51
|
Woo J, Santasusagna S, Banks J, Pastor-Lopez S, Yadav K, Carceles-Cordon M, Dominguez-Andres A, Den RB, Languino LR, Pippa R, Lallas CD, Lu-Yao G, Kelly WK, Knudsen KE, Rodriguez-Bravo V, Tewari AK, Prats JM, Leiby BE, Gomella LG, Domingo-Domenech J. Urine Extracellular Vesicle GATA2 mRNA Discriminates Biopsy Result in Men with Suspicion of Prostate Cancer. J Urol 2020; 204:691-700. [PMID: 32250729 PMCID: PMC7483587 DOI: 10.1097/ju.0000000000001066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Prostate specific antigen has limited performance in detecting prostate cancer. The transcription factor GATA2 is expressed in aggressive prostate cancer. We analyzed the predictive value of urine extracellular vesicle GATA2 mRNA alone and in combination with a multigene panel to improve detection of prostate cancer and high risk disease. MATERIALS AND METHODS GATA2 mRNA was analyzed in matched extracellular vesicles isolated from urines before and after prostatectomy (16) and paired urine and tissue prostatectomy samples (19). Extracellular vesicle GATA2 mRNA performance to distinguish prostate cancer and high grade disease was tested in training (52) and validation (165) cohorts. The predictive value of a multigene score including GATA2, PCA3 and TMPRSS2-ERG (GAPT-E) was tested in both cohorts. RESULTS Confirming its prostate origin, urine extracellular vesicle GATA2 mRNA levels decreased significantly after prostatectomy and correlated with prostate cancer tissue GATA2 mRNA levels. In the training and validation cohort GATA2 discriminated prostate cancer (AUC 0.74 and 0.66) and high grade disease (AUC 0.78 and 0.65), respectively. Notably, the GAPT-E score improved discrimination of prostate cancer (AUC 0.84 and 0.72) and high grade cancer (AUC 0.85 and 0.71) in both cohorts when compared with each biomarker alone and PT-E (PCA3 and TMPRSS2-ERG). A GAPT-E score for high grade prostate cancer would avoid 92.1% of unnecessary prostate biopsies, compared to 61.9% when a PT-E score is used. CONCLUSIONS Urine extracellular vesicle GATA2 mRNA analysis improves the detection of high risk prostate cancer and may reduce the number of unnecessary biopsies.
Collapse
Affiliation(s)
- J Woo
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - S Santasusagna
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - J Banks
- Division of Biostatistics and Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - S Pastor-Lopez
- Urology Department, Hospital Sant Jaume Calella, Barcelona, Spain
| | - K Yadav
- Urology Department, Icahn School of Medicine at Mount Sinai, New York, New York
| | - M Carceles-Cordon
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - A Dominguez-Andres
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - R B Den
- Radiation Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - L R Languino
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - R Pippa
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - C D Lallas
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - G Lu-Yao
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - W K Kelly
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - K E Knudsen
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - V Rodriguez-Bravo
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - A K Tewari
- Urology Department, Icahn School of Medicine at Mount Sinai, New York, New York
| | - J M Prats
- Urology Department, Hospital Sant Jaume Calella, Barcelona, Spain
| | - B E Leiby
- Division of Biostatistics and Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - L G Gomella
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Josep Domingo-Domenech
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
52
|
LINC00675 activates androgen receptor axis signaling pathway to promote castration-resistant prostate cancer progression. Cell Death Dis 2020; 11:638. [PMID: 32801300 PMCID: PMC7429955 DOI: 10.1038/s41419-020-02856-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022]
Abstract
The development of prostate cancer (PCa) from androgen-deprivation therapy (ADT) sensitive to castration resistant (CRPC) seriously impacts life quality and survival of PCa patients. Emerging evidence shows that long noncoding RNAs (lncRNAs) play vital roles in cancer initiation and progression. However, the inherited mechanisms of how lncRNAs participate in PCa progression and treatment resistance remain unclear. Here, we found that a long noncoding RNA LINC00675 was upregulated in androgen-insensitive PCa cell lines and CRPC patients, which promoted PCa progression both in vitro and in vivo. Knockdown of LINC00675 markedly suppressed tumor formation and attenuated enzalutamide resistance of PCa cells. Mechanistically, LINC00675 could directly modulate androgen receptor's (AR) interaction with mouse double minute-2 (MDM2) and block AR's ubiquitination by binding to it. Meanwhile, LINC00675 could bind to GATA2 mRNA and stabilize its expression level, in which GATA2 could act as a co-activator in the AR signaling pathway. Notably, we treated subcutaneous xenografts models with enzalutamide and antisense oligonucleotides (ASO) targeting LINC00675 in vivo and found that targeting LINC00675 would benefit androgen-deprivation-insensitive models. Our findings disclose that the LINC00675/MDM2/GATA2/AR signaling axis is a potential therapeutic target for CRPC patients.
Collapse
|
53
|
Makovoz B, Møller R, Eriksen AZ, tenOever BR, Blenkinsop TA. SARS-CoV-2 Infection of Ocular Cells from Human Adult Donor Eyes and hESC-Derived Eye Organoids. SSRN 2020:3650574. [PMID: 32742243 PMCID: PMC7385483 DOI: 10.2139/ssrn.3650574] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/15/2020] [Indexed: 01/10/2023]
Abstract
The outbreak of COVID-19 caused by the SARS-CoV-2 virus has created an unparalleled disruption of global behavior and a significant loss of human lives. To minimize SARS-CoV-2 spread, understanding the mechanisms of infection from all possible viral entry routes is essential. As aerosol transmission is thought to be the primary route of spread, we sought to investigate whether the eyes are potential entry portals for SARS-CoV-2. While virus has been detected in the eye, in order for this mucosal membrane to be a bone fide entry source SARS-CoV-2 would need the capacity to productively infect ocular surface cells. As such, we conducted RNA sequencing in ocular cells isolated from adult human cadaver donor eyes as well as from a pluripotent stem cell-derived whole eye organoid model to evaluate the expression of ACE2 and TMPRSS2, essential proteins that mediate SARS-CoV-2 viral entry. We also infected eye organoids and adult human ocular cells with SARS-CoV-2 and evaluated virus replication and the host response to infection. We found the limbus was most susceptible to infection, whereas the central cornea exhibited only low levels of replication. Transcriptional profiling of the limbus upon SARS-CoV-2 infection, found that while type I or III interferons were not detected in the lung epithelium, a significant inflammatory response was mounted. Together these data suggest that the human eye can be directly infected by SARS-CoV-2 and thus is a route warranting protection. Funding: The National Eye Institute (NEI), Bethesda, MD, USA, extramural grant 1R21EY030215-01 and the Icahn School of Medicine at Mount Sinai supported this study.
Collapse
Affiliation(s)
- Bar Makovoz
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rasmus Møller
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anne Zebitz Eriksen
- Department of Cell Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin R. tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Timothy A Blenkinsop
- Department of Cell Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
54
|
Holly JMP, Biernacka K, Perks CM. The role of insulin-like growth factors in the development of prostate cancer. Expert Rev Endocrinol Metab 2020; 15:237-250. [PMID: 32441162 DOI: 10.1080/17446651.2020.1764844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Preclinical, clinical, and population studies have provided robust evidence for an important role for the insulin-like growth factor (IGF) system in the development of prostate cancer. AREAS COVERED An overview of the IGF system is provided. The evidence implicating the IGF system in the development of prostate cancer is summarized. The compelling evidence culminated in a number of clinical trials of agents targeting the system; the reasons for the failure of these trials are discussed. EXPERT OPINION Clinical trials of agents targeting the IGF system in prostate cancer were terminated due to limited objective clinical responses and are unlikely to be resumed unless a convincing predictive biomarker is identified that would enable the selection of likely responders. The aging population and increased screening will lead to greater diagnosis of prostate cancer. Although the vast majority will be indolent disease, the epidemics of obesity and diabetes will increase the proportion that progress to clinical disease. The increased population of worried men will result in more trials aimed to reduce the risk of disease progression; actual clinical endpoints will be challenging and the IGFs remain the best intermediate biomarkers to indicate a response that could alter the course of disease.
Collapse
Affiliation(s)
- Jeff M P Holly
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Kalina Biernacka
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Claire M Perks
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| |
Collapse
|
55
|
Yang L, Jin M, Park SJ, Seo SY, Jeong KW. SETD1A Promotes Proliferation of Castration-Resistant Prostate Cancer Cells via FOXM1 Transcription. Cancers (Basel) 2020; 12:1736. [PMID: 32629770 PMCID: PMC7407996 DOI: 10.3390/cancers12071736] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 02/08/2023] Open
Abstract
Androgen deprivation therapy eventually leads to the development of castration-resistant prostate cancer (CRPC). Here, we demonstrate for the first time that the histone H3K4 methyltransferase SETD1A is a major regulator for the proliferation of metastatic CRPC (mCRPC). The expression of SETD1A was significantly correlated with the survival rate of patients with prostate cancer. SETD1A, which is expressed at a higher level in mCRPC than in primary prostate cancer cells, promotes the expression of FOXM1, a gene encoding a cell proliferation-specific transcription factor. SETD1A is recruited to the promoter region of FOXM1 (forkhead box M1) upon binding to E2F1, a protein that regulates the transcription of FOXM1 and contributes to the trimethylation of H3K4 in the FOXM1 promoter region. In addition, SETD1A is essential for the expression of stem cell factor (e.g., OCT4, octamer-binding transcription factor 4) and stem cell formation in mCRPC, suggesting the importance of SETD1A expression in mCRPC tumor formation. Notably, poor prognosis is associated with high expression of the SETD1A-FOXM1 pair in clinical data sets. Therefore, our study suggests that SETD1A plays an important role in the proliferation of mCRPC by regulating FOXM1 transcription.
Collapse
Affiliation(s)
| | | | | | | | - Kwang Won Jeong
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.Y.); (M.J.); (S.J.P.); (S.-Y.S.)
| |
Collapse
|
56
|
Hankey W, Chen Z, Wang Q. Shaping Chromatin States in Prostate Cancer by Pioneer Transcription Factors. Cancer Res 2020; 80:2427-2436. [PMID: 32094298 PMCID: PMC7299826 DOI: 10.1158/0008-5472.can-19-3447] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/14/2020] [Accepted: 02/19/2020] [Indexed: 01/28/2023]
Abstract
The androgen receptor (AR) is a critical therapeutic target in prostate cancer that responds to antagonists in primary disease, but inevitably becomes reactivated, signaling onset of the lethal castration-resistant prostate cancer (CRPC) stage. Epigenomic investigation of the chromatin environment and interacting partners required for AR transcriptional activity has uncovered three pioneer factors that open up chromatin and facilitate AR-driven transcriptional programs. FOXA1, HOXB13, and GATA2 are required for normal AR transcription in prostate epithelial development and for oncogenic AR transcription during prostate carcinogenesis. AR signaling is dependent upon these three pioneer factors both before and after the clinical transition from treatable androgen-dependent disease to untreatable CRPC. Agents targeting their respective DNA binding or downstream chromatin-remodeling events have shown promise in preclinical studies of CRPC. AR-independent functions of FOXA1, HOXB13, and GATA2 are emerging as well. While all three pioneer factors exert effects that promote carcinogenesis, some of their functions may inhibit certain stages of prostate cancer progression. In all, these pioneer factors represent some of the most promising potential therapeutic targets to emerge thus far from the study of the prostate cancer epigenome.
Collapse
Affiliation(s)
- William Hankey
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina
| | - Zhong Chen
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina.
| | - Qianben Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
57
|
Chiu YF, Wu CC, Kuo MH, Miao CC, Zheng MY, Chen PY, Lin SC, Chang JL, Wang YH, Chou YT. Critical role of SOX2-IGF2 signaling in aggressiveness of bladder cancer. Sci Rep 2020; 10:8261. [PMID: 32427884 PMCID: PMC7237425 DOI: 10.1038/s41598-020-65006-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Signaling elicited by the stem cell factors SOX2, OCT4, KLF4, and MYC not only mediates reprogramming of differentiated cells to pluripotency but has also been correlated with tumor malignancy. In this study, we found SOX2 expression signifies poor recurrence-free survival and correlates with advanced pathological grade in bladder cancer. SOX2 silencing attenuated bladder cancer cell growth, while its expression promoted cancer cell survival and proliferation. Under low-serum stress, SOX2 expression promoted AKT phosphorylation and bladder cancer cells' spheroid-forming capability. Furthermore, pharmacological inhibition of AKT phosphorylation, using MK2206, inhibited the SOX2-mediated spheroid formation of bladder cancer cells. Gene expression profiling showed that SOX2 expression, in turn, induced IGF2 expression, while SOX2 silencing inhibited IGF2 expression. Moreover, knocking down IGF2 and IGF1R diminished bladder cancer cell growth. Lastly, pharmacological inhibition of IGF1R, using linsitinib, also inhibited the SOX2-mediated spheroid formation of bladder cancer cells under low-serum stress. Our findings indicate the SOX2-IGF2 signaling affects the aggressiveness of bladder cancer cell growth. This signaling could be a promising biomarker and therapeutic target for bladder cancer intervention.
Collapse
Affiliation(s)
- Yu-Fan Chiu
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Chang Wu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Urology, School of Medicine, College of Medicine, and TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan
| | - Ming-Han Kuo
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Cheng Miao
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Yi Zheng
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Yu Chen
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Sheng-Chieh Lin
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Junn-Liang Chang
- Department of Pathology and Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Department of Biomedical Engineering, Ming Chuan University, Taoyuan, Taiwan
| | - Yuan-Hung Wang
- Department of Medical Research, Shuang Ho Hospital, New Taipei City, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Ting Chou
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
58
|
Carceles-Cordon M, Kelly WK, Gomella L, Knudsen KE, Rodriguez-Bravo V, Domingo-Domenech J. Cellular rewiring in lethal prostate cancer: the architect of drug resistance. Nat Rev Urol 2020; 17:292-307. [PMID: 32203305 PMCID: PMC7218925 DOI: 10.1038/s41585-020-0298-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Over the past 5 years, the advent of combination therapeutic strategies has substantially reshaped the clinical management of patients with advanced prostate cancer. However, most of these combination regimens were developed empirically and, despite offering survival benefits, are not enough to halt disease progression. Thus, the development of effective therapeutic strategies that target the mechanisms involved in the acquisition of drug resistance and improve clinical trial design are an unmet clinical need. In this context, we hypothesize that the tumour engineers a dynamic response through the process of cellular rewiring, in which it adapts to the therapy used and develops mechanisms of drug resistance via downstream signalling of key regulatory cascades such as the androgen receptor, PI3K-AKT or GATA2-dependent pathways, as well as initiation of biological processes to revert tumour cells to undifferentiated aggressive states via phenotype switching towards a neuroendocrine phenotype or acquisition of stem-like properties. These dynamic responses are specific for each patient and could be responsible for treatment failure despite multi-target approaches. Understanding the common stages of these cellular rewiring mechanisms to gain a new perspective on the molecular underpinnings of drug resistance might help formulate novel combination therapeutic regimens.
Collapse
Affiliation(s)
- Marc Carceles-Cordon
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - W Kevin Kelly
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leonard Gomella
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karen E Knudsen
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Veronica Rodriguez-Bravo
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Josep Domingo-Domenech
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
59
|
Alwanian WM, Tyner AL. Protein tyrosine kinase 6 signaling in prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2020; 8:1-8. [PMID: 32211448 PMCID: PMC7076292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
More than 25 years have passed since the discovery of protein tyrosine kinase 6 (PTK6), a non-receptor tyrosine kinase distantly related to SRC family kinases. Since then, a variety of data suggest that PTK6 promotes oncogenic signaling and tumorigenesis, generally dependent on its kinase activity. Increased PTK6 expression, activation at the plasma membrane and altered intracellular localization have been discovered in prostate cancers. While PTK6 is localized to nuclei of epithelial cells in normal prostate, it is relocalized and activated at the plasma membrane in prostate tumors. Active PTK6 interacts with and directly phosphorylates AKT, FAK and BCAR1 to promote oncogenic signaling. Furthermore, PTK6 can enhance the epithelial mesenchymal transition by inhibiting E-cadherin expression and inducing expression of the mesenchymal markers vimentin, SLUG and ZEB1. Several lines of evidence suggest that PTK6 plays a role in Pten null prostate tumors. PTEN targets activating phosphorylation of PTK6 and loss of PTEN subsequently leads to PTK6 activation. Different studies provide compelling evidence as to why PTK6 is a potential therapeutic target in prostate cancer. Here, we briefly review the advances and significance of PTK6 in prostate cancer.
Collapse
Affiliation(s)
- Wanian M Alwanian
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago Chicago, IL, The United States
| | - Angela L Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago Chicago, IL, The United States
| |
Collapse
|
60
|
Yuan F, Hankey W, Wu D, Wang H, Somarelli J, Armstrong AJ, Huang J, Chen Z, Wang Q. Molecular determinants for enzalutamide-induced transcription in prostate cancer. Nucleic Acids Res 2019; 47:10104-10114. [PMID: 31501863 PMCID: PMC6821169 DOI: 10.1093/nar/gkz790] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/04/2019] [Indexed: 11/25/2022] Open
Abstract
Enzalutamide, a second-generation androgen receptor (AR) antagonist, has demonstrated clinical benefit in men with prostate cancer. However, it only provides a temporary response and modest increase in survival, indicating a rapid evolution of resistance. Previous studies suggest that enzalutamide may function as a partial transcriptional agonist, but the underlying mechanisms for enzalutamide-induced transcription remain poorly understood. Here, we show that enzalutamide stimulates expression of a novel subset of genes distinct from androgen-responsive genes. Treatment of prostate cancer cells with enzalutamide enhances recruitment of pioneer factor GATA2, AR, Mediator subunits MED1 and MED14, and RNA Pol II to regulatory elements of enzalutamide-responsive genes. Mechanistically, GATA2 globally directs enzalutamide-induced transcription by facilitating AR, Mediator and Pol II loading to enzalutamide-responsive gene loci. Importantly, the GATA2 inhibitor K7174 inhibits enzalutamide-induced transcription by decreasing binding of the GATA2/AR/Mediator/Pol II transcriptional complex, contributing to sensitization of prostate cancer cells to enzalutamide treatment. Our findings provide mechanistic insight into the future combination of GATA2 inhibitors and enzalutamide for improved AR-targeted therapy.
Collapse
Affiliation(s)
- Fuwen Yuan
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - William Hankey
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dayong Wu
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Hongyan Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jason Somarelli
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew J Armstrong
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.,Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University School of Medicine, Durham, NC 27710, USA.,Departments of Surgery, Pharmacology, and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA.,Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhong Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Qianben Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA.,Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
61
|
Vaddi PK, Stamnes MA, Cao H, Chen S. Elimination of SOX2/OCT4-Associated Prostate Cancer Stem Cells Blocks Tumor Development and Enhances Therapeutic Response. Cancers (Basel) 2019; 11:cancers11091331. [PMID: 31500347 PMCID: PMC6769476 DOI: 10.3390/cancers11091331] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022] Open
Abstract
SOX2 and OCT4 are key regulators of embryonic stem cell pluripotency. They are overexpressed in prostate cancers and have been associated with cancer stem cell (CSC) properties. However, reliable tools for detecting and targeting SOX2/OCT4-overexpressing cells are lacking, limiting our understanding of their roles in prostate cancer initiation, progression, and therapeutic resistance. Here, we show that a fluorescent reporter called SORE6 can identify SOX2/OCT4-overexpressing prostate cancer cells. Among tumor cells, the SORE6 reporter identified a small fraction with CSC hallmarks: rapid self-renewal, the capability to form tumors and metastasize, and resistance to chemotherapies. Transcriptome and biochemical analyses identified PI3K/AKT signaling as critical for maintaining the SORE6+ population. Moreover, a SORE6-driven herpes simplex virus thymidine kinase (TK) expression construct could selectively ablate SORE6+ cells in tumors, blocking tumor initiation and progression, and sensitizing tumors to chemotherapy. This study demonstrates a key role of SOX2/OCT4-associated prostate cancer stem cells in tumor development and therapeutic resistance, and identifies the SORE6 reporter system as a useful tool for characterizing CSCs functions in a native tumor microenvironment.
Collapse
Affiliation(s)
- Prasanna Kumar Vaddi
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Mark A Stamnes
- The Department of Molecular Physiology and Physics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Huojun Cao
- The Department of Endodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA.
| | - Songhai Chen
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
- The Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
- The Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
62
|
Song JH, Kang HJ, Luevano LA, Gokhale V, Wu K, Pandey R, Sherry Chow HH, Hurley LH, Kraft AS. Small-Molecule-Targeting Hairpin Loop of hTERT Promoter G-Quadruplex Induces Cancer Cell Death. Cell Chem Biol 2019; 26:1110-1121.e4. [PMID: 31155510 PMCID: PMC6713458 DOI: 10.1016/j.chembiol.2019.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/28/2019] [Accepted: 04/16/2019] [Indexed: 12/23/2022]
Abstract
Increased telomerase activity is associated with malignancy and poor prognosis in human cancer, but the development of targeted agents has not yet provided clinical benefit. Here we report that, instead of targeting the telomerase enzyme directly, small molecules that bind to the G-hairpin of the hTERT G-quadruplex-forming sequence kill selectively malignant cells without altering the function of normal cells. RG260 targets the hTERT G-quadruplex stem-loop folding but not tetrad DNAs, leading to downregulation of hTERT expression. To improve physicochemical and pharmacokinetic properties, we derived a small-molecule analog, RG1603, from the parent compound. RG1603 induces mitochondrial defects including PGC1α and NRF2 inhibition and increases oxidative stress, followed by DNA damage and apoptosis. RG1603 injected as a single agent has tolerable toxicity while achieving strong anticancer efficacy in a tumor xenograft mouse model. These results demonstrate a unique approach to inhibiting the hTERT that functions by impairing mitochondrial activity, inducing cell death.
Collapse
Affiliation(s)
- Jin H Song
- Department of Cellular and Molecular Medicine, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724, USA; University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA.
| | - Hyun-Jin Kang
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA; Reglagene LLC, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Libia A Luevano
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA
| | - Vijay Gokhale
- Reglagene LLC, 1703 East Mabel Street, Tucson, AZ 85721, USA; BIO5 Institute, University of Arizona, 1657 East Helen Street, Tucson, AZ 85721, USA
| | - Kui Wu
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Ritu Pandey
- Department of Cellular and Molecular Medicine, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724, USA; University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA
| | - H-H Sherry Chow
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA
| | - Laurence H Hurley
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA; Reglagene LLC, 1703 East Mabel Street, Tucson, AZ 85721, USA.
| | - Andrew S Kraft
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA.
| |
Collapse
|
63
|
Osher E, Macaulay VM. Therapeutic Targeting of the IGF Axis. Cells 2019; 8:E895. [PMID: 31416218 PMCID: PMC6721736 DOI: 10.3390/cells8080895] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/04/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
The insulin like growth factor (IGF) axis plays a fundamental role in normal growth and development, and when deregulated makes an important contribution to disease. Here, we review the functions mediated by ligand-induced IGF axis activation, and discuss the evidence for the involvement of IGF signaling in the pathogenesis of cancer, endocrine disorders including acromegaly, diabetes and thyroid eye disease, skin diseases such as acne and psoriasis, and the frailty that accompanies aging. We discuss the use of IGF axis inhibitors, focusing on the different approaches that have been taken to develop effective and tolerable ways to block this important signaling pathway. We outline the advantages and disadvantages of each approach, and discuss progress in evaluating these agents, including factors that contributed to the failure of many of these novel therapeutics in early phase cancer trials. Finally, we summarize grounds for cautious optimism for ongoing and future studies of IGF blockade in cancer and non-malignant disorders including thyroid eye disease and aging.
Collapse
Affiliation(s)
- Eliot Osher
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
64
|
Menendez-Gonzalez JB, Vukovic M, Abdelfattah A, Saleh L, Almotiri A, Thomas LA, Agirre-Lizaso A, Azevedo A, Menezes AC, Tornillo G, Edkins S, Kong K, Giles P, Anjos-Afonso F, Tonks A, Boyd AS, Kranc KR, Rodrigues NP. Gata2 as a Crucial Regulator of Stem Cells in Adult Hematopoiesis and Acute Myeloid Leukemia. Stem Cell Reports 2019; 13:291-306. [PMID: 31378673 PMCID: PMC6700503 DOI: 10.1016/j.stemcr.2019.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
Subversion of transcription factor (TF) activity in hematopoietic stem/progenitor cells (HSPCs) leads to the development of therapy-resistant leukemic stem cells (LSCs) that drive fulminant acute myeloid leukemia (AML). Using a conditional mouse model where zinc-finger TF Gata2 was deleted specifically in hematopoietic cells, we show that knockout of Gata2 leads to rapid and complete cell-autonomous loss of adult hematopoietic stem cells. By using short hairpin RNAi to target GATA2, we also identify a requirement for GATA2 in human HSPCs. In Meis1a/Hoxa9-driven AML, deletion of Gata2 impedes maintenance and self-renewal of LSCs. Ablation of Gata2 enforces an LSC-specific program of enhanced apoptosis, exemplified by attenuation of anti-apoptotic factor BCL2, and re-instigation of myeloid differentiation--which is characteristically blocked in AML. Thus, GATA2 acts as a critical regulator of normal and leukemic stem cells and mediates transcriptional networks that may be exploited therapeutically to target key facets of LSC behavior in AML.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Self Renewal
- Disease Models, Animal
- GATA2 Transcription Factor/antagonists & inhibitors
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/metabolism
- Hematopoiesis
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplastic Stem Cells/cytology
- Neoplastic Stem Cells/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA Interference
- RNA, Small Interfering/metabolism
Collapse
Affiliation(s)
| | - Milica Vukovic
- Centre for Hemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ali Abdelfattah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Lubaid Saleh
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Alhomidi Almotiri
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Leigh-Anne Thomas
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Aloña Agirre-Lizaso
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Aleksandra Azevedo
- Department of Hematology, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff CF14 4XW, UK
| | - Ana Catarina Menezes
- Department of Hematology, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff CF14 4XW, UK
| | - Giusy Tornillo
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Sarah Edkins
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF10 3XQ, UK
| | - Kay Kong
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Peter Giles
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF10 3XQ, UK
| | - Fernando Anjos-Afonso
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Alex Tonks
- Department of Hematology, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff CF14 4XW, UK
| | - Ashleigh S Boyd
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, Royal Free Hospital, University College London, London NW3 2PF, UK; Institute of Immunity and Transplantation, University College London, London NW3 2QG, UK
| | - Kamil R Kranc
- Centre for Hemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK.
| |
Collapse
|
65
|
Büscheck F, Zub M, Heumann A, Hube-Magg C, Simon R, Lang DS, Höflmayer D, Neubauer E, Jacobsen F, Hinsch A, Luebke AM, Tsourlakis MC, Sauter G, Huland H, Graefen M, Haese A, Heinzer H, Schlomm T, Clauditz TS, Burandt E, Wilczak W, Steurer S, Minner S. The independent prognostic impact of the GATA2 pioneering factor is restricted to ERG-negative prostate cancer. Tumour Biol 2019; 41:1010428318824815. [PMID: 31296150 DOI: 10.1177/1010428318824815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
GATA2 is a pioneering transcription factor governing androgen receptor expression and signaling in prostate cells. To understand the prognostic potential of GATA2 assessment in prostate cancer, we analyzed nuclear GATA2 expression on an annotated tissue microarray with 12,427 prostate cancer samples. Normal prostate glands were negative to weakly positive. GATA2 staining was found in almost all prostate cancers (95%). Strong GATA2 staining was linked to advanced tumor stage, high classical and quantitative Gleason grade (p < 0.0001 each), positive nodal stage (p = 0.0116), and early biochemical recurrence (p < 0.0001). GATA2 was linked to ERG-fusion-type cancers, with strong GATA2 staining in 29% of ERG-negative and 53% of ERG-positive cancers (p < 0.0001). Separate calculations in 3854 cancers with and 4768 cancers without TMPRSS2:ERG fusion revealed that these associations with tumor phenotype and patient outcome were largely driven by the subset of ERG-negative tumors. GATA2 expression was further linked to androgen receptor expression: Only 8% of androgen receptor-negative, but 56% of strongly androgen receptor expressing cancers had strong GATA2 expression (p < 0.0001). In conclusion, the results of our study demonstrate that increasing GATA2 levels are linked to prostate cancer progression and aggressiveness. The prognostic value of GATA2 is remarkable in ERG-negative cancers. However, the upregulation of GATA2 in ERG-positive cancers makes it unsuitable as a prognostic marker in this patient subset.
Collapse
Affiliation(s)
- Franziska Büscheck
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maciej Zub
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Asmus Heumann
- 2 General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dagmar S Lang
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Emily Neubauer
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Guido Sauter
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartwig Huland
- 3 Martini-Clinic Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- 3 Martini-Clinic Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Haese
- 3 Martini-Clinic Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- 3 Martini-Clinic Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Torsten Schlomm
- 4 Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Till S Clauditz
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
66
|
Bacci M, Lorito N, Ippolito L, Ramazzotti M, Luti S, Romagnoli S, Parri M, Bianchini F, Cappellesso F, Virga F, Gao Q, Simões BM, Marangoni E, Martin LA, Comito G, Ferracin M, Giannoni E, Mazzone M, Chiarugi P, Morandi A. Reprogramming of Amino Acid Transporters to Support Aspartate and Glutamate Dependency Sustains Endocrine Resistance in Breast Cancer. Cell Rep 2019; 28:104-118.e8. [PMID: 31269432 PMCID: PMC6616584 DOI: 10.1016/j.celrep.2019.06.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/13/2019] [Accepted: 06/03/2019] [Indexed: 01/08/2023] Open
Abstract
Endocrine therapy (ET) is the standard of care for estrogen receptor-positive (ER+) breast cancers. Despite its efficacy, ∼40% of women relapse with ET-resistant (ETR) disease. A global transcription analysis in ETR cells reveals a downregulation of the neutral and basic amino acid transporter SLC6A14 governed by enhanced miR-23b-3p expression, resulting in impaired amino acid metabolism. This altered amino acid metabolism in ETR cells is supported by the activation of autophagy and the enhanced import of acidic amino acids (aspartate and glutamate) mediated by the SLC1A2 transporter. The clinical significance of these findings is validated by multiple orthogonal approaches in a large cohort of ET-treated patients, in patient-derived xenografts, and in in vivo experiments. Targeting these amino acid metabolic dependencies resensitizes ETR cells to therapy and impairs the aggressive features of ETR cells, offering predictive biomarkers and potential targetable pathways to be exploited to combat or delay ETR in ER+ breast cancers.
Collapse
Affiliation(s)
- Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Simone Luti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Simone Romagnoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Federica Cappellesso
- VIB Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven 3000, Belgium
| | - Federico Virga
- VIB Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven 3000, Belgium; Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Qiong Gao
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Bruno M Simões
- Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK
| | - Elisabetta Marangoni
- Institut Curie, PSL Research University, Translational Research Department, Paris 75248, France
| | - Lesley-Ann Martin
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna 40126, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Massimiliano Mazzone
- VIB Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven 3000, Belgium
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy.
| |
Collapse
|
67
|
Tian H, Hou L, Xiong Y, Cheng Q, Huang J. Effect of Dexmedetomidine-Mediated Insulin-Like Growth Factor 2 (IGF2) Signal Pathway on Immune Function and Invasion and Migration of Cancer Cells in Rats with Ovarian Cancer. Med Sci Monit 2019; 25:4655-4664. [PMID: 31230061 PMCID: PMC6604677 DOI: 10.12659/msm.915503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background The aim of this study was to explore the effect of dexmedetomidine (DEX)-mediated insulin-like growth factor 2 (IGF2) signal pathway on immune function and cancer cell invasion and migration in rats with ovarian cancer. Material/Methods Forty rats with ovarian cancer were divided into 4 groups: model group, and low dose (0.2 μg/kg/hour DEX), medium dose (1.0 μg/kg/hour DEX), and high dose (5.0 μg/kg/hour DEX) DEX groups. In addition, 10 Fischer344 rats were selected as a normal group. Human NUTU-19 poorly differentiated epithelial ovarian cancer cell line cells were divided into 4 groups: a blank group and low dose, medium dose, and high dose DEX NUTU-19 groups. Results Compared with the normal group, in the other groups the serum interleukin (IL)-2 and interferon gamma (INF-γ) levels, CD4+ and CD8+ percentages, CD4+/CD8+ ratio, and transformation rate of splenic lymphocytes were decreased, and the serum tumor necrosis factor alpha (TNF-α) level, IGF2, insulin-like growth factor 1 receptor (IGF1R), insulin receptor substrate 1 (IRS1) mRNA, and protein expressions in ovarian tissue were increased (all P<0.05). Results in the DEX groups compared with model group were the opposite of those in the other groups compared with normal group (all P<0.05). Compared with the blank group, in the other groups the proliferation, invasion, and migration of ovarian cancer cells were reduced significantly (all P<0.05). Compared with the low dose DEX NUTU-19 group, in the high dose DEX NUTU-19 group the invasion and migration of ovarian cancer cells weakened significantly (both P<0.05). Conclusions A certain dose of DEX can effectively inhibit IGF2 signal pathway activation to improve the immune function of rats with ovarian cancer, inhibiting the invasion and migration of ovarian cancer cells.
Collapse
Affiliation(s)
- Hang Tian
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Lei Hou
- Department of Anesthesiology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, China (mainland)
| | - Yumei Xiong
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Qiuju Cheng
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Junking Huang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
68
|
Paller C, Pu H, Begemann DE, Wade CA, Hensley PJ, Kyprianou N. TGF-β receptor I inhibitor enhances response to enzalutamide in a pre-clinical model of advanced prostate cancer. Prostate 2019; 79:31-43. [PMID: 30155899 PMCID: PMC8444158 DOI: 10.1002/pros.23708] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Prostate cancer progression is navigated by the androgen receptor (AR) and transforming-growth factor-β (TGF-β) signaling. We previously demonstrated that aberrant TGF-β signaling accelerates prostate tumor progression in a transgenic mouse model of prostate cancer via effects on epithelial-mesenchymal transition (EMT), driving castration-resistant prostate cancer (CRPC). METHODS This study examined the antitumor effect of the combination of TGF-β receptor I (TβRI) inhibitor, galunisertib, and FDA-approved antiandrogen enzalutamide, in our pre-clinical model. Age-matched genotypically characterized DNTGFβRII male mice were treated with either galunisertib and enzalutamide, in combination or as single agents in three "mini"-trials and the effects on tumor growth, phenotypic EMT, and actin cytoskeleton were evaluated. RESULTS Galunisertib in combination with enzalutamide significantly suppressed prostate tumor growth, by increasing apoptosis and decreasing cell proliferation of tumor cell populations compared to the inhibitor as a monotherapy (P < 0.05). The combination treatment dramatically reduced cofilin levels, actin cytoskeleton regulator, compared to single agents. Treatment with galunisertib targeted nuclear Smad4 protein (intracellular TGF-β effector), but had no effect on nuclear AR. Consequential to TGF-β inhibition there was an EMT reversion to mesenchymal-epithelial transition (MET) and re-differentiation of prostate tumors. Elevated intratumoral TGF-β1 ligand, in response to galunisertib, was blocked by enzalutamide. CONCLUSION Our results provide novel insights into the therapeutic value of targeting TGF-β signaling to overcome resistance to enzalutamide in prostate cancer by phenotypic reprogramming of EMT towards tumor re-differentiation and cytoskeleton remodeling. This translational work is significant in sequencing TGF-β blockade and antiandrogens to optimize therapeutic response in CRPC.
Collapse
Affiliation(s)
- Channing Paller
- The Johns Hopkins Kimmel Cancer Center and Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Hong Pu
- Department of Urology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Diane E. Begemann
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Cameron A. Wade
- Department of Urology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Patrick J. Hensley
- Department of Urology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Natasha Kyprianou
- Department of Urology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
69
|
Park S, Kim YS, Kim DY, So I, Jeon JH. PI3K pathway in prostate cancer: All resistant roads lead to PI3K. Biochim Biophys Acta Rev Cancer 2018; 1870:198-206. [PMID: 30300679 DOI: 10.1016/j.bbcan.2018.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022]
|
70
|
Maugham ML, Seim I, Thomas PB, Crisp GJ, Shah ET, Herington AC, Brown KA, Gregory LS, Nelson CC, Jeffery PL, Chopin LK. No effect of unacylated ghrelin administration on subcutaneous PC3 xenograft growth or metabolic parameters in a Rag1-/- mouse model of metabolic dysfunction. PLoS One 2018; 13:e0198495. [PMID: 30458004 PMCID: PMC6245673 DOI: 10.1371/journal.pone.0198495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022] Open
Abstract
Ghrelin is a peptide hormone which, when acylated, regulates appetite, energy balance and a range of other biological processes. Ghrelin predominately circulates in its unacylated form (unacylated ghrelin; UAG). UAG has a number of functions independent of acylated ghrelin, including modulation of metabolic parameters and cancer progression. UAG has also been postulated to antagonise some of the metabolic effects of acyl-ghrelin, including its effects on glucose and insulin regulation. In this study, Rag1-/- mice with high-fat diet-induced obesity and hyperinsulinaemia were subcutaneously implanted with PC3 prostate cancer xenografts to investigate the effect of UAG treatment on metabolic parameters and xenograft growth. Daily intraperitoneal injection of 100 μg/kg UAG had no effect on xenograft tumour growth in mice fed normal rodent chow or 23% high-fat diet. UAG significantly improved glucose tolerance in host Rag1-/- mice on a high-fat diet, but did not significantly improve other metabolic parameters. We propose that UAG is not likely to be an effective treatment for prostate cancer, with or without associated metabolic syndrome.
Collapse
Affiliation(s)
- Michelle L. Maugham
- Ghrelin Research Group, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Skeletal Biology and Forensic Anthropology Research Laboratory, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Inge Seim
- Ghrelin Research Group, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Patrick B. Thomas
- Ghrelin Research Group, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Gabrielle J. Crisp
- Ghrelin Research Group, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Esha T. Shah
- Ghrelin Research Group, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Adrian C. Herington
- Ghrelin Research Group, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medicine, New York City, New York, United States of America
| | - Laura S. Gregory
- Skeletal Biology and Forensic Anthropology Research Laboratory, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Colleen C. Nelson
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Penny L. Jeffery
- Ghrelin Research Group, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lisa K. Chopin
- Ghrelin Research Group, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
71
|
Rodriguez-Bravo V, Pippa R, Song WM, Carceles-Cordon M, Dominguez-Andres A, Fujiwara N, Woo J, Koh AP, Ertel A, Lokareddy RK, Cuesta-Dominguez A, Kim RS, Rodriguez-Fernandez I, Li P, Gordon R, Hirschfield H, Prats JM, Reddy EP, Fatatis A, Petrylak DP, Gomella L, Kelly WK, Lowe SW, Knudsen KE, Galsky MD, Cingolani G, Lujambio A, Hoshida Y, Domingo-Domenech J. Nuclear Pores Promote Lethal Prostate Cancer by Increasing POM121-Driven E2F1, MYC, and AR Nuclear Import. Cell 2018; 174:1200-1215.e20. [PMID: 30100187 DOI: 10.1016/j.cell.2018.07.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
Nuclear pore complexes (NPCs) regulate nuclear-cytoplasmic transport, transcription, and genome integrity in eukaryotic cells. However, their functional roles in cancer remain poorly understood. We interrogated the evolutionary transcriptomic landscape of NPC components, nucleoporins (Nups), from primary to advanced metastatic human prostate cancer (PC). Focused loss-of-function genetic screen of top-upregulated Nups in aggressive PC models identified POM121 as a key contributor to PC aggressiveness. Mechanistically, POM121 promoted PC progression by enhancing importin-dependent nuclear transport of key oncogenic (E2F1, MYC) and PC-specific (AR-GATA2) transcription factors, uncovering a pharmacologically targetable axis that, when inhibited, decreased tumor growth, restored standard therapy efficacy, and improved survival in patient-derived pre-clinical models. Our studies molecularly establish a role of NPCs in PC progression and give a rationale for NPC-regulated nuclear import targeting as a therapeutic strategy for lethal PC. These findings may have implications for understanding how NPC deregulation contributes to the pathogenesis of other tumor types.
Collapse
Affiliation(s)
- Veronica Rodriguez-Bravo
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Raffaella Pippa
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Won-Min Song
- Genetic and Genomic Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marc Carceles-Cordon
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana Dominguez-Andres
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungreem Woo
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna P Koh
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Ertel
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alvaro Cuesta-Dominguez
- Oncological Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Liver Diseases, Medicine Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rosa S Kim
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Peiyao Li
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ronald Gordon
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hadassa Hirschfield
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep M Prats
- Urology Department, Hospital de Calella, Barcelona 08370, Spain
| | - E Premkumar Reddy
- Oncological Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alessandro Fatatis
- Pharmacology and Physiology Department, Drexler University, Philadelphia, PA 19104, USA
| | - Daniel P Petrylak
- Medical Oncology Department, Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Leonard Gomella
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - W Kevin Kelly
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Karen E Knudsen
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Matthew D Galsky
- Medical Oncology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Amaia Lujambio
- Oncological Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Liver Diseases, Medicine Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep Domingo-Domenech
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
72
|
Aleksic T, Gray N, Wu X, Rieunier G, Osher E, Mills J, Verrill C, Bryant RJ, Han C, Hutchinson K, Lambert AG, Kumar R, Hamdy FC, Weyer-Czernilofsky U, Sanderson MP, Bogenrieder T, Taylor S, Macaulay VM. Nuclear IGF1R Interacts with Regulatory Regions of Chromatin to Promote RNA Polymerase II Recruitment and Gene Expression Associated with Advanced Tumor Stage. Cancer Res 2018; 78:3497-3509. [PMID: 29735545 PMCID: PMC6031306 DOI: 10.1158/0008-5472.can-17-3498] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/28/2018] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
Internalization of ligand-activated type I IGF receptor (IGF1R) is followed by recycling to the plasma membrane, degradation or nuclear translocation. Nuclear IGF1R reportedly associates with clinical response to IGF1R inhibitory drugs, yet its role in the nucleus is poorly characterized. Here, we investigated the significance of nuclear IGF1R in clinical cancers and cell line models. In prostate cancers, IGF1R was predominantly membrane localized in benign glands, while malignant epithelium contained prominent internalized (nuclear/cytoplasmic) IGF1R, and nuclear IGF1R associated significantly with advanced tumor stage. Using ChIP-seq to assess global chromatin occupancy, we identified IGF1R-binding sites at or near transcription start sites of genes including JUN and FAM21, most sites coinciding with occupancy by RNA polymerase II (RNAPol2) and histone marks of active enhancers/promoters. IGF1R was inducibly recruited to chromatin, directly binding DNA and interacting with RNAPol2 to upregulate expression of JUN and FAM21, shown to mediate tumor cell survival and IGF-induced migration. IGF1 also enriched RNAPol2 on promoters containing IGF1R-binding sites. These functions were inhibited by IGF1/II-neutralizing antibody xentuzumab (BI 836845), or by blocking receptor internalization. We detected IGF1R on JUN and FAM21 promoters in fresh prostate cancers that contained abundant nuclear IGF1R, with evidence of correlation between nuclear IGF1R content and JUN expression in malignant prostatic epithelium. Taken together, these data reveal previously unrecognized molecular mechanisms through which IGFs promote tumorigenesis, with implications for therapeutic evaluation of anti-IGF drugs.Significance: These findings reveal a noncanonical nuclear role for IGF1R in tumorigenesis, with implications for therapeutic evaluation of IGF inhibitory drugs. Cancer Res; 78(13); 3497-509. ©2018 AACR.
Collapse
Affiliation(s)
- Tamara Aleksic
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicki Gray
- Computational Biology Research Group, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Xiaoning Wu
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Eliot Osher
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Jack Mills
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Clare Verrill
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Richard J Bryant
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Cheng Han
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, United Kingdom
| | | | - Adam G Lambert
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rajeev Kumar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | - Thomas Bogenrieder
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
- Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Marchioninistrasse, Munich, Germany
| | - Stephen Taylor
- Computational Biology Research Group, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Valentine M Macaulay
- Department of Oncology, University of Oxford, Oxford, United Kingdom.
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
73
|
Tzeng SF, Tsai CH, Chao TK, Chou YC, Yang YC, Tsai MH, Cha TL, Hsiao PW. O-Glycosylation-mediated signaling circuit drives metastatic castration-resistant prostate cancer. FASEB J 2018; 32:fj201800687. [PMID: 29906246 DOI: 10.1096/fj.201800687] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Disseminated castration-resistant prostate cancer (CRPC) is a common disease in men that is characterized by limited survival and resistance to androgen-deprivation therapy. The increase in human epidermal growth factor receptor 2 (HER2) signaling contributes to androgen receptor activity in a subset of patients with CRPC; however, enigmatically, HER2-targeted therapies have demonstrated a lack of efficacy in patients with CRPC. Aberrant glycosylation is a hallmark of cancer and involves key processes that support cancer progression. Using transcriptomic analysis of prostate cancer data sets, histopathologic examination of clinical specimens, and in vivo experiments of xenograft models, we reveal in this study a coordinated increase in glycan-binding protein, galectin-4, specific glycosyltransferases of core 1 synthase, glycoprotein- N-acetylgalactosamine 3-β-galactosyltransferase 1 (C1GALT1) and ST3 beta-galactoside α-2,3-sialyltransferase 1 (ST3GAL1), and resulting mucin-type O-glycans during the progression of CRPC. Furthermore, galectin-4 engaged with C1GALT1-dependent O-glycans to promote castration resistance and metastasis by activating receptor tyrosine kinase signaling and cancer cell stemness properties mediated by SRY-box 9 (SOX9). This galectin-glycan interaction up-regulated the MYC-dependent expression of C1GALT1 and ST3GAL1, which altered cellular mucin-type O-glycosylation to allow for galectin-4 binding. In clinical prostate cancer, high-level expression of C1GALT1 and galectin-4 together predict poor overall survival compared with low-level expression of C1GALT1 and galectin-4. In summary, MYC regulates abnormal O-glycosylation, thus priming cells for binding to galectin-4 and downstream signaling, which promotes castration resistance and metastasis.-Tzeng, S.-F., Tsai, C.-H., Chao, T.-K., Chou, Y.-C., Yang, Y.-C., Tsai, M.-H., Cha, T.-L., Hsiao, P.-W. O-Glycosylation-mediated signaling circuit drives metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Sheue-Fen Tzeng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chin-Hsien Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chih Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Tai-Lung Cha
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Wen Hsiao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
74
|
Mehta C, Johnson KD, Gao X, Ong IM, Katsumura KR, McIver SC, Ranheim EA, Bresnick EH. Integrating Enhancer Mechanisms to Establish a Hierarchical Blood Development Program. Cell Rep 2018; 20:2966-2979. [PMID: 28930689 DOI: 10.1016/j.celrep.2017.08.090] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/30/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic development requires the transcription factor GATA-2, and GATA-2 mutations cause diverse pathologies, including leukemia. GATA-2-regulated enhancers increase Gata2 expression in hematopoietic stem/progenitor cells and control hematopoiesis. The +9.5-kb enhancer activates transcription in endothelium and hematopoietic stem cells (HSCs), and its deletion abrogates HSC generation. The -77-kb enhancer activates transcription in myeloid progenitors, and its deletion impairs differentiation. Since +9.5-/- embryos are HSC deficient, it was unclear whether the +9.5 functions in progenitors or if GATA-2 expression in progenitors solely requires -77. We further dissected the mechanisms using -77;+9.5 compound heterozygous (CH) mice. The embryonic lethal CH mutation depleted megakaryocyte-erythrocyte progenitors (MEPs). While the +9.5 suffices for HSC generation, the -77 and +9.5 must reside on one allele to induce MEPs. The -77 generated burst-forming unit-erythroid through the induction of GATA-1 and other GATA-2 targets. The enhancer circuits controlled signaling pathways that orchestrate a GATA factor-dependent blood development program.
Collapse
Affiliation(s)
- Charu Mehta
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kirby D Johnson
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Xin Gao
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Irene M Ong
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53705, USA
| | - Koichi R Katsumura
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Skye C McIver
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Erik A Ranheim
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
75
|
Chen B, Luo J, Zhou Y, Xin X, Cai R, Ling C. PIASy antagonizes Ras-driven NSCLC survival by promoting GATA2 SUMOylation. J Cancer 2018; 9:1689-1697. [PMID: 29760808 PMCID: PMC5950599 DOI: 10.7150/jca.24137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/05/2018] [Indexed: 11/05/2022] Open
Abstract
GATA2 regulated transcriptional network has been validated requisite for RAS oncogene-driven non-small cell lung cancer (NSCLC). GATA2 has been reported as a SUMOylated protein. In endothelial cells, its transcriptional activity is attenuated by SUMO-2 conjugation, which is specifically catalyzed by its E3 ligase PIASy. In this study, we found a decreased expression of PIASy in RAS mutant NSCLC cell lines and specimens with RAS mutations. Forced expression of PIASy in NSCLC cells inhibits their viability in vitro, as well as tumorigenesis and growth in vivo. Mechanistically, we demonstrated overexpression of PIASy in A549 cells altered the regulated transcriptional network of GATA2, including proteasome, IL-1-signaling, and Rho-signaling pathways. Forced expression of PIASy resulted in the accumulated SUMOylation of GATA2, attenuating its transcriptional activity in A549 cells. These results collectively suggest that PIASy plays an antagonistic role in RAS-driven NSCLC survival, by enhancing the SUMOylation of GATA2 and inhibiting its transcriptional activity.
Collapse
Affiliation(s)
- Bin Chen
- Department of Oncology, Shanghai Pulmonary Hospital, Shanghai Tongji University, Shanghai 200433, China.,Department of Respiratory Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Jie Luo
- Department of Oncology, Shanghai Pulmonary Hospital, Shanghai Tongji University, Shanghai 200433, China
| | - Yirui Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Shanghai Tongji University, Shanghai 200433, China
| | - Xu Xin
- Department of Oncology, Shanghai Pulmonary Hospital, Shanghai Tongji University, Shanghai 200433, China
| | - Rong Cai
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunhua Ling
- Department of Respiratory Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| |
Collapse
|
76
|
Sui X, Cai J, Li H, He C, Zhou C, Dong Y, Chen L, Zhang B, Wang Y, Zhang Y, Qiu Y, Zhang Y, Zhao Y, Huang Y, Shen Y, Wu H, Xiao J, Mason C, Zhu Q, Han S. p53-dependent CD51 expression contributes to characteristics of cancer stem cells in prostate cancer. Cell Death Dis 2018; 9:523. [PMID: 29743605 PMCID: PMC5943274 DOI: 10.1038/s41419-018-0541-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 02/05/2023]
Abstract
Castration-resistant prostate cancer (CRPC), which is considered to contain cancer stem cells (CSCs), leads to a high relapse rate in patients with prostate cancer (PCa). However, the markers of prostate CSCs are controversial. Here we demonstrate that CD51, in part, correlates with the poor prognosis of PCa patients. Further, we find that CD51 is a functional molecule that is able to promote the malignancy of PCa through enhancing tumor initiation, metastatic potential, and chemoresistance. Moreover, we find that elevated CD51 expression in PCa specimens correlates with p53 loss of function. Mechanistically, we demonstrate that p53 acts via Sp1/3 to repress CD51 transcription, and CD51 is required for PCa stemness and metastasis properties, and is downregulated by p53. Taken together, these results indicate that CD51 is a novel functional marker for PCa, which may provide a therapeutic target for the efficiently restricting PCa progression.
Collapse
Affiliation(s)
- Xin Sui
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianye Cai
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyu Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chenchen He
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Congya Zhou
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yiping Dong
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Li Chen
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bin Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yingnan Wang
- Department of Medical Oncology, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yanan Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuanyuan Zhang
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yang Zhao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yinong Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yutian Shen
- Guangzhou Cellgenes Biotechnology Co., Ltd., Guangzhou, Guangdong, China
| | - Haoxiang Wu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiaqi Xiao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Clifford Mason
- Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Qing Zhu
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Abdominal Cancer, West China School of Medicine/ West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
77
|
Li T, Wang J, Liu P, Chi J, Yan H, Lei L, Li Z, Yang B, Wang X. Insulin-like growth factor 2 axis supports the serum-independent growth of malignant rhabdoid tumor and is activated by microenvironment stress. Oncotarget 2018; 8:47269-47283. [PMID: 28521298 PMCID: PMC5564563 DOI: 10.18632/oncotarget.17617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/18/2017] [Indexed: 11/30/2022] Open
Abstract
Malignant rhabdoid tumors (MRTs) are rare, lethal, pediatric tumors predominantly found in the kidney, brain and soft tissues. MRTs are driven by loss of tumor suppressor SNF5/INI1/SMARCB1/BAF47. The prognosis of MRT is poor using currently available treatments, so new treatment targets need to be identified to expand treatment options for patients experiencing chemotherapy resistance. The growth hormone insulin-like growth factor 2 (IGF2) signaling pathway is a promising target to overcome drug resistance in many cancers. Here, we evaluated the role of IGF2 axis in MRT cell proliferation. We showed that microenvironment stress, including starvation treatment and chemotherapy exposure, lead to elevated expression of IGF2 in the SNF5-deficient MRT cell line. The autocrine IGF2, in turn, activated insulin-like growth factor 1 receptor (IGF1R), insulin receptor (INSR), followed by PI3K/AKT pathway and RAS/ERK pathway to promote cancer cell proliferation and survival. We further demonstrated that impairment of IGF2 signaling by IGF2 neutralizing antibody, IGF1R inhibitor NVP-AEW541 or AKT inhibitor MK-2206 2HCl treatment prevented MRT cell growth in vitro. Taken together, our characterization of this axis defines a novel mechanism for MRT cell growth in the microenvironment of stress. Our results also demonstrated the necessity to test the treatment effect targeting this axis in future research.
Collapse
Affiliation(s)
- Ting Li
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Laboratory of Epigenetics in Development and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Jin Wang
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Laboratory of Epigenetics in Development and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Pengfei Liu
- Department of Lymphoma, Sino-Us Center of Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jiadong Chi
- Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Han Yan
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Laboratory of Epigenetics in Development and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Lei Lei
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Laboratory of Epigenetics in Development and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Zexing Li
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Laboratory of Epigenetics in Development and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Bing Yang
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Laboratory of Epigenetics in Development and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Xi Wang
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Laboratory of Epigenetics in Development and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
78
|
Van Arsdale AR, Arend RC, Cossio MJ, Erickson BK, Wang Y, Doo DW, Leath CA, Goldberg GL, Huang GS. Insulin-like growth factor 2: a poor prognostic biomarker linked to racial disparity in women with uterine carcinosarcoma. Cancer Med 2018; 7:616-625. [PMID: 29455465 PMCID: PMC5852335 DOI: 10.1002/cam4.1335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/28/2017] [Accepted: 12/10/2017] [Indexed: 12/26/2022] Open
Abstract
The objective of this study was to investigate the relationship of insulin‐like growth factor 2 (IGF2) expression and survival in women with uterine carcinosarcoma (UCS). Insulin‐like growth factor 2 protein expression was determined by immunohistochemical staining of tumor tissues from 103 patients with UCS. The H‐score (product of staining intensity and percentage positive cells) was quantified for the epithelial cytoplasmic (EC), epithelial nuclear (EN), and malignant stromal compartments. Multivariable Cox proportional hazard regression models were used to examine the relationship of IGF2 levels with progression‐free survival (PFS) and overall survival (OS). Adjusting for stage, race, and adjuvant therapy, PFS and OS were reduced in patients with high IGF2 (H‐score ≥ median) in the EC and EN compartments. Black race was independently associated with reduced PFS and OS in patients with early‐stage disease, and IGF2 levels in the EC were higher in black than in white patients (P = 0.02, Wilcoxon test). In a race‐stratified multivariable analysis, high IGF2 in the epithelial compartments more than doubled the risk of death in black women; HR = 2.43 (95% CI: 1.18–5.01, P = 0.02) for high IGF2 in the EC; and HR = 2.34 (95% CI: 1.25–4.39, P = 0.008) for high IGF2 in the EN. In conclusion, high tumor IGF2 expression is an independent risk factor for reduced PFS and OS in UCS. Black women have elevated tumor IGF2 compared with white women, and decreased survival associated with high IGF2. These findings identify IGF2 as a candidate biomarker for survival linked to racial disparity in women with UCS.
Collapse
Affiliation(s)
- Anne R Van Arsdale
- Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | | | - Maria J Cossio
- Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | | | - Yanhua Wang
- Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - David W Doo
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Gary L Goldberg
- Northwell Health and Hofstra University, Hempstead, New York
| | - Gloria S Huang
- Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
79
|
Davies AH, Wang Y, Zoubeidi A. Patient-derived xenografts: A platform for accelerating translational research in prostate cancer. Mol Cell Endocrinol 2018; 462:17-24. [PMID: 28315377 DOI: 10.1016/j.mce.2017.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/01/2017] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
Recently, there has been renewed interest in the development and characterization of patient-derived tumour xenograft (PDX) models. Numerous PDX models have been established for prostate cancer and, importantly, retain the principal molecular, genetic, and histological characteristics of the donor tumour. As such, these models provide significant improvements over standard cell line xenograft models for biological studies, preclinical drug development, and personalized medicine strategies. This review summarizes the current state of the art in this field, illustrating the opportunities and limitations of PDX models in translational prostate cancer research.
Collapse
Affiliation(s)
- Alastair H Davies
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
80
|
Küffer S, Gutting T, Belharazem D, Sauer C, Michel MS, Marx A, Trojan L, Ströbel P. Insulin-like growth factor 2 expression in prostate cancer is regulated by promoter-specific methylation. Mol Oncol 2018; 12:256-266. [PMID: 29239100 PMCID: PMC5792735 DOI: 10.1002/1878-0261.12164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/16/2017] [Accepted: 11/25/2017] [Indexed: 12/12/2022] Open
Abstract
Deregulation of the insulin-like growth factor (IGF) axis and dysbalance of components of the IGF system as potential therapeutic targets have been described in different tumor types. IGF2 is a major embryonic growth factor and an important activator of IGF signaling. It is regulated by imprinting in a development- and tissue-dependent manner and has been implicated in a broad range of malignancies including prostate cancer (PCa). Loss of imprinting (LOI) usually results in bi-allelic gene expression and increased levels of IGF2. However, the regulatory mechanisms and the pathophysiological impact of altered IGF2 expression in PCa remain elusive. Here, we show that in contrast to many other tumors, IGF2 mRNA and protein levels were decreased in 80% of PCa in comparison with non-neoplastic adjacent prostate and were independent of LOI status. Instead, IGF2 expression in both tumors and adjacent prostate depended on preferential usage of the IGF2 promoters P3 and P4. Decreased IGF2 expression in tumors was strongly related to hypermethylation of these two promoters. Methylation of the A region in promoter P4 correlated specifically with IGF2 expression in the 20% of PCa where IGF2 was higher in tumors than in adjacent prostate. We conclude that IGF2 is downregulated in most PCa and may be particularly relevant during early stages of tumor development or during chemotherapy and androgen deprivation. PCa differs from other tumors in that IGF2 expression is mainly regulated through methylation of promoter-specific and not by imprinting. Targeting of promoter-specific regions may have relevance for the adjuvant treatment of PCa.
Collapse
Affiliation(s)
- Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Germany
| | - Tobias Gutting
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Medicine II, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Djeda Belharazem
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christian Sauer
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maurice S Michel
- Department of Urology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lutz Trojan
- Department of Urology, University Medical Center Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Germany
| |
Collapse
|
81
|
Narayanan R, Ponnusamy S, Miller DD. Destroying the androgen receptor (AR)-potential strategy to treat advanced prostate cancer. Oncoscience 2017; 4:175-177. [PMID: 29344555 PMCID: PMC5769981 DOI: 10.18632/oncoscience.389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
| | | | - Duane D Miller
- University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
82
|
Belfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F, Morrione A, Vigneri R. Insulin Receptor Isoforms in Physiology and Disease: An Updated View. Endocr Rev 2017; 38:379-431. [PMID: 28973479 PMCID: PMC5629070 DOI: 10.1210/er.2017-00073] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023]
Abstract
The insulin receptor (IR) gene undergoes differential splicing that generates two IR isoforms, IR-A and IR-B. The physiological roles of IR isoforms are incompletely understood and appear to be determined by their different binding affinities for insulin-like growth factors (IGFs), particularly for IGF-2. Predominant roles of IR-A in prenatal growth and development and of IR-B in metabolic regulation are well established. However, emerging evidence indicates that the differential expression of IR isoforms may also help explain the diversification of insulin and IGF signaling and actions in various organs and tissues by involving not only different ligand-binding affinities but also different membrane partitioning and trafficking and possibly different abilities to interact with a variety of molecular partners. Of note, dysregulation of the IR-A/IR-B ratio is associated with insulin resistance, aging, and increased proliferative activity of normal and neoplastic tissues and appears to sustain detrimental effects. This review discusses novel information that has generated remarkable progress in our understanding of the physiology of IR isoforms and their role in disease. We also focus on novel IR ligands and modulators that should now be considered as an important strategy for better and safer treatment of diabetes and cancer and possibly other IR-related diseases.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Veronica Vella
- School of Human and Social Sciences, University Kore of Enna, via della Cooperazione, 94100 Enna, Italy
| | - Michael C. Lawrence
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Laura Sciacca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesco Frasca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| |
Collapse
|
83
|
Simpson A, Petnga W, Macaulay VM, Weyer-Czernilofsky U, Bogenrieder T. Insulin-Like Growth Factor (IGF) Pathway Targeting in Cancer: Role of the IGF Axis and Opportunities for Future Combination Studies. Target Oncol 2017; 12:571-597. [PMID: 28815409 PMCID: PMC5610669 DOI: 10.1007/s11523-017-0514-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite a strong preclinical rationale for targeting the insulin-like growth factor (IGF) axis in cancer, clinical studies of IGF-1 receptor (IGF-1R)-targeted monotherapies have been largely disappointing, and any potential success has been limited by the lack of validated predictive biomarkers for patient enrichment. A large body of preclinical evidence suggests that the key role of the IGF axis in cancer is in driving treatment resistance, via general proliferative/survival mechanisms, interactions with other mitogenic signaling networks, and class-specific mechanisms such as DNA damage repair. Consequently, combining IGF-targeted agents with standard cytotoxic agents, other targeted agents, endocrine therapies, or immunotherapies represents an attractive therapeutic approach. Anti-IGF-1R monoclonal antibodies (mAbs) do not inhibit IGF ligand 2 (IGF-2) activation of the insulin receptor isoform-A (INSR-A), which may limit their anti-proliferative activity. In addition, due to their lack of specificity, IGF-1R tyrosine kinase inhibitors are associated with hyperglycemia as a result of interference with signaling through the classical metabolic INSR-B isoform; this may preclude their use at clinically effective doses. Conversely, IGF-1/IGF-2 ligand-neutralizing mAbs inhibit proliferative/anti-apoptotic signaling via IGF-1R and INSR-A, without compromising the metabolic function of INSR-B. Therefore, combination regimens that include these agents may be more efficacious and tolerable versus IGF-1R-targeted combinations. Herein, we review the preclinical and clinical experience with IGF-targeted therapies to-date, and discuss the rationale for future combination approaches as a means to overcome treatment resistance.
Collapse
Affiliation(s)
- Aaron Simpson
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | | | - Thomas Bogenrieder
- Boehringer Ingelheim RCV, Dr. Boehringer Gasse 5-11, 1121, Vienna, Austria.
- Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
84
|
Mohr L, Carceles-Cordon M, Woo J, Cordon-Cardo C, Domingo-Domenech J, Rodriguez-Bravo V. Generation of Prostate Cancer Cell Models of Resistance to the Anti-mitotic Agent Docetaxel. J Vis Exp 2017. [PMID: 28930981 PMCID: PMC5607877 DOI: 10.3791/56327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microtubule targeting agents (MTAs) are a mainstay in the treatment of a wide range of tumors. However, acquired resistance to chemotherapeutic drugs is a common mechanism of disease progression and a prognostic-determinant feature of malignant tumors. In prostate cancer (PC), resistance to MTAs such as the taxane Docetaxel dictates treatment failure as well as progression towards lethal stages of disease that are defined by a poor prognosis and high mortality rates. Though studied for decades, the array of mechanisms contributing to acquired resistance are not completely understood, and thus pose a significant limitation to the development of new therapeutic strategies that could benefit patients in these advanced stages of disease. In this protocol, we describe the generation of Docetaxel-resistant prostate cancer cell lines that mimic lethal features of late-stage prostate cancer, and therefore can be used to study the mechanisms by which acquired chemoresistance arises. Despite potential limitations intrinsic to a cell based model, such as the loss of resistance properties over time, the Docetaxel-resistant cell lines produced by this method have been successfully used in recent studies and offer the opportunity to advance our molecular understanding of acquired chemoresistance in lethal prostate cancer.
Collapse
Affiliation(s)
- Lisa Mohr
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
| | - Marc Carceles-Cordon
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
| | - Jungreem Woo
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
| | - Carlos Cordon-Cardo
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
| | - Josep Domingo-Domenech
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
| | - Veronica Rodriguez-Bravo
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai;
| |
Collapse
|
85
|
Salomo K, Huebner D, Boehme MU, Herr A, Brabetz W, Heberling U, Hakenberg OW, Jahn D, Grimm MO, Steinbach D, Horstmann M, Froehner M, Wirth MP, Fuessel S. Urinary transcript quantitation of CK20 and IGF2 for the non-invasive bladder cancer detection. J Cancer Res Clin Oncol 2017; 143:1757-1769. [PMID: 28484844 DOI: 10.1007/s00432-017-2433-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Cytokeratin 20 (CK20) and insulin-like growth factor 2 (IGF2) were previously proposed to be elevated in clinical samples from patients with bladder cancer (BCa). A two cohort design validation study was used to assess the relevance for BCa detection by transcript quantitation of both markers in urine samples. Their diagnostic value was assessed in comparison with voided urine cytology (VUC). METHODS RNA isolation was carried out using cellular sediments of urine samples from 196/103 histologically positive BCa patients, as well as 97/50 control subjects for the test (TC) and validation cohort (VC), respectively. Urinary transcript levels of CK20 and IGF2 were determined by qPCR. RESULTS Relative transcript levels were significantly elevated 3.4/11-fold for CK20 and 188/64-fold for IGF2 (p < 0.001) in urine sediments of BCa patients compared to controls in the TC and VC, respectively. In a combined analysis, the resulting sensitivity (SN) (SNTC: 77.9; SNVC: 90.3%) and specificity (SP) (SPTC: 88.0; SPVC: 84.0%) were similar to that of VUC. The sensitivity of VUC in combination with CK20 and IGF2 was considerably increased (SNTC: 94.6; SNVC: 93.2%) while specificity was reduced (SPTC: 72.0; SPVC: 82.0%) compared to VUC alone in the test and validation cohort. CONCLUSIONS Transcript levels of IGF2 and CK20 enabled the detection of BCa with a diagnostic performance similar to VUC. Combined analysis of voided urine cytology together with altered transcript levels of CK20 and IGF2 enhanced sensitivity, but did not improve overall test performance.
Collapse
Affiliation(s)
- Karsten Salomo
- Department of Urology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Doreen Huebner
- Department of Urology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | | | | | | | - Ulrike Heberling
- Department of Urology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | | | - Daniela Jahn
- Department of Urology, University of Rostock, Rostock, Germany
| | | | | | - Marcus Horstmann
- Department of Urology, Malteser Hospital St. Josefshospital, Krefeld, Germany
| | - Michael Froehner
- Department of Urology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Manfred P Wirth
- Department of Urology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Susanne Fuessel
- Department of Urology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
86
|
Donovan MJ, Cordon-Cardo C. Implementation of a Precision Pathology Program Focused on Oncology-Based Prognostic and Predictive Outcomes. Mol Diagn Ther 2017; 21:115-123. [PMID: 28000172 DOI: 10.1007/s40291-016-0249-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Personalized or precision medicine as a diagnostic and therapeutic paradigm was introduced some 10-15 years ago, with the advent of biomarker discovery as a mechanism for identifying prognostic and predictive attributes associated with treatment indication and outcome. While the concept is not new, the successful development and implementation of novel 'companion diagnostics', especially in oncology, continues to represent a significant challenge and is currently at the forefront of smart trial design and therapeutic choice. The ability to determine patient selection for a specific therapy has broad implications including better chances for a positive outcome, limited exposure to potentially toxic drugs and improved health economics. Importantly, a significant step in this paradigm is the role of predictive pathology or the accurate assessment of morphology at the microscopic level. In breast cancer, this has been most useful where histologic attributes such as the classification of tubular and cribriform carcinoma dictates surgery while neoadjuvant studies suggest that patients with lobular carcinoma are not likely to benefit from chemotherapy. The next level of 'personalized pathology' at the tissue-cellular level is the use of 'protein biomarker panels' to classify the disease process and ultimately drive tumor characterization and treatment. The following review article will focus on the evolution of predictive pathology from a subjective, 'opinion-based' approach to a quantitative science. In addition, we will discuss the individual components of the precise pathology platform including advanced image analysis, biomarker quantitation with mathematical modeling and the integration with fluid-based (i.e. blood, urine) analytics as drivers of next generation precise patient phenotyping.
Collapse
|
87
|
Sanderson MP, Hofmann MH, Garin-Chesa P, Schweifer N, Wernitznig A, Fischer S, Jeschko A, Meyer R, Moll J, Pecina T, Arnhof H, Weyer-Czernilofsky U, Zahn SK, Adolf GR, Kraut N. The IGF1R/INSR Inhibitor BI 885578 Selectively Inhibits Growth of IGF2-Overexpressing Colorectal Cancer Tumors and Potentiates the Efficacy of Anti-VEGF Therapy. Mol Cancer Ther 2017; 16:2223-2233. [PMID: 28729397 DOI: 10.1158/1535-7163.mct-17-0336] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/16/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022]
Abstract
Clinical studies of pharmacologic agents targeting the insulin-like growth factor (IGF) pathway in unselected cancer patients have so far demonstrated modest efficacy outcomes, with objective responses being rare. As such, the identification of selection biomarkers for enrichment of potential responders represents a high priority for future trials of these agents. Several reports have described high IGF2 expression in a subset of colorectal cancers, with focal IGF2 amplification being responsible for some of these cases. We defined a novel cut-off value for IGF2 overexpression based on differential expression between colorectal tumors and normal tissue samples. Analysis of two independent colorectal cancer datasets revealed IGF2 to be overexpressed at a frequency of 13% to 22%. An in vitro screen of 34 colorectal cancer cell lines revealed IGF2 expression to significantly correlate with sensitivity to the IGF1R/INSR inhibitor BI 885578. Furthermore, autocrine IGF2 constitutively activated IGF1R and Akt phosphorylation, which was inhibited by BI 885578 treatment. BI 885578 significantly delayed the growth of IGF2-high colorectal cancer xenograft tumors in mice, while combination with a VEGF-A antibody increased efficacy and induced tumor regression. Besides colorectal cancer, IGF2 overexpression was detected in more than 10% of bladder carcinoma, hepatocellular carcinoma and non-small cell lung cancer patient samples. Meanwhile, IGF2-high non-colorectal cancer cells lines displayed constitutive IGF1R phosphorylation and were sensitive to BI 885578. Our findings suggest that IGF2 may represent an attractive patient selection biomarker for IGF pathway inhibitors and that combination with VEGF-targeting agents may further improve clinical outcomes. Mol Cancer Ther; 16(10); 2223-33. ©2017 AACR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Reiner Meyer
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Jürgen Moll
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Thomas Pecina
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | | | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| |
Collapse
|
88
|
Robinson JL, Tzou KS, Parker AS, Heckman MG, Wu KJ, Hilton TW, Pisansky TM, Schild SE, Peterson JL, Vallow LA, Buskirk SJ. GATA2 expression and biochemical recurrence following salvage radiation therapy for relapsing prostate cancer. Br J Radiol 2017; 90:20170174. [PMID: 28486040 DOI: 10.1259/bjr.20170174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE High GATA2 expression has been associated with an increased risk of poor clinical outcomes after radical prostatectomy; however, this has not been studied in relation to risk of biochemical recurrence (BCR) after salvage radiation therapy (SRT) for recurrent prostate cancer after radical prostatectomy. Our aim was to evaluate the association between protein expression levels of GATA2 in primary prostate cancer tumour samples and the risk of BCR after SRT. METHODS 109 males who were treated with SRT were included. The percentage of cells with nuclear staining and GATA2 staining intensity were both measured. These two measures were multiplied together to obtain a GATA2 H-score (range 0-12) which was our primary GATA2 staining measure. RESULTS In unadjusted analysis, the risk of BCR was higher for patients with a GATA2 H-score >4 (hazard ratio = 2.04, p = 0.033). In multivariable analysis adjusting for SRT dose, pre-SRT PSA, pathological tumour stage and Gleason score, this association weakened substantially (hazard ratio = 1.45, p = 0.31). This lack of an independent association with BCR appears to be the result of correlations between GATA2 H-score >4 and higher pre-SRT PSA (p = 0.021), higher Gleason score (p = 0.044) and more severe pathological tumour stage (p = 0.068). CONCLUSION Higher levels of GATA2 expression appear to be a marker of prostate cancer severity; however, these do not provide independent prognostic information regarding BCR beyond that of validated clinicopathological risk factors. Advances in knowledge: A higher GATA2 expression level appears to be correlated with known measures of prostate cancer severity and therefore is likely not an independent marker of outcome after SRT.
Collapse
Affiliation(s)
| | - Katherine S Tzou
- 2 Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Alexander S Parker
- 3 Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- 3 Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Kevin J Wu
- 4 Department of Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Tracy W Hilton
- 4 Department of Pathology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Steven E Schild
- 6 Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Laura A Vallow
- 2 Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Steven J Buskirk
- 2 Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
89
|
Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer. Cancer Treat Rev 2017; 57:16-27. [PMID: 28527407 DOI: 10.1016/j.ctrv.2017.04.008] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022]
Abstract
Patients with metastatic castration-resistant prostate cancer (mCPRC) now have an unprecedented number of approved treatment options, including chemotherapies (docetaxel, cabazitaxel), androgen receptor (AR)-targeted therapies (enzalutamide, abiraterone), a radioisotope (radium-223) and a cancer vaccine (sipuleucel-T). However, the optimal treatment sequencing pathway is unknown, and this problem is exacerbated by the issues of primary and acquired resistance. This review focuses on mechanisms of resistance to AR-targeted therapies and taxane-based chemotherapy. Patients treated with abiraterone, enzalutamide, docetaxel or cabazitaxel may present with primary resistance, or eventually acquire resistance when on treatment. Multiple resistance mechanisms to AR-targeted agents have been proposed, including: intratumoral androgen production, amplification, mutation, or expression of AR splice variants, increased steroidogenesis, upregulation of signals downstream of the AR, and development of androgen-independent tumor cells. Known mechanisms of resistance to chemotherapy are distinct, and include: tubulin alterations, increased expression of multidrug resistance genes, TMPRSS2-ERG fusion genes, kinesins, cytokines, and components of other signaling pathways, and epithelial-mesenchymal transition. Utilizing this information, biomarkers of resistance/response have the potential to direct treatment decisions. Expression of the AR splice variant AR-V7 may predict resistance to AR-targeted agents, but available biomarker assays are yet to be prospectively validated in the clinic. Ongoing prospective trials are evaluating the sequential use of different drugs, or combination regimens, and the results of these studies, combined with a deeper understanding of mechanisms of primary and acquired resistance to treatment, have the potential to drive future treatment decisions in mCRPC.
Collapse
|
90
|
Groner AC, Brown M. Role of steroid receptor and coregulator mutations in hormone-dependent cancers. J Clin Invest 2017; 127:1126-1135. [PMID: 28368289 PMCID: PMC5373886 DOI: 10.1172/jci88885] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Steroid hormones mediate critical lineage-specific developmental and physiologic responses. They function by binding their cognate receptors, which are transcription factors that drive specific gene expression programs. The requirement of most prostate cancers for androgen and most breast cancers for estrogen has led to the development of endocrine therapies that block the action of these hormones in these tumors. While initial endocrine interventions are successful, resistance to therapy often arises. We will review how steroid receptor-dependent genomic signaling is affected by genetic alterations in endocrine therapy resistance. The detailed understanding of these interactions will not only provide improved treatment options to overcome resistance, but, in the future, will also be the basis for implementing precision cancer medicine approaches.
Collapse
Affiliation(s)
- Anna C. Groner
- Department of Medical Oncology and
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Myles Brown
- Department of Medical Oncology and
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
91
|
Li J, Wang Y, Zhu Y, Gong Y, Yang Y, Tian J, Zhang Y, Zou D, Peng X, Ke J, Gong J, Zhong R, Chang J. Breast cancer risk-associated variants at 6q25.1 influence risk of hepatocellular carcinoma in a Chinese population. Carcinogenesis 2017; 38:447-454. [PMID: 28334234 DOI: 10.1093/carcin/bgx024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
The gender disparity observed in the incidence of hepatocellular carcinoma (HCC) suggests an important role of estrogens in HCC pathogenesis. In this study, we conducted a case-control study to investigate whether breast cancer risk-associated single nucleotide polymorphisms (SNPs) located at estrogens loci identified by genome-wide association studies (GWASs) also predispose to HCC in a Chinese population. Three candidate SNPs at 6q25.1 were genotyped in 2025 HCC cases and 2032 healthy controls. Differential expression analyses and expression quantitative trait loci (eQTL) analyses were conducted to further explore the potential function of significant SNPs and genes they reside in. Two of the three candidate SNPs (rs9383951 and rs9485372) were observed to be significantly associated with HCC risk. Under a dominant model, the odds ratios (OR) for rs9383951 and rs9485372 were 1.28 (95% CI: 1.10-1.49, P = 0.002) and 1.34 (95% CI: 1.17-1.53, P = 2.75 × 10-5), respectively. We also found a significant accumulative effect of these two SNPs and there was a gradual increase in OR with a greater number of hazard genotypes. Moreover, the association between rs9383951 and HCC risk was specific in males. Lower ESR1 and TAB2 expressions were investigated in hepatic tumor tissues than adjacent normal tissues. We found a significant association between rs9383951 and ESR1 expression (P = 0.047). Besides, ESR1 expression was significantly correlated with the expression of TAB2. Taken together, our study identified two genetic variants at 6q25.1 newly associated with HCC risk, suggesting ESR1 and estrogen signaling may play a role in mediating susceptibility to HCC in Chinese population.
Collapse
Affiliation(s)
- Jiaoyuan Li
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Ying Wang
- Department of Virology, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei, China
| | - Ying Zhu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Yajie Gong
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Yang Yang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Jianbo Tian
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Yi Zhang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Danyi Zou
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Xiating Peng
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Juntao Ke
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Jing Gong
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Rong Zhong
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Jiang Chang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
92
|
Abstract
The discovery of the GATA binding protein (GATA factor) transcription factor family revolutionized hematology. Studies of GATA proteins have yielded vital contributions to our understanding of how hematopoietic stem and progenitor cells develop from precursors, how progenitors generate red blood cells, how hemoglobin synthesis is regulated, and the molecular underpinnings of nonmalignant and malignant hematologic disorders. This thrilling journey began with mechanistic studies on a β-globin enhancer- and promoter-binding factor, GATA-1, the founding member of the GATA family. This work ushered in the cloning of related proteins, GATA-2-6, with distinct and/or overlapping expression patterns. Herein, we discuss how the hematopoietic GATA factors (GATA-1-3) function via a battery of mechanistic permutations, which can be GATA factor subtype, cell type, and locus specific. Understanding this intriguing protein family requires consideration of how the mechanistic permutations are amalgamated into circuits to orchestrate processes of interest to the hematologist and more broadly.
Collapse
|
93
|
Hugen CM, Zainfeld DE, Goldkorn A. Circulating Tumor Cells in Genitourinary Malignancies: An Evolving Path to Precision Medicine. Front Oncol 2017; 7:6. [PMID: 28191452 PMCID: PMC5269447 DOI: 10.3389/fonc.2017.00006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022] Open
Abstract
Precision medicine with molecularly directed therapeutics is rapidly expanding in all subspecialties of oncology. Molecular analysis and treatment monitoring require tumor tissue, but resections or biopsies are not always feasible due to tumor location, patient safety, and cost. Circulating tumor cells (CTCs) offer a safe, low-cost, and repeatable tissue source as an alternative to invasive biopsies. "Liquid biopsies" can be collected from a peripheral blood draw and analyzed to isolate, enumerate, and molecularly characterize CTCs. While there is deserved excitement surrounding new CTC technologies, studies are ongoing to determine whether these cells can provide reliable and accurate information about molecular drivers of cancer progression and inform treatment decisions. This review focuses on the current status of CTCs in genitourinary (GU) cancer. We will review currently used methodologies to isolate and detect CTCs, their use as predictive biomarkers, and highlight emerging research and applications of CTC analysis in GU malignancies.
Collapse
Affiliation(s)
- Cory M Hugen
- Keck School of Medicine and Norris Comprehensive Cancer Center, Urology , Los Angeles, CA , USA
| | - Daniel E Zainfeld
- Keck School of Medicine and Norris Comprehensive Cancer Center, Urology , Los Angeles, CA , USA
| | - Amir Goldkorn
- Keck School of Medicine and Norris Comprehensive Cancer Center, Medicine , Los Angeles, CA , USA
| |
Collapse
|
94
|
GATA2 Inhibition Sensitizes Acute Myeloid Leukemia Cells to Chemotherapy. PLoS One 2017; 12:e0170630. [PMID: 28114350 PMCID: PMC5256934 DOI: 10.1371/journal.pone.0170630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/06/2017] [Indexed: 01/16/2023] Open
Abstract
Drug resistance constitutes one of the main obstacles for clinical recovery of acute myeloid leukemia (AML) patients. Therefore, the treatment of AML requires new strategies, such as adding a third drug. To address whether GATA2 could act as a regulator of chemotherapy resistance in human leukemia cells, we observed KG1a cells and clinical patients’ AML cells with a classic drug (Cerubidine) and Gefitinib. After utilizing chemotherapy, the expression of GATA2 and its target genes (EVI, SCL and WT1) in surviving AML cells and KG1a cells were significantly enhanced to double and quadrupled compared to its original level respectively. Furthermore, with continuous chemotherapeutics, AML cells with GATA2 knockdown or treated with GATA2 inhibitor (K1747) almost eliminated with dramatically reduced expression of WT1, SCL, EVI, and significantly increased apoptotic population. Therefore, we propose that reducing GATA2 expression or inhibition of its transcription activity can relieve the drug resistance of acute myeloid leukemia cells and it would be helpful for eliminating the leukemia cells in patients.
Collapse
|
95
|
Rodriguez-Bravo V, Carceles-Cordon M, Hoshida Y, Cordon-Cardo C, Galsky MD, Domingo-Domenech J. The role of GATA2 in lethal prostate cancer aggressiveness. Nat Rev Urol 2017; 14:38-48. [PMID: 27872477 PMCID: PMC5489122 DOI: 10.1038/nrurol.2016.225] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advanced prostate cancer is a classic example of the intractability and consequent lethality that characterizes metastatic carcinomas. Novel treatments have improved the survival of men with prostate cancer; however, advanced prostate cancer invariably becomes resistant to these therapies and ultimately progresses to a lethal metastatic stage. Consequently, detailed knowledge of the molecular mechanisms that control prostate cancer cell survival and progression towards this lethal stage of disease will benefit the development of new therapeutics. The transcription factor endothelial transcription factor GATA-2 (GATA2) has been reported to have a key role in driving prostate cancer aggressiveness. In addition to being a pioneer transcription factor that increases androgen receptor (AR) binding and activity, GATA2 regulates a core subset of clinically relevant genes in an AR-independent manner. Functionally, GATA2 overexpression in prostate cancer increases cellular motility and invasiveness, proliferation, tumorigenicity, and resistance to standard therapies. Thus, GATA2 has a multifaceted function in prostate cancer aggressiveness and is a highly attractive target in the development of novel treatments against lethal prostate cancer.
Collapse
Affiliation(s)
- Veronica Rodriguez-Bravo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Marc Carceles-Cordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Yujin Hoshida
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Matthew D Galsky
- Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Josep Domingo-Domenech
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
96
|
Das R, Gregory PA, Fernandes RC, Denis I, Wang Q, Townley SL, Zhao SG, Hanson AR, Pickering MA, Armstrong HK, Lokman NA, Ebrahimie E, Davicioni E, Jenkins RB, Karnes RJ, Ross AE, Den RB, Klein EA, Chi KN, Ramshaw HS, Williams ED, Zoubeidi A, Goodall GJ, Feng FY, Butler LM, Tilley WD, Selth LA. MicroRNA-194 Promotes Prostate Cancer Metastasis by Inhibiting SOCS2. Cancer Res 2016; 77:1021-1034. [PMID: 28011622 DOI: 10.1158/0008-5472.can-16-2529] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/18/2016] [Accepted: 12/05/2016] [Indexed: 11/16/2022]
Abstract
Serum levels of miR-194 have been reported to predict prostate cancer recurrence after surgery, but its functional contributions to this disease have not been studied. Herein, it is demonstrated that miR-194 is a driver of prostate cancer metastasis. Prostate tissue levels of miR-194 were associated with disease aggressiveness and poor outcome. Ectopic delivery of miR-194 stimulated migration, invasion, and epithelial-mesenchymal transition in human prostate cancer cell lines, and stable overexpression of miR-194 enhanced metastasis of intravenous and intraprostatic tumor xenografts. Conversely, inhibition of miR-194 activity suppressed the invasive capacity of prostate cancer cell lines in vitro and in vivo Mechanistic investigations identified the ubiquitin ligase suppressor of cytokine signaling 2 (SOCS2) as a direct, biologically relevant target of miR-194 in prostate cancer. Low levels of SOCS2 correlated strongly with disease recurrence and metastasis in clinical specimens. SOCS2 downregulation recapitulated miR-194-driven metastatic phenotypes, whereas overexpression of a nontargetable SOCS2 reduced miR-194-stimulated invasion. Targeting of SOCS2 by miR-194 resulted in derepression of the oncogenic kinases FLT3 and JAK2, leading to enhanced ERK and STAT3 signaling. Pharmacologic inhibition of ERK and JAK/STAT pathways reversed miR-194-driven phenotypes. The GATA2 transcription factor was identified as an upstream regulator of miR-194, consistent with a strong concordance between GATA2 and miR-194 levels in clinical specimens. Overall, these results offer new insights into the molecular mechanisms of metastatic progression in prostate cancer. Cancer Res; 77(4); 1021-34. ©2016 AACR.
Collapse
Affiliation(s)
- Rajdeep Das
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.,Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Rayzel C Fernandes
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.,Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Iza Denis
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.,Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Qingqing Wang
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.,Breast Cancer Genetics Group, Centre for Personalised Cancer Medicine, School of Medicine, The University of Adelaide, SA 5005, Australia
| | - Scott L Townley
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Adrienne R Hanson
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Marie A Pickering
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Heather K Armstrong
- Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Noor A Lokman
- Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Esmaeil Ebrahimie
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Elai Davicioni
- GenomeDx Biosciences Inc., Vancouver, British Columbia, Canada
| | - Robert B Jenkins
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Ashley E Ross
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland
| | - Robert B Den
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kim N Chi
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Hayley S Ramshaw
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre Queensland, Translational Research Institute, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Australia
| | - Amina Zoubeidi
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia.,School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Felix Y Feng
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Lisa M Butler
- Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.,Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia. .,Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| |
Collapse
|
97
|
Coutinho I, Day TK, Tilley WD, Selth LA. Androgen receptor signaling in castration-resistant prostate cancer: a lesson in persistence. Endocr Relat Cancer 2016; 23:T179-T197. [PMID: 27799360 DOI: 10.1530/erc-16-0422] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/13/2022]
Abstract
The androgen receptor (AR) signaling axis drives all stages of prostate cancer, including the lethal, drug-resistant form of the disease termed castration-resistant prostate cancer (CRPC), which arises after failure of androgen deprivation therapy (ADT). Persistent AR activity in spite of ADT and the second-generation AR-targeting agents enzalutamide and abiraterone is achieved in many cases by direct alterations to the AR signaling axis. Herein, we provide a detailed description of how such alterations contribute to the development and progression of CRPC. Aspects of this broad and ever-evolving field specifically addressed in this review include: the etiology and significance of increased AR expression; the frequency and role of gain-of-function mutations in the AR gene; the function of constitutively active, truncated forms of the AR termed AR variants and the clinical relevance of alterations to the activity and expression of AR coregulators. Additionally, we examine the novel therapeutic strategies to inhibit these classes of therapy resistance mechanisms, with an emphasis on emerging agents that act in a manner distinct from the current ligand-centric approaches. Throughout, we discuss how the central role of AR in prostate cancer and the constant evolution of the AR signaling axis during disease progression represent archetypes of two key concepts in oncology, oncogene addiction and therapy-mediated selection pressure.
Collapse
Affiliation(s)
- Isabel Coutinho
- Dame Roma Mitchell Cancer Research LaboratoriesSchool of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men's HealthSchool of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Tanya K Day
- Dame Roma Mitchell Cancer Research LaboratoriesSchool of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men's HealthSchool of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research LaboratoriesSchool of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men's HealthSchool of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research LaboratoriesSchool of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men's HealthSchool of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
98
|
Armstrong CM, Gao AC. Adaptive pathways and emerging strategies overcoming treatment resistance in castration resistant prostate cancer. Asian J Urol 2016. [PMID: 28642838 PMCID: PMC5477778 DOI: 10.1016/j.ajur.2016.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The therapies available for prostate cancer patients whom progress from hormone-sensitive to castration resistant prostate cancer include both systemic drugs, including docetaxel and cabazitaxel, and drugs that inhibit androgen signaling such as enzalutamide and abiraterone. Unfortunately, it is estimated that up to 30% of patients have primary resistance to these treatments and over time even those who initially respond to therapy will eventually develop resistance and their disease will continue to progress regardless of the presence of the drug. Determining the mechanisms involved in the development of resistance to these therapies has been the area of intense study and several adaptive pathways have been uncovered. Androgen receptor (AR) mutations, expression of AR-V7 (or other constitutively active androgen receptor variants), intracrine androgen production and overexpression of androgen synthesis enzymes such as Aldo-Keto Reductase Family 1, Member C3 (AKR1C3) are among the many mechanisms associated with resistance to anti-androgens. In regards to the taxanes, one of the key contributors to drug resistance is increased drug efflux through ATP Binding Cassette Subfamily B Member 1 (ABCB1). Targeting these resistance mechanisms using different strategies has led to various levels of success in overcoming resistance to current therapies. For instance, targeting AR-V7 with niclosamide or AKR1C3 with indomethacin can improve enzalutamide and abiraterone treatment. ABCB1 transport activity can be inhibited by the dietary constituent apigenin and antiandrogens such as bicalutamide which in turn improves response to docetaxel. A more thorough understanding of how drug resistance develops will lead to improved treatment strategies. This review will cover the current knowledge of resistance mechanisms to castration resistant prostate cancer therapies and methods that have been identified which may improve treatment response.
Collapse
Affiliation(s)
| | - Allen C Gao
- Department of Urology, University of California, Davis, Sacramento, CA, USA.,Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA.,VA Northern California Health Care System, Sacramento, CA, USA
| |
Collapse
|
99
|
Katsumura KR, Ong IM, DeVilbiss AW, Sanalkumar R, Bresnick EH. GATA Factor-Dependent Positive-Feedback Circuit in Acute Myeloid Leukemia Cells. Cell Rep 2016; 16:2428-41. [PMID: 27545880 DOI: 10.1016/j.celrep.2016.07.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/17/2016] [Accepted: 07/21/2016] [Indexed: 01/09/2023] Open
Abstract
The master regulatory transcription factor GATA-2 triggers hematopoietic stem and progenitor cell generation. GATA2 haploinsufficiency is implicated in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), and GATA2 overexpression portends a poor prognosis for AML. However, the constituents of the GATA-2-dependent genetic network mediating pathogenesis are unknown. We described a p38-dependent mechanism that phosphorylates GATA-2 and increases GATA-2 target gene activation. We demonstrate that this mechanism establishes a growth-promoting chemokine/cytokine circuit in AML cells. p38/ERK-dependent GATA-2 phosphorylation facilitated positive autoregulation of GATA2 transcription and expression of target genes, including IL1B and CXCL2. IL-1β and CXCL2 enhanced GATA-2 phosphorylation, which increased GATA-2-mediated transcriptional activation. p38/ERK-GATA-2 stimulated AML cell proliferation via CXCL2 induction. As GATA2 mRNA correlated with IL1B and CXCL2 mRNAs in AML-M5 and high expression of these genes predicted poor prognosis of cytogenetically normal AML, we propose that the circuit is functionally important in specific AML contexts.
Collapse
Affiliation(s)
- Koichi R Katsumura
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Andrew W DeVilbiss
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Rajendran Sanalkumar
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
100
|
Kim H, Datta A, Talwar S, Saleem SN, Mondal D, Abdel-Mageed AB. Estradiol-ERβ2 signaling axis confers growth and migration of CRPC cells through TMPRSS2-ETV5 gene fusion. Oncotarget 2016; 8:62820-62833. [PMID: 28968951 PMCID: PMC5609883 DOI: 10.18632/oncotarget.11355] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 07/26/2016] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor beta (ERβ) splice variants are implicated in prostate cancer (PC) progression; however their underlying mechanisms remain elusive. We report that non-canonical activation of estradiol (E2)-ERβ2 signaling axis primes growth, colony-forming ability and migration of the androgen receptor (AR)-null castration-resistant PC (CRPC) cells under androgen-deprived conditions (ADC). The non-classical E2-ERβ2 mediates phosphorylation and activation of Src-IGF-1R complex, which in turn triggers p65-dependent transcriptional upregulation of the androgen-regulated serine protease TMPRSS2:ETV5a/TMPRSS2:ETV5b gene fusions under ADC. siRNA silencing of TMPRSS2 and/or ETV5 suggests that TMPRSS2:ETV5 fusions facilitates the E2-ERβ induced growth and migration effects via NF-κB-dependent induction of cyclin D1 and MMP2 and MMP9 in PC-3 cells. Collectively, our results unravel the functional significance of oncogenic TMPRSS2:ETV5 fusions in mediating growth and migration of E2-ERβ2 signaling axis in CRPC cells. E2-ERβ2 signaling axis may have significant therapeutic and prognostic implications in patients with CRPC.
Collapse
Affiliation(s)
- Hogyoung Kim
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| | - Amrita Datta
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| | - Sudha Talwar
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| | - Sarmad N Saleem
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| |
Collapse
|