51
|
Miao X, Feng M, Zhu O, Yang F, Yin Y, Yin Y, Chen S, Qin T, Peng D, Liu X. H5N8 Subtype avian influenza virus isolated from migratory birds emerging in Eastern China possessed a high pathogenicity in mammals. Transbound Emerg Dis 2022; 69:3325-3338. [PMID: 35989421 DOI: 10.1111/tbed.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 02/04/2023]
Abstract
Novel H5N8 highly pathogenic avian influenza viruses (HPAIVs) bearing the clade 2.3.4.4b HA gene have been widely spread through wild migratory birds since 2020. One H5N8 HPAIV (A/Wild bird/Cixi/Cixi02/2020; here after Cixi02) was isolated from migratory birds in Zhejiang Province, Eastern China in 25 November 2020. However, its pathogenicity in avian and mammal remains unknown. Hemagglutinin gene genetic analysis indicated that Cixi02 virus belonged to the branch II of H5 clade 2.3.4.4b originated from Iraq in May 2020. Cixi02 virus showed a binding affinity to both SA α-2, 3-galactose (Gal) and SA α-2, 6 Gal receptors, good pH stability, thermostability, and replication ability in both avian and mammal cells. The poultry pathogenicity indicated that Cixi02 virus was lethal to chickens. Moreover, the mammalian pathogenicity showed that the 50% mouse lethal dose (MLD50 ) is 2.14 lgEID50 /50 μl, indicating a high pathogenicity in mice. Meanwhile, Cixi02 virus was widely detected in multiple organs, including heart, liver, spleen, lung, kidney, turbinate, and brain after nasal infection. In addition, we found high level gene expressions of TNF-α, IL-12p70, CXCL10, and IFN-α in lungs, IL-8 and IL-1β in brains, and observed severe histopathological change in lungs and brains. Collectedly, this study provided new insights on the pathogenic and zoonotic features of an H5N8 subtype AIV isolated from migratory birds.
Collapse
Affiliation(s)
- Xinyu Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Mingcan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Ouwen Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Fan Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Yinyan Yin
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| |
Collapse
|
52
|
Strobel HM, Stuart EC, Meyer JR. A Trait-Based Approach to Predicting Viral Host-Range Evolvability. Annu Rev Virol 2022; 9:139-156. [PMID: 36173699 DOI: 10.1146/annurev-virology-091919-092003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting the evolution of virus host range has proven to be extremely difficult, in part because of the sheer diversity of viruses, each with unique biology and ecological interactions. We have not solved this problem, but to make the problem more tractable, we narrowed our focus to three traits intrinsic to all viruses that may play a role in host-range evolvability: mutation rate, recombination rate, and phenotypic heterogeneity. Although each trait should increase evolvability, they cannot do so unbounded because fitness trade-offs limit the ability of all three traits to maximize evolvability. By examining these constraints, we can begin to identify groups of viruses with suites of traits that make them especially concerning, as well as ecological and environmental conditions that might push evolution toward accelerating host-range expansion.
Collapse
Affiliation(s)
- Hannah M Strobel
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth C Stuart
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Justin R Meyer
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
53
|
Motahhar M, Keyvanfar H, Shoushtari A, Fallah Mehrabadi MH, Nikbakht Brujeni G. The arrival of highly pathogenic avian influenza viruses H5N8 in Iran through two windows, 2016. Virus Genes 2022; 58:527-539. [PMID: 36098944 DOI: 10.1007/s11262-022-01930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 virus has received considerable attention during the past 2 decades due to its zoonotic and mutative features. This Virus is of special importance due to to the possibility of causing infection in human populations. According to it's geographical location, Iran hosts a large number of aquatic migratory birds every year, and since these birds can be considered as the host of the H5 HPAI, the country is significantly at risk of this virus. the In this study, the molecular characteristics of hemagglutinin (HA) and neuraminidase (NA) genes of the H5N8 strain were identified in Malard county of Tehran province and Meighan wetland of Arak city, Markazi province were investigated. Based on the analysis of the amino acid sequence of the HA genes, the cleavage site of the gene includes the PLREKRRKR/GLF polybasic amino acid motif, which is a characteristic of highly pathogenic influenza viruses. The HA gene of two viruses had T156A, S123P, S133A mutations associated with the increased mammalian sialic acid-binding, and the NA gene of two viruses had H253Y mutations associated with the resistance to antiviral drugs. Phylogenetic analysis of the HA genes indicated the classification of these viruses in the 2.3.4.4 b subclade. Although the A/Goose/Iran/180/2016 virus was also an H5N8 2.3.4.4 b virus, its cluster was separated from the A/Chicken/Iran/162/2016 virus. This means that the entry of these viruses in to the country happened through more than one window. Furthermore, it seems that the introduction of these H5N8 HPAI strains in Iran probably occurred through the West Asia-East African flyway by wild migratory aquatic birds.
Collapse
Affiliation(s)
- Minoo Motahhar
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Keyvanfar
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Abdolhamid Shoushtari
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Mohammad Hossein Fallah Mehrabadi
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Gholamreza Nikbakht Brujeni
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
54
|
Abstract
Past pandemic influenza viruses with sustained human-to-human transmissibility have emerged from animal influenza viruses. Employment of experimental models to assess the pandemic risk of emerging zoonotic influenza viruses provides critical information supporting public health efforts. Ferret transmission experiments have been utilized to predict the human-to-human transmission potential of novel influenza viruses. However, small sample sizes and a lack of standardized protocols can introduce interlaboratory variability, complicating interpretation of transmission experimental data. To assess the range of variation in ferret transmission experiments, a global exercise was conducted by 11 laboratories using two common stock H1N1 influenza viruses with different transmission characteristics in ferrets. Parameters known to affect transmission were standardized, including the inoculation route, dose, and volume, as well as a strict 1:1 donor/contact ratio for respiratory droplet transmission. Additional host and environmental parameters likely to affect influenza transmission kinetics were monitored and analyzed. The overall transmission outcomes for both viruses across 11 laboratories were concordant, suggesting the robustness of the ferret model for zoonotic influenza risk assessment. Among environmental parameters that varied across laboratories, donor-to-contact airflow directionality was associated with increased transmissibility. To attain high confidence in identifying viruses with moderate to high transmissibility or low transmissibility under a smaller number of participating laboratories, our analyses support the notion that as few as three but as many as five laboratories, respectively, would need to independently perform viral transmission experiments with concordant results. This exercise facilitates the development of a more homogenous protocol for ferret transmission experiments that are employed for the purposes of risk assessment.
Collapse
|
55
|
Peng C, Zhao P, Chu J, Zhu J, Li Q, Zhao H, Li Y, Xin L, Yang X, Xie S, Zhu C, Qi W, Xu G, Li J. Characterization of four novel H5N6 avian influenza viruses with the internal genes from H5N1 and H9N2 viruses and experimental challenge of chickens vaccinated with current commercially available H5 vaccines. Transbound Emerg Dis 2022; 69:1438-1448. [PMID: 33872465 DOI: 10.1111/tbed.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022]
Abstract
Since 2014, highly pathogenic avian influenza H5N6 viruses have been responsible for outbreaks in poultry. In this study, four H5N6 virus strains were isolated from faecal samples of sick white ducks and dead chickens in Shandong in 2019. These H5N6 viruses were triple-reassortant viruses that have not been previously characterized. Their HA genes were derived from the H5 viruses and were closely related to the vaccine strain Re-11. Their NA genes all fell into the N6-like lineage and the internal gene were derived from H5N1 and H9N2 viruses. They all showed high pathogenicity in mice and caused lethal infection with high rates of transmission in chickens. Moreover, the SPF chickens inoculated with the currently used H5 (Re-11 and Re-12 strains)/H7 (H7-Re-2 strain) trivalent inactivated vaccines in China were completely protected from these four H5N6 viruses. Our study indicated the necessity of continued surveillance for H5 influenza A viruses and the importance of timely update of vaccine strains in poultry industry.
Collapse
Affiliation(s)
- Chen Peng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pengwei Zhao
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Chu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junda Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiuchen Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haiyuan Zhao
- Jilin Guan Jie Biological Technology Co., LTD, Changchun, China
| | - Yujie Li
- Shandong Provincial Center for Animal Disease Control, Jinan, China
| | - Lingxiang Xin
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiaoyue Yang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Shijie Xie
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Changdong Zhu
- Jilin Guan Jie Biological Technology Co., LTD, Changchun, China
| | - Wenbao Qi
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guanlong Xu
- China Institute of Veterinary Drug Control, Beijing, China
| | - Jinxiang Li
- Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
56
|
Emerging of H5N6 Subtype Influenza Virus with 129-Glycosylation Site on Hemagglutinin in Poultry in China Acquires Immune Pressure Adaption. Microbiol Spectr 2022; 10:e0253721. [PMID: 35446114 PMCID: PMC9241720 DOI: 10.1128/spectrum.02537-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For an investigation into the effects of glycosylation site modification on hemagglutinin (HA) on the biological characteristics of the H5N6 subtype avian influenza virus (AIV), the HA sequences of H5N6 AIVs from Global Initiative on Sharing All Influenza Data (GISAID) and the isolates in China were analyzed for genetic evolution and glycosylation site patterns. Eight recombinant H5N6 AIVs with different glycosylation site patterns were constructed, and their biological characteristics were determined. The results showed that H5N6 AIVs containing a 129-glycosylation site on HA are becoming prevalent strains in China. Acquisition of the 129-glycosylation site on the HA of H5N6 AIVs increased thermostability, decreased pH stability, and attenuated pathogenicity and contact transmission in chickens. Most importantly, H5N6 AIVs escaped the neutralization activity of the Re-8-like serum antibody. Our findings reveal that H5N6 AIVs containing the 129-glycosylation site affect antigenicity and have become prevalent strains in China. IMPORTANCE H5N6 avian influenza viruses (AIVs) were first reported in 2013 and have spread throughout many countries. In China, compulsory vaccine inoculation has been adopted to control H5 subtype avian influenza. However, the effect of vaccination on the antigenic drift of H5N6 AIVs remains unknown. Here, we found that H5N6 AIVs with the 129-glycosylation site on hemagglutinin were the dominant strains in poultry in China. The neutralization assay of the serum antibody against the H5 subtype vaccine Re-8 showed a significantly lower neutralization activity against H5N6 AIVs with the 129-glycosylation site compared to that against H5N6 AIVs without the 129-glycosylation site, indicating that the 129-glycosylation site may be a crucial molecular marker for immune evasion.
Collapse
|
57
|
Yang JR, Kuo CY, Yu IL, Kung FY, Wu FT, Lin JS, Liu MT. Human infection with a reassortant swine-origin influenza A(H1N2)v virus in Taiwan, 2021. Virol J 2022; 19:63. [PMID: 35392932 PMCID: PMC8988477 DOI: 10.1186/s12985-022-01794-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background Influenza A virus infections occur in different species, causing mild-to-severe symptoms that lead to a heavy disease burden. H1N1, H1N2 and H3N2 are major subtypes of swine influenza A viruses in pigs and occasionally infect humans. Methods A case infected by novel influenza virus was found through laboratory surveillance system for influenza viruses. Clinical specimens were tested by virus culture and/or real-time RT–PCR. The virus was identified and characterized by gene sequencing and phylogenetic analysis. Results In 2021, for the first time in Taiwan, an influenza A(H1N2)v virus was isolated from a 5-year old girl who was suffering from fever, runny nose and cough. The isolated virus was designated A/Taiwan/1/2021(H1N2)v. Full-genome sequencing and phylogenetic analyses revealed that A/Taiwan/1/2021(H1N2)v is a novel reassortant virus containing hemagglutinin (HA) and neuraminidase (NA) gene segments derived from swine influenza A(H1N2) viruses that may have been circulating in Taiwan for decades, and the other 6 internal genes (PB2, PB2, PA, NP, M and NS) are from human A(H1N1)pdm09 viruses. Conclusion Notably, the HA and NA genes of A/Taiwan/1/2021(H1N2)v separately belong to specific clades that are unique for Taiwanese swine and were proposed to be introduced from humans in different time periods. Bidirectional transmission between humans and swine contributes to influenza virus diversity and poses the next pandemic threat. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01794-2.
Collapse
Affiliation(s)
- Ji-Rong Yang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC
| | - Chuan-Yi Kuo
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC
| | - I-Ling Yu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC
| | - Fang-Yen Kung
- Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC
| | - Fang-Tzy Wu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC
| | - Jen-Shiou Lin
- Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC
| | - Ming-Tsan Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC.
| |
Collapse
|
58
|
Wang G, Zhao Y, Zhou Y, Jiang L, Liang L, Kong F, Yan Y, Wang X, Wang Y, Wen X, Zeng X, Tian G, Deng G, Shi J, Liu L, Chen H, Li C. PIAS1-mediated SUMOylation of influenza A virus PB2 restricts viral replication and virulence. PLoS Pathog 2022; 18:e1010446. [PMID: 35377920 PMCID: PMC9009768 DOI: 10.1371/journal.ppat.1010446] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/14/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
Host defense systems employ posttranslational modifications to protect against invading pathogens. Here, we found that protein inhibitor of activated STAT 1 (PIAS1) interacts with the nucleoprotein (NP), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) of influenza A virus (IAV). Lentiviral-mediated stable overexpression of PIAS1 dramatically suppressed the replication of IAV, whereas siRNA knockdown or CRISPR/Cas9 knockout of PIAS1 expression significantly increased virus growth. The expression of PIAS1 was significantly induced upon IAV infection in both cell culture and mice, and PIAS1 was involved in the overall increase in cellular SUMOylation induced by IAV infection. We found that PIAS1 inhibited the activity of the viral RNP complex, whereas the C351S or W372A mutant of PIAS1, which lacks the SUMO E3 ligase activity, lost the ability to suppress the activity of the viral RNP complex. Notably, the SUMO E3 ligase activity of PIAS1 catalyzed robust SUMOylation of PB2, but had no role in PB1 SUMOylation and a minimal role in NP SUMOylation. Moreover, PIAS1-mediated SUMOylation remarkably reduced the stability of IAV PB2. When tested in vivo, we found that the downregulation of Pias1 expression in mice enhanced the growth and virulence of IAV. Together, our findings define PIAS1 as a restriction factor for the replication and pathogenesis of IAV.
Collapse
Affiliation(s)
- Guangwen Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Yuhui Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Yuan Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Libin Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Fandi Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Ya Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Xuyuan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Yihan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Xia Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| |
Collapse
|
59
|
Swine H1N1 Influenza Virus Variants with Enhanced Polymerase Activity and HA Stability Promote Airborne Transmission in Ferrets. J Virol 2022; 96:e0010022. [DOI: 10.1128/jvi.00100-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diverse IAVs circulate in animals, yet few acquire the viral traits needed to start a human pandemic. A stabilized HA and mammalian-adapted polymerase have been shown to promote the adaptation of IAVs to humans and ferrets (the gold-standard model for IAV replication, pathogenicity, and transmissibility).
Collapse
|
60
|
Optimizing environmental safety and cell-killing potential of oncolytic Newcastle Disease virus with modifications of the V, F and HN genes. PLoS One 2022; 17:e0263707. [PMID: 35139115 PMCID: PMC8827430 DOI: 10.1371/journal.pone.0263707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Abstract
Newcastle Disease Virus (NDV) is an avian RNA virus, which was shown to be effective and safe for use in oncolytic viral therapy for several tumour malignancies. The presence of a multi basic cleavage site (MBCS) in the fusion protein improved its oncolytic efficacy in vitro and in vivo. However, NDV with a MBCS can be virulent in poultry. We aimed to develop an NDV with a MBCS but with reduced virulence for poultry while remaining effective in killing human tumour cells. To this end, the open reading frame of the V protein, an avian specific type I interferon antagonist, was disrupted by introducing multiple mutations. NDV with a mutated V gene was attenuated in avian cells and chicken and duck eggs. Although this virus still killed tumour cells, the efficacy was reduced compared to the virulent NDV. Introduction of various mutations in the fusion (F) and hemagglutinin-neuraminidase (HN) genes slightly improved this efficacy. Taken together, these data demonstrated that NDV with a MBCS but with abrogation of the V protein ORF and mutations in the F and HN genes can be safe for evaluation in oncolytic viral therapy.
Collapse
|
61
|
Hu J, Hu Z, Wei Y, Zhang M, Wang S, Tong Q, Sun H, Pu J, Liu J, Sun Y. Mutations in PB2 and HA are crucial for the increased virulence and transmissibility of H1N1 swine influenza virus in mammalian models. Vet Microbiol 2022; 265:109314. [PMID: 34963076 DOI: 10.1016/j.vetmic.2021.109314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 01/08/2023]
Abstract
Genetic analyses indicated that the pandemic H1N1/2009 influenza virus originated from a swine influenza virus (SIV). However, SIVs bearing the same constellation of genetic features as H1N1/2009 have not been isolated. Understanding the adaptation of SIVs with such genotypes in a new host may provide clues regarding the emergence of pandemic strains such as H1N1/2009. In this study, an artificial SIV with the H1N1/2009 genotype (rH1N1) was sequentially passaged in mice through two independent series, yielding multiple mouse-adapted mutants with high genetic diversity and increased virulence. These experiments were meant to mimic genetic bottlenecks during adaptation of wild viruses with rH1N1 genotypes in a new host. Molecular substitutions in the mouse-adapted variants mainly occurred in genes encoding surface proteins (hemagglutinin [HA] and neuraminidase [NA]) and polymerase proteins (polymerase basic 2 [PB2], polymerase basic 1 [PB1], polymerase acid [PA] proteins and nucleoprotein [NP]). The PB2D309N and HAL425M substitutions were detected at high frequencies in both passage lines and enhanced the replication and pathogenicity of rH1N1 in mice. Moreover, these substitutions also enabled direct transmission of rH1N1 in other mammals such as guinea pigs. PB2D309N showed enhanced polymerase activity and HAL425M showed increased stability compared with the wild-type proteins. Our findings indicate that if SIVs with H1N1/2009 genotypes emerge in pigs, they could undergo rapid adaptive changes during infection of a new host, especially in the PB2 and HA genes. These changes may facilitate the emergence of pandemic strains such as H1N1/2009.
Collapse
Affiliation(s)
- Junyi Hu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhe Hu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yandi Wei
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Senlin Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qi Tong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
62
|
Abstract
The continuous emergence and reemergence of diverse subtypes of influenza A viruses, which are known as "HxNy" and are mediated through the reassortment of viral genomes, account for seasonal epidemics, occasional pandemics, and zoonotic outbreaks. We summarize and discuss the characteristics of historic human pandemic HxNy viruses and diverse subtypes of HxNy among wild birds, mammals, and live poultry markets. In addition, we summarize the key molecular features of emerging infectious HxNy influenza viruses from the perspectives of the receptor binding of Hx, the inhibitor-binding specificities and drug-resistance features of Ny, and the matching of the gene segments. Our work enhances our understanding of the potential threats of novel reassortant influenza viruses to public health and provides recommendations for effective prevention, control, and research of this pathogen.
Collapse
Affiliation(s)
- William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Weifeng Shi
- Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| |
Collapse
|
63
|
An SH, Son SE, Song JH, Hong SM, Lee CY, Lee NH, Jeong YJ, Choi JG, Lee YJ, Kang HM, Choi KS, Kwon HJ. Selection of an Optimal Recombinant Egyptian H9N2 Avian Influenza Vaccine Strain for Poultry with High Antigenicity and Safety. Vaccines (Basel) 2022; 10:vaccines10020162. [PMID: 35214621 PMCID: PMC8876024 DOI: 10.3390/vaccines10020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
For the development of an optimized Egyptian H9N2 vaccine candidate virus for poultry, various recombinant Egyptian H9N2 viruses generated by a PR8-based reverse genetics system were compared in terms of their productivity and biosafety since Egyptian H9N2 avian influenza viruses already possess mammalian pathogenicity-related mutations in the hemagglutinin (HA), neuraminidase (NA), and PB2 genes. The Egyptian HA and NA genes were more compatible with PR8 than with H9N2 AIV (01310) internal genes, and the 01310-derived recombinant H9N2 strains acquired the L226Q reverse mutation in HA after passages in eggs. Additionally, the introduction of a strong promoter at the 3′-ends of PB2 and PB1 genes induced an additional mutation of P221S. When recombinant Egyptian H9N2 viruses with intact or reverse mutated HA (L226Q and P221S) and NA (prototypic 2SBS) were compared, the virus with HA and NA mutations had high productivity in ECES but was lower in antigenicity when used as an inactivated vaccine due to its high binding affinity into non-specific inhibitors in eggs. Finally, we substituted the PB2 gene of PR8 with 01310 to remove the replication ability in mammalian hosts and successfully generated the best recombinant vaccine candidate in terms of immunogenicity, antigenicity, and biosafety.
Collapse
Affiliation(s)
- Se-Hee An
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea; (S.-H.A.); (S.-E.S.); (J.-H.S.); (S.-M.H.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 88026, Korea
| | - Seung-Eun Son
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea; (S.-H.A.); (S.-E.S.); (J.-H.S.); (S.-M.H.)
| | - Jin-Ha Song
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea; (S.-H.A.); (S.-E.S.); (J.-H.S.); (S.-M.H.)
| | - Seung-Min Hong
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea; (S.-H.A.); (S.-E.S.); (J.-H.S.); (S.-M.H.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 88026, Korea
| | - Chung-Young Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Nak-Hyung Lee
- KBNP, Inc., 235-9, Chusa-ro, Sinam-myeon, Yesan-gun 32417, Korea; (N.-H.L.); (Y.-J.J.)
| | - Young-Ju Jeong
- KBNP, Inc., 235-9, Chusa-ro, Sinam-myeon, Yesan-gun 32417, Korea; (N.-H.L.); (Y.-J.J.)
| | - Jun-Gu Choi
- Animal and Plant Quarantine Agency, Gimcheon-si 39960, Korea; (J.-G.C.); (Y.-J.L.); (H.-M.K.)
| | - Youn-Jeong Lee
- Animal and Plant Quarantine Agency, Gimcheon-si 39960, Korea; (J.-G.C.); (Y.-J.L.); (H.-M.K.)
| | - Hyun-Mi Kang
- Animal and Plant Quarantine Agency, Gimcheon-si 39960, Korea; (J.-G.C.); (Y.-J.L.); (H.-M.K.)
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea; (S.-H.A.); (S.-E.S.); (J.-H.S.); (S.-M.H.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 88026, Korea
- Correspondence: (K.-S.C.); (H.-J.K.); Tel.: +82-2-880-1266 (K.-S.C. & H.-J.K.); Fax: +82-2-885-6614 (H.-J.K.)
| | - Hyuk-Joon Kwon
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 88026, Korea
- Laboratory of Poultry Medicine, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea
- Farm Animal Clinical Training and Research Center (FACTRC), GBST, Seoul National University, Seoul 88026, Korea
- Correspondence: (K.-S.C.); (H.-J.K.); Tel.: +82-2-880-1266 (K.-S.C. & H.-J.K.); Fax: +82-2-885-6614 (H.-J.K.)
| |
Collapse
|
64
|
Kok A, Fouchier RAM, Richard M. Cross-Reactivity Conferred by Homologous and Heterologous Prime-Boost A/H5 Influenza Vaccination Strategies in Humans: A Literature Review. Vaccines (Basel) 2021; 9:vaccines9121465. [PMID: 34960210 PMCID: PMC8708856 DOI: 10.3390/vaccines9121465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Avian influenza viruses from the A/H5 A/goose/Guangdong/1/1996 (GsGd) lineage pose a continuing threat to animal and human health. Since their emergence in 1997, these viruses have spread across multiple continents and have become enzootic in poultry. Additionally, over 800 cases of human infection with A/H5 GsGd viruses have been reported to date, which raises concerns about the potential for a new influenza virus pandemic. The continuous circulation of A/H5 GsGd viruses for over 20 years has resulted in the genetic and antigenic diversification of their hemagglutinin (HA) surface glycoprotein, which poses a serious challenge to pandemic preparedness and vaccine design. In the present article, clinical studies on A/H5 influenza vaccination strategies were reviewed to evaluate the breadth of antibody responses induced upon homologous and heterologous prime-boost vaccination strategies. Clinical data on immunological endpoints were extracted from studies and compiled into a dataset, which was used for the visualization and analysis of the height and breadth of humoral immune responses. Several aspects leading to high immunogenicity and/or cross-reactivity were identified, although the analysis was limited by the heterogeneity in study design and vaccine type used in the included studies. Consequently, crucial questions remain to be addressed in future studies on A/H5 GsGd vaccination strategies.
Collapse
|
65
|
Waters K, Gao C, Ykema M, Han L, Voth L, Tao YJ, Wan XF. Triple reassortment increases compatibility among viral ribonucleoprotein genes of contemporary avian and human influenza A viruses. PLoS Pathog 2021; 17:e1009962. [PMID: 34618879 PMCID: PMC8525756 DOI: 10.1371/journal.ppat.1009962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/19/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Compatibility among the influenza A virus (IAV) ribonucleoprotein (RNP) genes affects viral replication efficiency and can limit the emergence of novel reassortants, including those with potential pandemic risks. In this study, we determined the polymerase activities of 2,451 RNP reassortants among three seasonal and eight enzootic IAVs by using a minigenome assay. Results showed that the 2009 H1N1 RNP are more compatible with the tested enzootic RNP than seasonal H3N2 RNP and that triple reassortment increased such compatibility. The RNP reassortants among 2009 H1N1, canine H3N8, and avian H4N6 IAVs had the highest polymerase activities. Residues in the RNA binding motifs and the contact regions among RNP proteins affected polymerase activities. Our data indicates that compatibility among seasonal and enzootic RNPs are selective, and enzoosis of multiple strains in the animal-human interface can facilitate emergence of an RNP with increased replication efficiency in mammals, including humans.
Collapse
Affiliation(s)
- Kaitlyn Waters
- Missouri University Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Cheng Gao
- Missouri University Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, United States of America
| | - Matthew Ykema
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Lei Han
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Lynden Voth
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Xiu-Feng Wan
- Missouri University Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
66
|
Yang G, Ojha CR, Russell CJ. Relationship between hemagglutinin stability and influenza virus persistence after exposure to low pH or supraphysiological heating. PLoS Pathog 2021; 17:e1009910. [PMID: 34478484 PMCID: PMC8445419 DOI: 10.1371/journal.ppat.1009910] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/16/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
The hemagglutinin (HA) surface glycoprotein is triggered by endosomal low pH to cause membrane fusion during influenza A virus (IAV) entry yet must remain sufficiently stable to avoid premature activation during virion transit between cells and hosts. HA activation pH and/or virion inactivation pH values less than pH 5.6 are thought to be required for IAV airborne transmissibility and human pandemic potential. To enable higher-throughput screening of emerging IAV strains for "humanized" stability, we developed a luciferase reporter assay that measures the threshold pH at which IAVs are inactivated. The reporter assay yielded results similar to TCID50 assay yet required one-fourth the time and one-tenth the virus. For four A/TN/09 (H1N1) HA mutants and 73 IAVs of varying subtype, virion inactivation pH was compared to HA activation pH and the rate of inactivation during 55°C heating. HA stability values correlated highly with virion acid and thermal stability values for isogenic viruses containing HA point mutations. HA stability also correlated with virion acid stability for human isolates but did not correlate with thermal stability at 55°C, raising doubt in the use of supraphysiological heating assays. Some animal isolates had virion inactivation pH values lower than HA activation pH, suggesting factors beyond HA stability can modulate virion stability. The coupling of HA activation pH and virion inactivation pH, and at a value below 5.6, was associated with human adaptation. This suggests that both virologic properties should be considered in risk assessment algorithms for pandemic potential.
Collapse
Affiliation(s)
- Guohua Yang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Chet R Ojha
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America.,Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
67
|
Abstract
In early 2013, human infections caused by a novel H7N9 avian influenza virus (AIV) were first reported in China; these infections caused severe disease and death. The virus was initially low pathogenic to poultry, enabling it to spread widely in different provinces, especially in live poultry markets. Importantly, the H7N9 low pathogenic AIVs (LPAIVs) evolved into highly pathogenic AIVs (HPAIVs) in the beginning of 2017, causing a greater threat to human health and devastating losses to the poultry industry. Fortunately, nationwide vaccination of chickens with an H5/H7 bivalent inactivated avian influenza vaccine since September 2017 has successfully controlled H7N9 avian influenza infections in poultry and, importantly, has also prevented human infections. In this review, we summarize the biological properties of the H7N9 viruses, specifically their genetic evolution, adaptation, pathogenesis, receptor binding, transmission, drug resistance, and antigenic variation, as well as the prevention and control measures. The information obtained from investigating and managing the H7N9 viruses could improve our ability to understand other novel AIVs and formulate effective measures to control their threat to humans and animals.
Collapse
Affiliation(s)
- Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
68
|
Herfst S, Zhang J, Richard M, McBride R, Lexmond P, Bestebroer TM, Spronken MIJ, de Meulder D, van den Brand JM, Rosu ME, Martin SR, Gamblin SJ, Xiong X, Peng W, Bodewes R, van der Vries E, Osterhaus ADME, Paulson JC, Skehel JJ, Fouchier RAM. Hemagglutinin Traits Determine Transmission of Avian A/H10N7 Influenza Virus between Mammals. Cell Host Microbe 2021; 28:602-613.e7. [PMID: 33031770 DOI: 10.1016/j.chom.2020.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/04/2020] [Accepted: 08/26/2020] [Indexed: 01/19/2023]
Abstract
In 2014, an outbreak of avian A/H10N7 influenza virus occurred among seals along North-European coastal waters, significantly impacting seal populations. Here, we examine the cross-species transmission and mammalian adaptation of this influenza A virus, revealing changes in the hemagglutinin surface protein that increase stability and receptor binding. The seal A/H10N7 virus was aerosol or respiratory droplet transmissible between ferrets. Compared with avian H10 hemagglutinin, seal H10 hemagglutinin showed stronger binding to the human-type sialic acid receptor, with preferential binding to α2,6-linked sialic acids on long extended branches. In X-ray structures, changes in the 220-loop of the receptor-binding pocket caused similar interactions with human receptor as seen for pandemic strains. Two substitutions made seal H10 hemagglutinin more stable than avian H10 hemagglutinin and similar to human hemagglutinin. Consequently, identification of avian-origin influenza viruses across mammals appears critical to detect influenza A viruses posing a major threat to humans and other mammals.
Collapse
Affiliation(s)
- Sander Herfst
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Jie Zhang
- Structural Biology of Disease Processes Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mathilde Richard
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Ryan McBride
- Departments of Molecular Medicine, Immunology and Microbiology, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pascal Lexmond
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Monique I J Spronken
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Judith M van den Brand
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Miruna E Rosu
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Stephen R Martin
- Structural Biology of Disease Processes Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Xiaoli Xiong
- Structural Biology of Disease Processes Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Wenjie Peng
- Departments of Molecular Medicine, Immunology and Microbiology, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier Bodewes
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Erhard van der Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Albert D M E Osterhaus
- Research Centre for Emerging Infections and Zoonoses, University of Veterinary Medicine, 30559, Hannover, Germany
| | - James C Paulson
- Departments of Molecular Medicine, Immunology and Microbiology, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - John J Skehel
- Structural Biology of Disease Processes Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands.
| |
Collapse
|
69
|
Russell CJ. Hemagglutinin Stability and Its Impact on Influenza A Virus Infectivity, Pathogenicity, and Transmissibility in Avians, Mice, Swine, Seals, Ferrets, and Humans. Viruses 2021; 13:746. [PMID: 33923198 PMCID: PMC8145662 DOI: 10.3390/v13050746] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Genetically diverse influenza A viruses (IAVs) circulate in wild aquatic birds. From this reservoir, IAVs sporadically cause outbreaks, epidemics, and pandemics in wild and domestic avians, wild land and sea mammals, horses, canines, felines, swine, humans, and other species. One molecular trait shown to modulate IAV host range is the stability of the hemagglutinin (HA) surface glycoprotein. The HA protein is the major antigen and during virus entry, this trimeric envelope glycoprotein binds sialic acid-containing receptors before being triggered by endosomal low pH to undergo irreversible structural changes that cause membrane fusion. The HA proteins from different IAV isolates can vary in the pH at which HA protein structural changes are triggered, the protein causes membrane fusion, or outside the cell the virion becomes inactivated. HA activation pH values generally range from pH 4.8 to 6.2. Human-adapted HA proteins tend to have relatively stable HA proteins activated at pH 5.5 or below. Here, studies are reviewed that report HA stability values and investigate the biological impact of variations in HA stability on replication, pathogenicity, and transmissibility in experimental animal models. Overall, a stabilized HA protein appears to be necessary for human pandemic potential and should be considered when assessing human pandemic risk.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| |
Collapse
|
70
|
Le Sage V, Kormuth KA, Nturibi E, Lee JM, Frizzell SA, Myerburg MM, Bloom JD, Lakdawala SS. Cell-Culture Adaptation of H3N2 Influenza Virus Impacts Acid Stability and Reduces Airborne Transmission in Ferret Model. Viruses 2021; 13:719. [PMID: 33919124 PMCID: PMC8143181 DOI: 10.3390/v13050719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Airborne transmission of seasonal and pandemic influenza viruses is the reason for their epidemiological success and public health burden in humans. Efficient airborne transmission of the H1N1 influenza virus relies on the receptor specificity and pH of fusion of the surface glycoprotein hemagglutinin (HA). In this study, we examined the role of HA pH of fusion on transmissibility of a cell-culture-adapted H3N2 virus. Mutations in the HA head at positions 78 and 212 of A/Perth/16/2009 (H3N2), which were selected after cell culture adaptation, decreased the acid stability of the virus from pH 5.5 (WT) to pH 5.8 (mutant). In addition, the mutant H3N2 virus replicated to higher titers in cell culture but had reduced airborne transmission in the ferret model. These data demonstrate that, like H1N1 HA, the pH of fusion for H3N2 HA is a determinant of efficient airborne transmission. Surprisingly, noncoding regions of the NA segment can impact the pH of fusion of mutant viruses. Taken together, our data confirm that HA acid stability is an important characteristic of epidemiologically successful human influenza viruses and is influenced by HA/NA balance.
Collapse
Affiliation(s)
- Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburg, PA 15219, USA; (V.L.S.); (K.A.K.); (E.N.)
| | - Karen A. Kormuth
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburg, PA 15219, USA; (V.L.S.); (K.A.K.); (E.N.)
| | - Eric Nturibi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburg, PA 15219, USA; (V.L.S.); (K.A.K.); (E.N.)
| | - Juhye M. Lee
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (J.M.L.); (J.D.B.)
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sheila A. Frizzell
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (S.A.F.); (M.M.M.)
| | - Michael M. Myerburg
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (S.A.F.); (M.M.M.)
| | - Jesse D. Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (J.M.L.); (J.D.B.)
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
| | - Seema S. Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburg, PA 15219, USA; (V.L.S.); (K.A.K.); (E.N.)
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
71
|
Zhang X, Li Y, Jin S, Zhang Y, Sun L, Hu X, Zhao M, Li F, Wang T, Sun W, Feng N, Wang H, He H, Zhao Y, Yang S, Xia X, Gao Y. PB1 S524G mutation of wild bird-origin H3N8 influenza A virus enhances virulence and fitness for transmission in mammals. Emerg Microbes Infect 2021; 10:1038-1051. [PMID: 33840358 PMCID: PMC8183522 DOI: 10.1080/22221751.2021.1912644] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Influenza H3N8 viruses have been recovered frequently from wild bird species, including Anseriformes (primarily from migratory ducks) and Charadriiformes (primarily from shorebirds). However, little attention has been given to the transmission ability of H3N8 avian influenza viruses among mammals. Here, we study the potential human health threat and the molecular basis of mammalian transmissibility of H3N8 avian influenza viruses isolated from wild bird reservoirs. We classified eight H3N8 viruses into seven different genotypes based on genomic diversity. Six of eight H3N8 viruses isolated naturally from wild birds have acquired the ability to bind to the human-type receptor. However, the affinity for α-2,6-linked SAs was lower than that for α-2,3-linked SAs. Experiments on guinea pigs demonstrated that three viruses transmitted efficiently to direct-contact guinea pigs without prior adaptation. Notably, one virus transmitted efficiently via respiratory droplets in guinea pigs but not in ferrets. We further found that the PB1 S524G mutation conferred T222 virus airborne transmissibility between ferrets. We also determined that the 524G mutant increased viral pathogenicity slightly in mice compared with the WT (wild type). Based on these results, we elucidated the potential human health threat and molecular basis of mammalian transmissibility of H3N8 influenza viruses. We emphasized the need for continued surveillance of the H3N8 influenza viruses circulating in birds.
Collapse
Affiliation(s)
- Xinghai Zhang
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, People's Republic of China
| | - Yuanguo Li
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, People's Republic of China
| | - Song Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, People's Republic of China.,Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| | - Yiming Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, People's Republic of China.,Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| | - Leiyun Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, People's Republic of China
| | - Xinyu Hu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, People's Republic of China
| | - Menglin Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, People's Republic of China
| | - Fangxu Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, People's Republic of China.,Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Xianzhu Xia
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| |
Collapse
|
72
|
Wang D, Zhu W, Yang L, Shu Y. The Epidemiology, Virology, and Pathogenicity of Human Infections with Avian Influenza Viruses. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038620. [PMID: 31964651 DOI: 10.1101/cshperspect.a038620] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Influenza is a global challenge, and future pandemics of influenza are inevitable. One of the lessons learned from past pandemics is that all pandemic influenza viruses characterized to date possess viral genes originating from avian influenza viruses (AIVs). During the past decades, a wide range of AIVs have overcome the species barrier and infected humans with different clinical manifestations ranging from mild illness to severe disease and even death. Understanding the mechanisms of infection in the context of clinical outcomes, the mechanism of interspecies transmission, and the molecular determinants that confer interspecies transmission is important for pandemic preparedness. Here, we summarize the epidemiology, virology, and pathogenicity of human infections with AIVs to further our understanding of interspecies transmission.
Collapse
Affiliation(s)
- Dayan Wang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, P.R. China
| |
Collapse
|
73
|
Wu M, Su R, Gu Y, Yu Y, Li S, Sun H, Pan L, Cui X, Zhu X, Yang Q, Liu Y, Xu F, Li M, Liu Y, Qu X, Wu J, Liao M, Sun H. Molecular Characteristics, Antigenicity, Pathogenicity, and Zoonotic Potential of a H3N2 Canine Influenza Virus Currently Circulating in South China. Front Microbiol 2021; 12:628979. [PMID: 33767679 PMCID: PMC7985081 DOI: 10.3389/fmicb.2021.628979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Canine influenza viruses (CIVs) could be a source of influenza viruses which infect humans because canine are important companion pets. To assess the potential risk of H3N2 CIVs currently circulating in southern China to public health, biological characteristics of A/canine/Guangdong/DY1/2019 (CADY1/2019) were detected. CADY1/2019 bound to both avian-type and human-type receptors. CADY1/2019 had a similar pH value for HA protein fusion to human viruses, but its antigenicity was obviously different from those of current human H3N2 influenza viruses (IVs) or the vaccine strains recommended in the North hemisphere. CADY1/2019 effectively replicated in the respiratory tract and was transmitted by physical contact among guinea pigs. Compared to human H3N2 IV, CADY1/2019 exhibited higher replication in MDCK, A549, 3D4/21, ST, and PK15 cells. Sequence analysis indicated that CADY1/2019 is an avian-origin virus, and belongs to the novel clade and has acquired many adaptation mutations to infect other mammals, including human. Taken together, currently circulating H3N2 CIVs have a zoonotic potential, and there is a need for strengthening surveillance and monitoring of their pathogenicity.
Collapse
Affiliation(s)
- Meihua Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Rongsheng Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yongxia Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Yanan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Shuo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Huapeng Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Liangqi Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Xinxin Cui
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Xuhui Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Qingzhou Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Yanwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Fengxiang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Mingliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Yang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Xiaoyun Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Jie Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| |
Collapse
|
74
|
Schreiber SJ, Ke R, Loverdo C, Park M, Ahsan P, Lloyd-Smith JO. Cross-scale dynamics and the evolutionary emergence of infectious diseases. Virus Evol 2021; 7:veaa105. [PMID: 35186322 PMCID: PMC8087961 DOI: 10.1093/ve/veaa105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
When emerging pathogens encounter new host species for which they are poorly adapted, they must evolve to escape extinction. Pathogens experience selection on traits at multiple scales, including replication rates within host individuals and transmissibility between hosts. We analyze a stochastic model linking pathogen growth and competition within individuals to transmission between individuals. Our analysis reveals a new factor, the cross-scale reproductive number of a mutant virion, that quantifies how quickly mutant strains increase in frequency when they initially appear in the infected host population. This cross-scale reproductive number combines with viral mutation rates, single-strain reproductive numbers, and transmission bottleneck width to determine the likelihood of evolutionary emergence, and whether evolution occurs swiftly or gradually within chains of transmission. We find that wider transmission bottlenecks facilitate emergence of pathogens with short-term infections, but hinder emergence of pathogens exhibiting cross-scale selective conflict and long-term infections. Our results provide a framework to advance the integration of laboratory, clinical, and field data in the context of evolutionary theory, laying the foundation for a new generation of evidence-based risk assessment of emergence threats.
Collapse
Affiliation(s)
| | - Ruian Ke
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Claude Loverdo
- Laboratoire Jean Perrin, Sorbonne Université, CNRS, Paris 75005, France
| | - Miran Park
- Department of Ecology & Evolution, University of California, Los Angeles, CA 90095, USA
| | - Prianna Ahsan
- Department of Ecology & Evolution, University of California, Los Angeles, CA 90095, USA
| | - James O Lloyd-Smith
- Department of Ecology & Evolution, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
75
|
Improvement of PR8-Derived Recombinant Clade 2.3.4.4c H5N6 Vaccine Strains by Optimization of Internal Genes and H103Y Mutation of Hemagglutinin. Vaccines (Basel) 2020; 8:vaccines8040781. [PMID: 33419331 PMCID: PMC7766170 DOI: 10.3390/vaccines8040781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/04/2022] Open
Abstract
Clade 2.3.4.4c H5N6 avian influenza A viruses (AIVs) may have originally adapted to infect chickens and have caused highly pathogenic avian influenza (HPAI) in poultry and human fatalities. Although A/Puerto Rico/8/1934 (H1N1) (PR8)-derived recombinant clade 2.3.4.4c H5N6 vaccine strains have been effective in embryonated chicken eggs-based vaccine production system, they need to be improved in terms of immunogenicity and potential mammalian pathogenicity. We replaced the PB2 gene alone or the PB2 (polymerase basic protein 2), NP (nucleoprotein), M (matrix protein) and NS (non-structural protein) genes together in the PR8 strain with corresponding genes from AIVs with low pathogenicity to remove mammalian pathogenicity and to match CD8+ T cell epitopes with contemporary HPAI viruses, respectively, without loss of viral fitness. Additionally, we tested the effect of the H103Y mutation of hemagglutinin (HA) on antigen productivity, mammalian pathogenicity and heat/acid stability. The replacement of PB2 genes and the H103Y mutation reduced the mammalian pathogenicity but increased the antigen productivity of the recombinant vaccine strains. The H103Y mutation increased heat stability but unexpectedly decreased acid stability, probably resulting in increased activation pH for HA. Interestingly, vaccination with inactivated recombinant virus with replaced NP, M and NS genes halted challenge virus shedding earlier than the recombinant vaccine without internal genes replacement. In conclusion, we successfully generated recombinant clade 2.3.4.4c H5N6 vaccine strains that were less pathogenic to mammals and more productive and heat stable than conventional PR8-derived recombinant strains by optimization of internal genes and the H103Y mutation of HA.
Collapse
|
76
|
Escalera-Zamudio M, Golden M, Gutiérrez B, Thézé J, Keown JR, Carrique L, Bowden TA, Pybus OG. Parallel evolution in the emergence of highly pathogenic avian influenza A viruses. Nat Commun 2020; 11:5511. [PMID: 33139731 PMCID: PMC7608645 DOI: 10.1038/s41467-020-19364-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/12/2020] [Indexed: 01/30/2023] Open
Abstract
Parallel molecular evolution and adaptation are important phenomena commonly observed in viruses. Here, we exploit parallel molecular evolution to understand virulence evolution in avian influenza viruses (AIV). Highly-pathogenic AIVs evolve independently from low-pathogenic ancestors via acquisition of polybasic cleavage sites. Why some AIV lineages but not others evolve in this way is unknown. We hypothesise that the parallel emergence of highly-pathogenic AIV may be facilitated by permissive or compensatory mutations occurring across the viral genome. We combine phylogenetic, statistical and structural approaches to discover parallel mutations in AIV genomes associated with the highly-pathogenic phenotype. Parallel mutations were screened using a statistical test of mutation-phenotype association and further evaluated in the contexts of positive selection and protein structure. Our resulting mutational panel may help to reveal new links between virulence evolution and other traits, and raises the possibility of predicting aspects of AIV evolution.
Collapse
Affiliation(s)
| | - Michael Golden
- Department of Zoology, Oxford University, Parks Rd, Oxford, OX1 3PS, UK
| | | | - Julien Thézé
- Department of Zoology, Oxford University, Parks Rd, Oxford, OX1 3PS, UK
| | - Jeremy Russell Keown
- Division of Structural Biology, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
| | - Loic Carrique
- Division of Structural Biology, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
| | - Oliver G Pybus
- Department of Zoology, Oxford University, Parks Rd, Oxford, OX1 3PS, UK.
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK.
| |
Collapse
|
77
|
Lei H, Gao T, Cen Q, Peng X. Haemagglutinin displayed on the surface of Lactococcus lactis confers broad cross-clade protection against different H5N1 viruses in chickens. Microb Cell Fact 2020; 19:193. [PMID: 33059676 PMCID: PMC7557258 DOI: 10.1186/s12934-020-01453-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023] Open
Abstract
Background The highly pathogenic avian influenza (HPAI) H5N1 virus poses a potential threat to the poultry industry. The currently available avian influenza H5N1 vaccines for poultry are clade-specific. Therefore, an effective vaccine for preventing and controlling H5N1 viruses belonging to different clades needs to be developed. Results Recombinant L. lactis/pNZ8148-Spax-HA was generated, and the influenza virus haemagglutinin (HA) protein of A/Vietnam/1203/2004 (H5N1) was displayed on the surface of Lactococcus lactis (L. lactis). Spax was used as an anchor protein. Chickens vaccinated orally with unadjuvanted L. lactis/pNZ8148-Spax-HA could produce significant humoral and mucosal responses and neutralizing activities against H5N1 viruses belonging to different clades. Importantly, unadjuvanted L. lactis/pNZ8148-Spax-HA conferred cross-clade protection against lethal challenge with different H5N1 viruses in the chicken model. Conclusion This study provides insights into the cross-clade protection conferred by unadjuvanted L. lactis/pNZ8148-Spax-HA, and the results might help the establishment of a promising platform for the development of a safe and effective H5N1 cross-clade vaccine for poultry.
Collapse
Affiliation(s)
- Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Tong Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Qianhong Cen
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xiaojue Peng
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China
| |
Collapse
|
78
|
Asadi S, Gaaloul ben Hnia N, Barre RS, Wexler AS, Ristenpart WD, Bouvier NM. Influenza A virus is transmissible via aerosolized fomites. Nat Commun 2020; 11:4062. [PMID: 32811826 PMCID: PMC7435178 DOI: 10.1038/s41467-020-17888-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/22/2020] [Indexed: 02/02/2023] Open
Abstract
Influenza viruses are presumed, but not conclusively known, to spread among humans by several possible routes. We provide evidence of a mode of transmission seldom considered for influenza: airborne virus transport on microscopic particles called "aerosolized fomites." In the guinea pig model of influenza virus transmission, we show that the airborne particulates produced by infected animals are mainly non-respiratory in origin. Surprisingly, we find that an uninfected, virus-immune guinea pig whose body is contaminated with influenza virus can transmit the virus through the air to a susceptible partner in a separate cage. We further demonstrate that aerosolized fomites can be generated from inanimate objects, such as by manually rubbing a paper tissue contaminated with influenza virus. Our data suggest that aerosolized fomites may contribute to influenza virus transmission in animal models of human influenza, if not among humans themselves, with important but understudied implications for public health.
Collapse
Affiliation(s)
- Sima Asadi
- grid.27860.3b0000 0004 1936 9684Department of Chemical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616 USA
| | - Nassima Gaaloul ben Hnia
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029 USA
| | - Ramya S. Barre
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029 USA ,grid.16750.350000 0001 2097 5006Present Address: Department of Ecology and Evolutionary Biology, 304 Guyot Hall, Princeton University, Princeton, NJ 08544 USA
| | - Anthony S. Wexler
- grid.27860.3b0000 0004 1936 9684Department of Mechanical and Aerospace Engineering, University of California Davis, One Shields Ave., Davis, CA 95616 USA ,grid.27860.3b0000 0004 1936 9684Air Quality Research Center, University of California Davis, One Shields Ave., Davis, CA 95616 USA ,grid.27860.3b0000 0004 1936 9684Department of Civil and Environmental Engineering, University of California Davis, One Shields Ave., Davis, CA 95616 USA ,grid.27860.3b0000 0004 1936 9684Department of Land, Air and Water Resources, University of California Davis, One Shields Ave., Davis, CA 95616 USA
| | - William D. Ristenpart
- grid.27860.3b0000 0004 1936 9684Department of Chemical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616 USA
| | - Nicole M. Bouvier
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029 USA
| |
Collapse
|
79
|
Johnson KEE, Ghedin E. Quantifying between-Host Transmission in Influenza Virus Infections. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038422. [PMID: 31871239 DOI: 10.1101/cshperspect.a038422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The error-prone replication and life cycle of influenza virus generate a diverse set of genetic variants. Transmission between hosts strictly limits both the number of virus particles and the genetic diversity of virus variants that reach a new host and establish an infection. This sharp reduction in the virus population at transmission--the transmission bottleneck--is significant to the evolution of influenza virus and to its epidemic and pandemic potential. This review describes transmission bottlenecks and their effect on the diversity and evolution of influenza virus. It also reviews the methods for calculating and predicting bottleneck sizes and highlights the host and viral determinants of influenza transmissibility.
Collapse
Affiliation(s)
- Katherine E E Johnson
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, and Department of Epidemiology, College of Global Public Health, New York University, New York, New York 10003, USA
| |
Collapse
|
80
|
Characterization of highly pathogenic avian influenza H5Nx viruses in the ferret model. Sci Rep 2020; 10:12700. [PMID: 32728042 PMCID: PMC7391700 DOI: 10.1038/s41598-020-69535-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/08/2020] [Indexed: 01/06/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5 viruses, of the A/goose/Guangdong/1/1996 lineage, have exhibited substantial geographic spread worldwide since the first detection of H5N1 virus in 1996. Accumulation of mutations in the HA gene has resulted in several phylogenetic clades, while reassortment with other avian influenza viruses has led to the emergence of new virus subtypes (H5Nx), notably H5N2, H5N6, and H5N8. H5Nx viruses represent a threat to both the poultry industry and human health and can cause lethal human disease following virus exposure. Here, HPAI H5N6 and H5N2 viruses (isolated between 2014 and 2017) of the 2.3.4.4 clade were assessed for their capacity to replicate in human respiratory tract cells, and to cause disease and transmit in the ferret model. All H5N6 viruses possessed increased virulence in ferrets compared to the H5N2 virus; however, pathogenicity profiles varied among the H5N6 viruses tested, from mild infection with sporadic virus dissemination beyond the respiratory tract, to severe disease with fatal outcome. Limited transmission between co-housed ferrets was observed with the H5N6 viruses but not with the H5N2 virus. In vitro evaluation of H5Nx virus replication in Calu-3 cells and the identification of mammalian adaptation markers in key genes associated with pathogenesis supports these findings.
Collapse
|
81
|
Cocirculation of Swine H1N1 Influenza A Virus Lineages in Germany. Viruses 2020; 12:v12070762. [PMID: 32679903 PMCID: PMC7411773 DOI: 10.3390/v12070762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
The genome analysis of 328 H1N1 swine influenza virus isolates collected in a 13-year long-term swine influenza surveillance in Germany is reported. Viral genomes were sequenced with the Illumina next-generation sequencing technique and conventional Sanger methods. Phylogenetic analyses were conducted with Bayesian tree inference. The results indicate continued prevalence of Eurasian avian swine H1N1 but also emergence of a novel H1N1 reassortant, named Schneiderkrug/2013-like swine H1N1, with human-like hemagglutinin and avian-like neuraminidase and internal genes. Additionally, the evolution of an antigenic drift variant of A (H1N1) pdm09 was observed, named Wachtum/2014-like swine H1N1. Both variants were first isolated in northwest Germany, spread to neighboring German states and reached greater proportions of the H1N1 isolates of 2014 and 2015. The upsurge of Wachtum/2014-like swine H1N1 is of interest as this is the first documented persistent swine-to-swine spread of A (H1N1) pdm09 in Germany associated with antigenic variation. Present enzootic swine influenza viruses in Germany now include two or more co-circulating, antigenically variant viruses of each of the subtypes, H1N1 and H1N2.
Collapse
|
82
|
Wille M, Holmes EC. The Ecology and Evolution of Influenza Viruses. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038489. [PMID: 31871237 DOI: 10.1101/cshperspect.a038489] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The patterns and processes of influenza virus evolution are of fundamental importance, underpinning such traits as the propensity to emerge in new host species and the ability to rapidly generate antigenic variation. Herein, we review key aspects of the ecology and evolution of influenza viruses. We begin with an exploration of the origins of influenza viruses within the orthomyxoviruses, showing how our perception of the evolutionary history of these viruses has been transformed with metagenomic sequencing. We then outline the diversity of virus subtypes in different species and the processes by which these viruses have emerged in new hosts, with a particular focus on the role played by segment reassortment. We then turn our attention to documenting the spread and phylodynamics of seasonal influenza A and B viruses in human populations, including the drivers of antigenic evolution, and finish with a discussion of virus diversity and evolution at the scale of individual hosts.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
83
|
Hu M, Yang G, DeBeauchamp J, Crumpton JC, Kim H, Li L, Wan XF, Kercher L, Bowman AS, Webster RG, Webby RJ, Russell CJ. HA stabilization promotes replication and transmission of swine H1N1 gamma influenza viruses in ferrets. eLife 2020; 9:56236. [PMID: 32602461 PMCID: PMC7326494 DOI: 10.7554/elife.56236] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/13/2020] [Indexed: 01/01/2023] Open
Abstract
Pandemic influenza A viruses can emerge from swine, an intermediate host that supports adaptation of human-preferred receptor-binding specificity by the hemagglutinin (HA) surface antigen. Other HA traits necessary for pandemic potential are poorly understood. For swine influenza viruses isolated in 2009–2016, gamma-clade viruses had less stable HA proteins (activation pH 5.5–5.9) than pandemic clade (pH 5.0–5.5). Gamma-clade viruses replicated to higher levels in mammalian cells than pandemic clade. In ferrets, a model for human adaptation, a relatively stable HA protein (pH 5.5–5.6) was necessary for efficient replication and airborne transmission. The overall airborne transmission frequency in ferrets for four isolates tested was 42%, and isolate G15 airborne transmitted 100% after selection of a variant with a stabilized HA. The results suggest swine influenza viruses containing both a stabilized HA and alpha-2,6 receptor binding in tandem pose greater pandemic risk. Increasing evidence supports adding HA stability to pre-pandemic risk assessment algorithms.
Collapse
Affiliation(s)
- Meng Hu
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Guohua Yang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Jennifer DeBeauchamp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Jeri Carol Crumpton
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Hyunsuh Kim
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Lei Li
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, United States
| | - Xiu-Feng Wan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, United States.,Missouri University Center for Research on Influenza Systems Biology (CRISB), University of Missouri, Columbia, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, United States.,Bond Life Sciences Center, University of Missouri, Columbia, United States.,Department of Electrical Engineering Computer Science, College of Engineering, University of Missouri, Columbia, United States.,MU Informatics Institute, University of Missouri, Columbia, United States
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, United States
| | - Robert G Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States.,Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, United States
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States.,Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, United States
| |
Collapse
|
84
|
Phenotypic Effects of Substitutions within the Receptor Binding Site of Highly Pathogenic Avian Influenza H5N1 Virus Observed during Human Infection. J Virol 2020; 94:JVI.00195-20. [PMID: 32321815 DOI: 10.1128/jvi.00195-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses are enzootic in wild birds and poultry and continue to cause human infections with high mortality. To date, more than 850 confirmed human cases of H5N1 virus infection have been reported, of which ∼60% were fatal. Global concern persists that these or similar avian influenza viruses will evolve into viruses that can transmit efficiently between humans, causing a severe influenza pandemic. It was shown previously that a change in receptor specificity is a hallmark for adaptation to humans and evolution toward a transmittable virus. Substantial genetic diversity was detected within the receptor binding site of hemagglutinin of HPAI A/H5N1 viruses, evolved during human infection, as detected by next-generation sequencing. Here, we investigated the functional impact of substitutions that were detected during these human infections. Upon rescue of 21 mutant viruses, most substitutions in the receptor binding site (RBS) resulted in viable virus, but virus replication, entry, and stability were often impeded. None of the tested substitutions individually resulted in a clear switch in receptor preference as measured with modified red blood cells and glycan arrays. Although several combinations of the substitutions can lead to human-type receptor specificity, accumulation of multiple amino acid substitutions within a single hemagglutinin during human infection is rare, thus reducing the risk of virus adaptation to humans.IMPORTANCE H5 viruses continue to be a threat for public health. Because these viruses are immunologically novel to humans, they could spark a pandemic when adapted to transmit between humans. Avian influenza viruses need several adaptive mutations to bind to human-type receptors, increase hemagglutinin (HA) stability, and replicate in human cells. However, knowledge on adaptive mutations during human infections is limited. A previous study showed substantial diversity within the receptor binding site of H5N1 during human infection. We therefore analyzed the observed amino acid changes phenotypically in a diverse set of assays, including virus replication, stability, and receptor specificity. None of the tested substitutions resulted in a clear step toward a human-adapted virus capable of aerosol transmission. It is notable that acquiring human-type receptor specificity needs multiple amino acid mutations, and that variability at key position 226 is not tolerated, reducing the risk of them being acquired naturally.
Collapse
|
85
|
Alyas K, Wajid A, Dundon WG, Ather S, Batool T, Babar ME. Isolation and Characterization of Avian Influenza H9N2 Viruses from Different Avian Species in Pakistan 2016-17. Avian Dis 2020; 63:721-726. [PMID: 31865688 DOI: 10.1637/aviandiseases-d-19-00070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/27/2019] [Indexed: 11/05/2022]
Abstract
Avian influenza (AI) virus (AIV) subtype H9N2 continues to cause significant outbreaks among commercial and backyard poultry in Pakistan. Despite this, the characterization of H9N2 viruses in avian hosts other than chickens in Pakistan has not been thoroughly investigated. In this study, 12 low pathogenicity avian influenza viruses subtype H9N2 were isolated from peacocks (n = 4), ducks (n = 4), pheasants (n = 2), geese (n = 1), and black swans (n = 1) in Pakistan during 2016 and were characterized on the basis of the hemagglutinin (HA) and neuraminidase genes. All of the viruses possessed an amino acid substitution Q226L in the receptor-binding site of the HA protein, which is known to contribute to increased viral replication and virulence in mammals. In addition, phylogenetic studies showed that these H9N2 AIVs belonged to the Middle East B genetic group of sublineage G1 and were very similar to viruses isolated from an outbreak in chickens in Pakistan in 2017. This demonstrates an epidemiologic link between poultry and other avian species, which is a fact to consider in future H9N2 disease management programs.
Collapse
Affiliation(s)
- Kashaf Alyas
- Department of Biotechnology, Virtual University of Pakistan, 1-Davis Road, Lahore, Pakistan 54000.,The first two authors contributed equally to this work.,A. W. and K. A. conceived and designed the experiments. K. A., S. A., and T. B. performed the experiments. A. W., W. G. D., and M. E. B. analyzed the data. A. W. and W. G. D. wrote the paper that was approved by all authors
| | - Abdul Wajid
- Department of Biotechnology, Virtual University of Pakistan, 1-Davis Road, Lahore, Pakistan 54000, ; .,The first two authors contributed equally to this work.,A. W. and K. A. conceived and designed the experiments. K. A., S. A., and T. B. performed the experiments. A. W., W. G. D., and M. E. B. analyzed the data. A. W. and W. G. D. wrote the paper that was approved by all authors
| | - William G Dundon
- Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, Vienna, Austria 2444.,A. W. and K. A. conceived and designed the experiments. K. A., S. A., and T. B. performed the experiments. A. W., W. G. D., and M. E. B. analyzed the data. A. W. and W. G. D. wrote the paper that was approved by all authors
| | - Safa Ather
- Department of Molecular Biology, Virtual University of Pakistan, 1-Davis Road Lahore, Pakistan 54000.,A. W. and K. A. conceived and designed the experiments. K. A., S. A., and T. B. performed the experiments. A. W., W. G. D., and M. E. B. analyzed the data. A. W. and W. G. D. wrote the paper that was approved by all authors
| | - Tayyeba Batool
- Department of Molecular Biology, Virtual University of Pakistan, 1-Davis Road Lahore, Pakistan 54000.,A. W. and K. A. conceived and designed the experiments. K. A., S. A., and T. B. performed the experiments. A. W., W. G. D., and M. E. B. analyzed the data. A. W. and W. G. D. wrote the paper that was approved by all authors
| | - Masroor Ellahi Babar
- Department of Molecular Biology, Virtual University of Pakistan, 1-Davis Road Lahore, Pakistan 54000.,A. W. and K. A. conceived and designed the experiments. K. A., S. A., and T. B. performed the experiments. A. W., W. G. D., and M. E. B. analyzed the data. A. W. and W. G. D. wrote the paper that was approved by all authors
| |
Collapse
|
86
|
Pawestri HA, Nugraha AA, Han AX, Pratiwi E, Parker E, Richard M, van der Vliet S, Fouchier RAM, Muljono DH, de Jong MD, Setiawaty V, Eggink D. Genetic and antigenic characterization of influenza A/H5N1 viruses isolated from patients in Indonesia, 2008-2015. Virus Genes 2020; 56:417-429. [PMID: 32483655 PMCID: PMC7262163 DOI: 10.1007/s11262-020-01765-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/07/2020] [Indexed: 01/07/2023]
Abstract
Since the initial detection in 2003, Indonesia has reported 200 human cases of highly pathogenic avian influenza H5N1 (HPAI H5N1), associated with an exceptionally high case fatality rate (84%) compared to other geographical regions affected by other genetic clades of the virus. However, there is limited information on the genetic diversity of HPAI H5N1 viruses, especially those isolated from humans in Indonesia. In this study, the genetic and antigenic characteristics of 35 HPAI H5N1 viruses isolated from humans were analyzed. Full genome sequences were analyzed for the presence of substitutions in the receptor binding site, and polymerase complex, as markers for virulence or human adaptation, as well as antiviral drug resistance substitutions. Only a few substitutions associated with human adaptation were observed, a remarkably low prevalence of the human adaptive substitution PB2-E627K, which is common during human infection with other H5N1 clades and a known virulence marker for avian influenza viruses during human infections. In addition, the antigenic profile of these Indonesian HPAI H5N1 viruses was determined using serological analysis and antigenic cartography. Antigenic characterization showed two distinct antigenic clusters, as observed previously for avian isolates. These two antigenic clusters were not clearly associated with time of virus isolation. This study provides better insight in genetic diversity of H5N1 viruses during human infection and the presence of human adaptive markers. These findings highlight the importance of evaluating virus genetics for HPAI H5N1 viruses to estimate the risk to human health and the need for increased efforts to monitor the evolution of H5N1 viruses across Indonesia.
Collapse
Affiliation(s)
- Hana A Pawestri
- National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Arie A Nugraha
- National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Alvin X Han
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eka Pratiwi
- National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Edyth Parker
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Mathilde Richard
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Menno D de Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Vivi Setiawaty
- National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia.
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
87
|
Kiseleva I, Rekstin A, Al Farroukh M, Bazhenova E, Katelnikova A, Puchkova L, Rudenko L. Non-Mouse-Adapted H1N1pdm09 Virus as a Model for Influenza Research. Viruses 2020; 12:v12060590. [PMID: 32485821 PMCID: PMC7354452 DOI: 10.3390/v12060590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022] Open
Abstract
The number of lung-adapted influenza viruses is limited. Most of them are not antigenically related to current circulating viruses. Viruses similar to recent strains are required for screening modern antiviral compounds and studying new vaccine candidates against novel influenza viruses. The process by which an influenza virus adapts to a new host is rather difficult. The aim of this study was to select a non-adapted current virus whose major biological properties correspond to those of classical lab-adapted viruses. Mice were inoculated intranasally with non-lung-adapted influenza viruses of subtype H1N1pdm09. They were monitored closely for body weight loss, mortality outcomes and gross pathology for 14 days following inoculation, as well as viral replication in lung tissue. Lung-adapted PR8 virus was used as a control. The tested viruses multiplied equally well in the lower respiratory tract of mice without prior adaptation but dramatically differed in lethality; the differences in their toxicity and pathogenicity in mice were established. A/South Africa/3626/2013 (H1N1)pdm09 virus was found to be an appropriate candidate to replace PR8 as a model virus for influenza research. No prior adaptation to the animal model is needed to reach the pathogenicity level of the classical mouse-adapted PR8 virus.
Collapse
Affiliation(s)
- Irina Kiseleva
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
- Correspondence:
| | - Andrey Rekstin
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| | - Mohammad Al Farroukh
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| | - Ekaterina Bazhenova
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| | - Anastasia Katelnikova
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd., 188663 St Petersburg, Russia;
| | - Ludmila Puchkova
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| | - Larisa Rudenko
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| |
Collapse
|
88
|
Outbreak Severity of Highly Pathogenic Avian Influenza A(H5N8) Viruses Is Inversely Correlated to Polymerase Complex Activity and Interferon Induction. J Virol 2020; 94:JVI.00375-20. [PMID: 32238581 DOI: 10.1128/jvi.00375-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
Highly pathogenic avian influenza A(H5N8) viruses first emerged in China in 2010 and in 2014 spread throughout Asia and to Europe and the United States via migrating birds. Influenza A(H5N8) viruses were first detected in the Netherlands in 2014 and caused five outbreaks in poultry farms but were infrequently detected in wild birds. In 2016, influenza A(H5N8) viruses were reintroduced into the Netherlands, resulting in eight poultry farm outbreaks. This outbreak resulted in numerous dead wild birds with severe pathology. Phylogenetic analysis showed that the polymerase genes of these viruses had undergone extensive reassortment between outbreaks. Here, we investigated the differences in virulence between the 2014-15 and the 2016-17 outbreaks by characterizing the polymerase complex of influenza A(H5N8) viruses from both outbreaks. We found that viruses from the 2014-15 outbreak had significantly higher polymerase complex activity in both human and avian cell lines than did those from the 2016-17 outbreak. No apparent differences in the balance between transcription and replication of the viral genome were observed. Interestingly, the 2014-15 polymerase complexes induced significantly higher levels of interferon beta (IFN-β) than the polymerase complexes of the 2016-17 outbreak viruses, mediated via retinoic acid-inducible gene I (RIG-I). Inoculation of primary duck cells with recombinant influenza A(H5N8) viruses, including viruses with reassorted polymerase complexes, showed that the polymerase complexes from the 2014-15 outbreak induced higher levels of IFN-β despite relatively minor differences in replication capacity. Together, these data suggest that despite the lower levels of polymerase activity, the higher 2016-17 influenza A(H5N8) virus virulence may be attributed to the lower level of activation of the innate immune system.IMPORTANCE Compared to the 2014-15 outbreak, the 2016-17 outbreak of influenza A(H5N8) viruses in the Netherlands and Europe was more virulent; the number of dead or diseased wild birds found and the severity of pathological changes were higher during the 2016-17 outbreak. The polymerase complex plays an important role in influenza virus virulence, and the gene segments of influenza A(H5N8) viruses reassorted extensively between the outbreaks. In this study, the 2014-15 polymerase complexes were found to be more active, which is counterintuitive with the observed higher virulence of the 2016-17 outbreak viruses. Interestingly, the 2014-15 polymerase complexes also induced higher levels of IFN-β. These findings suggest that the higher virulence of influenza A(H5N8) viruses from the 2016-17 outbreak may be related to the lower induction of IFN-β. An attenuated interferon response could lead to increased dissemination, pathology, and mortality, as observed in (wild) birds infected during the 2016-2017 outbreak.
Collapse
|
89
|
Thompson AJ, Cao L, Ma Y, Wang X, Diedrich JK, Kikuchi C, Willis S, Worth C, McBride R, Yates JR, Paulson JC. Human Influenza Virus Hemagglutinins Contain Conserved Oligomannose N-Linked Glycans Allowing Potent Neutralization by Lectins. Cell Host Microbe 2020; 27:725-735.e5. [PMID: 32298658 PMCID: PMC7158820 DOI: 10.1016/j.chom.2020.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/13/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
Hemagglutinins (HAs) from human influenza viruses adapt to bind α2-6-linked sialosides, overcoming a receptor-defined species barrier distinct from the α2-3 specificity of avian virus progenitors. Additionally, human-adapted HAs gain glycosylation sites over time, although their biological function is poorly defined. Using quantitative glycomic analysis, we show that HAs from human pandemic viruses exhibit significant proportions of high-mannose type N-linked glycans throughout the head domain. By contrast, poorly adapted avian-origin HAs contain predominately complex-type glycans, which have greater structural diversity. Although oligomannose levels vary, they are present in all tested recombinant HAs and whole viruses and can be specifically targeted for universal detection. The positions of high-mannose glycosites on the HA of human H1N1 and H3N2 strains are conserved. Additionally, high-mannose-binding lectins possess a broad capacity to neutralize and prevent infection with contemporary H3N2 strains. These findings reveal the biological significance of HA glycosylation and therapeutic potential of targeting these structures.
Collapse
Affiliation(s)
- Andrew J Thompson
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Liwei Cao
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Yuanhui Ma
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Xiaoning Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Chika Kikuchi
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Shelby Willis
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Charli Worth
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Ryan McBride
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - James C Paulson
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA; Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
90
|
Yamaji R, Saad MD, Davis CT, Swayne DE, Wang D, Wong FYK, McCauley JW, Peiris JSM, Webby RJ, Fouchier RAM, Kawaoka Y, Zhang W. Pandemic potential of highly pathogenic avian influenza clade 2.3.4.4 A(H5) viruses. Rev Med Virol 2020; 30:e2099. [PMID: 32135031 PMCID: PMC9285678 DOI: 10.1002/rmv.2099] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/05/2023]
Abstract
The panzootic caused by A/goose/Guangdong/1/96‐lineage highly pathogenic avian influenza (HPAI) A(H5) viruses has occurred in multiple waves since 1996. From 2013 onwards, clade 2.3.4.4 viruses of subtypes A(H5N2), A(H5N6), and A(H5N8) emerged to cause panzootic waves of unprecedented magnitude among avian species accompanied by severe losses to the poultry industry around the world. Clade 2.3.4.4 A(H5) viruses have expanded in distinct geographical and evolutionary pathways likely via long distance migratory bird dispersal onto several continents and by poultry trade among neighboring countries. Coupled with regional circulation, the viruses have evolved further by reassorting with local viruses. As of February 2019, there have been 23 cases of humans infected with clade 2.3.4.4 H5N6 viruses, 16 (70%) of which had fatal outcomes. To date, no HPAI A(H5) virus has caused sustainable human‐to‐human transmission. However, due to the lack of population immunity in humans and ongoing evolution of the virus, there is a continuing risk that clade 2.3.4.4 A(H5) viruses could cause an influenza pandemic if the ability to transmit efficiently among humans was gained. Therefore, multisectoral collaborations among the animal, environmental, and public health sectors are essential to conduct risk assessments and develop countermeasures to prevent disease and to control spread. In this article, we describe an assessment of the likelihood of clade 2.3.4.4 A(H5) viruses gaining human‐to‐human transmissibility and impact on human health should such human‐to‐human transmission occur. This structured analysis assessed properties of the virus, attributes of the human population, and ecology and epidemiology of these viruses in animal hosts.
Collapse
Affiliation(s)
- Reina Yamaji
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| | - Magdi D Saad
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| | - Charles T Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David E Swayne
- Department of Agriculture, OIE Collaborating Centre for Research on Emerging Avian Diseases, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, China
| | - Frank Y K Wong
- CSIRO Australian Animal Health Laboratory, Geelong, Australia
| | - John W McCauley
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, UK
| | - J S Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Wenqing Zhang
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| |
Collapse
|
91
|
Poen MJ, Pohlmann A, Amid C, Bestebroer TM, Brookes SM, Brown IH, Everett H, Schapendonk CME, Scheuer RD, Smits SL, Beer M, Fouchier RAM, Ellis RJ. Comparison of sequencing methods and data processing pipelines for whole genome sequencing and minority single nucleotide variant (mSNV) analysis during an influenza A/H5N8 outbreak. PLoS One 2020; 15:e0229326. [PMID: 32078666 PMCID: PMC7032710 DOI: 10.1371/journal.pone.0229326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
As high-throughput sequencing technologies are becoming more widely adopted for analysing pathogens in disease outbreaks there needs to be assurance that the different sequencing technologies and approaches to data analysis will yield reliable and comparable results. Conversely, understanding where agreement cannot be achieved provides insight into the limitations of these approaches and also allows efforts to be focused on areas of the process that need improvement. This manuscript describes the next-generation sequencing of three closely related viruses, each analysed using different sequencing strategies, sequencing instruments and data processing pipelines. In order to determine the comparability of consensus sequences and minority (sub-consensus) single nucleotide variant (mSNV) identification, the biological samples, the sequence data from 3 sequencing platforms and the *.bam quality-trimmed alignment files of raw data of 3 influenza A/H5N8 viruses were shared. This analysis demonstrated that variation in the final result could be attributed to all stages in the process, but the most critical were the well-known homopolymer errors introduced by 454 sequencing, and the alignment processes in the different data processing pipelines which affected the consistency of mSNV detection. However, homopolymer errors aside, there was generally a good agreement between consensus sequences that were obtained for all combinations of sequencing platforms and data processing pipelines. Nevertheless, minority variant analysis will need a different level of careful standardization and awareness about the possible limitations, as shown in this study.
Collapse
Affiliation(s)
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Insel Riems, Germany
| | - Clara Amid
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Sharon M. Brookes
- Animal and Plant Health Agency (APHA) - Weybridge, Addlestone, Surrey, United Kingdom
| | - Ian H. Brown
- Animal and Plant Health Agency (APHA) - Weybridge, Addlestone, Surrey, United Kingdom
| | - Helen Everett
- Animal and Plant Health Agency (APHA) - Weybridge, Addlestone, Surrey, United Kingdom
| | | | | | - Saskia L. Smits
- Erasmus MC, Department of Viroscience, Rotterdam, the Netherlands
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Insel Riems, Germany
| | | | - Richard J. Ellis
- Animal and Plant Health Agency (APHA) - Weybridge, Addlestone, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
92
|
Richard M, van den Brand JMA, Bestebroer TM, Lexmond P, de Meulder D, Fouchier RAM, Lowen AC, Herfst S. Influenza A viruses are transmitted via the air from the nasal respiratory epithelium of ferrets. Nat Commun 2020; 11:766. [PMID: 32034144 PMCID: PMC7005743 DOI: 10.1038/s41467-020-14626-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/23/2020] [Indexed: 12/29/2022] Open
Abstract
Human influenza A viruses are known to be transmitted via the air from person to person. It is unknown from which anatomical site of the respiratory tract influenza A virus transmission occurs. Here, pairs of genetically tagged and untagged influenza A/H1N1, A/H3N2 and A/H5N1 viruses that are transmissible via the air are used to co-infect donor ferrets via the intranasal and intratracheal routes to cause an upper and lower respiratory tract infection, respectively. In all transmission cases, we observe that the viruses in the recipient ferrets are of the same genotype as the viruses inoculated intranasally, demonstrating that they are expelled from the upper respiratory tract of ferrets rather than from trachea or the lower airways. Moreover, influenza A viruses that are transmissible via the air preferentially infect ferret and human nasal respiratory epithelium. These results indicate that virus replication in the upper respiratory tract, the nasal respiratory epithelium in particular, of donors is a driver for transmission of influenza A viruses via the air.
Collapse
Affiliation(s)
- Mathilde Richard
- Department of Viroscience, Erasmus MC University Medical Center, Center for Research on Influenza Pathogenesis (CRIP) Center of Excellence for Influenza Research and Surveillance (CEIRS), Rotterdam, the Netherlands
| | - Judith M A van den Brand
- Department of Viroscience, Erasmus MC University Medical Center, Center for Research on Influenza Pathogenesis (CRIP) Center of Excellence for Influenza Research and Surveillance (CEIRS), Rotterdam, the Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Erasmus MC University Medical Center, Center for Research on Influenza Pathogenesis (CRIP) Center of Excellence for Influenza Research and Surveillance (CEIRS), Rotterdam, the Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus MC University Medical Center, Center for Research on Influenza Pathogenesis (CRIP) Center of Excellence for Influenza Research and Surveillance (CEIRS), Rotterdam, the Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Erasmus MC University Medical Center, Center for Research on Influenza Pathogenesis (CRIP) Center of Excellence for Influenza Research and Surveillance (CEIRS), Rotterdam, the Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC University Medical Center, Center for Research on Influenza Pathogenesis (CRIP) Center of Excellence for Influenza Research and Surveillance (CEIRS), Rotterdam, the Netherlands
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, 30322, USA
| | - Sander Herfst
- Department of Viroscience, Erasmus MC University Medical Center, Center for Research on Influenza Pathogenesis (CRIP) Center of Excellence for Influenza Research and Surveillance (CEIRS), Rotterdam, the Netherlands.
| |
Collapse
|
93
|
Quantifying within-host diversity of H5N1 influenza viruses in humans and poultry in Cambodia. PLoS Pathog 2020; 16:e1008191. [PMID: 31951644 PMCID: PMC6992230 DOI: 10.1371/journal.ppat.1008191] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/30/2020] [Accepted: 11/04/2019] [Indexed: 12/31/2022] Open
Abstract
Avian influenza viruses (AIVs) periodically cross species barriers and infect humans. The likelihood that an AIV will evolve mammalian transmissibility depends on acquiring and selecting mutations during spillover, but data from natural infection is limited. We analyze deep sequencing data from infected humans and domestic ducks in Cambodia to examine how H5N1 viruses evolve during spillover. Overall, viral populations in both species are predominated by low-frequency (<10%) variation shaped by purifying selection and genetic drift, and half of the variants detected within-host are never detected on the H5N1 virus phylogeny. However, we do detect a subset of mutations linked to human receptor binding and replication (PB2 E627K, HA A150V, and HA Q238L) that arose in multiple, independent humans. PB2 E627K and HA A150V were also enriched along phylogenetic branches leading to human infections, suggesting that they are likely human-adaptive. Our data show that H5N1 viruses generate putative human-adapting mutations during natural spillover infection, many of which are detected at >5% frequency within-host. However, short infection times, genetic drift, and purifying selection likely restrict their ability to evolve extensively during a single infection. Applying evolutionary methods to sequence data, we reveal a detailed view of H5N1 virus adaptive potential, and develop a foundation for studying host-adaptation in other zoonotic viruses. H5N1 avian influenza viruses can cross species barriers and cause severe disease in humans. H5N1 viruses currently cannot replicate and transmit efficiently among humans, but animal infection studies and modeling experiments have suggested that human adaptation may require only a few mutations. However, data from natural spillover infection has been limited, posing a challenge for risk assessment. Here, we analyze a unique dataset of deep sequence data from H5N1 virus-infected humans and domestic ducks in Cambodia. We find that well-known markers of human receptor binding and replication arise in multiple, independent humans. We also find that 3 mutations detected within-host are enriched along phylogenetic branches leading to human infections, suggesting that they are likely human-adapting. However, we also show that within-host evolution in both humans and ducks are shaped heavily by purifying selection and genetic drift, and that a large fraction of within-host variation is never detected on the H5N1 phylogeny. Taken together, our data show that H5N1 viruses do generate human-adapting mutations during natural infection. However, short infection times, purifying selection, and genetic drift may severely limit how much H5N1 viruses can evolve during the course of a single infection.
Collapse
|
94
|
Long JS, Mistry B, Haslam SM, Barclay WS. Host and viral determinants of influenza A virus species specificity. Nat Rev Microbiol 2020; 17:67-81. [PMID: 30487536 DOI: 10.1038/s41579-018-0115-z] [Citation(s) in RCA: 395] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Influenza A viruses cause pandemics when they cross between species and an antigenically novel virus acquires the ability to infect and transmit between these new hosts. The timing of pandemics is currently unpredictable but depends on ecological and virological factors. The host range of an influenza A virus is determined by species-specific interactions between virus and host cell factors. These include the ability to bind and enter cells, to replicate the viral RNA genome within the host cell nucleus, to evade host restriction factors and innate immune responses and to transmit between individuals. In this Review, we examine the host barriers that influenza A viruses of animals, especially birds, must overcome to initiate a pandemic in humans and describe how, on crossing the species barrier, the virus mutates to establish new interactions with the human host. This knowledge is used to inform risk assessments for future pandemics and to identify virus-host interactions that could be targeted by novel intervention strategies.
Collapse
Affiliation(s)
- Jason S Long
- Department of Medicine, Imperial College London, London, UK
| | - Bhakti Mistry
- Department of Medicine, Imperial College London, London, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Wendy S Barclay
- Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
95
|
Laporte M, Stevaert A, Raeymaekers V, Boogaerts T, Nehlmeier I, Chiu W, Benkheil M, Vanaudenaerde B, Pöhlmann S, Naesens L. Hemagglutinin Cleavability, Acid Stability, and Temperature Dependence Optimize Influenza B Virus for Replication in Human Airways. J Virol 2019; 94:e01430-19. [PMID: 31597759 PMCID: PMC6912116 DOI: 10.1128/jvi.01430-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/28/2019] [Indexed: 12/15/2022] Open
Abstract
Influenza A virus (IAV) and influenza B virus (IBV) cause yearly epidemics with significant morbidity and mortality. When zoonotic IAVs enter the human population, the viral hemagglutinin (HA) requires adaptation to achieve sustained virus transmission. In contrast, IBV has been circulating in humans, its only host, for a long period of time. Whether this entailed adaptation of IBV HA to the human airways is unknown. To address this question, we compared two seasonal IAVs (A/H1N1 and A/H3N2) and two IBVs (B/Victoria and B/Yamagata lineages) with regard to host-dependent activity of HA as the mediator of membrane fusion during viral entry. We first investigated proteolytic activation of HA by covering all type II transmembrane serine protease (TTSP) and kallikrein enzymes, many of which proved to be present in human respiratory epithelium. The IBV HA0 precursor is cleaved by a broader panel of TTSPs and activated with much higher efficiency than IAV HA0. Accordingly, knockdown of a single protease, TMPRSS2, abrogated spread of IAV but not IBV in human respiratory epithelial cells. Second, the HA fusion pH values proved similar for IBV and human-adapted IAVs (with one exception being the HA of 1918 IAV). Third, IBV HA exhibited higher expression at 33°C, a temperature required for membrane fusion by B/Victoria HA. This indicates pronounced adaptation of IBV HA to the mildly acidic pH and cooler temperature of human upper airways. These distinct and intrinsic features of IBV HA are compatible with extensive host adaptation during prolonged circulation of this respiratory virus in the human population.IMPORTANCE Influenza epidemics are caused by influenza A and influenza B viruses (IAV and IBV, respectively). IBV causes substantial disease; however, it is far less studied than IAV. While IAV originates from animal reservoirs, IBV circulates in humans only. Virus spread requires that the viral hemagglutinin (HA) is active and sufficiently stable in human airways. We resolve here how these mechanisms differ between IBV and IAV. Whereas human IAVs rely on one particular protease for HA activation, this is not the case for IBV. Superior activation of IBV by several proteases should enhance shedding of infectious particles. IBV HA exhibits acid stability and a preference for 33°C, indicating pronounced adaptation to the human upper airways, where the pH is mildly acidic and a cooler temperature exists. These adaptive features are rationalized by the long existence of IBV in humans and may have broader relevance for understanding the biology and evolution of respiratory viruses.
Collapse
MESH Headings
- Cell Line
- Epithelial Cells/pathology
- Epithelial Cells/virology
- Gene Expression Regulation
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Host-Pathogen Interactions/genetics
- Humans
- Hydrogen-Ion Concentration
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/metabolism
- Influenza A Virus, H3N2 Subtype/pathogenicity
- Influenza B virus/genetics
- Influenza B virus/metabolism
- Influenza B virus/pathogenicity
- Influenza, Human/pathology
- Influenza, Human/virology
- Kallikreins/classification
- Kallikreins/genetics
- Kallikreins/metabolism
- Lung/pathology
- Lung/virology
- Membrane Fusion
- Membrane Proteins/classification
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Proteolysis
- Respiratory Mucosa/pathology
- Respiratory Mucosa/virology
- Serine Endopeptidases/deficiency
- Serine Endopeptidases/genetics
- Serine Proteases/classification
- Serine Proteases/genetics
- Serine Proteases/metabolism
- Species Specificity
- Temperature
- Virus Internalization
- Virus Replication/genetics
Collapse
Affiliation(s)
- Manon Laporte
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Annelies Stevaert
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Valerie Raeymaekers
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Talitha Boogaerts
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
| | - Winston Chiu
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Mohammed Benkheil
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Bart Vanaudenaerde
- Katholieke Universiteit Leuven, Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Pneumology, University Hospital Leuven, Leuven, Belgium
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Lieve Naesens
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
96
|
HA-Dependent Tropism of H5N1 and H7N9 Influenza Viruses to Human Endothelial Cells Is Determined by Reduced Stability of the HA, Which Allows the Virus To Cope with Inefficient Endosomal Acidification and Constitutively Expressed IFITM3. J Virol 2019; 94:JVI.01223-19. [PMID: 31597765 DOI: 10.1128/jvi.01223-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
Previous studies revealed that certain avian influenza A viruses (IAVs), including zoonotic H5N1 and H7N9 IAVs, infect cultured human lung microvascular endothelial cells (HULEC) more efficiently than other IAVs and that tropism to HULEC is determined by viral hemagglutinin (HA). To characterize mechanisms of HA-mediated endotheliotropism, we used 2:6 recombinant IAVs harboring HAs from distinctive avian and human viruses and found that efficient infection of HULEC correlated with low conformational stability of the HA. We next studied effects on viral infectivity of single-point amino acid substitutions in the HA of 2:6 recombinant virus A/Vietnam/1203/2004-PR8 (H5N1). Substitutions H8Q, H103Y, T315I, and K582I (K58I in the HA2 subunit), which increased stability of the HA, markedly reduced viral infectivity for HULEC, whereas substitutions K189N and K218Q, which altered typical H5N1 virus-like receptor specificity and reduced binding avidity of the HA, led to only marginal reduction of infectivity. None of these substitutions affected virus infection in MDCK cells. We confirmed the previous observation of elevated basal expression of IFITM3 protein in HULEC and found that endosomal acidification is less efficient in HULEC than in MDCK cells. In accord with these findings, counteraction of IFITM3-mediated restriction by amphotericin B and reduction of endosomal pH by moderate acidification of the extracellular medium enhanced infectivity of viruses with stable HA for HULEC without significant effect on infectivity for MDCK cells. Collectively, our results indicate that relatively high pH optimum of fusion of the HA of zoonotic H5N1 and H7N9 IAVs allows them to overcome antiviral effects of inefficient endosomal acidification and IFITM3 in human endothelial cells.IMPORTANCE Receptor specificity of the HA of IAVs is known to be a critical determinant of viral cell tropism. Here, we show that fusion properties of the HA may also play a key role in the tropism. Thus, we demonstrate that IAVs having a relatively low pH optimum of fusion cannot efficiently infect human endothelial cells owing to their relatively high endosomal pH and increased expression of fusion-inhibiting IFITM3 protein. These restrictions can be overcome by IAVs with elevated pH of fusion, such as zoonotic H5N1 and H7N9. Our results illustrate that the infectivity of IAVs depends on an interplay between HA conformational stability, endosomal acidification and IFITM3 expression in target cells, and the extracellular pH. Given significant variation of levels of HA stability among animal, human, and zoonotic IAVs, our findings prompt further studies on the fusion-dependent tropism of IAVs to different cell types in humans and its role in viral host range and pathogenicity.
Collapse
|
97
|
Suttie A, Deng YM, Greenhill AR, Dussart P, Horwood PF, Karlsson EA. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019; 55:739-768. [PMID: 31428925 PMCID: PMC6831541 DOI: 10.1007/s11262-019-01700-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9.
Collapse
Affiliation(s)
- Annika Suttie
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
- School of Health and Life Sciences, Federation University, Churchill, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yi-Mo Deng
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew R Greenhill
- School of Health and Life Sciences, Federation University, Churchill, Australia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia.
| |
Collapse
|
98
|
Tsai CH, Wei SC, Jan JT, Liao LL, Chang CJ, Chao YC. Generation of Stable Influenza Virus Hemagglutinin through Structure-Guided Recombination. ACS Synth Biol 2019; 8:2472-2482. [PMID: 31565926 DOI: 10.1021/acssynbio.9b00094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hemagglutinin (HA) is the major surface antigen of influenza virus and the most promising influenza vaccine immunogen. In 2013, the devastating H7N9 influenza virus was identified in China, which induced high mortality. The HA of this virus (H7) is relatively unstable, making it challenging to produce an effective vaccine. To improve the stability of HA protein from H7N9 influenza virus for better vaccine antigens without impairing immunogenicity, we recombined the HA from H7N9 (H7) with a more stable HA from H3N2 (H3) by structure-guided recombination, resulting in six chimeric HAs, FrA-FrF. Two of these chimeric HAs, FrB and FrC, exhibited proper hemagglutination activity and presented improved thermal stability compared to the original H7. Mice immunized with FrB and FrC elicited H7-specific antibodies comparable to those induced by parental H7, and the antisera collected from these immunized mice successfully inhibited H7N9 infection in a microneutralization assay. These results suggest that our structural-recombination approach can create stabilizing chimeric antigens while maintaining proper immunogenicity, which may not only benefit the construction of more stable HA vaccines to fight against H7N9 infection, but also facilitate effective vaccine improvements for other influenza viruses or infectious pathogens. In addition, this study also demonstrates the potential for better engineering of multimeric protein complexes like HA to achieve improved function, which are often immunologically or pharmaceutically important but difficult to modify.
Collapse
Affiliation(s)
- Chih-Hsuan Tsai
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan, ROC
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC
| | - Sung-Chan Wei
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Lin-Li Liao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Chia-Jung Chang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Yu-Chan Chao
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan, ROC
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 106, Taiwan, ROC
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan, ROC
| |
Collapse
|
99
|
Novel Mutations Evading Avian Immunity around the Receptor Binding Site of the Clade 2.3.2.1c Hemagglutinin Gene Reduce Viral Thermostability and Mammalian Pathogenicity. Viruses 2019; 11:v11100923. [PMID: 31600990 PMCID: PMC6832455 DOI: 10.3390/v11100923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022] Open
Abstract
Since 2007, highly pathogenic clade 2.3.2 H5N1 avian influenza A (A(H5N1)) viruses have evolved to clade 2.3.2.1a, b, and c; currently only 2.3.2.1c A(H5N1) viruses circulate in wild birds and poultry. During antigenic evolution, clade 2.3.2.1a and c A(H5N1) viruses acquired both S144N and V223I mutations around the receptor binding site of hemagglutinin (HA), with S144N generating an N-glycosylation sequon. We introduced single or combined reverse mutations, N144S and/or I223V, into the HA gene of the clade 2.3.2.1c A(H5N1) virus and generated PR8-derived, 2 + 6 recombinant A(H5N1) viruses. When we compared replication efficiency in embryonated chicken eggs, mammalian cells, and mice, the recombinant virus containing both N144S and I223V mutations showed increased replication efficiency in avian and mammalian hosts and pathogenicity in mice. The N144S mutation significantly decreased avian receptor affinity and egg white inhibition, but not all mutations increased mammalian receptor affinity. Interestingly, the combined reverse mutations dramatically increased the thermostability of HA. Therefore, the adaptive mutations possibly acquired to evade avian immunity may decrease viral thermostability as well as mammalian pathogenicity.
Collapse
|
100
|
An SH, Lee CY, Hong SM, Choi JG, Lee YJ, Jeong JH, Kim JB, Song CS, Kim JH, Kwon HJ. Bioengineering a highly productive vaccine strain in embryonated chicken eggs and mammals from a non-pathogenic clade 2·3·4·4 H5N8 strain. Vaccine 2019; 37:6154-6161. [PMID: 31495597 DOI: 10.1016/j.vaccine.2019.08.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/17/2019] [Accepted: 08/28/2019] [Indexed: 11/18/2022]
Abstract
The clade 2·3·4·4 H5Nx is a highly pathogenic avian influenza (HPAI) virus, which first appeared in China and has spread worldwide since then, including Korea. It is divided into subclades a - d, but the PR8-derived recombinant clade 2·3·4·4 a viruses replicate inefficiently in embryonated chicken eggs (ECEs). High virus titer in ECEs and no mammalian pathogenicity are the most important prerequisites of efficacious and safer vaccine strains against HPAI. In this study, we have synthesized hemagglutinin (HA) and neuraminidase (NA) genes based on the consensus amino acid sequences of the clade 2·3·4·4a and b H5N8 HPAIVs, using the GISAID database. We generated PR8-derived H5N8 recombinant viruses with single point mutations in HA and NA, which are related to efficient replication in ECEs. The H103Y mutation in HA increased mammalian pathogenicity as well as virus titer in ECEs, by 10-fold. We also successfully eradicated mammalian pathogenicity in H103Y-bearing H5N8 recombinant virus by exchanging PB2 genes of PR8 and 01310 (Korean H9N2 vaccine strain). The final optimized H5N8 vaccine strain completely protected against a heterologous clade 2·3·4·4c H5N6 HPAIV in chickens, and induced hemagglutination inhibition (HI) antibody in ducks. However, the antibody titer of ducks showed age-dependent results. Thus, H103Y and 01310PB2 gene have been successfully applied to generate a highly productive, safe, and efficacious clade 2·3·4·4 H5N8 vaccine strain in ECEs.
Collapse
Affiliation(s)
- Se-Hee An
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea
| | - Chung-Young Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Seung-Min Hong
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea
| | - Jun-Gu Choi
- Avian Disease Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gyeongsangbuk-do 39660, Republic of Korea
| | - Youn-Jeong Lee
- Avian Disease Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gyeongsangbuk-do 39660, Republic of Korea
| | - Jei-Hyun Jeong
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, 05029 Seoul, Republic of Korea
| | - Jun-Beom Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, 05029 Seoul, Republic of Korea
| | - Chang-Seon Song
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, 05029 Seoul, Republic of Korea
| | - Jae-Hong Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Medicine, Department of Farm Animal Medicine, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea; Farm Animal Clinical Training and Research Center (FACTRC), GBST, Seoul National University, Kangwon-do, Republic of Korea.
| |
Collapse
|