51
|
So KWL, Su Z, Cheung JPY, Choi SW. Single-Cell Analysis of Bone-Marrow-Disseminated Tumour Cells. Diagnostics (Basel) 2024; 14:2172. [PMID: 39410576 PMCID: PMC11475990 DOI: 10.3390/diagnostics14192172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Metastasis frequently targets bones, where cancer cells from the primary tumour migrate to the bone marrow, initiating new tumour growth. Not only is bone the most common site for metastasis, but it also often marks the first site of metastatic recurrence. Despite causing over 90% of cancer-related deaths, effective treatments for bone metastasis are lacking, with current approaches mainly focusing on palliative care. Circulating tumour cells (CTCs) are pivotal in metastasis, originating from primary tumours and circulating in the bloodstream. They facilitate metastasis through molecular interactions with the bone marrow environment, involving direct cell-to-cell contacts and signalling molecules. CTCs infiltrate the bone marrow, transforming into disseminated tumour cells (DTCs). While some DTCs remain dormant, others become activated, leading to metastatic growth. The presence of DTCs in the bone marrow strongly correlates with future bone and visceral metastases. Research on CTCs in peripheral blood has shed light on their release mechanisms, yet investigations into bone marrow DTCs have been limited. Challenges include the invasiveness of bone marrow aspiration and the rarity of DTCs, complicating their isolation. However, advancements in single-cell analysis have facilitated insights into these elusive cells. This review will summarize recent advancements in understanding bone marrow DTCs using single-cell analysis techniques.
Collapse
Affiliation(s)
| | | | | | - Siu-Wai Choi
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (K.W.L.S.); (Z.S.); (J.P.Y.C.)
| |
Collapse
|
52
|
Xin Z, Qin L, Tang Y, Guo S, Li F, Fang Y, Li G, Yao Y, Zheng B, Zhang B, Wu D, Xiao J, Ni C, Wei Q, Zhang T. Immune mediated support of metastasis: Implication for bone invasion. Cancer Commun (Lond) 2024; 44:967-991. [PMID: 39003618 PMCID: PMC11492328 DOI: 10.1002/cac2.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
Bone is a common organ affected by metastasis in various advanced cancers, including lung, breast, prostate, colorectal, and melanoma. Once a patient is diagnosed with bone metastasis, the patient's quality of life and overall survival are significantly reduced owing to a wide range of morbidities and the increasing difficulty of treatment. Many studies have shown that bone metastasis is closely related to bone microenvironment, especially bone immune microenvironment. However, the effects of various immune cells in the bone microenvironment on bone metastasis remain unclear. Here, we described the changes in various immune cells during bone metastasis and discussed their related mechanisms. Osteoblasts, adipocytes, and other non-immune cells closely related to bone metastasis were also included. This review also summarized the existing treatment methods and potential therapeutic targets, and provided insights for future studies of cancer bone metastasis.
Collapse
Affiliation(s)
- Zengfeng Xin
- Department of Orthopedic SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Luying Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yang Tang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Siyu Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Fangfang Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yuan Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Gege Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yihan Yao
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Binbin Zheng
- Department of Respiratory MedicineNingbo Hangzhou Bay HospitalNingboZhejiangP. R. China
| | - Bicheng Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Dang Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jie Xiao
- Department of Orthopedic SurgerySecond Affiliated Hospital (Jiande Branch)Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Chao Ni
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Breast SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Qichun Wei
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Ting Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| |
Collapse
|
53
|
Yu G, Corn PG, Mak CSL, Liang X, Zhang M, Troncoso P, Song JH, Lin SC, Song X, Liu J, Zhang J, Logothetis CJ, Melancon MP, Panaretakis T, Wang G, Lin SH. Prostate cancer-induced endothelial-cell-to-osteoblast transition drives immunosuppression in the bone-tumor microenvironment through Wnt pathway-induced M2 macrophage polarization. Proc Natl Acad Sci U S A 2024; 121:e2402903121. [PMID: 39102549 PMCID: PMC11331113 DOI: 10.1073/pnas.2402903121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Immune checkpoint therapy has limited efficacy for patients with bone-metastatic castration-resistant prostate cancer (bmCRPC). To improve immunotherapy for bmCRPC, we aimed to identify the mechanism of bmCRPC-induced changes in the immune microenvironment. Among bmCRPC patients, higher levels of a 32-gene M2-like macrophage signature in bone metastasis samples correlated with shorter overall survival. Immunohistochemistry showed that CD206-positive (CD206+) macrophages were enriched in bmCRPC bone biopsy specimens compared with primary tumors or lymph node metastases. In preclinical osteogenic prostate cancer (Pca) xenograft models, CD206+ macrophages were recruited to areas with tumor-induced bone. RNA sequencing (RNAseq) analysis showed higher expression of an M2-like gene signature, with activated canonical and noncanonical Wnt pathways, in tumor-associated macrophages isolated from osteogenic tumors (bone-TAMs) than in TAMs isolated from nonosteogenic tumors (ctrl-TAMs). Mechanistic studies showed that endothelial cells (ECs) that had undergone EC-to-osteoblast (EC-to-OSB) transition, the precursors of tumor-induced OSBs, produced paracrine factors, including Wnts, CXCL14, and lysyl oxidase, which induced M2 polarization and recruited M2-like TAMs to the bone-tumor microenvironment (bone-TME). Bone-TAMs suppressed CD8+ T cells' proliferation and cytolytic activity, and these effects were partially reversed by treating bone-TAMs with Wnt inhibitors. Genetic or pharmacological inhibition of Pca-induced EC-to-OSB transition reduced the levels of M2-like macrophages in osteogenic tumors. Our study demonstrates that Pca-induced EC-to-OSB transition drives immunosuppression in the bone-TME, suggesting that therapies that reduce Pca-induced bone formation may improve immunotherapeutic outcomes for bmCRPC.
Collapse
Affiliation(s)
- Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Celia Sze Ling Mak
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Xin Liang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Miao Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jingjing Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| |
Collapse
|
54
|
Wu J, Chen Y. Unraveling the Connection: Extracellular Vesicles and Non-Small Cell Lung Cancer. Int J Nanomedicine 2024; 19:8139-8157. [PMID: 39139506 PMCID: PMC11321355 DOI: 10.2147/ijn.s477851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoscale lipid bilayer vesicles released during cell activation, cellular damage, or apoptosis. They carry nucleic acids, proteins, and lipids facilitating intercellular communication and activate signaling pathways in target cells. In non-small cell lung cancer (NSCLC), EVs may contribute to tumor growth and metastasis by modulating immune responses, facilitating epithelial-mesenchymal transition, and promoting angiogenesis, while potentially contributing to resistance to chemotherapy drugs. EVs in liquid biopsies serve as non-invasive biomarkers for early cancer detection and diagnosis. Due to their small size, inherent molecular transport properties, and excellent biocompatibility, EVs also act as natural drug delivery vehicles in NSCLC therapy.
Collapse
Affiliation(s)
- Jiankang Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine, Changsha, Hunan, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine, Changsha, Hunan, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
55
|
Yin J, Daryanani A, Lu F, Ku AT, Bright JR, Alilin ANS, Bowman J, Lake R, Li C, Truong TM, Twohig JD, Mostaghel EA, Ishikawa M, Simpson M, Trostel SY, Corey E, Sowalsky AG, Kelly K. Reproducible preclinical models of androgen receptor driven human prostate cancer bone metastasis. Prostate 2024; 84:1033-1046. [PMID: 38708958 PMCID: PMC11216894 DOI: 10.1002/pros.24718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Preclinical models recapitulating the metastatic phenotypes are essential for developing the next-generation therapies for metastatic prostate cancer (mPC). We aimed to establish a cohort of clinically relevant mPC models, particularly androgen receptor positive (AR+) bone metastasis models, from LuCaP patient-derived xenografts (PDX) that reflect the heterogeneity and complexity of mPC. METHODS PDX tumors were dissociated into single cells, modified to express luciferase, and were inoculated into NSG mice via intracardiac injection. The progression of metastases was monitored by bioluminescent imaging. Histological phenotypes of metastases were characterized by immunohistochemistry and immunofluorescence staining. Castration responses were further investigated in two AR-positive models. RESULTS Our PDX-derived metastasis (PDM) model collection comprises three AR+ adenocarcinomas (ARPC) and one AR- neuroendocrine carcinoma (NEPC). All ARPC models developed bone metastases with either an osteoblastic, osteolytic, or mixed phenotype, while the NEPC model mainly developed brain metastasis. Different mechanisms of castration resistance were observed in two AR+ PDM models with distinct genotypes, such as combined loss of TP53 and RB1 in one model and expression of AR splice variant 7 (AR-V7) expression in another model. Intriguingly, the castration-resistant tumors displayed inter- and intra-tumor as well as organ-specific heterogeneity in lineage specification. CONCLUSION Genetically diverse PDM models provide a clinically relevant system for biomarker identification and personalized medicine in metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- JuanJuan Yin
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Asha Daryanani
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, Maryland, USA
| | - Fan Lu
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Anson T. Ku
- Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - John R. Bright
- Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Aian Neil S. Alilin
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, Maryland, USA
| | - Joel Bowman
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, Maryland, USA
| | - Ross Lake
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Chennan Li
- Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Tri M. Truong
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Joseph D. Twohig
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Elahe A. Mostaghel
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Masaki Ishikawa
- Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mark Simpson
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Shana Y. Trostel
- Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Adam G. Sowalsky
- Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
56
|
Tang X, Gao L, Jiang X, Hou Z, Wang Y, Hou S, Qu H. Single-cell profiling reveals altered immune landscape and impaired NK cell function in gastric cancer liver metastasis. Oncogene 2024; 43:2635-2646. [PMID: 39060439 DOI: 10.1038/s41388-024-03114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Gastric cancer (GC) is a substantial global health concern, and the development of liver metastasis (LM) in GC represents a critical stage linked to unfavorable patient prognoses. In this study, we employed single-cell RNA sequencing (scRNA-seq) to investigate the immune landscape of GC liver metastasis, revealing several immuno-suppressive components within the tumor immune microenvironment (TIM). Our findings unveiled an increased presence of cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cell (MDSC)-like macrophages, tumor-associated macrophage (TAM)-like macrophages, and naive T cells, while conventional dendritic cells (cDCs) and effector CD8 T cells declined in LM. Additionally, we identified two distinct natural killer (NK) cell clusters exhibiting differential cytotoxicity-related gene expression, with cytotoxic NK cells notably reduced in LM. Strikingly, TGFβ was identified as an inducer of NK cell dysfunction, potentially contributing to immune evasion and tumor metastasis. In preclinical LM models, the combined approach of inhibiting TGFβ and transferring NK cells exhibited a synergistic impact, resulting in a significant reduction in liver metastasis. This work highlights the importance of understanding the complex immune dynamics within GC liver metastasis and presents a promising strategy combining TGFβ inhibition and NK-based immunotherapy to improve patient outcomes.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lei Gao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xingzhi Jiang
- Department of Clinical Medicine, Qilu Medical College of Shandong University, Jinan, 250011, China
| | - Zhenyu Hou
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yiwen Wang
- Department of Clinical Medicine, Qilu Medical College of Shandong University, Jinan, 250011, China
| | - Shiyang Hou
- Department of Clinical Medicine, Qilu Medical College of Shandong University, Jinan, 250011, China
| | - Hui Qu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
57
|
Praharaj M, Shen F, Lee AJ, Zhao L, Nirschl TR, Theodros D, Singh AK, Wang X, Adusei KM, Lombardo KA, Williams RA, Sena LA, Thompson EA, Tam A, Yegnasubramanian S, Pearce EJ, Leone RD, Alt J, Rais R, Slusher BS, Pardoll DM, Powell JD, Zarif JC. Metabolic Reprogramming of Tumor-Associated Macrophages Using Glutamine Antagonist JHU083 Drives Tumor Immunity in Myeloid-Rich Prostate and Bladder Cancers. Cancer Immunol Res 2024; 12:854-875. [PMID: 38701369 PMCID: PMC11217738 DOI: 10.1158/2326-6066.cir-23-1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/10/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Glutamine metabolism in tumor microenvironments critically regulates antitumor immunity. Using the glutamine-antagonist prodrug JHU083, we report potent tumor growth inhibition in urologic tumors by JHU083-reprogrammed tumor-associated macrophages (TAMs) and tumor-infiltrating monocytes. We show JHU083-mediated glutamine antagonism in tumor microenvironments induced by TNF, proinflammatory, and mTORC1 signaling in intratumoral TAM clusters. JHU083-reprogrammed TAMs also exhibited increased tumor cell phagocytosis and diminished proangiogenic capacities. In vivo inhibition of TAM glutamine consumption resulted in increased glycolysis, a broken tricarboxylic acid (TCA) cycle, and purine metabolism disruption. Although the antitumor effect of glutamine antagonism on tumor-infiltrating T cells was moderate, JHU083 promoted a stem cell-like phenotype in CD8+ T cells and decreased the abundance of regulatory T cells. Finally, JHU083 caused a global shutdown in glutamine-utilizing metabolic pathways in tumor cells, leading to reduced HIF-1α, c-MYC phosphorylation, and induction of tumor cell apoptosis, all key antitumor features. Altogether, our findings demonstrate that targeting glutamine with JHU083 led to suppressed tumor growth as well as reprogramming of immunosuppressive TAMs within prostate and bladder tumors that promoted antitumor immune responses. JHU083 can offer an effective therapeutic benefit for tumor types that are enriched in immunosuppressive TAMs.
Collapse
Affiliation(s)
- Monali Praharaj
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Fan Shen
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Alex J. Lee
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Liang Zhao
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Thomas R. Nirschl
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Debebe Theodros
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Alok K. Singh
- Department of Medicine, Center for Tuberculosis Research, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Xiaoxu Wang
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Kenneth M. Adusei
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Graduate Program in Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Kara A. Lombardo
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Raekwon A. Williams
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Laura A. Sena
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Elizabeth A. Thompson
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Ada Tam
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Edward J. Pearce
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Robert D. Leone
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Jesse Alt
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland.
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland.
| | - Rana Rais
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland.
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland.
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland.
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland.
| | - Drew M. Pardoll
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Jonathan D. Powell
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Jelani C. Zarif
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
58
|
Deng J, Yuan S, Pan W, Li Q, Chen Z. Nanotherapy to Reshape the Tumor Microenvironment: A New Strategy for Prostate Cancer Treatment. ACS OMEGA 2024; 9:26878-26899. [PMID: 38947792 PMCID: PMC11209918 DOI: 10.1021/acsomega.4c03055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Prostate cancer (PCa) is the second most common cancer in males worldwide. Androgen deprivation therapy (ADT) is the primary treatment method used for PCa. Although more effective androgen synthesis and antiandrogen inhibitors have been developed for clinical practice, hormone resistance increases the incidence of ADT-insensitive prostate cancer and poor prognoses. The tumor microenvironment (TME) has become a research hotspot with efforts to identify treatment targets based on the characteristics of the TME to improve prognosis. Herein, we introduce the basic characteristics of the PCa TME and the side effects of traditional prostate cancer treatments. We further highlight the emergence of novel nanotherapy strategies, their therapeutic mechanisms, and their effects on the PCa microenvironment. With further research, clinical applications of nanotherapy for PCa are expected in the near future. Collectively, this Review provides a valuable resource regarding the various nanotherapy types, demonstrating their broad clinical prospects to improve the quality of life in patients with PCa.
Collapse
Affiliation(s)
- Juan Deng
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
- The
First Clinical College of Guangdong Medical University, Zhanjiang, 524023, China
| | - Shaofei Yuan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Wenjie Pan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Qimeng Li
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Zhonglin Chen
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| |
Collapse
|
59
|
Choudhury AD, Kwak L, Cheung A, Allaire KM, Marquez J, Yang DD, Tripathi A, Kilar JM, Flynn M, Maynard B, Reichel R, Pace AF, Chen BK, Van Allen EM, Kilbridge K, Wei XX, McGregor BA, Pomerantz MM, Bhatt RS, Sweeney CJ, Bubley GJ, Jacene HA, Taplin ME, Huang FW, Harshman LC, Fong L. Randomized Phase II Study Evaluating the Addition of Pembrolizumab to Radium-223 in Metastatic Castration-resistant Prostate Cancer. Cancer Immunol Res 2024; 12:704-718. [PMID: 38552171 PMCID: PMC11148544 DOI: 10.1158/2326-6066.cir-22-0306] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/15/2023] [Accepted: 03/08/2024] [Indexed: 06/05/2024]
Abstract
The checkpoint immunotherapeutic pembrolizumab induces responses in a small minority of patients with metastatic castration-resistant prostate cancer (mCRPC). Radium-223 (R223) may increase immunogenicity of bone metastases and increase pembrolizumab (P) activity. In a randomized phase II study, we assessed the effect of R223+P compared with R223 on tumor immune infiltration, safety, and clinical outcomes in patients with mCRPC. The primary endpoint was differences in CD4+ and CD8+ T-cell infiltrate in 8-week versus baseline bone metastasis biopsies; secondary endpoints were safety, radiographic progression-free survival (rPFS), and overall survival (OS). Of the 42 treated patients (29 R223+P, 13 R223), 18 R223+P and 8 R223 patients had evaluable paired tumor biopsies. Median fold-change of CD4+ T cells was -0.7 (range: -9.3 to 4.7) with R223+P and 0.1 (-11.1 to 3.7) with R223 (P = 0.66); for CD8+ T cells, median fold-change was -0.6 (-7.4 to 5.3) with R223+P and -1.3 (-3.1 to 4.8) with R223 (P = 0.66). Median rPFS and OS was 6.1 (95% confidence interval: 2.7-11.0) and 16.9 months [12.7-not reached (NR)], respectively, with R223+P and 5.7 (2.6-NR) and 16.0 (9.0-NR), respectively, with R223. Although R223+P was well tolerated with no unexpected toxicity, the combination did not improve efficacy. High-dimensional flow cytometry demonstrated minimal immune modulation with R223, whereas R223+P induced CTLA-4 expression on circulating CD4+ T cells. Clinical responders possessed lower circulating frequencies of Ki67+ T and myeloid cells at baseline and higher circulating frequencies of TIM-3+ T and myeloid cells by week 9. Although R223+P did not induce T-cell infiltration into the tumor microenvironment, exhaustion of induced peripheral T-cell immune responses may dampen the combination's clinical activity.
Collapse
Affiliation(s)
- Atish D. Choudhury
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Lucia Kwak
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alexander Cheung
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Kathryn M. Allaire
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Jaqueline Marquez
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - David D. Yang
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | - Rebecca Reichel
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Brandon K. Chen
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Eliezer M. Van Allen
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Kerry Kilbridge
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Xiao X. Wei
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Bradley A. McGregor
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Mark M. Pomerantz
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Rupal S. Bhatt
- Harvard Medical School, Boston, Massachusetts
- Beth-Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Glenn J. Bubley
- Harvard Medical School, Boston, Massachusetts
- Beth-Israel Deaconess Medical Center, Boston, Massachusetts
| | - Heather A. Jacene
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Mary-Ellen Taplin
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Franklin W. Huang
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | | | - Lawrence Fong
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| |
Collapse
|
60
|
Maji S, Kumar A, Emdad L, Fisher PB, Das SK. Molecular landscape of prostate cancer bone metastasis. Adv Cancer Res 2024; 161:321-365. [PMID: 39032953 DOI: 10.1016/bs.acr.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer (PC) has a high propensity to develop bone metastases, causing severe pain and pathological fractures that profoundly impact a patients' normal functions. Current clinical intervention is mainly palliative focused on pain management, and tumor progression is refractory to standard therapeutic regimens. This limited treatment efficacy is at least partially due to a lack of comprehensive understanding of the molecular landscape of the disease pathology, along with the intensive overlapping of physiological and pathological molecular signaling. The niche is overwhelmed with diverse cell types with inter- and intra-heterogeneity, along with growth factor-enriched cells that are supportive of invading cell proliferation, providing an additional layer of complexity. This review seeks to provide molecular insights into mechanisms underlying PC bone metastasis development and progression.
Collapse
Affiliation(s)
- Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
61
|
Wang Y, Wang C, Xia M, Tian Z, Zhou J, Berger JM, Zhang XHF, Xiao H. Engineering small-molecule and protein drugs for targeting bone tumors. Mol Ther 2024; 32:1219-1237. [PMID: 38449313 PMCID: PMC11081876 DOI: 10.1016/j.ymthe.2024.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Bone cancer is common and severe. Both primary (e.g., osteosarcoma, Ewing sarcoma) and secondary (e.g., metastatic) bone cancers lead to significant health problems and death. Currently, treatments such as chemotherapy, hormone therapy, and radiation therapy are used to treat bone cancer, but they often only shrink or slow tumor growth and do not eliminate cancer completely. The bone microenvironment contributes unique signals that influence cancer growth, immunogenicity, and metastasis. Traditional cancer therapies have limited effectiveness due to off-target effects and poor distribution on bones. As a result, therapies with improved specificity and efficacy for treating bone tumors are highly needed. One of the most promising strategies involves the targeted delivery of pharmaceutical agents to the site of bone cancer by introduction of bone-targeting moieties, such as bisphosphonates or oligopeptides. These moieties have high affinities to the bone hydroxyapatite matrix, a structure found exclusively in skeletal tissue, and can enhance the targeting ability and efficacy of anticancer drugs when combating bone tumors. This review focuses on the engineering of small molecules and proteins with bone-targeting moieties for the treatment of bone tumors.
Collapse
Affiliation(s)
- Yixian Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Chenhang Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Meng Xia
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Zeru Tian
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Joseph Zhou
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Julian Meyer Berger
- Osteologic Therapeutics, Inc., 228 Park Ave S PMB 35546, New York, NY 10003, USA
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA; SynthX Center, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
62
|
Guan M, Liu S, Yang YG, Song Y, Zhang Y, Sun T. Chemokine systems in oncology: From microenvironment modulation to nanocarrier innovations. Int J Biol Macromol 2024; 268:131679. [PMID: 38641274 DOI: 10.1016/j.ijbiomac.2024.131679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Over the past few decades, significant strides have been made in understanding the pivotal roles that chemokine networks play in tumor biology. These networks, comprising chemokines and their receptors, wield substantial influence over cancer immune regulation and therapeutic outcomes. As a result, targeting these chemokine systems has emerged as a promising avenue for cancer immunotherapy. However, therapies targeting chemokines face significant challenges in solid tumor treatment, due to the complex and fragile of the chemokine networks. A nuanced comprehension of the complicacy and functions of chemokine networks, and their impact on the tumor microenvironment, is essential for optimizing their therapeutic utility in oncology. This review elucidates the ways in which chemokine networks interact with cancer immunity and tumorigenesis. We particularly elaborate on recent innovations in manipulating these networks for cancer treatment. The review also highlights future challenges and explores potential biomaterial strategies for clinical applications.
Collapse
Affiliation(s)
- Meng Guan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China; Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China; Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, Jilin 130021, China
| | - Yanqiu Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, Jilin 130021, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
63
|
Du Q, An Q, Zhang J, Liu C, Hu Q. Unravelling immune microenvironment features underlying tumor progression in the single-cell era. Cancer Cell Int 2024; 24:143. [PMID: 38649887 PMCID: PMC11036673 DOI: 10.1186/s12935-024-03335-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
The relationship between the immune cell and tumor occurrence and progression remains unclear. Profiling alterations in the tumor immune microenvironment (TIME) at high resolution is crucial to identify factors influencing cancer progression and enhance the effectiveness of immunotherapy. However, traditional sequencing methods, including bulk RNA sequencing, exhibit varying degrees of masking the cellular heterogeneity and immunophenotypic changes observed in early and late-stage tumors. Single-cell RNA sequencing (scRNA-seq) has provided significant and precise TIME landscapes. Consequently, this review has highlighted TIME cellular and molecular changes in tumorigenesis and progression elucidated through recent scRNA-seq studies. Specifically, we have summarized the cellular heterogeneity of TIME at different stages, including early, late, and metastatic stages. Moreover, we have outlined the related variations that may promote tumor occurrence and metastasis in the single-cell era. The widespread applications of scRNA-seq in TIME will comprehensively redefine the understanding of tumor biology and furnish more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Qilian Du
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qi An
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiajun Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, 100034, China.
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
64
|
Feng DC, Zhu WZ, Wang J, Li DX, Shi X, Xiong Q, You J, Han P, Qiu S, Wei Q, Yang L. The implications of single-cell RNA-seq analysis in prostate cancer: unraveling tumor heterogeneity, therapeutic implications and pathways towards personalized therapy. Mil Med Res 2024; 11:21. [PMID: 38605399 PMCID: PMC11007901 DOI: 10.1186/s40779-024-00526-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
In recent years, advancements in single-cell and spatial transcriptomics, which are highly regarded developments in the current era, particularly the emerging integration of single-cell and spatiotemporal transcriptomics, have enabled a detailed molecular comprehension of the complex regulation of cell fate. The insights obtained from these methodologies are anticipated to significantly contribute to the development of personalized medicine. Currently, single-cell technology is less frequently utilized for prostate cancer compared with other types of tumors. Starting from the perspective of RNA sequencing technology, this review outlined the significance of single-cell RNA sequencing (scRNA-seq) in prostate cancer research, encompassing preclinical medicine and clinical applications. We summarize the differences between mouse and human prostate cancer as revealed by scRNA-seq studies, as well as a combination of multi-omics methods involving scRNA-seq to highlight the key molecular targets for the diagnosis, treatment, and drug resistance characteristics of prostate cancer. These studies are expected to provide novel insights for the development of immunotherapy and other innovative treatment strategies for castration-resistant prostate cancer. Furthermore, we explore the potential clinical applications stemming from other single-cell technologies in this review, paving the way for future research in precision medicine.
Collapse
Affiliation(s)
- De-Chao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Division of Surgery & Interventional Science, University College London, London, WC1E 6BT, UK.
| | - Wei-Zhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Deng-Xiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia You
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
65
|
Guo J, Ma RY, Qian BZ. Macrophage heterogeneity in bone metastasis. J Bone Oncol 2024; 45:100598. [PMID: 38585688 PMCID: PMC10997910 DOI: 10.1016/j.jbo.2024.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Previous studies illustrated that macrophage, a type of innate immune cell, plays critical roles in tumour progression and metastasis. Bone is the most frequent site of metastasis for several cancer types including breast, prostate, and lung. In bone metastasis, osteoclast, a macrophage subset specialized in bone resorption, was heavily investigated in the past. Recent studies illustrated that other macrophage subsets, e.g. monocyte-derived macrophages, and bone resident macrophages, promoted bone metastasis independent of osteoclast function. These novel mechanisms further improved our understanding of macrophage heterogeneity in the context of bone metastasis and illustrated new opportunities for future studies.
Collapse
Affiliation(s)
| | | | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai 200438, China
| |
Collapse
|
66
|
Han Y, Kang Y. Phenotypic plasticity - Implications for tumours in bone. J Bone Oncol 2024; 45:100592. [PMID: 38450202 PMCID: PMC10912615 DOI: 10.1016/j.jbo.2024.100592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Metastasis is a major contributor to cancer patient mortality. Tumour cells often develop phenotypic plasticity to successfully metastasize to different target organs. Recent progress in the study of bone metastasis has provided novel insight into the biological processes that drive the spread and growth of cancer cells in the bone. In this review, we provide a summary of how the bone marrow microenvironment promotes phenotypic plasticity of metastatic tumour cells and alters therapeutic responses. We highlight pivotal transformations in cellular status driven by plasticity, including mesenchymal-epithelial transition, acquisition of stem-like traits, and awakening from dormancy. Additionally, we describe the phenomenon of host-organ mimicry and metabolic rewiring that collectively serve as key attributes of disseminated tumour cells, enabling their successful colonization and growth within the bone marrow microenvironment.
Collapse
Affiliation(s)
- Yujiao Han
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA
- Cancer Metabolism and Growth Program, The Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
67
|
Zarrer J, Taipaleenmäki H. The osteoblast in regulation of tumor cell dormancy and bone metastasis. J Bone Oncol 2024; 45:100597. [PMID: 38550395 PMCID: PMC10973597 DOI: 10.1016/j.jbo.2024.100597] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 11/12/2024] Open
Abstract
Breast and prostate cancer are among the most common malignancies worldwide. After treatment of the primary tumor, distant metastases often occur after a long disease-free interval. Bone is a major site for breast and prostate cancer metastasis and approximately 70% of patients with advanced disese suffer from osteolytic or osteoblastic bone metastases, a stage at which the disease is incurable. In bone, the disseminated tumor cells (DTCs) can become quiescent or "dormant", a state where they are alive but not actively dividing. Alternatively, the cancer cells can proliferate, disturb the bone homeostasis, and form metastatic lesions. The fate of cancer cells is largely dependent on the bone microenvironment, particularly the bone forming osteoblasts and bone resorbing osteoclasts. Osteoblasts originate from mesenchymal precursors through a tightly regulated cascade. The main function of osteoblasts is to synthesize bone matrix, coordinate mineralization and maintain bone remodeling by regulating osteoclast activity and bone resorption. In metastatic bone environment, osteoblasts can create a niche within the bone where DTCs cells become dormant and induce quiescence in cancer cells keeping them in a non-proliferative state. Osteoblasts also contribute to metastatic outgrowth and actively promote tumor growth in bone. In this article, we review the recent literature on the role of osteoblasts in cancer cell dormancy and bone metastasis and describe the underlying mechanisms by which osteoblasts regulate cancer cell fate in bone. In addition, we discuss the possibility of targeting osteoblasts to treat osteolytic bone metastases.
Collapse
Affiliation(s)
- Jennifer Zarrer
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Germany
| | - Hanna Taipaleenmäki
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Germany
| |
Collapse
|
68
|
Wang B, Lu Z, Song M, He X, Hu Z, Liang H, Lu H, Chen Q, Liang B, Yi T, Wei P, Jiang L, Dong J. Single-Component Dual-Functional Autoboost Strategy by Dual Photodynamic and Cyclooxygenase-2 Inhibition for Lung Cancer and Spinal Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303981. [PMID: 38224203 PMCID: PMC10966547 DOI: 10.1002/advs.202303981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/24/2023] [Indexed: 01/16/2024]
Abstract
Coloading adjuvant drugs or biomacromolecules with photosensitizers into nanoparticles to enhance the efficiency of photodynamic therapy (PDT) is a common strategy. However, it is difficult to load positively charged photosensitizers and negatively charged adjuvants into the same nanomaterial and further regulate drug release simultaneously. Herein, a single-component dual-functional prodrug strategy is reported for tumor treatment specifically activated by tumor microenvironment (TME)-generated HOCl. A representative prodrug (DHU-CBA2) is constructed using indomethacin grafted with methylene blue (MB). DHU-CBA2 exhibited high sensitivity toward HOCl and achieved simultaneous release of dual drugs in vitro and in vivo. DHU-CBA2 shows effective antitumor activity against lung cancer and spinal metastases via PDT and cyclooxygenase-2 (COX-2) inhibition. Mechanistically, PDT induces immunogenic cell death but stimulates the gene encoding COX-2. Downstream prostaglandins E2 and Indoleamine 2,3 dioxygenase 1 (IDO1) mediate immune escape in the TME, which is rescued by the simultaneous release of indomethacin. DHU-CBA2 promotes infiltration and function of CD8+ T cells, thus inducing a robust antitumor immune response. This work provides an autoboost strategy for a single-component dual-functional prodrug activated by TME-specific HOCl, thereby achieving favorable tumor treatment via the synergistic therapy of PDT and a COX-2 inhibitor.
Collapse
Affiliation(s)
- Ben Wang
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Zhen‐Ni Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Chemistry and Chemical EngineeringDonghua UniversityShanghai201620China
| | - Meng‐Xiong Song
- Department of Orthopedics SurgeryMinhang HospitalFudan UniversityShanghai201100China
| | - Xiao‐Wen He
- Department of Orthopaedic SurgeryShanghai Baoshan District Wusong Center HospitalFudan UniversityShanghai200940China
| | - Zhi‐Chao Hu
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Hai‐Feng Liang
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Hong‐Wei Lu
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Qing Chen
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Bing Liang
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Chemistry and Chemical EngineeringDonghua UniversityShanghai201620China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Chemistry and Chemical EngineeringDonghua UniversityShanghai201620China
| | - Li‐Bo Jiang
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Jian Dong
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Department of Orthopaedic SurgeryShanghai Baoshan District Wusong Center HospitalFudan UniversityShanghai200940China
| |
Collapse
|
69
|
Chen S, Lei J, Mou H, Zhang W, Jin L, Lu S, Yinwang E, Xue Y, Shao Z, Chen T, Wang F, Zhao S, Chai X, Wang Z, Zhang J, Zhang Z, Ye Z, Li B. Multiple influence of immune cells in the bone metastatic cancer microenvironment on tumors. Front Immunol 2024; 15:1335366. [PMID: 38464516 PMCID: PMC10920345 DOI: 10.3389/fimmu.2024.1335366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
Bone is a common organ for solid tumor metastasis. Malignant bone tumor becomes insensitive to systemic therapy after colonization, followed by poor prognosis and high relapse rate. Immune and bone cells in situ constitute a unique immune microenvironment, which plays a crucial role in the context of bone metastasis. This review firstly focuses on lymphatic cells in bone metastatic cancer, including their function in tumor dissemination, invasion, growth and possible cytotoxicity-induced eradication. Subsequently, we examine myeloid cells, namely macrophages, myeloid-derived suppressor cells, dendritic cells, and megakaryocytes, evaluating their interaction with cytotoxic T lymphocytes and contribution to bone metastasis. As important components of skeletal tissue, osteoclasts and osteoblasts derived from bone marrow stromal cells, engaging in 'vicious cycle' accelerate osteolytic bone metastasis. We also explain the concept tumor dormancy and investigate underlying role of immune microenvironment on it. Additionally, a thorough review of emerging treatments for bone metastatic malignancy in clinical research, especially immunotherapy, is presented, indicating current challenges and opportunities in research and development of bone metastasis therapies.
Collapse
Affiliation(s)
- Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiangchu Lei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lingxiao Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Senxu Lu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhenxuan Shao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiahao Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
70
|
Saha D, Dang HX, Zhang M, Quigley DA, Feng FY, Maher CA. Single cell-transcriptomic analysis informs the lncRNA landscape in metastatic castration resistant prostate cancer. NPJ Genom Med 2024; 9:14. [PMID: 38396008 PMCID: PMC10891057 DOI: 10.1038/s41525-024-00401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is a lethal form of prostate cancer. Although long-noncoding RNAs (lncRNAs) have been implicated in mCRPC, past studies have relied on bulk sequencing methods with low depth and lack of single-cell resolution. Hence, we performed a lncRNA-focused analysis of single-cell RNA-sequencing data (n = 14) from mCRPC biopsies followed by integration with bulk multi-omic datasets. This yielded 389 cell-enriched lncRNAs in prostate cancer cells and the tumor microenvironment (TME). These lncRNAs demonstrated enrichment with regulatory elements and exhibited alterations during prostate cancer progression. Prostate-lncRNAs were correlated with AR mutational status and response to treatment with enzalutamide, while TME-lncRNAs were associated with RB1 deletions and poor prognosis. Finally, lncRNAs identified between prostate adenocarcinomas and neuroendocrine tumors exhibited distinct expression and methylation profiles. Our findings demonstrate the ability of single-cell analysis to refine our understanding of lncRNAs in mCRPC and serve as a resource for future mechanistic studies.
Collapse
Affiliation(s)
- Debanjan Saha
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO, USA
- Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ha X Dang
- Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Meng Zhang
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California at San Francisco, San Francisco, CA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Christopher A Maher
- Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
71
|
van Genderen MNG, Kneppers J, Zaalberg A, Bekers EM, Bergman AM, Zwart W, Eduati F. Agent-based modeling of the prostate tumor microenvironment uncovers spatial tumor growth constraints and immunomodulatory properties. NPJ Syst Biol Appl 2024; 10:20. [PMID: 38383542 PMCID: PMC10881528 DOI: 10.1038/s41540-024-00344-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
Inhibiting androgen receptor (AR) signaling through androgen deprivation therapy (ADT) reduces prostate cancer (PCa) growth in virtually all patients, but response may be temporary, in which case resistance develops, ultimately leading to lethal castration-resistant prostate cancer (CRPC). The tumor microenvironment (TME) plays an important role in the development and progression of PCa. In addition to tumor cells, TME-resident macrophages and fibroblasts express AR and are therefore also affected by ADT. However, the interplay of different TME cell types in the development of CRPC remains largely unexplored. To understand the complex stochastic nature of cell-cell interactions, we created a PCa-specific agent-based model (PCABM) based on in vitro cell proliferation data. PCa cells, fibroblasts, "pro-inflammatory" M1-like and "pro-tumor" M2-like polarized macrophages are modeled as agents from a simple set of validated base assumptions. PCABM allows us to simulate the effect of ADT on the interplay between various prostate TME cell types. The resulting in vitro growth patterns mimic human PCa. Our PCABM can effectively model hormonal perturbations by ADT, in which PCABM suggests that CRPC arises in clusters of resistant cells, as is observed in multifocal PCa. In addition, fibroblasts compete for cellular space in the TME while simultaneously creating niches for tumor cells to proliferate in. Finally, PCABM predicts that ADT has immunomodulatory effects on macrophages that may enhance tumor survival. Taken together, these results suggest that AR plays a critical role in the cellular interplay and stochastic interactions in the TME that influence tumor cell behavior and CRPC development.
Collapse
Affiliation(s)
- Maisa N G van Genderen
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jeroen Kneppers
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Anniek Zaalberg
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Elise M Bekers
- Division of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Division of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Wilbert Zwart
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
| |
Collapse
|
72
|
Mei S, Alchahin AM, Tsea I, Kfoury Y, Hirz T, Jeffries NE, Zhao T, Xu Y, Zhang H, Sarkar H, Wu S, Subtelny AO, Johnsen JI, Zhang Y, Salari K, Wu CL, Randolph MA, Scadden DT, Dahl DM, Shin J, Kharchenko PV, Saylor PJ, Sykes DB, Baryawno N. Single-cell analysis of immune and stroma cell remodeling in clear cell renal cell carcinoma primary tumors and bone metastatic lesions. Genome Med 2024; 16:1. [PMID: 38281962 PMCID: PMC10823713 DOI: 10.1186/s13073-023-01272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/11/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Despite therapeutic advances, once a cancer has metastasized to the bone, it represents a highly morbid and lethal disease. One third of patients with advanced clear cell renal cell carcinoma (ccRCC) present with bone metastasis at the time of diagnosis. However, the bone metastatic niche in humans, including the immune and stromal microenvironments, has not been well-defined, hindering progress towards identification of therapeutic targets. METHODS We collected fresh patient samples and performed single-cell transcriptomic profiling of solid metastatic tissue (Bone Met), liquid bone marrow at the vertebral level of spinal cord compression (Involved), and liquid bone marrow from a different vertebral body distant from the tumor site but within the surgical field (Distal), as well as bone marrow from patients undergoing hip replacement surgery (Benign). In addition, we incorporated single-cell data from primary ccRCC tumors (ccRCC Primary) for comparative analysis. RESULTS The bone marrow of metastatic patients is immune-suppressive, featuring increased, exhausted CD8 + cytotoxic T cells, T regulatory cells, and tumor-associated macrophages (TAM) with distinct transcriptional states in metastatic lesions. Bone marrow stroma from tumor samples demonstrated a tumor-associated mesenchymal stromal cell population (TA-MSC) that appears to be supportive of epithelial-to mesenchymal transition (EMT), bone remodeling, and a cancer-associated fibroblast (CAFs) phenotype. This stromal subset is associated with poor progression-free and overall survival and also markedly upregulates bone remodeling through the dysregulation of RANK/RANKL/OPG signaling activity in bone cells, ultimately leading to bone resorption. CONCLUSIONS These results provide a comprehensive analysis of the bone marrow niche in the setting of human metastatic cancer and highlight potential therapeutic targets for both cell populations and communication channels.
Collapse
Affiliation(s)
- Shenglin Mei
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Adele M Alchahin
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Ioanna Tsea
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Youmna Kfoury
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Taghreed Hirz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Nathan Elias Jeffries
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Ting Zhao
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Hanyu Zhang
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Hirak Sarkar
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Shulin Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Alexander O Subtelny
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Yida Zhang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Keyan Salari
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Mark A Randolph
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Douglas M Dahl
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - John Shin
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02115, USA.
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Present: Altos Labs, San Diego, CA, 92121, USA.
| | - Philip J Saylor
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA.
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
73
|
Yang Y, Ding M, Yin H, Chen W, Shen H, Diao W, Yang L, Qin H, Gan W, Qiu X, Guo H. GALNT12 suppresses the bone-specific prostate cancer metastasis by activating BMP pathway via the O-glycosylation of BMPR1A. Int J Biol Sci 2024; 20:1297-1313. [PMID: 38385080 PMCID: PMC10878148 DOI: 10.7150/ijbs.91925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
Bone metastasis caused the majority death of prostate cancer (PCa) but the mechanism remains poorly understood. In this present study, we show that polypeptide N-acetylgalactosaminyltransferase 12 (GALNT12) suppresses bone-specific metastasis of PCa. GALNT12 suppresses proliferation, migration, invasion and cell division ability of PCa cells by activating the BMP pathway. Mechanistic investigations showed that GALNT12 augments the O-glycosylation of BMPR1A then actives the BMP pathway. Activated BMP signaling inhibits the expression of integrin αVβ3 to reduce the bone-specific seeding of PCa cells. Furthermore, activated BMP signaling remolds the immune microenvironment by suppressing the STAT3 pathway. Our results of this study illustrate the role and mechanism of GALNT12 in the process of bone metastasis of PCa and identify GALNT12 as a potential therapeutic target for metastatic PCa.
Collapse
Affiliation(s)
- Yang Yang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Meng Ding
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Haoli Yin
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Wei Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Hongwei Shen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Wenli Diao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Lin Yang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Haixiang Qin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Weidong Gan
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Xuefeng Qiu
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| |
Collapse
|
74
|
Nolan-Stevaux O, Li C, Liang L, Zhan J, Estrada J, Osgood T, Li F, Zhang H, Case R, Murawsky CM, Estes B, Moore GL, Bernett MJ, Muchhal U, Desjarlais JR, Staley BK, Stevens J, Cooke KS, Aeffner F, Thomas O, Stieglmaier J, Lee JL, Coxon A, Bailis JM. AMG 509 (Xaluritamig), an Anti-STEAP1 XmAb 2+1 T-cell Redirecting Immune Therapy with Avidity-Dependent Activity against Prostate Cancer. Cancer Discov 2024; 14:90-103. [PMID: 37861452 DOI: 10.1158/2159-8290.cd-23-0984] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
The tumor-associated antigen STEAP1 is a potential therapeutic target that is expressed in most prostate tumors and at increased levels in metastatic castration-resistant prostate cancer (mCRPC). We developed a STEAP1-targeted XmAb 2+1 T-cell engager (TCE) molecule, AMG 509 (also designated xaluritamig), that is designed to redirect T cells to kill prostate cancer cells that express STEAP1. AMG 509 mediates potent T cell-dependent cytotoxicity of prostate cancer cell lines in vitro and promotes tumor regression in xenograft and syngeneic mouse models of prostate cancer in vivo. The avidity-driven activity of AMG 509 enables selectivity for tumor cells with high STEAP1 expression compared with normal cells. AMG 509 is the first STEAP1 TCE to advance to clinical testing, and we report a case study of a patient with mCRPC who achieved an objective response on AMG 509 treatment. SIGNIFICANCE Immunotherapy in prostate cancer has met with limited success due to the immunosuppressive microenvironment and lack of tumor-specific targets. AMG 509 provides a targeted immunotherapy approach to engage a patient's T cells to kill STEAP1-expressing tumor cells and represents a new treatment option for mCRPC and potentially more broadly for prostate cancer. See related commentary by Hage Chehade et al., p. 20. See related article by Kelly et al., p. 76. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
| | - Cong Li
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| | - Lingming Liang
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| | - Jinghui Zhan
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Juan Estrada
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Tao Osgood
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Fei Li
- Structural Biology, Amgen Research, Amgen Inc., South San Francisco, California
| | - Hanzhi Zhang
- Structural Biology, Amgen Research, Amgen Inc., South San Francisco, California
| | - Ryan Case
- Lead Discovery and Characterization, Amgen Research, Amgen Inc., South San Francisco, California
| | | | - Bram Estes
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California
| | | | | | | | | | - Binnaz K Staley
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| | - Jennitte Stevens
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California
| | - Keegan S Cooke
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Famke Aeffner
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, California
| | - Oliver Thomas
- Translational Safety and Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany
| | - Julia Stieglmaier
- Early Development Oncology, Amgen Research (Munich) GmbH, Munich, Germany
| | - Jae-Lyun Lee
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Angela Coxon
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Julie M Bailis
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| |
Collapse
|
75
|
Pakula H, Omar M, Carelli R, Pederzoli F, Fanelli GN, Pannellini T, Socciarelli F, Van Emmenis L, Rodrigues S, Fidalgo-Ribeiro C, Nuzzo PV, Brady NJ, Dinalankara W, Jere M, Valencia I, Saladino C, Stone J, Unkenholz C, Garner R, Alexanderani MK, Khani F, de Almeida FN, Abate-Shen C, Greenblatt MB, Rickman DS, Barbieri CE, Robinson BD, Marchionni L, Loda M. Distinct mesenchymal cell states mediate prostate cancer progression. Nat Commun 2024; 15:363. [PMID: 38191471 PMCID: PMC10774315 DOI: 10.1038/s41467-023-44210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
In the complex tumor microenvironment (TME), mesenchymal cells are key players, yet their specific roles in prostate cancer (PCa) progression remain to be fully deciphered. This study employs single-cell RNA sequencing to delineate molecular changes in tumor stroma that influence PCa progression and metastasis. Analyzing mesenchymal cells from four genetically engineered mouse models (GEMMs) and correlating these findings with human tumors, we identify eight stromal cell populations with distinct transcriptional identities consistent across both species. Notably, stromal signatures in advanced mouse disease reflect those in human bone metastases, highlighting periostin's role in invasion and differentiation. From these insights, we derive a gene signature that predicts metastatic progression in localized disease beyond traditional Gleason scores. Our results illuminate the critical influence of stromal dynamics on PCa progression, suggesting new prognostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
| | - Ryan Carelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Laboratory Medicine, Pisa University Hospital, Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, 56126, Italy
| | - Tania Pannellini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Fabio Socciarelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Lucie Van Emmenis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Silvia Rodrigues
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caroline Fidalgo-Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Pier Vitale Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nicholas J Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Wikum Dinalankara
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Madhavi Jere
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Itzel Valencia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Christopher Saladino
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jason Stone
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caitlin Unkenholz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Richard Garner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mohammad K Alexanderani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francisca Nunes de Almeida
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cory Abate-Shen
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Christopher E Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA.
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA.
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, UK.
| |
Collapse
|
76
|
Wang J, Wu W, Yuan T, Wang L, Zang L, Liu Q, Wang L, Huo X, Huo B, Tang Y, Wang H, Zhao Z. Tumor-associated macrophages and PD-L1 in prostate cancer: a possible key to unlocking immunotherapy efficacy. Aging (Albany NY) 2024; 16:445-465. [PMID: 38189834 PMCID: PMC10817380 DOI: 10.18632/aging.205378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/15/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE Prostate cancer (PCa) is often considered as a "cold" tumor with low responsiveness to immunotherapy. Recent evidence suggests the activation of specific immune cells, such as tumor-associated macrophages (TAMs), could potentially influence the efficacy of immunotherapy in PCa. However, the relationship between TAMs and PD-L1, a significant regulator in immunotherapy, within PCa remains unexplored. METHODS In this study, we assessed TAM infiltration and PD-L1 expression levels in a local cohort of 95 PCa tissue samples and two publicly available PCa datasets. We employed a combination of bioinformatics and experimental techniques, including gene set enrichment analysis, CIBERSORTx, tissue microarray, immunohistochemistry staining, and analysis of single-cell sequencing datasets, to provide a comprehensive understanding of the association between PD-L1 and TAMs in the PCa microenvironment. RESULTS The study showed that CD68+ TAMs and CD163+ TAMs (M2-TAMs) were more abundant in the tumor microenvironment than in non-cancerous surrounding tissues. The infiltration of CD163+ TAMs was significantly associated with the Gleason score and risk stratification of PCa. Importantly, elevated PD-L1 expression correlated significantly with high infiltration of CD163+ TAMs. Furthermore, patients displaying high levels of CD163+ TAMs and PD-L1 expression exhibited shorter times to biochemical recurrence-free survival. CONCLUSION Our study suggests that CD163+ TAMs are closely associated with PD-L1 expression and can act as a valuable prognostic indicator for PCa. The high infiltration of M2-TAMs, coupled with the overexpression of PD-L1, may contribute to immune escape mechanisms in PCa, thereby influencing disease prognosis.
Collapse
Affiliation(s)
- Jinhuan Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Wenqi Wu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Tian Yuan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lili Wang
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Li Zang
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Qing Liu
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Lei Wang
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xiaodong Huo
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Bin Huo
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yong Tang
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Haitao Wang
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhigang Zhao
- Department of Medical Oncology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| |
Collapse
|
77
|
Zhai X, Peng S, Zhai C, Wang S, Xie M, Guo S, Bai J. Design of Nanodrug Delivery Systems for Tumor Bone Metastasis. Curr Pharm Des 2024; 30:1136-1148. [PMID: 38551047 DOI: 10.2174/0113816128296883240320040636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/04/2024] [Indexed: 06/28/2024]
Abstract
Tumor metastasis is a complex process that is controlled at the molecular level by numerous cytokines. Primary breast and prostate tumors most commonly metastasize to bone, and the development of increasingly accurate targeted nanocarrier systems has become a research focus for more effective anti-bone metastasis therapy. This review summarizes the molecular mechanisms of bone metastasis and the principles and methods for designing bone-targeted nanocarriers and then provides an in-depth review of bone-targeted nanocarriers for the treatment of bone metastasis in the context of chemotherapy, photothermal therapy, gene therapy, and combination therapy. Furthermore, this review also discusses the treatment of metastatic and primary bone tumors, providing directions for the design of nanodelivery systems and future research.
Collapse
Affiliation(s)
- Xiaoqing Zhai
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261053, China
| | - Shan Peng
- School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - Chunyuan Zhai
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261053, China
| | - Shuai Wang
- People's Hospital of Gaoqing County, Zibo 256399, China
| | - Meina Xie
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Shoudong Guo
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
78
|
Li S, Kang Y, Zeng Y. Targeting tumor and bone microenvironment: Novel therapeutic opportunities for castration-resistant prostate cancer patients with bone metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189033. [PMID: 38040267 DOI: 10.1016/j.bbcan.2023.189033] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/22/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Despite standard hormonal therapy that targets the androgen receptor (AR) attenuates prostate cancer (PCa) effectively in the initial stage, the tumor ultimately converts to castration-resistant prostate cancer (CRPC), and the acquired resistance is still a great challenge for the management of advanced prostate cancer patients. The tumor microenvironment (TME) consists of multiple cellular and noncellular agents is well known as a vital role during the development and progression of CRPC by establishing communication between TME and tumor cells. Additionally, as primary prostate cancer progresses towards metastasis, and CRPC always experiences bone metastasis, the TME is conducive to the spread of tumors to the distant sits, particularly in bone. In addition, the bone microenvironment (BME) is also closely related to the survival, growth and colonization of metastatic tumor cells. The present review summarized the recent studies which mainly focused on the role of TME or BME in the CRPC patients with bone metastasis, and discussed the underlying mechanisms, as well as the potential therapeutic values of targeting TME and BME in the management of metastatic CRPC patients.
Collapse
Affiliation(s)
- Shenglong Li
- Second ward of Bone and Soft Tissue Tumor Surgery,Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China; The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, China
| | - Yue Kang
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yu Zeng
- Department of Urology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.
| |
Collapse
|
79
|
Chu X, Shin S, Baek DS, Zhang L, Conard A, Shi M, Kim YJ, Adams C, Hines M, Liu X, Chen C, Sun Z, Jelev DV, Mellors JW, Dimitrov DS, Li W. Discovery of a novel highly specific, fully human PSCA antibody and its application as an antibody-drug conjugate in prostate cancer. MAbs 2024; 16:2387240. [PMID: 39113562 PMCID: PMC11312989 DOI: 10.1080/19420862.2024.2387240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024] Open
Abstract
Prostate stem cell antigen (PSCA) is expressed in all stages of prostate cancer, including in advanced androgen-independent tumors and bone metastasis. PSCA may associate with prostate carcinogenesis and lineage plasticity in prostate cancer. PSCA is also a promising theranostic marker for a variety of other solid tumors, including pancreatic adenocarcinoma and renal cell carcinoma. Here, we identified a novel fully human PSCA antibody using phage display methodology. The structure-based affinity maturation yielded a high-affinity binder, F12, which is highly specific and does not bind to 6,000 human membrane proteins based on a membrane proteome array assay. F12 targets PSCA amino acids 63-69 as tested by the peptide scanning microarray, and it cross-reacts with the murine PSCA. IgG1 F12 efficiently internalizes into PSCA-expressing tumor cells. The antimitotic reagent monomethyl auristatin E (MMAE)-conjugated IgG1 F12 (ADC, F12-MMAE) exhibits dose-dependent efficacy and specificity in a human prostate cancer PC-3-PSCA xenograft NSG mouse model. This is a first reported ADC based on a fully human PSCA antibody and MMAE that is characterized in a xenograft murine model, which warrants further optimizations and investigations in additional preclinical tumor models, including prostate and other solid tumors.
Collapse
Affiliation(s)
- Xiaojie Chu
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Seungmin Shin
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | | | - Liyong Zhang
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Megan Shi
- Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | | | | | - Maggie Hines
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Xianglei Liu
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Chuan Chen
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | | | - Dontcho V. Jelev
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - John W. Mellors
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
- GLPG, Pittsburgh, PA, USA
| | - Dimiter S. Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
- GLPG, Pittsburgh, PA, USA
| | - Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| |
Collapse
|
80
|
Zhang T, Zhao F, Lin Y, Liu M, Zhou H, Cui F, Jin Y, Chen L, Sheng X. Integrated analysis of single-cell and bulk transcriptomics develops a robust neuroendocrine cell-intrinsic signature to predict prostate cancer progression. Theranostics 2024; 14:1065-1080. [PMID: 38250042 PMCID: PMC10797290 DOI: 10.7150/thno.92336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Neuroendocrine prostate cancer (NEPC) typically implies severe lethality and limited treatment options. The precise identification of NEPC cells holds paramount significance for both research and clinical applications, yet valid NEPC biomarker remains to be defined. Methods: Leveraging 11 published NE-related gene sets, 11 single-cell RNA-sequencing (scRNA-seq) cohorts, 15 bulk transcriptomic cohorts, and 13 experimental models of prostate cancer (PCa), we employed multiple advanced algorithms to construct and validate a robust NEPC risk prediction model. Results: Through the compilation of a comprehensive scRNA-seq reference atlas (comprising a total of 210,879 single cells, including 66 tumor samples) from 9 multicenter datasets of PCa, we observed inconsistent and inefficient performance among the 11 published NE gene sets. Therefore, we developed an integrative analysis pipeline, identifying 762 high-quality NE markers. Subsequently, we derived the NE cell-intrinsic gene signature, and developed an R package named NEPAL, to predict NEPC risk scores. By applying to multiple independent validation datasets, NEPAL consistently and accurately assigned NE feature and delineated PCa progression. Intriguingly, NEPAL demonstrated predictive capabilities for prognosis and therapy responsiveness, as well as the identification of potential epigenetic drivers of NEPC. Conclusion: The present study furnishes a valuable tool for the identification of NEPC and the monitoring of PCa progression through transcriptomic profiles obtained from both bulk and single-cell sources.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Faming Zhao
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Yahang Lin
- Department of Neurology, Wuhan Fourth Hospital/Pu'ai Hospital, Wuhan, China
| | - Mingsheng Liu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Hongqing Zhou
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Fengzhen Cui
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Yang Jin
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Liang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Sheng
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Life and Health Sciences, Hainan University, Haikou, China
| |
Collapse
|
81
|
Du H, Wang H, Luo Y, Jiao Y, Wu J, Dong S, Du D. An integrated analysis of bulk and single-cell sequencing data reveals that EMP1 +/COL3A1 + fibroblasts contribute to the bone metastasis process in breast, prostate, and renal cancers. Front Immunol 2023; 14:1313536. [PMID: 38187400 PMCID: PMC10770257 DOI: 10.3389/fimmu.2023.1313536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Bone metastasis (BoM) occurs when cancer cells spread from their primary sites to a bone. Currently, the mechanism underlying this metastasis process remains unclear. Methods In this project, through an integrated analysis of bulk-sequencing and single-cell RNA transcriptomic data, we explored the BoM-related features in tumor microenvironments of different tumors. Results We first identified 34 up-regulated genes during the BoM process in breast cancer, and further explored their expression status among different components in the tumor microenvironment (TME) of BoM samples. Enriched EMP1+ fibroblasts were found in BoM samples, and a COL3A1-ADGRG1 communication between these fibroblasts and cancer cells was identified which might facilitate the BoM process. Moreover, a significant correlation between EMP1 and COL3A1 was identified in these fibroblasts, confirming the potential connection of these genes during the BoM process. Furthermore, the existence of these EMP1+/COL3A1+ fibroblasts was also verified in prostate cancer and renal cancer BoM samples, suggesting the importance of these fibroblasts from a pan-cancer perspective. Discussion This study is the first attempt to investigate the relationship between fibroblasts and BoM process across multi-tumor TMEs. Our findings contribute another perspective in the exploration of BoM mechanism while providing some potential targets for future treatments of tumor metastasis.
Collapse
Affiliation(s)
- Haoyuan Du
- Department of Orthopedics and Joints, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Hua Wang
- Department of Orthopedics and Joints, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yuwei Luo
- Department of Breast Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yang Jiao
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jiajun Wu
- Department of Pediatric Research, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Shaowei Dong
- Department of Pediatric Research, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Dong Du
- Department of Health Management, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
82
|
Yu G, Corn PG, Mak CSL, Liang X, Zhang M, Troncoso P, Song JH, Lin SC, Song X, Liu J, Zhang J, Logothetis CJ, Melancon MP, Panaretakis T, Wang G, Lin SH. Prostate cancer-induced endothelial-to-osteoblast transition generates an immunosuppressive bone tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569496. [PMID: 38076845 PMCID: PMC10705502 DOI: 10.1101/2023.11.30.569496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/14/2024]
Abstract
Immune checkpoint therapy has limited efficacy for patients with bone metastatic castrate-resistant prostate cancer (bmCRPC). In this study, we revealed a novel mechanism that may account for the relative resistance of bmCRPC to immune checkpoint therapy. We found that prostate cancer (PCa)-induced bone via endothelial-to-osteoblast (EC-to-OSB) transition causes an ingress of M2-like macrophages, leading to an immunosuppressive bone tumor microenvironment (bone-TME). Analysis of a bmCRPC RNA-seq dataset revealed shorter overall survival in patients with an M2-high versus M2-low signature. Immunohistochemical (IHC) analysis showed CD206 + M2-like macrophages were enriched in bmCRPC specimens compared with primary tumors or lymph node metastasis. In osteogenic PCa xenografts, CD206 + macrophages were enriched adjacent to tumor-induced bone. FACS analysis showed an increase in CD206 + cells in osteogenic tumors compared to non-osteogenic tumors. Genetic or pharmacological inhibition of the EC-to-OSB transition reduced aberrant bone and M2-like macrophages in osteogenic tumors. RNAseq analysis of tumor-associated macrophages from osteogenic (bone-TAMs) versus non-osteogenic (ctrl-TAMs) tumors showed high expression of an M2-like gene signature, canonical and non-canonical Wnt pathways, and a decrease in an M1-like gene signature. Isolated bone-TAMs suppressed T-cell proliferation while ctrl-TAMs did not. Mechanistically, EC-OSB hybrid cells produced paracrine factors, including Wnts, CXCL14 and LOX, which induced M2 polarization and recruited M2-like TAMs to bone-TME. Our study thus links the unique EC-to-OSB transition as an "upstream" event that drives "downstream" immunosuppression in the bone-TME. These studies suggest that therapeutic strategies that inhibit PCa-induced EC-to-OSB transition may reverse immunosuppression to promote immunotherapeutic outcomes in bmCRPC. Significance The insight that prostate cancer-induced bone generates an immunosuppressive bone tumor microenvironment offers a strategy to improve responses to immunotherapy approaches in patients with bone metastatic castrate-resistant prostate cancer.
Collapse
|
83
|
Li Y, Li R, Li Y, Li G, Zhao Y, Mou H, Chen Y, Xiao L, Gong K. Transcription Factor TCF3 Promotes Macrophage-Mediated Inflammation and MMP Secretion in Abdominal Aortic Aneurysm by Regulating miR-143-5p /CCL20. J Cardiovasc Pharmacol 2023; 82:458-469. [PMID: 37721971 PMCID: PMC10691663 DOI: 10.1097/fjc.0000000000001484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
ABSTRACT Damage to the abdominal aortic wall and the local inflammatory response are key factors resulting in abdominal aortic aneurysm (AAA) formation. During this process, macrophage polarization plays a key role. However, in AAA, the regulatory mechanism of macrophages is still unclear, and further research is needed. In this study, we found that the transcription factor TCF3 was expressed at low levels in AAA. We overexpressed TCF3 and found that TCF3 could inhibit MMP and inflammatory factor expression and promote M2 macrophage polarization, thereby inhibiting the progression of AAA. Knocking down TCF3 could promote M1 polarization and MMP and inflammatory factor expression. In addition, we found that TCF3 increased miR-143-5p expression through transcriptional activation of miR-143-5p , which further inhibited expression of the downstream chemokine CCL20 and promoted M2 macrophage polarization. Our research indicates that TCF3-mediated macrophage polarization plays a key regulatory role in AAA, complementing the role and mechanism of macrophages in the occurrence and development of AAA and providing a scientific basis for AAA treatment.
Collapse
Affiliation(s)
- Yuejin Li
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Rougang Li
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yu Li
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Guosan Li
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yiman Zhao
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Houyu Mou
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yi Chen
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Le Xiao
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Kunmei Gong
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
84
|
Zhang M, Ceyhan Y, Mei S, Hirz T, Sykes DB, Agoulnik IU. Regulation of EZH2 Expression by INPP4B in Normal Prostate and Primary Prostate Cancer. Cancers (Basel) 2023; 15:5418. [PMID: 38001678 PMCID: PMC10670027 DOI: 10.3390/cancers15225418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The phosphatases INPP4B and PTEN are tumor suppressors that are lost in nearly half of advanced metastatic cancers. The loss of PTEN in prostate epithelium initially leads to an upregulation of several tumor suppressors that slow the progression of prostate cancer in mouse models. We tested whether the loss of INPP4B elicits a similar compensatory response in prostate tissue and whether this response is distinct from the one caused by the loss of PTEN. Knockdown of INPP4B but not PTEN in human prostate cancer cell lines caused a decrease in EZH2 expression. In Inpp4b-/- mouse prostate epithelium, EZH2 levels were decreased, as were methylation levels of histone H3. In contrast, Ezh2 levels were increased in the prostates of Pten-/- male mice. Contrary to PTEN, there was a positive correlation between INPP4B and EZH2 expression in normal human prostates and early-stage prostate tumors. Analysis of single-cell transcriptomic data demonstrated that a subset of EZH2-positive cells expresses INPP4B or PTEN, but rarely both, consistent with their opposing correlation with EZH2 expression. Unlike PTEN, INPP4B did not affect the levels of SMAD4 protein expression or Pml mRNA expression. Like PTEN, p53 protein expression and phosphorylation of Akt in Inpp4b-/- murine prostates were elevated. Taken together, the loss of INPP4B in the prostate leads to overlapping and distinct changes in tumor suppressor and oncogenic downstream signaling.
Collapse
Affiliation(s)
- Manqi Zhang
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC 27708, USA;
| | - Yasemin Ceyhan
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA;
| | - Shenglin Mei
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; (S.M.); (T.H.); (D.B.S.)
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Taghreed Hirz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; (S.M.); (T.H.); (D.B.S.)
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; (S.M.); (T.H.); (D.B.S.)
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Irina U. Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
85
|
Hawley JE, Obradovic AZ, Dallos MC, Lim EA, Runcie K, Ager CR, McKiernan J, Anderson CB, Decastro GJ, Weintraub J, Virk R, Lowy I, Hu J, Chaimowitz MG, Guo XV, Zhang Y, Haffner MC, Worley J, Stein MN, Califano A, Drake CG. Anti-PD-1 immunotherapy with androgen deprivation therapy induces robust immune infiltration in metastatic castration-sensitive prostate cancer. Cancer Cell 2023; 41:1972-1988.e5. [PMID: 37922910 PMCID: PMC11184948 DOI: 10.1016/j.ccell.2023.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
When compared to other malignancies, the tumor microenvironment (TME) of primary and castration-resistant prostate cancer (CRPC) is relatively devoid of immune infiltrates. While androgen deprivation therapy (ADT) induces a complex immune infiltrate in localized prostate cancer, the composition of the TME in metastatic castration-sensitive prostate cancer (mCSPC), and the effects of ADT and other treatments in this context are poorly understood. Here, we perform a comprehensive single-cell RNA sequencing (scRNA-seq) profiling of metastatic sites from patients participating in a phase 2 clinical trial (NCT03951831) that evaluated standard-of-care chemo-hormonal therapy combined with anti-PD-1 immunotherapy. We perform a longitudinal, protein activity-based analysis of TME subpopulations, revealing immune subpopulations conserved across multiple metastatic sites. We also observe dynamic changes in these immune subpopulations in response to treatment and a correlation with clinical outcomes. Our study uncovers a therapy-resistant, transcriptionally distinct tumor subpopulation that expands in cell number in treatment-refractory patients.
Collapse
Affiliation(s)
- Jessica E Hawley
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Aleksandar Z Obradovic
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthew C Dallos
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Emerson A Lim
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Karie Runcie
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Casey R Ager
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - James McKiernan
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Christopher B Anderson
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Guarionex J Decastro
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Joshua Weintraub
- Department of Interventional Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Renu Virk
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Israel Lowy
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Jianhua Hu
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew G Chaimowitz
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Xinzheng V Guo
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA; Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jeremy Worley
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark N Stein
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032 USA; Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032 USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032 USA; J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032 USA.
| | - Charles G Drake
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA; Department of Interventional Radiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
86
|
Chen C, Wang S, Wang N, Zheng Y, Zhou J, Hong M, Chen Z, Wang S, Wang Z, Xiang S. Icariin inhibits prostate cancer bone metastasis and destruction via suppressing TAM/CCL5-mediated osteoclastogenesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155076. [PMID: 37716031 DOI: 10.1016/j.phymed.2023.155076] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Bone metastasis occurs in nearly 70% of patients with metastatic prostate cancer (PCa), and represents the leading cause of death in patients with PCa. Emerging evidence has demonstrated the potential activities of icariin in modulating bone metabolism and remodelling the tumor microenvironment (TME). However, whether icariin could inhibit PCa bone metastasis and destruction by modulating the TME as well as the underlying mechanisms remains unclear. PURPOSE This study investigated whether icariin could inhibit PCa bone metastasis and destruction by modulating the bone TME as well as the underlying mechanisms. METHODS Osteoclasts were induced from mouse bone marrow-derived macrophages (BMMs) or Raw264.7 cells. PCa cells were cultured in the conditional medium (CM) of macrophages in vitro or co-injected with macrophages in vivo to simulate their coexistence in the TME. Multiple molecular biology experiments and the mouse RM1-Luc PCa bone metastasis model were used to explore the inhibitory activity and mechanism of icariin on PCa metastasis and bone destruction. RESULTS Icariin treatment significantly suppressed PCa growth, bone metastasis and destruction as well as osteoclastogenesis in vivo. Furthermore, icariin remarkably inhibited osteoclast differentiation, even in the presence of the CM of tumor-associated macrophages (TAMs), while exhibiting no obvious effect on osteoblasts. Moreover, icariin suppressed the M2 phenotype polarization of Raw264.7-derived TAMs and transcriptionally attenuated their CC motif chemokine ligand 5 (CCL5) expression and secretion via inhibiting SPI1. Additionally, CCL5 induced the differentiation and chemotaxis of osteoclast precursor cells by binding with its receptor CCR5. The clinicopathological analysis further verified the positive correlation between the TAM/CCL5/CCR5 axis and osteoclastogenesis within the TME of PCa patients. More importantly, icariin remarkably suppressed PCa metastasis-induced bone destruction in vivo by inhibiting osteoclastogenesis via downregulating the TAM/CCL5 pathway. CONCLUSION Altogether, these results not only implicate icariin as a promising candidate immunomodulator for PCa bone metastasis and destruction but also shed novel insight into targeting TAM/CCL5-mediated osteoclastogenesis as a potential treatment strategy for osteolytic bone metastasis. This study helps to advance the understanding of the crosstalk between bone TME and bone homeostasis.
Collapse
Affiliation(s)
- Chiwei Chen
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shengqi Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Neng Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yifeng Zheng
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jianfu Zhou
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Min Hong
- Department of Pathology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiqiang Chen
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shusheng Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiyu Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Songtao Xiang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
87
|
Aggarwal R, Starzinski S, de Kouchkovsky I, Koshkin V, Bose R, Chou J, Desai A, Kwon D, Kaushal S, Trihy L, Rastogi M, Ippisch R, Aslam M, Friedlander T, Feng F, Oh D, Cheung A, Small E, Evans M, Fong L, Hope TA. Single-dose 177Lu-PSMA-617 followed by maintenance pembrolizumab in patients with metastatic castration-resistant prostate cancer: an open-label, dose-expansion, phase 1 trial. Lancet Oncol 2023; 24:1266-1276. [PMID: 37922930 PMCID: PMC10667020 DOI: 10.1016/s1470-2045(23)00451-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Checkpoint inhibitors have been shown to have limited activity in patients with metastatic castration-resistant prostate cancer. We aimed to determine whether a single dose of lutetium-177 [177Lu]-prostate-specific membrane antigen (PSMA)-617 (177Lu-PSMA-617) followed by maintenance pembrolizumab was safe and could induce durable clinical benefit. METHODS We did an open-label, dose-expansion, phase 1 study at the University of California, San Francisco (San Fransisco, CA, USA). Eligible patients were men aged 18 years or older with progressive metastatic castration-resistant prostate cancer who had an Eastern Cooperative Oncology Group performance status of 0 or 1, had progression on one or more androgen signalling inhibitors, and at least three PSMA-avid lesions on 68Ga-PSMA-11 positron emission tomography. In part A, patients were enrolled sequentially to one of three schedules in which a single dose of 177Lu-PSMA-617 (7·4 GBq) was given intravenously 28 days before (schedule 1), concomitant with (schedule 2), or 21 days after (schedule 3) the start of maintenance intravenous pembrolizumab (200 mg every 3 weeks). In part B, 25 patients were enrolled using the recommended phase 2 schedule. The primary endpoint in part A was determination of the recommended phase 2 schedule, and in part B, the objective response rate. The analysis set included all patients who received at least one dose of pembrolizumab or 177Lu-PSMA-617. This study is registered with ClinicalTrials.gov, NCT03805594. FINDINGS Between Aug 8, 2019 and May 7, 2022, 43 male patients were enrolled (n=18 part A [six patients per schedule]; n=25 part B), with a median follow-up of 16·5 months (IQR 12·2-21·9). Schedule 1 was selected as the recommended phase 2 schedule for part B, on the basis of safety and feasibility of administration observed in part A. In part B, 14 (56%; 95% CI 35-76) of 25 patients had a confirmed objective response. Two (5%) of 43 patients had a treatment-related adverse event of grade 3 or worse (grade 3 arthritis in schedule 2, grade 3 pneumonitis in schedule 3). One serious adverse event (one death due to aspiration pneumonia) and no treatment-related deaths were observed. INTERPRETATION A single priming dose of 177Lu-PSMA-617 followed by pembrolizumab maintenance was safe and had encouraging preliminary activity in patients with metastatic castration-resistant prostate cancer. FUNDING Prostate Cancer Foundation, National Cancer Institute, Novartis Pharmaceuticals, and Merck.
Collapse
Affiliation(s)
- Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| | - Stephanie Starzinski
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Ivan de Kouchkovsky
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Vadim Koshkin
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Rohit Bose
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Arpita Desai
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Kwon
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Samuel Kaushal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Lauren Trihy
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Medini Rastogi
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Robin Ippisch
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Maya Aslam
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Terence Friedlander
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Felix Feng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - David Oh
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Alexander Cheung
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Eric Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Michael Evans
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
88
|
Peng K, Wang N, Liu Q, Wang L, Duan X, Xie G, Li J, Ding D. Identification of disulfidptosis-related subtypes and development of a prognosis model based on stacking framework in renal clear cell carcinoma. J Cancer Res Clin Oncol 2023; 149:13793-13810. [PMID: 37530800 DOI: 10.1007/s00432-023-05201-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor with an unsatisfactory prognosis. This study aims to identify the expression patterns of disulfidptosis-related genes (DRGs), develop a prognostic model, and predict immunological profiles. METHODS First, we identified differentially expressed DRGs in TCGA-KIRC cohort and analyzed their mutational profiles, methylation levels, and interaction networks. Subsequently, we identified disulfidptosis-associated molecular subtypes and investigated their prognostic and immunological characteristics. Simultaneously, a disulfidptosis-related prognostic signature (DRPS) was developed using a two-stage stacking framework consisting of 5 machine learning models. The effect of DRPS on immune cell infiltration levels was explored using seven different algorithms, and the status and function of T cells for distinct risk-score groups were evaluated based on T cell exhaustion and dysfunction scores. Additionally, the study also examined differences in clinical characteristics and therapy efficacy between high- and low-risk groups. RESULTS We found two disulfidptosis-associated clusters, one of which had a poor prognosis and was linked to high immune cell infiltration but impaired T cell function. DRPS showed excellent predictive performance in all four cohorts and could accurately identified disulfidptosis-related molecular subtypes. The DRPS-based risk score was positively associated with poor prognosis, malignant pathological features, high immune cell infiltration levels, and T cell exhaustion or dysfunction, and better respond to immunotherapy and targeted therapy. Additionally, we have identified a close association between ISG20 and disulfidptosis as well as tumor immunity. CONCLUSION Our study identified distinct disulfidptosis-related subtypes in ccRCC patients, and constructed the highly accurate and robust DRPS based on an ensemble learning framework, which has critical reference value in clinical decision-making and individualized treatment. And this work also revealed ISG20 exhibits promising potential as a therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Kun Peng
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Ning Wang
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Qingyuan Liu
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Lingdian Wang
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Xiaoyu Duan
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Guochong Xie
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Jixi Li
- Department of Urology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Degang Ding
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
- Department of Urology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
- Institute of Urology, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
89
|
Geng C, Zhang MC, Manyam GC, Vykoukal JV, Fahrmann JF, Peng S, Wu C, Park S, Kondraganti S, Wang D, Robinson BD, Loda M, Barbieri CE, Yap TA, Corn PG, Hanash S, Broom BM, Pilié PG, Thompson TC. SPOP Mutations Target STING1 Signaling in Prostate Cancer and Create Therapeutic Vulnerabilities to PARP Inhibitor-Induced Growth Suppression. Clin Cancer Res 2023; 29:4464-4478. [PMID: 37581614 PMCID: PMC11017857 DOI: 10.1158/1078-0432.ccr-23-1439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/12/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE Speckle-type POZ protein (SPOP) is important in DNA damage response (DDR) and maintenance of genomic stability. Somatic heterozygous missense mutations in the SPOP substrate-binding cleft are found in up to 15% of prostate cancers. While mutations in SPOP predict for benefit from androgen receptor signaling inhibition (ARSi) therapy, outcomes for patients with SPOP-mutant (SPOPmut) prostate cancer are heterogeneous and targeted treatments for SPOPmut castrate-resistant prostate cancer (CRPC) are lacking. EXPERIMENTAL DESIGN Using in silico genomic and transcriptomic tumor data, proteomics analysis, and genetically modified cell line models, we demonstrate mechanistic links between SPOP mutations, STING signaling alterations, and PARP inhibitor vulnerabilities. RESULTS We demonstrate that SPOP mutations are associated with upregulation of a 29-gene noncanonical (NC) STING (NC-STING) signature in a subset of SPOPmut, treatment-refractory CRPC patients. We show in preclinical CRPC models that SPOP targets and destabilizes STING1 protein, and prostate cancer-associated SPOP mutations result in upregulated NC-STING-NF-κB signaling and macrophage- and tumor microenvironment (TME)-facilitated reprogramming, leading to tumor cell growth. Importantly, we provide in vitro and in vivo mechanism-based evidence that PARP inhibitor (PARPi) treatment results in a shift from immunosuppressive NC-STING-NF-κB signaling to antitumor, canonical cGAS-STING-IFNβ signaling in SPOPmut CRPC and results in enhanced tumor growth inhibition. CONCLUSIONS We provide evidence that SPOP is critical in regulating immunosuppressive versus antitumor activity downstream of DNA damage-induced STING1 activation in prostate cancer. PARPi treatment of SPOPmut CRPC alters this NC-STING signaling toward canonical, antitumor cGAS-STING-IFNβ signaling, highlighting a novel biomarker-informed treatment strategy for prostate cancer.
Collapse
Affiliation(s)
- Chuandong Geng
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Man-Chao Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ganiraju C. Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jody V. Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shan Peng
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cheng Wu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sanghee Park
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shakuntala Kondraganti
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daoqi Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian D. Robinson
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Christopher E. Barbieri
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Department of Urology, Weill Cornell Medicine, New York, New York
| | - Timothy A. Yap
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
- The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bradley M. Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick G. Pilié
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy C. Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
90
|
Li M, Ding C, Zhang D, Chen W, Yan Z, Chen Z, Guo Z, Guo L, Huang Y. Distinguishable Colorimetric Biosensor for Diagnosis of Prostate Cancer Bone Metastases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303159. [PMID: 37840414 PMCID: PMC10646272 DOI: 10.1002/advs.202303159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Indexed: 10/17/2023]
Abstract
Castration-resistant prostate cancer (PCa) causes severe bone metastasis (BM), which significantly increases mortality in men with PCa. Imaging tests and radiometric scanning require long analysis times, expensive equipment, specialized personnel, and a slow turnaround. New visualization technologies are expected to solve the above problems. Nonetheless, existing visualization techniques barely meet the urgency for precise diagnosis because the human eyes cannot recognize and capture even slight variations in visual information. By using dye differentiated superposition enhancement colorimetric biosensors, an effective method to diagnose prostate cancer bone metastases (PCa-BM) with excellent accuracy for naked-eye quantitative detection of alkaline phosphatase (ALP) is developed. The biomarker ALP specific hydrolytic product ascorbic acid can be detected by rhodamine derivatives (Rd) as gold nanobipyramids (Au NBPs) are deposited and grown. Color-recombining enhancement effects between Rd and Au NBPs significantly improved abundance. The 150 U L-1 threshold between normal and abnormal can be identified by color. And with color enhancement effect and double signal response, the ALP index is visually measured to diagnose PCa-BM and provide handy treatment recommendations. Additionally, the proposed colorimetric sensing strategy can be used to diagnose other diseases.
Collapse
Affiliation(s)
- Ming Li
- Department of Urology & NephrologyThe First Affiliated Hospital of Ningbo University59 Liuting StreetNingboZhejiang315010China
- College of Material Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationKey Laboratory of Organosilicon Material Technology of Zhejiang ProvinceDepartment Hangzhou Normal UniversityHangzhouZhejiang311121China
| | - Caiping Ding
- College of Material Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationKey Laboratory of Organosilicon Material Technology of Zhejiang ProvinceDepartment Hangzhou Normal UniversityHangzhouZhejiang311121China
| | - Dong Zhang
- Department of Urology & NephrologyThe First Affiliated Hospital of Ningbo University59 Liuting StreetNingboZhejiang315010China
| | - Weiwei Chen
- College of Material Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationKey Laboratory of Organosilicon Material Technology of Zhejiang ProvinceDepartment Hangzhou Normal UniversityHangzhouZhejiang311121China
| | - Zejun Yan
- Department of Urology & NephrologyThe First Affiliated Hospital of Ningbo University59 Liuting StreetNingboZhejiang315010China
| | - Zikang Chen
- College of Material Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationKey Laboratory of Organosilicon Material Technology of Zhejiang ProvinceDepartment Hangzhou Normal UniversityHangzhouZhejiang311121China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsState Key Laboratory Base of Novel Functional Materials and Preparation ScienceSchool of Materials Science and Chemical EngineeringNingbo UniversityNingboZhejiang315211China
| | - Longhua Guo
- College of BiologicalChemical Sciences and EngineeringJiaxing UniversityJiaxingZhejiang314001China
| | - Youju Huang
- College of Material Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationKey Laboratory of Organosilicon Material Technology of Zhejiang ProvinceDepartment Hangzhou Normal UniversityHangzhouZhejiang311121China
| |
Collapse
|
91
|
Chen Z, Yang X, Chen Z, Li M, Wang W, Yang R, Wang Z, Ma Y, Xu Y, Ao S, Liang L, Cai C, Wang C, Deng T, Gu D, Zhou H, Zeng G. A new histone deacetylase inhibitor remodels the tumor microenvironment by deletion of polymorphonuclear myeloid-derived suppressor cells and sensitizes prostate cancer to immunotherapy. BMC Med 2023; 21:402. [PMID: 37880708 PMCID: PMC10601128 DOI: 10.1186/s12916-023-03094-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most common malignancy diagnosed in men. Immune checkpoint blockade (ICB) alone showed disappointing results in PCa. It is partly due to the formation of immunosuppressive tumor microenvironment (TME) could not be reversed effectively by ICB alone. METHODS We used PCa cell lines to evaluate the combined effects of CN133 and anti-PD-1 in the subcutaneous and osseous PCa mice models, as well as the underlying mechanisms. RESULTS We found that CN133 could reduce the infiltration of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), and CN133 combination with anti-PD-1 could augment antitumor effects in the subcutaneous PCa of allograft models. However, anti-PD-1 combination with CN133 failed to elicit an anti-tumor response to the bone metastatic PCa mice. Mechanistically, CN133 could inhibit the infiltration of PMN-MDSCs in the TME of soft tissues by downregulation gene expression of PMN-MDSC recruitment but not change the gene expression involved in PMN-MDSC activation in the CN133 and anti-PD-1 co-treatment group relative to the anti-PD-1 alone in the bone metastatic mice model. CONCLUSIONS Taken together, our work firstly demonstrated that combination of CN133 with anti-PD-1 therapy may increase the therapeutic efficacy to PCa by reactivation of the positive immune microenvironment in the TME of soft tissue PCa.
Collapse
Affiliation(s)
- Zude Chen
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xiaoshuang Yang
- Department of Plastic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zugen Chen
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Minzhao Li
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wang
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Riwei Yang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zuomin Wang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuxiang Ma
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shan Ao
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Leqi Liang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Cai
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tuo Deng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Di Gu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Hongqing Zhou
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China.
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
92
|
Chaudagar K, Rameshbabu S, Mei S, Hirz T, Hu YM, Argulian A, Labadie B, Desai K, Grimaldo S, Kahramangil D, Nair R, DSouza S, Zhou D, Li M, Doughan F, Chen R, Shafran J, Loyd M, Xia Z, Sykes DB, Moran A, Patnaik A. Androgen blockade primes NLRP3 in macrophages to induce tumor phagocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557996. [PMID: 37904975 PMCID: PMC10614738 DOI: 10.1101/2023.09.15.557996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Immune-based therapies induce durable remissions in subsets of patients across multiple malignancies. However, there is limited efficacy of immunotherapy in metastatic castrate-resistant prostate cancer (mCRPC), manifested by an enrichment of immunosuppressive (M2) tumor- associated macrophages (TAM) in the tumor immune microenvironment (TME). Therefore, therapeutic strategies to overcome TAM-mediated immunosuppression are critically needed in mCRPC. Here we discovered that NLR family pyrin domain containing 3 (NLRP3), an innate immune sensing protein, is highly expressed in TAM from metastatic PC patients treated with standard-of-care androgen deprivation therapy (ADT). Importantly, ex vivo studies revealed that androgen receptor (AR) blockade in TAM upregulates NLRP3 expression, but not inflammasome activity, and concurrent AR blockade/NLRP3 agonist (NLRP3a) treatment promotes cancer cell phagocytosis by immunosuppressive M2 TAM. In contrast, NLRP3a monotherapy was sufficient to enhance phagocytosis of cancer cells in anti-tumor (M1) TAM, which exhibit high de novo NLRP3 expression. Critically, combinatorial treatment with ADT/NLRP3a in a murine model of advanced PC resulted in significant tumor control, with tumor clearance in 55% of mice via TAM phagocytosis. Collectively, our results demonstrate NLRP3 as an AR-regulated "macrophage phagocytic checkpoint", inducibly expressed in TAM by ADT and activated by NLRP3a treatment, the combination resulting in TAM-mediated phagocytosis and tumor control.
Collapse
|
93
|
Sridaran D, Bradshaw E, DeSelm C, Pachynski R, Mahajan K, Mahajan NP. Prostate cancer immunotherapy: Improving clinical outcomes with a multi-pronged approach. Cell Rep Med 2023; 4:101199. [PMID: 37738978 PMCID: PMC10591038 DOI: 10.1016/j.xcrm.2023.101199] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
Cancer immunotherapy has gained traction in recent years owing to remarkable tumor clearance in some patients. Despite the notable success of immune checkpoint blockade (ICB) in multiple malignancies, engagement of the immune system for targeted prostate cancer (PCa) therapy is still in its infancy. Multiple factors contribute to limited response, including the heterogeneity of PCa, the cold tumor microenvironment, and a low number of neoantigens. Significant effort is being invested in improving immune-based PCa therapies. This review is a summary of the status of immunotherapy in treating PCa, with a discussion of multiple immune modalities, including vaccines, adoptively transferred T cells, and bispecific T cell engagers, some of which are undergoing clinical trials. In addition, this review also focuses on emerging mechanism-based small-molecule tyrosine kinase inhibitors with immune modulatory properties that, either as single agents or in combination with other immunotherapies, have the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Elliot Bradshaw
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Carl DeSelm
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Department of Radiation Oncology, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Russell Pachynski
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Division of Oncology, Department of Medicine, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
94
|
Meng Y, Yang Y, Hu M, Zhang Z, Zhou X. Artificial intelligence-based radiomics in bone tumors: Technical advances and clinical application. Semin Cancer Biol 2023; 95:75-87. [PMID: 37499847 DOI: 10.1016/j.semcancer.2023.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Radiomics is the extraction of predefined mathematic features from medical images for predicting variables of clinical interest. Recent research has demonstrated that radiomics can be processed by artificial intelligence algorithms to reveal complex patterns and trends for diagnosis, and prediction of prognosis and response to treatment modalities in various types of cancer. Artificial intelligence tools can utilize radiological images to solve next-generation issues in clinical decision making. Bone tumors can be classified as primary and secondary (metastatic) tumors. Osteosarcoma, Ewing sarcoma, and chondrosarcoma are the dominating primary tumors of bone. The development of bone tumor model systems and relevant research, and the assessment of novel treatment methods are ongoing to improve clinical outcomes, notably for patients with metastases. Artificial intelligence and radiomics have been utilized in almost full spectrum of clinical care of bone tumors. Radiomics models have achieved excellent performance in the diagnosis and grading of bone tumors. Furthermore, the models enable to predict overall survival, metastases, and recurrence. Radiomics features have exhibited promise in assisting therapeutic planning and evaluation, especially neoadjuvant chemotherapy. This review provides an overview of the evolution and opportunities for artificial intelligence in imaging, with a focus on hand-crafted features and deep learning-based radiomics approaches. We summarize the current application of artificial intelligence-based radiomics both in primary and metastatic bone tumors, and discuss the limitations and future opportunities of artificial intelligence-based radiomics in this field. In the era of personalized medicine, our in-depth understanding of emerging artificial intelligence-based radiomics approaches will bring innovative solutions to bone tumors and achieve clinical application.
Collapse
Affiliation(s)
- Yichen Meng
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, PR China
| | - Yue Yang
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, PR China
| | - Miao Hu
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, PR China
| | - Zheng Zhang
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, PR China.
| | - Xuhui Zhou
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, PR China.
| |
Collapse
|
95
|
Wang Q, Feng C, Chen Y, Peng T, Li Y, Wu K, Pu X, Chen H, Liu J. Evaluation of CD47 in the Suppressive Tumor Microenvironment and Immunotherapy in Prostate Cancer. J Immunol Res 2023; 2023:2473075. [PMID: 37719086 PMCID: PMC10505079 DOI: 10.1155/2023/2473075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Background CD47 has high levels of expression in malignant cancer cells, which binds to SIRP-α to release the "don't eat me" signal and prevents mononuclear macrophages from phagocytosing the cells. Resistance to drugs and metastases are potential barriers for prostate cancer endocrine therapy. Although immunotherapy for tumors has developed rapidly in the last few decades, its effectiveness in treating prostate cancer is unsatisfactory. Prostate cancer has a high-expression level of CD47. Therefore, a novel approach for potential immunotherapy may be provided by investigating the relationship among CD47 and the infiltration of immune cells in the prostate carcinoma. Methods The GEPIA database was utilized to compare the abundance of CD47 in malignant tissues with tissues that were normal. Furthermore, the function of CD47 in prostate carcinoma was assessed by CancerSEA. The association among CD47 and the tumor microenvironment was assessed utilizing the TISCH single cell data database. By using TIMER, the connection among CD47 and immunological invasion of prostate cancer was explored. Moreover, macrophages were cocultured with mouse prostate cancer cell RM-1 blocked by CD47 antibody to observe the changes in phagocytosis efficiency in vitro. Results Expression level of CD47 is upregulated in prostate carcinoma, and it is closely connected with prostate cancer's inadequate immune invasion. CD47 antibody blocking promotes macrophage phagocytosis of RM-1. Conclusion Our research demonstrates a closely relationship among CD47 and the immunological microenvironment of prostate cancer, and blocking CD47 can promote macrophages to phagocytosis of prostate cancer cells. Therefore, CD47 may provide novel strategies for potential immunotherapy of prostate cancer.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Urology, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Chunxaing Feng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yuchun Chen
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Tianming Peng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yong Li
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Kunlin Wu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xiaoyong Pu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hanzhong Chen
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jiumin Liu
- Department of Urology, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
96
|
Yu W, Wang C, Shang Z, Tian J. Unveiling novel insights in prostate cancer through single-cell RNA sequencing. Front Oncol 2023; 13:1224913. [PMID: 37746302 PMCID: PMC10514910 DOI: 10.3389/fonc.2023.1224913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a cutting-edge technology that provides insights at the individual cell level. In contrast to traditional bulk RNA-seq, which captures gene expression at an average level and may overlook important details, scRNA-seq examines each individual cell as a fundamental unit and is particularly well-suited for identifying rare cell populations. Analogous to a microscope that distinguishes various cell types within a tissue sample, scRNA-seq unravels the heterogeneity and diversity within a single cell species, offering great potential as a leading sequencing method in the future. In the context of prostate cancer (PCa), a disease characterized by significant heterogeneity and multiple stages of progression, scRNA-seq emerges as a powerful tool for uncovering its intricate secrets.
Collapse
Affiliation(s)
| | | | - Zhiqun Shang
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jing Tian
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
97
|
Zhang S, Fang W, Zhou S, Zhu D, Chen R, Gao X, Li Z, Fu Y, Zhang Y, Yang F, Zhao J, Wu H, Wang P, Shen Y, Shen S, Xu G, Wang L, Yan C, Zou X, Chen D, Lv Y. Single cell transcriptomic analyses implicate an immunosuppressive tumor microenvironment in pancreatic cancer liver metastasis. Nat Commun 2023; 14:5123. [PMID: 37612267 PMCID: PMC10447466 DOI: 10.1038/s41467-023-40727-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease refractory to all targeted and immune therapies. However, our understanding of PDAC microenvironment especially the metastatic microenvironment is very limited partly due to the inaccessibility to metastatic tumor tissues. Here, we present the single-cell transcriptomic landscape of synchronously resected PDAC primary tumors and matched liver metastases. We perform comparative analysis on both cellular composition and functional phenotype between primary and metastatic tumors. Tumor cells exhibit distinct transcriptomic profile in liver metastasis with clearly defined evolutionary routes from cancer cells in primary tumor. We also identify specific subtypes of stromal and immune cells critical to the formation of the pro-tumor microenvironment in metastatic lesions, including RGS5+ cancer-associated fibroblasts, CCL18+ lipid-associated macrophages, S100A8+ neutrophils and FOXP3+ regulatory T cells. Cellular interactome analysis further reveals that the lack of tumor-immune cell interaction in metastatic tissues contributes to the formation of the immunosuppressive microenvironment. Our study provides a comprehensive characterization of the transcriptional landscape of PDAC liver metastasis.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Wen Fang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Siqi Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Dongming Zhu
- Department of General Surgery and Pancreatic Disease Research Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ruidong Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xin Gao
- Department of General Surgery and Pancreatic Disease Research Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhuojin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Fa Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Hao Wu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yonghua Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China
| | - Chao Yan
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China.
| | - Dijun Chen
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China.
| |
Collapse
|
98
|
Zheng X, Wang X, Cheng X, Liu Z, Yin Y, Li X, Huang Z, Wang Z, Guo W, Ginhoux F, Li Z, Zhang Z, Wang X. Single-cell analyses implicate ascites in remodeling the ecosystems of primary and metastatic tumors in ovarian cancer. NATURE CANCER 2023; 4:1138-1156. [PMID: 37488416 PMCID: PMC10447252 DOI: 10.1038/s43018-023-00599-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Ovarian cancer (OC) is an aggressive gynecological tumor usually diagnosed with widespread metastases and ascites. Here, we depicted a single-cell landscape of the OC ecosystem with five tumor-relevant sites, including omentum metastasis and malignant ascites. Our data reveal the potential roles of ascites-enriched memory T cells as a pool for tumor-infiltrating exhausted CD8+ T cells and T helper 1-like cells. Moreover, tumor-enriched macrophages exhibited a preference for monocyte-derived ontogeny, whereas macrophages in ascites were more of embryonic origin. Furthermore, we characterized MAIT and dendritic cells in malignant ascites, as well as two endothelial subsets in primary tumors as predictive biomarkers for platinum-based chemotherapy response. Taken together, our study provides a global view of the female malignant ascites ecosystem and offers valuable insights for its connection with tumor tissues and paves the way for potential markers of efficacy evaluation and therapy resistance in OC.
Collapse
Affiliation(s)
- Xiaocui Zheng
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinjing Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Cheng
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhaoyuan Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujia Yin
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoduan Li
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Ziliang Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Guo
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Florent Ginhoux
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Ziyi Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zemin Zhang
- BIOPIC, and School of Life Sciences, Peking University, Beijing, China.
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
99
|
Bi W, Guo W, Fan G, Xie L, Jiang C. Identification and validation of a novel overall survival prediction model for immune-related genes in bone metastases of prostate cancer. Aging (Albany NY) 2023; 15:7161-7186. [PMID: 37494663 PMCID: PMC10415549 DOI: 10.18632/aging.204900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
Immunotherapy has become a revolutionary treatment for cancer and brought new vitality to tumor immunity. Bone metastases are the most prevalent metastatic site for advanced prostate cancer (PCa). Therefore, finding new immunotherapy targets in PCa patients with bone metastasis is urgently needed. We conducted an elaborative bioinformatics study of immune-related genes (IRGs) and tumor-infiltrating immune cells (TIICs) in PCa bone metastases. Databases were integrated to obtain RNA-sequencing data and clinical prognostic information. Univariate and multivariate Cox regression analyses were conducted to construct an overall survival (OS) prediction model. GSE32269 was analyzed to acquire differentially expressed IRGs. The OS prediction model was established by employing six IRGs (MAVS, HSP90AA1, FCGR3A, CTSB, FCER1G, and CD4). The CIBERSORT algorithm was adopted to assess the proportion of TIICs in each group. Furthermore, Transwell, MTT, and wound healing assays were employed to determine the effect of MAVS on PCa cells. High-risk patients had worse OS compared to the low-risk patients in the training and validation cohorts. Meanwhile, clinically practical nomograms were generated using these identified IRGs to predict the 3- and 5-year survival rates of patients. The infiltration percentages of some TIICs were closely linked to the risk score of the OS prediction model. Some tumor-infiltrating immune cells were related to the OS. FCGR3A was closely correlated with some TIICs. In vitro experiments verified that up-regulation of MAVS suppressed the proliferation and metastatic abilities of PCa cells. Our work presented a thorough interpretation of TIICs and IRGs for illustrating and discovering new potential immune checkpoints in bone metastases of PCa.
Collapse
Affiliation(s)
- Wen Bi
- Department of Sports Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Weiming Guo
- Department of Sports Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Lei Xie
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Changqing Jiang
- Department of Sports Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
100
|
Kähkönen TE, Halleen JM, MacRitchie G, Andersson RM, Bernoulli J. Insights into immuno-oncology drug development landscape with focus on bone metastasis. Front Immunol 2023; 14:1121878. [PMID: 37475868 PMCID: PMC10355372 DOI: 10.3389/fimmu.2023.1121878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Bone is among the main sites of metastasis in breast, prostate and other major cancers. Bone metastases remain incurable causing high mortality, severe skeletal-related effects and decreased quality of life. Despite the success of immunotherapies in oncology, no immunotherapies are approved for bone metastasis and no clear benefit has been observed with approved immunotherapies in treatment of bone metastatic disease. Therefore, it is crucial to consider unique features of tumor microenvironment in bone metastasis when developing novel therapies. The vicious cycle of bone metastasis, referring to crosstalk between tumor and bone cells that enables the tumor cells to grow in the bone microenvironment, is a well-established concept. Very recently, a novel osteoimmuno-oncology (OIO) concept was introduced to the scientific community. OIO emphasizes the significance of interactions between tumor, immune and bone cells in promoting tumor growth in bone metastasis, and it can be used to reveal the most promising targets for bone metastasis. In order to provide an insight into the current immuno-oncology drug development landscape, we used 1stOncology database, a cancer drug development resource to identify novel immunotherapies in preclinical or clinical development for breast and prostate cancer bone metastasis. Based on the database search, 24 immunotherapies were identified in preclinical or clinical development that included evaluation of effects on bone metastasis. This review provides an insight to novel immuno-oncology drug development in the context of bone metastasis. Bone metastases can be approached using different modalities, and tumor microenvironment in bone provides many potential targets for bone metastasis. Noting current increasing interest in the field of OIO, more therapeutic opportunities that primarily target bone metastasis are expected in the future.
Collapse
Affiliation(s)
| | | | | | | | - Jenni Bernoulli
- University of Turku, Institute of Biomedicine, Turku, Finland
| |
Collapse
|