51
|
Pilley S, Kularkar A, Hippargi G, Dhargave L, Shende N, Krupadam RJ, Rayalu S. Powdered silk: A promising biopolymer for the treatment of dye contaminated water. CHEMOSPHERE 2024; 352:141213. [PMID: 38336040 DOI: 10.1016/j.chemosphere.2024.141213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/13/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Discharge of textile dye effluents into water bodies is creating stress to aquatic life and contaminating water resources. In this study, a new biopolymer adsorbent silk fibroin (SF) was prepared from Bombyx mori silk fibroin (SF) and used for removal of Solochrome Black-T (SB-T) from water. This innovative adsorbent exhibits an exceptional adsorption capacity of 20.08 mg/g, achieving a removal efficiency of approximately 98.6 % within 60 min. Notably, the powdered SF adsorbent demonstrates rapid kinetics, surpassing the performance of previously reported similar adsorbents in adsorption capacity and reaction speed. The molecular weight and particle diameter of the material were observed to be > 1.243 kDa and 3 μm, respectively. The experimental investigations were performed on different parameters, viz., adsorbent dosage, contact time, repeatability, and desorption-adsorption study. The experimental data well fit for the Langmuir model (R2 = 0.937, qmax = 20.08 mg/g) and the pseudo-second-order kinetics (R2 = 0.921 and qe = 1.496 mg/g). Compared to the adsorbents reported in the literature, the newly prepared SF showed high adsorption capacity and faster kinetics to address real-life situations. The novelty of this work extends beyond its remarkable adsorption capabilities. The SF adsorbent offers a cost-effective, sustainable solution and regenerable adsorption material with minimal negative environmental impacts. This regenerability, with its versatility and broad applicability, positions powdered SF fibroin as a transformative technology in water treatment and environmental protection.
Collapse
Affiliation(s)
- Sonali Pilley
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Ankush Kularkar
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Girivyankatesh Hippargi
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
| | - Layashree Dhargave
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Nandini Shende
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Reddithota J Krupadam
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Sadhana Rayalu
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| |
Collapse
|
52
|
Elshahawy MF, Ahmed NA, Gad YH, Ali AEH. Efficient photocatalytic remediation of lerui acid brilliant blue dye using radiation- prepared carboxymethyl cellulose/acrylic acid hydrogel supported by ZnO@Ag. Int J Biol Macromol 2024; 262:129946. [PMID: 38340936 DOI: 10.1016/j.ijbiomac.2024.129946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Organic dye pollution from textiles and other industries presents a substantial risk to people and aquatic life. The use of photocatalysis to decolorize water using the strength of UV light is one of the most important remediation techniques. In the present study, a novel nanocomposites hydrogel including carboxymethyl cellulose (CMC), acrylic acid (AAc), Zinc oxide (ZnO), and silver (Ag) nanoparticles was produced using an eco-friendly γ-irradiation technique for photocatalytic decolorization applications. ZnO and Ag nanoparticles were distributed in the CMC/AAc hydrogel matrix without significant aggregation. SEM, XRD, EDX, TEM, and FTIR analyses were used to assess the physicochemical characteristics of the nanocomposite samples. Carboxymethyl cellulose/acrylic acid/Zinc oxide doped silver (CMC/PAAc/ZnO@Ag) nanocomposite hydrogels were developed and utilized in the photocatalytic decolorization of the lerui acid brilliant blue dye (LABB) when exposed to ultraviolet (UV) radiation. UV- Vis spectrophotometry was utilized to analyze the optical properties of the produced nanostructure. Regarding the decolorization of the LABB, the impacts of operational variables were investigated. The optimum conditions for decolorization (93 %) were an initial concentration of 50 mg/L, pH = 4, catalyst dosage of 50 g/L, and exposure time of 90 min. The results illustrated that the LABB acidic dye from wastewater was remarkably decolored.
Collapse
Affiliation(s)
- Mai F Elshahawy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nehad A Ahmed
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Yasser H Gad
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Amr El-Hag Ali
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
53
|
Chen Y, Zhang N, Chen X. Structurally Modified Polysaccharides: Physicochemical Properties, Biological Activities, Structure-Activity Relationship, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3259-3276. [PMID: 38308635 DOI: 10.1021/acs.jafc.3c06433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Polysaccharides are an important class of biomolecules derived from several sources. However, the inherent structure of polysaccharides prevents them from exhibiting favorable physicochemical properties, which restricts their development in agriculture, industry, food, and biomedicine. This paper systematically summarizes the changes in the primary and advanced structures of modified polysaccharides, and focuses on the effects of various modification methods on the hydrophobicity, rheological properties, emulsifying properties, antioxidant activity, hypoglycemic, and hypolipidemic activities of polysaccharides. Then there is a list the applications of modified polysaccharides in treating heavy metal pollutants, purifying water resources, improving beverage stability and bread quality, and precisely delivering the drug. When summarized and reviewed, the information above can shed further light on the relationship between polysaccharide structure and function. Determining the structure-activity relationship provides a scientific basis for the direction of molecular modifications of polysaccharides.
Collapse
Affiliation(s)
- Yue Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Na Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
54
|
Zolfaghari S, Soltaninejad A, Okoro OV, Shavandi A, Denayer JFM, Sadeghi M, Karimi K. Starch biocomposites preparation by incorporating organosolv lignins from potato crop residues. Int J Biol Macromol 2024; 259:129140. [PMID: 38199558 DOI: 10.1016/j.ijbiomac.2023.129140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Plastic wastes accumulated due to food packaging pose environmental threats. This study proposes biopolymeric films containing lignins extracted from potato crop residues (PCR) through organosolv treatment as a green alternative to non-degradable food packaging. The isolation process yielded 43.9 wt% lignins with a recovery rate of 73.5 wt% achieved under optimum conditions at 180 °C with 50 % v/v ethanol. The extracted lignins were then incorporated into a starch matrix to create biocomposite films. ATR-FTIR analysis confirmed interactions between the starch matrix and extracted lignins, and XRD analysis showed the amorphous structure of lignins, reducing film crystallinity. The addition of 1 wt% of extracted lignins resulted in a 87 % reduction in oxygen permeability, a 25 % increase in the thermal stability of the film, and a 78 % enhancement in antioxidant. Furthermore, introducing 3 wt% lignins led to the lowest water vapor transmission rate, measuring 9.3 × 10-7 kg/s·m2. Morphological studies of the films demonstrated a homogeneous and continuous structure on both the surface and cross-sectional areas when the lignins content was below 7 wt%. These findings highlight the potential of using organosolv lignins derived from potato crop residues as a promising additive for developing eco-friendly films designed for sustainable food packaging.
Collapse
Affiliation(s)
- Shiva Zolfaghari
- Department of Chemical Engineering, Ifsahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali Soltaninejad
- Department of Chemical Engineering, Ifsahan University of Technology, Isfahan 84156-83111, Iran
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Morteza Sadeghi
- Department of Chemical Engineering, Ifsahan University of Technology, Isfahan 84156-83111, Iran; School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Keikhosro Karimi
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
55
|
Mennani M, Kasbaji M, Ait Benhamou A, Ablouh EH, Grimi N, El Achaby M, Kassab Z, Moubarik A. Lignin-functionalized cobalt for catalytic reductive degradation of organic dyes in simple and hybrid binary systems. CHEMOSPHERE 2024; 350:141098. [PMID: 38171398 DOI: 10.1016/j.chemosphere.2023.141098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/10/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
To fulfill the unprecedented valorization approaches for lignocellulose, this work focuses on the potential of lignin-derived catalytic systems for bio-remediation, which are natural materials perceived to address the increased demand for eco-conscious catalyzed processes. A useful lignin-functionalized cobalt (Lig-Co) catalyst has been prepared, well-characterized and deployed for the catalyzed reducing decomposition of stable harmful organic pollutants such as methylene blue (MB) and methyl orange (MO), in simple and binary systems. The multifunctional character of lignin and the presence of various active sites can promote effectively loaded metal nanoparticles (NPs). Considerably, optimizing detoxification tests showed that the uncatalyzed use of NaBH4 as a reductive agent led to an incomplete reduction of organic contaminants over a long period of up to 65 min. Interestingly, Lig-Co catalyst exhibited a high reduction rate and turnover frequency of up to 99.23% and 24.12 min-1 for MB, respectively, while they reached 99.25% and 26.21 min-1 for MO at normal temperature. Kinetically quick catalytic reaction was also demonstrated for the hybrid system, in which the rate constant k was 0.175 s-1 and 0.165 s-1 for MB and MO, respectively, within a distinctly low reaction time of around 120 s. The reproducibility of the Lig-Co catalyst induces a desirable capacity to reduce stable dyes present simultaneously in the binary system, with 6 successive catalytic runs and over 80% of activity retained. Such robust findings underline the considerable interest in developing future lignin-mediated catalytic transformations and upscaling biomass-derived products, to meet the growing demand for sustainable and eco-friendly alternatives in various industries.
Collapse
Affiliation(s)
- Mehdi Mennani
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco; Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco.
| | - Meriem Kasbaji
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Anass Ait Benhamou
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Nabil Grimi
- Sorbonne Université, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherches Royallieu, CS 60 319, 60 203, Compiègne, Cedex, France
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Zineb Kassab
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
| | - Amine Moubarik
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco
| |
Collapse
|
56
|
Paul H, Bera MK, Macke N, Rowan SJ, Tirrell MV. Quantitative Determination of Metal Ion Adsorption on Cellulose Nanocrystals Surfaces. ACS NANO 2024; 18:1921-1930. [PMID: 38195086 PMCID: PMC10811751 DOI: 10.1021/acsnano.3c06140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
Nanocellulose is a bio-based material that holds significant potential in the field of water purification. Of particular interest is their potential use as a key sorbent material for the removal of metal ions from solution. However, the structure of metal ions adsorbed onto cellulose surfaces is not well understood. The focus of this work is to determine quantitatively the three-dimensional distribution of metal ions of different valencies surrounding negatively charged carboxylate functionalized cellulose nanocrystals (CNCs) using anomalous small-angle X-ray scattering (ASAXS). These distributions can affect the water and ionic permeability in these materials. The data show that increasing the carboxylate density on the surface of the CNCs from 740 to 1100 mmol/kg changed the nature of the structure of the adsorbed ions from a monolayer into a multilayer structure. The monolayer was modeled as a Stern layer around the CNC nanoparticles, whereas the multilayer structure was modeled as a diffuse layer on top of the Stern layer around the nanoparticles. Within the Stern layer, the maximum ion density increases from 1680 to 4350 mmol of Rb+/(kg of CNC) with the increase in the carboxylate density on the surface of the nanoparticles. Additionally, the data show that CNCs can leverage multiple mechanisms, such as electrostatic attraction and the chaotropic effect, to adsorb ions of different valencies. By understanding the spatial organization of the adsorbed metal ions, the design of cellulose-based sorbents can be further optimized to improve the uptake capacity and selectivity in separation applications.
Collapse
Affiliation(s)
- Harrison
R. Paul
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Mrinal K. Bera
- NSF’s
ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas Macke
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Chemical
Science and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60434, United States
| | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Materials
Science Division and Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60434, United States
| |
Collapse
|
57
|
Kim M, Njaramba LK, Yoon Y, Jang M, Park CM. Thermally-activated gelatin-chitosan-MOF hybrid aerogels for efficient removal of ibuprofen and naproxen. Carbohydr Polym 2024; 324:121436. [PMID: 37985070 DOI: 10.1016/j.carbpol.2023.121436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most frequently used drugs and have been frequently detected in aquatic environments. This paper demonstrates a thermally-activated gelatin-chitosan and amine-functionalized metal-organic framework (UiO-66-NH2) aerogel (CGC-MOF), which was successfully synthesized for the efficient removal of ibuprofen (IBP) and naproxen (NPX). Various characterization tools were used to systematically analyze the microstructure and physicochemical properties of the synthesized aerogel. In addition, the effect of key reaction parameters as well as batch and continuous-flow fixed-bed column experiments were carried out to elucidate the adsorption process. Several functional groups in the biopolymer network, combined with excellent MOF properties, synergistically couple to form an adsorbent with great performance. The mesoporous aerogel activated at 200 °C (CGC-MOF200) exhibited a high specific surface area (819.6 m2/g) that is valuable in providing abundant adsorption active sites that facilitate the efficient adsorption of IBP and NPX. CGC-MOF200 exhibited an excellent removal of IBP and NPX, accounting to 99.28 % and 96.39 %, respectively. The adsorption process followed the pseudo-second-order kinetics and the Freundlich isotherm models, suggesting heterogeneous and chemisorption adsorption processes. Overall, this work provides new and valuable insights into the development of a promising biopolymer-MOF composite aerogel for environmental remediation.
Collapse
Affiliation(s)
- Minseok Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Lewis Kamande Njaramba
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC 29208, USA; Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
58
|
Kandasamy G, Manisekaran R, Arthikala MK. Chitosan nanoplatforms in agriculture for multi-potential applications - Adsorption/removal, sustained release, sensing of pollutants & delivering their alternatives - A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 240:117447. [PMID: 37863167 DOI: 10.1016/j.envres.2023.117447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
An increase in the global population has led to an increment in the food consumption, which has demanded high food production. To meet the production demands, different techniques and technologies are adopted in agriculture the past 70 years, where utilization of the industry-manufactured/synthetic pesticides (SPTCs - e.g., herbicides, insecticides, fungicides, bactericides, nematicides, acaricides, avicides, and so on) is one of them. However, it has been later revealed that the usage of SPTCs has negatively impacted the environment - especially water and soil, and also agricultural products - mainly foods. Though preventive measures are taken by government agencies, still the utilization rate of SPTCs is high, and consequently, their maximum residual limit (MRL) levels in food are above tolerance, which further results in serious health concerns in humans. So, there is an immediate need for decreasing the utilization of the SPTCs by delivering them effectively at reduced levels in agriculture but with the required efficacy. Apart from that, it is mandatory to detect/sense and also to remove them to lessen the environmental pollution, while developing effective alternative techniques/technologies. Among many suitable materials that are developed/idenified, chitosan, a bio-polymer has gained great attention and is comprehensively implemented in all the above-mentioned applications - sensing, delivery and removal, due to their excellent and required properties. Though many works are available, in this work, a special attention is given to chitosan and its derivatives (i.e., chitosan nanoparticles (CNPs))based removal, controlled release and sensing of the SPTCs - specifically herbicides and insecticides. Moreover, the chitosan/CNPs-based protective effects on the in vivo models during/after their exposure to the SPTCs, and the current technologies like clustered regularly interspaced short palindromic repeats (CRISPR) as alternatives for SPTCs are also reviewed.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, Tamil Nadu, India.
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures & Biomaterials, Escuela Nacional de Estudios Superiores (ENES) Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato C.P. 37689, Mexico
| | - Manoj-Kumar Arthikala
- Interdisciplinary Research Laboratory (LII), Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores (ENES) Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato C.P. 37689, Mexico
| |
Collapse
|
59
|
Li C, Fu L, Deng S, Wang H, Jia L. Polydopamine-functionalized electrospun poly(vinyl alcohol)/chitosan nanofibers for the removal and determination of Cu(II). Int J Biol Macromol 2024; 256:128398. [PMID: 38007013 DOI: 10.1016/j.ijbiomac.2023.128398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
Environmentally friendly and recycled polydopamine-functionalized electrospun poly(vinyl alcohol)/chitosan nanofibers (PVA/CS/PDA) were prepared through a low-energy-consumption procedure. The PDA coating endows PVA/CS/PDA nanofibers with good water stability. The PVA/CS/PDA nanofibers have a fibrillar and porous structure that is favorable for Cu(II) to access the active sites of the nanofibers. The adsorption isotherm and kinetics data preferably conform to the Liu isotherm and pseudo-second-order kinetic models, respectively. The maximum adsorption capacity of Cu(II) ions by PVA/CS/PDA nanofibers from the Liu isotherm model is 326.5 mg g-1. The PVA/CS/PDA nanofibers exhibit higher adsorption capacity than some other reported adsorbents. The adsorption mechanism study demonstrates that the Cu(II) adsorption is mainly ascribed to the complexation of Cu(II) with the imino, amino, and hydroxy moieties in PVA/CS/PDA nanofibers. The nanofibers can be employed for 5 cycles without significantly deteriorating performance. More interestingly, a fluorometry method based on the oxidation mimic enzyme activity of Cu(II) was developed to detect low concentrations of Cu(II) using the nanofibers as an adsorbent to preconcentrate Cu(II). The limit of detection is 0.42 mg L-1. The successful removal and detection of Cu(II) in Pearl River and mineral water samples demonstrates the great potential of PVA/CS/PDA nanofibers to remediate Cu(II)-polluted water.
Collapse
Affiliation(s)
- Chuang Li
- Ministry of Education Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Fu
- Ministry of Education Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Suqi Deng
- Ministry of Education Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Heng Wang
- Ministry of Education Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
60
|
Bekchanov D, Mukhamediev M, Yarmanov S, Lieberzeit P, Mujahid A. Functionalizing natural polymers to develop green adsorbents for wastewater treatment applications. Carbohydr Polym 2024; 323:121397. [PMID: 37940289 DOI: 10.1016/j.carbpol.2023.121397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
The present study provides an overview of scientific developments made in the last decade in the field of green adsorbents focusing on the modifications in natural polymers and their applications such as, wastewater treatment, and ion exchange. For this purpose, an introduction to the various methods of modifying natural polymers is first given, and then the properties, application, and future priorities of green adsorbents are also discussed. Methods of modification of natural polymers under homogeneous and heterogeneous conditions using modifiers with different properties are also described. Various methods for modifying natural polymers and the use of the obtained green adsorbents are reviewed. A comparison of the sorption properties of green adsorbents based on natural polymers and other adsorbents used in industry has also been carried out. With the participation of green adsorbents based on natural polymers, the properties of treated wastewaters having toxic metal ions, organic dyes, petroleum products, and other harmful compounds was analyzed. Future perspectives on green adsorbents based on natural polymers are as also highlighted.
Collapse
Affiliation(s)
- Davronbek Bekchanov
- Department of Polymer Chemistry, Faculty of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan.
| | - Mukhtar Mukhamediev
- Department of Polymer Chemistry, Faculty of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | | | - Peter Lieberzeit
- Faculty for Chemistry, Department of Physical Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Adnan Mujahid
- School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| |
Collapse
|
61
|
Rehan M, Elhaddad E. An efficient multi-functional ternary reusable nanocomposite based on chitosan@TiO 2@Ag NP immobilized on cellulosic fiber as a support substrate for wastewater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122850. [PMID: 37944887 DOI: 10.1016/j.envpol.2023.122850] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
To effectively remove heavy metals, organic contaminants, and pathogenic bacteria from wastewater, an efficient multi-functional ternary nanocomposite based on chitosan (CS), titanium dioxide (TiO2 NP), and silver nanoparticles (Ag NP) was prepared. Different tools were used to confirm the successful synthesis of the CS/TiO2 NP/Ag NP nanocomposite. Then, the CS/TiO2 NP/Ag NPnanocomposite was immobilized on the cellulosic fiber as a support substrate for its easy removal and reuse. On a lab scale, CS/TiO2 NP/Ag NP nanocomposite@cellulosic fiber was used to remove Cu (II) ions, methyl orange (MO), and methylene blue (MB), as well as inhibit microbes. The results demonstrate that the greatest removal of Cu (II) ions was 95 % at a concentration of 50 mg/L, pH 5, a temperature of 25 °C, an agitation speed of 200 rpm with 1 g adsorbent dose, and a contact time of 150 min. The pseudo-second-order model explained the batch adsorption kinetics well, while the Langmuir model explained the adsorption isotherm well with an adsorption capacity of 7.71 mg/g. Adsorption thermodynamic parameters revealed that adsorption is a spontaneous, exothermic, increased randomness, and non-specific chemisorption approach. The photodegradation of MO and MB by CS/TiO2 NP/Ag NP nanocomposite@cellulosic fiber was investigated. The results reveal that at pH 3, the MO dye showed the highest photodegradation percentage (90 %), while the MB dye displayed the highest photodegradation percentage (94 %) at pH 11, after an irradiation time of 120 min under visible light. The rate constants for MO and MB were 0.01218 and 0.01412 min-1, respectively. The results antimicrobial activities showed that the CS/TiO2 NP/Ag NP nanocomposite@cellulosic fiber showed excellent antibacterial activity against S. aureus (95 ± 2 %) and E. coli (93 ± 3 %) as well as good antifungal activity against C. albicans (77 ± 2 %).
Collapse
Affiliation(s)
- Mohamed Rehan
- Department of Pretreatment and Finishing of Cellulosic-based Textiles. Textile Research and Technology Institute, National Research Centre, 33 El-Buhouth Street, Dokki, P.O. Box 12622, Giza, Egypt.
| | - Engy Elhaddad
- National Institute of Oceanography and Fisheries (NIOF), Egypt
| |
Collapse
|
62
|
Radoor S, Karayil J, Jayakumar A, Kandel DR, Kim JT, Siengchin S, Lee J. Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review. Carbohydr Polym 2024; 323:121339. [PMID: 37940239 DOI: 10.1016/j.carbpol.2023.121339] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 11/10/2023]
Abstract
From the environmental perspective, it is essential to develop cheap, eco-friendly, and highly efficient materials for water and wastewater treatment. In this regard, hydrogels and hydrogel-based composites have been widely employed to mitigate global water pollution as this methodology is simple and free from harmful by-products. Notably, alginate and cellulose, which are natural carbohydrate polymers, have gained great attention for their availability, price competitiveness, excellent biodegradability, biocompatibility, hydrophilicity, and superior physicochemical performance in water treatment. This review outlined the recent progress in developing and applying alginate- and cellulose-based hydrogels to remove various pollutants such as dyes, heavy metals, oils, pharmaceutical contaminants, and pesticides from wastewater streams. This review also highlighted the effects of various physical or chemical methods, such as crosslinking, grafting, the addition of fillers, nanoparticle incorporation, and polymer blending, on the physiochemical and adsorption properties of hydrogels. In addition, this review covered the alginate- and cellulose-based hydrogels' current limitations such as low mechanical performance and poor stability, while presenting strategies to improve the drawbacks of the hydrogels. Lastly, we discussed the prospects and future directions of alginate- and cellulose-based hydrogels. We hope this review provides valuable insights into the efficient preparations and applications of hydrogels.
Collapse
Affiliation(s)
- Sabarish Radoor
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Jasila Karayil
- Department of Applied Science, Government Engineering College West Hill, Kozhikode, Kerala, India
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dharma Raj Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Suchart Siengchin
- Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Jaewoo Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
| |
Collapse
|
63
|
Balakrishnan A, Chinthala M, Polagani RK. 3D kaolinite/g-C 3N 4-alginate beads as an affordable and sustainable photocatalyst for wastewater remediation. Carbohydr Polym 2024; 323:121420. [PMID: 37940252 DOI: 10.1016/j.carbpol.2023.121420] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Graphitic carbon nitride (GCN) is an efficient visible-light-driven metal-free semiconductor with superior photocatalytic activity. However, the main drawbacks of GCN include lower adsorption capacity, poor reusability and recoverability. To address these drawbacks, kaolinite/g-C3N4-alginate beads were fabricated using a cross-linking method to remove brilliant green dye from wastewater via photocatalysis. The characterization studies proved the alginate's potential capability in altering photocatalyst bandgap (2.78 to 2.55 eV) and minimizing recombination of electron-hole pairs. Kaolinite/g-C3N4-alginate photocatalyst removed 97 % of brilliant green (10 mg/L) in 90 min under visible light irradiation. The superior performance of the kaolinite/g-C3N4-alginate beads was ascribed to its improved adsorption and effective utilization of visible light. The key advantages of kaolinite/g-C3N4-alginate beads were their quick recovery and extended reusability upto ten cycles. The sustainability metrics analysis of kaolinite/g-C3N4-alginate beads confirmed the environmental suitability and practicability in wastewater remediation. This study provides new insights into the low-cost and sustainable preparation of highly reusable g-C3N4-based photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Akash Balakrishnan
- Process Intensification Laboratory, Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Mahendra Chinthala
- Process Intensification Laboratory, Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
| | - Rajesh Kumar Polagani
- Centre for Fuel Cell Technology (CFCT), International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Chennai, Tamilnadu 600113, India
| |
Collapse
|
64
|
Wang J, Xu B. Removal of radionuclide 99Tc from aqueous solution by various adsorbents: A review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107267. [PMID: 37598575 DOI: 10.1016/j.jenvrad.2023.107267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Technetium isotope 99Tc is a main radioactive waste produced in the process of nuclear reaction, which has the characteristics of long half-life and strong environmental mobility, and can be bio-accumulated in organisms, resulting in serious threat to human health and ecosystem. Adsorption method is widely used in the field of removing radionuclides from water due to the advantages of high treatment rate, simple and mature industrial application. In this review paper, the recent advances in research and application of various adsorption materials for 99Tc pollution treatment were summarized and analyzed for the first time, including inorganic adsorbents, such as activated carbon, zero-valent iron, metallic minerals, clay minerals, layered double hydroxides (LDHs), tin-based materials, and sulfur-based materials; organic adsorbents, such as porous organic polymers (POPs), covalent-organic frameworks (COFs), metal-organic frameworks (MOFs), and ion exchange resin; and biological adsorbents, such as biopolymers (chitosan, cellulose, alginate), and microbial cells. The performance characteristics and the adsorption kinetics and isotherms of various adsorption materials were discussed. This review could deepen the understanding of the adsorptive removal of 99Tc from aqueous solution, and provide a reference for the future research in this field.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| | - Bowen Xu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
65
|
Li M, Liu Y, Gong Y, Yan X, Wang L, Zheng W, Ai H, Zhao Y. Recent advances in nanoantibiotics against multidrug-resistant bacteria. NANOSCALE ADVANCES 2023; 5:6278-6317. [PMID: 38024316 PMCID: PMC10662204 DOI: 10.1039/d3na00530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Multidrug-resistant (MDR) bacteria-caused infections have been a major threat to human health. The abuse of conventional antibiotics accelerates the generation of MDR bacteria and makes the situation worse. The emergence of nanomaterials holds great promise for solving this tricky problem due to their multiple antibacterial mechanisms, tunable antibacterial spectra, and low probabilities of inducing drug resistance. In this review, we summarize the mechanism of the generation of drug resistance, and introduce the recently developed nanomaterials for dealing with MDR bacteria via various antibacterial mechanisms. Considering that biosafety and mass production are the major bottlenecks hurdling the commercialization of nanoantibiotics, we introduce the related development in these two aspects. We discuss urgent challenges in this field and future perspectives to promote the development and translation of nanoantibiotics as alternatives against MDR pathogens to traditional antibiotics-based approaches.
Collapse
Affiliation(s)
- Mulan Li
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Youhuan Gong
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Xiaojie Yan
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Le Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Cannano Tefei Technology, Co. LTD Room 1013, Building D, No. 136 Kaiyuan Avenue, Huangpu District Guangzhou Guangdong Province 510535 P. R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Yuliang Zhao
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences 19B Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
66
|
Li H, Li Y, Zhu S, Li Y, Zada I, Li Y. Recent advances in biopolymers-based carbon materials for supercapacitors. RSC Adv 2023; 13:33318-33335. [PMID: 38025848 PMCID: PMC10646438 DOI: 10.1039/d3ra06179e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Supercapacitors as potential candidates for novel green energy storage devices demonstrate a promising future in promoting sustainable energy supply, but their development is impeded by limited energy density, which can be addressed by developing high-capacitance electrode materials with efforts. Carbon materials derived from biopolymers have received much attention for their abundant reserves and environmentally sustainable nature, rendering them ideal for supercapacitor electrodes. However, the limited capacitance has hindered their widespread application, resulting in the proposal of various strategies to enhance the capacity properties of carbon electrodes. This paper critically reviewed the recent research progress of biopolymers-based carbon electrodes. The advances in biopolymers-based carbon electrodes for supercapacitors are presented, followed by the strategies to improve the capacitance of carbon electrodes which include pore engineering, doping engineering and composite engineering. Furthermore, this review is summarized and the challenges of biopolymer-derived carbon electrodes are discussed. The purpose of this review is to promote the widespread application of biopolymers in the domain of supercapacitors.
Collapse
Affiliation(s)
- Hongjie Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yanyu Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yulong Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Imran Zada
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
67
|
Eldeeb BA, El-Raheem WMA, Elbeltagi S. Green synthesis of biocompatible Fe 3O 4 magnetic nanoparticles using Citrus Sinensis peels extract for their biological activities and magnetic-hyperthermia applications. Sci Rep 2023; 13:19000. [PMID: 37923900 PMCID: PMC10624884 DOI: 10.1038/s41598-023-46287-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Green synthesis of nanoparticles (NPs) is eco-friendly, biocompatible, cost-effective, and highly stable. In the present study, Citrus sinensis peel extract was utilized to the fabrication of superparamagnetic iron oxide nanoparticles (SPIONs). The fabricated SPIONs were first characterized using UV-Visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM). The UV-Vis spectra analysis displayed a peak at 259 nm due to the surface plasmon resonance. The FTIR spectrum showed bands at 3306 cm-1, and 1616 cm-1 revealed the protein's involvement in the development and capping of NPs. TEM analysis indicated that green synthesized SPIONs were spherical in shape with particle size of 20-24 nm. Magnetization measurements indicate that the synthesized SPIONs exhibited superparamagnetic behavior at room temperature. The antimicrobial activity, minimum inhibitory concentration (MIC), antioxidant potential, anti-inflammatory effect, and catalytic degradation of methylene blue by SPIONs were investigated in this study. Results demonstrated that SPIONs had variable antimicrobial effect against different pathogenic multi-drug resistant bacteria. At the highest concentration (400 μg/mL), SPIONs showed inhibition zones (14.7-37.3 mm) against all the target isolates. Furthermore, the MIC of synthesized SPIONs against Staphylococcus aureus, Streptococcus mutans, Bacillus subtilis, Escherichia coli, Klebsiella pneumonia, and Candida albicans were 3, 6.5, 6.5, 12.5, 50, 25 μg/mL, respectively. SPIONs exhibited strong antioxidant, anti-inflammatory, and catalytic dye degradation activities. Interestingly, Fe3O4 SPIONs shows optimum magnetic hyperthermia (MHT) techniques under an alternating magnetic field (AMF) measured in specific absorption rate (SAR) of 164, 230, and 286 W/g at concentrations 1, 5, and 10 mg/mL, respectively. Additionally, these newly fabricated SPIONs virtually achieve significant execution under the AMF in fluid MHT and are suitable for biomedical applications.
Collapse
Affiliation(s)
- Bahig A Eldeeb
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Walaa M Abd El-Raheem
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Shehab Elbeltagi
- Department of Physics-Biophysics, Faculty of Science, New Valley University, El-Kharga, 72511, New Valley, Egypt.
| |
Collapse
|
68
|
El Rabey HA, Almutairi FM, Tayel AA, Alalawy AI, Mohammed GM, Aljohani MM, Keshk AA. Magnetic biopolymers' nanocomposites from chitosan, lignin and phycosynthesized iron nanoparticles to remediate water from polluting oil. Int J Biol Macromol 2023; 251:126318. [PMID: 37579903 DOI: 10.1016/j.ijbiomac.2023.126318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/02/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Targeting the remediation of oil pollution in water, the construction of super magnetic adsorbent nanocomposites (NCs) was achieved using the nanoparticles of chitosan (Cht), lignin (Lg) and phycosynthesized iron nanoparticles (Fe MNPs) using Gelidium amansii extract. The syntheses and conjugations of nanomaterials were authenticated via infrared spectral analysis and the structural physiognomies of them were appraised via electron microscopy and zeta analysis. The Lg NPs, Cht NPs, Fe MNPs and their composites (Lg/Cht MNCs) had mean particles' sizes of 42.3, 76.4, 14.2 and 108.3 nm, and were charged with - 32.7, + 41.2, + 28.4 and +37.5 mV, respectively. The magnetometer revealed the high magnetic properties of both Fe MNPs and Lg/Cht MNCs; the maximum swelling of Lg/Cht NPs (46.3 %), and Lg/Cht MNPs (33.8 %) was detected after 175 min. The diesel oil adsorption experiments with Lg/Cht MNPs, using batch adsorption practices, revealed the powerful potentiality of magnetic NCs to remove oil pollution in water; the maximum adsorption capacity (qt) was achieved with the conditions of pH = 7.5, adsorption period = 90 min and adsorbent dose = 200 mg/L. The magnetic Lg/Cht MNCs exhibited excellent recovery/reusability attributes for five adsorption cycles; the qt differences were negligible after the entire oil-adsorption cycles, with oil removal of >90 %. The innovative fabricated Lg/Cht MNCs could provide an effectual, sustainable and eco-friendly approach for the removal of pollutant oil in water resources.
Collapse
Affiliation(s)
- Haddad A El Rabey
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El-Sadat City 32897, Egypt.
| | - Fahad M Almutairi
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ahmed A Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Adel I Alalawy
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ghena M Mohammed
- Department of Nutrition and Food Science, Faculty of Home Economics, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Meshari M Aljohani
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ali A Keshk
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
69
|
Hamid AA, Alam J, Shukla AK, Ali FAA, Alhoshan M. Sustainable removal of phenol from wastewater using a biopolymer hydrogel adsorbent comprising crosslinked chitosan and κ-carrageenan. Int J Biol Macromol 2023; 251:126340. [PMID: 37591437 DOI: 10.1016/j.ijbiomac.2023.126340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
A biopolymer-based adsorbent comprising chitosan (CS) and κ-carrageenan (κ-Carr) was synthesised and evaluated to treat phenolic-contaminated water. The developed CS/κ-Carr hydrogel demonstrated excellent performance with a phenol adsorption uptake of 80 %. The morphologies of CS/κ-Carr hydrogels with different ratios of CS to κ-Carr ranging from 1:2 to 7:3 were characterised using scanning electron microscopy and atomic force microscopy; their chemical structures were investigated by spectral analyses using Fourier-transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry; their adsorption characteristics were determined using tests for swelling, chemical stability, hygroscopic moisture content, and hydrophilicity. Finally, a batch-type evaluation method demonstrated adsorption performance at 25 °C and pH 6.9. Adsorption isotherms and kinetic data were successfully obtained using the Freundlich and pseudo-second-order models, respectively. The results indicate that one-pot synthesis of an insoluble CS/κ-Carr hydrogel adsorbent exhibits considerable potential for the removal of phenol from aqueous solutions, providing an environmentally friendly technology enhancing the phenol adsorption performance of CS.
Collapse
Affiliation(s)
- Ali A Hamid
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11451, Saudi Arabia
| | - Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fekri Abdulraqeb Ahmed Ali
- Chemical Engineering Department, College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh 11432, Saudi Arabia
| | - Mansour Alhoshan
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11451, Saudi Arabia; K.A.CARE Energy Research and Innovation Centre, Riyadh 11454, Saudi Arabia.
| |
Collapse
|
70
|
Godefroid J, Bouttes D, Marcellan A, Barthel E, Monteux C. Surface stress and shape relaxation of gelling droplets. SOFT MATTER 2023; 19:7787-7795. [PMID: 37791988 DOI: 10.1039/d3sm00533j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Solidification is a heterogeneous transformation from liquid to solid, which usually combines transport, phase transition and mechanical strain. Predicting the shapes resulting from such a complex process is fascinating and has a wide range of implications from morphogenesis in biological tissues to industrial processes. For soft solids initially at equilibrium, elastic stresses, whether tensile or compressive, can be induced by heterogeneous volumetric deformations of the material. These stresses trigger surface instabilities leading to variations of curvature and shape of the solids. In this article, we study the shape evolution of elongated droplets of polymer and particle suspensions undergoing a solidification process caused by the inward diffusion of a gelling agent from the surface. We show experimentally and numerically that there appears a layer of gelled material growing at the surface. Due to volume contraction, this layer induces tensile stresses and drives a flow in the ungelled liquid core, resulting in the relaxation of the droplets toward spherical shapes. Over time, the thickness of this elastic membrane grows, hence the bending stiffness required to change its shape eventually balances the surface stresses, which arrests the relaxation process. These results provide general rules to understand the shape of solidifying materials combining both tension and bending driven deformations.
Collapse
Affiliation(s)
- J Godefroid
- Soft Matter Science and Engineering, ESPCI Paris, PSL Research, CNRS, Sorbonne Université, 75005 Paris, France.
- Saint-Gobain Research Provence, Cavaillon, France
| | - D Bouttes
- Saint-Gobain Research Provence, Cavaillon, France
| | - A Marcellan
- Soft Matter Science and Engineering, ESPCI Paris, PSL Research, CNRS, Sorbonne Université, 75005 Paris, France.
| | - E Barthel
- Soft Matter Science and Engineering, ESPCI Paris, PSL Research, CNRS, Sorbonne Université, 75005 Paris, France.
| | - C Monteux
- Soft Matter Science and Engineering, ESPCI Paris, PSL Research, CNRS, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
71
|
Kasbaji M, Mennani M, Oubenali M, Ait Benhamou A, Boussetta A, Ablouh EH, Mbarki M, Grimi N, El Achaby M, Moubarik A. Bio-based functionalized adsorptive polymers for sustainable water decontamination: A systematic review of challenges and real-world implementation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122349. [PMID: 37562526 DOI: 10.1016/j.envpol.2023.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
The overwhelming concerns of water pollution, industrial discharges and environmental deterioration by various organic and inorganic substances, including dyes, heavy metals, pesticides, pharmaceuticals, and detergents, intrinsically drive the search for urgent and efficacious decontamination techniques. This review illustrates the various approaches to remediation, their fundamentals, characteristics and demerits. In this manner, the advantageous implementation of nature-based adsorbents has been outlined and discussed. Different types of lignocellulosic compounds (cellulose, lignin, chitin, chitosan, starch) have been introduced, and the most used biopolymeric materials in bioremediation have been highlighted; their merits, synthesis methods, properties and performances in aqueous medium decontamination have been described. The literature assessment reveals the genuine interest and dependence of academic and industrial fields to valorize biopolymers in the adsorption of various hazardous substances. Yet, the full potential of this approach is still confined by certain constraints, such as the lack of reliable, substantial, and efficient extraction of biopolymers, as well as their modest and inconsistent physicochemical properties. The futuristic reliance on such biomaterials in all fields, rather than adsorption, is inherently reliable on in-depth investigations and understanding of their features and mechanisms, which can guarantee a real-world application and green technologies.
Collapse
Affiliation(s)
- Meriem Kasbaji
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mehdi Mennani
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mustapha Oubenali
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Anass Ait Benhamou
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco; Materials Sciences and Process Optimization Laboratory, Faculty of Science Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
| | - Abdelghani Boussetta
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mohamed Mbarki
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Nabil Grimi
- Sorbonne Université, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherches Royallieu, CS 60 319, 60 203s, Compiègne Cedex, France
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Amine Moubarik
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco.
| |
Collapse
|
72
|
Shan X, Guo H, Ma F, Shan Z. Enhanced treatment of synthetic wastewater by bioaugmentation with a constructed consortium. CHEMOSPHERE 2023; 338:139520. [PMID: 37454986 DOI: 10.1016/j.chemosphere.2023.139520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Bioaugmentation by adding well-functioning mixed microorganism consortia represents a potentially useful approach to improve contaminant removal in wastewater treatment plants (WWTPs). However, unfavorable environmental conditions (i.e., low temperatures) can severely inhibit microbial activity, drawing our attention to constructing cold-tolerant microorganism preparations and investigating their availability in practical applications. Here we screened four in situ functional isolates from the activated sludge of secondary sedimentation tanks in WWTPs to construct a psychrophilic microbial consortium, which was used to perform bioaugmentation for enhanced removal of nitrogen and phosphorus under low temperatures. The consortium was established by cocultivation of four isolates, characterized by 16 S rRNA as the COD-degrading bacterium Aeromonas sp. Z3, aerobic denitrifying bacterium Acinetobacter sp. HF9, nitrifying bacterium Klebsiella sp. X8, and polyphosphate-accumulating bacterium Pseudomonas sp. PC5 respectively. The microorganism preparation was composed of Z3, HF9, X8, and PC5 under the ratio of 1: 1: 3: 1, which can exert optimal pollutant removal under the conditions of 12 °C, 6.0-9.0 pH, 120-200 r‧min-1, and a dosage of 5% (V/V). A 30-day continuous operation of the bioaugmented and control sequencing batch reactors (SBRs) was investigated, and the bioaugmented SBR showed a shorter start-up stage and a more stable operating situation. Compared to the control SBR, the COD, NH4+-N, TN, and TP removal efficiency of the bioaugmented SBR increased by an average of 7.95%, 9.05%, 9.54%, and 7.45% respectively. The analysis of the microbial community revealed that the introduced isolates were dominant in the activated sludge and that functional taxa such as Proteobacteria, Bacteroidota, and Actinobacteria were further enriched after a period of bioaugmentation. The study provides some basis and guidance for the practical application of how to strengthen the stable operation of WWTPs under low temperatures.
Collapse
Affiliation(s)
- Xiaoqing Shan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Haijuan Guo
- School of Environment, Liaoning University, Shenyang, 110036, PR China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Environment, Liaoning University, Shenyang, 110036, PR China.
| | - Zelin Shan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
73
|
Rehman MU, Taj MB, Carabineiro SAC. Biogenic adsorbents for removal of drugs and dyes: A comprehensive review on properties, modification and applications. CHEMOSPHERE 2023; 338:139477. [PMID: 37442388 DOI: 10.1016/j.chemosphere.2023.139477] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
This comprehensive review explores the potential and versatility of biogenic materials as sustainable and environmentally benign alternatives to conventional adsorbents for the removal of drugs and dyes. Biogenic adsorbents derived from plants, animals, microorganisms, algae and biopolymers have bioactive compounds that interact with functional groups of pollutants, resulting in their binding with the sorbent. These materials can be modified mechanically, thermally and chemically to enhance their adsorption properties. Biogenic hybrid composites, which integrate the characteristics of more than one material, have also been fabricated. Additionally, microorganisms and algae are analyzed for their ability to uptake pollutants. Various influential factors that contribute to the adsorption process are also discussed. The challenge, limitations and future prospects for research are reviewed and bridging gap between large scale application and laboratory scale. This comprehensive review, involves a combination of various biogenic adsorbents, going beyond the existing literature where typically only specific adsorbents are reported. The review also covers the isotherms, kinetics, and desorption studies of biogenic adsorbents, providing an improved framework for their effective use in removing pharmaceuticals and dyes from wastewater.
Collapse
Affiliation(s)
- Mobeen Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Babar Taj
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Sónia A C Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
74
|
Usman M, Taj MB, Carabineiro SAC. Gum-based nanocomposites for the removal of metals and dyes from waste water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102027-102046. [PMID: 37674071 PMCID: PMC10567940 DOI: 10.1007/s11356-023-29389-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023]
Abstract
The importance of water for all living organisms is unquestionable and protecting its sources is crucial. In order to reduce water contaminants, like toxic metals and organic dyes, researchers are exploring different techniques, such as adsorption, photocatalytic degradation, and electrolysis. Novel materials are also being sought. In particular, biopolymers like guar gum and xanthan gum, that are eco-friendly, non-toxic, reusable, abundant and cost-effective, have enormous potential. Gum-based nanocomposites can be prepared and used for removing heavy metals and colored dyes by adsorption and degradation, respectively. This review explains the significance of gum-based nanomaterials in waste water treatment, including preparative steps, characterization techniques, kinetics models, and the degradation and adsorption mechanisms involved.
Collapse
Affiliation(s)
- Muhammad Usman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Babar Taj
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | |
Collapse
|
75
|
Feng W, Wang Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303326. [PMID: 37544909 PMCID: PMC10558674 DOI: 10.1002/advs.202303326] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/15/2023] [Indexed: 08/08/2023]
Abstract
Hydrogels with tailor-made swelling-shrinkable properties have aroused considerable interest in numerous biomedical domains. For example, as swelling is a key issue for blood and wound extrudates absorption, the transference of nutrients and metabolites, as well as drug diffusion and release, hydrogels with high swelling capacity have been widely applicated in full-thickness skin wound healing and tissue regeneration, and drug delivery. Nevertheless, in the fields of tissue adhesives and internal soft-tissue wound healing, and bioelectronics, non-swelling hydrogels play very important functions owing to their stable macroscopic dimension and physical performance in physiological environment. Moreover, the negative swelling behavior (i.e., shrinkage) of hydrogels can be exploited to drive noninvasive wound closure, and achieve resolution enhancement of hydrogel scaffolds. In addition, it can help push out the entrapped drugs, thus promote drug release. However, there still has not been a general review of the constructions and biomedical applications of hydrogels from the viewpoint of swelling-shrinkable properties. Therefore, this review summarizes the tactics employed so far in tailoring the swelling-shrinkable properties of hydrogels and their biomedical applications. And a relatively comprehensive understanding of the current progress and future challenge of the hydrogels with different swelling-shrinkable features is provided for potential clinical translations.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
76
|
Ibrahim RE, Elshopakey GE, Abdelwarith AA, Younis EM, Ismail SH, Ahmed AI, El-Saber MM, Abdelhamid AE, Davies SJ, El-Murr A, Abdel Rahman AN. Chitosan neem nanocapsule enhances immunity and disease resistance in nile tilapia ( Oreochromis niloticus). Heliyon 2023; 9:e19354. [PMID: 37662722 PMCID: PMC10474430 DOI: 10.1016/j.heliyon.2023.e19354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
Finding eco-friendly alternatives for antibiotics in treating bacterial diseases affecting the aquaculture sector is essential. Herbal plants are promising alternatives, especially when combined with nanomaterials. Neem (Azadirachta indica) leaves extract was synthesized using a chitosan nanocapsule. Chitosan neem nanocapsule (CNNC) was tested in-vitro and in-vivo against the Aeromonas sobria (A. sobria) challenge in Nile tilapia. A preliminary experiment with 120 Nile tilapia was conducted to determine the therapeutic dose of CNNC, which was established to be 1 mg/L. A treatment study was applied for seven days using 200 fish categorized into four groups (10 fish/replicate: 50 fish/group). The first (control) and second (CNNC) groups were treated with 0 and 1 mg/L CNNC in water without being challenged. The third (A. sobria) and fourth (CNNC + A. sobria) groups were treated with 0 and 1 mg/L CNNC, respectively, and challenged with A. sobria (1 × 107 CFU/mL). Interestingly, CNNC had an in-vitro antibacterial activity against A. sobria; the minimum inhibitory concentration and minimum bactericidal concentration of CNNC against A. sobria were 6.25 and 12.5 mg/mL, respectively. A. sobria challenge caused behavioral alterations, skin hemorrhage, fin rot, and reduced survivability (60%). The infected fish suffered a noticeable elevation in the malondialdehyde level and hepato-renal function markers (aspartate aminotransferase, alanine aminotransferase, and creatinine). Moreover, a clear depletion in the level of the antioxidant and immune indicators (catalase, reduced glutathione, lysozymes, nitric oxide, and complement 3) was obvious in the A. sobria group. Treatment of the A. sobria-challenged fish with 1 mg/L CNNC recovered these parameters and enhanced fish survivability. Overall, CNNC can be used as a new versatile tool at 1 mg/L as a water treatment for combating the A. sobria challenge for sustainable aquaculture production.
Collapse
Affiliation(s)
- Rowida E. Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, PO Box 35516, Mansoura, Dakahlia, Egypt
| | - Abdelwahab A. Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Sameh H. Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO Box 12588, Egypt
| | - Amany I. Ahmed
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Mahmoud M. El-Saber
- Biochemistry Unit, Department of Genetic Resources; Desert Research Center, PO Box 11753, El-Matareya, Cairo, Egypt
| | - Ahmed E. Abdelhamid
- Polymers and Pigments Department, National Research Centre, 33 El-Buhouth St. Dokki, Giza, PO Box 12622, Egypt
| | - Simon J. Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91V8Y1, Galway, Ireland
| | - Abdelhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Afaf N. Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| |
Collapse
|
77
|
Mohamed EN, Abd-Elhamid AI, El-Bardan AA, Soliman HMA, Mohy-Eldin MS. Development of carboxymethyl cellulose-graphene oxide biobased composite for the removal of methylene blue cationic dye model contaminate from wastewater. Sci Rep 2023; 13:14265. [PMID: 37652988 PMCID: PMC10471753 DOI: 10.1038/s41598-023-41431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023] Open
Abstract
Utilizing Glutaraldehyde crosslinked sodium carboxymethyl cellulose (CMC-GA) hydrogel and its nanographene oxide composite (CMC-GA-GOx), an effective carboxymethyl cellulose-graphene oxide biobased composites adsorbent was developed for the adsorption removal of methylene blue (MB) cationic dye contaminate from industrial wastewater. The CMC-GA-GOx composites developed were characterized using FTIR, RAMAN, TGA, SEM, and EDX analysis instruments. Through batch experiments, several variables affecting the removal of MB dye, including the biocomposites GO:CMC composition, adsorption time, pH and temperature, initial MB concentration, adsorbent dosage, and NaCl concentration, were investigated under different conditions. The maximum dye removal percentages ranged between 93 and 98%. They were obtained using biocomposites CMC-GA-GO102 with 20% GO weight percent, adsorption time 25 min, adsorption temperature 25 °C, MB concentrations 10-30 ppm, adsorption pH 7.0, and 0.2 g adsorbent dose. The experimental data of the adsorption process suit the Langmuir isotherm more closely with a maximal monolayer adsorption capacity of 76.92 mg/g. The adsorption process followed the kinetic model of pseudo-second order. The removal of MB was exothermic and spontaneous from a thermodynamic standpoint. In addition, thermodynamic results demonstrated that adsorption operates most effectively at low temperatures. Finally, the reusability of the developed CMC-GA-GO102 has been proved through 10 successive cycles where only 14% of the MB dye removal percentage was lost. These results suggest that the developed CMC-GA-GO102 composite may be an inexpensive and reusable adsorbent for removing organic cationic dyes from industrial wastewater.
Collapse
Affiliation(s)
- Eman N Mohamed
- Department of Chemistry, Faculty of Science, Alexandria University, P.O.Box 426, Alexandria, 21321, Egypt.
| | - Ahmed I Abd-Elhamid
- Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al Arab, 21934, Alexandria, Egypt
| | - Ali A El-Bardan
- Department of Chemistry, Faculty of Science, Alexandria University, P.O.Box 426, Alexandria, 21321, Egypt
| | - Hesham M A Soliman
- Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al Arab, 21934, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al Arab, 21934, Alexandria, Egypt
| |
Collapse
|
78
|
Naderahmadian A, Eftekhari-Sis B, Jafari H, Zirak M, Padervand M, Mahmoudi G, Samadi M. Cellulose nanofibers decorated with SiO 2 nanoparticles: Green adsorbents for removal of cationic and anionic dyes; kinetics, isotherms, and thermodynamic studies. Int J Biol Macromol 2023; 247:125753. [PMID: 37429351 DOI: 10.1016/j.ijbiomac.2023.125753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Cellulose nanofibers decorated with SiO2 nanoparticles (SiO2-CNF) were prepared by the extraction of cellulose nanofibers from Yucca leaves, followed by modification with SiO2 nanoparticles, and used as efficient materials for the removal of both anionic and cationic dyes from the aqueous solution. Prepared nanostructures were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction powder (XRD), Thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM) analysis. The adsorption capacity of the nanostructures was investigated for the removal of both cationic (Methylene Blue, MB, and Crystal Violet, CV) and anionic (Eriochrome Black-T, EB) dyes. The kinetics of adsorption were investigated using some well-known models, including intraparticular diffusion (IPD), pseudo-first-order (PFO), pseudo-second-order (PSO), and Elovich. The adsorption isotherms were also explored using the Langmuir, Freundlich, Temkin, and Redlich-Peterson models. The obtained results revealed that the adsorption processes follow PSO kinetic and Langmuir isotherm models. Thermodynamic parameters of the adsorption were measured at different temperatures, indicating the feasibility and spontaneity of the adsorption. The pH and salt effects on adsorption were also explored. Finally, according to the reusability tests, the prepared adsorbents showed high recoverability without considerable loss in adsorption efficiency after five repeated runs.
Collapse
Affiliation(s)
- Aylar Naderahmadian
- Department of Chemistry, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran
| | - Bagher Eftekhari-Sis
- Department of Chemistry, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran.
| | - Hessam Jafari
- Department of Chemistry, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran
| | - Maryam Zirak
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Mohsen Padervand
- Department of Chemistry, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran
| | - Ghodrat Mahmoudi
- Department of Chemistry, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran; Samara State Technical University, Molodogvardeyskaya Str 244, Samara 443100, Russia
| | - Maryam Samadi
- Department of Chemistry, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran
| |
Collapse
|
79
|
Aslam J, Zehra S, Mobin M, Quraishi MA, Verma C, Aslam R. Metal/metal oxide-carbohydrate polymers framework for industrial and biological applications: Current advancements and future directions. Carbohydr Polym 2023; 314:120936. [PMID: 37173012 DOI: 10.1016/j.carbpol.2023.120936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Recently, the development and consumption of metal/metal oxide carbohydrate polymer nanocomposites (M/MOCPNs) are withdrawing significant attention because of their numerous salient features. Metal/metal oxide carbohydrate polymer nanocomposites are being used as environmentally friendly alternatives for traditional metal/metal oxide carbohydrate polymer nanocomposites exhibit variable properties that make them excellent prospects for a variety of biological and industrial uses. In metal/metal oxide carbohydrate polymer nanocomposites, carbohydrate polymers bind with metallic atoms and ions using coordination bonding in which heteroatoms of polar functional groups behave as adsorption centers. Metal/metal oxide carbohydrate polymer nanocomposites are widely used in woundhealing, additional biological uses and drug delivery, heavy ions removal or metal decontamination, and dye removal. The present review article features the collection of some major biological and industrial applications of metal/metal oxide carbohydrate polymer nanocomposites. The binding affinity of carbohydrate polymers with metal atoms and ions in metal/metal oxide carbohydrate polymer nanocomposites has also been described.
Collapse
Affiliation(s)
- Jeenat Aslam
- Department of Chemistry, College of Science, Taibah University, Yanbu 30799, Al-Madina, Saudi Arabia.
| | - Saman Zehra
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Mobin
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - M A Quraishi
- Interdisciplinary Research Centre for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Chandrabhan Verma
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 2533, Abu Dhabi, United Arab Emirates.
| | - Ruby Aslam
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
80
|
Hassanisaadi M, Saberi Riseh R, Rabiei A, Varma RS, Kennedy JF. Nano/micro-cellulose-based materials as remarkable sorbents for the remediation of agricultural resources from chemical pollutants. Int J Biol Macromol 2023; 246:125763. [PMID: 37429338 DOI: 10.1016/j.ijbiomac.2023.125763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Overusing pesticides, fertilizers, and synthetic dyes has significantly increased their presence in various parts of the environment. The transportation of these pollutants into agricultural soil and water through rivers, soils, and groundwater has seriously threatened human and ecosystem health. Applying techniques and materials to clean up agricultural sources from pesticides, heavy metals (HMs), and synthetic dyes (SDs) is one of the major challenges in this century. The sorption technique offers a viable solution to remediate these chemical pollutants (CHPs). Cellulose-based materials have become popular in nano and micro scales because they are widely available, safe to use, biodegradable, and have a significant ability to absorb substances. Nanoscale cellulose-based materials exhibit greater capacity in absorbing pollutants compared to their microscale counterparts because they possess a larger surface area. Many available hydroxyl groups (-OH) and chemical and physical modifications enable the incorporation of CHPs on to cellulose-based materials. Following this potential, this review aims to comprehensively summarize recent advancements in the field of nano- and micro-cellulose-based materials as effective adsorbents for CHPs, given the abundance of cellulosic waste materials from agricultural residues. The recent developments pertaining to the enhancement of the sorption capacity of cellulose-based materials against pesticides, HMs, and SDs, are deliberated.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Ali Rabiei
- Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom
| |
Collapse
|
81
|
Ye Y, Yu L, Lizundia E, Zhu Y, Chen C, Jiang F. Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chem Rev 2023; 123:9204-9264. [PMID: 37419504 DOI: 10.1021/acs.chemrev.2c00618] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Ionic conductors (ICs) find widespread applications across different fields, such as smart electronic, ionotronic, sensor, biomedical, and energy harvesting/storage devices, and largely determine the function and performance of these devices. In the pursuit of developing ICs required for better performing and sustainable devices, cellulose appears as an attractive and promising building block due to its high abundance, renewability, striking mechanical strength, and other functional features. In this review, we provide a comprehensive summary regarding ICs fabricated from cellulose and cellulose-derived materials in terms of fundamental structural features of cellulose, the materials design and fabrication techniques for engineering, main properties and characterization, and diverse applications. Next, the potential of cellulose-based ICs to relieve the increasing concern about electronic waste within the frame of circularity and environmental sustainability and the future directions to be explored for advancing this field are discussed. Overall, we hope this review can provide a comprehensive summary and unique perspectives on the design and application of advanced cellulose-based ICs and thereby encourage the utilization of cellulosic materials toward sustainable devices.
Collapse
Affiliation(s)
- Yuhang Ye
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Le Yu
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
- BCMaterials Lab, Basque Center for Materials, Applications and Nanostructures, Leioa 48940, Spain
| | - Yeling Zhu
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Chaoji Chen
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Feng Jiang
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
82
|
Khoo PS, Ilyas RA, Uda MNA, Hassan SA, Nordin AH, Norfarhana AS, Ab Hamid NH, Rani MSA, Abral H, Norrrahim MNF, Knight VF, Lee CL, Rafiqah SA. Starch-Based Polymer Materials as Advanced Adsorbents for Sustainable Water Treatment: Current Status, Challenges, and Future Perspectives. Polymers (Basel) 2023; 15:3114. [PMID: 37514503 PMCID: PMC10385024 DOI: 10.3390/polym15143114] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Over the past three decades, chemical and biological water contamination has become a major concern, particularly in the industrialized world. Heavy metals, aromatic compounds, and dyes are among the harmful substances that contribute to water pollution, which jeopardies the human health. For this reason, it is of the utmost importance to locate methods for the cleanup of wastewater that are not genuinely effective. Owing to its non-toxicity, biodegradability, and biocompatibility, starch is a naturally occurring polysaccharide that scientists are looking into as a possible environmentally friendly material for sustainable water remediation. Starch could exhibit significant adsorption capabilities towards pollutants with the substitution of amide, amino, carboxyl, and other functional groups for hydroxyl groups. Starch derivatives may effectively remove contaminants such as oil, organic solvents, pesticides, heavy metals, dyes, and pharmaceutical pollutants by employing adsorption techniques at a rate greater than 90%. The maximal adsorption capacities of starch-based adsorbents for oil and organic solvents, pesticides, heavy metal ions, dyes, and pharmaceuticals are 13,000, 66, 2000, 25,000, and 782 mg/g, respectively. Although starch-based adsorbents have demonstrated a promising future for environmental wastewater treatment, additional research is required to optimize the technique before the starch-based adsorbent can be used in large-scale in situ wastewater treatment.
Collapse
Affiliation(s)
- Pui San Khoo
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - R A Ilyas
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - M N A Uda
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Faculty of Mechanical Engineering and Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Shukur Abu Hassan
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - A H Nordin
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - A S Norfarhana
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - N H Ab Hamid
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - M S A Rani
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - Hairul Abral
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang 25163, Indonesia
- Research Collaboration Center for Nanocellulose, BRIN-Andalas University, Padang 25163, Indonesia
| | - M N F Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - V F Knight
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Chuan Li Lee
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - S Ayu Rafiqah
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
83
|
Eldeeb BA, El-raheem WMA, Elbeltagi S. Green synthesis of biocompatible Fe 3 O 4 magnetic nanoparticles using Citrus Sinensis peels extract for their biological activities and magnetic- hyperthermia applications.. [DOI: 10.21203/rs.3.rs-3010022/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Plants include active chemicals known as phytochemicals and biomolecules that serve as decreasing and biostability factors for nanoparticle (NP) creation. Citrus Sinensis peels are rich in phenolics, flavonoids, antioxidants, and biophysical benefits. Herein, we prepared superparamagnetic iron oxide nanoparticles (SPIONs) by co-precipitation using Citrus Sinensis peel extract as a novel green synthesis method. The antioxidant, anti-inflammatory, dye degradation activities, and antimicrobial activities of Fe3O4 MNPs were investigated. Furthermore, the produced materials were characterized using FTIR, UV, TEM, VSM, and XRD analysis. The Fe3O4 MNPs showed higher antibacterial activities against multi antibiotic resistant bacterial strains: Escherichia coli, Streptococcus mutans, Candida albicans, Staphylococcus aureus, Bacillus subtilis, and Klebsiella pneumonia. The sample has generated a lot of attention in the scientific community for magnetic hyperthermia (MHT) applications. The maximum value of the specific absorption rate (SAR) was evaluated at sample concentrations of 10mg under the magnetic field condition. Additionally, these newly fabricated SPIONs virtually achieve significant execution under the alternating magnetic field (AMF) in fluid HT and are suitable for biomedical applications.
Collapse
|
84
|
Liu X, Liu F. Bimetallic (AuAg, AuPd and AgPd) nanoparticles supported on cellulose-based hydrogel for reusable catalysis. Carbohydr Polym 2023; 310:120726. [PMID: 36925251 DOI: 10.1016/j.carbpol.2023.120726] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Biopolymer-derived hydrogels with low-cost and sustainable features have been considered as fascinating supported materials for metal nanoparticles. Cellulose, as the most abundant biopolymer, is a renewable raw material to prepare biopolymer-derived hydrogels for catalysis. Here, a cellulose-based hydrogel is designed to load bimetallic (AuAg, AuPd and AgPd) nanoparticles. 4-Nitrophenol reduction and Suzuki-Miyaura coupling reactions are selected to evaluate and compare the catalytic performance of the resulting bimetallic nanoparticle-loaded cellulose-based composite hydrogels. The bimetallic nanocomposite hydrogels are easy to be recycled over 10 times during the catalytic experiments and possess good applicability and generality for various substrates. The catalytic activity of bimetallic nanocomposite hydrogels was compared with recent literatures. In addition, the possible catalytic mechanism is also proposed. This work is expected to give a new insight for designing and preparing bimetallic nanoparticle-based cellulose hydrogels and proves its applicability and prospect in the catalytic field.
Collapse
Affiliation(s)
- Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Fangfei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
85
|
Oh J, Park H, Kim J, Park Y. Reusable and Biodegradable Separation Membranes Prepared from Common Mushrooms for the Removal of Oily and Particulate Contaminants from Water. ACS APPLIED BIO MATERIALS 2023. [PMID: 37285584 DOI: 10.1021/acsabm.3c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mushroom chitin membranes with controllable pore structures were fabricated through a simple process with naturally abundant Agaricus bisporus mushrooms. A freeze-thaw method was applied to alter the pore structures of the membranes, which consist of chitin fibril clusters within the glucan matrix. With tunable pore size and distribution, mushroom chitin membranes could effectively separate stable oil/water emulsions (dodecane, toluene, isooctane, and chili oil) with various chemical properties and concentrations and particle contaminants (carbon black and microfibers) from water. Chitin fibrils tightly pack with each other to form a dense membrane, leading to no permeation of contaminants or water. An increasing number of applied freeze-thaw cycles confers more tortuous pore structures throughout the mushroom chitin membranes, leading to higher flux while maintaining rejection performance. The 3D simulation constructed by the X-ray computed tomography and GeoDict software also demonstrated capturing a considerable amount of contaminants within the membranes' pores, which can be easily removed by water rinsing for further successive filtration. Furthermore, mushroom chitin membranes were almost completely biodegraded after approximately a month of being buried in the soil or kept in a lysozyme solution while possessing mechanical durability demonstrated by consistent filtration performance for repeated usage up to 15 cycles under ambient and external pressure. This research is a proof of concept that mushroom-derived chitin develops functional and biodegradable materials for environmental applications with scalability.
Collapse
Affiliation(s)
- Jeongmin Oh
- Department of Clothing and Textiles, Yonsei University, Seoul 03772, Korea
| | - Hanjou Park
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
| | - Jooyoun Kim
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
| | - Yaewon Park
- Department of Clothing and Textiles, Yonsei University, Seoul 03772, Korea
| |
Collapse
|
86
|
Ahmad FA. The use of agro-waste-based adsorbents as sustainable, renewable, and low-cost alternatives for the removal of ibuprofen and carbamazepine from water. Heliyon 2023; 9:e16449. [PMID: 37292321 PMCID: PMC10245173 DOI: 10.1016/j.heliyon.2023.e16449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
The occurrence of residual pharmaceuticals in the aquatic environment poses major toxicological impacts and adds to the increasing pressure on water resources. Many countries are already suffering from water scarcity, and with the burdening costs of water and wastewater treatment, the race towards innovative sustainable strategies for pharmaceutical remediation is ongoing. Out of the available treatment methods, adsorption proved to be a promising, environmentally friendly technique, particularly when efficient waste-based adsorbents are produced from agricultural residues, thus maximizing the value of wastes, minimizing production costs, and saving natural resources from depletion. Among the residual pharmaceuticals, ibuprofen and carbamazepine are heavily consumed and highly occurring in the environment. This paper aims to review the most recent literature on the application of agro-waste-based adsorbents as sustainable alternatives for the removal of ibuprofen and carbamazepine from contaminated waters. Highlights on the major mechanisms implicated in the adsorption of ibuprofen and carbamazepine are presented, and light is shed on multiple operational parameters that hold a key role in the adsorption process. This review also highlights the effects of different production parameters on adsorption efficiency and discusses many limitations currently encountered. Finally, an analysis is included to compare the efficiency of agro-waste-based adsorbents relative to other green and synthetic adsorbents.
Collapse
|
87
|
Bhatt P, Joshi S, Urper Bayram GM, Khati P, Simsek H. Developments and application of chitosan-based adsorbents for wastewater treatments. ENVIRONMENTAL RESEARCH 2023; 226:115530. [PMID: 36863653 DOI: 10.1016/j.envres.2023.115530] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/05/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Water quality is deteriorating continuously as increasing levels of toxic inorganic and organic contaminants mostly discharging into the aquatic environment. Removal of such pollutants from the water system is an emerging research area. During the past few years use of biodegradable and biocompatible natural additives has attracted considerable attention to alleviate pollutants from wastewater. The chitosan and its composites emerged as a promising adsorbents due to their low price, abundance, amino, and hydroxyl groups, as well as their potential to remove various toxins from wastewater. However, a few challenges associated with its practical use include lack of selectivity, low mechanical strength, and solubility in acidic medium. Therefore, several approaches for modification have been explored to improve the physicochemical properties of chitosan for wastewater treatment. Chitosan nanocomposites found effective for the removal of metals, pharmaceuticals, pesticides, microplastics from the wastewaters. Nanoparticle doped with chitosan in the form of nano-biocomposites has recently gained much attention and proven a successful tool for water purification. Hence, applying chitosan-based adsorbents with numerous modifications is a cutting-edge approach to eliminating toxic pollutants from aquatic systems with the global aim of making potable water available worldwide. This review presents an overview of distinct materials and methods for developing novel chitosan-based nanocomposites for wastewater treatment.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Samiksha Joshi
- Graphic Era Hill University Bhimtal, Nainital, Uttarakhand, India
| | - Gulsum Melike Urper Bayram
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Priyanka Khati
- Crop Production Division, Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
88
|
Rosales TKO, Fabi JP. Valorization of polyphenolic compounds from food industry by-products for application in polysaccharide-based nanoparticles. Front Nutr 2023; 10:1144677. [PMID: 37293672 PMCID: PMC10244521 DOI: 10.3389/fnut.2023.1144677] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
In the last decades, evidence has indicated the beneficial properties of dietary polyphenols. In vitro and in vivo studies support that the regular intake of these compounds may be a strategy to reduce the risks of some chronic non-communicable diseases. Despite their beneficial properties, they are poorly bioavailable compounds. Thus, the main objective of this review is to explore how nanotechnology improves human health while reducing environmental impacts with the sustainable use of vegetable residues, from extraction to the development of functional foods and supplements. This extensive literature review discusses different studies based on the application of nanotechnology to stabilize polyphenolic compounds and maintain their physical-chemical stability. Food industries commonly generate a significant amount of solid waste. Exploring the bioactive compounds of solid waste has been considered a sustainable strategy in line with emerging global sustainability needs. Nanotechnology can be an efficient tool to overcome the challenge of molecular instability, especially using polysaccharides such as pectin as assembling material. Complex polysaccharides are biomaterials that can be extracted from citrus and apple peels (from the juice industries) and constitute promising wall material stabilizing chemically sensitive compounds. Pectin is an excellent biomaterial to form nanostructures, as it has low toxicity, is biocompatible, and is resistant to human enzymes. The potential extraction of polyphenols and polysaccharides from residues and their inclusion in food supplements may be a possible application to reduce environmental impacts and constitutes an approach for effectively including bioactive compounds in the human diet. Extracting polyphenolics from industrial waste and using nanotechnology may be feasible to add value to food by-products, reduce impacts on nature and preserve the properties of these compounds.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
89
|
Karim A, Raji Z, Karam A, Khalloufi S. Valorization of Fibrous Plant-Based Food Waste as Biosorbents for Remediation of Heavy Metals from Wastewater-A Review. Molecules 2023; 28:molecules28104205. [PMID: 37241944 DOI: 10.3390/molecules28104205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mobilization of heavy metals in the environment has been a matter of concern for several decades due to their toxicity for humans, environments, and other living organisms. In recent years, use of inexpensive and abundantly available biosorbents generated from fibrous plant-based food-waste materials to remove heavy metals has garnered considerable research attention. The aim of this review is to investigate the applicability of using fibrous plant-based food waste, which comprises different components such as pectin, hemicellulose, cellulose, and lignin, to remove heavy metals from wastewater. This contribution confirms that plant-fiber-based food waste has the potential to bind heavy metals from wastewater and aqueous solutions. The binding capacities of these biosorbents vary depending on the source, chemical structure, type of metal, modification technology applied, and process conditions used to improve functionalities. This review concludes with a discussion of arguments and prospects, as well as future research directions, to support valorization of fibrous plant-based food waste as an efficient and promising strategy for water purification.
Collapse
Affiliation(s)
- Ahasanul Karim
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Zarifeh Raji
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Antoine Karam
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Seddik Khalloufi
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
90
|
Yu M, Zhang K, Guo X, Qian L. Effects of the Degree of Deacetylation on the Single-Molecule Mechanics of Chitosans. J Phys Chem B 2023; 127:4261-4267. [PMID: 37141100 DOI: 10.1021/acs.jpcb.3c01661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chitosan is one of the most prevalent biomass materials, and its physicochemical and biological characteristics, such as solubility, crystallinity, flocculation ability, biodegradability, and amino-related chemical processes, are directly connected to the degree of deacetylation (DD). However, the specifics about the effects of the DD on the characteristics of chitosan are still unclear up to now. In this work, atomic force microscopy-based single-molecule force spectroscopy was used to study the role of the DD in the single-molecule mechanics of chitosan. Even though the DD varies largely (17% ≤ DD ≤ 95%), the experimental results demonstrate that the chitosans exhibit the same natural (in nonane) and backbone (in dimethyl sulfoxide (DMSO)) single-chain elasticity. This suggests that chitosans have the same intra-chain hydrogen bond (H-bond) state in nonane and to which these H-bonds can be eliminated in DMSO. However, when the experiments are carried out in ethylene glycol (EG) and water, the single-chain mechanics are increased with the increases of the DD. The energy consumed to stretch chitosans in water is larger than that in EG, indicating that amino can form a strong interaction with water and induce the formation of the binding water around the sugar rings. The strong interaction between water and amino may be the key factor for the well solubility and chemical activity of chitosan. The results of this work are anticipated to provide fresh light on the significant role played by the DD and water in the structures and functions of chitosan at the single molecular level.
Collapse
Affiliation(s)
- Miao Yu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Kai Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Xin Guo
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
91
|
Wang S, Zhang P, Li Y, Li J, Li X, Yang J, Ji M, Li F, Zhang C. Recent advances and future challenges of the starch-based bio-composites for engineering applications. Carbohydr Polym 2023; 307:120627. [PMID: 36781278 DOI: 10.1016/j.carbpol.2023.120627] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
Starch is regarded as one of the most promising sustainable materials due to its abundant yield and excellent biodegradability. From the perspective of practical engineering applications, this paper systematically describes the development of starch-based bio-composites in the past decade. Packaging properties, processing characteristics, and current challenges for the efficient processing of starch-based bio-composites are reviewed in industrial packaging. Green coatings, binders, adsorbents, flocculants, flame retardants, and emulsifiers are used as examples to illustrate the versatility of starch-based bio-composites in chemical agent applications. In addition, the work compares the application of starch-based bio-composites in conventional spinning with emerging spinning technologies and describes the challenges of electrostatic spinning for preparing nanoscale starch-based fibers. In terms of flexible electronics, the starch-based bio-composites are regard as a solid polymer electrolyte and easily modified porous material. Moreover, we describe the applications of the starch-based gels in tissue engineering, controlled drug release, and medical dressings. Finally, the theoretical input and technical guidance in the advanced sustainable engineering application of the starch-based bio-composites are provided in the work.
Collapse
Affiliation(s)
- Shen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Pengfei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Junru Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Xinlin Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Jihua Yang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Maocheng Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (M of E), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Fangyi Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (M of E), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Chuanwei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
92
|
Lima Paulino JCP, da Silva AF, da Silva Santos DH, de Carvalho Nagliate P, Meili L. Hotspots and Trends of Layered Double Hydroxide-based Adsorbents for Polluted Water Treatment: Insights from Bibliometric Analysis. ENVIRONMENTAL MANAGEMENT 2023; 71:1098-1109. [PMID: 36539637 DOI: 10.1007/s00267-022-01770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The use of layered double hydroxides (LDHs) as adsorbent for water treatment has been gaining relevance in recent years. In this context, this work aimed to map, through a bibliometric study, the extent of research that deals with the theme. The scientific database used was the Web of Science, and the chronology of the search consideredthe period from 1997 to 2022. The bibliometix R-package and VOSviewer software were used in this study. The searches retrieved a total of 663 documents, from 69 countries, distributed among all continents, which China (328), India (51) and Japan (40) were the most productive countries. Important journals in the environmental area and with high impact factor, such as Chemical Engineering Journal (44), Applied Clay Science (38), Journal of Hazardous Materials (35) and Chemosphere (27) most published in the area. The network of keywords used by the authors indicates that the publications retrieved deal mainly with aspects related to the efficiency of (LDHs) in the removal of different pollutants, the composition, the synthesis route and the association with other materials and/or techniques. The result of this study constitutes an important tool for directing future research on the subject.
Collapse
Affiliation(s)
- Juliana Cristina Pereira Lima Paulino
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Av. Lourival de Melo Mota, s/n, Campus A. C. Simões, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - Anamália Ferreira da Silva
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Av. Lourival de Melo Mota, s/n, Campus A. C. Simões, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - Danilo Henrique da Silva Santos
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Av. Lourival de Melo Mota, s/n, Campus A. C. Simões, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - Patrícia de Carvalho Nagliate
- School of Nursing, Federal University of Alagoas, Av. Lourival de Melo Mota, s/n, Campus A. C. Simões, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - Lucas Meili
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Av. Lourival de Melo Mota, s/n, Campus A. C. Simões, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil.
| |
Collapse
|
93
|
Almuslem AS, Alnaim N, Ibrahim SS, Ibrahim MA. Green Synthesis and Characteristics of Cellulose Nanocrystal/Poly Acrylic Acid Nanocomposite Thin Film for Organic Dye Adsorption during Water Treatment. Polymers (Basel) 2023; 15:polym15092154. [PMID: 37177300 PMCID: PMC10180910 DOI: 10.3390/polym15092154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Nanocellulose shows potential as an effective natural adsorbent for removing harmful contaminants from wastewater. This paper describes the development of innovative nanocellulose thin films made of cellulose nanocrystals (CNCs), polyacrylic acid (PAA), and active carbon (AC) as adsorbent materials for absorbing azo dyes from wastewater. The CNCs were recovered from sugarcane bagasse using alkali treatment and acid hydrolysis. The composition and processing parameters of the thin films were optimized, and their adsorption capacity was determined using thermodynamic isotherms and adsorption kinetics. Adsorption characteristics such as the methylene blue (MB) dye concentration, contact time, temperature, and pH were investigated to determine how they affected adsorption. The results show that the adsorption process follows pseudo-second-order kinetics. At an adsorbent mass of 50 mg, dye concentration of 50 ppm in 50 mL, and contact period of 120 min at 25 °C, the thin film comprising 64 wt% CNC, 16 wt% PAA, and 20 wt% AC showed high dye removal efficiency (86.3%) and adsorption capacity (43.15 mg/g). The MB removal efficiency increased to 95.56% and the adsorption capacity to 47.78 mg/g when the medium's pH was gradually increased from neutral to alkaline. The nontoxicity, low production cost, water stability, easy recovery, and high adsorption capacity of these membranes make them suitable for water treatment systems.
Collapse
Affiliation(s)
- Amani Saleh Almuslem
- Physics Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Nisrin Alnaim
- Physics Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Sobhy S Ibrahim
- Physics Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mostafa A Ibrahim
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- Production and R&D Unit, NanoFab Technology Company, 6th October City, Giza 11795, Egypt
| |
Collapse
|
94
|
Ghalkhani M, Teymourinia H, Ebrahimi F, Irannejad N, Karimi-Maleh H, Karaman C, Karimi F, Dragoi EN, Lichtfouse E, Singh J. Engineering and application of polysaccharides and proteins-based nanobiocatalysts in the recovery of toxic metals, phosphorous, and ammonia from wastewater: A review. Int J Biol Macromol 2023; 242:124585. [PMID: 37105252 DOI: 10.1016/j.ijbiomac.2023.124585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Global waste production is anticipated reach to 2.59 billion tons in 2030, thus accentuating issues of environmental pollution and health security. 37 % of waste is landfilled, 33 % is discharged or burned in open areas, and only 13.5 % is recycled, which makes waste management poorly efficient in the context of the circular economy. There is therefore a need for methods to recycle waste into valuable materials through resource recovery process. Progress in the field of recycling is strongly dependent on the development of efficient, stable, and reusable, yet inexpensive catalysts. In this case, a growing attention has been paid to development and application of nanobiocatalysts with promising features. The main purpose of this review paper is to: (i) introduce nanobiomaterials and describe their effective role in the preparation of functional nanobiocatalysts for the recourse recovery aims; (ii) provide production methods and the efficiency improvement of nanobaiocatalysts; (iii) give comprehensive description of valued resource recovery for reducing toxic chemicals from the contaminated environment; (iv) describe various technologies for the valued resource recovery; (v) state the limitation of the valued resource recovery; (vi) and finally economic importance and current scenario of nanobiocatalysts strategies applicable for the resource recovery processes.
Collapse
Affiliation(s)
- Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran.
| | | | - Fatemeh Ebrahimi
- Thin Layer and Nanotechnology Laboratory, Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Neda Irannejad
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld. D. Mangeron no 73, 700050, Iasi, Romania
| | - Eric Lichtfouse
- Tate Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| | - Jagpreet Singh
- Department of Chemical Engineering, University Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| |
Collapse
|
95
|
Tao Y, Du J, Cheng Y, Lu J, Min D, Wang H. Advances in Application of Cellulose-MOF Composites in Aquatic Environmental Treatment: Remediation and Regeneration. Int J Mol Sci 2023; 24:ijms24097744. [PMID: 37175452 PMCID: PMC10177928 DOI: 10.3390/ijms24097744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Metal organic frameworks (MOFs) have gained remarkable interest in water treatment due to their fascinating characteristics, such as tunable functionality, large specific surface area, customizable pore size and porosity, and good chemical and thermal stability. However, MOF particles tend to easily agglomerate in nanoscale, thus decreasing their activity and processing convenience. It is necessary to shape MOF nanocrystals into maneuverable structures. The in situ growth or ex situ incorporation of MOFs into inexpensive and abundant cellulose-family materials can be effective strategies for the stabilization of these MOF species, and therefore can make available a range of enhanced properties that expand the industrial application possibilities of cellulose and MOFs. This paper provides a review of studies on recent advances in the application of multi-dimensional MOF-cellulose composites (e.g., aerogels, membranes, and bulk materials) in wastewater remediation (e.g., metals, dyes, drugs, antibiotics, pesticides, and oils) and water regeneration by adsorption, photo- or chemocatalysis, and membrane separation strategies. The advantages brought about by combining MOFs and cellulose are described, and the performance of MOF-cellulose is described and compared to its counterparts. The mechanisms of relative MOF-cellulose materials in processing aquatic pollutants are included. Existing challenges and perspectives for future research are proposed.
Collapse
Affiliation(s)
- Yehan Tao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Cheng
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Douyong Min
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Haisong Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
96
|
Karić N, Vukčević M, Maletić M, Dimitrijević S, Ristić M, Grujić AP, Trivunac K. Physico-chemical, structural, and adsorption properties of amino-modified starch derivatives for the removal of (in)organic pollutants from aqueous solutions. Int J Biol Macromol 2023; 241:124527. [PMID: 37086770 DOI: 10.1016/j.ijbiomac.2023.124527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
In this study, an environmentally sustainable process of crystal violet, congo red, methylene blue, brilliant green, Pb2+, Cd2+, and Zn2+ ions adsorption from aqueous solutions onto amino-modified starch derivatives was investigated. The degree of substitution, elemental analysis, swelling capacity, solubility, and FTIR, XRD, and SEM techniques were used to characterize the adsorbents. The influence of pH, contact time, temperature, and initial concentration has been studied to optimize the adsorption conditions. The amino-modified starch was the most effective in removing crystal violet (CV) (65.31-80.46 %) and Pb2+ (67.44-80.33 %) within the optimal adsorption conditions (pH 5, 10 mg dm-3, 25 °C, 180 min). The adsorption of CV could be described by both Langmuir and Freundlich adsorption isotherms, while the adsorption of Pb2+ ions was better described by the Langmuir isotherm. The pseudo-second order model can be used to describe the adsorption kinetics of CV and Pb2+ on all tested samples. The thermodynamic study indicated that the adsorption of CV was exothermic, while the Pb2+ adsorption was endothermic. The simultaneous removal of CV and Pb2+ from the binary mixture has shown their competitive behavior. Thus, the amino-modified starch is a promising eco-friendly adsorbent for the removal of dyes and heavy metals from polluted water.
Collapse
Affiliation(s)
- Nataša Karić
- Innovation Center of Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia.
| | - Marija Vukčević
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Marina Maletić
- Innovation Center of Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | | | - Mirjana Ristić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Aleksandra Perić Grujić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Katarina Trivunac
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| |
Collapse
|
97
|
Marín-Sáez J, Lopez-Ruiz R, Ferreira IMPLVO, Cunha SC. Gastrointestinal bioaccessibility and fiber mitigation of tropane alkaloids assessed on tea and cookies by in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37052200 DOI: 10.1002/jsfa.12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Tropane alkaloids (TAs) are toxic compounds with a high anticholinergic effect. They have been widely analyzed in food samples, but their fate in the gastrointestinal tract has not been evaluated yet. RESULTS In this study, static in vitro digestion was performed to assess gastrointestinal bioaccessibility of the most common TAs on tea and home-made cookies. Cookies enriched with dietary fiber (pectin, arabinogalactan, and κ-carrageenan) were also tested to evaluate their influence on TA bioaccessibility. Two extraction methods and a liquid chromatography-mass spectrometry method were optimized and validated. Bioaccessibility for tea (60-105%) was higher than for cookies (39-93%) (P = 0.001-0.002), which indicates TAs could be more easily absorbed when they are contaminating tea. Digestion of cookies enriched with 50 g kg-1 of different fibers showed that, although no significant changes were observed in the gastric phase (P = 0.084-0.920), duodenal bioaccessibility was significantly reduced (P = 0.008-0.039). Pectin was the fiber with a better mitigation effect for all the compounds. CONCLUSION TAs bioaccessibility was determined after in vitro digestion of contaminated tea and cookies. Dietary fiber seems to be a promising mitigation strategy, significantly reducing TA bioaccessibility percentages. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Jesús Marín-Sáez
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Almeria, Spain
| | - Rosalía Lopez-Ruiz
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Almeria, Spain
| | | | - Sara Cristina Cunha
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
98
|
Anselmo S, Avola T, Kalouta K, Cataldo S, Sancataldo G, Muratore N, Foderà V, Vetri V, Pettignano A. Sustainable soy protein microsponges for efficient removal of lead (II) from aqueous environments. Int J Biol Macromol 2023; 239:124276. [PMID: 37011754 DOI: 10.1016/j.ijbiomac.2023.124276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Protein-based materials recently emerged as good candidates for water cleaning applications, due to the large availability of the constituent material, their biocompatibility and the ease of preparation. In this work, new adsorbent biomaterials were created from Soy Protein Isolate (SPI) in aqueous solution using a simple environmentally friendly procedure. Protein microsponge-like structures were produced and characterized by means of spectroscopy and fluorescence microscopy methods. The efficiency of these structures in removing lead (Pb2+) ions from aqueous solutions was evaluated by investigating the adsorption mechanisms. The molecular structure and, consequently, the physico-chemical properties of these aggregates can be readily tuned by selecting the pH of the solution during production. In particular, the presence of β-structures typical of amyloids as well as an environment characterized by a lower dielectric constant seem to enhance metal binding affinity revealing that hydrophobicity and water accessibility of the material are key features affecting the adsorption efficiency. Presented results provide new knowledge on how raw plant proteins can be valorised for the production of new biomaterials. This may offer extraordinary opportunities towards the design and production of new tailorable biosorbents which can also be exploited for several cycles of purification with minimal reduction in performance. SYNOPSIS: Innovative, sustainable plant-protein biomaterials with tunable properties are presented as green solution for water purification from lead (II) and the structure-function relationship is discussed.
Collapse
|
99
|
Wedamulla NE, Fan M, Choi YJ, Kim EK. Effect of pectin on printability and textural properties of potato starch 3D food printing gel during cold storage. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
100
|
A review on remediation of dye adulterated system by ecologically innocuous "biopolymers/natural gums-based composites". Int J Biol Macromol 2023; 231:123240. [PMID: 36639083 DOI: 10.1016/j.ijbiomac.2023.123240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The mitigation of wastewater exploiting biopolymers/natural gums-based composites is an appealing research theme in today's scenario. The following review presents a comprehensive description of the polysaccharides derived from biopolymers (chitosan, collagen, cellulose, starch, pectin, lignin, and alginate) and natural gums (guar, gellan, carrageenan, karaya, moringa oliefera, tragacanth, and xanthan gum). These biopolymers/natural gums-based composites depicted excellent surface functionality, non-toxicity, economic and environmental viability, which corroborated them as potential candidates in the decontamination process. The presence of -OH, -COOH, and -NH functional groups in their backbone rendered them tailorable for modification/functionalization, and anchor an array of pollutants via electrostatic interaction, hydrogen bonding, and Van der Waals forces. Further, due to these functional moieties, these bio-based composites revealed an excellent adsorption capacity than conventional adsorbents. This review provides an overview of the classification of biopolymers/natural gums based on their origin, different ways of their modification, and the remediation of dye-contaminated aqueous environments employing diverse bio-based adsorbents. The isotherm, kinetic modelling along with thermodynamics of the adsorption process is discussed. Additionally, the reusable efficacy of these bio-adsorbents is reviewed.
Collapse
|