered. Indeed, it has been shown that rodents are able to discriminate a novel from a familiar object (one-trial object recognition), can detect a mismatch between the past and present location of a familiar object (one-trial object-place recognition), and can discriminate different objects in terms of their relative recency (temporal order memory), i.e., which one of two objects has been encountered earlier. Since the novelty-preference paradigm is very versatile and has some advantages compared to several other memory tasks, such as the water maze, it has become a powerful tool in current neurophamacological, neuroanatomical and neurogenetical memory research using both rats and mice. This review is intended to provide a comprehensive summary on key findings delineating the brain structures, neurotransmitters, molecular mechanisms and genes involved in encoding, consolidation, storage and retrieval of different forms of one-trial object memory in rats and mice.
Collapse
Affiliation(s)
- Ekrem Dere
- Institute of Physiological Psychology, and Center for Biological and Medical Research, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany.
| | | | | |
Collapse
|
76
|
Lehmann K, Lehmann D. Transmitter balances in the olfactory cortex: adaptations to early methamphetamine trauma and rearing environment. Brain Res 2007; 1141:37-47. [PMID: 17300761 DOI: 10.1016/j.brainres.2007.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 12/18/2006] [Accepted: 01/05/2007] [Indexed: 11/25/2022]
Abstract
The olfactory cortex, comprising the anterior olfactory cortex (AOC) and the anterior piriform cortex (PirC), is a model system for the study of neural plasticity. We investigated the structural imbalances of different transmitter systems induced in this area by an early traumatisation (methamphetamine [MA] intoxication) and/or environmental deprivation (isolated rearing [IR]), with the working hypothesis that such alterations will not occur in an isolated fashion, but in mutual interaction. Indeed, acetylcholine fibre density is increased by IR in both hemispheres of the PirC (left: +22%, p<0.01, right: +21%, p<0.05) and the left hemisphere of the AOC (+13%, p<0.05), while an early MA intoxication increases it in afterwards enriched-reared animals in the PirC (+14%/+17%, p<0.05), but decreases it in the AOC (-18%/-22%, p<0.001). The serotonin fibre density is increased by IR in the right PirC of saline-treated (+13%, p<0.01), but not of MA-traumatised gerbils. GABA and dopamine in the AOC show an inverse correlation, with dopamine innervation density being increased by IR (+30%, p<0.001) and MA (+26%, p<0.01), and GABA neuropil density being reduced. Furthermore, switches in hemispheric laterality occur in the AOC. These results demonstrate the complex recursive interactions in structural cortical plasticity.
Collapse
Affiliation(s)
- Konrad Lehmann
- Institute for General Zoology and Animal Physiology, Erbertstr. 1, 07743 Jena, Germany.
| | | |
Collapse
|
77
|
Meneses A, Perez-Garcia G. 5-HT1A receptors and memory. Neurosci Biobehav Rev 2007; 31:705-27. [PMID: 17418894 DOI: 10.1016/j.neubiorev.2007.02.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 01/03/2007] [Accepted: 02/13/2007] [Indexed: 11/19/2022]
Abstract
The study of 5-hydroxytryptamine (5-HT) systems has benefited from the identification, classification and cloning of multiple 5-HT receptors (5-HT(1)-5-HT(7)). Increasing evidence suggests that 5-HT pathways, reuptake site/transporter complex and 5-HT receptors represent a strategic distribution for learning and memory. A key question still remaining is whether 5-HT markers (e.g., receptors) are directly or indirectly contributing to the physiological and pharmacological basis of memory and its pathogenesis or, rather, if they represent protective or adaptable mechanisms (at least in initial stages). In the current paper, the major aim is to revise recent advances regarding mammalian 5-HT(1A) receptors in light of their physiological, pathophysiological and therapeutic implications in memory. An attempt is made to identify and discuss sources of discrepancies by employing an analytic approach to examine the nature and degree of difficulty of behavioral tasks used, as well as implicating other factors (for example, brain areas, training time or duration, and drug administration) which might offer new insights into the understanding and interpretation of these data. In this context, 8-OH-DPAT deserves special attention since for many years it has been the more selective 5-HT drug and, hence, more frequently used. As 5-HT(1A) receptors are key components of serotonergic signaling, investigation of their memory mechanisms and action sites and the conditions under which they might operate, could yield valuable insights. Moreover, selective drugs with agonists, neutral antagonists or inverse agonist properties for 5-HT(1A) (and 5-HT(7)) receptors may constitute a new therapeutic opportunity for learning and memory disorders.
Collapse
Affiliation(s)
- Alfredo Meneses
- Department de Farmacobiologia, CINVESTAV-IPN, Tenorios 235, Granjas Coapa, México.
| | | |
Collapse
|
78
|
Garcia-Alloza M, Zaldua N, Diez-Ariza M, Marcos B, Lasheras B, Javier Gil-Bea F, Ramirez MJ. Effect of selective cholinergic denervation on the serotonergic system: implications for learning and memory. J Neuropathol Exp Neurol 2006; 65:1074-81. [PMID: 17086104 DOI: 10.1097/01.jnen.0000240469.20167.89] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The cholinergic system has been widely implicated in cognitive processes and cholinergic loss is a classical hallmark in Alzheimer disease. Increasing evidence supports a role of the serotonergic system in cognition, possibly through a modulation of cholinergic activity. We compared selective cholinergic denervation by administration of the immunotoxin 192 IgG-saporin in the nucleus basalis of Meynert (NBM) with intracerebroventricular (ICV) lesions of the basal forebrain in male rats 7 days after lesioning. NBM lesions induced significant changes in cholinergic markers in the frontal cortex, whereas ICV lesions produced significant decreases in cholinergic markers both in the frontal cortex and hippocampus. Only ICV lesions lead to memory impairments in passive avoidance and Morris water maze tasks. Both models lead to reductions of serotonin levels in the frontal cortex. Similar changes in 5-hydroxytriptophan levels were observed, suggesting a downregulation of the rate-limiting enzyme for the synthesis of serotonin along with the cholinergic deficit. Neither 5-HT1A nor 5-HT1B receptors seem to mediate this process. These data imply that the serotonergic system in the frontal cortex can compensate for diminished cholinergic function and support the investigation of the serotonergic system as a therapeutic target to treat Alzheimer disease.
Collapse
Affiliation(s)
- Monica Garcia-Alloza
- Department of Pharmacology, School of Medicine, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
79
|
Dean B, Pavey G, Thomas D, Scarr E. Cortical serotonin7, 1D and 1F receptors: effects of schizophrenia, suicide and antipsychotic drug treatment. Schizophr Res 2006; 88:265-74. [PMID: 16916599 DOI: 10.1016/j.schres.2006.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Revised: 06/30/2006] [Accepted: 07/05/2006] [Indexed: 11/21/2022]
Abstract
Abnormalities in serotonergic function are thought to be important in the pathology of schizophrenia. Postmortem CNS studies suggest that levels of serotonin receptors may be altered in the cortex of subjects with schizophrenia. Seeking to expand this hypothesis we have examined the effect of schizophrenia and antipsychotic drug treatments on the levels of cortical serotonin7, 1D and 1F receptors. There was a significant decrease in the binding of [3H]SB 269970 to the serotonin7 receptor in Brodmann's area 9 from subjects with schizophrenia compared to controls (Mean+/-S.E.M.: 8.3+/-0.76 vs. 11.0+/-0.64 fmol/mg ETE; p<0.05) and an increase in the binding of that radioligand in the cortex of rats treated with haloperidol (p=0.03). There were no significant differences in [3H]sumatriptan binding to the serotonin1D or serotonin1F receptor in Brodmann's area 9 from subjects with schizophrenia. There was a significant increase in [3H]sumatriptan binding to the serotonin1D in binding Layer 2 from subjects who had potentially died by suicide that was not present in other binding layers or for the serotonin1F or serotonin7 receptors. There was decrease in [3H]sumatriptan binding to the serotonin1D, but not serotonin1F, receptors across all cortical binding layers in rats treated with haloperidol. These data would be consistent with the hypothesis that decreased levels of serotonin7 receptors in Brodmann's area 9 may be involved in the pathological processes of schizophrenia and that levels of cortical serotonin7 and 1D receptors can be affected by antipsychotic drug treatment.
Collapse
Affiliation(s)
- Brian Dean
- The Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute, The University of Melbourne, Australia.
| | | | | | | |
Collapse
|
80
|
Rispoli V, Marra R, Costa N, Scipione L, Rotiroti D, De Vita D, Liberatore F, Carelli V. Choline pivaloyl ester strengthened the benefit effects of Tacrine and Galantamine on electroencephalographic and cognitive performances in nucleus basalis magnocellularis-lesioned and aged rats. Pharmacol Biochem Behav 2006; 84:453-67. [PMID: 16859739 DOI: 10.1016/j.pbb.2006.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 06/08/2006] [Accepted: 06/12/2006] [Indexed: 01/02/2023]
Abstract
The aim of the present work was the assessment of the effects produced on the electroencephalographic (EEG) activity and the cognitive and memory performances of nucleus basalis magnocellularis (NBM)-lesioned or aged rats by the combined treatment with [2-(2,2-dimethylpropionyloxy)ethyl]trimethylammonium 2,2-dimethylpropionate (choline pivaloyl ester) (CPE) and the Cholinesterase inhibitors (ChEIs) Tacrine (THA) and Galantamine (GAL). Intraperitoneal administration of CPE combined with THA or GAL to both NBM-lesioned or aged rats, produced EEG desynchronisation, and a significant decrease in the energy of the total EEG spectrum and the lower frequency bands (delta 0.25-3 and theta 4-7 Hz) lasting many minutes. Furthermore, drug associations reversed in aged rats the scopolamine (0.2 mg/kg, i.p.)-induced increase in EEG power, slow waves and high-voltage spindle (HVS). Furthermore, the combined administration of CPE and Cholinesterase inhibitors in both NBM-lesioned or aged animals, improved performances in all behavioural tasks, enhancing object discrimination, increasing locomotory activity and alternation choice in T-maze, ameliorating retention in passive avoidance and decreasing escape latency in Morris water maze. In all test, AChEIs and CPE combinations proved to be more effective than CPE, THA or GAL given alone. In conclusion, the present work shows the ability of choline pivaloyl ester in strengthening the positive cerebral activity of THA and GAL.
Collapse
Affiliation(s)
- V Rispoli
- Department of Pharmacobiological Sciences, University Magna Graecia of Catanzaro, Complesso Ninì Barbieri, I-88021 Roccelletta di Borgia (CZ), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Awtry TL, Frank JG, Werling LL. In vitro regulation of serotonin transporter activity by protein kinase A and nicotinic acetylcholine receptors in the prefrontal cortex of rats. Synapse 2006; 59:342-9. [PMID: 16463401 DOI: 10.1002/syn.20251] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated the effect of in vitro exposure to nicotinic acetylcholine receptors (nAChRs), agonists, antagonists, and protein kinase A (PKA) modulators on the activity of the serotonin transporter (SERT) in prefrontocortical (PFC) synaptosomes. The plasma membrane SERT is an active transport mechanism specific for serotonin. Receptors and second messengers capable of altering transporter activity would be expected to have profound effects on serotonergic neurotransmission and on functions involving serotonergic input, such as cognition, anxiety, and mood. Our data suggest that activation of nAChRs, quite likely via PKA, increase the activity of the SERT in the PFC and, thereby, can alter 5-HT levels in a region important in the behavioral effects of nicotine and 5-HT. Nicotine at 4 microM increased [(3)H]5-HT uptake by 75%. Because the nAChR antagonists mecamylamine and dihydro-beta-erythrodine (DHbetaE) both decreased [(3)H]5-HT uptake into synaptosomes, it appeared that the SERT might be tonically activated by acetylcholine present within our synaptosomal preparations. Blocking PKA significantly decreased [(3)H]5-HT, while stimulation of PKA activity significantly increased the uptake. A 66% decrease compared with control was produced by 100 microM Rp-cAMP, and a 41% increase in 5-HT uptake over control was observed with 30 microM Sp-cAMPs. Furthermore, the enhancement in uptake produced by 4 microM nicotine was inhibited in a time-dependent fashion by preincubation with 10 microM Rp-cAMP. A better understanding of the influence of the cholinergic system and the receptors involved in the trafficking of SERT would help clarify the important relationship between the cholinergic and serotonergic systems and the role these systems play in behavior.
Collapse
Affiliation(s)
- Tammy L Awtry
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | | |
Collapse
|
82
|
Rutz S, Riegert C, Rothmaier AK, Buhot MC, Cassel JC, Jackisch R. Presynaptic serotonergic modulation of 5-HT and acetylcholine release in the hippocampus and the cortex of 5-HT1B-receptor knockout mice. Brain Res Bull 2006; 70:81-93. [PMID: 16750486 DOI: 10.1016/j.brainresbull.2006.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2006] [Revised: 04/03/2006] [Accepted: 04/07/2006] [Indexed: 12/28/2022]
Abstract
Lesioning of serotonergic afferents increases hippocampal ACh release and attenuates memory deficits produced by cholinergic lesions. Improved memory performance described in 5-HT1B-knockout (KO) mice might thus be due to a weaker 5-HT1B-mediated inhibitory influence of 5-HT on hippocampal ACh release. The selective delay-dependent impairment of working memory observed in these KO mice suggests, however, that cortical regions also participate in task performance, possibly via indirect influences of 5-HT on ACh release. To provide neuropharmacological support for these hypotheses we measured evoked ACh and 5-HT release in hippocampal and cortical slices of wild-type (WT) and 5-HT1B KO mice. Superfused slices (preincubated with [3H]choline or [3H]5-HT) were electrically stimulated in the absence or presence of 5-HT1B receptor ligands. In hippocampus and cortex, 5-HT1B agonists decreased and antagonists increased 5-HT release in WT, but not in 5-HT1B KO mice. In 5-HT1B KO mice, 5-HT release was enhanced in both structures, while ACh release (in nCi) was reduced. ACh release was inhibited by 5-HT1B agonists in hippocampal (not cortical) slices of WT but not of 5-HT1B KO mice. Our data (i) confirm the absence of autoinhibition of 5-HT release in 5-HT1B-KO mice, (ii) demonstrate a reduced release of ACh, and the absence of 5-HT1B-receptor-mediated inhibition of ACh release, in the hippocampus and cortex of 5-HT1B-KO mice, and (iii) are compatible with an indirect role of cortical ACh in the working memory impairment observed in these KO mice.
Collapse
Affiliation(s)
- Susanne Rutz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Laboratory of Neuropharmacology, University of Freiburg, Hansastrasse 9A, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
83
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
84
|
Madjid N, Tottie EE, Lüttgen M, Meister B, Sandin J, Kuzmin A, Stiedl O, Ogren SO. 5-Hydroxytryptamine 1A receptor blockade facilitates aversive learning in mice: interactions with cholinergic and glutamatergic mechanisms. J Pharmacol Exp Ther 2006; 316:581-91. [PMID: 16223872 DOI: 10.1124/jpet.105.092262] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The effects of 5-hydroxytryptamine 1A (5-HT(1A)) receptor ligands on aversive learning were examined in the passive avoidance (PA) task in mice. Anxiety and autonomic functions were investigated using the elevated plus-maze and heart rate measurements. The main findings from this study are as follows. 1) Pretraining administration of the 5-HT(1A) receptor agonist 8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide] facilitated PA retention at low doses (0.01 and 0.03 mg/kg) but impaired PA retention at higher doses (0.1-1.0 mg/kg), consistent with previous findings in the rat. 2) Similar to the acetylcholinesterase inhibitor physostigmine, pretraining administration of the 5-HT(1A) receptor antagonists [(R)-3-N,N-dicyclobutylamino-8 fluoro-3,4-dihydro-3H-1-benzopyran-5-carboxamide hydrogen(2R,3R)-tartrate monohydrate] NAD-299 (0.1-2 mg/kg) and [N-2-4-(2-methoxyphenyl)-1-piperazinylethyl-N-(2-pyridinyl)cyclohexane carboxamide trihydrochloride] WAY-100635 (0.3-3 mg/kg) enhanced PA retention. 3) The impairment (1 mg/kg) but not the facilitation (0.03 mg/kg) induced by 8-OH-DPAT was fully blocked by NAD-299 (0.3 mg/kg). 4) 5-HT(1A) receptor ligands given immediate post-training failed to alter PA retention. 5) NAD-299 (0.3-1 mg/kg) blocked the impairment of PA retention caused by a) the nonselective muscarinic receptor antagonist scopolamine and b) the non-competitive N-methyl-D-aspartate receptor antagonist MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine hydrogen maleate]. 6) A subthreshold dose of scopolamine completely blocked the facilitatory effect of NAD-299 on PA retention. 7) Anxiety-related behaviors and autonomic function were unchanged by NAD-299. 8) In situ hybridization showed that septal neurons expressing 5-HT(1A) receptor mRNA were codistributed with markers for cholinergic, GABAergic, and glutamatergic neurons. These results indicate that systemic administration of 5-HT(1A) receptor antagonists can facilitate cognitive performance, most likely by enhancing hippocampal/cortical cholinergic and glutamatergic neurotransmissions. Selective 5-HT(1A) receptor antagonists may be useful in the treatment of cognitive deficits such as Alzheimer's disease.
Collapse
Affiliation(s)
- Nather Madjid
- Departmentt of Neuroscience, Division of Behavioral Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Affiliation(s)
- Mohammad R Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
86
|
Barbas D, Campbell A, Castellucci VF, DesGroseillers L. Comparative localization of two serotonin receptors and sensorin in the central nervous system of Aplysia californica. J Comp Neurol 2005; 490:295-304. [PMID: 16082675 DOI: 10.1002/cne.20666] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aplysia californica is a powerful model for understanding the cellular and molecular mechanisms underlying modulation of neuronal plasticity and learning. In the central nervous system of Aplysia, serotonin is associated with various behaviors. For example, it induces short-, intermediate-, and long-term synaptic changes in sensory neurons during learning and inhibits the afterdischarge of the bag cells that initiate egg-laying behavior. Little is known about the nature and contribution of serotonin receptors involved in the numerous serotonin-mediated physiological responses in Aplysia. Recently, two G(i)-coupled serotonin receptors (5-HT(ap1) and 5-HT(ap2)) were cloned. We now report that, by using in situ hybridization to express the profile of these receptors, we are able to gain critical insight into their roles in the behavior of Aplysia. We compared their distribution to that of sensorin-A, a peptide specifically found in sensory neurons. We wished to determine their involvement in some simple forms of behavioral modifications. 5-HT(ap1) and 5-HT(ap2) mRNAs are expressed in all ganglia of the Aplysia central nervous system. Stronger signal was observed with the 5-HT(ap2) antisense probe than with the 5-HT(ap1) antisense probe. Notably, mRNA coding for the receptors was found in several identified neurons, in the bag cells, in characterized serotonergic neurons, and in neurons of the mechanosensory clusters that expressed sensorin. We also observed heterogeneity of receptor expression between R2 and LPl1 and among neurons of a single cluster of sensory neurons. These results suggest that 5-HT(ap1) and 5-HT(ap2) receptors may regulate the response to serotonin and/or its release in several neurons.
Collapse
Affiliation(s)
- Demian Barbas
- Département de Biochimie, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
87
|
Bert B, Dere E, Wilhelmi N, Kusserow H, Theuring F, Huston JP, Fink H. Transient overexpression of the 5-HT1A receptor impairs water-maze but not hole-board performance. Neurobiol Learn Mem 2005; 84:57-68. [PMID: 15936683 DOI: 10.1016/j.nlm.2005.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 03/18/2005] [Accepted: 03/24/2005] [Indexed: 11/29/2022]
Abstract
Previously, we showed that mice that overexpress the 5-HT(1A) receptor transiently from embryonic to perinatal stages show reduced anxiety and changes in brain serotonin turnover as adults. Here, we investigated the long-term effects of the temporary overexpression of the 5-HT(1A) receptor during early embryonic and perinatal development on the performance in two memory tasks. In the hole-board test mice that were homozygous for the transgene showed similar behavioral habituation but increased locomotion compared to heterozygous mice. In contrast water-maze performance of homozygous mice was impaired compared to heterozygous mice. These results suggest that a transient overexpression of 5-HT(1A) receptor during embryonic and perinatal development has detrimental effects on water-maze performance at adult stages.
Collapse
Affiliation(s)
- B Bert
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
88
|
Youdim MBH, Buccafusco JJ. Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci 2005; 26:27-35. [PMID: 15629202 DOI: 10.1016/j.tips.2004.11.007] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Individuals with neurodegenerative diseases such as Parkinson's disease or Alzheimer's disease are benefiting from drugs developed to act on a single molecular target. However, current pharmacological approaches are limited in their ability to modify significantly the course of the disease, and offer incomplete and transient benefit to patients. New therapeutic strategies comprise drug candidates designed specifically to act on multiple neural and biochemical targets for the treatment of cognition impairment, motor dysfunction, depression and neurodegeneration. Examples include the development of single molecular entities that combine two or more of the following properties: (i) cholinesterase inhibition; (ii) activation or inhibition of specific subtypes of acetylcholine receptors or alpha-adrenoceptors; (iii) anti-inflammatory activity; (iv) monoamine oxidase inhibition; (v) catechol-O-methyl transferase inhibition; (vi) nitric oxide production; (vii) neuroprotection; (viii) anti-apoptotic activity; and (ix) activation of mitochondrial-dependent cell-survival genes and proteins. These bi- or multi-functional compounds might provide greater symptomatic efficacy, and better utility as potential neuroprotective disease-modifying drugs.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Eve Topf and US National Parkinson Foundation, Centers of Excellence for Neurodegenerative Diseases Research, Technion-Rappaport Faculty of Medicine and Department of Pharmacology, Haifa 31096, Israel.
| | | |
Collapse
|
89
|
Busche A, Bagorda A, Lehmann K, Neddens J, Teuchert-Noodt G. The maturation of the acetylcholine system in the dentate gyrus of gerbils (Meriones unguiculatus) is affected by epigenetic factors. J Neural Transm (Vienna) 2005; 113:113-24. [PMID: 15959847 DOI: 10.1007/s00702-005-0317-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2005] [Accepted: 04/09/2005] [Indexed: 12/31/2022]
Abstract
The current study investigated the influence of impoverished rearing (IR) conditions and a single early methamphetamine challenge (MA; 50 mg/kg i.p.) on day 14 on the postnatal maturation of acetylcholinesterase-positive (AChE+) fibres in the hippocampal dentate gyrus (DG) of gerbils (Meriones unguiculatus). The layer-specific densities of histochemically stained AChE+ fibres were quantified in two planes of the left and right DG in young adults (day 90). Compared to enriched reared (ER) animals, the AChE+ fibre densities turned out to be higher in both the septal and the temporal plane of both hemispheres in saline treated IR and MA treated ER gerbils. The temporal plane was slightly more affected than the septal plane. In IR animals, MA treatment selectively diminished the AChE+ fibre densities in the subgranular layer of both left and right temporal DG. In conclusion, the maturation of AChE+ fibres is vulnerable to both rearing conditions and early MA challenge. The results correlate with our previous studies on the dentate cell proliferation rates and the serotonergic innervation, two parameters which are similarly affected by the experimental design. Thus, disturbances of the ACh system may impair the hippocampal plasticity and hippocampus-related cognitive and emotional function.
Collapse
Affiliation(s)
- A Busche
- Department of Neuroanatomy, Faculty of Biology, University of Bielefeld, Germany
| | | | | | | | | |
Collapse
|
90
|
Gómez C, Briñón JG, Barbado MV, Weruaga E, Valero J, Alonso JR. Heterogeneous targeting of centrifugal inputs to the glomerular layer of the main olfactory bulb. J Chem Neuroanat 2005; 29:238-54. [PMID: 15927786 DOI: 10.1016/j.jchemneu.2005.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 01/29/2005] [Accepted: 01/29/2005] [Indexed: 11/26/2022]
Abstract
The centrifugal systems innervating the olfactory bulb are important elements in the functional regulation of the olfactory pathway. In this study, the selective innervation of specific glomeruli by serotonergic, noradrenergic and cholinergic centrifugal axons was analyzed. Thus, the morphology, distribution and density of positive axons were studied in the glomerular layer of the main olfactory bulb of the rat, using serotonin-, serotonin transporter- and dopamine-beta-hydroxylase-immunohistochemistry and acetylcholinesterase histochemistry in serial sections. Serotonin-, serotonin transporter-immunostaining and acetylcholinesterase-staining revealed a higher heterogeneity in the glomerular layer of the main olfactory bulb than previously reported. In this sense, four types of glomeruli could be identified according to their serotonergic innervation. The main distinctive feature of these four types of glomeruli was their serotonergic fibre density, although they also differed in their size, morphology and relative position throughout the rostro-caudal main olfactory bulb. In this sense, some specific regions of the glomerular layer were occupied by glomeruli with a particular morphology and a characteristic serotonergic innervation pattern that was consistent from animal to animal. Regarding the cholinergic system, we offer a new subclassification of glomeruli based on the distribution of cholinergic fibres in the glomerular structure. Finally, the serotonergic and cholinergic innervation patterns were compared in the glomerular layer. Sexual differences concerning the density of serotonergic fibres were observed in the atypical glomeruli (characterized by their strong cholinergic innervation). The present report provides new data on the heterogeneity of the centrifugal innervation of the glomerular layer that constitutes the morphological substrate supporting the existence of differential modulatory levels among the entire glomerular population.
Collapse
Affiliation(s)
- C Gómez
- Lab. Plasticidad neuronal y neurorreparación, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
91
|
Abstract
The prevalence of dementia is growing in developed countries where elderly patients are increasing in numbers. Neurotransmission modulation is one approach to the treatment of dementia. Cholinergic precursors, anticholinesterases, nicotine receptor agonists and muscarinic M(2) receptor antagonists are agents that enhance cholinergic neurotransmission and that depend on having some intact cholinergic innervation to be effective in the treatment of dementia. The cholinergic precursor choline alfoscerate may be emerging as a potential useful drug in the treatment of dementia, with few adverse effects. Of the anticholinesterases, donepezil, in addition to having a similar efficacy to tacrine in mild-to-moderate Alzheimer's disease (AD), appears to have major advantages; its use is associated with lower drop-out rates in clinical trials, a lower incidence of cholinergic-like side effects and no liver toxicity. Rivastigmine is efficacious in the treatment in dementia with Lewy bodies, a condition in which the other anticholinesterases have not been tested extensively to date. Galantamine is an anticholinesterase and also acts as an allosteric potentiating modulator at nicotinic receptors to increase the release of acetylcholine. Pooled data from clinical trials of patients with mild-to-moderate AD suggest that the benefits and safety profile of galantamine are similar to those of the anticholinesterases. Selective nicotine receptor agonists are being developed that enhance cognitive performance without influencing autonomic and skeletal muscle function, but these have not yet entered clinical trial for dementia. Unlike the cholinergic enhancers, the M(1) receptor agonists do not depend upon intact cholinergic nerves but on intact M(1) receptors for their action, which are mainly preserved in AD and dementia with Lewy bodies. The M(1) receptor-selective agonists developed to date have shown limited efficacy in clinical trials and have a high incidence of side effects. A major recent advancement in the treatment of dementia is memantine, a non-competitive antagonist at NMDA receptors. Memantine is beneficial in the treatment of severe and moderate-to-severe AD and may also be of some benefit in the treatment of mild-to-moderate vascular dementia. Drugs that modulate 5-HT, somatostatin and noradrenergic neurotransmission are also being considered for the treatment of dementia.
Collapse
Affiliation(s)
- Sheila A Doggrell
- School of Biomedical Sciences, the University of Queensland, QLD 4072, Australia
| | | |
Collapse
|
92
|
Moreira PSA, Pulman KGT, Pottinger TG. Extinction of a conditioned response in rainbow trout selected for high or low responsiveness to stress. Horm Behav 2004; 46:450-7. [PMID: 15465531 DOI: 10.1016/j.yhbeh.2004.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 02/17/2004] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
Two lines of rainbow trout (Oncorhynchus mykiss) that exhibit divergent endocrine responsiveness to stressors also display disparate behavioral traits. To investigate whether the high-responding (HR) and low-responding (LR) fish also differ in cognitive function, the rate of extinction of a conditioned response was compared between the two lines. Groups of HR and LR fish were exposed to a paired conditioned stimulus (CS; water off) and unconditioned stimulus (US; confinement stressor). After exposure to 18 CS-US pairings, at least 70% of individuals of both lines acquired a conditioned response (CR) manifested as an elevation of blood cortisol levels on presentation of the CS only. Post-conditioning, the fish were tested by presentation of the CS at weekly intervals, for 4 weeks, with no further reinforcement, and the extinction of the CR in the two lines was compared. The decline in mean plasma cortisol levels after exposure to the CS over successive tests suggested that the CR was retained for a shorter period among the HR (<14 days) than LR fish (<21 days). The frequency of individuals within each line whose plasma cortisol levels indicated a stress response when exposed to the CS was significantly greater among the LR than HR fish at 14 and 21 days with no HR fish falling into this category at 21 days. At 28 days post-conditioning, there were no HR fish and only three LR fish were categorized as "stressed". These results suggest that there are differences in cognitive function between the two lines. Possible mechanisms underlying these differences are discussed.
Collapse
Affiliation(s)
- P S A Moreira
- NERC Centre for Ecology and Hydrology Lancaster, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, UK.
| | | | | |
Collapse
|
93
|
Millan MJ, Gobert A, Roux S, Porsolt R, Meneses A, Carli M, Di Cara B, Jaffard R, Rivet JM, Lestage P, Mocaer E, Peglion JL, Dekeyne A. The serotonin1A receptor partial agonist S15535 [4-(benzodioxan-5-yl)1-(indan-2-yl)piperazine] enhances cholinergic transmission and cognitive function in rodents: a combined neurochemical and behavioral analysis. J Pharmacol Exp Ther 2004; 311:190-203. [PMID: 15146031 DOI: 10.1124/jpet.104.069625] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
These studies examined the influence of the selective 5-hydroxytryptamine (serotonin) (5-HT)(1A) receptor partial agonist S15535 [4-(benzodioxan-5-yl)1-(indan-2-yl)piperazine] upon cholinergic transmission and cognitive function in rodents. In the absence of acetylcholinesterase inhibitors, S15535 dose-dependently (0.04-5.0 mg/kg s.c.) elevated dialysis levels of acetylcholine in the frontal cortex and dorsal hippocampus of freely moving rats. In the cortex, the selective 5-HT(1A) receptor antagonist WAY100,635 [(N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclo-hexanecarboxamide) fumarate] dose-dependently (0.0025-0.63) blocked this action of S15535. By contrast, in dorsal hippocampus, WAY100,635 mimicked the induction of acetylcholine release by S15535. In a social recognition paradigm, S15535 dose-dependently (0.16-10.0) improved retention, an action blocked by WAY100,635 (0.16), which was ineffective alone. Furthermore, S15535 dose-dependently (0.04-2.5) and WAY100,635 reversibly abolished amnesic properties of the muscarinic antagonist scopolamine (0.63) in this procedure. Cognitive deficits provoked by scopolamine in autoshaping and Morris water-maze procedures were likewise blocked by S15535 at doses of 0.63 to 10.0 and 0.16 to 2.5, respectively. In a two-platform spatial discrimination task, in which S15535 similarly abrogates cognitive deficits elicited by scopolamine, injection of S15535 (1.0 and 10.0 microg) into dorsal hippocampus blocked amnesic effects of the 5-HT(1A) agonist 8-hydroxy-2-dipropylaminotetralin (0.5 microg). Finally, S15535 (0.16-0.63) improved performance in a spatial, delayed nonmatching to sample model in mice, and in an operant delayed nonmatching to sample model in old rats, S15535 (1.25-5.0 mg/kg p.o.) increased response accuracy and reduced latency to respond. In conclusion, S15535 reinforces frontocortical and hippocampal release of acetylcholine and displays a broad-based pattern of procognitive properties. Its actions involve both blockade of postsynaptic 5-HT(1A) receptors and engagement of 5-HT(1A) autoreceptors.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 chemin de Ronde 78290 Croissy/Seine, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Lehmann K, Hundsdörfer B, Hartmann T, Teuchert-Noodt G. The acetylcholine fiber density of the neocortex is altered by isolated rearing and early methamphetamine intoxication in rodents. Exp Neurol 2004; 189:131-40. [PMID: 15296843 DOI: 10.1016/j.expneurol.2004.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 04/28/2004] [Accepted: 05/14/2004] [Indexed: 11/25/2022]
Abstract
Alterations in the cholinergic physiology of the brain were the first to be observed when research on environmental influences on postnatal brain development began 35 years ago. Since then, the effects of isolated rearing (IR) or early pharmacological insults have been shown not only on the physiology, but also the anatomy of a variety of transmitter systems. The cholinergic fiber density, however, still remained to be assessed. We therefore used a histochemical procedure to stain cholinergic fibers in the brains of young adult gerbils reared either in groups in enriched environments or isolated in standard makrolon cages. Half of the animals from each rearing condition had received a single high dose of methamphetamine on postnatal day 14. Fiber densities were measured by computerized image analysis in the medial and orbital prefrontal cortex (PFC), dysgranular and granular insular cortex, sensorimotor cortices, and the entorhinal cortex of both hemispheres. Isolation rearing increased the cholinergic fiber densities in the prefrontal cortices of the left hemisphere and in the entorhinal cortex of the right hemisphere by about 10%, with no effect in the respective contralateral side. The early methamphetamine intoxication showed no influence in prefrontal and entorhinal cortices, but diminished the acetylcholine (ACh) innervation of the forelimb area of cortex in both hemispheres in IR gerbils and of the left hemisphere in ER gerbils, and reduced the acetylcholine innervation in the hindlimb area in both sides in both rearing groups. These results demonstrate that (a) cholinergic fiber density is differentially regulated in different cortical areas and (b) the plasticity of the cholinergic system can only be understood in the interplay with other neuromodulatory innervations.
Collapse
Affiliation(s)
- Konrad Lehmann
- Department of Neuroanatomy, Faculty of Biology, University of Bielefeld, Germany.
| | | | | | | |
Collapse
|
95
|
Gil-Bea FJ, Domínguez J, García-Alloza M, Marcos B, Lasheras B, Ramírez MJ. Facilitation of cholinergic transmission by combined treatment of ondansetron with flumazenil after cortical cholinergic deafferentation. Neuropharmacology 2004; 47:225-32. [PMID: 15223301 DOI: 10.1016/j.neuropharm.2004.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 12/23/2003] [Accepted: 03/19/2004] [Indexed: 11/18/2022]
Abstract
We have studied the effects of concomitant blockade of 5-HT(3) and GABA(A) receptors on acetylcholine (ACh) release in the frontal cortex of rats with a selective cholinergic lesion. Lesions were performed by microinjection of the cholinergic toxin 192 IgG-saporin into the nucleus basalis magnocellularis. Single treatment with either the 5-HT(3) receptor antagonist ondansetron, 0.1 microg/kg, or the GABA(A) receptor benzodiazepine site antagonist flumazenil, 10 mg/kg, did not affect ACh release. However, the combined ondansetron + flumazenil administration significantly increased ACh release to a similar extent as a depolarising stimulus with K(+), 100 mM, at both 7 and 30 days post-lesion. Cortical perfusion with the combined ondansetron + flumazenil treatment also increased [(3)H]ACh efflux "in vitro" 30 days after lesion, suggesting that local events within the frontal cortex may participate in the interaction of ondansetron with GABAergic neurons, modulating ACh release in situations of cholinergic hypoactivity. No differences in the expression of 5-HT(3) and GABA(A) receptors in the frontal cortex were found after the cholinergic lesion. These results suggest that a combined ondansetron + flumazenil treatment would contribute to restoring a diminished cholinergic function and may provide a basis for using this treatment in the therapy of cognitive disorders associated with degeneration of the cholinergic system.
Collapse
Affiliation(s)
- Francisco J Gil-Bea
- Department of Pharmacology, School of Medicine, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
96
|
Kiewert C, Buchholzer ML, Hartmann J, Chatterjee SS, Klein J. Stimulation of hippocampal acetylcholine release by hyperforin, a constituent of St. John’s Wort. Neurosci Lett 2004; 364:195-8. [PMID: 15196674 DOI: 10.1016/j.neulet.2004.04.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 04/09/2004] [Accepted: 04/20/2004] [Indexed: 11/19/2022]
Abstract
Extracts of the medicinal plant St. John's Wort (Hypericum perforatum) are widely used in the therapy of affective disorders and have been reported to exert antidepressant, anxiolytic, and cognitive effects in experimental and clinical studies. We here report that hyperforin, the major active constituent of the extract, increases the release of acetylcholine from rat hippocampus in vivo as determined by microdialysis. Hippocampal acetylcholine levels were increased by 50-100% following the systemic administration of pure hyperforin at doses of 1 and 10 mg/kg. The effect was almost completely suppressed by local perfusion with calcium-free buffer or with tetrodotoxin (1 microM). We conclude that hyperforin releases hippocampal acetylcholine by an indirect mechanism of action which is calcium-dependent and requires intact neuronal communication and cell firing. Our findings suggest therapeutic efficacy of St. John's Wort extracts in central cholinergic dysfunction.
Collapse
Affiliation(s)
- Cornelia Kiewert
- Department of Pharmaceutical Sciences, Texas Tech School of Pharmacy, 1300 Coulter Drive, Amarillo 79106, USA
| | | | | | | | | |
Collapse
|
97
|
Paleologos EK, Kontominas MG. On-Line Solid-Phase Extraction with Surfactant Accelerated On-Column Derivatization and Micellar Liquid Chromatographic Separation as a Tool for the Determination of Biogenic Amines in Various Food Substrates. Anal Chem 2004; 76:1289-94. [PMID: 14987083 DOI: 10.1021/ac030355b] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A sensitive method was developed for the determination of biogenic amines at very low levels by combining solid phase extraction (SPE) and derivatization on-line with HPLC. The on-line derivatization and SPE were performed simultaneously on a commercially available ODS guard column, which was installed instead of the filling loop on the HPLC apparatus. Resolution of the peaks and quantification was further enhanced with micellar liquid chromatography and sensitization of the benzene ring absorption at 254 nm. Detection limits of the benzoyl derivatives of biogenic amines were in the vicinity of 0.1 microg L(-)(1), which is even lower than those obtained by fluorescence detection and is unparallel to any other UV approach. The correlation coefficients of determinations were 0.9850-0.9998. The method was applied to the determination of Biogenic amines, that is, putrescine, cadaverine, agmatine, tyramine, tryptamine, phenylethylamine, spermine, spermidine and histamine in fish, chicken, and wine samples. Recovery of the proposed method ranged from 94 to 106%.
Collapse
Affiliation(s)
- E K Paleologos
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | | |
Collapse
|
98
|
Santucci AC, Haroutunian V. p-Chloroamphetamine blocks physostigmine-induced memory enhancement in rats with unilateral nucleus basalis lesions. Pharmacol Biochem Behav 2004; 77:59-67. [PMID: 14724042 DOI: 10.1016/j.pbb.2003.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The present experiment examined whether p-chloroamphetamine (PCA), a serotonergic releasing/depleting agent, would block the memory-enhancing effect of physostigmine in rats with N-methyl-D-aspartic acid (NMDA)-induced unilateral lesions of the nucleus basalis of Meynert (uni-nbM). Six groups of subjects with uni-nbM lesions in addition to an isolated sham-operated control group were included. Subjects were trained and tested 72 h later on a one-trial passive avoidance task. Thirty minutes before training, rats with uni-nbM lesions were injected with either 1.0 or 5.0 mg/kg PCA or saline. Immediately after training, approximately half the subjects in each group were injected with either saline or 0.06 mg/kg physostigmine. Animals in the sham group received saline injections. Saline-injected animals with uni-nbM lesions performed poorly at test, a deficit that was reversed with physostigmine. Pretraining injections of PCA blocked physostigmine's memory-enhancing effect, although motor impairment during training may have contributed to decrements in test performance in animals injected with 5.0 mg/kg. Subjects were killed about 10 days later and their frontal cortices examined for choline acetyltransferase (ChAT). Results from the neurochemical analysis revealed that the lesion decreased ChAT levels and that the injection of 1.0 mg/kg PCA exaggerated this lesion-induced depletion. Implications for the interaction between acetylcholine and serotonin are discussed.
Collapse
Affiliation(s)
- Anthony C Santucci
- Department of Psychology, Manhattanville College, 2900 Purchase Street, Purchase, NY 10577, USA. santuccia@.mville.edu
| | | |
Collapse
|
99
|
Orsetti M, Dellarole A, Ferri S, Ghi P. Acquisition, retention, and recall of memory after injection of RS67333, a 5-HT(4) receptor agonist, into the nucleus basalis magnocellularis of the rat. Learn Mem 2003; 10:420-6. [PMID: 14557615 PMCID: PMC218008 DOI: 10.1101/lm.67303] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The serotonin 5-HT4 subtype receptor is predominantly localized into anatomical structures linked to memory and cognition. A few experimental studies report that the acute systemic administration of selective 5-HT4 agonists has ameliorative effects on memory performance, and that these effects are reversed by contemporary administration of 5-HT4 receptor antagonists. To verify whether this procognitive action occurs via the activation of the cholinergic nucleus basalis magnocellularis (NBM)-cortical pathways, we examined the effects of RS67333, a selective partial agonist of the 5-HT4 receptor, on rat performance in a place recognition task upon local administration of the drug into the NBM area. The intra-NBM administration of RS67333 enhances the acquisition (200-500 ng/0.5 microL) and the consolidation (40-200 ng/0.5 microL) of the place recognition memory. These effects are reversed by pretreatment with the selective 5-HT4 receptor antagonist RS39604 (300 ng/0.5 microL). Conversely, the recall of memory is not affected by the 5-HT4 agonist. Our results indicate that 5-HT4 receptors located within the NBM may play a role in spatial memory and that the procognitive effect of RS67333 is due, at least in part, to the potentiation of the activity of cholinergic NBM-cortical pathways.
Collapse
Affiliation(s)
- Marco Orsetti
- Dipartimento di Scienze C. A. F. e Farmacologiche, Università del Piemonte Orientale, 28100 Novara, Italy.
| | | | | | | |
Collapse
|
100
|
Wolff M, Benhassine N, Costet P, Hen R, Segu L, Buhot MC. Delay-dependent working memory impairment in young-adult and aged 5-HT1BKO mice as assessed in a radial-arm water maze. Learn Mem 2003; 10:401-9. [PMID: 14557613 PMCID: PMC218006 DOI: 10.1101/lm.60103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Serotonin (5-HT) plays a modulatory role in mnemonic functions, especially by interacting with the cholinergic system. The 5-HT1B receptor is a key target of this interaction. The 5-HT1B receptor knockout mice were found previously to exhibit a facilitation in hippocampal-dependent spatial reference memory learning. In the present study, we submitted mice to a delayed spatial working memory task, allowing the introduction of various delays between an exposure trial and a test trial. The 5-HT1BKO and wild-type mice learned the task in a radial-arm water maze (returning to the most recent presented arm containing the escape platform), and exhibited a high level of performance at delays of 0 and 5 min. However, at the delay of 60 min, only 5-HT1BKO mice exhibited an impairment. At a delay of 90 min, all mice were impaired. Treatment by scopolamine (0.8 mg/kg) induced the same pattern of performance in wild type as did the mutation for short (5 min, no impairment) and long (60 min, impairment) delays. The 22-month-old wild-type and knockout mice exhibited an impairment at short delays (5 and 15 min). The effect of the mutation affected both young-adult and aged mice at delays of 15, 30, and 60 min. Neurobiological data show that stimulation of the 5-HT1B receptor inhibits the release of acetylcholine in the hippocampus, but stimulates this in the frontal cortex. This dual function might, at least in part, explain the opposite effect of the mutation on reference memory (facilitation) and delay-dependent working memory (impairment). These results support the idea that cholinergic-serotonergic interactions play an important role in memory processes.
Collapse
Affiliation(s)
- Mathieu Wolff
- Centre National de la Recherche Scientifique-UMR 5106, Laboratoire de Neurosciences Cognitives, Universitéde Bordeaux 1, 33405 Talence cedex, France
| | | | | | | | | | | |
Collapse
|