51
|
Vγ9Vδ2 T Cells: Can We Re-Purpose a Potent Anti-Infection Mechanism for Cancer Therapy? Cells 2020; 9:cells9040829. [PMID: 32235616 PMCID: PMC7226769 DOI: 10.3390/cells9040829] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer therapies based on in vivo stimulation, or on adoptive T cell transfer of Vγ9Vδ2 T cells, have been tested in the past decades but have failed to provide consistent clinical efficacy. New, promising concepts such as γδ Chimeric Antigen Receptor (CAR) -T cells and γδ T-cell engagers are currently under preclinical evaluation. Since the impact of factors, such as the relatively low abundance of γδ T cells within tumor tissue is still under investigation, it remains to be shown whether these effector T cells can provide significant efficacy against solid tumors. Here, we highlight key learnings from the natural role of Vγ9Vδ2 T cells in the elimination of host cells bearing intracellular bacterial agents and we translate these into the setting of tumor therapy. We discuss the availability and relevance of preclinical models as well as currently available tools and knowledge from a drug development perspective. Finally, we compare advantages and disadvantages of existing therapeutic concepts and propose a role for Vγ9Vδ2 T cells in immune-oncology next to Cluster of Differentiation (CD) 3 activating therapies.
Collapse
|
52
|
Fichtner AS, Bubke A, Rampoldi F, Wilharm A, Tan L, Steinbrück L, Schultze-Florey C, von Kaisenberg C, Prinz I, Herrmann T, Ravens S. TCR repertoire analysis reveals phosphoantigen-induced polyclonal proliferation of Vγ9Vδ2 T cells in neonates and adults. J Leukoc Biol 2020; 107:1023-1032. [PMID: 32064671 DOI: 10.1002/jlb.1ma0120-427rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 01/14/2023] Open
Abstract
The Vγ9Vδ2 T cell subset is the major γδ T cell subset in human peripheral blood and has the unique ability to contribute to immune surveillance by detecting pyrophosphorylated metabolites of isoprenoid synthesis, termed phosphoantigens (pAgs). Vγ9Vδ2 T cells are first detected at midgestation and show postnatal expansion. Interestingly, neonatal Vγ9Vδ2 T cells display a higher TCR repertoire diversity with more public clonotypes and lower pAg responsiveness than in adults. Notably, it is not known whether postnatal changes occur by TCR-dependent reactivity to pAg exposure. Here, we applied next-generation sequencing of γδ TCR repertoires to understand potential differences in the pAg-mediated response of neonatal and adult Vγ9Vδ2 T cells at the level of the expressed γδ TCR. We observed a polyclonal pAg-induced response of neonatal and adult Vγ9Vδ2 T cells, albeit neonatal γδ T cells showed less in vitro pAg responsiveness. Neonatal Vγ9Vδ2 T cells displayed a less pronounced bias for Jδ1 usage and a more frequent use of Jδ2 or Jδ3 that remained stable after pAg exposure. In addition, public and private Vδ2 TRD clones took part in the polyclonal pAg-induced response in neonates and adults. In conclusion, adult and neonatal Vγ9Vδ2 T cells both undergo polyclonal pAg-induced proliferation, whereas especially adult Vγ9Vδ2 T cells display a high stability at the level of the expressed TCR repertoire.
Collapse
Affiliation(s)
- Alina S Fichtner
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Likai Tan
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Lars Steinbrück
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | | | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Thomas Herrmann
- Department of Virology and Immunology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
53
|
Lee HW, Chung YS, Kim TJ. Heterogeneity of Human γδ T Cells and Their Role in Cancer Immunity. Immune Netw 2020; 20:e5. [PMID: 32158593 PMCID: PMC7049581 DOI: 10.4110/in.2020.20.e5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022] Open
Abstract
The γδ T cells are unconventional lymphocytes that function in both innate and adaptive immune responses against various intracellular and infectious stresses. The γδ T cells can be exploited as cancer-killing effector cells since γδ TCRs recognize MHC-like molecules and growth factor receptors that are upregulated in cancer cells, and γδ T cells can differentiate into cytotoxic effector cells. However, γδ T cells may also promote tumor progression by secreting IL-17 or other cytokines. Therefore, it is essential to understand how the differentiation and homeostasis of γδ T cells are regulated and whether distinct γδ T cell subsets have different functions. Human γδ T cells are classified into Vδ2 and non-Vδ2 γδ T cells. The majority of Vδ2 γδ T cells are Vγ9δ2 T cells that recognize pyrophosphorylated isoprenoids generated by the dysregulated mevalonate pathway. In contrast, Vδ1 T cells expand from initially diverse TCR repertoire in patients with infectious diseases and cancers. The ligands of Vδ1 T cells are diverse and include the growth factor receptors such as endothelial protein C receptor. Both Vδ1 and Vδ2 γδ T cells are implicated to have immunotherapeutic potentials for cancers, but the detailed elucidation of the distinct characteristics of 2 populations will be required to enhance the immunotherapeutic potential of γδ T cells. Here, we summarize recent progress regarding cancer immunology of human γδ T cells, including their development, heterogeneity, and plasticity, the putative mechanisms underlying ligand recognition and activation, and their dual effects on tumor progression in the tumor microenvironment.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Hospital Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yun Shin Chung
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| |
Collapse
|
54
|
Johanna I, Hernández-López P, Heijhuurs S, Bongiovanni L, de Bruin A, Beringer D, van Dooremalen S, Shultz LD, Ishikawa F, Sebestyen Z, Straetemans T, Kuball J. TEG011 persistence averts extramedullary tumor growth without exerting off-target toxicity against healthy tissues in a humanized HLA-A*24:02 transgenic mice. J Leukoc Biol 2020; 107:1069-1079. [PMID: 32022317 DOI: 10.1002/jlb.5ma0120-228r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/08/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
γδT cells play an important role in cancer immunosurveillance and are able to distinguish malignant cells from their healthy counterparts via their γδTCR. This characteristic makes γδT cells an attractive candidate for therapeutic application in cancer immunotherapy. Previously, we have identified a novel CD8α-dependent tumor-specific allo-HLA-A*24:02-restricted Vγ5Vδ1TCR with potential therapeutic value when used to engineer αβT cells from HLA-A*24:02 harboring individuals. αβT cells engineered to express this defined Vγ5Vδ1TCR (TEG011) have been suggested to recognize spatial changes in HLA-A*24:02 present selectively on tumor cells but not their healthy counterparts. However, in vivo efficacy and toxicity studies of TEG011 are still limited. Therefore, we extend the efficacy and toxicity studies as well as the dynamics of TEG011 in vivo in a humanized HLA-A*24:02 transgenic NSG (NSG-A24:02) mouse model to allow the preparation of a first-in-men clinical safety package for adoptive transfer of TEG011. Mice treated with TEG011 did not exhibit any graft-versus-host disease-like symptoms and extensive analysis of pathologic changes in NSG-A24:02 mice did not show any off-target toxicity of TEG011. However, loss of persistence of TEG011 in tumor-bearing mice was associated with the outgrowth of extramedullary tumor masses as also observed for mock-treated mice. In conclusion, TEG011 is well tolerated without harming HLA-A*24:02+ expressing healthy tissues, and TEG011 persistence seems to be crucial for long-term tumor control in vivo.
Collapse
Affiliation(s)
- Inez Johanna
- Department of Hematology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patricia Hernández-López
- Department of Hematology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Heijhuurs
- Department of Hematology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Laura Bongiovanni
- Department of Pathobiology, Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alain de Bruin
- Department of Pathobiology, Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Dennis Beringer
- Department of Hematology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sanne van Dooremalen
- Department of Hematology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonard D Shultz
- Department of Immunology, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Fumihiko Ishikawa
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Zsolt Sebestyen
- Department of Hematology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Trudy Straetemans
- Department of Hematology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jürgen Kuball
- Department of Hematology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
55
|
Janssen A, Villacorta Hidalgo J, Beringer DX, van Dooremalen S, Fernando F, van Diest E, Terrizi AR, Bronsert P, Kock S, Schmitt-Gräff A, Werner M, Heise K, Follo M, Straetemans T, Sebestyen Z, Chudakov DM, Kasatskaya SA, Frenkel FE, Ravens S, Spierings E, Prinz I, Küppers R, Malkovsky M, Fisch P, Kuball J. γδ T-cell Receptors Derived from Breast Cancer-Infiltrating T Lymphocytes Mediate Antitumor Reactivity. Cancer Immunol Res 2020; 8:530-543. [PMID: 32019779 DOI: 10.1158/2326-6066.cir-19-0513] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/25/2019] [Accepted: 01/31/2020] [Indexed: 11/16/2022]
Abstract
γδ T cells in human solid tumors remain poorly defined. Here, we describe molecular and functional analyses of T-cell receptors (TCR) from tumor-infiltrating γδ T lymphocytes (γδ TIL) that were in direct contact with tumor cells in breast cancer lesions from archival material. We observed that the majority of γδ TILs harbored a proinflammatory phenotype and only a minority associated with the expression of IL17. We characterized TCRγ or TCRδ chains of γδ TILs and observed a higher proportion of Vδ2+ T cells compared with other tumor types. By reconstructing matched Vδ2- TCRγ and TCRδ pairs derived from single-cell sequencing, our data suggest that γδ TILs could be active against breast cancer and other tumor types. The reactivity pattern against tumor cells depended on both the TCRγ and TCRδ chains and was independent of additional costimulation through other innate immune receptors. We conclude that γδ TILs can mediate tumor reactivity through their individual γδ TCR pairs and that engineered T cells expressing TCRγ and δ chains derived from γδ TILs display potent antitumor reactivity against different cancer cell types and, thus, may be a valuable tool for engineering immune cells for adoptive cell therapies.
Collapse
Affiliation(s)
- Anke Janssen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jose Villacorta Hidalgo
- Institute for Surgical Pathology, University Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis X Beringer
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sanne van Dooremalen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Febilla Fernando
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Eline van Diest
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Antonela R Terrizi
- Institute for Surgical Pathology, University Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, University Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany
| | - Sylvia Kock
- Institute for Surgical Pathology, University Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annette Schmitt-Gräff
- Institute for Surgical Pathology, University Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Werner
- Institute for Surgical Pathology, University Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany
| | - Kerstin Heise
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Marie Follo
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Trudy Straetemans
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Zsolt Sebestyen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Dmitry M Chudakov
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Sofya A Kasatskaya
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Eric Spierings
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | | | - Paul Fisch
- Institute for Surgical Pathology, University Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Kuball
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands. .,Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
56
|
Rigau M, Ostrouska S, Fulford TS, Johnson DN, Woods K, Ruan Z, McWilliam HEG, Hudson C, Tutuka C, Wheatley AK, Kent SJ, Villadangos JA, Pal B, Kurts C, Simmonds J, Pelzing M, Nash AD, Hammet A, Verhagen AM, Vairo G, Maraskovsky E, Panousis C, Gherardin NA, Cebon J, Godfrey DI, Behren A, Uldrich AP. Butyrophilin 2A1 is essential for phosphoantigen reactivity by γδ T cells. Science 2020; 367:science.aay5516. [PMID: 31919129 DOI: 10.1126/science.aay5516] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/14/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022]
Abstract
Gamma delta (γδ) T cells are essential to protective immunity. In humans, most γδ T cells express Vγ9Vδ2+ T cell receptors (TCRs) that respond to phosphoantigens (pAgs) produced by cellular pathogens and overexpressed by cancers. However, the molecular targets recognized by these γδTCRs are unknown. Here, we identify butyrophilin 2A1 (BTN2A1) as a key ligand that binds to the Vγ9+ TCR γ chain. BTN2A1 associates with another butyrophilin, BTN3A1, and these act together to initiate responses to pAg. Furthermore, binding of a second ligand, possibly BTN3A1, to a separate TCR domain incorporating Vδ2 is also required. This distinctive mode of Ag-dependent T cell activation advances our understanding of diseases involving pAg recognition and creates opportunities for the development of γδ T cell-based immunotherapies.
Collapse
Affiliation(s)
- Marc Rigau
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia.,University of Bonn, Bonn, Germany.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging at the University of Melbourne, Victoria 3010, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Thomas S Fulford
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Darryl N Johnson
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging at the University of Melbourne, Victoria 3010, Australia
| | - Katherine Woods
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia.,Ludwig Institute for Cancer Research, Melbourne -Austin Branch, Victoria 3084, Australia
| | - Zheng Ruan
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging at the University of Melbourne, Victoria 3010, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Biochemistry and Molecular Biology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher Hudson
- Ludwig Institute for Cancer Research, Melbourne -Austin Branch, Victoria 3084, Australia
| | - Candani Tutuka
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia.,Australian Research Council Centre of Excellence for Convergent Bio-Nano Science and Technology at the University of Melbourne, Victoria 3010, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia.,Australian Research Council Centre of Excellence for Convergent Bio-Nano Science and Technology at the University of Melbourne, Victoria 3010, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Biochemistry and Molecular Biology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bhupinder Pal
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | | | - Jason Simmonds
- CSL Limited at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Matthias Pelzing
- CSL Limited at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew D Nash
- CSL Limited at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew Hammet
- CSL Limited at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anne M Verhagen
- CSL Limited at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gino Vairo
- CSL Limited at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eugene Maraskovsky
- CSL Limited at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Con Panousis
- CSL Limited at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia.,Ludwig Institute for Cancer Research, Melbourne -Austin Branch, Victoria 3084, Australia.,Department of Medicine, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Austin Health, Heidelberg, Victoria 3084, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia. .,Australian Research Council Centre of Excellence for Advanced Molecular Imaging at the University of Melbourne, Victoria 3010, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia. .,School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia.,Ludwig Institute for Cancer Research, Melbourne -Austin Branch, Victoria 3084, Australia.,Department of Medicine, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia. .,Australian Research Council Centre of Excellence for Advanced Molecular Imaging at the University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
57
|
Imbert C, Olive D. γδ T Cells in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1273:91-104. [PMID: 33119877 DOI: 10.1007/978-3-030-49270-0_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gamma delta (γδ) T cells which combine both innate and adaptive potential have extraordinary properties. Indeed, their strong cytotoxic and pro-inflammatory activity allows them to kill a broad range of tumor cells. Several studies have demonstrated that γδ T cells are an important component of tumor-infiltrated lymphocytes in patients affected by different types of cancer. Tumor-infiltrating γδ T cells are also considered as a good prognostic marker in many studies, though the presence of these cells is associated with poor prognosis in breast and colon cancers. The tumor microenvironment seems to drive γδ T-cell differentiation toward a tumor-promoting or a tumor-controlling phenotype, which suggests that some tumor microenvironments can limit the effectiveness of γδ T cells.The major γδ T-cell subsets in human are the Vγ9Vδ2 T cells that are specifically activated by phosphoantigens. This unique antigenic activation process operates in a framework that requires the expression of butyrophilin 3A (BTN3A) molecules. Interestingly, there is some evidence that BTN3A expression may be regulated by the tumor microenvironment. Given their strong antitumoral potential, Vγ9Vδ2 T cells are used in therapeutic approaches either by ex vivo culture and amplification, and then adoptive transfer to patients or by direct stimulation to propagate in vivo. These strategies have demonstrated promising initial results, but greater potency is needed. Combining Vγ9Vδ2 T-cell immunotherapy with systemic approaches to restore antitumor immune response in tumor microenvironment may improve efficacy.In this chapter, we first review the basic features of γδ T cells and their roles in the tumor microenvironment and then analyze the advances about the understanding of these cells' activation in tumors and why this represent unique challenges for therapeutics, and finally we discuss γδ T-cell-based therapeutic strategies and future perspectives of their development.
Collapse
Affiliation(s)
- Caroline Imbert
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity and Cancer, Institut Paoli Calmettes, Aix Marseille Université, Marseille, France.,Immunomonitoring Platform, Institut Paoli Calmettes, Marseille, France
| | - Daniel Olive
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity and Cancer, Institut Paoli Calmettes, Aix Marseille Université, Marseille, France. .,Immunomonitoring Platform, Institut Paoli Calmettes, Marseille, France.
| |
Collapse
|
58
|
Straetemans T, Janssen A, Jansen K, Doorn R, Aarts T, van Muyden ADD, Simonis M, Bergboer J, de Witte M, Sebestyen Z, Kuball J. TEG001 Insert Integrity from Vector Producer Cells until Medicinal Product. Mol Ther 2019; 28:561-571. [PMID: 31882320 DOI: 10.1016/j.ymthe.2019.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Despite extensive usage of gene therapy medicinal products (GTMPs) in clinical studies and recent approval of chimeric antigen receptor (CAR) T cell therapy, little information has been made available on the precise molecular characterization and possible variations in terms of insert integrity and vector copy numbers of different GTMPs during the complete production chain. Within this context, we characterize αβT cells engineered to express a defined γδT cell engineered to express a defined γδT receptor (TEG) currently used in a first-in-human clinical study (NTR6541). Utilizing targeted locus amplification in combination with next generation sequencing for the vector producer clone and TEG001 products, we report on five single-nucleotide variants and nine intact vector copies integrated in the producer clone. The vector copy number in TEG001 cells was on average a factor 0.72 (SD 0.11) below that of the producer cell clone. All nucleotide variants were transferred to TEG001 without having an effect on cellular proliferation during extensive in vitro culture. Based on an environmental risk assessment of the five nucleotide variants present in the non-coding viral region of the TEG001 insert, there was no altered environmental impact of TEG001 cells. We conclude that TEG001 cells do not have an increased risk for malignant transformation in vivo.
Collapse
Affiliation(s)
- Trudy Straetemans
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Anke Janssen
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Koen Jansen
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ruud Doorn
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Tineke Aarts
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anna D D van Muyden
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | | | - Moniek de Witte
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Zsolt Sebestyen
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jurgen Kuball
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
59
|
Raverdeau M, Cunningham SP, Harmon C, Lynch L. γδ T cells in cancer: a small population of lymphocytes with big implications. Clin Transl Immunology 2019; 8:e01080. [PMID: 31624593 PMCID: PMC6787154 DOI: 10.1002/cti2.1080] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 12/24/2022] Open
Abstract
γδ T cells are a small population of mostly tissue-resident lymphocytes, with both innate and adaptive properties. These unique features make them particularly attractive candidates for the development of new cellular therapy targeted against tumor development. Nevertheless, γδ T cells may play dual roles in cancer, promoting cancer development on the one hand, while participating in antitumor immunity on the other hand. In mice, γδ T-cell subsets preferentially produce IL-17 or IFN-γ. While antitumor functions of murine γδ T cells can be attributed to IFN-γ+ γδ T cells, recent studies have implicated IL-17+ γδ T cells in tumor growth and metastasis. However, in humans, IL-17-producing γδ T cells are rare and most studies have attributed a protective role to γδ T cells against cancer. In this review, we will present the current knowledge and most recent findings on γδ T-cell functions in mouse models of tumor development and human cancers. We will also discuss their potential as cellular immunotherapy against cancer.
Collapse
Affiliation(s)
- Mathilde Raverdeau
- School of Biochemistry and ImmunologyTrinity College DublinDublinIreland
| | | | - Cathal Harmon
- Harvard Medical SchoolBostonMAUSA
- Brigham and Women's HospitalBostonMAUSA
| | - Lydia Lynch
- School of Biochemistry and ImmunologyTrinity College DublinDublinIreland
- Harvard Medical SchoolBostonMAUSA
- Brigham and Women's HospitalBostonMAUSA
| |
Collapse
|
60
|
Bery N, Keller L, Soulié M, Gence R, Iscache AL, Cherier J, Cabantous S, Sordet O, Lajoie-Mazenc I, Pedelacq JD, Favre G, Olichon A. A Targeted Protein Degradation Cell-Based Screening for Nanobodies Selective toward the Cellular RHOB GTP-Bound Conformation. Cell Chem Biol 2019; 26:1544-1558.e6. [PMID: 31522999 DOI: 10.1016/j.chembiol.2019.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 11/22/2018] [Accepted: 08/23/2019] [Indexed: 01/10/2023]
Abstract
The selective downregulation of activated intracellular proteins is a key challenge in cell biology. RHO small GTPases switch between a guanosine diphosphate (GDP)-bound and a guanosine triphosphate (GTP)-bound state that drives downstream signaling. At present, no tool is available to study endogenous RHO-GTPinduced conformational changes in live cells. Here, we established a cell-based screen to selectively degrade RHOB-GTP using F-box-intracellular single-domain antibody fusion. We identified one intracellular antibody (intrabody) that shows selective targeting of endogenous RHOB-GTP mediated by interactions between the CDR3 loop of the domain antibody and the GTP-binding pocket of RHOB. Our results suggest that, while RHOB is highly regulated at the expression level, only the GTP-bound pool, but not its global expression, mediates RHOB functions in genomic instability and in cell invasion. The F-box/intrabody-targeted protein degradation represents a unique approach to knock down the active form of small GTPases or other proteins with multiple cellular activities.
Collapse
Affiliation(s)
- Nicolas Bery
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laura Keller
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France
| | - Marjorie Soulié
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rémi Gence
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne-Laure Iscache
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France
| | - Julia Cherier
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Sordet
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Lajoie-Mazenc
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Gilles Favre
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France.
| | - Aurélien Olichon
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
61
|
Sebestyen Z, Prinz I, Déchanet-Merville J, Silva-Santos B, Kuball J. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Nat Rev Drug Discov 2019; 19:169-184. [PMID: 31492944 DOI: 10.1038/s41573-019-0038-z] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 01/14/2023]
Abstract
Clinical responses to checkpoint inhibitors used for cancer immunotherapy seemingly require the presence of αβT cells that recognize tumour neoantigens, and are therefore primarily restricted to tumours with high mutational load. Approaches that could address this limitation by engineering αβT cells, such as chimeric antigen receptor T (CAR T) cells, are being investigated intensively, but these approaches have other issues, such as a scarcity of appropriate targets for CAR T cells in solid tumours. Consequently, there is renewed interest among translational researchers and commercial partners in the therapeutic use of γδT cells and their receptors. Overall, γδT cells display potent cytotoxicity, which usually does not depend on tumour-associated (neo)antigens, towards a large array of haematological and solid tumours, while preserving normal tissues. However, the precise mechanisms of tumour-specific γδT cells, as well as the mechanisms for self-recognition, remain poorly understood. In this Review, we discuss the challenges and opportunities for the clinical implementation of cancer immunotherapies based on γδT cells and their receptors.
Collapse
Affiliation(s)
- Zsolt Sebestyen
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Centre for Individualized Infection Medicine (CiiM), Hannover, Germany
| | - Julie Déchanet-Merville
- ImmunoConcept, CNRS UMR 5164, Equipe Labelisee Ligue Contre le Cancer, University of Bordeaux, Bordeaux, France
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Jurgen Kuball
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands. .,Department of Haematology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
62
|
de Groot N, Groen R, Orie V, Bruijnesteijn J, de Groot NG, Doxiadis GGM, Bontrop RE. Analysis of macaque BTN3A genes and transcripts in the extended MHC: conserved orthologs of human γδ T cell modulators. Immunogenetics 2019; 71:545-559. [PMID: 31384962 PMCID: PMC6790196 DOI: 10.1007/s00251-019-01126-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/09/2019] [Indexed: 11/30/2022]
Abstract
Butyrophilins (BTN), specifically BTN3A, play a central role in the modulation of γδ T cells, which are mainly present in gut and mucosal tissues. BTN3A1 is known, for example, to activate Vγ9Vδ2 T cells by means of a phosphoantigen interaction. In the extended HLA region, three genes are located, designated BTN3A1, BTN3A2 and BTN3A3, which were also defined in rhesus macaques. In contrast to humans, rhesus monkeys have an additional gene, BTN3A3Like, which has the features of a pseudogene. cDNA analysis of 32 Indian rhesus and 16 cynomolgus macaques originating from multiple-generation families revealed that all three genes are oligomorphic, and the deduced amino acids display limited variation. The macaque BTN3A alleles segregated together with MHC alleles, proving their location in the extended (Major Histocompatibility Complex) MHC. BTN3A nearly full-length transcripts of macaques and humans cluster tightly together in the phylogenetic tree, suggesting that the genes represent true orthologs of each other. Despite the limited level of polymorphism, 15 Mamu- and 14 Mafa-BTN3A haplotypes were defined, and, as in humans, all three BTN3A genes are transcribed in PBMCs and colon tissues. In addition to regular full-length transcripts, a high number of various alternative splicing (AS) products were observed for all BTN3A alleles, which may result in different isoforms. The comparable function of certain subsets of γδ T cells in human and non-human primates in concert with high levels of sequence conservation observed for the BTN3A transcripts presents the opportunity to study these not yet well understood molecules in macaques as a model species.
Collapse
Affiliation(s)
- Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Rens Groen
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Vaneesha Orie
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Jesse Bruijnesteijn
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Gaby G M Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.,Department of Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
63
|
Wang H, Nada MH, Tanaka Y, Sakuraba S, Morita CT. Critical Roles for Coiled-Coil Dimers of Butyrophilin 3A1 in the Sensing of Prenyl Pyrophosphates by Human Vγ2Vδ2 T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:607-626. [PMID: 31227581 DOI: 10.4049/jimmunol.1801252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 05/23/2019] [Indexed: 12/25/2022]
Abstract
Vγ2Vδ2 T cells play important roles in human immunity to pathogens and tumors. Their TCRs respond to the sensing of isoprenoid metabolites, such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and isopentenyl pyrophosphate, by butyrophilin (BTN) 3A1. BTN3A1 is an Ig superfamily protein with extracellular IgV/IgC domains and intracellular B30.2 domains that bind prenyl pyrophosphates. We have proposed that intracellular α helices form a coiled-coil dimer that functions as a spacer for the B30.2 domains. To test this, five pairs of anchor residues were mutated to glycine to destabilize the coiled-coil dimer. Despite maintaining surface expression, BTN3A1 mutagenesis either abrogated or decreased stimulation by (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate. BTN3A2 and BTN3A3 proteins and orthologs in alpacas and dolphins are also predicted to have similar coiled-coil dimers. A second short coiled-coil region dimerizes the B30.2 domains. Molecular dynamics simulations predict that mutation of a conserved tryptophan residue in this region will destabilize the dimer, explaining the loss of stimulation by BTN3A1 proteins with this mutation. The juxtamembrane regions of other BTN/BTN-like proteins with B30.2 domains are similarly predicted to assume α helices, with many predicted to form coiled-coil dimers. An exon at the end of this region and the exon encoding the dimerization region for B30.2 domains are highly conserved. We propose that coiled-coil dimers function as rod-like helical molecular spacers to position B30.2 domains, as interaction sites for other proteins, and as dimerization regions to allow sensing by B30.2 domains. In these ways, the coiled-coil domains of BTN3A1 play critical roles for its function.
Collapse
Affiliation(s)
- Hong Wang
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246
| | - Mohanad H Nada
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246.,College of Medicine, Tikrit University, Tiktit, 34001, Iraq
| | - Yoshimasa Tanaka
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.,Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Shun Sakuraba
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan; and
| | - Craig T Morita
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; .,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246.,Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
64
|
Yang Y, Li L, Yuan L, Zhou X, Duan J, Xiao H, Cai N, Han S, Ma X, Liu W, Chen CC, Wang L, Li X, Chen J, Kang N, Chen J, Shen Z, Malwal SR, Liu W, Shi Y, Oldfield E, Guo RT, Zhang Y. A Structural Change in Butyrophilin upon Phosphoantigen Binding Underlies Phosphoantigen-Mediated Vγ9Vδ2 T Cell Activation. Immunity 2019; 50:1043-1053.e5. [DOI: 10.1016/j.immuni.2019.02.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 10/24/2018] [Accepted: 02/20/2019] [Indexed: 12/26/2022]
|
65
|
Johanna I, Straetemans T, Heijhuurs S, Aarts-Riemens T, Norell H, Bongiovanni L, de Bruin A, Sebestyen Z, Kuball J. Evaluating in vivo efficacy - toxicity profile of TEG001 in humanized mice xenografts against primary human AML disease and healthy hematopoietic cells. J Immunother Cancer 2019; 7:69. [PMID: 30871629 PMCID: PMC6419469 DOI: 10.1186/s40425-019-0558-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/04/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND γ9δ2T cells, which express Vγ9 and Vδ2 chains of the T cell receptor (TCR), mediate cancer immune surveillance by sensing early metabolic changes in malignant leukemic blast and not their healthy hematopoietic stem counterparts via the γ9δ2TCR targeting joined conformational and spatial changes of CD277 at the cell membrane (CD277J). This concept led to the development of next generation CAR-T cells, so-called TEGs: αβT cells Engineered to express a defined γδTCR. The high affinity γ9δ2TCR clone 5 has recently been selected within the TEG format as a clinical candidate (TEG001). However, exploring safety and efficacy against a target, which reflects an early metabolic change in tumor cells, remains challenging given the lack of appropriate tools. Therefore, we tested whether TEG001 is able to eliminate established leukemia in a primary disease model, without harming other parts of the healthy hematopoiesis in vivo. METHODS Separate sets of NSG mice were respectively injected with primary human acute myeloid leukemia (AML) blasts and cord blood-derived human progenitor cells from healthy donors. These mice were then treated with TEG001 and mock cells. Tumor burden and human cells engraftment were measured in peripheral blood and followed up over time by quantifying for absolute cell number by flow cytometry. Statistical analysis was performed using non-parametric 2-tailed Mann-Whitney t-test. RESULTS We successfully engrafted primary AML blasts and healthy hematopoietic cells after 6-8 weeks. Here we report that metabolic cancer targeting through TEG001 eradicated established primary leukemic blasts in vivo, while healthy hematopoietic compartments derived from human cord-blood remained unharmed in spite of TEGs persistence up to 50 days after infusion. No additional signs of off-target toxicity were observed in any other tissues. CONCLUSION Within the limitations of humanized PD-X models, targeting CD277J by TEG001 is safe and efficient. Therefore, we have initiated clinical testing of TEG001 in a phase I first-in-human clinical trial (NTR6541; date of registration 25 July 2017).
Collapse
Affiliation(s)
- Inez Johanna
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Trudy Straetemans
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Heijhuurs
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tineke Aarts-Riemens
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Håkan Norell
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Laura Bongiovanni
- Department of Pathobiology, Faculty of Veterinary Medicine, Dutch Molecular Pathology Center, Utrecht University, Utrecht, The Netherlands
| | - Alain de Bruin
- Department of Pathobiology, Faculty of Veterinary Medicine, Dutch Molecular Pathology Center, Utrecht University, Utrecht, The Netherlands
| | - Zsolt Sebestyen
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jürgen Kuball
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
66
|
Gu S, Borowska MT, Boughter CT, Adams EJ. Butyrophilin3A proteins and Vγ9Vδ2 T cell activation. Semin Cell Dev Biol 2018; 84:65-74. [PMID: 29471037 PMCID: PMC6129423 DOI: 10.1016/j.semcdb.2018.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/22/2017] [Accepted: 02/08/2018] [Indexed: 02/07/2023]
Abstract
Despite playing critical roles in the immune response and having significant potential in immunotherapy, γδ T cells have garnered little of the limelight. One major reason for this paradox is that their antigen recognition mechanisms are largely unknown, limiting our understanding of their biology and our potential to modulate their activity. One of the best-studied γδ subsets is the human Vγ9Vδ2T cell population, which predominates in peripheral blood and can combat both microbial infections and cancers. Although it has been known for decades that Vγ9Vδ2T cells respond to the presence of small pyrophosphate-based metabolites, collectively named phosphoantigens (pAgs), derived from microbial sources or malignant cells, the molecular basis for this response has been unclear. A major breakthrough in this area came with the identification of the Butyrophilin 3A (BTN3A) proteins, members of the Butyrophilin/Butyrophilin-like protein family, as mediators between pAgs and Vγ9Vδ2T cells. In this article, we review the most recent studies regarding pAg activation of human Vγ9Vδ2T cells, mainly focusing on the role of BTN3A as the pAg sensing molecule, as well as its potential impact on downstream events of the activation process.
Collapse
Affiliation(s)
- Siyi Gu
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637, USA
| | - Marta T Borowska
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637, USA
| | | | - Erin J Adams
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
67
|
Blazquez JL, Benyamine A, Pasero C, Olive D. New Insights Into the Regulation of γδ T Cells by BTN3A and Other BTN/BTNL in Tumor Immunity. Front Immunol 2018; 9:1601. [PMID: 30050536 PMCID: PMC6050389 DOI: 10.3389/fimmu.2018.01601] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Recent findings in the immunology field have pointed out the emergent role of butyrophilins/butyrophilin-like molecules (BTN/BTNL in human, Btn/Btnl in mouse) in the modulation of γδ T cells. As long as the field develops exponentially, new relationships between certain γδ T cell subsets, on one hand, and their BTN/BTNL counterparts mainly present on epithelial and tumor cells, on the other, are described in the scientific literature. Btnl1/Btnl6 in mice and BTNL3/BTNL8 in humans regulate the homing and maturation of Vγ7+ and Vγ4+ T cells to the gut epithelium. Similarly, Skint-1 has shown to shape the dendritic epidermal T cells repertoire and their activation levels in mice. We and others have identified BTN3A proteins are the key mediators of phosphoantigen sensing by human Vγ9Vδ2 T cells. Here, we first synthesize the modulation of specific γδ T cell subsets by related BTN/BTNL molecules, in human and mice. Then, we focus on the role of BTN3A in the activation of Vγ9Vδ2 T cells, and we highlight the recent advances in the understanding of the expression, regulation, and function of BTN3A in tumor immunity. Hence, recent studies demonstrated that several signals induced by cancer cells or their microenvironment can regulate the expression of BTN3A. Moreover, antibodies targeting BTN3A have shown in vitro and in vivo efficacy in human tumors such as acute myeloid leukemia or pancreatic cancer. We thus finally discuss how these findings could help develop novel γδ T cell-based immunotherapeutical approaches.
Collapse
Affiliation(s)
- Juan-Luis Blazquez
- INSERM, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes; Aix-Marseille Université UM105, CNRS UMR 7258, Marseille, France
| | - Audrey Benyamine
- Aix-Marseille Université (AMU), Médecine Interne Hôpital Nord, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, France
| | | | - Daniel Olive
- INSERM, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes; Aix-Marseille Université UM105, CNRS UMR 7258, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
68
|
Riganti C, Castella B, Massaia M. ABCA1, apoA-I, and BTN3A1: A Legitimate Ménage à Trois in Dendritic Cells. Front Immunol 2018; 9:1246. [PMID: 29937767 PMCID: PMC6002486 DOI: 10.3389/fimmu.2018.01246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
Human Vγ9Vδ2 T cells have the capacity to detect supra-physiological concentrations of phosphoantigens (pAgs) generated by the mevalonate (Mev) pathway of mammalian cells under specific circumstances. Isopentenyl pyrophosphate (IPP) is the prototypic pAg recognized by Vγ9Vδ2 T cells. B-cell derived tumor cells (i.e., lymphoma and myeloma cells) and dendritic cells (DCs) are privileged targets of Vγ9Vδ2 T cells because they generate significant amounts of IPP which can be boosted with zoledronic acid (ZA). ZA is the most potent aminobisphosphonate (NBP) clinically available to inhibit osteoclast activation and a very potent inhibitor of farnesyl pyrophosphate synthase in the Mev pathway. ZA-treated DCs generate and release in the supernatants picomolar IPP concentrations which are sufficient to induce the activation of Vγ9Vδ2 T cells. We have recently shown that the ATP-binding cassette transporter A1 (ABCA1) plays a major role in the extracellular release of IPP from ZA-treated DCs. This novel ABCA1 function is fine-tuned by physical interactions with IPP, apolipoprotein A-I (apoA-I), and butyrophilin-3A1 (BTN3A1). The mechanisms by which soluble IPP induces Vγ9Vδ2 T-cell activation remain to be elucidated. It is possible that soluble IPP binds to BTN3A1, apoA-I, or other unknown molecules on the cell surface of bystander cells like monocytes, NK cells, Vγ9Vδ2 T cells, or any other cell locally present. Investigating this scenario may represent a unique opportunity to further characterize the role of BTN3A1 and other molecules in the recognition of soluble IPP by Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, Turin, Italy
| | - Barbara Castella
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), Università degli Studi di Torino, Turin, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), Università degli Studi di Torino, Turin, Italy.,SC Ematologia, AO S. Croce e Carle, Cuneo, Italy
| |
Collapse
|
69
|
de Witte MA, Sarhan D, Davis Z, Felices M, Vallera DA, Hinderlie P, Curtsinger J, Cooley S, Wagner J, Kuball J, Miller JS. Early Reconstitution of NK and γδ T Cells and Its Implication for the Design of Post-Transplant Immunotherapy. Biol Blood Marrow Transplant 2018; 24:1152-1162. [PMID: 29505821 PMCID: PMC5993609 DOI: 10.1016/j.bbmt.2018.02.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/26/2018] [Indexed: 12/18/2022]
Abstract
Relapse is the most frequent cause of treatment failure after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Natural killer (NK) cells and γδ T cells reconstitute early after allo-HSCT, contribute to tumor immunosurveillance via major histocompatibility complex-independent mechanisms and do not induce graft-versus-host disease. Here we performed a quantitative and qualitative analysis of the NK and γδ T cell repertoire in healthy individuals, recipients of HLA-matched sibling or unrelated donor allo-HSCT (MSD/MUD-HSCT) and umbilical cord blood-HSCT (UCB-HSCT). NK cells are present at high frequencies in all allo-HSCT recipients. Immune reconstitution (IR) of vδ2+ cells depended on stem cell source. In MSD/MUD-HSCT recipients, vδ2+ comprise up to 8% of the total lymphocyte pool, whereas vδ2+ T cells are barely detectable in UCB-HSCT recipients. Vδ1+ IR was driven by CMV reactivation and was comparable between MSD/MUD-HSCT and UCB-HSCT. Strategies to augment NK cell mediated tumor responses, similar to IL-15 and antibodies, also induced vδ2+ T cell responses against a variety of different tumor targets. Vδ1+ γδ T cells were induced less by these same stimuli. We also identified elevated expression of the checkpoint inhibitory molecule TIGIT (T cell Ig and ITIM domain), which is also observed on tumor-infiltrating lymphocytes and epidermal γδ T cells. Collectively, these data show multiple strategies that can result in a synergized NK and γδ T cell antitumor response. In the light of recent developments of low-toxicity allo-HSCT platforms, these interventions may contribute to the prevention of early relapse.
Collapse
Affiliation(s)
- Moniek A de Witte
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Department of Hematology, Cancer Center, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Dhifaf Sarhan
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Zachary Davis
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Martin Felices
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Daniel A Vallera
- Department of Therapeutic Radiology-Radiation Oncology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Peter Hinderlie
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Julie Curtsinger
- Translational Therapy Laboratory, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Sarah Cooley
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - John Wagner
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Jurgen Kuball
- Department of Hematology, Cancer Center, University Medical Centre Utrecht, Utrecht, the Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jeffrey S Miller
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
70
|
Straetemans T, Kierkels GJJ, Doorn R, Jansen K, Heijhuurs S, dos Santos JM, van Muyden ADD, Vie H, Clemenceau B, Raymakers R, de Witte M, Sebestyén Z, Kuball J. GMP-Grade Manufacturing of T Cells Engineered to Express a Defined γδTCR. Front Immunol 2018; 9:1062. [PMID: 29899740 PMCID: PMC5988845 DOI: 10.3389/fimmu.2018.01062] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/27/2018] [Indexed: 12/11/2022] Open
Abstract
γ9δ2T cells play a critical role in daily cancer immune surveillance by sensing cancer-mediated metabolic changes. However, a major limitation of the therapeutic application of γ9δ2T cells is their diversity and regulation through innate co-receptors. In order to overcome natural obstacles of γ9δ2T cells, we have developed the concept of T cells engineered to express a defined γδT cell receptor (TEGs). This next generation of chimeric antigen receptor engineered T (CAR-T) cells not only allows for targeting of hematological but also of solid tumors and, therefore, overcomes major limitations of many CAR-T and γδT cell strategies. Here, we report on the development of a robust manufacturing procedure of T cells engineered to express the high affinity Vγ9Vδ2T cell receptor (TCR) clone 5 (TEG001). We determined the best concentration of anti-CD3/CD28 activation and expansion beads, optimal virus titer, and cell density for retroviral transduction, and validated a Good Manufacturing Practice (GMP)-grade purification procedure by utilizing the CliniMACS system to deplete non- and poorly-engineered T cells. To the best of our knowledge, we have developed the very first GMP manufacturing procedure in which αβTCR depletion is used as a purification method, thereby delivering untouched clinical grade engineered immune cells. This enrichment method is applicable to any engineered T cell product with a reduced expression of endogenous αβTCRs. We report on release criteria and the stability of TEG001 drug substance and TEG001 drug product. The GMP-grade production procedure is now approved by Dutch authorities and allows TEG001 to be generated in cell numbers sufficient to treat patients within the approved clinical trial NTR6541. NTR6541 will investigate the safety and tolerability of TEG001 in patients with relapsed/refractory acute myeloid leukemia, high-risk myelodysplastic syndrome, and relapsed/refractory multiple myeloma.
Collapse
Affiliation(s)
- Trudy Straetemans
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Guido J. J. Kierkels
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ruud Doorn
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Koen Jansen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sabine Heijhuurs
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joao M. dos Santos
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | | - Henri Vie
- CRCINA, INSERM 1232, CNRS, Université d’Angers, Université de Nantes, Nantes, France
- CHU de Nantes, Hôtel Dieu, UTCG, Nantes, France
| | - Béatrice Clemenceau
- CRCINA, INSERM 1232, CNRS, Université d’Angers, Université de Nantes, Nantes, France
- CHU de Nantes, Hôtel Dieu, UTCG, Nantes, France
| | - Reinier Raymakers
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Moniek de Witte
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Zsolt Sebestyén
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jürgen Kuball
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
71
|
Van Acker HH, Campillo-Davo D, Roex G, Versteven M, Smits EL, Van Tendeloo VF. The role of the common gamma-chain family cytokines in γδ T cell-based anti-cancer immunotherapy. Cytokine Growth Factor Rev 2018; 41:54-64. [PMID: 29773448 DOI: 10.1016/j.cytogfr.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022]
Abstract
Cytokines of the common gamma-chain receptor family, comprising interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15 and IL-21, are vital with respect to organizing and sustaining healthy immune cell functions. Supporting the anti-cancer immune response, these cytokines inspire great interest for their use as vaccine adjuvants and cancer immunotherapies. It is against this background that gamma delta (γδ) T cells, as special-force soldiers and natural contributors of the tumor immunosurveillance, also received a lot of attention the last decade. As γδ T cell-based cancer trials are coming of age, this present review focusses on the effects of the different cytokines of the common gamma-chain receptor family on γδ T cells with respect to boosting γδ T cells as a therapeutic target in cancer immunotherapy. This review also gathers data that IL-15 in particular exhibits key features for augmenting the anti-tumor activity of effector killer γδ T cells whilst overcoming the myriad of immune escape mechanisms used by cancer cells.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.
| | - Diana Campillo-Davo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Gils Roex
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Maarten Versteven
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| |
Collapse
|
72
|
Simões AE, Di Lorenzo B, Silva-Santos B. Molecular Determinants of Target Cell Recognition by Human γδ T Cells. Front Immunol 2018; 9:929. [PMID: 29755480 PMCID: PMC5934422 DOI: 10.3389/fimmu.2018.00929] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022] Open
Abstract
The unique capabilities of gamma-delta (γδ) T cells to recognize cells under stressed conditions, particularly infected or transformed cells, and killing them or regulating the immune response against them, paved the way to the development of promising therapeutic strategies for cancer and infectious diseases. From a mechanistic standpoint, numerous studies have unveiled a remarkable flexibility of γδ T cells in employing their T cell receptor and/or NK cell receptors for target cell recognition, even if the relevant ligands often remain uncertain. Here, we review the accumulated knowledge on the diverse mechanisms of target cell recognition by γδ T cells, focusing on human γδ T cells, to provide an integrated perspective of their therapeutic potential in cancer and infectious diseases.
Collapse
Affiliation(s)
- André E Simões
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Biagio Di Lorenzo
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal.,Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Bruno Silva-Santos
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
73
|
Silva-Santos B, Strid J. Working in "NK Mode": Natural Killer Group 2 Member D and Natural Cytotoxicity Receptors in Stress-Surveillance by γδ T Cells. Front Immunol 2018; 9:851. [PMID: 29740448 PMCID: PMC5928212 DOI: 10.3389/fimmu.2018.00851] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 01/26/2023] Open
Abstract
Natural killer cell receptors (NKRs) are germline-encoded transmembrane proteins that regulate the activation and homeostasis of NK cells as well as other lymphocytes. For γδ T cells, NKRs play critical roles in discriminating stressed (transformed or infected) cells from their healthy counterparts, as proposed in the “lymphoid stress-surveillance” theory. Whereas the main physiologic role is seemingly fulfilled by natural killer group 2 member D, constitutively expressed by γδ T cells, enhancement of their therapeutic potential may rely on natural cytotoxicity receptors (NCRs), like NKp30 or NKp44, that can be induced selectively on human Vδ1+ T cells. Here, we review the contributions of NCRs, NKG2D, and their multiple ligands, to γδ T cell biology in mouse and human.
Collapse
Affiliation(s)
- Bruno Silva-Santos
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Jessica Strid
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
74
|
Boutin L, Scotet E. Towards Deciphering the Hidden Mechanisms That Contribute to the Antigenic Activation Process of Human Vγ9Vδ2 T Cells. Front Immunol 2018; 9:828. [PMID: 29731756 PMCID: PMC5919976 DOI: 10.3389/fimmu.2018.00828] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022] Open
Abstract
Vγ9Vδ2 T cells represent a major unconventional γδ T cell subset located in the peripheral blood of adults in humans and several non-human primates. Lymphocytes that constitute this transitional subset can sense subtle level changes of intracellular phosphorylated intermediates of the isoprenoid biosynthesis pathway (phosphoantigens, pAg), such as isopentenyl pyrophosphate, during cell stress events. This unique antigenic activation process operates in a rigorous framework that requires the expression of butyrophilin 3A1 (BTN3A1/CD277) molecules, which are type I glycoproteins that belong to the B7 family. Several studies have further shown that pAg specifically bind to the intracellular B30.2 domain of BTN3A1 linked to the antigenic activation of Vγ9Vδ2 T cells. Here, we highlight the recent advances in BTN3A1 dynamics induced upon the binding of pAg and the contribution of the different subunits to this activation process. Recent reports support that conformational modifications of BTN3A1 might represent a key step in the detection of infection or tumorigenesis by Vγ9Vδ2 T cells. A better understanding of this mechanism will help optimize novel immunotherapeutical approaches that target defined functions of this unique γδ T cell subset.
Collapse
Affiliation(s)
- Lola Boutin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Sanofi R&D, Biologics Research, Centre de Recherche Vitry Alfortville, Paris, France
| | - Emmanuel Scotet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
75
|
Hoeres T, Smetak M, Pretscher D, Wilhelm M. Improving the Efficiency of Vγ9Vδ2 T-Cell Immunotherapy in Cancer. Front Immunol 2018; 9:800. [PMID: 29725332 PMCID: PMC5916964 DOI: 10.3389/fimmu.2018.00800] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022] Open
Abstract
Increasing immunological knowledge and advances in techniques lay the ground for more efficient and broader application of immunotherapies. gamma delta (γδ) T-cells possess multiple favorable anti-tumor characteristics, making them promising candidates to be used in cellular and combination therapies of cancer. They recognize malignant cells, infiltrate tumors, and depict strong cytotoxic and pro-inflammatory activity. Here, we focus on human Vγ9Vδ2 T-cells, the most abundant γδ T-cell subpopulation in the blood, which are able to inhibit cancer progression in various models in vitro and in vivo. For therapeutic use they can be cultured and manipulated ex vivo and in the following adoptively transferred to patients, as well as directly stimulated to propagate in vivo. In clinical studies, Vγ9Vδ2 T-cells repeatedly demonstrated a low toxicity profile but hitherto only the modest therapeutic efficacy. This review provides a comprehensive summary of established and newer strategies for the enhancement of Vγ9Vδ2 T-cell anti-tumor functions. We discuss data of studies exploring methods for the sensitization of malignant cells, the improvement of recognition mechanisms and cytotoxic activity of Vγ9Vδ2 T-cells. Main aspects are the tumor cell metabolism, antibody-dependent cell-mediated cytotoxicity, antibody constructs, as well as activating and inhibitory receptors like NKG2D and immune checkpoint molecules. Several concepts show promising results in vitro, now awaiting translation to in vivo models and clinical studies. Given the array of research and encouraging findings in this area, this review aims at optimizing future investigations, specifically targeting the unanswered questions.
Collapse
Affiliation(s)
- Timm Hoeres
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Manfred Smetak
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Dominik Pretscher
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Martin Wilhelm
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
76
|
Rhodes DA, Chen HC, Williamson JC, Hill A, Yuan J, Smith S, Rhodes H, Trowsdale J, Lehner PJ, Herrmann T, Eberl M. Regulation of Human γδ T Cells by BTN3A1 Protein Stability and ATP-Binding Cassette Transporters. Front Immunol 2018; 9:662. [PMID: 29670629 PMCID: PMC5893821 DOI: 10.3389/fimmu.2018.00662] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Activation of human Vγ9/Vδ2 T cells by "phosphoantigens" (pAg), the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) and the endogenous isoprenoid intermediate isopentenyl pyrophosphate, requires expression of butyrophilin BTN3A molecules by presenting cells. However, the precise mechanism of activation of Vγ9/Vδ2 T cells by BTN3A molecules remains elusive. It is not clear what conformation of the three BTN3A isoforms transmits activation signals nor how externally delivered pAg accesses the cytosolic B30.2 domain of BTN3A1. To approach these problems, we studied two HLA haplo-identical HeLa cell lines, termed HeLa-L and HeLa-M, which showed marked differences in pAg-dependent stimulation of Vγ9/Vδ2 T cells. Levels of IFN-γ secretion by Vγ9/Vδ2 T cells were profoundly increased by pAg loading, or by binding of the pan-BTN3A specific agonist antibody CD277 20.1, in HeLa-M compared to HeLa-L cells. IL-2 production from a murine hybridoma T cell line expressing human Vγ9/Vδ2 T cell receptor (TCR) transgenes confirmed that the differential responsiveness to HeLa-L and HeLa-M was TCR dependent. By tissue typing, both HeLa lines were shown to be genetically identical and full-length transcripts of the three BTN3A isoforms were detected in equal abundance with no sequence variation. Expression of BTN3A and interacting molecules, such as periplakin or RhoB, did not account for the functional variation between HeLa-L and HeLa-M cells. Instead, the data implicate a checkpoint controlling BTN3A1 stability and protein trafficking, acting at an early time point in its maturation. In addition, plasma membrane profiling was used to identify proteins upregulated in HMB-PP-treated HeLa-M. ABCG2, a member of the ATP-binding cassette (ABC) transporter family was the most significant candidate, which crucially showed reduced expression in HeLa-L. Expression of a subset of ABC transporters, including ABCA1 and ABCG1, correlated with efficiency of T cell activation by cytokine secretion, although direct evidence of a functional role was not obtained by knockdown experiments. Our findings indicate a link between members of the ABC protein superfamily and the BTN3A-dependent activation of γδ T cells by endogenous and exogenous pAg.
Collapse
Affiliation(s)
- David A. Rhodes
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom,*Correspondence: David A. Rhodes,
| | - Hung-Chang Chen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James C. Williamson
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Alfred Hill
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jack Yuan
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Sam Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Harriet Rhodes
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Paul J. Lehner
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Thomas Herrmann
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
77
|
Bouchie A, DeFrancesco L, Sheridan C, Webb S. Nature Biotechnology's academic spinouts of 2016. Nat Biotechnol 2018; 35:322-333. [PMID: 28398323 DOI: 10.1038/nbt.3847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
78
|
Litjens NHR, van der Wagen L, Kuball J, Kwekkeboom J. Potential Beneficial Effects of Cytomegalovirus Infection after Transplantation. Front Immunol 2018; 9:389. [PMID: 29545802 PMCID: PMC5838002 DOI: 10.3389/fimmu.2018.00389] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/12/2018] [Indexed: 01/03/2023] Open
Abstract
Cytomegalovirus (CMV) infection can cause significant complications after transplantation, but recent emerging data suggest that CMV may paradoxically also exert beneficial effects in two specific allogeneic transplant settings. These potential benefits have been underappreciated and are therefore highlighted in this review. First, after allogeneic hematopoietic stem cell transplantation (HSCT) for acute myeloid leukemia (AML) using T-cell and natural killer (NK) cell-replete grafts, CMV reactivation is associated with protection from leukemic relapse. This association was not observed for other hematologic malignancies. This anti-leukemic effect might be mediated by CMV-driven expansion of donor-derived memory-like NKG2C+ NK and Vδ2negγδ T-cells. Donor-derived NK cells probably recognize recipient leukemic blasts by engagement of NKG2C with HLA-E and/or by the lack of donor (self) HLA molecules. Vδ2negγδ T cells probably recognize as yet unidentified antigens on leukemic blasts via their TCR. Second, immunological imprints of CMV infection, such as expanded numbers of Vδ2negγδ T cells and terminally differentiated TCRαβ+ T cells, as well as enhanced NKG2C gene expression in peripheral blood of operationally tolerant liver transplant patients, suggest that CMV infection or reactivation may be associated with liver graft acceptance. Mechanistically, poor alloreactivity of CMV-induced terminally differentiated TCRαβ+ T cells and CMV-induced IFN-driven adaptive immune resistance mechanisms in liver grafts may be involved. In conclusion, direct associations indicate that CMV reactivation may protect against AML relapse after allogeneic HSCT, and indirect associations suggest that CMV infection may promote allograft acceptance after liver transplantation. The causative mechanisms need further investigations, but are probably related to the profound and sustained imprint of CMV infection on the immune system.
Collapse
Affiliation(s)
- Nicolle H R Litjens
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Lotte van der Wagen
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jurgen Kuball
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
79
|
Braham MVJ, Minnema MC, Aarts T, Sebestyen Z, Straetemans T, Vyborova A, Kuball J, Öner FC, Robin C, Alblas J. Cellular immunotherapy on primary multiple myeloma expanded in a 3D bone marrow niche model. Oncoimmunology 2018; 7:e1434465. [PMID: 29872571 PMCID: PMC5980416 DOI: 10.1080/2162402x.2018.1434465] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 12/01/2022] Open
Abstract
Bone marrow niches support multiple myeloma, providing signals and cell-cell interactions essential for disease progression. A 3D bone marrow niche model was developed, in which supportive multipotent mesenchymal stromal cells and their osteogenic derivatives were co-cultured with endothelial progenitor cells. These co-cultured cells formed networks within the 3D culture, facilitating the survival and proliferation of primary CD138+ myeloma cells for up to 28 days. During this culture, no genetic drift was observed within the genomic profile of the primary myeloma cells, indicating a stable outgrowth of the cultured CD138+ population. The 3D bone marrow niche model enabled testing of a novel class of engineered immune cells, so called TEGs (αβT cells engineered to express a defined γδTCR) on primary myeloma cells. TEGs were engineered and tested from both healthy donors and myeloma patients. The added TEGs were capable of migrating through the 3D culture, exerting a killing response towards the primary myeloma cells in 6 out of 8 donor samples after both 24 and 48 hours. Such a killing response was not observed when adding mock transduced T cells. No differences were observed comparing allogeneic and autologous therapy. The supporting stromal microenvironment was unaffected in all conditions after 48 hours. When adding TEG therapy, the 3D model surpassed 2D models in many aspects by enabling analyses of specific homing, and both on- and off-target effects, preparing the ground for the clinical testing of TEGs. The model allows studying novel immunotherapies, therapy resistance mechanisms and possible side-effects for this incurable disease.
Collapse
Affiliation(s)
- Maaike V. J. Braham
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique C. Minnema
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
| | - Tineke Aarts
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zsolt Sebestyen
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Trudy Straetemans
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anna Vyborova
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jurgen Kuball
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - F. Cumhur Öner
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Cell Biology, University Medical Center, Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
80
|
Vermijlen D, Gatti D, Kouzeli A, Rus T, Eberl M. γδ T cell responses: How many ligands will it take till we know? Semin Cell Dev Biol 2018; 84:75-86. [PMID: 29402644 DOI: 10.1016/j.semcdb.2017.10.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022]
Abstract
γδ T cells constitute a sizeable and non-redundant fraction of the total T cell pool in all jawed vertebrates, but in contrast to conventional αβ T cells they are not restricted by classical MHC molecules. Progress in our understanding of the role of γδ T cells in the immune system has been hampered, and is being hampered, by the considerable lack of knowledge regarding the antigens γδ T cells respond to. The past few years have seen a wealth of data regarding the TCR repertoires of distinct γδ T cell populations and a growing list of confirmed and proposed molecules that are recognised by γδ T cells in different species. Yet, the physiological contexts underlying the often restricted TCR usage and the chemical diversity of γδ T cell ligands remain largely unclear, and only few structural studies have confirmed direct ligand recognition by the TCR. We here review the latest progress in the identification and validation of putative γδ T cell ligands and discuss the implications of such findings for γδ T cell responses in health and disease.
Collapse
Affiliation(s)
- David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics and Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Belgium.
| | - Deborah Gatti
- Department of Pharmacotherapy and Pharmaceutics and Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Belgium
| | - Ariadni Kouzeli
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Teja Rus
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom; Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
81
|
The potential role of γδ T cells after allogeneic HCT for leukemia. Blood 2018; 131:1063-1072. [PMID: 29358176 DOI: 10.1182/blood-2017-08-752162] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoetic stem cell transplantation (HCT) offers an option for patients with hematologic malignancies, in whom conventional standard therapies failed or are not effective enough to cure the disease. Successful HCT can restore functional hematopoiesis and immune function, and the new donor-derived immune system can exert a graft-versus-leukemia (GVL) effect. However, allogenic HCT can also be associated with serious risks for transplantation-related morbidities or mortalities such as graft-versus-host disease (GVHD) or life-threatening infectious complications. GVHD is caused by alloreactive T lymphocytes, which express the αβ T-cell receptor, whereas lymphocytes expressing the γδ T-cell receptor are not alloreactive and do not induce GVHD but can exhibit potent antileukemia and anti-infectious activities. Therefore, γδ T cells are becoming increasingly interesting in allogeneic HCT, and clinical strategies to exploit the full function of these lymphocytes have been and are being developed. Such strategies comprise the in vivo activation of γδ T cells or subsets after HCT by certain drugs or antibodies or the ex vivo expansion and manipulation of either patient-derived or donor-derived γδ T cells and their subsets and the adoptive transfer of the ex vivo-activated lymphocytes. On the basis of the absence of dysregulated alloreactivity, such approaches could induce potent GVL effects in the absence of GVHD. The introduction of large-scale clinical methods to enrich, isolate, expand, and manipulate γδ T cells will facilitate future clinical studies that aim to exploit the full function of these beneficial nonalloreactive lymphocytes.
Collapse
|
82
|
Moulin M, Alguacil J, Gu S, Mehtougui A, Adams EJ, Peyrottes S, Champagne E. Vγ9Vδ2 T cell activation by strongly agonistic nucleotidic phosphoantigens. Cell Mol Life Sci 2017; 74:4353-4367. [PMID: 28669030 PMCID: PMC11107656 DOI: 10.1007/s00018-017-2583-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/14/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022]
Abstract
Human Vγ9Vδ2 T cells can sense through their TCR tumor cells producing the weak endogenous phosphorylated antigen isopentenyl pyrophosphate (IPP), or bacterially infected cells producing the strong agonist hydroxyl dimethylallyl pyrophosphate (HDMAPP). The recognition of the phosphoantigen is dependent on its binding to the intracellular B30.2 domain of butyrophilin BTN3A1. Most studies have focused on pyrophosphate phosphoantigens. As triphosphate nucleotide derivatives are naturally co-produced with IPP and HDMAPP, we analyzed their specific properties using synthetic nucleotides derived from HDMAPP. The adenylated, thymidylated and uridylated triphosphate derivatives were found to activate directly Vγ9Vδ2 cell lines as efficiently as HDMAPP in the absence of accessory cells. These antigens were inherently resistant to terminal phosphatases, but apyrase, when added during a direct stimulation of Vγ9Vδ2 cells, abrogated their stimulating activity, indicating that their activity required transformation into strong pyrophosphate agonists by a nucleotide pyrophosphatase activity which is present in serum. Tumor cells can be sensitized with nucleotide phosphoantigens in the presence of apyrase to become stimulatory, showing that this can occur before their hydrolysis into pyrophosphates. Whereas tumors sensitized with HDMAPP rapidly lost their stimulatory activity, sensitization with nucleotide derivatives, in particular with the thymidine derivative, induced long-lasting stimulating ability. Using isothermal titration calorimetry, binding of some nucleotide derivatives to BTN3A1 intracellular domain was found to occur with an affinity similar to that of IPP, but much lower than that of HDMAPP. Thus, nucleotide phosphoantigens are precursors of pyrophosphate antigens which can deliver strong agonists intracellularly resulting in prolonged and strengthened activity.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Antigens/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Butyrophilins/genetics
- Butyrophilins/immunology
- Dose-Response Relationship, Immunologic
- HeLa Cells
- Hemiterpenes/pharmacology
- Humans
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- K562 Cells
- Lymphocyte Activation/drug effects
- Lysosomal-Associated Membrane Protein 1/biosynthesis
- Lysosomal-Associated Membrane Protein 1/immunology
- Organophosphates/pharmacology
- Organophosphorus Compounds/pharmacology
- Primary Cell Culture
- Receptors, Antigen, T-Cell, gamma-delta/classification
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Morgane Moulin
- Centre de Physiopathologie de Toulouse Purpan, CPTP, INSERM U1043/CNRS UMR5282, 31024, Toulouse, France
- CNRS, UMR5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Javier Alguacil
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université Montpellier, ENSCR, Montpellier, France
| | - Siyi Gu
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Asmaa Mehtougui
- Centre de Physiopathologie de Toulouse Purpan, CPTP, INSERM U1043/CNRS UMR5282, 31024, Toulouse, France
- CNRS, UMR5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Erin J Adams
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université Montpellier, ENSCR, Montpellier, France
| | - Eric Champagne
- Centre de Physiopathologie de Toulouse Purpan, CPTP, INSERM U1043/CNRS UMR5282, 31024, Toulouse, France.
- CNRS, UMR5282, Toulouse, France.
- Université Toulouse III Paul-Sabatier, Toulouse, France.
| |
Collapse
|
83
|
Franchini DM, Michelas M, Lanvin O, Poupot M, Fournié JJ. BTN3A1-antibodies and phosphoantigens: TCRVγ9Vδ2 "see" the difference. Eur J Immunol 2017; 47:954-957. [PMID: 28597565 DOI: 10.1002/eji.201747058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 11/11/2022]
Abstract
Human blood γδ T lymphocytes express TCRVγ9Vδ2 and respond to nonpeptide phosphoantigens (PAgs) by a mysterious mechanism involving the BTN3A1 (CD277) molecule . BTN3A1 is a butyrophilin-like protein related to CD80, PD-L1, and MHC, and is either a presenting or a co-stimulatory molecule for PAgs. Although the precise roles and molecular interactions with the TCRVγ9Vδ2 are currently not determined, it is commonly thought that all TCRVγ9Vδ2 lymphocytes 'see' PAg and BTN3A1 together, presumably in a single molecular recognition event. But whether this recognition event could be reproduced in a simplified model was not addressed in previous studies. In this issue, Starick et al. (Eur. J. Immunol. 2017. 47: 982-992) compared the response of three TCRVγ9Vδ2 pairs of murine and human cell transfectants to PAg and anti-BTN3A1 antibodies using IL-2 release as a readout. The authors found that although the two murine transfectants responded similarly to either stimuli, one murine TCRVγ9Vδ2 transfectant reacted to PAgs but not to anti-BTN3A1 (mAb 20.1). Human transductants behave in a similar fashion, demonstrating that TCRVγ9Vδ2 lymphocytes differentiate PAg and BTN3A1 signals, while species of the transductants unmask this differential sensitivity. Indeed, understanding the puzzling mode of antigen recognition by γδ T lymphocytes will be essential for developing γδ T-cell-based immunotherapies, and the authors of this study now demonstrate that TCRVγ9Vδ2 lymphocytes are able to differentiate the PAg and BTN3A1 stimuli.
Collapse
Affiliation(s)
- Don-Marc Franchini
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| | - Marie Michelas
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| | - Olivia Lanvin
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| | - Jean Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| |
Collapse
|
84
|
de Bruin RCG, Veluchamy JP, Lougheed SM, Schneiders FL, Lopez-Lastra S, Lameris R, Stam AG, Sebestyen Z, Kuball J, Molthoff CFM, Hooijberg E, Roovers RC, Santo JPD, van Bergen En Henegouwen PMP, Verheul HMW, de Gruijl TD, van der Vliet HJ. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vγ9Vδ2-T cells. Oncoimmunology 2017; 7:e1375641. [PMID: 29296532 DOI: 10.1080/2162402x.2017.1375641] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 12/23/2022] Open
Abstract
Though Vγ9Vδ2-T cells constitute only a small fraction of the total T cell population in human peripheral blood, they play a vital role in tumor defense and are therefore of major interest to explore for cancer immunotherapy. Vγ9Vδ2-T cell-based cancer immunotherapeutic approaches developed so far have been generally well tolerated and were able to induce significant clinical responses. However, overall results were inconsistent, possibly due to the fact that these strategies induced systemic activation of Vγ9Vδ2-T cells without preferential accumulation and targeted activation in the tumor. Here we show that a novel bispecific nanobody-based construct targeting both Vγ9Vδ2-T cells and EGFR induced potent Vγ9Vδ2-T cell activation and subsequent tumor cell lysis both in vitro and in an in vivo mouse xenograft model. Tumor cell lysis was independent of KRAS and BRAF tumor mutation status and common Vγ9Vδ2-T cell receptor sequence variations. In combination with the conserved monomorphic nature of the Vγ9Vδ2-TCR and the facile replacement of the tumor-specific nanobody, this immunotherapeutic approach can be applied to a large group of cancer patients.
Collapse
Affiliation(s)
- Renée C G de Bruin
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - John P Veluchamy
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sinéad M Lougheed
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Famke L Schneiders
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Silvia Lopez-Lastra
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France.,Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Roeland Lameris
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Anita G Stam
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Zsolt Sebestyen
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jürgen Kuball
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Carla F M Molthoff
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Erik Hooijberg
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Rob C Roovers
- Department of Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| | | | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
85
|
de Witte MA, Kuball J, Miller JS. NK Cells and γδT Cells for Relapse Protection After Allogeneic Hematopoietic Cell Transplantation (HCT). CURRENT STEM CELL REPORTS 2017; 3:301-311. [PMID: 29399441 DOI: 10.1007/s40778-017-0106-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose of review The outcome of allogeneic stem cell transplantation (allo-HCT) is still compromised by relapse and complications. NK cells and γδT cells, effectors which both function through MHC-unrestricted mechanisms, can target transformed and infected cells without inducing Graft-versus-Host Disease (GVHD). Allo-HCT platforms based on CD34+ selection or αβ-TCR depletion result in low grades of GVHD, early immune reconstitution (IR) of NK and γδT cells and minimal usage of GVHD prophylaxis. In this review we will discuss strategies to retain and expand the quantity, diversity and functionality of these reconstituting innate cell types. Recent findings Bisphosphonates, IL-15 cytokine administration, specific antibodies, checkpoint inhibitors and (CMV based) vaccination are currently being evaluated to enhance IR. All these approaches have shown to potentially enhance both NK and γδT cell immuno-repertoires. Summary Rapidly accumulating data linking innate biology to proposed clinical immune interventions, will give unique opportunities to unravel shared pathways which determine the Graft-versus-Tumor effects of NK and γδT cells.
Collapse
Affiliation(s)
- Moniek A de Witte
- Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN.,Department of Hematology, Cancer Center, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jürgen Kuball
- Department of Hematology, Cancer Center, University Medical Centre Utrecht, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jeffrey S Miller
- Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| |
Collapse
|
86
|
Peipp M, Wesch D, Oberg HH, Lutz S, Muskulus A, van de Winkel JGJ, Parren PWHI, Burger R, Humpe A, Kabelitz D, Gramatzki M, Kellner C. CD20-Specific Immunoligands Engaging NKG2D Enhance γδ T Cell-Mediated Lysis of Lymphoma Cells. Scand J Immunol 2017; 86:196-206. [PMID: 28708284 DOI: 10.1111/sji.12581] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/25/2017] [Indexed: 02/02/2023]
Abstract
Human γδ T cells are innate-like T cells which are able to kill a broad range of tumour cells and thus may have potential for cancer immunotherapy. The activating receptor natural killer group 2 member D (NKG2D) plays a key role in regulating immune responses driven by γδ T cells. Here, we explored whether recombinant immunoligands consisting of a CD20 single-chain fragment variable (scFv) linked to a NKG2D ligand, either MHC class I chain-related protein A (MICA) or UL16 binding protein 2 (ULBP2), could be employed to engage γδ T cells for tumour cell killing. The two immunoligands, designated MICA:7D8 and ULBP2:7D8, respectively, enhanced cytotoxicity of ex vivo-expanded γδ T cells against CD20-positive lymphoma cells. Both Vδ1 and Vδ2 γδ T cells were triggered by MICA:7D8 or ULBP2:7D8. Killing of CD20-negative tumour cells was not induced by the immunoligands, indicating their antigen specificity. MICA:7D8 and ULBP2:7D8 acted in a dose-dependent manner and induced cytotoxicity at nanomolar concentrations. Importantly, chronic lymphocytic leukaemia (CLL) cells isolated from patients were sensitized by the two immunoligands for γδ T cell cytotoxicity. In a combination approach, the immunoligands were combined with bromohydrin pyrophosphate (BrHPP), an agonist for Vδ2 γδ T cells, which further enhanced the efficacy in target cell killing. Thus, employing tumour-directed recombinant immunoligands which engage NKG2D may represent an attractive strategy to enhance antitumour cytotoxicity of γδ T cells.
Collapse
Affiliation(s)
- M Peipp
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - D Wesch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - H-H Oberg
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - S Lutz
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - A Muskulus
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - J G J van de Winkel
- Immunotherapy Laboratory, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Genmab, Utrecht, The Netherlands
| | - P W H I Parren
- Genmab, Utrecht, The Netherlands.,Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - R Burger
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - A Humpe
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - D Kabelitz
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - M Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - C Kellner
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
87
|
Gu S, Sachleben JR, Boughter CT, Nawrocka WI, Borowska MT, Tarrasch JT, Skiniotis G, Roux B, Adams EJ. Phosphoantigen-induced conformational change of butyrophilin 3A1 (BTN3A1) and its implication on Vγ9Vδ2 T cell activation. Proc Natl Acad Sci U S A 2017; 114:E7311-E7320. [PMID: 28807997 PMCID: PMC5584448 DOI: 10.1073/pnas.1707547114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human Vγ9Vδ2 T cells respond to microbial infections as well as certain types of tumors. The key initiators of Vγ9Vδ2 activation are small, pyrophosphate-containing molecules called phosphoantigens (pAgs) that are present in infected cells or accumulate intracellularly in certain tumor cells. Recent studies demonstrate that initiation of the Vγ9Vδ2 T cell response begins with sensing of pAg via the intracellular domain of the butyrophilin 3A1 (BTN3A1) molecule. However, it is unknown how downstream events can ultimately lead to T cell activation. Here, using NMR spectrometry and molecular dynamics (MD) simulations, we characterize a global conformational change in the B30.2 intracellular domain of BTN3A1 induced by pAg binding. We also reveal by crystallography two distinct dimer interfaces in the BTN3A1 full-length intracellular domain, which are stable in MD simulations. These interfaces lie in close proximity to the pAg-binding pocket and contain clusters of residues that experience major changes of chemical environment upon pAg binding. This suggests that pAg binding disrupts a preexisting conformation of the BTN3A1 intracellular domain. Using a combination of biochemical, structural, and cellular approaches we demonstrate that the extracellular domains of BTN3A1 adopt a V-shaped conformation at rest, and that locking them in this resting conformation without perturbing their membrane reorganization properties diminishes pAg-induced T cell activation. Based on these results, we propose a model in which a conformational change in BTN3A1 is a key event of pAg sensing that ultimately leads to T cell activation.
Collapse
Affiliation(s)
- Siyi Gu
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637
| | - Joseph R Sachleben
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637
- Biomolecular NMR Facility, University of Chicago, Chicago, IL 60637
| | | | - Wioletta I Nawrocka
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637
| | - Marta T Borowska
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637
| | - Jeffrey T Tarrasch
- Life Sciences Institute, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Georgios Skiniotis
- Life Sciences Institute, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Benoît Roux
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637
| | - Erin J Adams
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637;
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
88
|
Mattarei A, Enzinger M, Gu S, Karunakaran MM, Kimmel B, Berner N, Adams EJ, Herrmann T, Amslinger S. A Photo-Crosslinkable Biotin Derivative of the Phosphoantigen (E)-4-Hydroxy-3-Methylbut-2-Enyl Diphosphate (HMBPP) Activates Vγ9Vδ2 T Cells and Binds to the HMBPP Site of BTN3A1. Chemistry 2017. [PMID: 28631855 DOI: 10.1002/chem.201702650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vγ9Vδ2 T cells play an important role in the cross talk of the innate and adaptive immune system. For their activation by phosphoantigens (PAgs), both cell surface receptors, the eponymous Vγ9Vδ2 T cell antigen receptors (Vγ9Vδ2 TCRs) on Vγ9Vδ2 T cells and butyrophilin 3A1 (BTN3A1) on the phosphoantigen-"presenting" cell, are mandatory. To find yet undetected but further contributing proteins, a biotinylated, photo-crosslinkable benzophenone probe BioBP-HMBPP (2) was synthesized from a known allyl alcohol in nine steps and overall 16 % yield. 2 is based on the picomolar PAg (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP, 1). Laser irradiation of 2 at 308 nm initiated the photo-crosslinking reaction with proteins. When the B30.2 domain of BTN3A1, which contains a positively charged PAg-binding pocket, was exposed to increasing amounts of HMBPP (1), labeling by BioBP-HMBPP (2) was reduced significantly. Because BSA labeling was not impaired, 2 clearly binds to the same site as natural ligand 1. Thus, BioBP-HMBPP (2) is a suitable tool to identify co-ligands or receptors involved in PAg-mediated T cell activation.
Collapse
Affiliation(s)
- Andrea Mattarei
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.,Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Monika Enzinger
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Siyi Gu
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Mohindar Murugesh Karunakaran
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Versbacherstr. 7, 97078, Würzburg, Germany
| | - Brigitte Kimmel
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Nicole Berner
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Thomas Herrmann
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Versbacherstr. 7, 97078, Würzburg, Germany
| | - Sabine Amslinger
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
89
|
Nguyen K, Li J, Puthenveetil R, Lin X, Poe MM, Hsiao CHC, Vinogradova O, Wiemer AJ. The butyrophilin 3A1 intracellular domain undergoes a conformational change involving the juxtamembrane region. FASEB J 2017; 31:4697-4706. [PMID: 28705810 DOI: 10.1096/fj.201601370rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/27/2017] [Indexed: 12/23/2022]
Abstract
Small isoprenoid diphosphates, such as (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), are ligands of the internal domain of BTN3A1. Ligand binding in target cells promotes activation of Vγ9Vδ2 T cells. We demonstrate by small-angle X-ray scattering (SAXS) that HMBPP binding to the internal domain of BTN3A1 induces a conformational change in the position of the B30.2 domain relative to the juxtamembrane (JM) region. To better understand the molecular details of this conformational rearrangement, NMR spectroscopy was used to discover that the JM region interacts with HMBPP, specifically at the diphosphate. The spectral location of the affected amide peaks, partial NMR assignments, and JM mutants (ST296AA or T304A) investigated, confirm that the backbone amide of at least one Thr (Thr304), adjacent to conserved Ser, comes close to the HMBPP diphosphate, whereas double mutation of nonconserved residues (Ser/Thr296/297) may perturb the local fold. Cellular mutation of either of the identified Thr residues reduces the activation of Vγ9Vδ2 T cells by HMBPP, zoledronate, and POM2-C-HMBP, but not by a partial agonist BTN3 antibody. Taken together, our results show that ligand binding to BTN3A1 induces a conformational change within the intracellular domain that involves the JM region and is required for full activation.-Nguyen, K., Li, J., Puthenveetil, R., Lin, X., Poe, M. M., Hsiao, C.-H. C., Vinogradova, O., Wiemer, A. J. The butyrophilin 3A1 intracellular domain undergoes a conformational change involving the juxtamembrane region.
Collapse
Affiliation(s)
- Khiem Nguyen
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Jin Li
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Robbins Puthenveetil
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Xiaochen Lin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Michael M Poe
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | - Olga Vinogradova
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA; .,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
90
|
Chitadze G, Oberg HH, Wesch D, Kabelitz D. The Ambiguous Role of γδ T Lymphocytes in Antitumor Immunity. Trends Immunol 2017; 38:668-678. [PMID: 28709825 DOI: 10.1016/j.it.2017.06.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022]
Abstract
γδ T cells play a role in immune surveillance because they recognize stress-induced surface molecules and metabolic intermediates that are frequently dysregulated in transformed cells. Hence, γδ T cells have attracted much interest as effector cells in cell-based immunotherapy. Recently, however, it has been realized that γδ T cells can also promote tumorigenesis through various mechanisms including regulatory activity and IL-17 production. In this review we outline both the pathways involved in cancer cell recognition and killing by γδ T cells as well as current evidence for their protumorigenic activity in various models. Finally, we discuss strategies to improve the tumor reactivity of γδ T cells and to counteract their protumorigenic activities, which should open improved perspectives for their clinical application.
Collapse
Affiliation(s)
- Guranda Chitadze
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany.
| |
Collapse
|
91
|
Abstract
In contrast to conventional T lymphocytes, which carry an αβ T-cell receptor and recognize antigens as peptides presented by major histocompatibility complex class I or class II molecules, human γδ T cells recognize different metabolites such as non-peptidic pyrophosphate molecules that are secreted by microbes or overproduced by tumor cells. Hence, γδ T cells play a role in immunosurveillance of infection and cellular transformation. Until recently, it has been unknown how the γδ T-cell receptor senses such pyrophosphates in the absence of known antigen-presenting molecules. Recent studies from several groups have identified a unique role of butyrophilin (BTN) protein family members in this process, notably of BTN3A1. BTNs are a large family of transmembrane proteins with diverse functions in lipid secretion and innate and adaptive immunity. Here we discuss current models of how BTN molecules regulate γδ T-cell activation. We also address the implications of these recent findings on the design of novel immunotherapeutic strategies based on the activation of γδ T cells.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel, Germany
| | - Marcus Lettau
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel, Germany
| | - Ottmar Janssen
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel, Germany
| |
Collapse
|
92
|
Hodgins NO, Wang JTW, Al-Jamal KT. Nano-technology based carriers for nitrogen-containing bisphosphonates delivery as sensitisers of γδ T cells for anticancer immunotherapy. Adv Drug Deliv Rev 2017; 114:143-160. [PMID: 28694026 DOI: 10.1016/j.addr.2017.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
Nitrogen containing bisphosphonates (N-BPs) including zoledronate (ZOL) and alendronate (ALD) inhibit farnesyl diphosphate synthase, and have been shown to have a cytotoxic affect against cancer cells as a monotherapy and to also sensitise tumour cells to destruction by γδ T cells. γδ T cells are a subset of human T lymphocytes and have a diverse range of roles in the immune system including the recognition and destruction of cancer cells. This property of γδ T cells can be harnessed for use in cancer immunotherapy through in vivo expansion or the adoptive transfer of ex vivo activated γδ T cells. The use of N-BPs with γδ T cells has been shown to have a synergistic effect in in vitro, animal and clinical studies. N-BPs have limited in vivo activity due to rapid clearance from the circulation. By encapsulating N-BPs in liposomes (L) it is possible to increase the levels of N-BPs at non-osseous tumour sites. L-ZOL and L-ALD have been shown to have different toxicological profiles than free ZOL or ALD. Both L-ALD and L-ZOL led to increased spleen weight, leucocytosis, neutrophilia and lymphocytopenia in mice after intravenous injection. L-ALD was shown to be better tolerated than L-ZOL in murine studies. Biodistribution studies have been performed in order to better understand the interaction of N-BPs and γδ T cells in vivo. Additionally, in vivo therapy studies have shown that mice treated with both L-ALD and γδ T cells had a significant reduction in tumour growth compared to mice treated with L-ALD or γδ T cells alone. The use of ligand-targeted liposomes may further increase the efficacy of this combinatory immunotherapy. Liposomes targeting the αvβ6 integrin receptor using the peptide A20FMDV2 had a greater ability than untargeted liposomes in sensitising cancer cells to destruction by γδ T cells in αvβ6 positive cancer cell lines.
Collapse
|
93
|
Peigné CM, Léger A, Gesnel MC, Konczak F, Olive D, Bonneville M, Breathnach R, Scotet E. The Juxtamembrane Domain of Butyrophilin BTN3A1 Controls Phosphoantigen-Mediated Activation of Human Vγ9Vδ2 T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:4228-4234. [DOI: 10.4049/jimmunol.1601910] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/30/2017] [Indexed: 12/25/2022]
|
94
|
Starick L, Riano F, Karunakaran MM, Kunzmann V, Li J, Kreiss M, Amslinger S, Scotet E, Olive D, De Libero G, Herrmann T. Butyrophilin 3A (BTN3A, CD277)-specific antibody 20.1 differentially activates Vγ9Vδ2 TCR clonotypes and interferes with phosphoantigen activation. Eur J Immunol 2017; 47:982-992. [DOI: 10.1002/eji.201646818] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/20/2017] [Accepted: 03/28/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Lisa Starick
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| | - Felipe Riano
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| | | | - Volker Kunzmann
- Medical Clinic and Policlinic II; University of Würzburg; Würzburg Germany
| | - Jianqiang Li
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| | - Matthias Kreiss
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| | - Sabine Amslinger
- Institute of Organic Chemistry; University of Regensburg; Regensburg Germany
| | - Emmanuel Scotet
- CRCINA, INSERM, CNRS; Université d'Angers; Université de Nantes; Nantes France
- Labex IGO “Immunotherapy, Graft, Oncology”; Nantes France
| | - Daniel Olive
- Centre de recherche en Cancérologie de Marseille; Inserm U1068 / CNRS U7258; Aix Marseille Université
- Institut Paoli-Calmettes; Marseille France
| | | | - Thomas Herrmann
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| |
Collapse
|
95
|
Shippy RR, Lin X, Agabiti SS, Li J, Zangari BM, Foust BJ, Poe MM, Hsiao CHC, Vinogradova O, Wiemer DF, Wiemer AJ. Phosphinophosphonates and Their Tris-pivaloyloxymethyl Prodrugs Reveal a Negatively Cooperative Butyrophilin Activation Mechanism. J Med Chem 2017; 60:2373-2382. [PMID: 28218845 DOI: 10.1021/acs.jmedchem.6b00965] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Butyrophilin 3A1 (BTN3A1) binds small phosphorus-containing molecules, which initiates transmembrane signaling and activates butyrophilin-responsive cells. We synthesized several phosphinophosphonates and their corresponding tris-pivaloyloxymethyl (tris-POM) prodrugs and examined their effects on BTN3A1. An analog of (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) bound to BTN3A1 with intermediate affinity, which was enthalpy-driven. Docking studies revealed binding to the basic surface pocket and interactions between the allylic hydroxyl group and the BTN3A1 backbone. The phosphinophosphonate stimulated proliferation of Vγ9Vδ2 T cells with moderate activity (EC50 = 26 μM). Cellular potency was enhanced >600-fold in the tris-POM prodrug (EC50 = 0.041 μM). The novel prodrug also induced T cell mediated leukemia cell lysis. Analysis of dose-response data reveals HMBPP-induced Hill coefficients of 0.69 for target cell lysis and 0.68 in interferon secretion. Together, tris-POM prodrugs enhance the cellular activity of phosphinophosphonates, reveal structure-activity relationships of butyrophilin ligands, and support a negatively cooperative model of cellular butyrophilin activation.
Collapse
Affiliation(s)
- Rebekah R Shippy
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Xiaochen Lin
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Sherry S Agabiti
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Jin Li
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Brendan M Zangari
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Benjamin J Foust
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Michael M Poe
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Chia-Hung Christine Hsiao
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - David F Wiemer
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States.,Institute for Systems Genomics, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
96
|
Zocchi MR, Costa D, Venè R, Tosetti F, Ferrari N, Minghelli S, Benelli R, Scabini S, Romairone E, Catellani S, Profumo A, Poggi A. Zoledronate can induce colorectal cancer microenvironment expressing BTN3A1 to stimulate effector γδ T cells with antitumor activity. Oncoimmunology 2017; 6:e1278099. [PMID: 28405500 PMCID: PMC5384426 DOI: 10.1080/2162402x.2016.1278099] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 10/20/2022] Open
Abstract
Amino-bis-phosphonates (N-BPs) such as zoledronate (Zol) have been used in anticancer clinical trials due to their ability to upregulate pyrophosphate accumulation promoting antitumor Vγ9Vδ2 T cells. The butyrophilin 3A (BTN3A, CD277) family, mainly the BTN3A1 isoform, has emerged as an important structure contributing to Vγ9Vδ2 T cells stimulation. It has been demonstrated that the B30.2 domain of BTN3A1 can bind phosphoantigens (PAg) and drive the activation of Vγ9Vδ2 T cells through conformational changes of the extracellular domains. Moreover, BTN3A1 binding to the cytoskeleton, and its consequent membrane stabilization, is crucial to stimulate the PAg-induced tumor cell reactivity by human Vγ9Vδ2 T cells. Aim of this study was to investigate the relevance of BTN3A1 in N-BPs-induced antitumor response in colorectal cancer (CRC) and the cell types involved in the tumor microenvironment. In this paper, we show that (i) CRC, exposed to Zol, stimulates the expansion of Vδ2 T lymphocytes with effector memory phenotype and antitumor cytotoxic activity, besides sensitizing cancer cells to γδ T cell-mediated cytotoxicity; (ii) this effect is partially related to BTN3A1 expression and in particular with its cellular re-distribution in the membrane and cytoskeleton-associated fraction; (iii) BTN3A1 is detected in CRC at the tumor site, both on epithelial cells and on tumor-associated fibroblasts (TAF), close to areas infiltrated by Vδ2 T lymphocytes; (iv) Zol is effective in stimulating antitumor effector Vδ2 T cells from ex-vivo CRC cell suspensions; and (v) both CRC cells and TAF can be primed by Zol to trigger Vδ2 T cells.
Collapse
Affiliation(s)
- Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Delfina Costa
- Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Roberta Venè
- Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Francesca Tosetti
- Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Nicoletta Ferrari
- Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Simona Minghelli
- UOC Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Stefano Scabini
- Oncological Surgery, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | | | - Aldo Profumo
- Biopolymers and Proteomics Unit IRCCS AOU San Martino-IST, Genoa, Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
97
|
de Bruin RCG, Stam AGM, Vangone A, van Bergen En Henegouwen PMP, Verheul HMW, Sebestyén Z, Kuball J, Bonvin AMJJ, de Gruijl TD, van der Vliet HJ. Prevention of Vγ9Vδ2 T Cell Activation by a Vγ9Vδ2 TCR Nanobody. THE JOURNAL OF IMMUNOLOGY 2016; 198:308-317. [PMID: 27895170 DOI: 10.4049/jimmunol.1600948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/02/2016] [Indexed: 01/09/2023]
Abstract
Vγ9Vδ2 T cell activation plays an important role in antitumor and antimicrobial immune responses. However, there are conditions in which Vγ9Vδ2 T cell activation can be considered inappropriate for the host. Patients treated with aminobisphosphonates for hypercalcemia or metastatic bone disease often present with a debilitating acute phase response as a result of Vγ9Vδ2 T cell activation. To date, no agents are available that can clinically inhibit Vγ9Vδ2 T cell activation. In this study, we describe the identification of a single domain Ab fragment directed to the TCR of Vγ9Vδ2 T cells with neutralizing properties. This variable domain of an H chain-only Ab (VHH or nanobody) significantly inhibited both phosphoantigen-dependent and -independent activation of Vγ9Vδ2 T cells and, importantly, strongly reduced the production of inflammatory cytokines upon stimulation with aminobisphosphonate-treated cells. Additionally, in silico modeling suggests that the neutralizing VHH binds the same residues on the Vγ9Vδ2 TCR as the Vγ9Vδ2 T cell Ag-presenting transmembrane protein butyrophilin 3A1, providing information on critical residues involved in this interaction. The neutralizing Vγ9Vδ2 TCR VHH identified in this study might provide a novel approach to inhibit the unintentional Vγ9Vδ2 T cell activation as a consequence of aminobisphosphonate administration.
Collapse
Affiliation(s)
- Renée C G de Bruin
- Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Anita G M Stam
- Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Anna Vangone
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | | | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Zsolt Sebestyén
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Jürgen Kuball
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands;
| |
Collapse
|
98
|
The ontogeny of Butyrophilin-like (Btnl) 1 and Btnl6 in murine small intestine. Sci Rep 2016; 6:31524. [PMID: 27528202 PMCID: PMC4985744 DOI: 10.1038/srep31524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022] Open
Abstract
Murine Butyrophilin-like (Btnl) 1 and Btnl6 are primarily restricted to intestinal epithelium where they regulate the function of intraepithelial T lymphocytes. We recently demonstrated that Btnl1 and Btnl6 can form an intra-family heterocomplex and that the Btnl1-Btnl6 complex selectively expands Vγ7Vδ4 TCR IELs. To define the regulation of Btnl expression in the small intestine during ontogeny we examined the presence of Btnl1 and Btnl6 in the small bowel of newborn to 4-week-old mice. Although RNA expression of Btnl1 and Btnl6 was detected in the small intestine at day 0, Btnl1 and Btnl6 protein expression was substantially delayed and was not detectable in the intestinal epithelium until the mice reached 2–3 weeks of age. The markedly elevated Btnl protein level at week 3 coincided with a significant increase of γδ TCR IELs, particularly those bearing the Vγ7Vδ4 receptor. This was not dependent on gut microbial colonization as mice housed in germ-free conditions had normal Btnl protein levels. Taken together, our data show that the expression of Btnl1 and Btnl6 is delayed in the murine neonatal gut and that the appearance of the Btnl1 and Btnl6 proteins in the intestinal mucosa associates with the expansion of Vγ7Vδ4 TCR IELs.
Collapse
|