51
|
Díaz-Perales A, Escribese MM, Garrido-Arandia M, Obeso D, Izquierdo-Alvarez E, Tome-Amat J, Barber D. The Role of Sphingolipids in Allergic Disorders. FRONTIERS IN ALLERGY 2022; 2:675557. [PMID: 35386967 PMCID: PMC8974723 DOI: 10.3389/falgy.2021.675557] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Allergy is defined as a complex chronic inflammatory condition in which genetic and environmental factors are implicated. Sphingolipids are involved in multiple biological functions, from cell membrane components to critical signaling molecules. To date, sphingolipids have been studied in different human pathologies such as neurological disorders, cancer, autoimmunity, and infections. Sphingolipid metabolites, in particular, ceramide and sphingosine-1-phosphate (S1P), regulate a diverse range of cellular processes that are important in immunity and inflammation. Moreover, variations in the sphingolipid concentrations have been strongly associated with allergic diseases. This review will focus on the role of sphingolipids in the development of allergic sensitization and allergic inflammation through the activation of immune cells resident in tissues, as well as their role in barrier remodeling and anaphylaxis. The knowledge gained in this emerging field will help to develop new therapeutic options for allergic disorders.
Collapse
Affiliation(s)
- Araceli Díaz-Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Maria M Escribese
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - David Obeso
- Centro de Excelencia en Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Elena Izquierdo-Alvarez
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Domingo Barber
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
52
|
Abstract
Obesity has reached epidemic proportions and is a major contributor to insulin resistance (IR) and type 2 diabetes (T2D). Importantly, IR and T2D substantially increase the risk of cardiovascular (CV) disease. Although there are successful approaches to maintain glycemic control, there continue to be increased CV morbidity and mortality associated with metabolic disease. Therefore, there is an urgent need to understand the cellular and molecular processes that underlie cardiometabolic changes that occur during obesity so that optimal medical therapies can be designed to attenuate or prevent the sequelae of this disease. The vascular endothelium is in constant contact with the circulating milieu; thus, it is not surprising that obesity-driven elevations in lipids, glucose, and proinflammatory mediators induce endothelial dysfunction, vascular inflammation, and vascular remodeling in all segments of the vasculature. As cardiometabolic disease progresses, so do pathological changes in the entire vascular network, which can feed forward to exacerbate disease progression. Recent cellular and molecular data have implicated the vasculature as an initiating and instigating factor in the development of several cardiometabolic diseases. This Review discusses these findings in the context of atherosclerosis, IR and T2D, and heart failure with preserved ejection fraction. In addition, novel strategies to therapeutically target the vasculature to lessen cardiometabolic disease burden are introduced.
Collapse
|
53
|
Gaggini M, Ndreu R, Michelucci E, Rocchiccioli S, Vassalle C. Ceramides as Mediators of Oxidative Stress and Inflammation in Cardiometabolic Disease. Int J Mol Sci 2022; 23:ijms23052719. [PMID: 35269861 PMCID: PMC8911014 DOI: 10.3390/ijms23052719] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022] Open
Abstract
Ceramides, composed of a sphingosine and a fatty acid, are bioactive lipid molecules involved in many key cellular pathways (e.g., apoptosis, oxidative stress and inflammation). There is much evidence on the relationship between ceramide species and cardiometabolic disease, especially in relationship with the onset and development of diabetes and acute and chronic coronary artery disease. This review reports available evidence on ceramide structure and generation, and discusses their role in cardiometabolic disease, as well as current translational chances and difficulties for ceramide application in the cardiometabolic clinical settings.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Rudina Ndreu
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Elena Michelucci
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-3153525
| |
Collapse
|
54
|
Michelucci E, Rocchiccioli S, Gaggini M, Ndreu R, Berti S, Vassalle C. Ceramides and Cardiovascular Risk Factors, Inflammatory Parameters and Left Ventricular Function in AMI Patients. Biomedicines 2022; 10:biomedicines10020429. [PMID: 35203637 PMCID: PMC8962314 DOI: 10.3390/biomedicines10020429] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Ceramides, biologically active lipids correlated to oxidative stress and inflammation, have been associated with adverse outcomes in acute myocardial infarction (AMI). The purpose of this study was to assess the association between ceramides/ratios included in the CERT1 score and increased cardiovascular (CV) risk, inflammatory and left ventricular function parameters in AMI. Methods: high performance liquid chromatography-tandem mass spectrometry was used to identify Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) levels and their ratios to Cer(d18:1/24:0), in 123 AMI patients (FTGM coronary unit, Massa, Italy). Results: Cer(d18:1/16:0): higher in female patients (<0.05), in patients with dyslipidemia (<0.05), and it directly and significantly correlated with aging, brain natriuretic peptide-BNP, erythrocyte sedimentation rate-ESR and fibrinogen. Cer(d18:1/18:0): higher in females (<0.01) and patients with dyslipidemia (<0.01), and increased according to the number of CV risk factors (considering hypertension, dyslipidemia and diabetes). Moreover, it significantly correlated with BNP, troponin at admission, ESR, C reactive protein-CRP, and fibrinogen. Cer(d18:1/24:1): significantly correlated with aging, BNP, fibrinogen and neutrophils. Cer(d18:1/16:0)/Cer(d18:1/24:0): higher in female patients (<0.05), and in patients with higher wall motion score index-WMSI (>1.7; ≤0.05), and in those with multivessel disease (<0.05). Moreover, it significantly correlated with aging, BNP, CRP, ESR, neutrophil-to-lymphocyte ratio-NRL, and fibrinogen. Cer(d18:1/18:0)/Cer(d18:1/24:0): higher in female patients (<0.001), and increased according to age. Moreover, it was higher in patients with lower left ventricular ejection fraction (<35%, ≤0.01), higher WMSI (>1.7, <0.05), and in those with multivessel disease (0.13 ± 0.06 vs. 0.10 ± 0.05 µM, <0.05), and correlates with BNP, ESR, CRP, fibrinogen and neutrophils, platelets, NLR, and troponin at admission. Multiple regression analysis showed that Cer(d18:1/16:0)/Cer(d18:1/24:0) and Cer(d18:1/18:0)/Cer(d18:1/24:0) remained as independent determinants for WMSI after multivariate adjustment (Std coeff 0.17, T-value 1.9, ≤0.05; 0.21, 2.6, <0.05, respectively). Conclusion: Distinct ceramide species are associated with CV risk, inflammation and disease severity in AMI. Thus, a detailed analysis of ceramides may help to better understand CV pathobiology and suggest these new biomarkers as possible risk predictors and pharmacological targets in AMI patients.
Collapse
Affiliation(s)
- Elena Michelucci
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.M.); (S.R.); (M.G.); (R.N.)
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.M.); (S.R.); (M.G.); (R.N.)
| | - Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.M.); (S.R.); (M.G.); (R.N.)
| | - Rudina Ndreu
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.M.); (S.R.); (M.G.); (R.N.)
| | - Sergio Berti
- Fondazione CNR-Regione Toscana G Monasterio, 56124 Pisa, Italy;
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, 56124 Pisa, Italy;
- Correspondence:
| |
Collapse
|
55
|
Lycopene Supplementation to Serum-Free Maturation Medium Improves In Vitro Bovine Embryo Development and Quality and Modulates Embryonic Transcriptomic Profile. Antioxidants (Basel) 2022; 11:antiox11020344. [PMID: 35204226 PMCID: PMC8868338 DOI: 10.3390/antiox11020344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023] Open
Abstract
Bovine embryos are typically cultured at reduced oxygen tension to lower the impact of oxidative stress on embryo development. However, oocyte in vitro maturation (IVM) is performed at atmospheric oxygen tension since low oxygen during maturation has a negative impact on oocyte developmental competence. Lycopene, a carotenoid, acts as a powerful antioxidant and may protect the oocyte against oxidative stress during maturation at atmospheric oxygen conditions. Here, we assessed the effect of adding 0.2 μM lycopene (antioxidant), 5 μM menadione (pro-oxidant), and their combination on the generation of reactive oxygen species (ROS) in matured oocytes and the subsequent development, quality, and transcriptome of the blastocysts in a bovine in vitro model. ROS fluorescent intensity in matured oocytes was significantly lower in the lycopene group, and the resulting embryos showed a significantly higher blastocyst rate on day 8 and a lower apoptotic cell ratio than all other groups. Transcriptomic analysis disclosed a total of 296 differentially expressed genes (Benjamini–Hochberg-adjusted p < 0.05 and ≥ 1-log2-fold change) between the lycopene and control groups, where pathways associated with cellular function, metabolism, DNA repair, and anti-apoptosis were upregulated in the lycopene group. Lycopene supplementation to serum-free maturation medium neutralized excess ROS during maturation, enhanced blastocyst development and quality, and modulated the transcriptomic landscape.
Collapse
|
56
|
Impact of Metabolomics Technologies on the Assessment of Peritoneal Membrane Profiles in Peritoneal Dialysis Patients: A Systematic Review. Metabolites 2022; 12:metabo12020145. [PMID: 35208219 PMCID: PMC8879920 DOI: 10.3390/metabo12020145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023] Open
Abstract
Peritoneal dialysis (PD) is an effective and frequent dialysis modality in adults, particularly preferred in infants and young children with end-stage renal disease (ESRD). Long-term exposure of the peritoneal membrane to dialysis solutions results in severe morphologic and functional alterations. Peritoneal dialysis effluent biomarkers are based on omics technologies, which could predict the onset or confirm the diagnosis of peritoneal membrane dysfunction, would allow the development of accurate early prognostic tools and, potentially, the identification of future therapeutic targets. The purpose of our study was to critically review the literature on the impact and the effectiveness of metabolomics technologies in peritoneal health. The main search was performed in electronic databases (PubMed/MEDLINE, Embase and Cochrane Central Register of Controlled Trials) from inception to December 2020, using various combinations of Medical Subject Headings (MeSH). The main search highlighted nine studies, of which seven were evaluated in detail. Metabolomics technologies may provide significant input in the recognition of peritoneal membrane dysfunction in PD patients and provide evidence of early intervention strategies that could protect peritoneum health and function.
Collapse
|
57
|
Gurgul-Convey E. To Be or Not to Be: The Divergent Action and Metabolism of Sphingosine-1 Phosphate in Pancreatic Beta-Cells in Response to Cytokines and Fatty Acids. Int J Mol Sci 2022; 23:ijms23031638. [PMID: 35163559 PMCID: PMC8835924 DOI: 10.3390/ijms23031638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/02/2023] Open
Abstract
Sphingosine-1 phosphate (S1P) is a bioactive sphingolipid with multiple functions conveyed by the activation of cell surface receptors and/or intracellular mediators. A growing body of evidence indicates its important role in pancreatic insulin-secreting beta-cells that are necessary for maintenance of glucose homeostasis. The dysfunction and/or death of beta-cells lead to diabetes development. Diabetes is a serious public health burden with incidence growing rapidly in recent decades. The two major types of diabetes are the autoimmune-mediated type 1 diabetes (T1DM) and the metabolic stress-related type 2 diabetes (T2DM). Despite many differences in the development, both types of diabetes are characterized by chronic hyperglycemia and inflammation. The inflammatory component of diabetes remains under-characterized. Recent years have brought new insights into the possible mechanism involved in the increased inflammatory response, suggesting that environmental factors such as a westernized diet may participate in this process. Dietary lipids, particularly palmitate, are substrates for the biosynthesis of bioactive sphingolipids. Disturbed serum sphingolipid profiles were observed in both T1DM and T2DM patients. Many polymorphisms were identified in genes encoding enzymes of the sphingolipid pathway, including sphingosine kinase 2 (SK2), the S1P generating enzyme which is highly expressed in beta-cells. Proinflammatory cytokines and free fatty acids have been shown to modulate the expression and activity of S1P-generating and S1P-catabolizing enzymes. In this review, the similarities and differences in the action of extracellular and intracellular S1P in beta-cells exposed to cytokines or free fatty acids will be identified and the outlook for future research will be discussed.
Collapse
Affiliation(s)
- Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
58
|
Luo J, Shaikh JA, Huang L, Zhang L, Iqbal S, Wang Y, Liu B, Zhou Q, Ajmal A, Rizvi M, Ajmal M, Liu Y. Human Plasma Metabolomics Identify 9-cis-retinoic Acid and Dehydrophytosphingosine Levels as Novel biomarkers for Early Ventricular Fibrillation after ST-elevated Myocardial Infarction. Bioengineered 2022; 13:3334-3350. [PMID: 35094641 PMCID: PMC8974221 DOI: 10.1080/21655979.2022.2027067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The relevant metabolite biomarkers for risk prediction of early onset of ventricular fibrillation (VF) after ST-segment elevation myocardial infarction (STEMI) remain unstudied. Here, we aimed to identify these imetabolites and the important metabolic pathways involved, and explore whether these metabolites could be used as predictors for the phenotype. Plasma samples were obtained retrospectively from a propensity-score matched cohort including 42 STEMI patients (21 consecutive VF and 21 non-VF). Ultra-performance liquid chromatography and mass spectrometry in combination with a comprehensive analysis of metabolomic data using Metaboanalyst 5.0 version were performed. As a result, the retinal metabolism pathway proved to be the most discriminative for the VF phenotype. Furthermore, 9-cis-Retinoic acid (9cRA) and dehydrophytosphingosine proved to be the most discriminative biomarkers. Biomarker analysis through receiver operating characteristic (ROC) curve showed the 2-metabolite biomarker panel yielding an area under the curve (AUC) of 0.836. The model based on Monte Carlo cross-validation found that 9cRA had the greatest probability of appearing in the predictive panel of biomarkers in the model. Validation of model efficiency based on an ROC curve showed that the combination model constructed by 9cRA and dehydrophytosphingosine had a good predictive value for early-onset VF after STEMI, and the AUC was 0.884 (95% CI 0.714–1). Conclusively, the retinol metabolism pathway was the most powerful pathway for differentiating the post-STEMI VF phenotype. 9cRA was the most important predictive biomarker of VF, and a plasma biomarker panel made up of two metabolites, may help to build a potent predictive model for VF.
Collapse
Affiliation(s)
- Jieying Luo
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Faculty of Life Science and Medicine, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Junaid Ahmed Shaikh
- GKT School of Medical Education, Faculty of Life Science and Medicine, King’s College London, London SE1 IUL, UK
| | - Lei Huang
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Faculty of Life Science and Medicine, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Lei Zhang
- Department of Clinical Laboratory, Tianjin Third Central Hospital, Tianjin, China
| | - Shahid Iqbal
- GKT School of Medical Education, Faculty of Life Science and Medicine, King’s College London, London SE1 IUL, UK
| | - Yu Wang
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Bojiang Liu
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Quan Zhou
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Aisha Ajmal
- St George’s Hospital Medical School, St. George’s, University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Maryam Rizvi
- GKT School of Medical Education, Faculty of Life Science and Medicine, King’s College London, London SE1 IUL, UK
| | - Maryam Ajmal
- GKT School of Medical Education, Faculty of Life Science and Medicine, King’s College London, London SE1 IUL, UK
| | - Yingwu Liu
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Faculty of Life Science and Medicine, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
59
|
Juchnicka I, Kuźmicki M, Zabielski P, Krętowski A, Błachnio-Zabielska A, Szamatowicz J. Serum C18:1-Cer as a Potential Biomarker for Early Detection of Gestational Diabetes. J Clin Med 2022; 11:384. [PMID: 35054078 PMCID: PMC8781005 DOI: 10.3390/jcm11020384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
We hypothesized that sphingolipids may be early biomarkers of gestational diabetes mellitus (GDM). Here, 520 women with normal fasting plasma glucose levels were recruited in the first trimester and tested with a 75 g oral glucose tolerance test in the 24th-28th week of pregnancy. Serum sphingolipids concentrations were measured in the first and the second trimester by ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC/MS/MS) in 53 patients who were diagnosed with GDM, as well as 82 pregnant women with normal glucose tolerance (NGT) and 32 non-pregnant women. In the first trimester, pregnant women showed higher concentrations of C16:0, C18:1, C22:0, C24:1, and C24:0-Cer and lower levels of sphinganine (SPA) and sphingosine-1-phosphate (S1P) compared to non-pregnant women. During pregnancy, we observed significant changes in C16:0, C18:0, C18:1, and C24:1-Cer levels in the GDM group and C18:1 and C24:0-Cer in NGT. The GDM (pre-conversion) and NGT groups in the first trimester differed solely in the levels of C18:1-Cer (AUC = 0.702 p = 0.008), also considering glycemia. Thus, C18:1-Cer revealed its potential as a GDM biomarker. Sphingolipids are known to be a modulator of insulin resistance, and our results indicate that ceramide measurements in early pregnancy may help with GDM screening.
Collapse
Affiliation(s)
- Ilona Juchnicka
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.J.); (J.S.)
| | - Mariusz Kuźmicki
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.J.); (J.S.)
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Adam Krętowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland;
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Agnieszka Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Jacek Szamatowicz
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.J.); (J.S.)
| |
Collapse
|
60
|
Lee S, You H, Lee Y, Baik H, Paik J, Lee H, Park S, Shim J, Lee J, Hyun S. Intake of MPRO3 over 4 Weeks Reduces Glucose Levels and Improves Gastrointestinal Health and Metabolism. Microorganisms 2021; 10:microorganisms10010088. [PMID: 35056536 PMCID: PMC8780283 DOI: 10.3390/microorganisms10010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 01/01/2023] Open
Abstract
Human gut microbiota are involved in different metabolic processes, such as digestion and nutrient synthesis, among others. For the elderly, supplements are a major means of maintaining health and improving intestinal homeostasis. In this study, 51 elderly women were administered MPRO3 (n = 17), a placebo (n = 16), or both (MPRO3: 1 week, placebo: 3 weeks; n = 18) for 4 weeks. The fecal microbiota were analyzed by sequencing the 16S rRNA gene V3–V4 super-variable region. The dietary fiber intake increased, and glucose levels decreased with 4-week MPRO3 intake. Reflux, indigestion, and diarrhea syndromes gradually improved with MPRO3 intake, whereas constipation was maintained. The stool shape also improved. Bifidobacterium animalis, B. pseudolongum, Lactobacillus plantarum, and L. paracasei were relatively more abundant after 4 weeks of MPRO3 intake than in those subjects after a 1-week intake. Bifidobacterium and B. longum abundances increased after 1 week of MPRO3 intake but decreased when the intake was discontinued. Among different modules and pathways, all 10 modules analyzed showed a relatively high association with 4-week MPRO3 intake. The mineral absorption pathway and cortisol biosynthesis and secretion pathways correlated with the B. animalis and B. pseudolongum abundances at 4 weeks. Therefore, 4-week MPRO3 intake decreased the fasting blood glucose level and improved intestinal health and metabolism.
Collapse
Affiliation(s)
- Songhee Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea; (S.L.); (Y.L.)
| | - Heesang You
- Department of Senior Healthcare, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea;
| | - Yeongju Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea; (S.L.); (Y.L.)
| | - Haingwoon Baik
- Department of Biochemistry and Molecular Biology, Graduate School, Eulji University School of Medicine, Daejeon 34824, Korea;
| | - Jeankyung Paik
- Department of Food and Nutrition, Graduate School, Eulji University, Seongnam 13135, Korea;
| | - Hayera Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Korea; (H.L.); (S.P.); (J.S.); (J.L.)
| | - Soodong Park
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Korea; (H.L.); (S.P.); (J.S.); (J.L.)
| | - Jaejung Shim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Korea; (H.L.); (S.P.); (J.S.); (J.L.)
| | - Junglyoul Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Korea; (H.L.); (S.P.); (J.S.); (J.L.)
| | - Sunghee Hyun
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea; (S.L.); (Y.L.)
- Department of Senior Healthcare, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea;
- Correspondence: ; Tel.: +82-10-9412-8853
| |
Collapse
|
61
|
Tang C, Li S, Zhang K, Li J, Han Y, Zhao Q, Guo X, Qin Y, Yin J, Zhang J. Selenium Deficiency Induces Pathological Cardiac Lipid Metabolic Remodeling and Inflammation. Mol Nutr Food Res 2021; 66:e2100644. [PMID: 34932259 DOI: 10.1002/mnfr.202100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/09/2021] [Indexed: 11/10/2022]
Abstract
SCOPE Selenium (Se) disequilibrium is closely involved in many cardiac diseases, although its in vivo mechanism remains uncertain. Therefore, a pig model was created in order to generate a comprehensive picture of cardiac response to dietary Se deficiency. METHODS AND RESULTS A total of 24 pigs were divided into two equal groups, which were fed a diet with either 0.007 mg/kg Se or 0.3 mg/kg Se for 16 weeks. Se deficiency caused cardiac oxidative stress by blocking glutathione and thioredoxin systems and increased thioredoxin domain-containing protein S-nitrosylation. Energy production was disordered as free fatty acids were overloaded, the tricarboxylic acid cycle was strengthened, and three respiratory chain proteins enhanced S-nitrosylation. Excess free fatty acids led to increased synthesis of diacylglycerol, phosphatidylcholine, and phosphatidylethanolamine, where the latter two are vulnerable to oxidation and caused an increase in malondialdehyde. Moreover, increased palmitic acid enhanced de novo ceramide synthesis and accumulation. Additionally, Se deficiency initiated inflammation via cytosolic DNA-sensing pathways, which activated downstream interferon regulatory factor 7 and nuclear factor kappa B. CONCLUSIONS The present study identified a lipid metabolic vulnerability and inflammation initiation pathways via Se deficiency, which may provide targets for human redox imbalance-induced cardiac disease treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science and Technology of China Agricultural University, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kai Zhang
- College of Animal Science and Technology of Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunsheng Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoqing Guo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jingdong Yin
- College of Animal Science and Technology of China Agricultural University, Beijing, 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
62
|
Yang F, Wu SC, Ling ZX, Chao S, Zhang LJ, Yan XM, He L, Yu LM, Zhao LY. Altered Plasma Metabolic Profiles in Chinese Patients With Multiple Sclerosis. Front Immunol 2021; 12:792711. [PMID: 34975894 PMCID: PMC8715987 DOI: 10.3389/fimmu.2021.792711] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that leads to the demyelination of nerve axons. An increasing number of studies suggest that patients with MS exhibit altered metabolic profiles, which might contribute to the course of MS. However, the alteration of metabolic profiles in Chinese patients with MS and their potential roles in regulating the immune system remain elusive. In this study, we performed a global untargeted metabolomics approach in plasma samples from 22 MS-affected Chinese patients and 21 healthy subjects. A total of 42 differentially abundant metabolites (DAMs) belonging to amino acids, lipids, and carbohydrates were identified in the plasma of MS patients and compared with those in healthy controls. We observed an evident reduction in the levels of amino acids, such as L-tyrosine, L-isoleucine, and L-tryptophan, whereas there was a great increase in the levels of L-glutamic acid and L-valine in MS-affected patients. The levels of lipid and carbohydrate metabolites, such as sphingosine 1-phosphate and myo-inositol, were also reduced in patients with MS. In addition, the concentrations of proinflammatory cytokines, such as IL-17 and TNF-α, were significantly increased, whereas those of several anti-inflammatory cytokines and chemokines, such as IL-1ra, IL-7, and MIP-1α, were distinctly reduced in the plasma of MS patients compared with those in healthy subjects. Interestingly, some DAMs, such as L-tryptophan and sphingosine 1-phosphate, showed an evident negative correlation with changes in the level of TNF-α and IL-17, while tightly positively correlating with altered concentrations of anti-inflammatory cytokines and chemokines, such as MIP-1α and RANTES. Our results revealed that altered metabolomic profiles might contribute to the pathogenesis and course of MS disease by modulating immuno-inflammatory responses in the peripheral system, which is essential for eliciting autoimmune responses in the central nervous system, thus resulting in the progression of MS. This study provides potential clues for developing therapeutic strategies for MS in the near future.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Institutes for Shanghai Pudong Decoding Life, Research Center for Lin He Academician New Medicine, Shanghai, China
| | - Shao-chang Wu
- Department of Geriatrics and Clinical Laboratory, Lishui Second People’s Hospital, Lishui, China
| | - Zong-xin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Microbe & Host Health, Linyi University, Linyi, China
| | - Shan Chao
- Institutes for Shanghai Pudong Decoding Life, Research Center for Lin He Academician New Medicine, Shanghai, China
| | - Li-juan Zhang
- Department of Geriatrics and Clinical Laboratory, Lishui Second People’s Hospital, Lishui, China
| | - Xiu-mei Yan
- Department of Geriatrics and Clinical Laboratory, Lishui Second People’s Hospital, Lishui, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Li-mei Yu
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Long-you Zhao
- Department of Geriatrics and Clinical Laboratory, Lishui Second People’s Hospital, Lishui, China
| |
Collapse
|
63
|
Xie J, Liu M, Liu H, Jin Z, Guan F, Ge S, Yan J, Zheng M, Cai D, Liu J. Zeaxanthin ameliorates obesity by activating the β3-adrenergic receptor to stimulate inguinal fat thermogenesis and modulating the gut microbiota. Food Funct 2021; 12:12734-12750. [PMID: 34846398 DOI: 10.1039/d1fo02863d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stimulation of fat thermogenesis and modulation of the gut microbiota are promising therapeutic strategies against obesity. Zeaxanthin (ZEA), a carotenoid plant pigment, has been shown to prevent various diseases; however, the therapeutic mechanism for obesity remains unclear. Herein, whether ZEA improves obesity by activating the β3-adrenergic receptor (β3-AR) to stimulate white adipose tissue (WAT) thermogenesis and modulating the gut microbiota was investigated. C57BL6/N mice were fed a high-fat diet (HFD) supplemented with ZEA for 22 weeks. ZEA treatment reduced body weight, fat weight, adipocyte hypertrophy, liver weight, and lipid deposition, and improved dyslipidaemia, serum GPT, GOT, leptin, and irisin levels, glucose intolerance, and insulin resistance in HFD-fed mice. Mechanistically, ZEA treatment induced the expression of β3-AR and thermogenic factors, such as PRDM16, PGC-1α, and UCP1, in inguinal WAT (iWAT) and brown adipose tissue. ZEA treatment stimulated iWAT thermogenesis through the synergistic cooperation of key organelles, which manifested as an increased expression of lipid droplet degradation factors (ATGL, CGI-58 and pHSL), mitochondrial biogenesis factors (Sirt1, Nrf2, Tfam, Nampt and Cyt-C), peroxisomal biogenesis factors (Pex16, Pex19 and Pmp70), and β-oxidation factors (Cpt1, Cpt2, Acadm and Acox1). The thermogenic effect of ZEA was abolished by β3-AR antagonist (SR59230A) treatment. Additionally, dietary supplementation with ZEA reversed gut microbiota dysbiosis by regulating the abundance of Firmicutes, Clostridia, Proteobacteria, and Desulfovibrio, which were associated with the thermogenesis- and obesity-associated indices by Spearman's correlation analysis. Functional analysis of the gut microbiota indicated that ZEA treatment significantly enriched the lipid metabolism pathways. These results demonstrate that ZEA is a promising multi-target functional food for the treatment of obesity by activating β3-AR to stimulate iWAT thermogenesis, and modulating the gut microbiota.
Collapse
Affiliation(s)
- Jiahan Xie
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Zhibo Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Fengtao Guan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Sitong Ge
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jie Yan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
64
|
Sphingosine-1 Phosphate Lyase Regulates Sensitivity of Pancreatic Beta-Cells to Lipotoxicity. Int J Mol Sci 2021; 22:ijms221910893. [PMID: 34639233 PMCID: PMC8509761 DOI: 10.3390/ijms221910893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022] Open
Abstract
Elevated levels of free fatty acids (FFAs) have been related to pancreatic beta-cell failure in type 2 diabetes (T2DM), though the underlying mechanisms are not yet fully understood. FFAs have been shown to dysregulate formation of bioactive sphingolipids, such as ceramides and sphingosine-1 phosphate (S1P) in beta-cells. The aim of this study was to analyze the role of sphingosine-1 phosphate lyase (SPL), a key enzyme of the sphingolipid pathway that catalyzes an irreversible degradation of S1P, in the sensitivity of beta-cells to lipotoxicity. To validate the role of SPL in lipotoxicity, we modulated SPL expression in rat INS1E cells and in human EndoC-βH1 beta-cells. SPL overexpression in INS1E cells (INS1E-SPL), which are characterized by a moderate basal expression level of SPL, resulted in an acceleration of palmitate-mediated cell viability loss, proliferation inhibition and induction of oxidative stress. SPL overexpression affected the mRNA expression of ER stress markers and mitochondrial chaperones. In contrast to control cells, in INS1E-SPL cells no protective effect of oleate was detected. Moreover, Plin2 expression and lipid droplet formation were strongly reduced in OA-treated INS1E-SPL cells. Silencing of SPL in human EndoC-βH1 beta-cells, which are characterized by a significantly higher SPL expression as compared to rodent beta-cells, resulted in prevention of FFA-mediated caspase-3/7 activation. Our findings indicate that an adequate control of S1P degradation by SPL might be crucially involved in the susceptibility of pancreatic beta-cells to lipotoxicity.
Collapse
|
65
|
Liang Y, Tang Z, Jiang Y, Ai C, Peng J, Liu Y, Chen J, Xin X, Lei B, Zhang J, Cai Z. Lipid metabolism disorders associated with dioxin exposure in a cohort of Chinese male workers revealed by a comprehensive lipidomics study. ENVIRONMENT INTERNATIONAL 2021; 155:106665. [PMID: 34098336 DOI: 10.1016/j.envint.2021.106665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Dioxins, environmentally stable and ubiquitous, have been found to induce metabolic changes especially in lipids and be related to multiple diseases. However, limited study is available on lipid alternations related to human exposure to dioxins. This study aims to explore the serum lipidomic characterization and to understand the underlying mechanisms of adverse health risks associated with dioxin exposure. A lipidomic study integrating nontargeted lipidomics, and targeted free fatty acid (FFA) and acyl-coenzyme A (acyl-CoA) analyses were conducted to investigate the 94 serum samples from two groups of male workers with remarkably different dioxin concentrations. The obtained results exhibited distinct lipidomic signatures between the high and low exposed groups. A total of 37 lipids were identified with the significant changes. The results revealed that dioxin exposure caused accumulations of triglyceride (TG), ceramide (Cer) and sphingoid (So), remodeling of glycerophospholipid (GP), imbalanced FFA metabolism, as well as upregulation of platelet-activating factor (PAF). These findings implied the associations between dioxin exposure and potential adverse health risks including inflammation, apoptosis, cardiovascular diseases (CVDs), and liver diseases. This study is the first to explain the associations between dioxin exposure and health effects at the level of lipid metabolism.
Collapse
Affiliation(s)
- Yanshan Liang
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhi Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yousheng Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chunyan Ai
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jinling Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuan Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jinru Chen
- Songgang Preventive Health Center of Baoan District, Shenzhen, 518105, China
| | - Xiong Xin
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Bo Lei
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Zongwei Cai
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
66
|
Chen Q, Wang W, Xia MF, Lu YL, Bian H, Yu C, Li XY, Vadas MA, Gao X, Lin HD, Xia P. Identification of circulating sphingosine kinase-related metabolites for prediction of type 2 diabetes. J Transl Med 2021; 19:393. [PMID: 34530846 PMCID: PMC8447705 DOI: 10.1186/s12967-021-03066-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Sphingosine Kinase (SphK) that catalyzes sphingosine (Sph) to sphingosine 1-phosphate (S1P), plays a key role in both sphingolipid metabolism and cellular signaling. While SphK has been implicated in type 2 diabetes mellitus (T2DM), it is unexplored in humans. Herein, we investigated whether circulating SphK-related metabolites are associated with T2DM incidence in an established prospective cohort. METHODS Levels of SphK-related sphingolipid metabolites, including Sph, S1P, dihydrosphingosine (dhSph) and dihydro-S1P (dhS1P) in serum were measured by targeted-lipidomic analyses. By accessing to an established prospective cohort that involves a total of 2486 non-diabetic adults at baseline, 100 subjects who developed T2DM after a mean follow-up of 4.2-years, along with 100 control subjects matched strictly with age, sex, BMI and fasting glucose, were randomly enrolled for the present study. RESULTS Comparison with the control group, medians of serum dhS1P and dhS1P/dhSph ratio at baseline were elevated significantly prior to the onset of T2DM. Each SD increment of dhS1P and dhS1P/dhSph ratio was associated with 53.5% and 54.1% increased risk of incident diabetes, respectively. The predictive effect of circulating dhS1P and dhS1P/dhSph ratio on T2DM incidence was independent of conventional risk factors in multivariate regression models. Furthermore, combination of serum dhS1P and dhS1P/dhSph ratio with conventional clinical indices significantly improved the accuracy of T2DM prediction (AUROC, 0.726), especially for normoglycemic subjects (AUROC, 0.859). CONCLUSION Circulating levels of dhS1P and dhS1P/dhSph ratio are strongly associated with increased risk of T2DM, and could serve as a useful biomarker for prediction of incident T2DM in normoglycemic populations.
Collapse
Affiliation(s)
- Qi Chen
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ming-Feng Xia
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - You-Li Lu
- Central Laboratory, Xuhui Central Hospital, Shanghai, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chen Yu
- Central Laboratory, Xuhui Central Hospital, Shanghai, China
| | - Xiao-Ying Li
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Mathew A Vadas
- Centenary Institute, The University of Sydney, Sydney, Australia
| | - Xin Gao
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Huan-Dong Lin
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Pu Xia
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
67
|
Nakamura N, Honjo M, Yamagishi R, Kurano M, Yatomi Y, Watanabe S, Aihara M. Neuroprotective role of sphingolipid rheostat in excitotoxic retinal ganglion cell death. Exp Eye Res 2021; 208:108623. [PMID: 34022173 DOI: 10.1016/j.exer.2021.108623] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 01/09/2023]
Abstract
The glutamate excitotoxicity has been suggested as a factor involved in the loss of retinal neuronal cells, including retinal ganglion cell (RGC), in various retinal degenerative diseases including ischemia-reperfusion injury, diabetic retinopathy, and glaucoma. Excitotoxic RGC death is caused not only by direct damage to RGCs but also by indirect damage due to the inflammation of retinal glial cells. Sphingosine 1-phosphate (S1P) and ceramides are bioactive sphingolipids which have been shown to possess important physiological roles in cellular survival and apoptosis, and the balance between S1P and ceramide, sphingolipid rheostat, has been suggested to be important for determining cellular fate. Therefore, we conducted the present study to clarify the neuroprotective role of sphingolipid rheostat in excitotoxic RGC death in vivo and in vitro. Acute RGC death was induced by intravitreal N-methyl-d-aspartate (NMDA) injection in the mouse. The mRNA expression of sphingosine kinase (SphK1/SphK2) was examined by quantitative real-time polymerase chain reaction (qRT-PCR). The expressions of SphK1/2, S1P, S1P-receptor (S1PR), glial fibrillary acidic protein (GFAP), Iba1, and CD31 were examined by immunostaining. Retinal sphingolipids and ceramides were quantified by liquid chromatography with tandem mass spectrometry. The neuroprotective effect of the sphingosine kinase inhibitor (SKI) on RGC death was assessed by RGC count and Terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. Further, the in vitro effect of SKI was investigated using rat primary cultured RGCs and glial cells. In addition, MG5 cells and A1 cells, which were mouse microglia and astrocyte cell-line, were also used. The expression of cleaved-caspase-3, GFAP, and Iba1 in RGCs, primary glial cells, MG5 cells, and A1 cells was assessed by immunostaining. NMDA injection resulted in mRNA upregulation of SphK1; however, SphK2 was reduced in the mouse retina. SphKs, S1P, S1PR1, S1PR2, and GFAP expression increased in the early-stage NMDA group, whereas S1P and GFAP were higher in the late-stage NMDA + SKI group. In the NMDA group, S1P expression was lower whereas sphingosine, C20, C22, and C24 ceramides showed higher levels. The proportion of very-long-chain ceramide was elevated in the NMDA group but reduced in the NMDA + SKI group. SKI treatment significantly increased RGC survival in retinal wholemount analysis and decreased apoptosis in the ganglion cell layer and inner nuclear layer. In vitro, SKI suppressed excitotoxic RGC death, cleaved-caspase-3 expression, and activated glial cells. The findings in the present study provide the first evidence demonstrating the involvement of sphingolipid rheostat in the neuroprotection against excitotoxic RGC death. Therefore, regulation of sphingolipid rheostat might serve as a potential therapy for retinal degenerative disease.
Collapse
Affiliation(s)
- Natsuko Nakamura
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Reiko Yamagishi
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
68
|
Xiang H, Jin S, Tan F, Xu Y, Lu Y, Wu T. Physiological functions and therapeutic applications of neutral sphingomyelinase and acid sphingomyelinase. Biomed Pharmacother 2021; 139:111610. [PMID: 33957567 DOI: 10.1016/j.biopha.2021.111610] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/15/2022] Open
Abstract
Sphingomyelin (SM) can be converted into ceramide (Cer) by neutral sphingomyelinase (NSM) and acid sphingomyelinase (ASM). Cer is a second messenger of lipids and can regulate cell growth and apoptosis. Increasing evidence shows that NSM and ASM play key roles in many processes, such as apoptosis, immune function and inflammation. Therefore, NSM and ASM have broad prospects in clinical treatments, especially in cancer, cardiovascular diseases (such as atherosclerosis), nervous system diseases (such as Alzheimer's disease), respiratory diseases (such as chronic obstructive pulmonary disease) and the phenotype of dwarfisms in adolescents, playing a complex regulatory role. This review focuses on the physiological functions of NSM and ASM and summarizes their roles in certain diseases and their potential applications in therapy.
Collapse
Affiliation(s)
- Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenglang Tan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
69
|
Song JH, Kim GT, Park KH, Park WJ, Park TS. Bioactive Sphingolipids as Major Regulators of Coronary Artery Disease. Biomol Ther (Seoul) 2021; 29:373-383. [PMID: 33903284 PMCID: PMC8255146 DOI: 10.4062/biomolther.2020.218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is the deposition of plaque in the main arteries. It is an inflammatory condition involving the accumulation of macrophages and various lipids (low-density lipoprotein [LDL] cholesterol, ceramide, S1P). Moreover, endothelial cells, macrophages, leukocytes, and smooth muscle cells are the major players in the atherogenic process. Sphingolipids are now emerging as important regulators in various pathophysiological processes, including the atherogenic process. Various sphingolipids exist, such as the ceramides, ceramide-1-phosphate, sphingosine, sphinganine, sphingosine-1-phosphate (S1P), sphingomyelin, and hundreds of glycosphingolipids. Among these, ceramides, glycosphingolipids, and S1P play important roles in the atherogenic processes. The atherosclerotic plaque consists of higher amounts of ceramide, glycosphingolipids, and sphingomyelin. The inhibition of the de novo ceramide biosynthesis reduces the development of atherosclerosis. S1P regulates atherogenesis via binding to the S1P receptor (S1PR). Among the five S1PRs (S1PR1-5), S1PR1 and S1PR3 mainly exert anti-atherosclerotic properties. This review mainly focuses on the effects of ceramide and S1P via the S1PR in the development of atherosclerosis. Moreover, it discusses the recent findings and potential therapeutic implications in atherosclerosis.
Collapse
Affiliation(s)
- Jae-Hwi Song
- Department of Life Science, Gachon University, Sungnam 13120, Republic of Korea
| | - Goon-Tae Kim
- Department of Life Science, Gachon University, Sungnam 13120, Republic of Korea
| | - Kyung-Ho Park
- Department of Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam 13120, Republic of Korea
| |
Collapse
|
70
|
Clemens Z, Sivakumar S, Pius A, Sahu A, Shinde S, Mamiya H, Luketich N, Cui J, Dixit P, Hoeck JD, Kreuz S, Franti M, Barchowsky A, Ambrosio F. The biphasic and age-dependent impact of klotho on hallmarks of aging and skeletal muscle function. eLife 2021; 10:e61138. [PMID: 33876724 PMCID: PMC8118657 DOI: 10.7554/elife.61138] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is accompanied by disrupted information flow, resulting from accumulation of molecular mistakes. These mistakes ultimately give rise to debilitating disorders including skeletal muscle wasting, or sarcopenia. To derive a global metric of growing 'disorderliness' of aging muscle, we employed a statistical physics approach to estimate the state parameter, entropy, as a function of genes associated with hallmarks of aging. Escalating network entropy reached an inflection point at old age, while structural and functional alterations progressed into oldest-old age. To probe the potential for restoration of molecular 'order' and reversal of the sarcopenic phenotype, we systemically overexpressed the longevity protein, Klotho, via AAV. Klotho overexpression modulated genes representing all hallmarks of aging in old and oldest-old mice, but pathway enrichment revealed directions of changes were, for many genes, age-dependent. Functional improvements were also age-dependent. Klotho improved strength in old mice, but failed to induce benefits beyond the entropic tipping point.
Collapse
Affiliation(s)
- Zachary Clemens
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
| | - Sruthi Sivakumar
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Abish Pius
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Computational & Systems Biology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Amrita Sahu
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
| | - Sunita Shinde
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
| | - Hikaru Mamiya
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Nathaniel Luketich
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Jian Cui
- Department of Computational & Systems Biology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Purushottam Dixit
- Department of Physics, University of FloridaGainesvilleUnited States
| | - Joerg D Hoeck
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Sebastian Kreuz
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Michael Franti
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
| | - Fabrisia Ambrosio
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
- McGowan Institute for Regenerative Medicine, University of PittsburghPittsburghUnited States
| |
Collapse
|
71
|
Schwalm S, Beyer S, Hafizi R, Trautmann S, Geisslinger G, Adams DR, Pyne S, Pyne N, Schaefer L, Huwiler A, Pfeilschifter J. Validation of highly selective sphingosine kinase 2 inhibitors SLM6031434 and HWG-35D as effective anti-fibrotic treatment options in a mouse model of tubulointerstitial fibrosis. Cell Signal 2020; 79:109881. [PMID: 33301900 DOI: 10.1016/j.cellsig.2020.109881] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 01/17/2023]
Abstract
Renal fibrosis is characterized by chronic inflammation and excessive accumulation of extracellular matrix and progressively leads to functional insufficiency and even total loss of kidney function. In this study we investigated the anti-fibrotic potential of two highly selective and potent SK2 inhibitors, SLM6031434 and HWG-35D, in unilateral ureter obstruction (UUO), a model for progressive renal fibrosis, in mice. In both cases, treatment with SLM6031434 or HWG-35D resulted in an attenuated fibrotic response to UUO in comparison to vehicle-treated mice as demonstrated by reduced collagen accumulation and a decreased expression of collagen-1 (Col1), fibronectin-1 (FN-1), connective tissue growth factor (CTGF), and α-smooth muscle actin (α-SMA). Similar to our previous study in Sphk2-/- mice, we found an increased protein expression of Smad7, a negative regulator of the pro-fibrotic TGFβ/Smad signalling cascade, accompanied by a strong accumulation of sphingosine in SK2 inhibitor-treated kidneys. Treatment of primary renal fibroblasts with SLM6031434 or HWG-35D dose-dependently increased Smad7 expression and ameliorated the expression of Col1, FN-1 and CTGF. In summary, these data prove the anti-fibrotic potential of SK2 inhibition in a mouse model of renal fibrosis, thereby validating SK2 as pharmacological target for the treatment of fibrosis in chronic kidney disease.
Collapse
Affiliation(s)
- Stephanie Schwalm
- Pharmazentrum Frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Universitätsklinikum and Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Sandra Beyer
- Pharmazentrum Frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Universitätsklinikum and Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Redona Hafizi
- Institute of Pharmacology, University of Bern, Inselspital INO-F, CH-3010 Bern, Switzerland
| | - Sandra Trautmann
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Universitätsklinikum and Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Universitätsklinikum and Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - David R Adams
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Nigel Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Universitätsklinikum and Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Andrea Huwiler
- Institute of Pharmacology, University of Bern, Inselspital INO-F, CH-3010 Bern, Switzerland
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Universitätsklinikum and Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
72
|
Xie J, Shao Y, Liu J, Cui M, Xiao X, Gong J, Xue B, Zhang Q, Hu X, Duan H. K27Q/K29Q mutations in sphingosine kinase 1 attenuate high-fat diet induced obesity and altered glucose homeostasis in mice. Sci Rep 2020; 10:20038. [PMID: 33208918 PMCID: PMC7676274 DOI: 10.1038/s41598-020-77096-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity and its associated metabolic disorders are increasingly impacting public health worldwide. Sphingosine kinase 1 (Sphk1) is a critical enzyme in sphingolipid metabolism that has been implicated in various metabolic syndromes. In this study, we developed a mouse model constitutively expressing pseudoacetylated mouse Sphk1 (QSPHK1) to study its role in regulating glucose and lipid metabolism. The results showed that QSPHK1 mice gained less body weight than wide type (WT) mice on a high-fat diet, and QSPHK1 mice had improved glucolipid metabolism and insulin. Moreover, QSPHK1 mice had alleviated hepatic triglyceride accumulation and had high-fat-diet-induced hepatic steatosis that occurred as a result of reduced lipogenesis and enhanced fatty acid oxidation, which were mediated by the AMPK/ACC axis and the FGF21/adiponectin axis. Collectively, this study provided evidence that the K27Q/K29Q mutations of Sphk1 could have a protective role in preventing obesity and the related metabolic diseases. Hence, our results contribute to further understanding of the biological functions of Sphk1, which has great pharmaceutical implications.
Collapse
Affiliation(s)
- Jing Xie
- Key Laboratory of Experimental Hematology, Beijing Institute of Radiation Medicine (BIRM), No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Yong Shao
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology (BIB), No. 20, Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Jin Liu
- Key Laboratory of Experimental Hematology, Beijing Institute of Radiation Medicine (BIRM), No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Meilan Cui
- Key Laboratory of Experimental Hematology, Beijing Institute of Radiation Medicine (BIRM), No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Xiuxiao Xiao
- Key Laboratory of Experimental Hematology, Beijing Institute of Radiation Medicine (BIRM), No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Jingbo Gong
- Key Laboratory of Experimental Hematology, Beijing Institute of Radiation Medicine (BIRM), No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Binghua Xue
- Key Laboratory of Experimental Hematology, Beijing Institute of Radiation Medicine (BIRM), No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Qunwei Zhang
- Key Laboratory of Experimental Hematology, Beijing Institute of Radiation Medicine (BIRM), No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Xianwen Hu
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology (BIB), No. 20, Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Haifeng Duan
- Key Laboratory of Experimental Hematology, Beijing Institute of Radiation Medicine (BIRM), No. 27, Taiping Road, Haidian District, Beijing, 100850, China.
| |
Collapse
|
73
|
Millner A, Atilla-Gokcumen GE. Lipid Players of Cellular Senescence. Metabolites 2020; 10:metabo10090339. [PMID: 32839400 PMCID: PMC7570155 DOI: 10.3390/metabo10090339] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 01/10/2023] Open
Abstract
Lipids are emerging as key players of senescence. Here, we review the exciting new findings on the diverse roles of lipids in cellular senescence, most of which are enabled by the advancements in omics approaches. Senescence is a cellular process in which the cell undergoes growth arrest while retaining metabolic activity. At the organismal level, senescence contributes to organismal aging and has been linked to numerous diseases. Current research has documented that senescent cells exhibit global alterations in lipid composition, leading to extensive morphological changes through membrane remodeling. Moreover, senescent cells adopt a secretory phenotype, releasing various components to their environment that can affect the surrounding tissue and induce an inflammatory response. All of these changes are membrane and, thus, lipid related. Our work, and that of others, has revealed that fatty acids, sphingolipids, and glycerolipids are involved in the initiation and maintenance of senescence and its associated inflammatory components. These studies opened up an exciting frontier to investigate the deeper mechanistic understanding of the regulation and function of these lipids in senescence. In this review, we will provide a comprehensive snapshot of the current state of the field and share our enthusiasm for the prospect of potential lipid-related protein targets for small-molecule therapy in pathologies involving senescence and its related inflammatory phenotypes.
Collapse
|
74
|
Sphingolipids in Type 1 Diabetes: Focus on Beta-Cells. Cells 2020; 9:cells9081835. [PMID: 32759843 PMCID: PMC7465050 DOI: 10.3390/cells9081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022] Open
Abstract
Type 1 diabetes (T1DM) is a chronic autoimmune disease, with a strong genetic background, leading to a gradual loss of pancreatic beta-cells, which secrete insulin and control glucose homeostasis. Patients with T1DM require life-long substitution with insulin and are at high risk for development of severe secondary complications. The incidence of T1DM has been continuously growing in the last decades, indicating an important contribution of environmental factors. Accumulating data indicates that sphingolipids may be crucially involved in T1DM development. The serum lipidome of T1DM patients is characterized by significantly altered sphingolipid composition compared to nondiabetic, healthy probands. Recently, several polymorphisms in the genes encoding the enzymatic machinery for sphingolipid production have been identified in T1DM individuals. Evidence gained from studies in rodent islets and beta-cells exposed to cytokines indicates dysregulation of the sphingolipid biosynthetic pathway and impaired function of several sphingolipids. Moreover, a number of glycosphingolipids have been suggested to act as beta-cell autoantigens. Studies in animal models of autoimmune diabetes, such as the Non Obese Diabetic (NOD) mouse and the LEW.1AR1-iddm (IDDM) rat, indicate a crucial role of sphingolipids in immune cell trafficking, islet infiltration and diabetes development. In this review, the up-to-date status on the findings about sphingolipids in T1DM will be provided, the under-investigated research areas will be identified and perspectives for future studies will be given.
Collapse
|
75
|
Xu T, Miao J, Chen Y, Yin D, Hu S, Sheng GD. The long-term environmental risks from the aging of organochlorine pesticide lindane. ENVIRONMENT INTERNATIONAL 2020; 141:105778. [PMID: 32416373 DOI: 10.1016/j.envint.2020.105778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Although increased contact time (aging) of pesticides in the soil decreases their bioavailability, this does not mean that the bound residues formed during the aging process pose fewer risk to the soil environment. Here the earthworm Eisenia fetida was exposed to organochlorine pesticide lindane in soil under different durations of lindane aging and exposure. The results of de novo RNA sequencing followed by molecular and biochemical validations demonstrated the aged lindane showed a different tendency to disrupt acetylcholine (ACh) transmission with the effects of fresh lindane to gamma-aminobutyric acid. Using own-developed earthworm activity test, we confirmed aged lindane prompted earthworms to exclusively exhibit a significant hypoactivity in locomotion, which could be explained by the inhibition of Ach system. This study suggested that the toxicity of pesticides would not depend solely on their free state components, and the awareness of long-term environmental risks from the bound states needs to be raised.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Juanjuan Miao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yawen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - G Daniel Sheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
76
|
Kim SJ, Miller B, Mehta HH, Xiao J, Wan J, Arpawong TE, Yen K, Cohen P. The mitochondrial-derived peptide MOTS-c is a regulator of plasma metabolites and enhances insulin sensitivity. Physiol Rep 2020; 7:e14171. [PMID: 31293078 PMCID: PMC6640593 DOI: 10.14814/phy2.14171] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
MOTS‐c is an exercise mimetic and improves insulin sensitivity in aged and diet‐induced obese mice. Although plasma markers are good markers for the metabolic condition, whether MOTS‐c changes plasma markers in diet‐induced obese mice has not been examined. Here, we used an unbiased metabolomics approach to examine the effect of MOTS‐c on plasma markers of metabolic dysfunction. We found that three pathways – sphingolipid metabolism, monoacylglycerol metabolism, and dicarboxylate metabolism – were reduced in MOTS‐c–injected mice. Interestingly, these pathways are upregulated in obese and T2D models. MOTS‐c improves insulin sensitivity and increases beta‐oxidation to prevent fat accumulation in DIO mice through these pathways. These results provide us a better understanding of the mechanism of how MOTS‐c improves insulin sensitivity and reduces the body weight and fatty liver and opens a new venue for further study.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Thalida E Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| |
Collapse
|
77
|
Rohrbach TD, Boyd AE, Grizzard PJ, Spiegel S, Allegood J, Lima S. A simple method for sphingolipid analysis of tissues embedded in optimal cutting temperature compound. J Lipid Res 2020; 61:953-967. [PMID: 32341007 PMCID: PMC7269760 DOI: 10.1194/jlr.d120000809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
MS-assisted lipidomic tissue analysis is a valuable tool to assess sphingolipid metabolism dysfunction in disease. These analyses can reveal potential pharmacological targets or direct mechanistic studies to better understand the molecular underpinnings and influence of sphingolipid metabolism alterations on disease etiology. But procuring sufficient human tissues for adequately powered studies can be challenging. Therefore, biorepositories, which hold large collections of cryopreserved human tissues, are an ideal retrospective source of specimens. However, this resource has been vastly underutilized by lipid biologists, as the components of OCT compound used in cryopreservation are incompatible with MS analyses. Here, we report results indicating that OCT compound also interferes with protein quantification assays, and that the presence of OCT compound impacts the quantification of extracted sphingolipids by LC-ESI-MS/MS. We developed and validated a simple and inexpensive method that removes OCT compound from OCT compound-embedded tissues. Our results indicate that removal of OCT compound from cryopreserved tissues does not significantly affect the accuracy of sphingolipid measurements with LC-ESI-MS/MS. We used the validated method to analyze sphingolipid alterations in tumors compared with normal adjacent uninvolved lung tissues from individuals with lung cancer and to determine the long-term stability of sphingolipids in OCT compound-cryopreserved normal lung tissues. We show that lung cancer tumors have significantly altered sphingolipid profiles and that sphingolipids are stable for up to 16 years in OCT compound-cryopreserved normal lung tissues. This validated sphingolipidomic OCT compound-removal protocol should be a valuable addition to the lipid biologist's toolbox.
Collapse
Affiliation(s)
- Timothy D Rohrbach
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298
| | - April E Boyd
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | | | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298; Virginia Commonwealth University Lipidomics/Metabolomics Shared Resource, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Santiago Lima
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284; Virginia Commonwealth University Massey Cancer Center, Richmond, VA 23298. mailto:
| |
Collapse
|
78
|
Fernández-García M, Rey-Stolle F, Boccard J, Reddy VP, García A, Cumming BM, Steyn AJC, Rudaz S, Barbas C. Comprehensive Examination of the Mouse Lung Metabolome Following Mycobacterium tuberculosis Infection Using a Multiplatform Mass Spectrometry Approach. J Proteome Res 2020; 19:2053-2070. [PMID: 32285670 PMCID: PMC7199213 DOI: 10.1021/acs.jproteome.9b00868] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Indexed: 02/08/2023]
Abstract
The mechanisms whereby Mycobacterium tuberculosis (Mtb) rewires the host metabolism in vivo are surprisingly unexplored. Here, we used three high-resolution mass spectrometry platforms to track altered lung metabolic changes associated with Mtb infection of mice. The multiplatform data sets were merged using consensus orthogonal partial least squares-discriminant analysis (cOPLS-DA), an algorithm that allows for the joint interpretation of the results from a single multivariate analysis. We show that Mtb infection triggers a temporal and progressive catabolic state to satisfy the continuously changing energy demand to control infection. This causes dysregulation of metabolic and oxido-reductive pathways culminating in Mtb-associated wasting. Notably, high abundances of trimethylamine-N-oxide (TMAO), produced by the host from the bacterial metabolite trimethylamine upon infection, suggest that Mtb could exploit TMAO as an electron acceptor under anaerobic conditions. Overall, these new pathway alterations advance our understanding of the link between Mtb pathogenesis and metabolic dysregulation and could serve as a foundation for new therapeutic intervention strategies. Mass spectrometry data has been deposited in the Metabolomics Workbench repository (data-set identifier: ST001328).
Collapse
Affiliation(s)
- Miguel Fernández-García
- Centro
de Metabolómica y Bioanálisis (CEMBIO), Facultad de
Farmacia, Universidad San Pablo-CEU, CEU
Universities, Urbanización Montepríncipe, Boadilla del Monte 28660, Spain
| | - Fernanda Rey-Stolle
- Centro
de Metabolómica y Bioanálisis (CEMBIO), Facultad de
Farmacia, Universidad San Pablo-CEU, CEU
Universities, Urbanización Montepríncipe, Boadilla del Monte 28660, Spain
| | - Julien Boccard
- School
of Pharmaceutical Sciences, University of
Lausanne and University of Geneva, Geneva 1211, Switzerland
| | - Vineel P. Reddy
- Department
of Microbiology, University of Alabama at
Birmingham, Birmingham, Alabama 35294, United States
| | - Antonia García
- Centro
de Metabolómica y Bioanálisis (CEMBIO), Facultad de
Farmacia, Universidad San Pablo-CEU, CEU
Universities, Urbanización Montepríncipe, Boadilla del Monte 28660, Spain
| | | | - Adrie J. C. Steyn
- Department
of Microbiology, University of Alabama at
Birmingham, Birmingham, Alabama 35294, United States
- Africa
Health Research Institute, Durban 4001, South Africa
- UAB
Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Serge Rudaz
- School
of Pharmaceutical Sciences, University of
Lausanne and University of Geneva, Geneva 1211, Switzerland
| | - Coral Barbas
- Centro
de Metabolómica y Bioanálisis (CEMBIO), Facultad de
Farmacia, Universidad San Pablo-CEU, CEU
Universities, Urbanización Montepríncipe, Boadilla del Monte 28660, Spain
| |
Collapse
|
79
|
Altered Sphingolipids Metabolism Damaged Mitochondrial Functions: Lessons Learned From Gaucher and Fabry Diseases. J Clin Med 2020; 9:jcm9041116. [PMID: 32295103 PMCID: PMC7230936 DOI: 10.3390/jcm9041116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Sphingolipids represent a class of bioactive lipids that modulate the biophysical properties of biological membranes and play a critical role in cell signal transduction. Multiple studies have demonstrated that sphingolipids control crucial cellular functions such as the cell cycle, senescence, autophagy, apoptosis, cell migration, and inflammation. Sphingolipid metabolism is highly compartmentalized within the subcellular locations. However, the majority of steps of sphingolipids metabolism occur in lysosomes. Altered sphingolipid metabolism with an accumulation of undigested substrates in lysosomes due to lysosomal enzyme deficiency is linked to lysosomal storage disorders (LSD). Trapping of sphingolipids and their metabolites in the lysosomes inhibits lipid recycling, which has a direct effect on the lipid composition of cellular membranes, including the inner mitochondrial membrane. Additionally, lysosomes are not only the house of digestive enzymes, but are also responsible for trafficking organelles, sensing nutrients, and repairing mitochondria. However, lysosomal abnormalities lead to alteration of autophagy and disturb the energy balance and mitochondrial function. In this review, an overview of mitochondrial function in cells with altered sphingolipid metabolism will be discussed focusing on the two most common sphingolipid disorders, Gaucher and Fabry diseases. The review highlights the status of mitochondrial energy metabolism and the regulation of mitochondria-autophagy-lysosome crosstalk.
Collapse
|
80
|
Wang X, Wang Y, Xu J, Xue C. Sphingolipids in food and their critical roles in human health. Crit Rev Food Sci Nutr 2020; 61:462-491. [PMID: 32208869 DOI: 10.1080/10408398.2020.1736510] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sphingolipids (SLs) are ubiquitous structural components of cell membranes and are essential for cell functions under physiological conditions or during disease progression. Abundant evidence supports that SLs and their metabolites, including ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine (So), sphingosine-1-phosphate (S1P), are signaling molecules that regulate a diverse range of cellular processes and human health. However, there are limited reviews on the emerging roles of exogenous dietary SLs in human health. In this review, we discuss the ubiquitous presence of dietary SLs, highlighting their structures and contents in foodstuffs, particularly in sea foods. The digestion and metabolism of dietary SLs is also discussed. Focus is given to the roles of SLs in both the etiology and prevention of diseases, including bacterial infection, cancers, neurogenesis and neurodegenerative diseases, skin integrity, and metabolic syndrome (MetS). We propose that dietary SLs represent a "functional" constituent as emerging strategies for improving human health. Gaps in research that could be of future interest are also discussed.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
81
|
Sukocheva OA, Furuya H, Ng ML, Friedemann M, Menschikowski M, Tarasov VV, Chubarev VN, Klochkov SG, Neganova ME, Mangoni AA, Aliev G, Bishayee A. Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target. Pharmacol Ther 2020; 207:107464. [PMID: 31863815 DOI: 10.1016/j.pharmthera.2019.107464] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory gastrointestinal (GI) diseases and malignancies are associated with growing morbidity and cancer-related mortality worldwide. GI tumor and inflammatory cells contain activated sphingolipid-metabolizing enzymes, including sphingosine kinase 1 (SphK1) and SphK2, that generate sphingosine-1-phosphate (S1P), a highly bioactive compound. Many inflammatory responses, including lymphocyte trafficking, are directed by circulatory S1P, present in high concentrations in both the plasma and the lymph of cancer patients. High fat and sugar diet, disbalanced intestinal flora, and obesity have recently been linked to activation of inflammation and SphK/S1P/S1P receptor (S1PR) signaling in various GI pathologies, including cancer. SphK1 overexpression and activation facilitate and enhance the development and progression of esophageal, gastric, and colon cancers. SphK/S1P axis, a mediator of inflammation in the tumor microenvironment, has recently been defined as a target for the treatment of GI disease states, including inflammatory bowel disease and colitis. Several SphK1 inhibitors and S1PR antagonists have been developed as novel anti-inflammatory and anticancer agents. In this review, we analyze the mechanisms of SphK/S1P signaling in GI tissues and critically appraise recent studies on the role of SphK/S1P/S1PR in inflammatory GI disorders and cancers. The potential role of SphK/S1PR inhibitors in the prevention and treatment of inflammation-mediated GI diseases, including GI cancer, is also evaluated.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Hideki Furuya
- Department of Surgery, Samuel Oschin Cancer Center Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mei Li Ng
- Advanced Medical and Dental Institute, University Sains 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Vadim V Tarasov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Vladimir N Chubarev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, South Australia 5042, Australia
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia; GALLY International Research Institute, San Antonio, TX 78229, USA; Research Institute of Human Morphology, Moscow 117418, Russia
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
82
|
Ono JG, Kim BI, Zhao Y, Christos PJ, Tesfaigzi Y, Worgall TS, Worgall S. Decreased sphingolipid synthesis in children with 17q21 asthma-risk genotypes. J Clin Invest 2020; 130:921-926. [PMID: 31929190 PMCID: PMC6994114 DOI: 10.1172/jci130860] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Risk for childhood asthma is conferred by alleles within the 17q21 locus affecting ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) expression. ORMDL3 inhibits sphingolipid de novo synthesis. Although the effects of 17q21 genotypes on sphingolipid synthesis in human asthma remain unclear, both decreased sphingolipid synthesis and ORMDL3 overexpression are linked to airway hyperreactivity. To characterize the relationship of genetic asthma susceptibility with sphingolipid synthesis, we analyzed asthma-associated 17q21 genotypes (rs7216389, rs8076131, rs4065275, rs12603332, and rs8067378) in both children with asthma and those without asthma, quantified plasma and whole-blood sphingolipids, and assessed sphingolipid de novo synthesis in peripheral blood cells by measuring the incorporation of stable isotope-labeled serine (substrate) into sphinganine and sphinganine-1-phosphate. Whole-blood dihydroceramides and ceramides were decreased in subjects with the 17q21 asthma-risk alleles rs7216389 and rs8076131. Children with nonallergic asthma had lower dihydroceramides, ceramides, and sphingomyelins than did controls. Children with allergic asthma had higher dihydroceramides, ceramides, and sphingomyelins compared with children with nonallergic asthma. Additionally, de novo sphingolipid synthesis was lower in children with asthma compared with controls. These findings connect genetic 17q21 variations that are associated with asthma risk and higher ORMDL3 expression to lower sphingolipid synthesis in humans. Altered sphingolipid synthesis may therefore be a critical factor in asthma pathogenesis and may guide the development of future therapeutics.
Collapse
Affiliation(s)
- Jennie G. Ono
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Benjamin I. Kim
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Yize Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Paul J. Christos
- Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, New York, USA
| | - Yohannes Tesfaigzi
- Department of Pulmonary and Critical Care Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Tilla S. Worgall
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
83
|
Scuruchi M, Potì F, Rodríguez-Carrio J, Campo GM, Mandraffino G. Biglycan and atherosclerosis: Lessons from high cardiovascular risk conditions. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158545. [PMID: 31672572 DOI: 10.1016/j.bbalip.2019.158545] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/26/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis (ATH) is a chronic, dynamic, evolutive process involving morphological and structural subversion of artery walls, leading to the formation of atherosclerotic plaques. ATH generally initiates during the childhood, occurring as a result of a number of changes in the intima tunica and in the media of arteries. A key event occurring during the pathobiology of ATH is the accumulation of lipoproteins in the sub-intimal spaces mediated by extracellular matrix (ECM) molecules, especially by the chondroitin sulfate/dermatan sulfate (CS/DS) -containing proteoglycans (CS/DSPGs). Among them, the proteoglycan biglycan (BGN) is critically involved in the onset and progression of ATH and evidences show that BGN represents the missing link between the pro-atherogenic status induced by both traditional and non-traditional cardiovascular risk factors and the development and progression of vascular damage. In the light of these findings, the role of BGN in dyslipidemia, hypertension, cigarette smoking, diabetes, chronic kidney disease and inflammatory status is briefly analyzed and discussed in order to shed new light on the underlying mechanisms governing the association between BGN and ATH.
Collapse
Affiliation(s)
- Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Potì
- Department of Medicine and Surgery-Unit of Neurosciences, University of Parma, Parma, Italy
| | - Javier Rodríguez-Carrio
- Area of Immunology, Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Oviedo, Spain; Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación Nefrológica, REDinREN Del ISCIII, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| |
Collapse
|
84
|
Arita N, Sakamoto R, Tani M. Mitochondrial reactive oxygen species-mediated cytotoxicity of intracellularly accumulated dihydrosphingosine in the yeast Saccharomyces cerevisiae. FEBS J 2020; 287:3427-3448. [PMID: 31944552 DOI: 10.1111/febs.15211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/20/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
In eukaryotic cells, the content of sphingoid long-chain bases (LCBs) is generally much lower than that of complex sphingolipids and ceramides, and the quantitative balance of these metabolites in cells is tightly regulated. In the budding yeast Saccharomyces cerevisiae, it has been demonstrated that exogenously added phytosphingosine (PHS) causes a strong growth defect in tryptophan auxotrophic cells, due to delayed uptake of tryptophan from the culture medium; however, the growth inhibitory effect of dihydrosphingosine (DHS) is less than that of PHS in tryptophan auxotrophic cells. Here, we found that, in tryptophan-prototrophic yeast cells, exogenously added DHS is much more toxic than PHS. Exogenously added DHS is converted to PHS, Cers, or LCB 1-phosphates through the action of sphingolipid C4-hydroxylase, Cer synthases, or LCB kinases, respectively; however, suppression of further metabolism of DHS in cells resulted in an increase in the growth inhibitory activity of exogenously added DHS, indicating that DHS itself is causative of the cytotoxicity. The cytotoxicity of DHS was not mediated by Pkh1/2, Sch9, and Ypk1/2 kinases, intracellular targets of LCBs. DHS treatment caused an increase in mitochondria-derived reactive oxygen species, and the cytotoxic effect of DHS was suppressed by depletion of mitochondrial DNA or antioxidant N-acetylcysteine, but enhanced by deletion of SOD1 and SOD2 encoding superoxide dismutases. Thus, collectively, these results indicated that intracellularly accumulated DHS has mitochondrial reactive oxygen species-mediated cytotoxic activity, which is much more potent than that of PHS.
Collapse
Affiliation(s)
- Nobuaki Arita
- Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Risa Sakamoto
- Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Motohiro Tani
- Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
85
|
Presa N, Gomez-Larrauri A, Dominguez-Herrera A, Trueba M, Gomez-Muñoz A. Novel signaling aspects of ceramide 1-phosphate. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158630. [PMID: 31958571 DOI: 10.1016/j.bbalip.2020.158630] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/12/2022]
Abstract
The bioactive sphingolipid ceramide 1-phosphate (C1P) regulates key physiologic cell functions and is implicated in a number of metabolic alterations and pathological processes. Initial studies using different types of fibroblasts and monocytes/macrophages revealed that C1P was mitogenic and that it promoted cell survival through inhibition of apoptosis. Subsequent studies implicated C1P in inflammatory responses with a specific role as pro-inflammatory agent. Specifically, C1P potently stimulated cytosolic phospholipase A2 (cPLA2) resulting in elevation of arachidonic acid and pro-inflammatory eicosanoid levels. However, increasing experimental evidence suggests that C1P can also exert anti-inflammatory actions in some cell types and tissues. Specifically, it has been demonstrated that C1P inhibits the release of pro-inflammatory cytokines and blocks activation of the pro-inflammatory transcription factor NF-κB in some cell types. Moreover, C1P was shown to increase the release of anti-inflammatory interleukin-10 in macrophages, and to overcome airway inflammation and reduce lung emphysema in vivo. Noteworthy, C1P stimulated cell migration, an action that is associated with diverse physiological cell functions, as well as with inflammatory responses and tumor dissemination. More recently, ceramide kinase (CerK), the enzyme that produces C1P in mammalian cells, has been shown to be upregulated during differentiation of pre-adipocytes into mature adipocytes, and that exogenous C1P, acting through a putative Gi protein-coupled receptor, negatively regulates adipogenesis. Although the latter actions seem to be contradictory, it is plausible that exogenous C1P may balance the adipogenic effects of intracellularly generated (CerK-derived) C1P in adipose tissue. The present review highlights novel signaling aspects of C1P and its impact in the regulation of cell growth and survival, inflammation and tumor dissemination.
Collapse
Affiliation(s)
- Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Vizcaya, Spain
| | - Ana Gomez-Larrauri
- Department of Pneumology, Cruces University Hospital, Barakaldo, Vizcaya, Spain
| | - Asier Dominguez-Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Vizcaya, Spain
| | - Miguel Trueba
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Vizcaya, Spain
| | - Antonio Gomez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Vizcaya, Spain.
| |
Collapse
|
86
|
Yang C, Zhu L, Kang Q, Lee HK, Li D, Chung ACK, Cai Z. Chronic exposure to tetrabromodiphenyl ether (BDE-47) aggravates hepatic steatosis and liver fibrosis in diet-induced obese mice. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120766. [PMID: 31226595 DOI: 10.1016/j.jhazmat.2019.120766] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Exposure to polybrominated diphenyl ethers (PBDEs), is closely associated with the occurrence of obesity and non-alcoholic fatty liver disease (NAFLD), yet their pathological effects and underlying mechanisms remain unclear. To examine the role of 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) in the progression of NAFLD under obese condition, male C57BL/6 J mice were fed with diet interaction for 15 weeks and subcutaneously injected with BDE-47 (7 mg/kg or 70 mg/kg) or the vehicle weekly. BDE-47 exposure (70 mg/kg) significantly elevated the body weight and worsened hepatic steatosis along with increased inflammation in high fat diet (HFD) fed mice. Furthermore, integration analysis of lipidomics and gene expression revealed that BDE-47 up-regulated triglyceride synthesis but suppressed lipid exportation and β oxidation, aggravating the accumulation of hepatic lipid in HFD fed mice. In addition, the increase of liver fibrosis, serum transaminase levels, as well as lipid peroxidation have been observed in mice co-treated with BDE-47 and HFD. Moreover, BDE-47-induced fibrogenic responses in hepatocytes were suppressed by antioxidants, which confirmed that BDE-47-induced liver fibrosis was tightly associated with oxidative stress. In conclusion, these results provided new and robust evidence for revealing the hepatoxicity of BDE-47 under obese condition and illustrated the underlying mechanism of BDE-47 induced liver fibrosis.
Collapse
Affiliation(s)
- Chunxue Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Qingzheng Kang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Hin Kiu Lee
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Dapeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Arthur C K Chung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
87
|
Shaik FA, Chelikani P. Differential effects of membrane sphingomyelin and cholesterol on agonist-induced bitter taste receptor T2R14 signaling. Mol Cell Biochem 2019; 463:57-66. [DOI: 10.1007/s11010-019-03628-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/12/2019] [Indexed: 01/15/2023]
|
88
|
Yu L, Wu J, Zhai Q, Tian F, Zhao J, Zhang H, Chen W. Metabolomic analysis reveals the mechanism of aluminum cytotoxicity in HT-29 cells. PeerJ 2019; 7:e7524. [PMID: 31523502 PMCID: PMC6716502 DOI: 10.7717/peerj.7524] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/21/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Aluminum (Al) is toxic to animals and humans. The most common sources of human exposure to Al are food and beverages. The intestinal epithelium is the first barrier against Al-induced toxicity. In this study, HT-29, a human colon cancer cell line, was selected as an in vitro model to evaluate the Al-induced alteration in metabolomic profiles and explore the possible mechanisms of Al toxicity. METHODS MTT assay was performed to determine the half-maximal inhibitory concentration of Al ions. Liquid chromatography-mass spectrometry (LC-MS) was used for metabolomic analysis, and its results were further confirmed using quantitative reverse transcription polymerase chain reaction (RT-qPCR) of nine selected genes. RESULTS Al inhibited the growth of the HT-29 cells, and its half-maximal dose for the inhibition of cell proliferation was found to be four mM. This dose was selected for further metabolomic analysis, which revealed that 81 metabolites, such glutathione (GSH), phosphatidylcholines, phosphatidylethanolamines, and creatine, and 17 metabolic pathways, such as the tricarboxylic acid cycle, pyruvate metabolism, and GSH metabolism, were significantly altered after Al exposure. The RT-qPCR results further confirmed these findings. CONCLUSION The metabolomics and RT-qPCR results indicate that the mechanisms of Al-induced cytotoxicity in HT-29 cells include cellular apoptosis, oxidative stress, and alteration of lipid, energy, and amino acid metabolism.
Collapse
Affiliation(s)
- Leilei Yu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiangping Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qixiao Zhai
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology & Business University, Wuxi, China
| |
Collapse
|
89
|
Weigert A, Olesch C, Brüne B. Sphingosine-1-Phosphate and Macrophage Biology-How the Sphinx Tames the Big Eater. Front Immunol 2019; 10:1706. [PMID: 31379883 PMCID: PMC6658986 DOI: 10.3389/fimmu.2019.01706] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
The sphingolipid sphingosine-1-phosphate (S1P) is produced by sphingosine kinases to either signal through intracellular targets or to activate a family of specific G-protein-coupled receptors (S1PR). S1P levels are usually low in peripheral tissues compared to the vasculature, forming a gradient that mediates lymphocyte trafficking. However, S1P levels rise during inflammation in peripheral tissues, thereby affecting resident or recruited immune cells, including macrophages. As macrophages orchestrate initiation and resolution of inflammation, the sphingosine kinase/S1P/S1P-receptor axis emerges as an important determinant of macrophage function in the pathogenesis of inflammatory diseases such as cancer, atherosclerosis, and infection. In this review, we therefore summarize the current knowledge how S1P affects macrophage biology.
Collapse
Affiliation(s)
- Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Catherine Olesch
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
90
|
Patyna S, Büttner S, Eckes T, Obermüller N, Bartel C, Braner A, Trautmann S, Thomas D, Geiger H, Pfeilschifter J, Koch A. Blood ceramides as novel markers for renal impairment in systemic lupus erythematosus. Prostaglandins Other Lipid Mediat 2019; 144:106348. [PMID: 31301404 DOI: 10.1016/j.prostaglandins.2019.106348] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Lupus nephritis (LN) is the most common organ manifestation in systemic lupus erythematosus (SLE) and associated with a poor prognosis. Still, a noninvasive but reliable method to diagnose LN has not been established. Thus, we evaluated whether blood sphingolipids could serve as valid biomarkers for renal injury. METHODS In this cross-sectional study, 82 participants were divided into three groups: 36 healthy controls and 17 SLE patients without renal injury (both: estimated glomerular filtration rate (eGFR) ≥ 80 ml/min/1.73 m2 and albumin/creatinine ≤ 30 mg/g) and 29 LN patients. LN patients were identified by renal biopsies and impaired renal function (eGFR < 80 ml/min/1.73 m2 and albumin/creatinine ratio > 30 mg/g). Venous blood was collected from all participants and sphingolipid levels in plasma and serum were measured by LC-MS/MS. RESULTS Most interesting, concentrations of some specific ceramides, C16ceramide (Cer), C18Cer, C20Cer and C24:1Cer, were elevated in both, plasma and serum samples of patients suffering from biopsy-proven LN and impaired renal function, compared to healthy controls as well as SLE patients without renal injury. C24:1dhCer levels were elevated in plasma and serum samples from LN patients compared to SLE patients. Sphingosine levels were higher in plasma and serum of LN patients compared to healthy controls, but not compared to SLE patients. Sphinganine concentrations were significantly elevated in serum samples from LN patients compared to healthy controls and SLE. S1P and SA1P levels were higher in plasma samples of SLE and LN patients compared to healthy controls. Subsequent ROC analyses of plasma and serum data of the most altered ceramide species (C16Cer, C18Cer, C20Cer, C24:1Cer) between LN patients and SLE patients display a high diagnostic differentiation with significant AUCs especially for C24:1Cer serum levels. Further, C24:1Cer serum levels were not affected by glucocorticoid treatment and did not correlate with other renal markers, such as serum creatinine, eGFR and albumin/creatinine ratio. CONCLUSION Our data reveal that chain-length specific ceramides in blood, most likely C24:1Cer levels in serum, could act as potent biomarkers for renal impairment in patients suffering from SLE.
Collapse
Affiliation(s)
- Sammy Patyna
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, Frankfurt am Main, Germany; Department of Nephrology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Stefan Büttner
- Department of Nephrology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Timon Eckes
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nicholas Obermüller
- Department of Nephrology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christine Bartel
- Department of Nephrology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Axel Braner
- Department of Rheumatology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sandra Trautmann
- Department of Clinical Pharmacology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Dominique Thomas
- Department of Clinical Pharmacology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Helmut Geiger
- Department of Nephrology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alexander Koch
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
91
|
Fink J, Seibel J. Click reactions with functional sphingolipids. Biol Chem 2019; 399:1157-1168. [PMID: 29908120 DOI: 10.1515/hsz-2018-0169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/15/2018] [Indexed: 12/17/2022]
Abstract
Sphingolipids and glycosphingolipids can regulate cell recognition and signalling. Ceramide and sphingosine-1-phosphate are major players in the sphingolipid pathways and are involved in the initiation and regulation of signalling, apoptosis, stress responses and infection. Specific chemically synthesised sphingolipid derivatives containing small functionalities like azide or alkyne can mimic the biological properties of natural lipid species, which turns them into useful tools for the investigation of the highly complex sphingolipid metabolism by rapid and selective 'click chemistry' using sensitive tags like fluorophores. Subsequent analysis by various fluorescence microscopy techniques or mass spectrometry allows the identification and quantification of the corresponding sphingolipid metabolites as well as the research of associated enzymes. Here we present an overview of recent advances in the synthesis of ceramide and sphingosine analogues for bioorthogonal click reactions to study biosynthetic pathways and localization of sphingolipids for the development of novel therapeutics against lipid-dependent diseases.
Collapse
Affiliation(s)
- Julian Fink
- University of Würzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Würzburg, Germany
| | - Jürgen Seibel
- University of Würzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
92
|
Castro K, Ntranos A, Amatruda M, Petracca M, Kosa P, Chen EY, Morstein J, Trauner D, Watson CT, Kiebish MA, Bielekova B, Inglese M, Katz Sand I, Casaccia P. Body Mass Index in Multiple Sclerosis modulates ceramide-induced DNA methylation and disease course. EBioMedicine 2019; 43:392-410. [PMID: 30981648 PMCID: PMC6557766 DOI: 10.1016/j.ebiom.2019.03.087] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/24/2019] [Accepted: 03/29/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) results from genetic predisposition and environmental variables, including elevated Body Mass Index (BMI) in early life. This study addresses the effect of BMI on the epigenome of monocytes and disease course in MS. METHODS Fifty-four therapy-naive Relapsing Remitting (RR) MS patients with high and normal BMI received clinical and MRI evaluation. Blood samples were immunophenotyped, and processed for unbiased plasma lipidomic profiling and genome-wide DNA methylation analysis of circulating monocytes. The main findings at baseline were validated in an independent cohort of 91 therapy-naïve RRMS patients. Disease course was evaluated by a two-year longitudinal follow up and mechanistic hypotheses tested in human cell cultures and in animal models of MS. FINDINGS Higher monocytic counts and plasma ceramides, and hypermethylation of genes involved in negative regulation of cell proliferation were detected in the high BMI group of MS patients compared to normal BMI. Ceramide treatment of monocytic cell cultures increased proliferation in a dose-dependent manner and was prevented by DNA methylation inhibitors. The high BMI group of MS patients showed a negative correlation between monocytic counts and brain volume. Those subjects at a two-year follow-up showed increased T1 lesion load, increased disease activity, and worsened clinical disability. Lastly, the relationship between body weight, monocytic infiltration, DNA methylation and disease course was validated in mouse models of MS. INTERPRETATION High BMI negatively impacts disease course in Multiple Sclerosis by modulating monocyte cell number through ceramide-induced DNA methylation of anti-proliferative genes. FUND: This work was supported by funds from the Friedman Brain Institute, NIH, and Multiple Sclerosis Society.
Collapse
Affiliation(s)
- Kamilah Castro
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, NY, New York, United States of America
| | - Achilles Ntranos
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, United States of America
| | - Mario Amatruda
- Advanced Science Research Center at The Graduate Center of The City University of New York and Inter-Institutional Center for Glial Biology at Icahn School of Medicine New York, New York, United States of America
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, United States of America
| | - Peter Kosa
- Neuroimmunological Disease Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Emily Y Chen
- BERG, LLC. Framingham, MA, United States of America
| | - Johannes Morstein
- Department of Chemistry, New York University, NY, New York, United States of America
| | - Dirk Trauner
- Department of Chemistry, New York University, NY, New York, United States of America
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States of America
| | | | - Bibiana Bielekova
- Neuroimmunological Disease Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, United States of America
| | - Ilana Katz Sand
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, United States of America
| | - Patrizia Casaccia
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, NY, New York, United States of America; Advanced Science Research Center at The Graduate Center of The City University of New York and Inter-Institutional Center for Glial Biology at Icahn School of Medicine New York, New York, United States of America.
| |
Collapse
|
93
|
Meng X, Gu Z, Xie X, Su Y, Zhang X, Ma H, Guo Y, Liu X, Cheng Y, Chang Y, Bao J. Acid sphingomyelinase mediates the noise-induced liver disorder in mice. Clin Exp Pharmacol Physiol 2019; 46:556-566. [PMID: 30854677 DOI: 10.1111/1440-1681.13083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/19/2022]
Abstract
Noise-induced structural and functional disorder of the liver has been realized, but the underlying mechanism remains to be characterized, which has limited the introduction of precautious measures. Over-activation of acid sphingomyelinase (ASM)/ceramide (Cer) pathway takes centre stage in hepatocyte injury entailed by various stimulus. We aimed to investigate whether it mediated the noise elicited liver disorder on infrastructure, lipid metabolism, apoptosis, and oxidative stress. Mice were exposed to broad band noise (20-20k Hz, 90-110 dB) for 1, 3, 5 or 7 days by 3 hr/d. Doxepin hydrochloride (DOX), an ASM inhibitor was given by 5 mg/kg/d gavage. We showed that 5 or 7 days intense, broad band noise exposure caused significant infrastructure derangement and lipid droplets storage in hepatocytes. The content of cholesterol, free fatty acids or triglyceride was increased significantly in liver tissue upon noise stimulation. Moreover, the noise promoted apoptosis and superoxide generation in hepatocytes significantly, enhancing activity of aspartate aminotransferase (AST) or alanine amino transferase (ALT) in serum. Acid sphingomyelinase activity and Cer generation in liver tissue were elevated by noise exposure, which was normalized with DOX administrated. Accordingly, DOX alleviated steatosis, apoptosis, oxidative stress and enzymatic change in hepatocytes or serum of noise exposed mice substantially. In summary, our results suggest the ASM/Cer pathway contributes to the broad band noise elicited liver damage in mice.
Collapse
Affiliation(s)
- Xingxing Meng
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhenghui Gu
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoping Xie
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuting Su
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xi Zhang
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hongzhe Ma
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yibin Guo
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xincheng Liu
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yaoping Cheng
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yaoming Chang
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Junxiang Bao
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
94
|
Pakdel M, von Blume J. Exploring new routes for secretory protein export from the trans-Golgi network. Mol Biol Cell 2019; 29:235-240. [PMID: 29382805 PMCID: PMC5996961 DOI: 10.1091/mbc.e17-02-0117] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Sorting of soluble proteins for transport to intracellular compartments and for secretion from cells is essential for cell and tissue homeostasis. The trans-Golgi network (TGN) is a major sorting station that sorts secretory proteins into specific carriers to transport them to their final destinations. The sorting of lysosomal hydrolases at the TGN by the mannose 6-phosphate receptor is well understood. The recent discovery of a Ca2+-based sorting of secretory cargo at the TGN is beginning to uncover the mechanism by which cells sort secretory cargoes from Golgi residents and cargoes destined to the other cellular compartments. This Ca2+-based sorting involves the cytoplasmic actin cytoskeleton, which through membrane anchored Ca2+ ATPase SPCA1 and the luminal Ca2+ binding protein Cab45 sorts of a subset of secretory proteins at the TGN. We present this discovery and highlight important challenges that remain unaddressed in the overall pathway of cargo sorting at the TGN.
Collapse
Affiliation(s)
- Mehrshad Pakdel
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Julia von Blume
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
95
|
Potential therapeutic targets for atherosclerosis in sphingolipid metabolism. Clin Sci (Lond) 2019; 133:763-776. [PMID: 30890654 PMCID: PMC6422862 DOI: 10.1042/cs20180911] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Sphingolipids, such as sphingomyelins, ceramides, glycosphingolipids, and sphingosine-1-phosphates (S1P) are a large group of structurally and functionally diverse molecules. Some specific species are found associated with atherogenesis and provide novel therapeutic targets. Herein, we briefly review how sphingolipids are implicated in the progression of atherosclerosis and related diseases, and then we discuss the potential therapy options by targetting several key enzymes in sphingolipid metabolism.
Collapse
|
96
|
Vaidya M, Jentsch JA, Peters S, Keul P, Weske S, Gräler MH, Mladenov E, Iliakis G, Heusch G, Levkau B. Regulation of ABCA1-mediated cholesterol efflux by sphingosine-1-phosphate signaling in macrophages. J Lipid Res 2019; 60:506-515. [PMID: 30655318 DOI: 10.1194/jlr.m088443] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/16/2019] [Indexed: 12/21/2022] Open
Abstract
Sphingolipid and cholesterol metabolism are closely associated at the structural, biochemical, and functional levels. Although HDL-associated sphingosine-1-phosphate (S1P) contributes to several HDL functions, and S1P signaling regulates glucose and lipid metabolism, no study has addressed the involvement of S1P in cholesterol efflux. Here, we show that sphingosine kinase (Sphk) activity was induced by the LXR agonist 22(R)-hydroxycholesterol and required for the stimulation of ABCA1-mediated cholesterol efflux to apolipoprotein A-I. In support, pharmacological Sphk inhibition and Sphk2 but not Sphk1 deficiency abrogated efflux. The involved mechanism included stimulation of both transcriptional and functional ABCA1 regulatory pathways and depended for the latter on the S1P receptor 3 (S1P3). Accordingly, S1P3-deficient macrophages were resistant to 22(R)-hydroxycholesterol-stimulated cholesterol efflux. The inability of excess exogenous S1P to further increase efflux was consistent with tonic S1P3 signaling by a pool of constitutively generated Sphk-derived S1P dynamically regulating cholesterol efflux. In summary, we have established S1P as a previously unrecognized intermediate in LXR-stimulated ABCA1-mediated cholesterol efflux and identified S1P/S1P3 signaling as a positive-feedback regulator of cholesterol efflux. This constitutes a novel regulatory mechanism of cholesterol efflux by sphingolipids.
Collapse
Affiliation(s)
- Mithila Vaidya
- Institute for Pathophysiology, University of Duisburg-Essen, Duisburg, Germany.,West German Heart and Vascular Center University of Duisburg-Essen, Duisburg, Germany
| | - Julian A Jentsch
- Institute for Pathophysiology, University of Duisburg-Essen, Duisburg, Germany.,West German Heart and Vascular Center University of Duisburg-Essen, Duisburg, Germany
| | - Susann Peters
- Institute for Pathophysiology, University of Duisburg-Essen, Duisburg, Germany.,West German Heart and Vascular Center University of Duisburg-Essen, Duisburg, Germany
| | - Petra Keul
- Institute for Pathophysiology, University of Duisburg-Essen, Duisburg, Germany.,West German Heart and Vascular Center University of Duisburg-Essen, Duisburg, Germany
| | - Sarah Weske
- Institute for Pathophysiology, University of Duisburg-Essen, Duisburg, Germany.,West German Heart and Vascular Center University of Duisburg-Essen, Duisburg, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine University Hospital Jena, Jena, Germany.,Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany.,Center for Molecular Biomedicine University Hospital Jena, Jena, Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, University of Duisburg-Essen, Duisburg, Germany.,West German Heart and Vascular Center University of Duisburg-Essen, Duisburg, Germany
| | - Bodo Levkau
- Institute for Pathophysiology, University of Duisburg-Essen, Duisburg, Germany .,West German Heart and Vascular Center University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
97
|
Wang W, Toran PT, Sabol R, Brown TJ, Barth BM. Epigenetics and Sphingolipid Metabolism in Health and Disease. ACTA ACUST UNITED AC 2019; 1. [PMID: 30637412 DOI: 10.31021/ijbs.20181105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sphingolipids represent one of the major classes of bioactive lipids. Studies of sphingolipids have intensified in the past several years, revealing their roles in nearly all cell biological processes. In addition, epigenetic regulation has gained substantial interest due to its role in controlling gene expression and activity without changing the genetic code. In this review, we first introduce a brief background on sphingolipid biology, highlighting its role in pathophysiology. We then illustrate the concept of epigenetic regulation, focusing on how it affects the metabolism of sphingolipids. We further discuss the roles of bioactive sphingolipids as epigenetic regulators themselves. Overall, a better understanding of the relationship between epigenetics and sphingolipid metabolism may help to improve the development of sphingolipid-targeted therapeutics.
Collapse
Affiliation(s)
- Weiyuan Wang
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - Paul T Toran
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - Rachel Sabol
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - Timothy J Brown
- Department of Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Brian M Barth
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| |
Collapse
|
98
|
Yuan Z, Zhong L, Hua Y, Ji P, Yao W, Ma Q, Zhang X, Wen Y, Yang L, Wei Y. Metabolomics study on promoting blood circulation and ameliorating blood stasis: Investigating the mechanism of Angelica sinensis
and its processed products. Biomed Chromatogr 2019; 33:e4457. [DOI: 10.1002/bmc.4457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/12/2018] [Accepted: 11/29/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Ziwen Yuan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Lijia Zhong
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Yongli Hua
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Peng Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Wanling Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Qi Ma
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Xiaosong Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Yanqiao Wen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Lihong Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Yanming Wei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| |
Collapse
|
99
|
Song Z, Wang W, Li N, Yan S, Rong K, Lan T, Xia P. Sphingosine kinase 2 promotes lipotoxicity in pancreatic β-cells and the progression of diabetes. FASEB J 2018; 33:3636-3646. [PMID: 30452878 DOI: 10.1096/fj.201801496r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Loss of functional β-cell mass caused by lipotoxicity is a key pathogenic factor in the development of type 2 diabetes mellitus (T2DM). We have previously reported that sphingosine kinase (SK)1 is an endogenous protector of β-cells against lipotoxicity. The current study reports that SK2, another isoform of SK, is a crucial mediator of lipotoxicity in β-cells. Exposure of β-cells to palmitatic acid (PA), a saturated free fatty acid, resulted in a nearly 2-fold increase in SK2 expression, which paralleled the induction of cell death in a similar dose- and time-dependent fashion. Silencing SK2 expression by its specific small interfering RNAs significantly inhibited PA-induced cell death and caspase-3 activation, whereas overexpression of SK2 promoted lipotoxicity in β-cells. Mechanistically, upon exposure to PA, endogenous SK2 was shuttled from the nucleus to the cytoplasm, where it interacted with B-cell lymphoma-extra-large (Bcl-xL), leading to mitochondrial apoptotic pathway activation and cell death. By blocking SK2 translocation and its interaction with Bcl-xL, either the nuclear export signal mutant (L423A/L425A) or the BH3 domain mutant (L219A) of SK2 significantly attenuated β-cell lipotoxicity. Furthermore, SK2 deficiency in mice significantly prevented the loss of β-cell mass, preserved insulin production, and ameliorated the diabetic phenotype in an established T2DM model induced by feeding a high-fat diet accompanied by administration of streptozotocin. These findings provide the first evidence, in vitro and in vivo, of a critical role for SK2 in mediating β-cell lipotoxicity and the progression of diabetes.-Song, Z., Wang, W., Li, N., Yan, S., Rong, K., Lan, T., Xia, P. Sphingosine kinase 2 promotes lipotoxicity in pancreatic β-cells and the progression of diabetes.
Collapse
Affiliation(s)
- Ziyu Song
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; and
| | - Sishan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; and
| | - Kuan Rong
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; and
| | - Pu Xia
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; and.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
100
|
Marciniak A, Camp SM, Garcia JGN, Polt R. An update on sphingosine-1-phosphate receptor 1 modulators. Bioorg Med Chem Lett 2018; 28:3585-3591. [PMID: 30409535 DOI: 10.1016/j.bmcl.2018.10.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
Abstract
Sphingolipids represent an essential class of lipids found in all eukaryotes, and strongly influence cellular signal transduction. Autoimmune diseases like asthma and multiple sclerosis (MS) are mediated by the sphingosine-1-phosphate receptor 1 (S1P1) to express a variety of symptoms and disease patterns. Inspired by its natural substrate, an array of artificial sphingolipid derivatives has been developed to target this specific G protein-coupled receptor (GPCR) in an attempt to suppress autoimmune disorders. FTY720, also known as fingolimod, is the first oral disease-modifying therapy for MS on the market. In pursuit of improved stability, bioavailability, and efficiency, structural analogues of this initial prodrug have emerged over time. This review covers a brief introduction to the sphingolipid metabolism, the mechanism of action on S1P1, and an updated overview of synthetic sphingosine S1P1 agonists.
Collapse
Affiliation(s)
- Alexander Marciniak
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, United States.
| | - Sara M Camp
- Department of Medicine, The University of Arizona, Tucson, AZ 85724, United States.
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona, Tucson, AZ 85724, United States.
| | - Robin Polt
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|