51
|
Integrating Thyroid Hormone Signaling in Hypothalamic Control of Metabolism: Crosstalk Between Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19072017. [PMID: 29997323 PMCID: PMC6073315 DOI: 10.3390/ijms19072017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022] Open
Abstract
The obesity epidemic is well recognized as a significant global health issue. A better understanding of the energy homeostasis mechanisms could help to identify promising anti-obesity therapeutic strategies. It is well established that the hypothalamus plays a pivotal role governing energy balance. The hypothalamus consists of tightly interconnected and specialized neurons that permit the sensing and integration of several peripheral inputs, including metabolic and hormonal signals for an appropriate physiological response. Current evidence shows that thyroid hormones (THs) constitute one of the key endocrine factors governing the regulation and the integration of metabolic homeostasis at the hypothalamic level. THs modulate numerous genes involved in the central control of metabolism, as TRH (Thyrotropin-Releasing Hormone) and MC4R (Melanocortin 4 Receptor). THs act through their interaction with thyroid hormone receptors (TRs). Interestingly, TH signaling, especially regarding metabolic regulations, involves TRs crosstalk with other metabolically linked nuclear receptors (NRs) including PPAR (Peroxisome proliferator-activated receptor) and LXR (Liver X receptor). In this review, we will summarize current knowledge on the important role of THs integration of metabolic pathways in the central regulation of metabolism. Particularly, we will shed light on the crosstalk between TRs and other NRs in controlling energy homeostasis. This could be an important track for the development of attractive therapeutic compounds.
Collapse
|
52
|
Beukhof CM, Massolt ET, Visser TJ, Korevaar TIM, Medici M, de Herder WW, Roeters van Lennep JE, Mulder MT, de Rijke YB, Reiners C, Verburg FA, Peeters RP. Effects of Thyrotropin on Peripheral Thyroid Hormone Metabolism and Serum Lipids. Thyroid 2018; 28:168-174. [PMID: 29316865 DOI: 10.1089/thy.2017.0330] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Subclinical hypothyroidism is associated with dyslipidemia and atherosclerosis. Whether these effects are in part mediated via direct effects of thyrotropin (TSH) on peripheral thyroid hormone (TH) metabolism and/or concentrations of serum lipids is not clear. OBJECTIVE This study examined whether TSH has direct effects on peripheral TH metabolism and serum lipids. METHODS Eighty-two patients with differentiated thyroid cancer were retrospectively analyzed. All patients had undergone total thyroidectomy and 131I remnant ablation. During follow-up, two successive injections of recombinant human TSH (rhTSH) were administered to patients on a stable dose of levothyroxine. In all patients, TSH, thyroxine (T4), free T4 (fT4), triiodothyronine (T3), reverse T3 (rT3), total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, apolipoprotein B, lipoprotein(a), and triglyceride levels were measured immediately before the first and approximately 72 hours after the second injection of rhTSH. RESULTS After rhTSH stimulation, T3 values decreased (from 1.91 to 1.81 nmol/L; p < 0.001). T4, fT4, and rT3 did not change. After rhTSH, median apolipoprotein B increased from 0.90 to 0.92 g/L (p = 0.03), lipoprotein(a) from 0.21 to 0.24 g/L (p < 0.001), and triglycerides from 1.98 to 2.50 mmol/L (p < 0.001). Serum high-density lipoprotein cholesterol decreased from 0.98 to 0.81 mmol/L (p < 0.001). Multiple regression analysis showed that the changes in lipids were most closely associated with the decrease in T3 levels. CONCLUSIONS TSH has direct effects on peripheral TH metabolism by decreasing T3 levels in levothyroxine-treated thyroidectomized patients. This decrease in T3 levels is accompanied by unfavorable changes in serum lipids.
Collapse
Affiliation(s)
- Carolien M Beukhof
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, University Medical Center , Rotterdam, The Netherlands
| | - Elske T Massolt
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, University Medical Center , Rotterdam, The Netherlands
| | - Theo J Visser
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, University Medical Center , Rotterdam, The Netherlands
| | - Tim I M Korevaar
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, University Medical Center , Rotterdam, The Netherlands
| | - Marco Medici
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, University Medical Center , Rotterdam, The Netherlands
| | - Wouter W de Herder
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, University Medical Center , Rotterdam, The Netherlands
| | | | - Monique T Mulder
- 2 Department of Vascular Medicine, University Medical Center , Rotterdam, The Netherlands
| | - Yolanda B de Rijke
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, University Medical Center , Rotterdam, The Netherlands
- 3 Department of Clinical Chemistry, Erasmus MC, University Medical Center , Rotterdam, The Netherlands
| | - Christoph Reiners
- 4 Department of Nuclear Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| | - Frederik A Verburg
- 4 Department of Nuclear Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
- 5 Department of Nuclear Medicine, University Hospital Marburg , Marburg, Germany
| | - Robin P Peeters
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, University Medical Center , Rotterdam, The Netherlands
| |
Collapse
|
53
|
Kowalik MA, Columbano A, Perra A. Thyroid Hormones, Thyromimetics and Their Metabolites in the Treatment of Liver Disease. Front Endocrinol (Lausanne) 2018; 9:382. [PMID: 30042736 PMCID: PMC6048875 DOI: 10.3389/fendo.2018.00382] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022] Open
Abstract
The signaling pathways activated by thyroid hormone receptors (THR) are of fundamental importance for organogenesis, growth and differentiation, and significantly influence energy metabolism, lipid utilization and glucose homeostasis. Pharmacological control of these pathways would likely impact the treatment of several human diseases characterized by altered metabolism, growth or differentiation. Not surprisingly, biomedical research has been trying for the past decades to pharmacologically target the 3,5,3'-triiodothyronine (T3)/THR axis. In vitro and in vivo studies have provided evidence of the potential utility of the activation of the T3-dependent pathways in metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), and in the treatment of hepatocellular carcinoma (HCC). Unfortunately, supra-physiological doses of the THR agonist T3 cause severe thyrotoxicosis thus hampering its therapeutic use. However, the observation that most of the desired beneficial effects of T3 are mediated by the activation of the beta isoform of THR (THRβ) in metabolically active organs has led to the synthesis of a number of THRβ-selective thyromimetics. Among these drugs, GC-1, GC-24, KB141, KB2115, and MB07344 displayed a promising therapeutic strategy for liver diseases. However, although these drugs exhibited encouraging results when tested in the treatment of experimentally-induced obesity, dyslipidemia, and HCC, significant adverse effects limited their use in clinical trials. More recently, evidence has been provided that some metabolites of thyroid hormones (TH), mono and diiodothyronines, could also play a role in the treatment of liver disease. These molecules, for a long time considered inactive byproducts of the metabolism of thyroid hormones, have now been proposed to be able to modulate and control lipid and cell energy metabolism. In this review, we will summarize the current knowledge regarding T3, its metabolites and analogs with reference to their possible clinical application in the treatment of liver disease. In particular, we will focus our attention on NAFLD, non-alcoholic steatohepatitis (NASH) and HCC. In addition, the possible therapeutic use of mono- and diiodothyronines in metabolic and/or neoplastic liver disease will be discussed.
Collapse
|
54
|
Abstract
Thyroid hormone signaling is customized in a time and cell-specific manner by the deiodinases, homodimeric thioredoxin fold containing selenoproteins. This ensures adequate T3 action in developing tissues, healthy adults and many disease states. D2 activates thyroid hormone by converting the pro-hormone T4 to T3, the biologically active thyroid hormone. D2 expression is tightly regulated by transcriptional mechanisms triggered by endogenous as well as environmental cues. There is also an on/off switch mechanism that controls D2 activity that is triggered by catalysis and functions via D2 ubiquitination/deubiquitination. D3 terminates thyroid hormone action by inactivation of both T4 and T3 molecules. Deiodinases play a role in thyroid hormone homeostasis, development, growth and metabolic control by affecting the intracellular levels of T3 and thus gene expression on a cell-specific basis. In many cases, tight control of these pathways by T3 is achieved with coordinated reciprocal changes in D2-mediated thyroid hormone activation D3-mediated thyroid hormone inactivation.
Collapse
|
55
|
Maternal Exposure to Iodine Excess Throughout Pregnancy and Lactation Induces Hypothyroidism in Adult Male Rat Offspring. Sci Rep 2017; 7:15591. [PMID: 29142304 PMCID: PMC5688151 DOI: 10.1038/s41598-017-15529-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022] Open
Abstract
This study aimed to investigate the consequences of maternal exposure to iodine excess (IE; 0.6 mg NaI/L) throughout pregnancy and lactation on the hypothalamus-pituitary-thyroid axis of the male offspring in adulthood. Maternal IE exposure increased hypothalamic Trh mRNA expression and pituitary Tsh expression and secretion in the adult male offspring. Moreover, the IE-exposed offspring rats presented reduced thyroid hormones levels, morphological alterations in the thyroid follicles, increased thyroid oxidative stress and decreased expression of thyroid differentiation markers (Tshr, Nis, Tg, Tpo, Mct8) and thyroid transcription factors (Nkx2.1, Pax8). Finally, the data presented here strongly suggest that epigenetic mechanisms, as increased DNA methylation, augmented DNA methyltransferases expression, hypermethylation of histone H3, hypoaceylation of histones H3 and H4, increased expression/activity of histone deacetylases and decreased expression/activity of histone acetyltransferases are involved in the repression of thyroid gene expression in the adult male offspring. In conclusion, our results indicate that rat dams' exposure to IE during pregnancy and lactation induces primary hypothyroidism and triggers several epigenetic changes in the thyroid gland of their male offspring in adulthood.
Collapse
|
56
|
Immunological Reactivity Using Monoclonal and Polyclonal Antibodies of Autoimmune Thyroid Target Sites with Dietary Proteins. J Thyroid Res 2017; 2017:4354723. [PMID: 28894619 PMCID: PMC5574310 DOI: 10.1155/2017/4354723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
Many hypothyroid and autoimmune thyroid patients experience reactions with specific foods. Additionally, food interactions may play a role in a subset of individuals who have difficulty finding a suitable thyroid hormone dosage. Our study was designed to investigate the potential role of dietary protein immune reactivity with thyroid hormones and thyroid axis target sites. We identified immune reactivity between dietary proteins and target sites on the thyroid axis that includes thyroid hormones, thyroid receptors, enzymes, and transport proteins. We also measured immune reactivity of either target specific monoclonal or polyclonal antibodies for thyroid-stimulating hormone (TSH) receptor, 5′deiodinase, thyroid peroxidase, thyroglobulin, thyroxine-binding globulin, thyroxine, and triiodothyronine against 204 purified dietary proteins commonly consumed in cooked and raw forms. Dietary protein determinants included unmodified (raw) and modified (cooked and roasted) foods, herbs, spices, food gums, brewed beverages, and additives. There were no dietary protein immune reactions with TSH receptor, thyroid peroxidase, and thyroxine-binding globulin. However, specific antigen-antibody immune reactivity was identified with several purified food proteins with triiodothyronine, thyroxine, thyroglobulin, and 5′deiodinase. Laboratory analysis of immunological cross-reactivity between thyroid target sites and dietary proteins is the initial step necessary in determining whether dietary proteins may play a potential immunoreactive role in autoimmune thyroid disease.
Collapse
|
57
|
Printsev I, Curiel D, Carraway KL. Membrane Protein Quantity Control at the Endoplasmic Reticulum. J Membr Biol 2017; 250:379-392. [PMID: 27743014 PMCID: PMC5392169 DOI: 10.1007/s00232-016-9931-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023]
Abstract
The canonical function of the endoplasmic reticulum-associated degradation (ERAD) system is to enforce quality control among membrane-associated proteins by targeting misfolded secreted, intra-organellar, and intramembrane proteins for degradation. However, increasing evidence suggests that ERAD additionally functions in maintaining appropriate levels of a subset of membrane-associated proteins. In this 'quantity control' capacity, ERAD responds to environmental cues to regulate the proteasomal degradation of specific ERAD substrates according to cellular need. In this review, we discuss in detail seven proteins that are targeted by the ERAD quantity control system. Not surprisingly, ERAD-mediated protein degradation is a key regulatory feature of a variety of ER-resident proteins, including HMG-CoA reductase, cytochrome P450 3A4, IP3 receptor, and type II iodothyronine deiodinase. In addition, the ERAD quantity control system plays roles in maintaining the proper stoichiometry of multi-protein complexes by mediating the degradation of components that are produced in excess of the limiting subunit. Perhaps somewhat unexpectedly, recent evidence suggests that the ERAD quantity control system also contributes to the regulation of plasma membrane-localized signaling receptors, including the ErbB3 receptor tyrosine kinase and the GABA neurotransmitter receptors. For these substrates, a proportion of the newly synthesized yet properly folded receptors are diverted for degradation at the ER, and are unable to traffic to the plasma membrane. Given that receptor abundance or concentration within the plasma membrane plays key roles in determining signaling efficiency, these observations may point to a novel mechanism for modulating receptor-mediated cellular signaling.
Collapse
Affiliation(s)
- Ignat Printsev
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Daniel Curiel
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA.
| |
Collapse
|
58
|
Gil-Ibáñez P, Belinchón MM, Morte B, Obregón MJ, Bernal J. Is the Intrinsic Genomic Activity of Thyroxine Relevant In Vivo? Effects on Gene Expression in Primary Cerebrocortical and Neuroblastoma Cells. Thyroid 2017; 27:1092-1098. [PMID: 28605984 DOI: 10.1089/thy.2017.0024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The possibility that the intrinsic genomic activity of thyroxine (T4) is of physiological relevance has been frequently hypothesized. It might explain gene expression patterns in the brain found in type 2-deiodinase (Dio2)-deficient mice. These mice display normal expression of most thyroid hormone-dependent genes, despite decreased brain triiodothyronine (T3). METHODS The relative effects of T4 and T3 on gene expression were analyzed in mouse neuro-2a (N2a) cells stably expressing the thyroid hormone receptor α1, and in primary mouse cerebrocortical cells enriched in astrocytes or in neurons. Cortical cells were derived from Dio2-deficient mice to prevent conversion of T4 to T3. T4 and T3 were measured in the media at the beginning and end of incubation, and T4 and T3 antibodies were used to block T4 and T3 action. RESULTS In all cell types, T4 had intrinsic genomic activity. In N2a cells, T4 activity was higher on negative regulation (1/5th of T3 activity) than on positive regulation (1/40th of T3 activity). T4 activity on positive regulation was dependent on the cell context, and was higher in primary cells than in N2a cells. CONCLUSION T4 has intrinsic genomic activity. Positive regulation depends on the cell context, and primary cells appear much more sensitive than neuroblastoma cells. In all cells, negative regulation is more sensitive to T4 than positive regulation. These properties may explain the mostly normal gene expression in the brain of Dio2-deficient mice.
Collapse
Affiliation(s)
- Pilar Gil-Ibáñez
- 1 Instituto de Investigaciones Biomédicas , Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- 2 Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III , Madrid, Spain
| | - Mónica M Belinchón
- 1 Instituto de Investigaciones Biomédicas , Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- 2 Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III , Madrid, Spain
| | - Beatriz Morte
- 2 Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III , Madrid, Spain
| | - Maria Jesus Obregón
- 1 Instituto de Investigaciones Biomédicas , Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Bernal
- 1 Instituto de Investigaciones Biomédicas , Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- 2 Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III , Madrid, Spain
| |
Collapse
|
59
|
Ng L, Liu H, St. Germain DL, Hernandez A, Forrest D. Deletion of the Thyroid Hormone-Activating Type 2 Deiodinase Rescues Cone Photoreceptor Degeneration but Not Deafness in Mice Lacking Type 3 Deiodinase. Endocrinology 2017; 158:1999-2010. [PMID: 28324012 PMCID: PMC5460942 DOI: 10.1210/en.2017-00055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/01/2017] [Indexed: 11/25/2022]
Abstract
Type 2 deiodinase amplifies and type 3 deiodinase depletes levels of the active form of thyroid hormone, triiodothyronine. Given the opposing activities of these enzymes, we tested the hypothesis that they counteract each other's developmental functions by investigating whether deletion of type 2 deiodinase (encoded by Dio2) modifies sensory phenotypes in type 3 deiodinase-deficient (Dio3-/-) mice. Dio3-/- mice display degeneration of retinal cones, the photoreceptors that mediate daylight and color vision. In Dio2-/- mice, cone function was largely normal but deletion of Dio2 in Dio3-/- mice markedly recovered cone numbers and electroretinogram responses, suggesting counterbalancing roles for both enzymes in cone survival. Both Dio3-/- and Dio2-/- strains exhibit deafness with cochlear abnormalities. In Dio3-/-;Dio2-/- mice, deafness was exacerbated rather than alleviated, suggesting unevenly balanced actions by these enzymes during auditory development. Dio3-/- mice also exhibit an atrophic thyroid gland, low thyroxine, and high triiodothyronine levels, but this phenotype was ameliorated in Dio3-/-;Dio2-/- mice, indicating counterbalancing roles for the enzymes in determining the thyroid hormone status. The results suggest that the composite action of these two enzymes is a critical determinant in visual and auditory development and in setting the systemic thyroid hormone status.
Collapse
Affiliation(s)
- Lily Ng
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Arturo Hernandez
- Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
60
|
Ignacio DL, Silvestre DHS, Anne-Palmer E, Bocco BMLC, Fonseca TL, Ribeiro MO, Gereben B, Bianco AC, Werneck-de-Castro JP. Early Developmental Disruption of Type 2 Deiodinase Pathway in Mouse Skeletal Muscle Does Not Impair Muscle Function. Thyroid 2017; 27:577-586. [PMID: 27967605 PMCID: PMC5385430 DOI: 10.1089/thy.2016.0392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Myogenesis is positively regulated by thyroid hormone (triiodothyronine [T3]), which is amplified by the type 2 deiodinase (D2) activation of thyroxine to T3. Global inactivation of the Dio2 gene impairs skeletal muscle (SKM) differentiation and regeneration in response to muscle injury. Given that newborn and adult mice with late developmental SKM Dio2 disruption do not develop a significant phenotype, it was hypothesized that D2 plays an early role in this process. METHODS This was tested in mice with SKM disruption of Dio2 driven by two early developmental promoters: MYF5 and MYOD. RESULTS MYF5 myoblasts in culture differentiate normally into myotubes, despite loss of almost all D2 activity. Dio2 mRNA levels in developing SKM obtained from MYF5-D2KO embryos (E18.5) were about 54% of control littermates, but the expression of the T3-responsive genes Myh1 and 7 and Atp2a1 and 2 were not affected. In MYF5-D2KO and MYOD-D2KO neonatal hind-limb muscle, the expression of Myh1 and 7 and Atp2a2 remained unaffected, despite 60-70% loss in D2 activity and/or mRNA. Only in MYOD-D2KO neonatal muscle was there a 40% reduction in Atp2a1 mRNA. Postnatal growth of both mouse models and SKM function as assessed by exercise capacity and measurement of muscle strength were normal. Furthermore, an analysis of the adult soleus revealed no changes in the expression of T3-responsive genes, except for an about 18% increase in MYOD-D2KO SOL Myh7 mRNA. CONCLUSION Two mouse models of early developmental disruption of Dio2 in myocyte precursor exhibit no significant SKM phenotype.
Collapse
Affiliation(s)
- Daniele L Ignacio
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
- 2 Biophysics Institute and School of Physical Education and Sports, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Diego H S Silvestre
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
- 2 Biophysics Institute and School of Physical Education and Sports, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
- 3 Nutrition Institute Josué de Castro, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Elena Anne-Palmer
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
| | - Barbara M L C Bocco
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
- 4 Department of Translational Medicine, Federal University of São Paulo , São Paulo, Brazil
| | - Tatiana L Fonseca
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
| | - Miriam O Ribeiro
- 5 Developmental Disorders Program, Center for Biological and Health Sciences, Mackenzie Presbyterian University , São Paulo, Brazil
| | - Balázs Gereben
- 6 Department of Endocrine Neurobiology, Institute of Experimental Medicine , Hungarian Academy of Sciences, Budapest, Hungary
| | - Antonio C Bianco
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
| | - Joao P Werneck-de-Castro
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
- 2 Biophysics Institute and School of Physical Education and Sports, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
- 3 Nutrition Institute Josué de Castro, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| |
Collapse
|
61
|
Chatzitomaris A, Hoermann R, Midgley JE, Hering S, Urban A, Dietrich B, Abood A, Klein HH, Dietrich JW. Thyroid Allostasis-Adaptive Responses of Thyrotropic Feedback Control to Conditions of Strain, Stress, and Developmental Programming. Front Endocrinol (Lausanne) 2017; 8:163. [PMID: 28775711 PMCID: PMC5517413 DOI: 10.3389/fendo.2017.00163] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
The hypothalamus-pituitary-thyroid feedback control is a dynamic, adaptive system. In situations of illness and deprivation of energy representing type 1 allostasis, the stress response operates to alter both its set point and peripheral transfer parameters. In contrast, type 2 allostatic load, typically effective in psychosocial stress, pregnancy, metabolic syndrome, and adaptation to cold, produces a nearly opposite phenotype of predictive plasticity. The non-thyroidal illness syndrome (NTIS) or thyroid allostasis in critical illness, tumors, uremia, and starvation (TACITUS), commonly observed in hospitalized patients, displays a historically well-studied pattern of allostatic thyroid response. This is characterized by decreased total and free thyroid hormone concentrations and varying levels of thyroid-stimulating hormone (TSH) ranging from decreased (in severe cases) to normal or even elevated (mainly in the recovery phase) TSH concentrations. An acute versus chronic stage (wasting syndrome) of TACITUS can be discerned. The two types differ in molecular mechanisms and prognosis. The acute adaptation of thyroid hormone metabolism to critical illness may prove beneficial to the organism, whereas the far more complex molecular alterations associated with chronic illness frequently lead to allostatic overload. The latter is associated with poor outcome, independently of the underlying disease. Adaptive responses of thyroid homeostasis extend to alterations in thyroid hormone concentrations during fetal life, periods of weight gain or loss, thermoregulation, physical exercise, and psychiatric diseases. The various forms of thyroid allostasis pose serious problems in differential diagnosis of thyroid disease. This review article provides an overview of physiological mechanisms as well as major diagnostic and therapeutic implications of thyroid allostasis under a variety of developmental and straining conditions.
Collapse
Affiliation(s)
- Apostolos Chatzitomaris
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
- *Correspondence: Apostolos Chatzitomaris,
| | - Rudolf Hoermann
- Private Consultancy, Research and Development, Yandina, QLD, Australia
| | | | - Steffen Hering
- Department for Internal Medicine, Cardiology, Endocrinology, Diabetes and Medical Intensive Care Medicine, Krankenhaus Bietigheim-Vaihingen, Bietigheim-Bissingen, Germany
| | - Aline Urban
- Department for Anesthesiology, Intensive Care and Palliative Medicine, Eastern Allgäu-Kaufbeuren Hospitals, Kaufbeuren, Germany
| | | | - Assjana Abood
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
| | - Harald H. Klein
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
- Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Bochum, Germany
| | - Johannes W. Dietrich
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
- Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Bochum, Germany
| |
Collapse
|
62
|
Zhu Q, Ghoshal S, Tyagi R, Chakraborty A. Global IP6K1 deletion enhances temperature modulated energy expenditure which reduces carbohydrate and fat induced weight gain. Mol Metab 2016; 6:73-85. [PMID: 28123939 PMCID: PMC5220553 DOI: 10.1016/j.molmet.2016.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/15/2016] [Accepted: 11/23/2016] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE IP6 kinases (IP6Ks) regulate cell metabolism and survival. Mice with global (IP6K1-KO) or adipocyte-specific (AdKO) deletion of IP6K1 are protected from diet induced obesity (DIO) at ambient (23 °C) temperature. AdKO mice are lean primarily due to increased AMPK mediated thermogenic energy expenditure (EE). Thus, at thermoneutral (30 °C) temperature, high fat diet (HFD)-fed AdKO mice expend energy and gain body weight, similar to control mice. IP6K1 is ubiquitously expressed; thus, it is critical to determine to what extent the lean phenotype of global IP6K1-KO mice depends on environmental temperature. Furthermore, it is not known whether IP6K1 regulates AMPK mediated EE in cells, which do not express UCP1. METHODS Q-NMR, GTT, food intake, EE, QRT-PCR, histology, mitochondrial oxygen consumption rate (OCR), fatty acid metabolism assays, and immunoblot studies were conducted in IP6K1-KO and WT mice or cells. RESULTS Global IP6K1 deletion mediated enhancement in EE is impaired albeit not abolished at 30 °C. As a result, IP6K1-KO mice are protected from DIO, insulin resistance, and fatty liver even at 30 °C. Like AdKO, IP6K1-KO mice display enhanced adipose tissue browning. However, unlike AdKO mice, thermoneutrality only partly abolishes browning in IP6K1-KO mice. Cold (5 °C) exposure enhances carbohydrate expenditure, whereas 23 °C and 30 °C promote fat oxidation in HFD-KO mice. Furthermore, IP6K1 deletion diminishes cellular fat accumulation via activation of the AMPK signaling pathway. CONCLUSIONS Global deletion of IP6K1 ameliorates obesity and insulin resistance irrespective of the environmental temperature conditions, which strengthens its validity as an anti-obesity target.
Collapse
Affiliation(s)
- Qingzhang Zhu
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Sarbani Ghoshal
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Richa Tyagi
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Anutosh Chakraborty
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
63
|
Haque M, Kendal JK, MacIsaac RM, Demetrick DJ. WSB1: from homeostasis to hypoxia. J Biomed Sci 2016; 23:61. [PMID: 27542736 PMCID: PMC4992216 DOI: 10.1186/s12929-016-0270-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/11/2016] [Indexed: 01/13/2023] Open
Abstract
The wsb1 gene has been identified to be important in developmental biology and cancer. A complex transcriptional regulation of wsb1 yields at least three functional transcripts. The major expressed isoform, WSB1 protein, is a substrate recognition protein within an E3 ubiquitin ligase, with the capability to bind diverse targets and mediate ubiquitinylation and proteolytic degradation. Recent data suggests a new role for WSB1 as a component of a neuroprotective pathway which results in modification and aggregation of neurotoxic proteins such as LRRK2 in Parkinson’s Disease, via an unusual mode of protein ubiquitinylation. WSB1 is also involved in thyroid hormone homeostasis, immune regulation and cellular metabolism, particularly glucose metabolism and hypoxia. In hypoxia, wsb1 is a HIF-1 target, and is a regulator of the degradation of diverse proteins associated with the cellular response to hypoxia, including HIPK2, RhoGDI2 and VHL. Major roles are to both protect HIF-1 function through degradation of VHL, and decrease apoptosis through degradation of HIPK2. These activities suggest a role for wsb1 in cancer cell proliferation and metastasis. As well, recent work has identified a role for WSB1 in glucose metabolism, and perhaps in mediating the Warburg effect in cancer cells by maintaining the function of HIF1. Furthermore, studies of cancer specimens have identified dysregulation of wsb1 associated with several types of cancer, suggesting a biologically relevant role in cancer development and/or progression. Recent development of an inducible expression system for wsb1 could aid in the further understanding of the varied functions of this protein in the cell, and roles as a potential oncogene and neuroprotective protein.
Collapse
Affiliation(s)
- Moinul Haque
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Department of Oncology, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Department of Medical Biochemistry, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Joseph Keith Kendal
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Department of Oncology, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Department of Medical Biochemistry, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Ryan Matthew MacIsaac
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Department of Oncology, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Department of Medical Biochemistry, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Douglas James Demetrick
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Department of Oncology, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Department of Medical Biochemistry, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Calgary Laboratory Services, Room 302, HMRB, 3330 Hospital Dr. N.W., Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
64
|
2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13070697. [PMID: 27420076 PMCID: PMC4962238 DOI: 10.3390/ijerph13070697] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/17/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022]
Abstract
2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems
Collapse
|
65
|
Rajabi M, Sudha T, Darwish NHE, Davis PJ, Mousa SA. Synthesis of MR-49, a deiodinated analog of tetraiodothyroacetic acid (tetrac), as a novel pro-angiogenesis modulator. Bioorg Med Chem Lett 2016; 26:4112-6. [PMID: 27381084 DOI: 10.1016/j.bmcl.2016.06.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 01/29/2023]
Abstract
The tyrosine-based hormones 3,3',5-triiodo-l-thyronine (l-T3) and l-thyroxine (l-T4) that are produced by the thyroid gland control metabolic functions. Iodothyronine deiodinase enzymes convert l-T4 to l-T3, the form of thyroid hormone critical to genomic actions within cells and regulation of metabolism, and to reverse-l-T3, a hormone isoform that is largely inactive. We used tertiary amines in a study of deiodination based on derivatives of tetraiodothyroacetic acid (tetrac)-a naturally occurring derivative of l-T4-to mimic the action of the iodothyronine deiodinases and deiodination of the outer ring iodines. Deiodinated tetrac, MR-49, was found to be pro-angiogenic, with this activity exceeding that of l-T3 and l-T4 in a hemoglobin Matrigel® plug assay of angiogenesis. Tetrac is anti-angiogenic via several nongenomic pathways, and the present studies of MR-49 reveal the critical contribution of outer ring iodines to the angiogenic properties of thyroid hormone analogues, which may have utility as pro-angiogenic pharmaceuticals.
Collapse
Affiliation(s)
- Mehdi Rajabi
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA
| | - Thangirala Sudha
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA
| | - Noureldien H E Darwish
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA; Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Paul J Davis
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA; Department of Medicine, Albany Medical College, Albany, NY, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA.
| |
Collapse
|
66
|
Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 2016; 6:1387-428. [PMID: 27347897 DOI: 10.1002/cphy.c150027] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016.
Collapse
Affiliation(s)
- Tania M Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Maria I Chiamolera
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Carmen C Pazos-Moura
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fredic E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
67
|
Ravnskjaer K, Madiraju A, Montminy M. Role of the cAMP Pathway in Glucose and Lipid Metabolism. Handb Exp Pharmacol 2016; 233:29-49. [PMID: 26721678 DOI: 10.1007/164_2015_32] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
3'-5'-Cyclic adenosine monophosphate (cyclic AMP or cAMP) was first described in 1957 as an intracellular second messenger mediating the effects of glucagon and epinephrine on hepatic glycogenolysis (Berthet et al., J Biol Chem 224(1):463-475, 1957). Since this initial characterization, cAMP has been firmly established as a versatile molecular signal involved in both central and peripheral regulation of energy homeostasis and nutrient partitioning. Many of these effects appear to be mediated at the transcriptional level, in part through the activation of the transcription factor CREB and its coactivators. Here we review current understanding of the mechanisms by which the cAMP signaling pathway triggers metabolic programs in insulin-responsive tissues.
Collapse
|
68
|
Astapova I. Role of co-regulators in metabolic and transcriptional actions of thyroid hormone. J Mol Endocrinol 2016; 56:73-97. [PMID: 26673411 DOI: 10.1530/jme-15-0246] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 12/18/2022]
Abstract
Thyroid hormone (TH) controls a wide range of physiological processes through TH receptor (TR) isoforms. Classically, TRs are proposed to function as tri-iodothyronine (T3)-dependent transcription factors: on positively regulated target genes, unliganded TRs mediate transcriptional repression through recruitment of co-repressor complexes, while T3 binding leads to dismissal of co-repressors and recruitment of co-activators to activate transcription. Co-repressors and co-activators were proposed to play opposite roles in the regulation of negative T3 target genes and hypothalamic-pituitary-thyroid axis, but exact mechanisms of the negative regulation by TH have remained elusive. Important insights into the roles of co-repressors and co-activators in different physiological processes have been obtained using animal models with disrupted co-regulator function. At the same time, recent studies interrogating genome-wide TR binding have generated compelling new data regarding effects of T3, local chromatin structure, and specific response element configuration on TR recruitment and function leading to the proposal of new models of transcriptional regulation by TRs. This review discusses data obtained in various mouse models with manipulated function of nuclear receptor co-repressor (NCoR or NCOR1) and silencing mediator of retinoic acid receptor and thyroid hormone receptor (SMRT or NCOR2), and family of steroid receptor co-activators (SRCs also known as NCOAs) in the context of TH action, as well as insights into the function of co-regulators that may emerge from the genome-wide TR recruitment analysis.
Collapse
Affiliation(s)
- Inna Astapova
- Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
69
|
Li M, Cao C, Li S, Gui W, Zhu G. Thyroid endocrine disruption of azocyclotin to Xenopus laevis during metamorphosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:61-67. [PMID: 26970056 DOI: 10.1016/j.etap.2016.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
Organotin compounds are ubiquitous contaminants that are frequently detected in the environment and in biota, which raises concern about their risk to wildlife and human health. In the present study, Nieuwkoop & Faber stage 51 Xenopus laevis tadpoles were exposed to different concentrations of azocyclotin (0, 0.02, 0.1 and 0.5μg/L) for 21 days, during which time the tadpoles underwent morphological development. Exposure to azocyclotin caused an inhibitory effect on the pre-metamorphic development of X. laevis (e.g., a shortened hind limb length). Azocyclotin induced an alteration of the triiodothyronine (T3) content, which indicated thyroid endocrine disruption. Real-time PCR was performed to examine the expression levels of the genes involved in the thyroid hormone (TH) signaling pathway. Significant down-regulation of the type 2 deiodinase gene was observed, which may be partially responsible for the decreased T3 concentrations. Furthermore, the expression of T3 responsive genes, including thyroid hormone receptor, basic transcription element binding protein, 2tromelysins-3 and matrix metalloproteinase 2, were down-regulated in tadpoles, suggesting that azocyclotin induced a decrease in the T3 contents and, in turn, affected the mRNA expression of downstream genes involved in multiple physiological responses. Chemical analysis showed that azocyclotin could accumulate in X. laevis after 21 days of exposure. In conclusion, the results of the present study showed that azocyclotin could alter the mRNA expression of genes involved in TH signaling as well as the thyroid hormone concentrations in X. laevis tadpoles, leading to endocrine disruption of thyroid system, and that azocyclotin had obvious inhibitory effects on X. laevis metamorphosis.
Collapse
Affiliation(s)
- Meng Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Chuyan Cao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China.
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
70
|
Schlein C, Talukdar S, Heine M, Fischer AW, Krott LM, Nilsson SK, Brenner MB, Heeren J, Scheja L. FGF21 Lowers Plasma Triglycerides by Accelerating Lipoprotein Catabolism in White and Brown Adipose Tissues. Cell Metab 2016; 23:441-53. [PMID: 26853749 DOI: 10.1016/j.cmet.2016.01.006] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/14/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022]
Abstract
FGF21 decreases plasma triglycerides (TGs) in rodents and humans; however, the underlying mechanism or mechanisms are unclear. In the present study, we examined the role of FGF21 in production and disposal of TG-rich lipoproteins (TRLs) in mice. Treatment with pharmacological doses of FGF21 acutely reduced plasma non-esterified fatty acids (NEFAs), liver TG content, and VLDL-TG secretion. In addition, metabolic turnover studies revealed that FGF21 facilitated the catabolism of TRL in white adipose tissue (WAT) and brown adipose tissue (BAT). FGF21-dependent TRL processing was strongly attenuated in CD36-deficient mice and transgenic mice lacking lipoprotein lipase in adipose tissues. Insulin resistance in diet-induced obese and ob/ob mice shifted FGF21 responses from WAT toward energy-combusting BAT. In conclusion, FGF21 lowers plasma TGs through a dual mechanism: first, by reducing NEFA plasma levels and consequently hepatic VLDL lipidation and, second, by increasing CD36 and LPL-dependent TRL disposal in WAT and BAT.
Collapse
Affiliation(s)
- Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Saswata Talukdar
- Cardiovascular Metabolic and Endocrine Diseases (CVMED), Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Lucia M Krott
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Stefan K Nilsson
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Martin B Brenner
- Cardiovascular Metabolic and Endocrine Diseases (CVMED), Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
71
|
Donzelli R, Colligiani D, Kusmic C, Sabatini M, Lorenzini L, Accorroni A, Nannipieri M, Saba A, Iervasi G, Zucchi R. Effect of Hypothyroidism and Hyperthyroidism on Tissue Thyroid Hormone Concentrations in Rat. Eur Thyroid J 2016; 5:27-34. [PMID: 27099836 PMCID: PMC4836127 DOI: 10.1159/000443523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/17/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The present study was aimed at determining the effects of experimental hypothyroidism and hyperthyroidism on tissue thyroid hormones by a mass spectrometry-based technique. METHODS Rats were subjected to propylthiouracil treatment or administration of exogenous triiodothyronine (T3) or thyroxine (T4). Tissue T3 and T4 were measured by liquid chromatography tandem mass spectrometry in the heart, liver, kidney, visceral and subcutaneous adipose tissue, and brain. RESULTS Baseline tissue T3 and T4 concentrations ranged from 0.2 to 20 pmol ∙ g(-1) and from 3 to 125 pmol ∙ g(-1), respectively, with the highest values in the liver and kidney, and the lowest values in the adipose tissue. The T3/T4 ratio (expressed as a percentage) was in the 7-20% range in all tissues except the brain, where it averaged 75%. In hypothyroidism, tissue T3 was more severely reduced than serum free T3, averaging 1-6% of the baseline versus 30% of the baseline. The extent of tissue T3 reduction, expressed as percentage of the baseline, was not homogeneous (p < 0.001), with liver = kidney > brain > heart > adipose tissue. The tissue T3/T4 ratio significantly increased in all organs except the kidney, averaging 330% in the brain and 50-90% in the other tissues. By contrast, exogenous T3 and T4 administration produced similar increases in serum free T3 and in tissue T3, and the relative changes were not significantly different between different tissues. CONCLUSIONS While the response to increased thyroid hormones availability was similar in all tissues, decreased thyroid hormone availability induced compensatory responses, leading to a significant mismatch between changes in serum and in specific tissues.
Collapse
Affiliation(s)
| | - Daria Colligiani
- Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | | | - Alice Accorroni
- Departments of Pathology, University of Pisa, Pisa, Italy
- Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | | | - Riccardo Zucchi
- Departments of Pathology, University of Pisa, Pisa, Italy
- *Riccardo Zucchi, MD, PhD, Laboratory of Biochemistry, Department of Pathology, University of Pisa, via Roma 55, IT-56126 Pisa (Italy), E-Mail
| |
Collapse
|
72
|
Solmonson A, Mills EM. Uncoupling Proteins and the Molecular Mechanisms of Thyroid Thermogenesis. Endocrinology 2016; 157:455-62. [PMID: 26636187 PMCID: PMC4733119 DOI: 10.1210/en.2015-1803] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022]
Affiliation(s)
- A Solmonson
- Institute for Cellular and Molecular Biology (A.S., E.M.M.), College of Natural Sciences and Division of Pharmacology and Toxicology (E.M.M.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712
| | - E M Mills
- Institute for Cellular and Molecular Biology (A.S., E.M.M.), College of Natural Sciences and Division of Pharmacology and Toxicology (E.M.M.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
73
|
Truter JC, van Wyk JH, Oberholster PJ, Botha AM, Luus-Powell WJ. The expression of selected genes linked to metabolic homeostasis in obese pansteatitis-suffering Mozambique tilapia, Oreochromis mossambicus (Peters). JOURNAL OF FISH DISEASES 2016; 39:69-85. [PMID: 25413848 DOI: 10.1111/jfd.12324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 06/04/2023]
Abstract
The Oreochromis mossambicus (Peters) population inhabiting Lake Loskop, South Africa, is characterized by a high incidence of obesity and pansteatitis. We investigated potential links between the impaired health of Lake Loskop O. mossambicus and the endocrine system by assessing the expression of selected genes associated with the thyroid and adrenal endocrine axes as well as peroxisome proliferator-activated receptor gamma (pparg). Moreover, contaminant-induced thyroid and/or metabolic modulation in Lake Loskop water was evaluated using juvenile O. mossambicus in laboratory exposures. The expression of thyroid hormone receptor alpha (thra) and type 2 deiodinase (dio2) was higher in Lake Loskop O. mossambicus than fish from another population, suggesting a degree of thyroid disruption. The altered gene expression may be a consequence, rather than cause of obesity. Expression of dio2 and pparg was higher in juvenile O. mossambicus exposed to unfiltered compared to filtered lake water, and our data suggest fasting as causative factor. Micro-organism abundance can therefore be a confounding factor in studies applying molecular markers to test for thyroid modulation by environmental waters. Pansteatitis was not a significant source of variance in the expression of any of the genes investigated, suggesting that the disease is not associated with disrupted endocrine signalling.
Collapse
Affiliation(s)
- J C Truter
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - J H van Wyk
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - P J Oberholster
- CSIR Natural Resources and the Environment, Stellenbosch, South Africa
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - A-M Botha
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - W J Luus-Powell
- Department of Biodiversity, University of Limpopo, Sovenga, South Africa
| |
Collapse
|
74
|
Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue. Proc Natl Acad Sci U S A 2015; 112:14006-11. [PMID: 26504234 DOI: 10.1073/pnas.1519358112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity.
Collapse
|
75
|
Werneck-de-Castro JP, Fonseca TL, Ignacio DL, Fernandes GW, Andrade-Feraud CM, Lartey LJ, Ribeiro MB, Ribeiro MO, Gereben B, Bianco AC. Thyroid Hormone Signaling in Male Mouse Skeletal Muscle Is Largely Independent of D2 in Myocytes. Endocrinology 2015; 156:3842-52. [PMID: 26214036 PMCID: PMC4588812 DOI: 10.1210/en.2015-1246] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/23/2015] [Indexed: 01/25/2023]
Abstract
The type 2 deiodinase (D2) activates the prohormone T4 to T3. D2 is expressed in skeletal muscle (SKM), and its global inactivation (GLOB-D2KO mice) reportedly leads to skeletal muscle hypothyroidism and impaired differentiation. Here floxed Dio2 mice were crossed with mice expressing Cre-recombinase under the myosin light chain 1f (cre-MLC) to disrupt D2 expression in the late developmental stages of skeletal myocytes (SKM-D2KO). This led to a loss of approximately 50% in D2 activity in neonatal and adult SKM-D2KO skeletal muscle and about 75% in isolated SKM-D2KO myocytes. To test the impact of Dio2 disruption, we measured soleus T3 content and found it to be normal. We also looked at the expression of T3-responsive genes in skeletal muscle, ie, myosin heavy chain I, α-actin, myosin light chain, tropomyosin, and serca 1 and 2, which was preserved in neonatal SKM-D2KO hindlimb muscles, at a time that coincides with a peak of D2 activity in control animals. In adult soleus the baseline level of D2 activity was about 6-fold lower, and in the SKM-D2KO soleus, the expression of only one of five T3-responsive genes was reduced. Despite this, adult SKM-D2KO animals performed indistinguishably from controls on a treadmill test, running for approximately 16 minutes and reached a speed of about 23 m/min; muscle strength was about 0.3 mN/m·g body weight in SKM-D2KO and control ankle muscles. In conclusion, there are multiple sources of D2 in the mouse SKM, and its role is limited in postnatal skeletal muscle fibers.
Collapse
MESH Headings
- Adipose Tissue, Brown/metabolism
- Animals
- Animals, Newborn
- Cells, Cultured
- Gene Expression
- Iodide Peroxidase/genetics
- Iodide Peroxidase/metabolism
- Male
- Mice, Knockout
- Mice, Transgenic
- Muscle Fibers, Skeletal/metabolism
- Muscle Strength/genetics
- Muscle Strength/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Myosin Heavy Chains/genetics
- Physical Conditioning, Animal/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
- Signal Transduction
- Thyroid Hormones/metabolism
- Thyroxine/metabolism
- Time Factors
- Triiodothyronine/metabolism
- Tropomyosin/genetics
- Iodothyronine Deiodinase Type II
Collapse
Affiliation(s)
- Joao P Werneck-de-Castro
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Tatiana L Fonseca
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Daniele L Ignacio
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Gustavo W Fernandes
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Cristina M Andrade-Feraud
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Lattoya J Lartey
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Marcelo B Ribeiro
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Miriam O Ribeiro
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Balazs Gereben
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Antonio C Bianco
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| |
Collapse
|
76
|
Calzà L, Fernández M, Giardino L. Role of the Thyroid System in Myelination and Neural Connectivity. Compr Physiol 2015; 5:1405-21. [DOI: 10.1002/cphy.c140035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
77
|
Roberts SC, Bianco AC, Stapleton HM. Disruption of type 2 iodothyronine deiodinase activity in cultured human glial cells by polybrominated diphenyl ethers. Chem Res Toxicol 2015; 28:1265-74. [PMID: 26004626 PMCID: PMC4827872 DOI: 10.1021/acs.chemrestox.5b00072] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polybrominated diphenyl ether (PBDE) flame retardants are endocrine disruptors and suspected neurodevelopmental toxicants. While the direct mechanisms of neurodevelopmental toxicity have not been fully elucidated, it is conceivable that alterations in thyroid hormone levels in the developing brain may contribute to these effects. Cells within the brain locally convert thyroxine (T4) to the biologically active triiodothyronine (T3) through the action of the selenodeiodinase type 2 iodothyronine deiodinase (DIO2). Previous studies have demonstrated that PBDEs can alter hepatic deiodinase activity both in vitro and in vivo; however, the effects of PBDEs on the deiodinase isoforms expressed in the brain are not well understood. Here, we studied the effects of several individual PBDEs and hydroxylated metabolites (OH-BDEs) on DIO2 activity in astrocytes, a specialized glial cell responsible for production of more than 50% of the T3 required by the brain. Primary human astrocytes and H4 glioma cells were exposed to individual PBDEs or OH-BDEs at concentrations up to 5 μM. BDE-99 decreased DIO2 activity by 50% in primary astrocyte cells and by up to 80% in the H4 cells at doses of ≥500 nM. 3-OH-BDE-47, 6-OH-BDE-47, and 5'-OH-BDE-99 also decreased DIO2 activity in cultured H4 glioma cells by 45-80% at doses of approximately 1-5 μM. Multiple mechanisms appear to contribute to the decreased DIO2 activity, including weakened expression of DIO2 mRNA, competitive inhibition of DIO2, and enhanced post-translational degradation of DIO2. We conclude that decreases in DIO2 activity caused by exposure to PBDEs may play a role in the neurodevelopmental deficits caused by these toxicants.
Collapse
Affiliation(s)
- Simon C Roberts
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Antonio C Bianco
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL 60612
| | | |
Collapse
|
78
|
Leach PT, Kenney JW, Connor DA, Gould TJ. Thyroid receptor β involvement in the effects of acute nicotine on hippocampus-dependent memory. Neuropharmacology 2015; 93:155-63. [PMID: 25666034 PMCID: PMC4387063 DOI: 10.1016/j.neuropharm.2015.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/23/2015] [Accepted: 01/25/2015] [Indexed: 12/15/2022]
Abstract
Cigarette smoking is common despite adverse health effects. Nicotine's effects on learning may contribute to addiction by enhancing drug-context associations. Effects of nicotine on learning could be direct or could occur by altering systems that modulate cognition. Because thyroid signaling can alter cognition and nicotine/smoking may change thyroid function, nicotine could affect learning through changes in thyroid signaling. These studies investigate the functional contributions of thyroid receptor (TR) subtypes β and α1 to nicotine-enhanced learning and characterize the effects of acute nicotine and learning on thyroid hormone levels. We conducted a high throughput screen of transcription factor activity to identify novel targets that may contribute to the effects of nicotine on learning. Based on these results, which showed that combined nicotine and learning uniquely acted to increase TR activation, we identified TRs as potential targets of nicotine. Further analyses were conducted to determine the individual and combined effects of nicotine and learning on thyroid hormone levels, but no changes were seen. Next, to determine the role of TRβ and TRα1 in the effects of nicotine on learning, mice lacking the TRβ or TRα1 gene and wildtype littermates were administered acute nicotine prior to fear conditioning. Nicotine enhanced contextual fear conditioning in TRα1 knockout mice and wildtypes from both lines but TRβ knockout mice did not show nicotine-enhanced learning. This finding supports involvement of TRβ signaling in the effect of acute nicotine on hippocampus-dependent memory. Acute nicotine enhances learning and these effects may involve processes regulated by the transcription factor TRβ.
Collapse
Affiliation(s)
- Prescott T Leach
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Justin W Kenney
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - David A Connor
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Thomas J Gould
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
79
|
Gabrielsen KM, Krokstad JS, Obregon MJ, Villanger GD, Sonne C, Dietz R, Jenssen BM. Thyroid hormones and deiodinase activities in plasma and tissues from East Greenland polar bears (Ursus maritimus) during winter season. Polar Biol 2015. [DOI: 10.1007/s00300-015-1694-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
80
|
|
81
|
Kapoor R, Fanibunda SE, Desouza LA, Guha SK, Vaidya VA. Perspectives on thyroid hormone action in adult neurogenesis. J Neurochem 2015; 133:599-616. [DOI: 10.1111/jnc.13093] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Richa Kapoor
- Department of Biological Sciences; Tata Institute of Fundamental Research; Mumbai India
| | - Sashaina E. Fanibunda
- Department of Biological Sciences; Tata Institute of Fundamental Research; Mumbai India
| | - Lynette A. Desouza
- Department of Biological Sciences; Tata Institute of Fundamental Research; Mumbai India
| | - Suman K. Guha
- Department of Biological Sciences; Tata Institute of Fundamental Research; Mumbai India
| | - Vidita A. Vaidya
- Department of Biological Sciences; Tata Institute of Fundamental Research; Mumbai India
| |
Collapse
|
82
|
Vriend J, Reiter RJ. Melatonin feedback on clock genes: a theory involving the proteasome. J Pineal Res 2015; 58:1-11. [PMID: 25369242 DOI: 10.1111/jpi.12189] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/30/2014] [Indexed: 12/11/2022]
Abstract
The expression of 'clock' genes occurs in all tissues, but especially in the suprachiasmatic nuclei (SCN) of the hypothalamus, groups of neurons in the brain that regulate circadian rhythms. Melatonin is secreted by the pineal gland in a circadian manner as influenced by the SCN. There is also considerable evidence that melatonin, in turn, acts on the SCN directly influencing the circadian 'clock' mechanisms. The most direct route by which melatonin could reach the SCN would be via the cerebrospinal fluid of the third ventricle. Melatonin could also reach the pars tuberalis (PT) of the pituitary, another melatonin-sensitive tissue, via this route. The major 'clock' genes include the period genes, Per1 and Per2, the cryptochrome genes, Cry1 and Cry2, the clock (circadian locomotor output cycles kaput) gene, and the Bmal1 (aryl hydrocarbon receptor nuclear translocator-like) gene. Clock and Bmal1 heterodimers act on E-box components of the promoters of the Per and Cry genes to stimulate transcription. A negative feedback loop between the cryptochrome proteins and the nucleus allows the Cry and Per proteins to regulate their own transcription. A cycle of ubiquitination and deubiquitination controls the levels of CRY protein degraded by the proteasome and, hence, the amount of protein available for feedback. Thus, it provides a post-translational component to the circadian clock mechanism. BMAL1 also stimulates transcription of REV-ERBα and, in turn, is also partially regulated by negative feedback by REV-ERBα. In the 'black widow' model of transcription, proteasomes destroy transcription factors that are needed only for a particular period of time. In the model proposed herein, the interaction of melatonin and the proteasome is required to adjust the SCN clock to changes in the environmental photoperiod. In particular, we predict that melatonin inhibition of the proteasome interferes with negative feedback loops (CRY/PER and REV-ERBα) on Bmal1 transcription genes in both the SCN and PT. Melatonin inhibition of the proteasome would also tend to stabilize BMAL1 protein itself in the SCN, particularly at night when melatonin is naturally elevated. Melatonin inhibition of the proteasome could account for the effects of melatonin on circadian rhythms associated with molecular timing genes. The interaction of melatonin with the proteasome in the hypothalamus also provides a model for explaining the dramatic 'time of day' effect of melatonin injections on reproductive status of seasonal breeders. Finally, the model predicts that a proteasome inhibitor such as bortezomib would modify circadian rhythms in a manner similar to melatonin.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
83
|
Wadzinski TL, Geromini K, McKinley Brewer J, Bansal R, Abdelouahab N, Langlois MF, Takser L, Zoeller RT. Endocrine disruption in human placenta: expression of the dioxin-inducible enzyme, CYP1A1, is correlated with that of thyroid hormone-regulated genes. J Clin Endocrinol Metab 2014; 99:E2735-43. [PMID: 25299844 PMCID: PMC4255108 DOI: 10.1210/jc.2014-2629] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Thyroid hormone (TH) is essential for normal development; therefore, disruption of TH action by a number of industrial chemicals is critical to identify. Several chemicals including polychlorinated biphenyls are metabolized by the dioxin-inducible enzyme CYP1A1; some of their metabolites can interact with the TH receptor. In animals, this mechanism is reflected by a strong correlation between the expression of CYP1A1 mRNA and TH-regulated mRNAs. If this mechanism occurs in humans, we expect that CYP1A1 expression will be positively correlated with the expression of genes regulated by TH. OBJECTIVE The objective of the study was to test the hypothesis that CYP1A1 mRNA expression is correlated with TH-regulated mRNAs in human placenta. METHODS One hundred sixty-four placental samples from pregnancies with no thyroid disease were obtained from the GESTE study (Sherbrooke, Québec, Canada). Maternal and cord blood TH levels were measured at birth. The mRNA levels of CYP1A1 and placental TH receptor targets [placental lactogen (PL) and GH-V] were quantitated by quantitative PCR. RESULTS CYP1A1 mRNA abundance varied 5-fold across 132 placental samples that had detectable CYP1A1 mRNA. CYP1A1 mRNA was positively correlated with PL (r = 0.64; P < .0001) and GH-V (P < .0001, r = 0.62) mRNA. PL and GH-V mRNA were correlated with each other (r = 0.95; P < .0001), suggesting a common activator. The mRNAs not regulated by TH were not correlated with CYP1A1 expression. CONCLUSIONS CYP1A1 mRNA expression is strongly associated with the expression of TH-regulated target gene mRNAs in human placenta, consistent with the endocrine-disrupting action of metabolites produced by CYP1A1.
Collapse
Affiliation(s)
- Thomas L Wadzinski
- Department of Biology (T.L.W., K.G., J.M.B., R.B., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; Department of Pediatrics (T.L.W.), Baystate Medical Center, Springfield, Massachusetts 01199; and Department of Pediatrics (N.A., L.T.), Faculty of Medicine, and Department of Medicine (M.-F.L.), Endocrinology Service, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Qéubec, Canada J1H SN4
| | | | | | | | | | | | | | | |
Collapse
|
84
|
DiSilvestro D, Petrosino J, Aldoori A, Melgar-Bermudez E, Wells A, Ziouzenkova O. Enzymatic intracrine regulation of white adipose tissue. Horm Mol Biol Clin Investig 2014; 19:39-55. [PMID: 25390015 DOI: 10.1515/hmbci-2014-0019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 05/28/2014] [Indexed: 11/15/2022]
Abstract
Abdominal fat formation has become a permanent risk factor for metabolic syndrome and various cancers in one-third of the world's population of obese and even lean patients. Formation of abdominal fat involves additional mechanisms beyond an imbalance in energy intake and expenditure, which explains systemic obesity. In this review, we briefly summarized autonomous regulatory circuits that locally produce hormones from inactive precursors or nutrients for intra-/auto-/paracrine signaling in white adipose depots. Enzymatic pathways activating steroid and thyroid hormones in adipose depots were compared with enzymatic production of retinoic acid from vitamin A. We discussed the role of intracrine circuits in fat-depot functions and strategies to reduce abdominal adiposity through thermogenic adipocytes with interrupted generation of retinoic acid.
Collapse
|
85
|
Santoro AB, Vargens DD, Barros Filho MDC, Bulzico DA, Kowalski LP, Meirelles RMR, Paula DP, Neves RRS, Pessoa CN, Struchine CJ, Suarez-Kurtz G. Effect of UGT1A1, UGT1A3, DIO1 and DIO2 polymorphisms on L-thyroxine doses required for TSH suppression in patients with differentiated thyroid cancer. Br J Clin Pharmacol 2014; 78:1067-75. [PMID: 24910925 PMCID: PMC4243881 DOI: 10.1111/bcp.12437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/31/2014] [Indexed: 12/31/2022] Open
Abstract
AIM To evaluate the impact of genetic polymorphisms in uridine 5'-glucuronosylytansferases UGT1A1 and UGT1A3 and iodothyronine-deiodinases types 1 and 2 on levothyroxine (T4 ; 3,5,3',5'-triiodo-L-thyronine) dose requirement for suppression of thyrotropin (TSH) secretion in patients with differentiated thyroid cancer (DTC). METHODS Patients (n = 268) submitted to total thyroidectomy and ablation by (131) I, under T4 therapy for at least 6 months were recruited in three public institutions in Brazil. Multivariate regression modelling was applied to assess the association of T4 dosing with polymorphisms in UGT1A1 (rs8175347), UGT1A3 (rs3806596 and rs1983023), DIO1 (rs11206244 and rs2235544) and DIO2 (rs225014 and rs12885300), demographic and clinical variables. RESULTS A regression model including UGT1A haplotypes, age, gender, body weight and serum TSH concentration accounted for 39% of the inter-individual variation in the T4 dosage. The association of T4 dose with UGT1A haplotype is attributed to reduced UGT1A1 expression and T4 glucuronidation in liver of carriers of low expression UGT1A1 rs8175347 alleles. The DIO1 and DIO2 genotypes had no influence of T4 dosage. CONCLUSION UGT1A haplotypes associate with T4 dosage in DTC patients, but the effect accounts for only 2% of the total variability and recommendation of pre-emptive UGT1A genotyping is not warranted.
Collapse
Affiliation(s)
- Ana B Santoro
- Divisão de Farmacologia, Instituto Nacional de CâncerRio de Janeiro, Brazil
| | - Daniela D Vargens
- Divisão de Farmacologia, Instituto Nacional de CâncerRio de Janeiro, Brazil
| | | | - Daniel A Bulzico
- Serviço de Endocrinologia, Instituto Nacional de CâncerRio de Janeiro, Brazil
| | - Luiz Paulo Kowalski
- Departamento de Cirurgia de Cabeça e Pescoço e Otorrinolaringologia, AC Camargo Cancer CenterSão Paulo, Brazil
| | - Ricardo M R Meirelles
- Serviço de Endocrinologia, Instituto Estadual de Diabetes e Endocrinologia Luiz CapriglioneRio de Janeiro, Brazil
| | - Daniela P Paula
- Departamento de Matemática, Universidade Federal Rural do Rio de JaneiroSeropédica, Rio de Janeiro, Brazil
| | - Ronaldo R S Neves
- Serviço de Endocrinologia, Instituto Estadual de Diabetes e Endocrinologia Luiz CapriglioneRio de Janeiro, Brazil
| | - Cencita N Pessoa
- Serviço de Endocrinologia, Instituto Nacional de CâncerRio de Janeiro, Brazil
| | - Claudio J Struchine
- Programa de Computação Científica, Fundação Oswaldo CruzRio de Janeiro, Brazil
| | | |
Collapse
|
86
|
Koksharova EO, Mayorov AY, Shestakova MV, Dedov II. Metabolic characteristics and therapeutic potential of brown and ?beige? adipose tissues. DIABETES MELLITUS 2014. [DOI: 10.14341/dm201445-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
According to the International Diabetes Federation, 10.9 million people have diabetes mellitus (DM) in Russia; however, only up to 4 million are registered. In addition, 11.9 million people have impaired glucose tolerance and impaired fasting glucose levels [1]. One of the significant risk factors for type 2 DM (T2DM) is obesity, which increases insulin resistance (IR). IR is the major pathogenetic link to T2DM. According to current concepts, there are three types of adipose tissue: white adipose tissue (WAT), brown adipose tissue (BAT) and ?beige?, of which the last two types have a thermogenic function. Some research results have revealed the main stages in the development of adipocytes; however, there is no general consensus regarding the development of ?beige? adipocytes. Furthermore, the biology of BAT and ?beige? adipose tissue is currently being intensively investigated, and some key transcription factors, signalling pathways and hormones that promote the development and activation of these tissues have been identified. The most discussed hormones are irisin and fibroblast growth factor 21, which have established positive effects on BAT and ?beige? adipose tissue with regard to carbohydrate, lipid and energy metabolism. The primary imaging techniques used to investigate BAT are PET-CT with 18F-fluorodeoxyglucose and magnetic resonance spectroscopy. With respect to the current obesity epidemic and associated diseases, including T2DM, there is a growing interest in investigating adipogenesis and the possibility of altering this process. BAT and ?beige? adipose tissue may be targets for developing drugs directed against obesity and T2DM.
Collapse
|
87
|
Abstract
Obesity and related diseases are a major cause of human morbidity and mortality and constitute a substantial economic burden for society. Effective treatment regimens are scarce, and new therapeutic targets are needed. Brown adipose tissue, an energy-expending tissue that produces heat, represents a potential therapeutic target. Its presence is associated with low body mass index, low total adipose tissue content and a lower risk of type 2 diabetes mellitus. Knowledge about the development and function of thermogenic adipocytes in brown adipose tissue has increased substantially in the last decade. Important transcriptional regulators have been identified, and hormones able to modulate the thermogenic capacity of the tissue have been recognized. Intriguingly, it is now clear that humans, like rodents, possess two types of thermogenic adipocytes: the classical brown adipocytes found in the interscapular brown adipose organ and the so-called beige adipocytes primarily found in subcutaneous white adipose tissue after adrenergic stimulation. The presence of two distinct types of energy-expending adipocytes in humans is conceptually important because these cells might be stimulated and recruited by different signals, raising the possibility that they might be separate potential targets for therapeutic intervention. In this review, we will discuss important features of the energy-expending brown adipose tissue and highlight those that may serve as potential targets for pharmacological intervention aimed at expanding the tissue and/or enhancing its function to counteract obesity.
Collapse
Affiliation(s)
- M E Lidell
- Department of Medical and Clinical Genetics, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | |
Collapse
|
88
|
Sinha RA, Singh BK, Yen PM. Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends Endocrinol Metab 2014; 25:538-545. [PMID: 25127738 DOI: 10.1016/j.tem.2014.07.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/21/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023]
Abstract
Thyroid hormone (TH) has important roles in regulating hepatic lipid, cholesterol, and glucose metabolism. Recent findings suggest that clinical conditions such as non-alcoholic fatty liver disease and type 2 diabetes mellitus, which are associated with dysregulated hepatic metabolism, may involve altered intracellular TH action. In addition, TH has key roles in lipophagy in lipid metabolism, mitochondrial quality control, and the regulation of metabolic genes. In this review, we discuss recent findings regarding the functions of TH in hepatic metabolism, the relationship between TH and metabolic disorders, and the potential therapeutic use of thyromimetics to treat metabolic dysfunction in the liver.
Collapse
Affiliation(s)
- Rohit A Sinha
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169547, Singapore
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169547, Singapore
| | - Paul M Yen
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169547, Singapore; Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
89
|
Vriend J, Reiter RJ. Melatonin and ubiquitin: what's the connection? Cell Mol Life Sci 2014; 71:3409-18. [PMID: 24920061 PMCID: PMC11113875 DOI: 10.1007/s00018-014-1659-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/09/2014] [Accepted: 05/27/2014] [Indexed: 12/29/2022]
Abstract
Melatonin has been widely studied for its role in photoperiodism in seasonal breeders; it is also a potent antioxidant. Ubiquitin, a protein also widespread in living cells, contributes to many cellular events, although the most well known is that of tagging proteins for destruction by the proteasome. Herein, we suggest a model in which melatonin interacts with the ubiquitin-proteasome system to regulate a variety of seemingly unrelated processes. Ubiquitin, for example, is a major regulator of central activity of thyroid hormone type 2 deiodinase; the subsequent regulation of T3 may be central to the melatonin-induced changes in seasonal reproduction and seasonal changes in metabolism. Both melatonin and ubiquitin also have important roles in protecting cells from oxidative stress. We discuss the interaction of melatonin and the ubiquitin-proteasome system in oxidative stress through regulation of the ubiquitin-activating enzyme, E1. Previous reports have shown that glutathiolation of this enzyme protects proteins from unnecessary degradation. In addition, evidence is discussed concerning the interaction of ubiquitin and melatonin in activation of the transcription factor NF-κB as well as modulating cellular levels of numerous signal transducing factors including the tumor suppressor, p53. Some of the actions of melatonin on the regulatory particle of the proteasome appear to be related to its inhibition of the calcium-dependent calmodulin kinase II, an enzyme which reportedly copurifies with proteasomes. Many of the actions of melatonin on signal transduction are similar to those of a proteasome inhibitor. While these actions of melatonin could be explained by a direct inhibitory action on the catalytic core particle of the proteasome, this has not been experimentally verified. If our hypothesis of melatonin as a general inhibitor of the ubiquitin-proteasome system is confirmed, it is predicted that more examples of this interaction will be demonstrated in a variety of tissues in which ubiquitin and melatonin co-exist. Furthermore, the hypothesis of melatonin as an inhibitor of the ubiquitin-proteasome system will be a very useful model for clinical testing of melatonin.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada,
| | | |
Collapse
|
90
|
Bárez-López S, Bosch-García D, Gómez-Andrés D, Pulido-Valdeolivas I, Montero-Pedrazuela A, Obregon MJ, Guadaño-Ferraz A. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase. PLoS One 2014; 9:e103857. [PMID: 25083788 PMCID: PMC4118963 DOI: 10.1371/journal.pone.0103857] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/03/2014] [Indexed: 11/17/2022] Open
Abstract
Background Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3′-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. Aim This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Results Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. Conclusions The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.
Collapse
Affiliation(s)
- Soledad Bárez-López
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Daniel Bosch-García
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - David Gómez-Andrés
- Trastornos del Desarrollo y Maduración Neurológica, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Irene Pulido-Valdeolivas
- Trastornos del Desarrollo y Maduración Neurológica, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ana Montero-Pedrazuela
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Maria Jesus Obregon
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ana Guadaño-Ferraz
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
91
|
Zhang YF, Xu W, Lou QQ, Li YY, Zhao YX, Wei WJ, Qin ZF, Wang HL, Li JZ. Tetrabromobisphenol A disrupts vertebrate development via thyroid hormone signaling pathway in a developmental stage-dependent manner. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8227-34. [PMID: 24963557 DOI: 10.1021/es502366g] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Data concerning effects of tetrabromobisphenol A (TBBPA) on thyroid hormone (TH)-dependent vertebrate development have been limited, although TBBPA has been demonstrated in vitro to disrupt the TH signaling pathway at the transcriptional level. In this study, we investigated the effects of TBBPA on T3-induced and spontaneous Xenopus laevis metamorphosis, which share many similarities with TH-dependent development in higher vertebrates. In a 6-day T3-induced metamorphosis assay using premetamorphic tadpoles, 10-1000 nM TBBPA exhibited inhibitory effects on T3-induced expression of TH-response genes and morphological changes in a concentration-dependent manner, with a weak stimulatory action on tadpole development and TH-response gene expression in the absence of T3 induction. In a spontaneous metamorphosis assay, we further found that TBBPA promoted tadpole development from stage 51 to 56 (pre- and prometamorphic stages) but inhibited metamorphic development from stage 57 to 66 (metamorphic climax). These results strongly show that TBBPA, even at low concentrations, disrupts TH-dependent development in a developmental stage-dependent manner, i.e., TBBPA exhibits an antagonistic activity at the developmental stages when animals have high endogenous TH levels, whereas it acts as an agonist at the developmental stages when animals have low endogenous TH levels. Our study highlights the adverse influences of TBBPA on TH-dependent development in vertebrates.
Collapse
Affiliation(s)
- Yin-Feng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences and ‡Department of Environmental Bio-Technology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Orozco A, Navarrete-Ramírez P, Olvera A, García-G C. 3,5-Diiodothyronine (T2) is on a role. A new hormone in search of recognition. Gen Comp Endocrinol 2014; 203:174-80. [PMID: 24602963 DOI: 10.1016/j.ygcen.2014.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
Thyroid hormone (TH) actions are mediated by triiodothyronine (T3), which acts by binding to the TH receptors (TRs). Since TH exert pleiotropic effects, interest has grown in identifying other possible bioactive thyronines that could explain their diversity of functions. Accordingly, 3,5-diiodothyronine (T2) has been shown to be bioactive. In mammals, T2 regulates mRNA expression of several T3-regulated genes, but doses up to 100-fold greater than those of T3 were required to generate comparable effects. In teleosts, T2 and T3 regulate gene expression in vivo with equivalent potency. Furthermore, in vivo and in vitro studies support the notion that T2 binds to and activates a specific, long TRβ1 isoform that contains a nine amino acid insert at the beginning of the ligand binding domain, whereas T3 can interact also with a different TRβ1 isoform that lacks this insert. Similarly, T2 and T3 differentially regulate long- and short-TRβ1 expression, respectively, strongly suggesting a different signaling pathway for each hormone, at least in the species that express both receptors. In vivo, T2 effectively triggers a burst of body growth in tilapia by interacting with the long TRβ1 isoform, supporting the notion that T2 is physiologically relevant in this species. Current knowledge of T2 effects and action mechanisms lead us to propose that there is an extra level in the thyroid hormone signaling cascade, and that T2 is produced and regulated specifically for this purpose.
Collapse
Affiliation(s)
- Aurea Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Qro. 76230, Mexico.
| | - Pamela Navarrete-Ramírez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Qro. 76230, Mexico
| | - Aurora Olvera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Qro. 76230, Mexico
| | - Carlota García-G
- Facultad de Medicina, Universidad Autónoma de Querétaro, Clavel 200, Querétaro, Qro. 76017, Mexico
| |
Collapse
|
93
|
Colicchia M, Campagnolo L, Baldini E, Ulisse S, Valensise H, Moretti C. Molecular basis of thyrotropin and thyroid hormone action during implantation and early development. Hum Reprod Update 2014; 20:884-904. [PMID: 24943836 DOI: 10.1093/humupd/dmu028] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Implantation and early embryo development are finely regulated processes in which several molecules are involved. Evidence that thyroid hormones (TH: T4 and T3) might be part of this machinery is emerging. An increased demand for TH occurs during gestation, and any alteration in maternal thyroid physiology has significant implications for both maternal and fetal health. Not only overt but also subclinical hypothyroidism is associated with infertility as well as with obstetric complications, including disruptions and disorders of pregnancy, labor, delivery, and troubles in early neonatal life. METHODS We searched the PubMed and Google Scholar databases for articles related to TH action on ovary, endometrium, trophoblast maturation and embryo implantation. In addition, articles on the regulation of TH activity at cellular level have been reviewed. The findings are hereby summarized and critically discussed. RESULTS TH have been shown to influence endometrial, ovarian and placental physiology. TH receptors (TR) and thyrotropin (thyroid-stimulating hormone: TSH) receptors (TSHR) are widely expressed in the feto-maternal unit during implantation, and both the endometrium and the trophoblast might be influenced by TH either directly or through TH effects on the synthesis and activity of implantation-mediating molecules. Interestingly, due to the multiplicity of mechanisms involved in TH action (e.g. differential expression of TR isoforms, heterodimeric receptor partners, interacting cellular proteins, and regulating enzymes), the TH concentration in blood is not always predictive of their cellular availability and activity at both genomic and nongenomic level. CONCLUSIONS In addition to the known role of TH on the hormonal milieu of the ovarian follicle cycle, which is essential for a woman's fertility, evidence is emerging on the importance of TH signaling during implantation and early pregnancy. Based on recent observations, a local action of TH on female reproductive organs and the embryo during implantation appears to be crucial for a successful pregnancy. Furthermore, an imbalance in the spatio-temporal expression of factors involved in TH activity might induce early arrest of pregnancy in women considered as euthyroid, based on their hormonal blood concentration. In conclusion, alterations of the highly regulated local activity of TH may play a crucial, previously underestimated, role in early pregnancy and pregnancy loss. Further studies elucidating this topic should be encouraged.
Collapse
Affiliation(s)
- Martina Colicchia
- Department of Systems' Medicine, University of Rome Tor Vergata, UOC of Endocrinology and Diabetes, Section of Reproductive Endocrinology Fatebenefratelli Hospital, 'Isola Tiberina' 00187, Rome, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier1, 00133 Rome, Italy
| | - Enke Baldini
- Department of Experimental Medicine, 'Sapienza' University of Rome, Rome, Italy
| | - Salvatore Ulisse
- Department of Experimental Medicine, 'Sapienza' University of Rome, Rome, Italy
| | - Herbert Valensise
- Department of Obstetrics and Gynaecology, University of Rome Tor Vergata, Fatebenefratelli Hospital 'Isola Tiberina', 00187 Rome, Italy
| | - Costanzo Moretti
- Department of Systems' Medicine, University of Rome Tor Vergata, UOC of Endocrinology and Diabetes, Section of Reproductive Endocrinology Fatebenefratelli Hospital, 'Isola Tiberina' 00187, Rome, Italy
| |
Collapse
|
94
|
Aninye IO, Matsumoto S, Sidhaye AR, Wondisford FE. Circadian regulation of Tshb gene expression by Rev-Erbα (NR1D1) and nuclear corepressor 1 (NCOR1). J Biol Chem 2014; 289:17070-7. [PMID: 24794873 DOI: 10.1074/jbc.m114.569723] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Thyroid hormones (TH) are critical for development, growth, and metabolism. Circulating TH levels are tightly regulated by thyroid-stimulating hormone (TSH) secretion within the hypothalamic-pituitary-thyroid axis. Although circadian TSH secretion has been well documented, the mechanism of this observation remains unclear. Recently, the nuclear corepressor, NCOR1, has been postulated to regulate TSH expression, presumably by interacting with thyroid hormone receptors (THRs) bound to TSH subunit genes. We report herein the first in vitro study of NCOR1 regulation of TSH in a physiologically relevant cell system, the TαT1.1 mouse thyrotroph cell line. Knockdown of NCOR1 by shRNA adenovirus increased baseline Tshb mRNA levels compared with scrambled control, but surprisingly had no affect on the T3-mediated repression of this gene. Using ChIP, we show that NCOR1 enriches on the Tshb promoter at sites different from THR previously identified by our group. Furthermore, NCOR1 enrichment on Tshb is unaffected by T3 treatment. Given that NCOR1 does not target THR on Tshb, we hypothesized that NCOR1 targeted Rev-Erbα (NR1D1), an orphan nuclear receptor that is a potent repressor of gene transcription and regulator of metabolism and circadian rhythms. Using a serum shock technique, we synchronized TαT1.1 cells to study circadian gene expression. Post-synchronization, Tshb and Nr1d1 mRNA levels displayed oscillations that inversely correlated with each other. Furthermore, NR1D1 was enriched at the same locus as NCOR1 on Tshb. Therefore, we propose a model for Tshb regulation whereby NR1D1 and NCOR1 interact to regulate circadian expression of Tshb independent of TH negative regulation.
Collapse
Affiliation(s)
- Irene O Aninye
- From the Division of Metabolism, Departments of Pediatrics, Physiology, and Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Shunichi Matsumoto
- From the Division of Metabolism, Departments of Pediatrics, Physiology, and Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Aniket R Sidhaye
- From the Division of Metabolism, Departments of Pediatrics, Physiology, and Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Fredric E Wondisford
- From the Division of Metabolism, Departments of Pediatrics, Physiology, and Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| |
Collapse
|
95
|
Uribe RM, Jaimes-Hoy L, Ramírez-Martínez C, García-Vázquez A, Romero F, Cisneros M, Cote-Vélez A, Charli JL, Joseph-Bravo P. Voluntary exercise adapts the hypothalamus-pituitary-thyroid axis in male rats. Endocrinology 2014; 155:2020-30. [PMID: 24605825 DOI: 10.1210/en.2013-1724] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypothalamic-pituitary thyroid (HPT) axis modulates energy homeostasis. Its activity decreases in conditions of negative energy balance but the effects of chronic exercise on the axis are controversial and unknown at hypothalamic level. Wistar male rats were exposed for up to 14 days to voluntary wheel running (WR), or pair-feeding (PF; 18% food restriction), or to repeated restraint (RR), a mild stressor. WR and RR diminished food intake; body weight gain decreased in the 3 experimental groups, but WAT mass and serum leptin more intensely in the WR group. WR, but not RR, produced a delayed inhibition of central markers of HPT axis activity. At day 14, in WR rats paraventricular nucleus-pro-TRH mRNA and serum TSH levels decreased, anterior pituitary TRH-receptor 1 mRNA levels increased, but serum thyroid hormone levels were unaltered, which is consistent with decreased secretion of TRH and clearance of thyroid hormones. A similar pattern was observed if WR animals were euthanized during their activity phase. In contrast, in PF animals the profound drop of HPT axis activity included decreased serum T3 levels and hepatic deiodinase 1 activity; these changes were correlated with an intense increase in serum corticosterone levels. WR effects on HPT axis were not associated with changes in the activity of the hypothalamic-pituitary adrenal axis, but correlated positively with serum leptin levels. These data demonstrate that voluntary WR adapts the status of the HPT axis, through pathways that are distinct from those observed during food restriction or repeated stress.
Collapse
Affiliation(s)
- Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Carmean CM, Cohen RN, Brady MJ. Systemic regulation of adipose metabolism. Biochim Biophys Acta Mol Basis Dis 2014; 1842:424-30. [DOI: 10.1016/j.bbadis.2013.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/15/2013] [Accepted: 06/01/2013] [Indexed: 12/11/2022]
|
97
|
Selmi-Ruby S, Bouazza L, Obregon MJ, Conscience A, Flamant F, Samarut J, Borson-Chazot F, Rousset B. The targeted inactivation of TRβ gene in thyroid follicular cells suggests a new mechanism of regulation of thyroid hormone production. Endocrinology 2014; 155:635-46. [PMID: 24265449 DOI: 10.1210/en.2013-1435] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thyroid epithelial cells, or thyrocytes, express functional thyroid hormone receptors but no precise role has yet been assigned to either TRα or TRβ in the thyroid gland. In this study, we analyzed the impact of inactivating the TRβ gene in the thyroid of mice. First, we generated a mouse line named Thyr-Cre, expressing the Cre recombinase under the control of the thyroglobulin gene promoter, which led to a complete recombination of floxed genes in thyrocytes. Thyr-Cre mice were then crossed with TRβ floxed mice (TRβ(flox/flox)) to obtain a thyrocyte-selective deletion of TRβ. Thyr-TRβ(-/-) mice were characterized by a decrease in the size and functional activity of the thyroid gland. These alterations were associated with a decrease in plasma TSH concentration. Surprisingly, Thyr-TRβ(-/-) displayed elevated serum T(4) and rT(3) concentrations with no significant change in serum T(3) levels. Their intrathyroidal free T(4) and rT(3) contents were also elevated, whereas the ratio of serum T(4) to thyroid free T(4) was decreased by comparison with wild-type littermates. Also, within the thyroid, deiodinases D1 and D2 were reduced as well as the expression levels of genes encoding monocarboxylate transporters (Mct8 and Mct10). Such a decrease in intrathyroidal deiodination of T(4) and in the expression of genes encoding thyroid hormone transporters may contribute to the primary overproduction of T(4) observed in Thyr-TRβ(-/-) mice. In conclusion, these data show that the control of thyroid hormone production involves not only TRβ-dependent mechanisms acting at the level of hypothalamus and pituitary but also TRβ-dependent mechanisms acting at the thyroid level.
Collapse
Affiliation(s)
- Samia Selmi-Ruby
- Inserm Unité 1052 (S.S.-R., F.B.-C., B.R.), Lyon, France; Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286 (S.S.-R., F.B.-C., B.R.), Lyon, France; Université Claude Bernard Lyon 1 (S.S.-R., L.B., F.B.-C., B.R.), Faculté de Médecine Lyon-Est-Site Laennec, Lyon Cedex 08, F-69372 France; Instituto de Investigaciones Biomedicas (Consejo Superior de Investigaciones Científicas-Universidad Autonoma Madrid) (M.-J.O.), Madrid, M-28029 Spain; and Institut de Génomique Fonctionnelle de Lyon (A.C., F.F., J.S.), Lyon, F-69007 France
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Schroeder AC, Privalsky ML. Thyroid hormones, t3 and t4, in the brain. Front Endocrinol (Lausanne) 2014; 5:40. [PMID: 24744751 PMCID: PMC3978256 DOI: 10.3389/fendo.2014.00040] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/17/2014] [Indexed: 12/24/2022] Open
Abstract
Thyroid hormones (THs) are essential for fetal and post-natal nervous system development and also play an important role in the maintenance of adult brain function. Of the two major THs, T4 (3,5,3',5'-tetraiodo-l-thyronine) is classically viewed as an pro-hormone that must be converted to T3 (3,5,3'-tri-iodo-l-thyronine) via tissue-level deiodinases for biological activity. THs primarily mediate their effects by binding to thyroid hormone receptor (TR) isoforms, predominantly TRα1 and TRβ1, which are expressed in different tissues and exhibit distinctive roles in endocrinology. Notably, the ability to respond to T4 and to T3 differs for the two TR isoforms, with TRα1 generally more responsive to T4 than TRβ1. TRα1 is also the most abundantly expressed TR isoform in the brain, encompassing 70-80% of all TR expression in this tissue. Conversion of T4 into T3 via deiodinase 2 in astrocytes has been classically viewed as critical for generating local T3 for neurons. However, deiodinase-deficient mice do not exhibit obvious defectives in brain development or function. Considering that TRα1 is well-established as the predominant isoform in brain, and that TRα1 responds to both T3 and T4, we suggest T4 may play a more active role in brain physiology than has been previously accepted.
Collapse
Affiliation(s)
- Amy C. Schroeder
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | - Martin L. Privalsky
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA, USA
- *Correspondence: Martin L. Privalsky, Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, One Shields Avenue, Davis, CA 95616, USA e-mail:
| |
Collapse
|
99
|
Abstract
Thyroid hormones (THs) are important in the development and maintenance of lipid and energy homeostasis. THs act through two closely related TH receptors (TRs α and β), which are conditional transcription factors. Recently, TH analogues or thyromimetics with varying degrees of TR subtype and liver uptake selectivity have been developed. These compounds exert beneficial effects of TH excess states without many undesirable TR-dependent side effects. Several selective TR modulators (STRMs) showed exceptionally promising results in lowering serum cholesterol in preclinical animal models and human clinical studies. Moreover, some first generation STRMs elicit other potentially beneficial effects on obesity, glucose metabolism, and nonalcoholic fatty liver disease (NAFLD). While it was initially thought that STRMs would be an effective long-term therapy to combat elevated cholesterol, possibly in conjunction with another cholesterol-lowering therapy, the statins, three major first generation STRMs failed to progress beyond early phase III human trials. The aim of this review is to discuss how STRMs work, their actions in preclinical animal models and human clinical trials, why they did not progress beyond clinical trials as cholesterol-lowering therapeutics, whether selective TR modulation continues to hold promise for dyslipidemias, and whether members of this drug class could be applied to the treatment of other aspects of metabolic syndrome and human genetic disease.
Collapse
Affiliation(s)
- Sunitha Meruvu
- Center for Genomic Medicine, Houston Methodist Research Institute , Houston, Texas
| | | | | | | |
Collapse
|
100
|
Visser WE, van Mullem AAA, Visser TJ, Peeters RP. Different causes of reduced sensitivity to thyroid hormone: diagnosis and clinical management. Clin Endocrinol (Oxf) 2013; 79:595-605. [PMID: 23834164 DOI: 10.1111/cen.12281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/05/2013] [Accepted: 07/01/2013] [Indexed: 11/30/2022]
Abstract
Normal thyroid hormone (TH) metabolism and action require adequate cellular TH signalling. This entails proper function of TH transporters in the plasma membrane, intracellular deiodination of TH and action of the bioactive hormone T3 at its nuclear receptors (TRs). The present review summarizes the discoveries of different syndromes with reduced sensitivity at the cellular level. Mutations in the TH transporter MCT8 cause psychomotor retardation and abnormal thyroid parameters. Mutations in the SBP2 protein, which is required for normal deiodination, give rise to a multisystem disorder including abnormal thyroid function tests. Mutations in TRβ1 are a well-known cause of resistance to TH with mostly a mild phenotype, while only recently, patients with mutations in TRα1 were identified. The latter patients have slightly abnormal TH levels, growth retardation and cognitive defects. This review will describe the mechanisms of disease, clinical phenotype, diagnostic testing and suggestions for treatment strategies for each of these syndromes.
Collapse
Affiliation(s)
- W Edward Visser
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|