51
|
Liu YS, Zhang YY, Xing T, Li JL, Wang XF, Zhu XD, Zhang L, Gao F. Glucose and lipid metabolism of broiler chickens fed diets with graded levels of corn resistant starch. Br Poult Sci 2020; 61:599-607. [PMID: 32456457 DOI: 10.1080/00071668.2020.1774511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
1. The aim of this study was to investigate the effects of graded levels of dietary corn resistant starch (RS) on glucose and lipid metabolism of broilers. 2. A total of 320 male broiler chicks (Arbor Acres, one-day-old) were randomly allocated to five dietary treatments, including a corn-soybean control diet, a corn-soybean based diet containing 20% corn starch, and three diets containing 4%, 8% and 12% RS by replacing corn starch with 6.67%, 13.33% and 20% Hi-Maize® 260 (identified as control, RS1, RS2, RS3 and RS4, respectively). Each treatment contained eight replicates with eight birds, and the experiment lasted 42 days. 3. Birds fed RS diets showed lower (P < 0.05) concentrations of serum low-density lipoprotein cholesterol and non-esterified fatty acid (NEFA) at d 21 and 42 of age, compared to the control. Lower (P < 0.05) hepatic apolipoprotein B concentration and citrate synthase (CS) activity, as well as a higher (P < 0.05) glycogen synthase (GS) concentration were observed in birds fed RS diets than those in the control group at d 21 of age. Consuming RS diets linearly increased (P < 0.01) serum glucose concentration, and linearly decreased (P < 0.01) NEFA concentrations in broilers at d 21 and 42 of age. Liver GS concentration and activities of hexokinase, pyruvate and CS were linearly increased (P < 0.01) in broilers at d 21 of age, but were linearly decreased (P < 0.05) in birds at d 42 of age in response to the increase of dietary RS levels. Feeding RS diets linearly decreased (P < 0.05) mRNA expressions of PC, PPARα and CPT-1 at d 21 of age and the mRNA expressions of SREBP-1 c, ChREBP, ACC and FAS at d 42 of age, and linearly increased (P < 0.05) the mRNA expressions of PEPCK, PC, LKB1, AMPKα1, PPARα, CPT-1 and L-FABP at d 42 of age. 4. Feeding broilers with diets containing higher concentration of RS promoted hepatic lipolysis and gluconeogenesis through activated AMPK signalling pathway and accelerated whole-body energy expenditures in the grower phase.
Collapse
Affiliation(s)
- Y S Liu
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University , Nanjing, China
| | - Y Y Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University , Nanjing, China
| | - T Xing
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University , Nanjing, China
| | - J L Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University , Nanjing, China
| | - X F Wang
- College of Science, Nanjing Agricultural University , Nanjing, China
| | - X D Zhu
- College of Science, Nanjing Agricultural University , Nanjing, China
| | - L Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University , Nanjing, China
| | - F Gao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University , Nanjing, China
| |
Collapse
|
52
|
Glucosamine regulates hepatic lipid accumulation by sensing glucose levels or feeding states of normal and excess. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158764. [PMID: 32663610 DOI: 10.1016/j.bbalip.2020.158764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/14/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022]
Abstract
Dose-dependent lipid accumulation was induced by glucose in HepG2 cells. GlcN also exerted a promotory effect on lipid accumulation in HepG2 cells under normal glucose conditions (NG, 5 mM) and liver of normal fed zebrafish larvae. High glucose (HG, 25 mM)-induced lipid accumulation was suppressed by l-glutamine-d-fructose 6-phosphate amidotransferase inhibitors. ER stress inhibitors did not suppress HG or GlcN-mediated lipid accumulation. HG and GlcN stimulated protein expression, DNA binding and O-GlcNAcylation of carbohydrate-responsive element-binding protein (ChREBP). Furthermore, both HG and GlcN increased nuclear sterol regulatory element-binding protein-1 (SREBP-1) levels in HepG2 cells. In contrast to its stimulatory effect under NG, GlcN suppressed lipid accumulation in HepG2 cells under HG conditions. Similarly, GlcN suppressed lipid accumulation in livers of overfed zebrafish. In addition, GlcN activity on DNA binding and O-GlcNAcylation of ChREBP was stimulatory under NG and inhibitory under HG conditions. Moreover, GlcN enhanced ChREBP, SREBP-1c, ACC, FAS, L-PK and SCD-1 mRNA expression under NG but inhibited HG-induced upregulation in HepG2 cells. The O-GlcNAc transferase inhibitor, alloxan, reduced lipid accumulation by HG or GlcN while the O-GlcNAcase inhibitor, PUGNAc, enhanced lipid accumulation in HepG2 cells and liver of zebrafish larvae. GlcN-induced lipid accumulation was inhibited by the AMPK activator, AICAR. Phosphorylation of AMPK (p-AMPK) was suppressed by GlcN under NG while increased by GlcN under HG. PUGNAc downregulated p-AMPK while alloxan restored GlcN- or HG-induced p-AMPK inhibition. Our results collectively suggest that GlcN regulates lipogenesis by sensing the glucose or energy states of normal and excess fuel through AMPK modulation.
Collapse
|
53
|
Xu C, Wang X, Zhuang Z, Wu J, Zhou S, Quan J, Ding R, Ye Y, Peng L, Wu Z, Zheng E, Yang J. A Transcriptome Analysis Reveals that Hepatic Glycolysis and Lipid Synthesis Are Negatively Associated with Feed Efficiency in DLY Pigs. Sci Rep 2020; 10:9874. [PMID: 32555275 PMCID: PMC7303214 DOI: 10.1038/s41598-020-66988-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/01/2020] [Indexed: 12/25/2022] Open
Abstract
Feed efficiency (FE) is an important trait in the porcine industry. Therefore, understanding the molecular mechanisms of FE is vital for the improvement of this trait. In this study, 6 extreme high-FE and 6 low-FE pigs were selected from 225 Duroc × (Landrace × Yorkshire) (DLY) pigs for transcriptomic analysis. RNA-seq analysis was performed to determine differentially expressed genes (DEGs) in the liver tissues of the 12 individuals, and 507 DEGs were identified between high-FE pigs (HE- group) and low-FE pigs (LE- group). A gene ontology (GO) enrichment and pathway enrichment analysis were performed and revealed that glycolytic metabolism and lipid synthesis-related pathways were significantly enriched within DEGs; all of these DEGs were downregulated in the HE- group. Moreover, Weighted gene co-expression analysis (WGCNA) revealed that oxidative phosphorylation, thermogenesis, and energy metabolism-related pathways were negatively related to HE- group, which might result in lower energy consumption in higher efficiency pigs. These results implied that the higher FE in the HE- group may be attributed to a lower glycolytic, energy consumption and lipid synthesizing potential in the liver. Furthermore, our findings suggested that the inhibition of lipid synthesis and glucose metabolic activity in the liver may be strategies for improving the FE of DLY pigs.
Collapse
Affiliation(s)
- Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Xingwang Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Yong Ye
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Longlong Peng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China.
| |
Collapse
|
54
|
Gallic Acid Inhibits Lipid Accumulation via AMPK Pathway and Suppresses Apoptosis and Macrophage-Mediated Inflammation in Hepatocytes. Nutrients 2020; 12:nu12051479. [PMID: 32443660 PMCID: PMC7285059 DOI: 10.3390/nu12051479] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease, sometimes ranges from simple steatosis to nonalcoholic steatohepatitis (NASH). Various hits including excessive hepatic steatosis, oxidative stress, apoptosis, and inflammation, contribute to NASH development. Gallic acid (GA), a natural polyphenol, was reported to exert a protective effect on hepatic steatosis in animal models, but the precise molecular mechanisms remain unclear. Here, we examined the effect of GA on hepatic lipid accumulation, apoptosis, and inflammatory response caused by hepatocyte–macrophage crosstalk. We demonstrated that GA attenuated palmitic acid (PA)-induced fat accumulation via the activation of AMP-activated protein kinase (AMPK) in HepG2 cells. GA also ameliorated cell viability and suppressed apoptosis-related gene expression and caspase 3/7 activity induced by PA and H2O2. In a co-culture of lipid-laden Hepa 1-6 hepatocytes and RAW 264 macrophages, GA reduced inflammatory mediator expression and induced antioxidant enzyme expression. These results indicate that GA suppresses hepatic lipid accumulation, apoptosis, and inflammation caused by the interaction between hepatocytes and macrophages. The potential effects of GA observed in our study could be effective in preventing NASH and its complications.
Collapse
|
55
|
Zhu Y, Xu S, Lu Y, Wei Y, Yao B, Guo F, Zheng X, Wang Y, He Y, Jin L, Li Y. Repositioning an Immunomodulatory Drug Vidofludimus as a Farnesoid X Receptor Modulator With Therapeutic Effects on NAFLD. Front Pharmacol 2020; 11:590. [PMID: 32477115 PMCID: PMC7240069 DOI: 10.3389/fphar.2020.00590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disorder, and yet with no pharmacological treatment approved worldwide. The repositioning of old drugs provides a safe approach for drug development. Vidofludimus, an inhibitor for dihydroorotate dehydrogenase (DHODH) for the treatment of autoimmune disorders, is herein uncovered as a novel modulator for farnesoid X receptor (FXR) by biochemical and crystallographic analysis. We further revealed that vidofludimus exerts in vivo therapeutic effects on dextran sodium sulfate (DSS)-induced colitis in an FXR-dependent manner. Notably, vidofludimus also possesses remarkable beneficial effects in reducing NAFLD by targeting FXR, which may represent a unique approach in developing the treatment for NAFLD. Our findings not only reveal a promising template for the design of novel FXR ligands in treating autoimmune disorders, but also uncover a novel therapeutic effect for vidofludimus on NAFLD based on the newly established relationships among drugs, targets, and diseases.
Collapse
Affiliation(s)
- Yanlin Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Shuangshuang Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Yi Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Xiamen, China
| | - Yijuan Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Benqiang Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Fusheng Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Xing Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Yumeng Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Ying He
- Laboratory Animal Center, Xiamen University, Xiamen, China
| | - Lihua Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China.,Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, USA
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| |
Collapse
|
56
|
Chen K, Ma Z, Yan X, Liu J, Xu W, Li Y, Dai Y, Zhang Y, Xiao H. Investigation of the Lipid-Lowering Mechanisms and Active Ingredients of Danhe Granule on Hyperlipidemia Based on Systems Pharmacology. Front Pharmacol 2020; 11:528. [PMID: 32435189 PMCID: PMC7218108 DOI: 10.3389/fphar.2020.00528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Investigate the active ingredients and underlying hypolipidemic mechanisms of Danhe granule (DHG). Methods The lipid-lowering effect of DHG was evaluated in hyperlipidemic hamsters induced by a high-fat diet. The ingredients absorbed into the blood after oral administration of DHG in hamsters were identified by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). A systems pharmacology approach incorporating target prediction and network construction, gene ontology (GO) enrichment and pathway analysis was performed to predict the active compounds and map the compounds-targets-disease network. Real-time polymerase chain reaction (RT-PCR) and Western blot were utilized to analyze the mRNA and protein expression levels of predicted targets. Results DHG remarkably lowered the levels of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), and arteriosclerosis index (AI), at the same time, elevated the levels of serum high-density lipoprotein cholesterol (HDL-c) and HDL-c/TC ratio in hyperlipidemic hamsters. Sixteen ingredients absorbed into blood after oral administration of DHG were identified as the possible components interacted with targets. Moreover, 65 potential targets were predicted after targets intersection and compounds–targets–disease network mapping. Then, compounds–targets–pathways network mapping revealed that six active compounds (emodin, naringenin, etc.) compounds could interact with 10 targets such as sterol regulatory element binding protein (SREBP) 1c, SREBP-2 and peroxisome proliferation-activated receptor (PPAR) α, regulate three lipid metabolism-related pathways including SREBP control of lipid synthesis pathway, PPAR signaling pathway and nuclear receptors in lipid metabolism and toxicity pathway, and further affect lipid metabolic processes including fatty acid biosynthesis, low-density lipoprotein receptor (LDLR)-mediated cholesterol uptake, bile acid biosynthesis, and cholesterol efflux. Experimental results indicated that DHG significantly increased SREBP-2, LDLR, PPARα, liver X receptor alpha (LXRα), cholesterol 7α-hydroxylase (CYP7A1), and ATP binding cassette subfamily A member 1 (ABCA1) mRNA and protein expressions while decreased SREBP-1c and fatty acid synthase (FAS) mRNA, and protein expressions. Conclusion DHG possessed a good hypolipidemic effect that may be through affecting the mRNA and protein expressions of SREBP-1c, FAS, SREBP-2, LDLR, PPARα, LXRα, CYP7A1, and ABCA1, involving in fatty acid synthesis, LDLR-mediated cholesterol uptake, bile acid biosynthesis, and cholesterol efflux. This study further provided experimental evidence about its practical application for treating hyperlipidemia and its complications.
Collapse
Affiliation(s)
- Kuikui Chen
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaochen Ma
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoning Yan
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Liu
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjuan Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yueting Li
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yihang Dai
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yinhuan Zhang
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbin Xiao
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
57
|
Lamers C, Merk D. Discovery, Structural Refinement and Therapeutic Potential of Farnesoid X Receptor Activators. ANTI-FIBROTIC DRUG DISCOVERY 2020. [DOI: 10.1039/9781788015783-00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Farnesoid X receptor acts as bile acid sensing transcription factor and has been identified as valuable molecular drug target to treat severe liver disorders, such as non-alcoholic steatohepatitis (NASH). Preclinical and clinical data indicate anti-fibrotic effects obtained with FXR activation that also appear promising for other fibrotic diseases beyond NASH. Strong efforts in FXR ligand discovery have yielded potent steroidal and non-steroidal FXR activators, some of which have been studied in clinical trials. While the structure–activity relationship of some FXR agonist frameworks have been studied extensively, the structural diversity of potent FXR activator chemotypes is still limited to a handful of well-studied compound classes. Together with safety concerns related to full therapeutic activation of FXR, this indicates the need for novel innovative FXR ligands with selective modulatory properties. This chapter evaluates FXR's value as drug target with emphasis on fibrotic diseases, analyses FXR ligand recognition and requirements and focuses on the discovery and structural refinement of leading FXR activator chemotypes.
Collapse
Affiliation(s)
- Christina Lamers
- University Basel, Molecular Pharmacy Klingelberstr. 50 CH-4056 Basel Switzerland
| | - Daniel Merk
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry Max-von-Laue-Str. 9 D-60438 Frankfurt Germany
- Swiss Federal Institute of Technology (ETH) Zurich, Institute of Pharmaceutical Sciences Vladimir-Prelog-Weg 4 CH-8093 Zurich Switzerland
| |
Collapse
|
58
|
Lithium chloride promotes lipid accumulation through increased reactive oxygen species generation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158552. [PMID: 31676444 DOI: 10.1016/j.bbalip.2019.158552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 11/18/2022]
|
59
|
An HJ, Kim JY, Gwon MG, Gu H, Kim HJ, Leem J, Youn SW, Park KK. Beneficial Effects of SREBP Decoy Oligodeoxynucleotide in an Animal Model of Hyperlipidemia. Int J Mol Sci 2020; 21:552. [PMID: 31952262 PMCID: PMC7014099 DOI: 10.3390/ijms21020552] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Hyperlipidemia is a chronic disorder that plays an important role in the development of cardiovascular diseases, type II diabetes, atherosclerosis, hypertension, and non-alcoholic fatty liver disease. Hyperlipidemias have created a worldwide health crisis and impose a substantial burden not only on personal health but also on societies and economies. Transcription factors in the sterol regulatory element binding protein (SREBP) family are key regulators of the lipogenic genes in the liver. SREBPs regulate lipid homeostasis by controlling the expression of a range of enzymes required for the synthesis of endogenous cholesterol, fatty acids, triacylglycerol, and phospholipids. Thereby, SREBPs have been considered as targets for the treatment of metabolic diseases. The aim of this study was to investigate the beneficial functions and the possible underlying molecular mechanisms of SREBP decoy ODN, which is a novel inhibitor of SREBPs, in high-fat diet (HFD)-fed hyperlipidemic mice. Our studies using HFD-induced hyperlipidemia animal model revealed that SREBB decoy ODN inhibited the increased expression of fatty acid synthetic pathway, such as SREBP-1c, FAS, SCD-1, ACC1, and HMGCR. In addition, SREBP decoy ODN decreased pro-inflammatory cytokines, including TNF-α, IL-1β, IL-8, and IL-6 expression. These results suggest that SREBP decoy ODN exerts its anti-hyperlipidemia effects in HFD-induced hyperlipidemia mice by regulating their lipid metabolism and inhibiting lipogenesis through inactivation of the SREPB pathway.
Collapse
Affiliation(s)
- Hyun-Jin An
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| | - Jung-Yeon Kim
- Department of Immunology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| | - Mi-Gyeong Gwon
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| | - Hyemin Gu
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| | - Hyun-Ju Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| | - Jaechan Leem
- Department of Immunology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| | - Sung Won Youn
- Department of Radiology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| |
Collapse
|
60
|
Fauste E, Rodrigo S, Rodríguez L, Donis C, García A, Barbas C, Álvarez-Millán JJ, Panadero MI, Otero P, Bocos C. FGF21-protection against fructose-induced lipid accretion and oxidative stress is influenced by maternal nutrition in male progeny. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
61
|
Xiong Q, Wu Y, Yang M, Wu G, Wang Y, Wang H, Feng J, Song L, Tong B, He G, Xu Y. Nr2e1 ablation impairs liver glucolipid metabolism and induces inflammation, high-fat diets amplify the damage. Biomed Pharmacother 2019; 120:109503. [DOI: 10.1016/j.biopha.2019.109503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023] Open
|
62
|
Simoes IC, Janikiewicz J, Bauer J, Karkucinska-Wieckowska A, Kalinowski P, Dobrzyń A, Wolski A, Pronicki M, Zieniewicz K, Dobrzyń P, Krawczyk M, Zischka H, Wieckowski MR, Potes Y. Fat and Sugar-A Dangerous Duet. A Comparative Review on Metabolic Remodeling in Rodent Models of Nonalcoholic Fatty Liver Disease. Nutrients 2019; 11:2871. [PMID: 31771244 PMCID: PMC6950566 DOI: 10.3390/nu11122871] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disease in Western society and ranges from steatosis to steatohepatitis to end-stage liver disease such as cirrhosis and hepatocellular carcinoma. The molecular mechanisms that are involved in the progression of steatosis to more severe liver damage in patients are not fully understood. A deeper investigation of NAFLD pathogenesis is possible due to the many different animal models developed recently. In this review, we present a comparative overview of the most common dietary NAFLD rodent models with respect to their metabolic phenotype and morphological manifestation. Moreover, we describe similarities and controversies concerning the effect of NAFLD-inducing diets on mitochondria as well as mitochondria-derived oxidative stress in the progression of NAFLD.
Collapse
Affiliation(s)
- Ines C.M. Simoes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Justyna Janikiewicz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Judith Bauer
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
| | | | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Agnieszka Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Andrzej Wolski
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Maciej Pronicki
- Department of Pathology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (A.K.-W.); (M.P.)
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Paweł Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Department of Medicine II, Saarland University Medical Center, 66421 Homburg, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Mariusz R. Wieckowski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Yaiza Potes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| |
Collapse
|
63
|
FMK, an Inhibitor of p90RSK, Inhibits High Glucose-Induced TXNIP Expression via Regulation of ChREBP in Pancreatic β Cells. Int J Mol Sci 2019; 20:ijms20184424. [PMID: 31505737 PMCID: PMC6770409 DOI: 10.3390/ijms20184424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
Hyperglycemia is the major characteristic of diabetes mellitus, and a chronically high glucose (HG) level causes β-cell glucolipotoxicity, which is characterized by lipid accumulation, impaired β-cell function, and apoptosis. TXNIP (Thioredoxin-interacting protein) is a key mediator of diabetic β-cell apoptosis and dysfunction in diabetes, and thus, its regulation represents a therapeutic target. Recent studies have reported that p90RSK is implicated in the pathogenesis of diabetic cardiomyopathy and nephropathy. In this study, we used FMK (a p90RSK inhibitor) to determine whether inhibition of p90RSK protects β-cells from chronic HG-induced TXNIP expression and to investigate the molecular mechanisms underlying the effect of FMK on its expression. In INS-1 pancreatic β-cells, HG-induced β-cell dysfunction, apoptosis, and ROS generation were significantly diminished by FMK. In contrast BI-D1870 (another p90RSK inhibitor) did not attenuate HG-induced TXNIP promoter activity or TXNIP expression. In addition, HG-induced nuclear translocation of ChREBP and its transcriptional target molecules were found to be regulated by FMK. These results demonstrate that HG-induced pancreatic β-cell dysfunction resulting in HG conditions is associated with TXNIP expression, and that FMK is responsible for HG-stimulated TXNIP gene expression by inactivating the regulation of ChREBP in pancreatic β-cells. Taken together, these findings suggest FMK may protect against HG-induced β-cell dysfunction and TXNIP expression by ChREBP regulation in pancreatic β-cells, and that FMK is a potential therapeutic reagent for the drug development of diabetes and its complications.
Collapse
|
64
|
Chen L, Duan Y, Wei H, Ning H, Bi C, Zhao Y, Qin Y, Li Y. Acetyl-CoA carboxylase (ACC) as a therapeutic target for metabolic syndrome and recent developments in ACC1/2 inhibitors. Expert Opin Investig Drugs 2019; 28:917-930. [PMID: 31430206 DOI: 10.1080/13543784.2019.1657825] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introduction: Acetyl-CoA Carboxylase (ACC) is an essential rate-limiting enzyme in fatty acid metabolism. For many years, ACC inhibitors have gained great attention for developing therapeutics for various human diseases including microbial infections, metabolic syndrome, obesity, diabetes, and cancer. Areas covered: We present a comprehensive review and update of ACC inhibitors. We look at the current advance of ACC inhibitors in clinical studies and the implications in drug discovery. We searched ScienceDirect ( https://www.sciencedirect.com/ ), ACS ( https://pubs.acs.org/ ), Wiley ( https://onlinelibrary.wiley.com/ ), NCBI ( https://www.ncbi.nlm.nih.gov/ ) and World Health Organization ( https://www.who.int/ ). The keywords used were Acetyl-CoA Carboxylase, lipid, inhibitors and metabolic syndrome. All documents were published before June 2019. Expert opinion: The key regulatory role of ACC in fatty acid synthesis and oxidation pathways makes it an attractive target for various metabolic diseases. In particular, the combination of ACC inhibitors with other drugs is a new strategy for the treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Expanding the clinical indications for ACC inhibitors will be one of the hot directions in the future. It is also worth looking forward to exploring safe and efficient inhibitors that act on the BC domain of ACC.
Collapse
Affiliation(s)
- Leyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin , China
| | - Yuqing Duan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin , China
| | - Huiqiang Wei
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin , China
| | - Hongxin Ning
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin , China
| | - Changfen Bi
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin , China
| | - Ying Zhao
- School of Pharmacy and Bioengineering, Chongqing University of Technology , Chongqing , China
| | - Yong Qin
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin , China
| |
Collapse
|
65
|
Circadian lipid synthesis in brown fat maintains murine body temperature during chronic cold. Proc Natl Acad Sci U S A 2019; 116:18691-18699. [PMID: 31451658 DOI: 10.1073/pnas.1909883116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ambient temperature influences the molecular clock and lipid metabolism, but the impact of chronic cold exposure on circadian lipid metabolism in thermogenic brown adipose tissue (BAT) has not been studied. Here we show that during chronic cold exposure (1 wk at 4 °C), genes controlling de novo lipogenesis (DNL) including Srebp1, the master transcriptional regulator of DNL, acquired high-amplitude circadian rhythms in thermogenic BAT. These conditions activated mechanistic target of rapamycin 1 (mTORC1), an inducer of Srebp1 expression, and engaged circadian transcriptional repressors REV-ERBα and β as rhythmic regulators of Srebp1 in BAT. SREBP was required in BAT for the thermogenic response to norepinephrine, and depletion of SREBP prevented maintenance of body temperature both during circadian cycles as well as during fasting of chronically cold mice. By contrast, deletion of REV-ERBα and β in BAT allowed mice to maintain their body temperature in chronic cold. Thus, the environmental challenge of prolonged noncircadian exposure to cold temperature induces circadian induction of SREBP1 that drives fuel synthesis in BAT and is necessary to maintain circadian body temperature during chronic cold exposure. The requirement for BAT fatty acid synthesis has broad implications for adaptation to cold.
Collapse
|
66
|
Ho C, Gao Y, Zheng D, Liu Y, Shan S, Fang B, Zhao Y, Song D, Zhang Y, Li Q. Alisol A attenuates high-fat-diet-induced obesity and metabolic disorders via the AMPK/ACC/SREBP-1c pathway. J Cell Mol Med 2019; 23:5108-5118. [PMID: 31144451 PMCID: PMC6653754 DOI: 10.1111/jcmm.14380] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/31/2019] [Accepted: 04/22/2019] [Indexed: 01/09/2023] Open
Abstract
Obesity and its associated metabolic disorders such as diabetes, hepatic steatosis and chronic heart diseases are affecting billions of individuals. However there is no satisfactory drug to treat such diseases. In this study, we found that alisol A, a major active triterpene isolated from the Chinese traditional medicine Rhizoma Alismatis, could significantly attenuate high-fat-diet-induced obesity. Our biochemical detection demonstrated that alisol A remarkably decreased lipid levels, alleviated glucose metabolism disorders and insulin resistance in high-fat-diet-induced obese mice. We also found that alisol A reduced hepatic steatosis and improved liver function in the obese mice model.In addition, protein expression investigation revealed that alisol A had an active effect on AMPK/ACC/SREBP-1c pathway. As suggested by the molecular docking study, such bioactivity of alisol A may result from its selective binding to the catalytic region of AMPK.Therefore, we believe that Alisol A could serve as a promising agent for treatment of obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Chiakang Ho
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ya Gao
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Danning Zheng
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yanjun Liu
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shengzhou Shan
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bin Fang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yixuan Zhao
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dingzhong Song
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering Research CenterShanghaiChina
| | - Yifan Zhang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qingfeng Li
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
67
|
Hong M, Li N, Li J, Li W, Liang L, Li Q, Wang R, Shi H, Storey KB, Ding L. Adenosine Monophosphate-Activated Protein Kinase Signaling Regulates Lipid Metabolism in Response to Salinity Stress in the Red-Eared Slider Turtle Trachemys scripta elegans. Front Physiol 2019; 10:962. [PMID: 31417422 PMCID: PMC6684833 DOI: 10.3389/fphys.2019.00962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/11/2019] [Indexed: 12/25/2022] Open
Abstract
Aquatic animals have developed various mechanisms to live in either hyperionic or hypoionic environments, and, as such, not many species are capable of surviving in both. The red-eared slider turtle, Trachemys scripta elegans, a well-known freshwater species, has recently been found to invade and inhabit brackish water. Herein, we focus on some of the metabolic adaptations that are required to survive and cope with salinity stress. The regulation of the adenosine monophosphate (AMP)-activated protein kinase (AMPK), a main cellular “energy sensor,” and its influence on lipid metabolism were evaluated with a comparison of three groups of turtles: controls in freshwater, and turtles held in water of either 5‰ salinity (S5) or 15‰ salinity (S15) with sampling at 6, 24, and 48 h and 30 days of exposure. When subjected to elevated salinities of 5 or 15‰, AMPK mRNA levels and AMPK enzyme activity increased strongly. In addition, the high expression of the peroxisome proliferator activated receptor-α (PPARα) transcription factor that, in turn, facilitated upregulation of target genes including carnitine palmitoyltransferase (CPT) and acyl-CoA oxidase (ACO). Furthermore, the expression of transcription factors involved in lipid synthesis such as the carbohydrate-responsive element-binding protein (ChREBP) and sterol regulatory element-binding protein 1c (SREBP-1c) was inhibited, and two of their target genes, acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), were significantly decreased. Moreover, exposure to saline environments also increased plasma triglyceride (TG) content. Interestingly, the content of low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) in plasma was markedly higher than the control in the S15 group after 30 days, which indicated that lipid metabolism was disrupted by chronic exposure to high salinity. These findings demonstrate that activation of AMPK might regulate lipid metabolism in response to salinity stress through the inhibition of lipid synthesis and promotion of lipid oxidation in the liver of T. s. elegans. This may be an important component of the observed salinity tolerance of these turtles that allow for invasion of brackish waters.
Collapse
Affiliation(s)
- Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Jiangyue Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Weihao Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Lingyue Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Qian Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Runqi Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | | | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| |
Collapse
|
68
|
Vineeth Daniel P, Kamthan M, Gera R, Dogra S, Gautam K, Ghosh D, Mondal P. Chronic exposure to Pb 2+ perturbs ChREBP transactivation and coerces hepatic dyslipidemia. FEBS Lett 2019; 593:3084-3097. [PMID: 31309533 DOI: 10.1002/1873-3468.13538] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/22/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
Dysregulated hepatic de novo lipogenesis contributes to the pathogenesis of nonalcoholic fatty liver disease in both humans and rodents. Clinical evidence suggests fatty liver to have a positive correlation with serum lead (Pb2+ ) levels. However, an exact mechanism of Pb2+ -induced fatty liver progression is still unknown. Here, we show that exposure to Pb2+ regulates ChREBP-dependent hepatic lipogenesis. Presence of Pb2+ ions within the hepatocytes reduces transcript and protein levels of sorcin, a cytosolic adaptor partner of ChREBP. Adenovirus-mediated overexpression of sorcin in Pb2+ exposed hepatocytes and an in vivo mouse model ameliorates liver steatosis and hepatotoxicity. Hereby, we present Pb2+ exposure to be a lethal disruptor of lipid metabolism in hepatocytes and highlight sorcin as a novel therapeutic target against Pb2+ -induced hepatic dyslipidemia.
Collapse
Affiliation(s)
- P Vineeth Daniel
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi, India
| | - Ruchi Gera
- Immunotoxicology Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Surbhi Dogra
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| | - Krishna Gautam
- Ecotoxicology Division, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Debabrata Ghosh
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi, India
| | - Prosenjit Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| |
Collapse
|
69
|
Yuan Q, Hou S, Zhai J, Tian T, Wu Y, Wu Z, He J, Chen Z, Zhang J. S100A4 promotes inflammation but suppresses lipid accumulation via the STAT3 pathway in chronic ethanol-induced fatty liver. J Mol Med (Berl) 2019; 97:1399-1412. [PMID: 31321478 DOI: 10.1007/s00109-019-01808-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
S100A4, a member of the S100 calcium-binding protein family, has been identified in a subpopulation of liver macrophages and promotes liver fibrosis via hepatic stellate cell activation. However, the specific role of S100A4 in alcoholic liver disease (ALD) has not been well investigated. Here, S100A4 knockout (S100A4-/-) mice were used in a chronic-binge ethanol model for studying the role of S100A4 and its related molecular mechanism in ALD. S100A4 expression was increased in ethanol-induced liver tissues of wild-type (WT) mice. Macrophage-derived S100A4 promoted liver inflammation but suppressed lipid accumulation under the ethanol feeding condition. S100A4 deficiency promoted ethanol-induced liver injury and hepatic fat accumulation. Further mechanistic studies found that S100A4 inhibited liver fat accumulation mainly by activating the STAT3 pathway and downregulating lipogenic gene expression, especially that of SREBP-1c. In AML-12 cells, a STAT3 inhibitor abolished STAT3 levels and decreased the expression of SREBP1c. Furthermore, the administration of a neutralizing S100A4 antibody to WT mice significantly promoted ethanol-induced liver injury and fatty accumulation. Thus, S100A4 may represent a potential candidate target for the prevention and treatment of ethanol-induced fatty liver. In this study, we discovered the special role of S100A4 in alcoholic liver disease. S100A4 deficiency attenuated ethanol-induced hepatitis and promoted hepatic fat accumulation in ethanol-induced liver tissues. Further mechanistic studies have found that S100A4 promotes early alcoholic hepatitis mainly by activating the STAT3 pathway and its downstream proinflammatory gene expression. Interestingly, activation of the STAT3 pathway downregulates lipogenic gene expression, especially SREBP-1c. KEY MESSAGES: In this study, we discovered the special role of S100A4 in alcoholic liver disease. S100A4 deficiency attenuated ethanol-induced hepatitis and promoted hepatic fat accumulation in ethanol-induced liver tissues. Further mechanistic studies have found that S100A4 promotes early alcoholic hepatitis mainly by activating the STAT3 pathway and its downstream proinflammatory gene expression. Interestingly, activation of the STAT3 pathway downregulates lipogenic gene expression, especially SREBP-1c.
Collapse
Affiliation(s)
- Qi Yuan
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, People's Republic of China
| | - Shasha Hou
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, People's Republic of China
| | - Junfeng Zhai
- The Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Tian Tian
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, People's Republic of China
| | - Yingjie Wu
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Zhenlong Wu
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Jinsheng He
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, People's Republic of China
| | - Zhinan Chen
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, People's Republic of China.,The Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jinhua Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, People's Republic of China.
| |
Collapse
|
70
|
Bai J, He Z, Li Y, Jiang X, Yu H, Tan Q. Mono-2-ethylhexyl phthalate induces the expression of genes involved in fatty acid synthesis in HepG2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 69:104-111. [PMID: 31004931 DOI: 10.1016/j.etap.2019.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Mono-2-ethylhexyl phthalate (MEHP) is a major bioactive metabolite in the widely used industrial plasticizer diethylhexyl phthalate (DEHP) that has been found to be toxic to the liver. The aim of this study is to determine whether MEHP exposure can change the expression of fatty acid metabolism-related genes in HepG2 cells, which might be related to non-alcoholic fatty liver disease (NAFLD). The results revealed that exposure to MEHP promoted lipid accumulation in HepG2 cells. The levels of intracellular triglycerides in the hepatocytes increased after exposure to 0.8-100 μM MEHP for 24 h and 48 h. The genetic expressions of SREBP-1c, ChREBP, ACC1, FASN, and SCD significantly increased at 6 h after exposure to MEHP. At 24 h, the expression of the SREBP-1c and ChREBP genes remained increased, while the expression of the FASN and SCD genes decreased. At 48 h, the expression of SREBP-1c, ChREBP, ACC1, FASN, and SCD decreased. Furthermore, the levels of proteins including ACC1, FASN, SCD, and ChREBP (except SREBP-1c) increased at 24 h. These findings suggest that MEHP exposure can promote fatty acid synthesis in hepatocytes by regulating the expression of relevant genes and proteins, contributing to NAFLD.
Collapse
Affiliation(s)
- Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhen He
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Yaofu Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Xuexia Jiang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Qing Tan
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
71
|
Zhang L, Yao W, Xia J, Wang T, Huang F. Glucagon-Induced Acetylation of Energy-Sensing Factors in Control of Hepatic Metabolism. Int J Mol Sci 2019; 20:ijms20081885. [PMID: 30995792 PMCID: PMC6515121 DOI: 10.3390/ijms20081885] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
The liver is the central organ of glycolipid metabolism, which regulates the metabolism of lipids and glucose to maintain energy homeostasis upon alterations of physiological conditions. Researchers formerly focused on the phosphorylation of glucagon in controlling liver metabolism. Noteworthily, emerging evidence has shown glucagon could additionally induce acetylation to control hepatic metabolism in response to different physiological states. Through inducing acetylation of complex metabolic networks, glucagon interacts extensively with various energy-sensing factors in shifting from glucose metabolism to lipid metabolism during prolonged fasting. In addition, glucagon-induced acetylation of different energy-sensing factors is involved in the advancement of nonalcoholic fatty liver disease (NAFLD) to liver cancer. Here, we summarize the latest findings on glucagon to control hepatic metabolism by inducing acetylation of energy-sensing factors. Finally, we summarize and discuss the potential impact of glucagon on the treatment of liver diseases.
Collapse
Affiliation(s)
- Li Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Xia
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
72
|
Knebel C, Buhrke T, Süssmuth R, Lampen A, Marx-Stoelting P, Braeuning A. Pregnane X receptor mediates steatotic effects of propiconazole and tebuconazole in human liver cell lines. Arch Toxicol 2019; 93:1311-1322. [PMID: 30989312 DOI: 10.1007/s00204-019-02445-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/09/2019] [Indexed: 12/26/2022]
Abstract
Triazoles are commonly used fungicides which show liver toxicity in rodent studies. While hepatocellular hypertrophy is the most prominent finding, some triazoles have also been reported to cause hepatocellular steatosis. The aim of our study was to elucidate molecular mechanisms of triazole-mediated steatosis. Therefore, we used the two triazoles propiconazole (Pi) and tebuconazole (Te) as test compounds in in vitro assays using the human hepatocarcinoma cell lines HepG2 and HepaRG. Triglyceride accumulation was measured using the Adipored assay and by a gas-chromatographic method. Reporter gene analyses were used to assess the ability of Pi and Te to activate nuclear receptors, which are described as the molecular initiators in the adverse outcome pathway (AOP) for liver steatosis. The expression of steatosis-associated genes was investigated by RT-PCR. Mechanistic analyses of triazole-mediated steatosis were performed using HepaRG subclones that are deficient in different nuclear receptors. Pi and Te both interacted with the constitutive androstane receptor (CAR), the peroxisome proliferator-activated receptor alpha (PPARα), and the pregnane X receptor (PXR). Both compounds induced expression of steatosis-related genes and cellular triglyceride accumulation. The knockout of PXR in HepaRG cells, but not the CAR knockout, abolished triazole-induced triglyceride accumulation, thus underlining the crucial role of PXR in hepatic steatosis resulting from exposure to these fungicides. In conclusion, our findings provide new insight into the molecular mechanisms of steatosis induction by triazole fungicides and identify PXR as a critical mediator of this process.
Collapse
Affiliation(s)
- Constanze Knebel
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Thorsten Buhrke
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Roderich Süssmuth
- Institute of Chemistry, Technical University Berlin, Straße des 17.Juni 124, 10623, Berlin, Germany
| | - Alfonso Lampen
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Philip Marx-Stoelting
- Department Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
73
|
Vantaggiato C, Panzeri E, Citterio A, Orso G, Pozzi M. Antipsychotics Promote Metabolic Disorders Disrupting Cellular Lipid Metabolism and Trafficking. Trends Endocrinol Metab 2019; 30:189-210. [PMID: 30718115 DOI: 10.1016/j.tem.2019.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
Antipsychotics frequently cause obesity and related metabolic disorders that current psychopharmacological/endocrinological theories do not explain consistently. An integrative/alternative theory implies metabolic alterations happening at the cellular level. Many observations in vitro and in vivo, and pivotal observations in humans, point towards chemical properties of antipsychotics, independent of receptor binding characteristics. Being amphiphilic weak bases, antipsychotics can disrupt lysosomal function, affecting cholesterol trafficking; moreover, by chemical mimicry, antipsychotics can inhibit cholesterol biosynthesis. These two molecular adverse effects may trigger a cascade of transcriptional and biochemical events, ultimately reducing available cholesterol while increasing cholesterol precursors and fatty acids. The macroscopic manifestation of these molecular alterations includes decreased high-density lipoprotein and increased very low-density lipoprotein and triglycerides that may translate into obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Elena Panzeri
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Andrea Citterio
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Genny Orso
- Department of Pharmacological Sciences, University of Padova (PD), 35131, Italy
| | - Marco Pozzi
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy.
| |
Collapse
|
74
|
Chao HW, Chao SW, Lin H, Ku HC, Cheng CF. Homeostasis of Glucose and Lipid in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2019; 20:298. [PMID: 30642126 PMCID: PMC6359196 DOI: 10.3390/ijms20020298] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
Industrialized society-caused dysregular human behaviors and activities such as overworking, excessive dietary intake, and sleep deprivation lead to perturbations in the metabolism and the development of metabolic syndrome. Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver disease worldwide, affects around 30% and 25% of people in Western and Asian countries, respectively, which leads to numerous medical costs annually. Insulin resistance is the major hallmark of NAFLD and is crucial in the pathogenesis and for the progression from NAFLD to non-alcoholic steatohepatitis (NASH). Excessive dietary intake of saturated fats and carbohydrate-enriched foods contributes to both insulin resistance and NAFLD. Once NAFLD is established, insulin resistance can promote the progression to the more severe state of liver endangerment like NASH. Here, we review current and potential studies for understanding the complexity between insulin-regulated glycolytic and lipogenic homeostasis and the underlying causes of NAFLD. We discuss how disruption of the insulin signal is associated with various metabolic disorders of glucoses and lipids that constitute both the metabolic syndrome and NAFLD.
Collapse
Affiliation(s)
- Hsu-Wen Chao
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Shi-Wei Chao
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei 11031, Taiwan.
| | - Heng Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei 11031, Taiwan.
| | - Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan.
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan.
- Department of Pediatrics, Tzu Chi University, Hualien 97004, Taiwan.
| |
Collapse
|
75
|
The Crosstalk between Fat Homeostasis and Liver Regional Immunity in NAFLD. J Immunol Res 2019; 2019:3954890. [PMID: 30719457 PMCID: PMC6335683 DOI: 10.1155/2019/3954890] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 11/11/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022] Open
Abstract
The liver is well known as the center of glucose and lipid metabolism in the human body. It also functions as an immune organ. Previous studies have suggested that liver nonparenchymal cells are crucial in the progression of NAFLD. In recent years, NAFLD's threat to human health has been becoming a global issue. And by far, there is no effective treatment for NAFLD. Liver nonparenchymal cells are stimulated by lipid antigens, adipokines, or other factors, and secreted immune factors can alter the expression of key proteins such as SREBP-1c, ChREBP, and PPARγ to regulate lipid metabolism, thus affecting the pathological process of NAFLD. Interestingly, some ncRNAs (including miRNAs and lncRNAs) participate in the pathological process of NAFLD by changing body fat homeostasis. And even some ncRNAs could regulate the activity of HSCs, thereby affecting the progression of inflammation and fibrosis in the course of NAFLD. In conclusion, immunotherapy could be an effective way to treat NAFLD.
Collapse
|
76
|
Shi Q, Sun N, Kou H, Wang H, Zhao H. Chronic effects of mercury on Bufo gargarizans larvae: Thyroid disruption, liver damage, oxidative stress and lipid metabolism disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:500-509. [PMID: 30145490 DOI: 10.1016/j.ecoenv.2018.08.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Mercury is severely detrimental to organisms and is ubiquitous in both terrestrial and aquatic ecosystems. In the present study, we examined the effects of chronic mercury (Hg) exposure on metamorphosis, body size, thyroid microstructures, liver microstructural and ultrastructural features, and transcript levels of genes associated with lipid metabolism, oxidative stress and thyroid hormones signaling pathways of Chinese toad (Bufo gargarizans) tadpoles. Tadpoles were exposed to mercury concentrations at 0, 6, 12, 18, 24 and 30 µg/L from Gosner stage 26-42 of metamorphic climax. The present results showed that high dose mercury (24 and 30 µg/L) decelerated metamorphosis rate and inhibited body size of B. gargarizans larvae. Histological examinations have clearly exhibited that high mercury concentrations caused thyroid gland and liver damages. Moreover, degeneration and disintegration of hepatocytes, mitochondrial vacuolation, and endoplasmic reticulum breakdown were visible in the ultrastructure of liver after high dose mercury treatment. Furthermore, the larvae exposed to high dose mercury demonstrated a significant decrease in type II iodothyronine deiodinase (Dio2) and thyroid hormone receptor α and β (TRα and TRβ) mRNA levels. Transcript level of superoxide dismutase (SOD) and heat shock protein (HSP) were significantly up regulated in larvae exposed to high dose mercury, while transcript level of phospholipid hydroperoxide glutathione peroxidase (PHGPx) was significantly down regulated. Moreover, exposure to high dose mercury significantly down regulated mRNA expression of carnitine palmitoyltransferase (CPT), sterol carrier protein (SCP), acyl-CoA oxidase (ACOX) and peroxisome proliferator-activated receptor α (PPAPα), but significantly up regulated mRNA expression of fatty acid elongase (FAE), fatty acid synthetase (FAS) and Acetyl CoA Carboxylase (ACC). Therefore, we conclude that high dose mercury induced thyroid function disruption, liver oxidative stress and lipid metabolism disorder by damaging thyroid and liver cell structures and altering the expression levels of relevant genes.
Collapse
Affiliation(s)
- Qiang Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119 China
| | - Nailiang Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119 China
| | - Honghong Kou
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119 China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119 China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119 China.
| |
Collapse
|
77
|
Bile acids and their effects on diabetes. Front Med 2018; 12:608-623. [DOI: 10.1007/s11684-018-0644-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/26/2018] [Indexed: 12/31/2022]
|
78
|
Gunn PJ, Green CJ, Pramfalk C, Hodson L. In vitro cellular models of human hepatic fatty acid metabolism: differences between Huh7 and HepG2 cell lines in human and fetal bovine culturing serum. Physiol Rep 2018; 5:5/24/e13532. [PMID: 29263118 PMCID: PMC5742701 DOI: 10.14814/phy2.13532] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 01/08/2023] Open
Abstract
Human primary hepatocytes are the gold standard for investigating lipid metabolism in nonalcoholic fatty liver disease (NAFLD); however, due to limitations including availability and donor variability, the hepatoma cell lines Huh7 and HepG2 are commonly used. Culturing these cell lines in human serum (HS) has been reported to improve functionality; however, direct comparison of fatty acid (FA) metabolism in response to culturing in HS is lacking. The aim of this study was to compare FA metabolism between HepG2 and Huh7 cells in response to culturing in different sera. Both HepG2 and Huh7 cells were grown in media containing 11 mmol/L glucose and either 2% HS or 10% fetal bovine serum. After 3 days, insulin and insulin-like growth factor-1 signaling were measured. At 7 days, intracellular triacylglycerol (TAG) and media 3-hydroxybutyrate, TAG and apolipoprotein B were measured, as was the FA composition of intracellular TAG and phospholipids. Both cell lines demonstrated higher levels of polyunsaturated fatty acid content, increased insulin sensitivity, higher media TAG levels and increased FA oxidation when cultured in HS Notably, independent of serum type, Huh7 cells had higher intracellular TAG compared to HepG2 cells, which was in part attributable to a higher de novo lipogenesis. Our data demonstrate that intrahepatocellular FA metabolism is different between cell lines and influenced by culturing sera. As a result, when developing a physiologically-relevant model of FA metabolism that could be developed for the study of NAFLD, consideration of both parameters is required.
Collapse
Affiliation(s)
- Pippa J Gunn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford Churchill Hospital, Oxford, United Kingdom
| | - Charlotte J Green
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford Churchill Hospital, Oxford, United Kingdom
| | - Camilla Pramfalk
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford Churchill Hospital, Oxford, United Kingdom .,National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, United Kingdom
| |
Collapse
|
79
|
Gasparin FRS, Carreño FO, Mewes JM, Gilglioni EH, Pagadigorria CLS, Natali MRM, Utsunomiya KS, Constantin RP, Ouchida AT, Curti C, Gaemers IC, Elferink RPJO, Constantin J, Ishii-Iwamoto EL. Sex differences in the development of hepatic steatosis in cafeteria diet-induced obesity in young mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2495-2509. [DOI: 10.1016/j.bbadis.2018.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 02/08/2023]
|
80
|
Klaunig JE, Li X, Wang Z. Role of xenobiotics in the induction and progression of fatty liver disease. Toxicol Res (Camb) 2018; 7:664-680. [PMID: 30090613 PMCID: PMC6062016 DOI: 10.1039/c7tx00326a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease is a major cause of chronic liver pathology in humans. Fatty liver disease involves the accumulation of hepatocellular fat in hepatocytes that can progress to hepatitis. Steatohepatitis is categorized into alcoholic (ASH) or non-alcoholic (NASH) steatohepatitis based on the etiology of the insult. Both pathologies involve an initial steatosis followed by a progressive inflammation of the liver and eventual hepatic fibrosis (steatohepatitis) and cirrhosis. The involvement of pharmaceuticals and other chemicals in the initiation and progression of fatty liver disease has received increased study. This review will examine not only how xenobiotics initiate hepatic steatosis and steatohepatitis but also how the presence of fatty liver may modify the metabolism and pathologic effects of xenobiotics. The feeding of a high fat diet results in changes in the expression of nuclear receptors that are involved in adaptive and adverse liver effects following xenobiotic exposure. High fat diets also modulate cellular and molecular pathways involved in inflammation, metabolism, oxidative phosphorylation and cell growth. Understanding the role of hepatic steatosis and steatohepatitis on the sequelae of toxic and pathologic changes seen following xenobiotic exposure has importance in defining proper and meaningful human risk characterization of the drugs and other chemical agents.
Collapse
Affiliation(s)
- James E Klaunig
- Indiana University , School of Public Health , Bloomington , Indiana , USA .
| | - Xilin Li
- Indiana University , School of Public Health , Bloomington , Indiana , USA .
| | - Zemin Wang
- Indiana University , School of Public Health , Bloomington , Indiana , USA .
| |
Collapse
|
81
|
Djeziri FZ, Belarbi M, Murtaza B, Hichami A, Benammar C, Khan NA. Oleanolic acid improves diet-induced obesity by modulating fat preference and inflammation in mice. Biochimie 2018; 152:110-120. [PMID: 29966735 DOI: 10.1016/j.biochi.2018.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
Obesity, triggered by high-fat diet (HFD), is associated to altered gustatory perception of dietary lipids. Oleanolic acid (OLA), a triterpene, has been reported to exert anti-obesity effects in animal models. Hence, we investigated the role of OLA in the modulation of oro-sensory perception of lipids in control and HFD-induced obese mice. As expected, OLA-treated obese mice exhibited a decrease in body, liver, and visceral adipose tissue weights. OLA treatment improved glucose tolerance, insulin level, plasma lipopolysaccharide (LPS), and hepatic cholesterol and triglyceride concentrations. OLA-treated obese mice exhibited higher fat preference compared to untreated obese mice, probably due to the increase in mRNA encoding CD36, a fat taste receptor, in mouse taste bud cells (mTBC). This phenomenon was associated with fatty-acid induced increases in free intracellular calcium concentrations, [Ca2+]i, induced in mTBC from OLA-treated obese mice. OLA also influenced the expression of mRNA encoding pro-inflammatory cytokines (IL-1β and IL-6) and some lipogenic genes (PPARα, SREBP1, FAS, ChREBP, and G6Pase) in liver and adipose tissue. These findings reveal that OLA improves gustatory perception of lipids and exerts protective effects in obesity.
Collapse
Affiliation(s)
- Fatima Zohra Djeziri
- Laboratoire des Produits Naturels, Université Abou-Bekr Belkaïd, Tlemcen, 13000, Algeria
| | - Meriem Belarbi
- Laboratoire des Produits Naturels, Université Abou-Bekr Belkaïd, Tlemcen, 13000, Algeria
| | - Babar Murtaza
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne-Franche Compté (UBFC), Dijon, 21000, France
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne-Franche Compté (UBFC), Dijon, 21000, France
| | - Chahid Benammar
- Laboratoire des Produits Naturels, Université Abou-Bekr Belkaïd, Tlemcen, 13000, Algeria
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne-Franche Compté (UBFC), Dijon, 21000, France.
| |
Collapse
|
82
|
Mardinoglu A, Boren J, Smith U, Uhlen M, Nielsen J. Systems biology in hepatology: approaches and applications. Nat Rev Gastroenterol Hepatol 2018; 15:365-377. [PMID: 29686404 DOI: 10.1038/s41575-018-0007-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Detailed insights into the biological functions of the liver and an understanding of its crosstalk with other human tissues and the gut microbiota can be used to develop novel strategies for the prevention and treatment of liver-associated diseases, including fatty liver disease, cirrhosis, hepatocellular carcinoma and type 2 diabetes mellitus. Biological network models, including metabolic, transcriptional regulatory, protein-protein interaction, signalling and co-expression networks, can provide a scaffold for studying the biological pathways operating in the liver in connection with disease development in a systematic manner. Here, we review studies in which biological network models were used to integrate multiomics data to advance our understanding of the pathophysiological responses of complex liver diseases. We also discuss how this mechanistic approach can contribute to the discovery of potential biomarkers and novel drug targets, which might lead to the design of targeted and improved treatment strategies. Finally, we present a roadmap for the successful integration of models of the liver and other human tissues with the gut microbiota to simulate whole-body metabolic functions in health and disease.
Collapse
Affiliation(s)
- Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden. .,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ulf Smith
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jens Nielsen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
83
|
p300/CBP as a Key Nutritional Sensor for Hepatic Energy Homeostasis and Liver Fibrosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8168791. [PMID: 29862292 PMCID: PMC5976926 DOI: 10.1155/2018/8168791] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/14/2018] [Accepted: 04/12/2018] [Indexed: 12/23/2022]
Abstract
The overwhelming frequency of metabolic diseases such as obesity and diabetes are closely related to liver diseases, which might share common pathogenic signaling processes. These metabolic disorders in the presence of inflammatory response seem to be triggered by and to reside in the liver, which is the central metabolic organ that plays primary roles in regulating lipid and glucose homeostasis upon alterations of metabolic conditions. Recently, abundant emerging researches suggested that p300 and CREB binding protein (CBP) are crucial regulators of energy homeostasis and liver fibrosis through both their acetyltransferase activities and transcriptional coactivators. Plenty of recent findings demonstrated the potential roles of p300/CBP in mammalian metabolic homeostasis in response to nutrients. This review is focused on the different targets and functions of p300/CBP in physiological and pathological processes, including lipogenesis, lipid export, gluconeogenesis, and liver fibrosis, also provided some nutrients as the regulator of p300/CBP for nutritional therapeutic approaches to treat liver diseases.
Collapse
|
84
|
Sharp KPH, Schultz M, Coppell KJ. Is non-alcoholic fatty liver disease a reflection of what we eat or simply how much we eat? JGH Open 2018; 2:59-74. [PMID: 30483565 PMCID: PMC6207038 DOI: 10.1002/jgh3.12040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/20/2017] [Accepted: 01/15/2018] [Indexed: 12/29/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an increasingly common and potentially serious condition, which has emerged with the obesity epidemic. This disease can progress to cirrhosis and hepatocellular cancer. Associated comorbidities, such as cardiovascular disease and type 2 diabetes, are common. Obesity is the key risk factor and diet appears to be a critical factor in the pathogenesis of NAFLD. We reviewed studies undertaken on human subjects investigating which dietary components initiate excess hepatic triglyceride deposition. Most experimental diets used high-calorie excesses, or extreme proportions of fat or carbohydrate, not typical of current dietary patterns. Hypercaloric diets, where the additional calories were predominantly either fat or carbohydrates, increased intrahepatocellular lipids. The type of fat appeared important, with diets high in saturated fatty acids favoring hepatic fat accumulation which was substantially lower with polyunsaturated fatty acids. The effect of dietary fructose on markers of NAFLD did not appear to be worse than that of glucose. The initiation of excess hepatic triglycerides is likely to be a complex interaction of energy and nutrients with more than one dietary factor involved. It was not possible to disentangle the hepatic effects of excess energy from that of different macronutrient distributions in current literature. Further investigation is needed to determine the type of diet that is likely to lead to the development of NAFLD. A better understanding of the contribution of diet to pathogenesis of NAFLD would better inform prevention strategies.
Collapse
Affiliation(s)
- Kiri P H Sharp
- Department of Medicine, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Michael Schultz
- Department of Medicine, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Kirsten J Coppell
- Department of Medicine, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
85
|
Multi-tissue transcriptomic study reveals the main role of liver in the chicken adaptive response to a switch in dietary energy source through the transcriptional regulation of lipogenesis. BMC Genomics 2018. [PMID: 29514634 PMCID: PMC5842524 DOI: 10.1186/s12864-018-4520-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Because the cost of cereals is unstable and represents a large part of production charges for meat-type chicken, there is an urge to formulate alternative diets from more cost-effective feedstuff. We have recently shown that meat-type chicken source is prone to adapt to dietary starch substitution with fat and fiber. The aim of this study was to better understand the molecular mechanisms of this adaptation to changes in dietary energy sources through the fine characterization of transcriptomic changes occurring in three major metabolic tissues – liver, adipose tissue and muscle – as well as in circulating blood cells. Results We revealed the fine-tuned regulation of many hepatic genes encoding key enzymes driving glycogenesis and de novo fatty acid synthesis pathways and of some genes participating in oxidation. Among the genes expressed upon consumption of a high-fat, high-fiber diet, we highlighted CPT1A, which encodes a key enzyme in the regulation of fatty acid oxidation. Conversely, the repression of lipogenic genes by the high-fat diet was clearly associated with the down-regulation of SREBF1 transcripts but was not associated with the transcript regulation of MLXIPL and NR1H3, which are both transcription factors. This result suggests a pivotal role for SREBF1 in lipogenesis regulation in response to a decrease in dietary starch and an increase in dietary PUFA. Other prospective regulators of de novo hepatic lipogenesis were suggested, such as PPARD, JUN, TADA2A and KAT2B, the last two genes belonging to the lysine acetyl transferase (KAT) complex family regulating histone and non-histone protein acetylation. Hepatic glycogenic genes were also down-regulated in chickens fed a high-fat, high-fiber diet compared to those in chickens fed a starch-based diet. No significant dietary-associated variations in gene expression profiles was observed in the other studied tissues, suggesting that the liver mainly contributed to the adaptation of birds to changes in energy source and nutrients in their diets, at least at the transcriptional level. Moreover, we showed that PUFA deposition observed in the different tissues may not rely on transcriptional changes. Conclusion We showed the major role of the liver, at the gene expression level, in the adaptive response of chicken to dietary starch substitution with fat and fiber. Electronic supplementary material The online version of this article (10.1186/s12864-018-4520-5) contains supplementary material, which is available to authorized users.
Collapse
|
86
|
Singh S, Kushwah V, Agrawal AK, Jain S. Insulin- and quercetin-loaded liquid crystalline nanoparticles: implications on oral bioavailability, antidiabetic and antioxidant efficacy. Nanomedicine (Lond) 2018; 13:521-537. [DOI: 10.2217/nnm-2017-0278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: The present study reports insulin (INS)- and quercetin (QT)-lyotropic liquid crystalline nanoparticles (LCNPs) with improved bioavailability, antidiabetic and antioxidant efficacy following oral administration. Materials & methods: The developed INS-QT-LCNPs were evaluated for simulated gastric fluid stability. In vitro Caco-2 uptake studies were also performed. Furthermore, in vivo pharmacokinetics and pharmacodynamics of INS-QT-LCNPs were evaluated. Results & conclusion: INS entrapped within LCNPs demonstrated excellent stability in simulated gastric fluid. Higher uptake of fluorescein isothiocyanate-INS-LCNPs were observed in Caco-2 cells. INS-LCNPs demonstrated approximately 20% relative bioavailability compared with subcutaneously administered INS. Significant decrease in oxidative stress was confirmed by reduction in malondialdehyde level. Overall, combination strategy not only overcomes poor oral bioavailability of INS and QT, but also prevents the generation of reactive oxygen species, responsible for diabetes-mediated complications.
Collapse
Affiliation(s)
- Swapnil Singh
- Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, SAS Nagar, Punjab 160062, India
| | - Varun Kushwah
- Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, SAS Nagar, Punjab 160062, India
| | - Ashish Kumar Agrawal
- Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, SAS Nagar, Punjab 160062, India
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Sanyog Jain
- Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, SAS Nagar, Punjab 160062, India
| |
Collapse
|
87
|
Pérez-Mendoza M, Rivera-Zavala JB, Rodríguez-Guadarrama AH, Montoya-Gomez LM, Carmona-Castro A, Díaz-Muñoz M, Miranda-Anaya M. Daily cycle in hepatic lipid metabolism in obese mice, Neotomodon alstoni: Sex differences. Chronobiol Int 2018; 35:643-657. [PMID: 29370528 DOI: 10.1080/07420528.2018.1424178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Disruption of circadian rhythms influences the pathogenesis of obesity, particularly with the basic regulation of food intake and metabolism. A link between metabolism and the circadian clock is the peroxisome proliferator-activated receptors (PPARs). The Neotomodon alstoni mouse, known as the "Mexican volcano mouse," may develop obesity if fed a normo-caloric diet. This manuscript documents the changes in part of the hepatic lipid homeostasis in both sexes of lean and obese N. alstoni mice, comparing the daily changes in the BMAL1 clock protein, in regulators of lipid metabolism (PGC-1α, PPARα-γ, SREBP-1c, and CPT-1α) and in free fatty acid (FFA) and hepatic triacylglyceride (TAG) metabolites in light-dark cycles. Hepatic tissue and blood were collected at 5, 10, 15, 19, and 24 h. Samples were analyzed by western blotting to determine the relative presence of protein. The results indicate that obesity affects daily changes in lipid metabolism and the BMAL1 profile in females considerably more than in males. These results suggest that the impact of obesity on lipid metabolism has important differences according to sex.
Collapse
Affiliation(s)
- Moisés Pérez-Mendoza
- a Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias , Universidad Nacional Autónoma de México , Juriquilla , Qro
| | - Julieta Berenice Rivera-Zavala
- a Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias , Universidad Nacional Autónoma de México , Juriquilla , Qro
| | - Asael H Rodríguez-Guadarrama
- a Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias , Universidad Nacional Autónoma de México , Juriquilla , Qro
| | - Luis M Montoya-Gomez
- a Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias , Universidad Nacional Autónoma de México , Juriquilla , Qro
| | - Agustín Carmona-Castro
- b Departamento de Biología Celular; Facultad de Ciencias , Ciudad Universitaria, Universidad Nacional Autónoma de México , Ciudad de México , México
| | - Mauricio Díaz-Muñoz
- c Departamento de Neurobiología Celular y Molecular , Instituto de Neurobiología, Universidad Nacional Autónoma de México , Campus Juriquilla, Querétaro, Qro , México
| | - Manuel Miranda-Anaya
- a Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias , Universidad Nacional Autónoma de México , Juriquilla , Qro
| |
Collapse
|
88
|
Jia W, Rajani C. The Influence of Gut Microbial Metabolism on the Development and Progression of Non-alcoholic Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1061:95-110. [PMID: 29956209 DOI: 10.1007/978-981-10-8684-7_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is defined as the presence of excess fat in the liver parenchyma in the absence of excess alcohol consumption and overt inflammation. It has also been described as the hepatic manifestation of metabolic syndrome (Than NN, Newsome PN, Atherosclerosis. 239:192-202, 2015). The incidence of NAFLD has been reported to be 43-60% in diabetics, ~90% in patients with hyperlipidemia and 91% in morbidly obese patients (Than NN, Newsome PN, Atherosclerosis. 239:192-202, 2015, Machado M, Marques-Vidal P, Cortez-Pinto H, J Hepatol, 45:600-606, 2006, Vernon G, Baranova A, Younossi ZM, Aliment Pharmacol Ther, 34:274-285, 2011). The risk factors that have been associated with the development of NAFLD include male gender, increasing age, obesity, insulin resistance, diabetes and hyperlipidemia (Attar BM, Van Thiel DH, Sci World J, 2013:481893, 2013, Gaggini M, Morelli M, Buzzigoli E, DeFronzo RA, Bugianesi E, Gastaldelli A, Forum Nutr, 5:1544-1460, 2013). All of these risk factors have been linked to alterations of the gut microbiota, ie., gut dysbiosis (He X, Ji G, Jia W, Li H, Int J Mol Sci, 17:300, 2016). However, it must be pointed out that the prevalence of NAFLD in normal weight individuals without metabolic risk factors is ~16% (Than NN, Newsome PN, Atherosclerosis. 239:192-202, 2015). This fact has led some investigators to hypothesize that the gut microbiota can impact lipid metabolism in the liver independently of obesity-related metabolic factors (Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold g, et al., Gut, 65:330 339, 2016) (Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C, et al., Gut, 62:1787-1794, 2013). In this chapter, we will explore the effect of the gut microbiota on hepatic lipid metabolism and how this affects the development of NAFLD.
Collapse
Affiliation(s)
- Wei Jia
- University of Hawaii Cancer Center, Honolulu, HI, USA.
- Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | |
Collapse
|
89
|
Xiong L, Ren F, Lv J, Zhang H, Guo H. Lactoferrin attenuates high-fat diet-induced hepatic steatosis and lipid metabolic dysfunctions by suppressing hepatic lipogenesis and down-regulating inflammation in C57BL/6J mice. Food Funct 2018; 9:4328-4339. [DOI: 10.1039/c8fo00317c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lactoferrin was reported to exert modulatory effects on lipid metabolism, but the regulatory mechanisms remain unclear.
Collapse
Affiliation(s)
- Ling Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Jiayi Lv
- Key Laboratory of Functional Dairy
- Co-constructed by the Ministry of Education and Beijing Government
- China Agricultural University
- Beijing 100083
- China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Huiyuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| |
Collapse
|
90
|
Velliquette RA, Rajgopal A, Rebhun J, Glynn K. Lithospermum erythrorhizon Root and its Naphthoquinones Repress SREBP1c and Activate PGC1α Through AMPKα. Obesity (Silver Spring) 2018; 26:126-134. [PMID: 29165897 DOI: 10.1002/oby.22061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To examine specific molecular mechanisms involved in modulating hepatic lipogenesis and mitochondria biogenesis signals by Lithospermum erythrorhizon (gromwell) root extract. METHODS Stable cell lines with luciferase reporter constructs were generated to examine sterol regulatory element binding protein 1c (SREBP1c) and peroxisome proliferator-activated receptor gamma, coactivator 1 (PGC1) α promoter activity and estrogen-related receptor (ERR) α response element activity. Gene expression of SREBP1c, stearoyl coenzyme A desaturase 1, and PGC1α was measured by using reverse transcription polymerase chain reaction. Lipogenesis was measured in human hepatoma cells with Nile red staining and flow cytometry. Phosphorylation of AMP-activated protein kinase (AMPK) α was determined by using ELISA and Western blot. RESULTS Gromwell root extract and its naphthoquinones dose-dependently repressed high glucose and liver X receptor α induction of SREBP1c promoter activity and gene expression. Hepatic lipogenesis was repressed, and PGC1α promoter and gene expression and ERRα response element activity were increased by gromwell root extract. Gromwell root extract, shikonin, and α-methyl-n-butyrylshikonin increased AMPKα phosphorylation, and inhibition of AMPK blunted the repression in SREBP1c promoter activity by gromwell root extract and its naphthoquinones. CONCLUSIONS Data suggest that gromwell root extract and its naphthoquinones repress lipogenesis by increasing the phosphorylated state of AMPKα and stimulating mitochondrial biogenesis signals.
Collapse
Affiliation(s)
| | | | - John Rebhun
- Amway Research and Development, Ada, Michigan, USA
| | - Kelly Glynn
- Amway Research and Development, Ada, Michigan, USA
| |
Collapse
|
91
|
Sugar sensing by ChREBP/Mondo-Mlx-new insight into downstream regulatory networks and integration of nutrient-derived signals. Curr Opin Cell Biol 2017; 51:89-96. [PMID: 29278834 DOI: 10.1016/j.ceb.2017.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/17/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022]
Abstract
Animals regulate their physiology with respect to nutrient status, which requires nutrient sensing pathways. Simple carbohydrates, sugars, are sensed by the basic-helix-loop-helix leucine zipper transcription factors ChREBP/Mondo, together with their heterodimerization partner Mlx, which are well-established activators of sugar-induced lipogenesis. Loss of ChREBP/Mondo-Mlx in mouse and Drosophila leads to sugar intolerance, that is, inability to survive on sugar containing diet. Recent evidence has revealed that ChREBP/Mondo-Mlx responds to sugar and fatty acid-derived metabolites through several mechanisms and cross-connects with other nutrient sensing pathways. ChREBP/Mondo-Mlx controls several downstream transcription factors and hormones, which mediate not only readjustment of metabolic pathways, but also control feeding behavior, intestinal digestion, and circadian rhythm.
Collapse
|
92
|
Abstract
Triglyceride molecules represent the major form of storage and transport of fatty acids within cells and in the plasma. The liver is the central organ for fatty acid metabolism. Fatty acids accrue in liver by hepatocellular uptake from the plasma and by de novo biosynthesis. Fatty acids are eliminated by oxidation within the cell or by secretion into the plasma within triglyceride-rich very low-density lipoproteins. Notwithstanding high fluxes through these pathways, under normal circumstances the liver stores only small amounts of fatty acids as triglycerides. In the setting of overnutrition and obesity, hepatic fatty acid metabolism is altered, commonly leading to the accumulation of triglycerides within hepatocytes, and to a clinical condition known as nonalcoholic fatty liver disease (NAFLD). In this review, we describe the current understanding of fatty acid and triglyceride metabolism in the liver and its regulation in health and disease, identifying potential directions for future research. Advances in understanding the molecular mechanisms underlying the hepatic fat accumulation are critical to the development of targeted therapies for NAFLD. © 2018 American Physiological Society. Compr Physiol 8:1-22, 2018.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| | - David E Cohen
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| |
Collapse
|
93
|
Gellrich L, Merk D. Therapeutic Potential of Peroxisome Proliferator-Activated Receptor Modulation in Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. NUCLEAR RECEPTOR RESEARCH 2017. [DOI: 10.11131/2017/101310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
94
|
Lounis MA, Bergeron KF, Burhans MS, Ntambi JM, Mounier C. Oleate activates SREBP-1 signaling activity in SCD1-deficient hepatocytes. Am J Physiol Endocrinol Metab 2017; 313:E710-E720. [PMID: 28851735 PMCID: PMC5814596 DOI: 10.1152/ajpendo.00151.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/01/2017] [Accepted: 08/15/2017] [Indexed: 01/06/2023]
Abstract
Stearoyl-CoA desaturase-1 (SCD1) is a key player in lipid metabolism. SCD1 catalyzes the synthesis of monounsaturated fatty acids (MUFA). MUFA are then incorporated into triacylglycerols and phospholipids. Previous studies have shown that Scd1 deficiency in mice induces metabolic changes in the liver characterized by a decrease in de novo lipogenesis and an increase in β-oxidation. Interestingly, Scd1-deficient mice show a decrease in the expression and maturation of the principal lipogenic transcription factor sterol receptor element binding protein-1 (SREBP-1). The mechanisms mediating this effect on de novo lipogenesis and β-oxidation have not been fully elucidated. We evaluated the role of SCD1 on de novo lipogenesis and β-oxidation in HepG2 cells. We also used Scd1-deficient mice and two strains of transgenic mice that produce either oleate (GLS5) or palmitoleate (GLS3) in a liver-specific manner. We demonstrate that the expression of β-oxidation markers increases in SCD1-deficient hepatocytes and suggest that this is due to an increase in cellular polyunsaturated fatty acid content. We also show that the changes in the level of SREBP-1 expression, for both the precursor and the mature forms, are mainly due to the lack of oleate in SCD1-deficient hepatocytes. Indeed, oleate treatment of cultured HepG2 cells or hepatic oleate production in chow-fed GLS5 mice can restore SREBP-1 expression and increase hepatic de novo lipogenesis. Finally, we show that oleate specifically increases SREBP-1 nuclear accumulation, suggesting a central role for oleate in SREBP-1 signaling activity.
Collapse
Affiliation(s)
- Mohamed A Lounis
- BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal, Montreal, Quebec, Canada
| | - Karl-F Bergeron
- BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal, Montreal, Quebec, Canada
| | - Maggie S Burhans
- Nutritional Sciences Department, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - James M Ntambi
- Nutritional Sciences Department, University of Wisconsin-Madison, Madison, Wisconsin; and
- Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin
| | - Catherine Mounier
- BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal, Montreal, Quebec, Canada;
| |
Collapse
|
95
|
Ribback S, Sonke J, Lohr A, Frohme J, Peters K, Holm J, Peters M, Cigliano A, Calvisi DF, Dombrowski F. Hepatocellular glycogenotic foci after combined intraportal pancreatic islet transplantation and knockout of the carbohydrate responsive element binding protein in diabetic mice. Oncotarget 2017; 8:104315-104329. [PMID: 29262643 PMCID: PMC5732809 DOI: 10.18632/oncotarget.22234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/05/2017] [Indexed: 01/01/2023] Open
Abstract
Aims The intraportal pancreatic islet transplantation (IPIT) model of diabetic rats is an insulin mediated model of hepatocarcinogenesis characterized by the induction of clear cell foci (CCF) of altered hepatocytes, which are pre-neoplastic lesions excessively storing glycogen (glycogenosis) and exhibiting activation of the AKT/mTOR protooncogenic pathway. In this study, we transferred the IPIT model to the mouse and combined it with the knockout of the transcription factor carbohydrate responsive element binding protein (chREBP). Methods C57BL/6J Wild-type (WT) and chREBP-knockout (chREBP-KO) mice (n = 297) were matched to 16 groups (WT/ chREBP-KO, experimental/control, streptozotocine-induced diabetic/not diabetic, one/four weeks). Experimental groups received the intraportal transplantation of 70 pancreatic islets. Liver and pancreatic tissue was examined using histology, morphometry, enzyme- and immunohistochemistry and electron microscopy. Results CCF emerged in the liver acini downstream of the transplanted islets. In comparison to WT lesions, CCF of chREBP-KO mice displayed more glycogen accumulation, reduced activity of the gluconeogenic enzyme glucose-6-phosphatase, decreased glycolysis, lipogenesis and reduced levels of the AKT/mTOR cascade members. Proliferative activity of CCF was ∼two folds higher in WT mice than in chREBP-KO mice. Conclusions The IPIT model is applicable to mice, as murine CCF resemble preneoplastic liver lesions from this hepatocarcinogenesis model in the rat in terms of morphological, metabolic and molecular alterations and proliferative activity, which is diminished after chREBP knockout. chREBP appears to be an essential component of AKT/mTOR mediated cell proliferation and the metabolic switch from a glycogenotic to lipogenic phenotype in precursor lesions of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Silvia Ribback
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Jenny Sonke
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Andrea Lohr
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Josephine Frohme
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Kristin Peters
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Johannes Holm
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Michele Peters
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Antonio Cigliano
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Diego F Calvisi
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Frank Dombrowski
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
96
|
Shimada M, Hibino M, Takeshita A. Dietary supplementation with myo -inositol reduces hepatic triglyceride accumulation and expression of both fructolytic and lipogenic genes in rats fed a high-fructose diet. Nutr Res 2017; 47:21-27. [DOI: 10.1016/j.nutres.2017.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 10/19/2022]
|
97
|
Senese R, Cioffi F, de Lange P, Leanza C, Iannucci LF, Silvestri E, Moreno M, Lombardi A, Goglia F, Lanni A. Both 3,5-Diiodo-L-Thyronine and 3,5,3'-Triiodo-L-Thyronine Prevent Short-term Hepatic Lipid Accumulation via Distinct Mechanisms in Rats Being Fed a High-Fat Diet. Front Physiol 2017; 8:706. [PMID: 28959215 PMCID: PMC5603695 DOI: 10.3389/fphys.2017.00706] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
3,3′,5-triiodo-L-thyronine (T3) improves hepatic lipid accumulation by increasing lipid catabolism but it also increases lipogenesis, which at first glance appears contradictory. Recent studies have shown that 3,5-diiodothyronine (T2), a natural thyroid hormone derivative, also has the capacity to stimulate hepatic lipid catabolism, however, little is known about its possible effects on lipogenic gene expression. Because genes classically involved in hepatic lipogenesis such as SPOT14, acetyl-CoA-carboxylase (ACC), and fatty acid synthase (FAS) contain thyroid hormone response elements (TREs), we studied their transcriptional regulation, focusing on TRE-mediated effects of T3 compared to T2 in rats receiving high-fat diet (HFD) for 1 week. HFD rats showed a marked lipid accumulation in the liver, which was significantly reduced upon simultaneous administration of either T3 or T2 with the diet. When administered to HFD rats, T2, in contrast with T3, markedly downregulated the expression of the above-mentioned genes. T2 downregulated expression of the transcription factors carbohydrate-response element-binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c) involved in activation of transcription of these genes, which explains the suppressed expression of their target genes involved in lipogenesis. T3, however, did not repress expression of the TRE-containing ChREBP gene but repressed SREBP-1c expression. Despite suppression of SREBP-1c expression by T3 (which can be explained by the presence of nTRE in its promoter), the target genes were not suppressed, but normalized to HFD reference levels or even upregulated (ACC), partly due to the presence of TREs on the promoters of these genes and partly to the lack of suppression of ChREBP. Thus, T2 and T3 probably act by different molecular mechanisms to achieve inhibition of hepatic lipid accumulation.
Collapse
Affiliation(s)
- Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli" CasertaCaserta, Italy
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del SannioBenevento, Italy
| | - Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli" CasertaCaserta, Italy
| | - Cristina Leanza
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli" CasertaCaserta, Italy
| | - Liliana F Iannucci
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli" CasertaCaserta, Italy
| | - Elena Silvestri
- Dipartimento di Scienze e Tecnologie, Università degli Studi del SannioBenevento, Italy
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del SannioBenevento, Italy
| | - Assunta Lombardi
- Dipartimento di Biologia, Università degli Studi di Napoli Federico IINaples, Italy
| | - Fernando Goglia
- Dipartimento di Scienze e Tecnologie, Università degli Studi del SannioBenevento, Italy
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli" CasertaCaserta, Italy
| |
Collapse
|
98
|
Vijayakumar R, Nachiappan V. Cassia auriculata flower extract attenuates hyperlipidemia in male Wistar rats by regulating the hepatic cholesterol metabolism. Biomed Pharmacother 2017; 95:394-401. [PMID: 28863379 DOI: 10.1016/j.biopha.2017.08.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/10/2017] [Accepted: 08/19/2017] [Indexed: 10/18/2022] Open
Abstract
Hyperlipidemia in the male albino Wistar rats was induced by Triton WR - 1339. The treatment of the hyperlipidemic animals with the ethanol extract of Cassia auriculata flower (Et-CAF) exhibited a dose dependent reduction in serum triacylglycerol, total cholesterol, low density lipoprotein (LDL), very low density lipoprotein (VLDL) similar to the hyperlipidemic animals treated with standard drug atorvastatin. Hyperlipidemia altered the protein and mRNA expression levels of the key genes (SREBP-1c, ACC1, SREBP-2, HMGR, HMGS, CYP7A1, and ABCA1) in lipid metabolism and the treatment with Et-CAF (300mg/kg b. wt) reverted these levels similar to that observed with atorvastatin treated hyperlipidemic animals. These results revealed that Et-CAF extract served as an efficient anti-hyperlipidemic drug.
Collapse
Affiliation(s)
- Rajendran Vijayakumar
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 6200 24, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 6200 24, India.
| |
Collapse
|
99
|
Veiga FMS, Graus-Nunes F, Rachid TL, Barreto AB, Mandarim-de-Lacerda CA, Souza-Mello V. Anti-obesogenic effects of WY14643 (PPAR -alpha agonist): Hepatic mitochondrial enhancement and suppressed lipogenic pathway in diet-induced obese mice. Biochimie 2017; 140:106-116. [DOI: 10.1016/j.biochi.2017.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023]
|
100
|
Retinol saturase coordinates liver metabolism by regulating ChREBP activity. Nat Commun 2017; 8:384. [PMID: 28855500 PMCID: PMC5577314 DOI: 10.1038/s41467-017-00430-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/28/2017] [Indexed: 11/09/2022] Open
Abstract
The liver integrates multiple metabolic pathways to warrant systemic energy homeostasis. An excessive lipogenic flux due to chronic dietary stimulation contributes to the development of hepatic steatosis, dyslipidemia and hyperglycemia. Here we show that the oxidoreductase retinol saturase (RetSat) is involved in the development of fatty liver. Hepatic RetSat expression correlates with steatosis and serum triglycerides (TGs) in humans. Liver-specific depletion of RetSat in dietary obese mice lowers hepatic and circulating TGs and normalizes hyperglycemia. Mechanistically, RetSat depletion reduces the activity of carbohydrate response element binding protein (ChREBP), a cellular hexose-phosphate sensor and inducer of lipogenesis. Defects upon RetSat depletion are rescued by ectopic expression of ChREBP but not by its putative enzymatic product 13,14-dihydroretinol, suggesting that RetSat affects hepatic glucose sensing independent of retinol conversion. Thus, RetSat is a critical regulator of liver metabolism functioning upstream of ChREBP. Pharmacological inhibition of liver RetSat may represent a therapeutic approach for steatosis.Fatty liver is one of the major features of metabolic syndrome and its development is associated with deregulation of systemic lipid and glucose homeostasis. Here Heidenreich et al. show that retinol saturase is implicated in hepatic lipid metabolism by regulating the activity of the transcription factor ChREBP.
Collapse
|