51
|
Pichaud F, Walther RF, Nunes de Almeida F. Regulation of Cdc42 and its effectors in epithelial morphogenesis. J Cell Sci 2019; 132:132/10/jcs217869. [PMID: 31113848 DOI: 10.1242/jcs.217869] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cdc42 - a member of the small Rho GTPase family - regulates cell polarity across organisms from yeast to humans. It is an essential regulator of polarized morphogenesis in epithelial cells, through coordination of apical membrane morphogenesis, lumen formation and junction maturation. In parallel, work in yeast and Caenorhabditis elegans has provided important clues as to how this molecular switch can generate and regulate polarity through localized activation or inhibition, and cytoskeleton regulation. Recent studies have revealed how important and complex these regulations can be during epithelial morphogenesis. This complexity is mirrored by the fact that Cdc42 can exert its function through many effector proteins. In epithelial cells, these include atypical PKC (aPKC, also known as PKC-3), the P21-activated kinase (PAK) family, myotonic dystrophy-related Cdc42 binding kinase beta (MRCKβ, also known as CDC42BPB) and neural Wiskott-Aldrich syndrome protein (N-WASp, also known as WASL). Here, we review how the spatial regulation of Cdc42 promotes polarity and polarized morphogenesis of the plasma membrane, with a focus on the epithelial cell type.
Collapse
Affiliation(s)
- Franck Pichaud
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Rhian F Walther
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
52
|
Structural insights into the aPKC regulatory switch mechanism of the human cell polarity protein lethal giant larvae 2. Proc Natl Acad Sci U S A 2019; 116:10804-10812. [PMID: 31088962 DOI: 10.1073/pnas.1821514116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Metazoan cell polarity is controlled by a set of highly conserved proteins. Lethal giant larvae (Lgl) functions in apical-basal polarity through phosphorylation-dependent interactions with several other proteins as well as the plasma membrane. Phosphorylation of Lgl by atypical protein kinase C (aPKC), a component of the partitioning-defective (Par) complex in epithelial cells, excludes Lgl from the apical membrane, a crucial step in the establishment of epithelial cell polarity. We present the crystal structures of human Lgl2 in both its unphosphorylated and aPKC-phosphorylated states. Lgl2 adopts a double β-propeller structure that is unchanged by aPKC phosphorylation of an unstructured loop in its second β-propeller, ruling out models of phosphorylation-dependent conformational change. We demonstrate that phosphorylation controls the direct binding of purified Lgl2 to negative phospholipids in vitro. We also show that a coil-helix transition of this region that is promoted by phosphatidylinositol 4,5-bisphosphate (PIP2) is also phosphorylation-dependent, implying a highly effective phosphorylative switch for membrane association.
Collapse
|
53
|
Hughes SC, Simmonds AJ. Drosophila mRNA Localization During Later Development: Past, Present, and Future. Front Genet 2019; 10:135. [PMID: 30899273 PMCID: PMC6416162 DOI: 10.3389/fgene.2019.00135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple mechanisms tightly regulate mRNAs during their transcription, translation, and degradation. Of these, the physical localization of mRNAs to specific cytoplasmic regions is relatively easy to detect; however, linking localization to functional regulatory roles has been more difficult to establish. Historically, Drosophila melanogaster is a highly effective model to identify localized mRNAs and has helped identify roles for this process by regulating various cell activities. The majority of the well-characterized functional roles for localizing mRNAs to sub-regions of the cytoplasm have come from the Drosophila oocyte and early syncytial embryo. At present, relatively few functional roles have been established for mRNA localization within the relatively smaller, differentiated somatic cell lineages characteristic of later development, beginning with the cellular blastoderm, and the multiple cell lineages that make up the gastrulating embryo, larva, and adult. This review is divided into three parts—the first outlines past evidence for cytoplasmic mRNA localization affecting aspects of cellular activity post-blastoderm development in Drosophila. The majority of these known examples come from highly polarized cell lineages such as differentiating neurons. The second part considers the present state of affairs where we now know that many, if not most mRNAs are localized to discrete cytoplasmic regions in one or more somatic cell lineages of cellularized embryos, larvae or adults. Assuming that the phenomenon of cytoplasmic mRNA localization represents an underlying functional activity, and correlation with the encoded proteins suggests that mRNA localization is involved in far more than neuronal differentiation. Thus, it seems highly likely that past-identified examples represent only a small fraction of localization-based mRNA regulation in somatic cells. The last part highlights recent technological advances that now provide an opportunity for probing the role of mRNA localization in Drosophila, moving beyond cataloging the diversity of localized mRNAs to a similar understanding of how localization affects mRNA activity.
Collapse
Affiliation(s)
- Sarah C Hughes
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
54
|
Weisman NY. Genetic and Epigenetic Pathways of lethal (2) giant larvae Tumor Suppressor in Drosophila melanogaster. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419020145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
55
|
Hannaford M, Loyer N, Tonelli F, Zoltner M, Januschke J. A chemical-genetics approach to study the role of atypical Protein Kinase C in Drosophila. Development 2019; 146:dev170589. [PMID: 30635282 PMCID: PMC6361133 DOI: 10.1242/dev.170589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
Studying the function of proteins using genetics in cycling cells is complicated by the fact that there is often a delay between gene inactivation and the time point of phenotypic analysis. This is particularly true when studying kinases that have pleiotropic functions and multiple substrates. Drosophila neuroblasts (NBs) are rapidly dividing stem cells and an important model system for the study of cell polarity. Mutations in multiple kinases cause NB polarity defects, but their precise functions at particular time points in the cell cycle are unknown. Here, we use chemical genetics and report the generation of an analogue-sensitive allele of Drosophila atypical Protein Kinase C (aPKC). We demonstrate that the resulting mutant aPKC kinase can be specifically inhibited in vitro and in vivo Acute inhibition of aPKC during NB polarity establishment abolishes asymmetric localization of Miranda, whereas its inhibition during NB polarity maintenance does not in the time frame of normal mitosis. However, aPKC helps to sharpen the pattern of Miranda, by keeping it off the apical and lateral cortex after nuclear envelope breakdown.
Collapse
Affiliation(s)
- Matthew Hannaford
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD5 1EH, UK
| | - Nicolas Loyer
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD5 1EH, UK
| | - Francesca Tonelli
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD5 1EH, UK
| | - Martin Zoltner
- Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD5 1EH, UK
| | - Jens Januschke
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD5 1EH, UK
| |
Collapse
|
56
|
Bonello TT, Peifer M. Scribble: A master scaffold in polarity, adhesion, synaptogenesis, and proliferation. J Cell Biol 2018; 218:742-756. [PMID: 30598480 PMCID: PMC6400555 DOI: 10.1083/jcb.201810103] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/26/2018] [Accepted: 12/14/2018] [Indexed: 02/08/2023] Open
Abstract
Key events ranging from cell polarity to proliferation regulation to neuronal signaling rely on the assembly of multiprotein adhesion or signaling complexes at particular subcellular sites. Multidomain scaffolding proteins nucleate assembly and direct localization of these complexes, and the protein Scribble and its relatives in the LAP protein family provide a paradigm for this. Scribble was originally identified because of its role in apical-basal polarity and epithelial integrity in Drosophila melanogaster It is now clear that Scribble acts to assemble and position diverse multiprotein complexes in processes ranging from planar polarity to adhesion to oriented cell division to synaptogenesis. Here, we explore what we have learned about the mechanisms of action of Scribble in the context of its multiple known interacting partners and discuss how this knowledge opens new questions about the full range of Scribble protein partners and their structural and signaling roles.
Collapse
Affiliation(s)
- Teresa T Bonello
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC .,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
57
|
Zhang T, Zhang S, Song X, Zhao X, Hou C, Li Z, Gao J. Loss of Lgl1 Disrupts the Radial Glial Fiber-guided Cortical Neuronal Migration and Causes Subcortical Band Heterotopia in Mice. Neuroscience 2018; 400:132-145. [PMID: 30597194 DOI: 10.1016/j.neuroscience.2018.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022]
Abstract
Radial glial cells (RGCs) are neuronal progenitors and function as scaffolds for neuronal radial migration in the developing cerebral cortex. These functions depend on a polarized radial glial scaffold, which is of fundamental importance for brain development. Lethal giant larvae 1 (Lgl1), a key regulator for cell polarity from Drosophila to mammals, plays a key role in tumorigenesis and brain development. To overcome neonatal lethality in Lgl1-null mice and clarify the role of Lgl1 in mouse cerebral cortex development and function, we created Lgl1 dorsal telencephalon-specific knockout mice mediated by Emx1-Cre. Lgl1Emx1 conditional knockout (CKO) mice had normal life spans and could be used for function research. Histology results revealed that the mutant mice displayed an ectopic cortical mass in the dorsolateral hemispheric region between the normotopic cortex and the subcortical white matter, resembling human subcortical band heterotopia (SBH). The Lgl1Emx1 CKO cortex showed disrupted adherens junctions (AJs), which were accompanied by ectopic RGCs and intermediate progenitors, and disorganization of the radial glial fiber system. The early- and late-born neurons failed to reach the destined position along the disrupted radial glial fiber scaffold and instead accumulated in ectopic positions and formed SBH. Additionally, the absence of Lgl1 led to severe abnormalities in RGCs, including hyperproliferation, impaired differentiation, and increased apoptosis. Lgl1Emx1 CKO mice also displayed deficiencies in anxiety-related behaviors. We concluded that Lgl1 is essential for RGC development and neural migration during cerebral cortex development.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Sen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Xinli Song
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Xiaohan Zhao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Congzhe Hou
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Zhenzu Li
- Department of Bioengineering, Shandong Polytechnic, Jinan 250104, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China.
| |
Collapse
|
58
|
Kullmann L, Krahn MP. Redundant regulation of localization and protein stability of DmPar3. Cell Mol Life Sci 2018; 75:3269-3282. [PMID: 29523893 PMCID: PMC11105499 DOI: 10.1007/s00018-018-2792-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 03/03/2018] [Accepted: 03/07/2018] [Indexed: 11/25/2022]
Abstract
Apical-basal polarity is an important characteristic of epithelia and Drosophila neural stem cells. The conserved Par complex, which consists of the atypical protein kinase C and the scaffold proteins Baz and Par6, is a key player in the establishment of apical-basal cell polarity. Membrane recruitment of Baz has been reported to be accomplished by several mechanisms, which might function in redundancy, to ensure the correct localization of the complex. However, none of the described interactions was sufficient to displace the protein from the apical junctions. Here, we dissected the role of the oligomerization domain and the lipid-binding motif of Baz in vivo in the Drosophila embryo. We found that these domains function in redundancy to ensure the apical junctional localization of Baz: inactivation of only one domain is not sufficient to disrupt the function of Baz during apical-basal polarization of epithelial cells and neural stem cells. In contrast, mutation of both domains results in a strongly impaired protein stability and a phenotype characterized by embryonic lethality and an impaired apical-basal polarity in the embryonic epithelium and neural stem cells, resembling a baz-loss of function allele. Strikingly, the binding of Baz to the transmembrane proteins E-Cadherin, Echinoid, and Starry Night was not affected in this mutant protein. Our findings reveal a redundant function of the oligomerization and the lipid-binding domain, which is required for protein stability, correct subcellular localization, and apical-basal cell polarization.
Collapse
Affiliation(s)
- Lars Kullmann
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
- Internal Medicine D, University Hospital of Münster, Domagkstr. 3a, 48149, Münster, Germany
| | - Michael P Krahn
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany.
- Internal Medicine D, University Hospital of Münster, Domagkstr. 3a, 48149, Münster, Germany.
| |
Collapse
|
59
|
Pires HR, Boxem M. Mapping the Polarity Interactome. J Mol Biol 2018; 430:3521-3544. [DOI: 10.1016/j.jmb.2017.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
|
60
|
Gamblin CL, Parent-Prévost F, Jacquet K, Biehler C, Jetté A, Laprise P. Oligomerization of the FERM-FA protein Yurt controls epithelial cell polarity. J Cell Biol 2018; 217:3853-3862. [PMID: 30082297 PMCID: PMC6219725 DOI: 10.1083/jcb.201803099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022] Open
Abstract
Drosophila melanogaster Yurt (Yrt) and its mammalian orthologue EPB41L5 limit apical membrane growth in polarized epithelia. EPB41L5 also supports epithelial-mesenchymal transition and metastasis. Yrt and EPB41L5 contain a four-point-one, ezrin, radixin, and moesin (FERM) domain and a FERM-adjacent (FA) domain. The former contributes to the quaternary structure of 50 human proteins, whereas the latter defines a subfamily of 14 human FERM proteins and fulfills unknown roles. In this study, we show that both Yrt and EPB41L5 oligomerize. Our data also establish that the FERM-FA unit forms an oligomeric interface and that multimerization of Yrt is crucial for its function in epithelial cell polarity regulation. Finally, we demonstrate that aPKC destabilizes the Yrt oligomer to repress its functions, thereby revealing a mechanism through which this kinase supports apical domain formation. Overall, our study highlights a conserved biochemical property of fly and human Yrt proteins, describes a novel function of the FA domain, and further characterizes the molecular mechanisms sustaining epithelial cell polarity.
Collapse
Affiliation(s)
- Clémence L Gamblin
- Centre de Recherche sur le Cancer de l'Université Laval, and Axe Oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Canada
| | - Frédérique Parent-Prévost
- Centre de Recherche sur le Cancer de l'Université Laval, and Axe Oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Canada
| | - Kévin Jacquet
- Centre de Recherche sur le Cancer de l'Université Laval, and Axe Oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Canada
| | - Cornélia Biehler
- Centre de Recherche sur le Cancer de l'Université Laval, and Axe Oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Canada
| | - Alexandra Jetté
- Centre de Recherche sur le Cancer de l'Université Laval, and Axe Oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Canada
| | - Patrick Laprise
- Centre de Recherche sur le Cancer de l'Université Laval, and Axe Oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Canada
| |
Collapse
|
61
|
Hapak SM, Rothlin CV, Ghosh S. PAR3-PAR6-atypical PKC polarity complex proteins in neuronal polarization. Cell Mol Life Sci 2018; 75:2735-2761. [PMID: 29696344 PMCID: PMC11105418 DOI: 10.1007/s00018-018-2828-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Polarity is a fundamental feature of cells. Protein complexes, including the PAR3-PAR6-aPKC complex, have conserved roles in establishing polarity across a number of eukaryotic cell types. In neurons, polarity is evident as distinct axonal versus dendritic domains. The PAR3, PAR6, and aPKC proteins also play important roles in neuronal polarization. During this process, either aPKC kinase activity, the assembly of the PAR3-PAR6-aPKC complex or the localization of these proteins is regulated downstream of a number of signaling pathways. In turn, the PAR3, PAR6, and aPKC proteins control various effector molecules to establish neuronal polarity. Herein, we discuss the many signaling mechanisms and effector functions that have been linked to PAR3, PAR6, and aPKC during the establishment of neuronal polarity.
Collapse
Affiliation(s)
- Sophie M Hapak
- Department of Medicine, School of Medicine, University of Minnesota, 401 East River Parkway, Minneapolis, MN, 55455, USA.
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, 300 Cedar Street, New Haven, CT, 06520, USA
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Sourav Ghosh
- Department of Neurology, School of Medicine, Yale University, 300 George Street, New Haven, CT, 06511, USA
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
62
|
Drummond ML, Li M, Tarapore E, Nguyen TTL, Barouni BJ, Cruz S, Tan KC, Oro AE, Atwood SX. Actin polymerization controls cilia-mediated signaling. J Cell Biol 2018; 217:3255-3266. [PMID: 29945904 PMCID: PMC6122990 DOI: 10.1083/jcb.201703196] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 03/29/2018] [Accepted: 05/31/2018] [Indexed: 01/20/2023] Open
Abstract
Actin polymerization is important to generate primary cilia. Drummond et al. show that upstream actin regulators are necessary for this process by controlling aPKC and Src kinase activity to promote Hedgehog signaling and restrict primary cilia. Primary cilia are polarized organelles that allow detection of extracellular signals such as Hedgehog (Hh). How the cytoskeleton supporting the cilium generates and maintains a structure that finely tunes cellular response remains unclear. Here, we find that regulation of actin polymerization controls primary cilia and Hh signaling. Disrupting actin polymerization, or knockdown of N-WASp/Arp3, increases ciliation frequency, axoneme length, and Hh signaling. Cdc42, a potent actin regulator, recruits both atypical protein pinase C iota/lambda (aPKC) and Missing-in-Metastasis (MIM) to the basal body to maintain actin polymerization and restrict axoneme length. Transcriptome analysis implicates the Src pathway as a major aPKC effector. aPKC promotes whereas MIM antagonizes Src activity to maintain proper levels of primary cilia, actin polymerization, and Hh signaling. Hh pathway activation requires Smoothened-, Gli-, and Gli1-specific activation by aPKC. Surprisingly, longer axonemes can amplify Hh signaling, except when aPKC is disrupted, reinforcing the importance of the Cdc42–aPKC–Gli axis in actin-dependent regulation of primary cilia signaling.
Collapse
Affiliation(s)
- Michael L Drummond
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Mischa Li
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA
| | - Eric Tarapore
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Tuyen T L Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Baina J Barouni
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Shaun Cruz
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Kevin C Tan
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Anthony E Oro
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA .,Department of Dermatology, University of California, Irvine, Irvine, CA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA
| |
Collapse
|
63
|
Abstract
Establishing and maintaining cell polarity are dynamic processes that necessitate complicated but highly regulated protein interactions. Phosphorylation is a powerful mechanism for cells to control the function and subcellular localization of a target protein, and multiple kinases have played critical roles in cell polarity. Among them, atypical protein kinase C (aPKC) is likely the most studied kinase in cell polarity and has the largest number of downstream substrates characterized so far. More than half of the polarity proteins that are essential for regulating cell polarity have been identified as aPKC substrates. This review covers mainly studies of aPKC in regulating anterior-posterior polarity in the worm one-cell embryo and apical-basal polarity in epithelial cells and asymmetrically dividing cells (for example,
Drosophila neuroblasts). We will go through aPKC target proteins in cell polarity and discuss various mechanisms by which aPKC phosphorylation controls their subcellular localizations and biological functions. We will also review the recent progress in determining the detailed molecular mechanisms in spatial and temporal control of aPKC subcellular localization and kinase activity during cell polarization.
Collapse
Affiliation(s)
- Yang Hong
- Department of Cell Biology, University of Pittsburgh School of Medicine, S325 BST, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
64
|
Hapak SM, Ghosh S, Rothlin CV. Axon Regeneration: Antagonistic Signaling Pairs in Neuronal Polarization. Trends Mol Med 2018; 24:615-629. [PMID: 29934283 DOI: 10.1016/j.molmed.2018.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 01/29/2023]
Abstract
Genome-wide screens, proteomics, and candidate-based approaches have identified numerous genes associated with neuronal regeneration following central nervous system (CNS) injury. Despite significant progress, functional recovery remains a challenge, even in model systems. Neuronal function depends on segregation of axonal versus dendritic domains. A key to functional recovery may lie in recapitulating the developmental signals that instruct axon specification and growth in adult neurons post-injury. Theoretically, binary activator-inhibitor elements operating as a Turing-like system within neurons can specify axonal versus dendritic domains and promote axon growth. We review here various molecules implicated in axon specification that function as signaling pairs driving neuronal polarization and axon growth.
Collapse
Affiliation(s)
- Sophie M Hapak
- Department of Medicine, School of Medicine, University of Minnesota, 401 East River Parkway, Minneapolis, MN 55455, USA
| | - Sourav Ghosh
- Department of Neurology, School of Medicine, Yale University, 300 George Street, New Haven, CT 06511, USA; Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA; Equal contribution.
| | - Carla V Rothlin
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA; Department of Immunobiology, School of Medicine, Yale University, 300 Cedar Street, New Haven, CT 06520, USA; Equal contribution.
| |
Collapse
|
65
|
Schmidt A, Grosshans J. Dynamics of cortical domains in early Drosophila development. J Cell Sci 2018; 131:131/7/jcs212795. [DOI: 10.1242/jcs.212795] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Underlying the plasma membrane of eukaryotic cells is an actin cortex that includes actin filaments and associated proteins. A special feature of all polarized and epithelial cells are cortical domains, each of which is characterized by specific sets of proteins. Typically, an epithelial cell contains apical, subapical, lateral and basal domains. The domain-specific protein sets contain evolutionarily conserved proteins, as well as cell-type-specific factors. Among the conserved proteins are, the Par proteins, Crumbs complex and the lateral proteins Scribbled and Discs large 1. Organization of the plasma membrane into cortical domains is dynamic and depends on cell type, differentiation and developmental stage. The dynamics of cortical organization is strikingly visible in early Drosophila embryos, which increase the number of distinct cortical domains from one, during the pre-blastoderm stage, to two in syncytial blastoderm embryos, before finally acquiring the four domains that are typical for epithelial cells during cellularization. In this Review, we will describe the dynamics of cortical organization in early Drosophila embryos and discuss the processes and mechanisms underlying cortical remodeling.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, 37077 Göttingen, Germany
| | - Jörg Grosshans
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
66
|
Saito Y, Desai RR, Muthuswamy SK. Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion. Biochim Biophys Acta Rev Cancer 2018; 1869:103-116. [DOI: 10.1016/j.bbcan.2017.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
|
67
|
Pichaud F. PAR-Complex and Crumbs Function During Photoreceptor Morphogenesis and Retinal Degeneration. Front Cell Neurosci 2018; 12:90. [PMID: 29651238 PMCID: PMC5884931 DOI: 10.3389/fncel.2018.00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/15/2018] [Indexed: 12/30/2022] Open
Abstract
The fly photoreceptor has long been used as a model to study sensory neuron morphogenesis and retinal degeneration. In particular, elucidating how these cells are built continues to help further our understanding of the mechanisms of polarized cell morphogenesis, intracellular trafficking and the causes of human retinal pathologies. The conserved PAR complex, which in flies consists of Cdc42-PAR6-aPKC-Bazooka, and the transmembrane protein Crumbs (Crb) are key players during photoreceptor morphogenesis. While the PAR complex regulates polarity in many cell types, Crb function in polarity is relatively specific to epithelial cells. Together Cdc42-PAR6-aPKC-Bazooka and Crb orchestrate the differentiation of the photoreceptor apical membrane (AM) and zonula adherens (ZA), thus allowing these cells to assemble into a neuro-epithelial lattice. In addition to its function in epithelial polarity, Crb has also been shown to protect fly photoreceptors from light-induced degeneration, a process linked to Rhodopsin expression and trafficking. Remarkably, mutations in the human Crumbs1 (CRB1) gene lead to retinal degeneration, making the fly photoreceptor a powerful disease model system.
Collapse
Affiliation(s)
- Franck Pichaud
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
68
|
Aguilar-Aragon M, Elbediwy A, Foglizzo V, Fletcher GC, Li VSW, Thompson BJ. Pak1 Kinase Maintains Apical Membrane Identity in Epithelia. Cell Rep 2018; 22:1639-1646. [PMID: 29444419 PMCID: PMC5847184 DOI: 10.1016/j.celrep.2018.01.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/14/2017] [Accepted: 01/18/2018] [Indexed: 01/03/2023] Open
Abstract
Epithelial cells are polarized along their apical-basal axis by the action of the small GTPase Cdc42, which is known to activate the aPKC kinase at the apical domain. However, loss of aPKC kinase activity was reported to have only mild effects on epithelial cell polarity. Here, we show that Cdc42 also activates a second kinase, Pak1, to specify apical domain identity in Drosophila and mammalian epithelia. aPKC and Pak1 phosphorylate an overlapping set of polarity substrates in kinase assays. Inactivating both aPKC kinase activity and the Pak1 kinase leads to a complete loss of epithelial polarity and morphology, with cells losing markers of apical polarization such as Crumbs, Par3/Bazooka, or ZO-1. This function of Pak1 downstream of Cdc42 is distinct from its role in regulating integrins or E-cadherin. Our results define a conserved dual-kinase mechanism for the control of apical membrane identity in epithelia.
Collapse
Affiliation(s)
| | - Ahmed Elbediwy
- Epithelial Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Valentina Foglizzo
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Georgina C Fletcher
- Epithelial Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Barry J Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
69
|
Stephens R, Lim K, Portela M, Kvansakul M, Humbert PO, Richardson HE. The Scribble Cell Polarity Module in the Regulation of Cell Signaling in Tissue Development and Tumorigenesis. J Mol Biol 2018; 430:3585-3612. [PMID: 29409995 DOI: 10.1016/j.jmb.2018.01.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 01/22/2023]
Abstract
The Scribble cell polarity module, comprising Scribbled (Scrib), Discs-large (Dlg) and Lethal-2-giant larvae (Lgl), has a tumor suppressive role in mammalian epithelial cancers. The Scribble module proteins play key functions in the establishment and maintenance of different modes of cell polarity, as well as in the control of tissue growth, differentiation and directed cell migration, and therefore are major regulators of tissue development and homeostasis. Whilst molecular details are known regarding the roles of Scribble module proteins in cell polarity regulation, their precise mode of action in the regulation of other key cellular processes remains enigmatic. An accumulating body of evidence indicates that Scribble module proteins play scaffolding roles in the control of various signaling pathways, which are linked to the control of tissue growth, differentiation and cell migration. Multiple Scrib, Dlg and Lgl interacting proteins have been discovered, which are involved in diverse processes, however many function in the regulation of cellular signaling. Herein, we review the components of the Scrib, Dlg and Lgl protein interactomes, and focus on the mechanism by which they regulate cellular signaling pathways in metazoans, and how their disruption leads to cancer.
Collapse
Affiliation(s)
- Rebecca Stephens
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Krystle Lim
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Avenida Doctor Arce, 37, Madrid 28002, Spain
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Anatomy & Neurobiology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
70
|
Abstract
Selective enrichment of the polyphosphoinositides (PPIn), such as PtdIns(4,5)P2 and PtdIns4P, helps to determine the identity of the plasma membrane (PM) and regulates many aspects of cell biology through a vast number of protein effectors. Polarity proteins had long been assumed to be non-PPIn-binding proteins that mainly associate with PM/cell cortex through their extensive protein-protein interaction network. However, recent studies began to reveal that several key polarity proteins electrostatically bind to PPIn through their positively charged protein domains or structures and such PPIn-binding property is essential for their direct and specific attachment to PM. Although the physical nature of the charge-based PPIn binding appears to be simple and nonspecific, it serves as an elegant mechanism that can be efficiently and specifically regulated for achieving polarized PM targeting of polarity proteins. As an unexpected consequence, subcellular localization of PPIn-binding polarity proteins are also subject to regulations by physiological conditions such as hypoxia and ischemia that acutely and reversibly depletes PPIn from PM.
Collapse
Affiliation(s)
- Gerald R Hammond
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15261
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
71
|
Zilberman Y, Abrams J, Anderson DC, Nance J. Cdc42 regulates junctional actin but not cell polarization in the Caenorhabditis elegans epidermis. J Cell Biol 2017; 216:3729-3744. [PMID: 28903999 PMCID: PMC5674880 DOI: 10.1083/jcb.201611061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 07/18/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022] Open
Abstract
During morphogenesis, adherens junctions (AJs) remodel to allow changes in cell shape and position while preserving adhesion. Here, we examine the function of Rho guanosine triphosphatase CDC-42 in AJ formation and regulation during Caenorhabditis elegans embryo elongation, a process driven by asymmetric epidermal cell shape changes. cdc-42 mutant embryos arrest during elongation with epidermal ruptures. Unexpectedly, we find using time-lapse fluorescence imaging that cdc-42 is not required for epidermal cell polarization or junction assembly, but rather is needed for proper junctional actin regulation during elongation. We show that the RhoGAP PAC-1/ARHGAP21 inhibits CDC-42 activity at AJs, and loss of PAC-1 or the interacting linker protein PICC-1/CCDC85A-C blocks elongation in embryos with compromised AJ function. pac-1 embryos exhibit dynamic accumulations of junctional F-actin and an increase in AJ protein levels. Our findings identify a previously unrecognized molecular mechanism for inhibiting junctional CDC-42 to control actin organization and AJ protein levels during epithelial morphogenesis.
Collapse
Affiliation(s)
- Yuliya Zilberman
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Joshua Abrams
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Dorian C Anderson
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
- Department of Cell Biology, New York University School of Medicine, New York, NY
| |
Collapse
|
72
|
Wen W, Zhang M. Protein Complex Assemblies in Epithelial Cell Polarity and Asymmetric Cell Division. J Mol Biol 2017; 430:3504-3520. [PMID: 28963071 DOI: 10.1016/j.jmb.2017.09.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/24/2022]
Abstract
Asymmetric local concentration of protein complexes on distinct membrane regions is a fundamental property in numerous biological processes and is a hallmark of cell polarity. Evolutionarily conserved core polarity proteins form specific and dynamic networks to regulate the establishment and maintenance of cell polarity, as well as distinct polarity-driven cellular events. This review focuses on the molecular and structural basis governing regulated formation of several sets of core cell polarity regulatory complexes, as well as their functions in epithelial cell polarization and asymmetric cell division.
Collapse
Affiliation(s)
- Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, PR China.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
73
|
Abstract
The scaffold protein Par-3 (
Drosophila Bazooka) is a central organizer of cell polarity across animals. This review focuses on how the clustering of Par-3 contributes to cell polarity. It begins with the Par-3 homo-oligomerization mechanism and its regulation by Par-1 phosphorylation. The role of polarized cytoskeletal networks in distributing Par-3 clusters to one end of the cell is then discussed, as is the subsequent maintenance of polarized Par-3 clusters through hindered mobility and inhibition from the opposite pole. Finally, specific roles of Par-3 clusters are reviewed, including the bundling of microtubules, the cortical docking of centrosomes, the growth and positioning of cadherin–catenin clusters, and the inhibition of the Par-6–aPKC kinase cassette. Examples are drawn from
Drosophila, Caenorhabditis elegans, mammalian cell culture, and biochemical studies.
Collapse
Affiliation(s)
- Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
74
|
Campanale JP, Sun TY, Montell DJ. Development and dynamics of cell polarity at a glance. J Cell Sci 2017; 130:1201-1207. [PMID: 28365593 DOI: 10.1242/jcs.188599] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells exhibit morphological and molecular asymmetries that are broadly categorized as cell polarity. The cell polarity established in early embryos prefigures the macroscopic anatomical asymmetries characteristic of adult animals. For example, eggs and early embryos have polarized distributions of RNAs and proteins that generate global anterior/posterior and dorsal/ventral axes. The molecular programs that polarize embryos are subsequently reused in multiple contexts. Epithelial cells require apical/basal polarity to establish their barrier function. Migrating cells polarize in the direction of movement, creating distinct leading and trailing structures. Asymmetrically dividing stem cells partition different molecules between themselves and their daughter cells. Cell polarity can develop de novo, be maintained through rounds of cell division and be dynamically remodeled. In this Cell Science at a Glance review and poster, we describe molecular asymmetries that underlie cell polarity in several cellular contexts. We highlight multiple developmental systems that first establish cell/developmental polarity, and then maintain it. Our poster showcases repeated use of the Par, Scribble and Crumbs polarity complexes, which drive the development of cell polarity in many cell types and organisms. We then briefly discuss the diverse and dynamic changes in cell polarity that occur during cell migration, asymmetric cell division and in planar polarized tissues.
Collapse
Affiliation(s)
- Joseph P Campanale
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Thomas Y Sun
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Denise J Montell
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
75
|
Couto A, Mack NA, Favia L, Georgiou M. An apicobasal gradient of Rac activity determines protrusion form and position. Nat Commun 2017; 8:15385. [PMID: 28524861 PMCID: PMC5454455 DOI: 10.1038/ncomms15385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 03/10/2017] [Indexed: 12/15/2022] Open
Abstract
Each cell within a polarized epithelial sheet must align and correctly position a wide range of subcellular structures, including actin-based dynamic protrusions. Using in vivo inducible transgenes that can sense or modify Rac activity, we demonstrate an apicobasal gradient of Rac activity that is required to correctly form and position distinct classes of dynamic protrusion along the apicobasal axis of the cell. We show that we can modify the Rac activity gradient in genetic mutants for specific polarity proteins, with consequent changes in protrusion form and position and additionally show, using photoactivatable Rac transgenes, that it is the level of Rac activity that determines protrusion form. Thus, we demonstrate a mechanism by which polarity proteins can spatially regulate Rac activity and the actin cytoskeleton to ensure correct epithelial cell shape and prevent epithelial-to-mesenchymal transitions.
Collapse
Affiliation(s)
- Africa Couto
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Natalie Ann Mack
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Lucrezia Favia
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marios Georgiou
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
76
|
Meng Y, Cai KQ, Moore R, Tao W, Tse JD, Smith ER, Xu XX. Pten facilitates epiblast epithelial polarization and proamniotic lumen formation in early mouse embryos. Dev Dyn 2017; 246:517-530. [PMID: 28387983 DOI: 10.1002/dvdy.24503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/27/2017] [Accepted: 03/21/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Phosphatase and tensin homologue on chromosome 10 (Pten), a lipid phosphatase originally identified as a tumor-suppressor gene, regulates the phosphoinositol 3 kinase signaling pathway and impacts cell death and proliferation. Pten mutant embryos die at early stages of development, although the particular developmental deficiency and the mechanisms are not yet fully understood. RESULTS We analyzed Pten mutant embryos in detail and found that the formation of the proamniotic cavity is impaired. Embryoid bodies derived from Pten-null embryonic stem cells failed to undergo cavitation, reproducing the embryonic phenotype in vitro. Analysis of embryoid bodies and embryos revealed a role of Pten in the initiation of the focal point of the epithelial rosette that develops into the proamniotic lumen, and in establishment of epithelial polarity to transform the amorphous epiblast cells into a polarized epithelium. CONCLUSIONS We conclude that Pten is required for proamniotic cavity formation by establishing polarity for epiblast cells to form a rosette that expands into the proamniotic lumen, rather than facilitating apoptosis to create the cavity. Developmental Dynamics 246:517-530, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yue Meng
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Kathy Q Cai
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Robert Moore
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Wensi Tao
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeffrey D Tse
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Elizabeth R Smith
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
77
|
Mazel T. Crosstalk of cell polarity signaling pathways. PROTOPLASMA 2017; 254:1241-1258. [PMID: 28293820 DOI: 10.1007/s00709-017-1075-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Cell polarity, the asymmetric organization of cellular components along one or multiple axes, is present in most cells. From budding yeast cell polarization induced by pheromone signaling, oocyte polarization at fertilization to polarized epithelia and neuronal cells in multicellular organisms, similar mechanisms are used to determine cell polarity. Crucial role in this process is played by signaling lipid molecules, small Rho family GTPases and Par proteins. All these signaling circuits finally govern the cytoskeleton, which is responsible for oriented cell migration, cell shape changes, and polarized membrane and organelle trafficking. Thus, typically in the process of cell polarization, most cellular constituents become polarized, including plasma membrane lipid composition, ion concentrations, membrane receptors, and proteins in general, mRNA, vesicle trafficking, or intracellular organelles. This review gives a brief overview how these systems talk to each other both during initial symmetry breaking and within the signaling feedback loop mechanisms used to preserve the polarized state.
Collapse
Affiliation(s)
- Tomáš Mazel
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
- State Institute for Drug Control, Šrobárova 48, 100 41, Prague 10, Czech Republic.
| |
Collapse
|
78
|
Abstract
Cell polarity refers to the asymmetric localization of cellular components that allows cells to carry out their specialized functions, be they epithelial barrier function, transmission of action potentials in nerve cells, or modulation of the immune response. The establishment and maintenance of cell polarity requires the directed trafficking of membrane proteins and lipids - essential processes that are mediated by Rab GTPases. Interestingly, several of the Rabs that impact polarity are present in the earliest eukaryotes, and the Rab polarity repertoire has expanded as cells have become more complex. There is a substantial conservation of Rab function across diverse cell types. Rabs act through an assortment of effector proteins that include scaffolding proteins, cytoskeletal motors, and other small GTPases. In this review we highlight the similarities and differences in Rab function for the instruction of polarity in diverse cell types.
Collapse
Affiliation(s)
- Sara S Parker
- a Department of Cellular and Molecular Medicine , University of Arizona , Tucson , AZ , USA
| | - Christopher Cox
- a Department of Cellular and Molecular Medicine , University of Arizona , Tucson , AZ , USA
| | - Jean M Wilson
- a Department of Cellular and Molecular Medicine , University of Arizona , Tucson , AZ , USA
| |
Collapse
|
79
|
Nakamura H, Nagasaka K, Kawana K, Taguchi A, Uehara Y, Yoshida M, Sato M, Nishida H, Fujimoto A, Inoue T, Adachi K, Nagamatsu T, Arimoto T, Oda K, Osuga Y, Fujii T. Expression of Par3 polarity protein correlates with poor prognosis in ovarian cancer. BMC Cancer 2016; 16:897. [PMID: 27855669 PMCID: PMC5114836 DOI: 10.1186/s12885-016-2929-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/06/2016] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Previous studies have shown that the cell polarity protein partitioning defective 3 (Par3) plays an essential role in the formation of tight junctions and definition of apical-basal polarity. Aberrant function of this protein has been reported to be involved in epithelial-mesenchymal transition (EMT) and cancer invasion. The aim of this study was to examine the functional mechanism of Par3 in ovarian cancer. METHODS First, we investigated the association between Par3 expression level and survival of 50 ovarian cancer patients. Next, we conducted an in vitro analysis of ovarian cancer cell lines, focusing on the cell line JHOC5, to investigate Par3 function. To investigate the function of Par3 in invasion, the IL-6/STAT3 pathway was analyzed upon Par3 knockdown with siRNA. The effect of siRNA treatment was assessed by qPCR, ELISA, and western blotting. Invasiveness and cell proliferation following treatment with siRNA against Par3 were investigated using Matrigel chamber, wound healing, and cell proliferation assays. RESULTS Expression array data for ovarian cancer patient samples revealed low Par3 expression was significantly associated with good prognosis. Univariate analysis of clinicopathological factors revealed significant association between high Par3 levels and peritoneal dissemination at the time of diagnosis. Knockdown of Par3 in JHOC5 cells suppressed cell invasiveness, migration, and cell proliferation with deregulation of IL-6/STAT3 activity. CONCLUSION Taken together, these results suggest that Par3 expression is likely involved in ovarian cancer progression, especially in peritoneal metastasis. The underlying mechanism may be that Par3 modulates IL-6 /STAT3 signaling. Here, we propose that the expression of Par3 in ovarian cancer may control disease outcome.
Collapse
Affiliation(s)
- Hiroe Nakamura
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Yuriko Uehara
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Mitsuyo Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Masakazu Sato
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Haruka Nishida
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Asaha Fujimoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Tomoko Inoue
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Katsuyuki Adachi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Takahide Arimoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| |
Collapse
|
80
|
Nicotine enhances the malignant potential of human pancreatic cancer cells via activation of atypical protein kinase C. Biochim Biophys Acta Gen Subj 2016; 1860:2404-2415. [DOI: 10.1016/j.bbagen.2016.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/22/2016] [Accepted: 07/13/2016] [Indexed: 01/04/2023]
|
81
|
Flores-Benitez D, Knust E. Dynamics of epithelial cell polarity in Drosophila: how to regulate the regulators? Curr Opin Cell Biol 2016; 42:13-21. [DOI: 10.1016/j.ceb.2016.03.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/25/2016] [Indexed: 10/22/2022]
|
82
|
The PCP pathway regulates Baz planar distribution in epithelial cells. Sci Rep 2016; 6:33420. [PMID: 27624969 PMCID: PMC5022056 DOI: 10.1038/srep33420] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/26/2016] [Indexed: 01/05/2023] Open
Abstract
The localisation of apico-basal polarity proteins along the Z-axis of epithelial cells is well understood while their distribution in the plane of the epithelium is poorly characterised. Here we provide a systematic description of the planar localisation of apico-basal polarity proteins in the Drosophila ommatidial epithelium. We show that the adherens junction proteins Shotgun and Armadillo, as well as the baso-lateral complexes, are bilateral, i.e. present on both sides of cell interfaces. In contrast, we report that other key adherens junction proteins, Bazooka and the myosin regulatory light chain (Spaghetti squash) are unilateral, i.e. present on one side of cell interfaces. Furthermore, we demonstrate that planar cell polarity (PCP) and not the apical determinants Crumbs and Par-6 control Bazooka unilaterality in cone cells. Altogether, our work unravels an unexpected organisation and combination of apico-basal, cytoskeletal and planar polarity proteins that is different on either side of cell-cell interfaces and unique for the different contacts of the same cell.
Collapse
|
83
|
Soriano EV, Ivanova ME, Fletcher G, Riou P, Knowles PP, Barnouin K, Purkiss A, Kostelecky B, Saiu P, Linch M, Elbediwy A, Kjær S, O'Reilly N, Snijders AP, Parker PJ, Thompson BJ, McDonald NQ. aPKC Inhibition by Par3 CR3 Flanking Regions Controls Substrate Access and Underpins Apical-Junctional Polarization. Dev Cell 2016; 38:384-98. [PMID: 27554858 PMCID: PMC4998004 DOI: 10.1016/j.devcel.2016.07.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 05/24/2016] [Accepted: 07/24/2016] [Indexed: 12/02/2022]
Abstract
Atypical protein kinase C (aPKC) is a key apical-basal polarity determinant and Par complex component. It is recruited by Par3/Baz (Bazooka in Drosophila) into epithelial apical domains through high-affinity interaction. Paradoxically, aPKC also phosphorylates Par3/Baz, provoking its relocalization to adherens junctions (AJs). We show that Par3 conserved region 3 (CR3) forms a tight inhibitory complex with a primed aPKC kinase domain, blocking substrate access. A CR3 motif flanking its PKC consensus site disrupts the aPKC kinase N lobe, separating P-loop/αB/αC contacts. A second CR3 motif provides a high-affinity anchor. Mutation of either motif switches CR3 to an efficient in vitro substrate by exposing its phospho-acceptor site. In vivo, mutation of either CR3 motif alters Par3/Baz localization from apical to AJs. Our results reveal how Par3/Baz CR3 can antagonize aPKC in stable apical Par complexes and suggests that modulation of CR3 inhibitory arms or opposing aPKC pockets would perturb the interaction, promoting Par3/Baz phosphorylation.
Collapse
Affiliation(s)
- Erika V Soriano
- Structural Biology, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Marina E Ivanova
- Structural Biology, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Georgina Fletcher
- Epithelial Biology, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Philippe Riou
- Protein Phosphorylation Laboratories, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Philip P Knowles
- Structural Biology, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Karin Barnouin
- Protein Analysis, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Andrew Purkiss
- Structural Biology, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Brenda Kostelecky
- Structural Biology, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Peter Saiu
- Structural Biology, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Mark Linch
- Protein Phosphorylation Laboratories, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ahmed Elbediwy
- Epithelial Biology, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Svend Kjær
- Protein Purification Facilities, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Nicola O'Reilly
- Peptide Chemistry, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ambrosius P Snijders
- Protein Analysis, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Peter J Parker
- Protein Phosphorylation Laboratories, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK; Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Barry J Thompson
- Epithelial Biology, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| | - Neil Q McDonald
- Structural Biology, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK; Institute of Structural and Molecular Biology, School of Biological Science, Birkbeck College, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
84
|
Moreira S, Morais-de-Sá E. Spatiotemporal phosphoregulation of Lgl: Finding meaning in multiple on/off buttons. BIOARCHITECTURE 2016; 6:29-38. [PMID: 26919260 DOI: 10.1080/19490992.2016.1149290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intracellular asymmetries, often termed cell polarity, determine how cells organize and divide to ultimately control cell fate and shape animal tissues. The tumor suppressor Lethal giant larvae (Lgl) functions at the core of the evolutionarily conserved cell polarity machinery that controls apico-basal polarization. This function relies on its restricted basolateral localization via phosphorylation by aPKC. Here, we summarize the spatial and temporal control of Lgl during the cell cycle, highlighting two ideas that emerged from our recent findings: 1) Aurora A directly phosphorylates Lgl during symmetric division to couple reorganization of epithelial polarity with the cell cycle; 2) Phosphorylation of Lgl within three conserved serines controls its localization and function in a site-specific manner. Considering the importance of phosphorylation to regulate the concentration of Lgl at the plasma membrane, we will further discuss how it may work as an on-off switch for the interaction with cortical binding partners, with implications on epithelial polarization and spindle orientation.
Collapse
Affiliation(s)
- Sofia Moreira
- a IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal.,b I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal
| | - Eurico Morais-de-Sá
- a IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal.,b I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal
| |
Collapse
|
85
|
Román-Fernández A, Bryant DM. Complex Polarity: Building Multicellular Tissues Through Apical Membrane Traffic. Traffic 2016; 17:1244-1261. [PMID: 27281121 DOI: 10.1111/tra.12417] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022]
Abstract
The formation of distinct subdomains of the cell surface is crucial for multicellular organism development. The most striking example of this is apical-basal polarization. What is much less appreciated is that underpinning an asymmetric cell surface is an equally dramatic intracellular endosome rearrangement. Here, we review the interplay between classical cell polarity proteins and membrane trafficking pathways, and discuss how this marriage gives rise to cell polarization. We focus on those mechanisms that regulate apical polarization, as this is providing a number of insights into how membrane traffic and polarity are regulated at the tissue level.
Collapse
Affiliation(s)
- Alvaro Román-Fernández
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David M Bryant
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| |
Collapse
|
86
|
aPKC regulates apical localization of Lgl to restrict elongation of microridges in developing zebrafish epidermis. Nat Commun 2016; 7:11643. [PMID: 27249668 PMCID: PMC4895443 DOI: 10.1038/ncomms11643] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/15/2016] [Indexed: 12/05/2022] Open
Abstract
Epithelial cells exhibit apical membrane protrusions, which confer specific functions to epithelial tissues. Microridges are short actin protrusions that are laterally long and form a maze-like pattern in the apical domain. They are widely found on vertebrate squamous epithelia including epidermis and have functions in mucous retention, membrane storage and abrasion resistance. It is largely unknown how the formation of these laterally long actin projections is regulated. Here, we show that antagonistic interactions between aPKC and Lgl–regulators of apical and basolateral domain identity, respectively,–control the length of microridges in the zebrafish periderm, the outermost layer of the epidermis. aPKC regulates the levels of Lgl and the active form of non-muscle myosinII at the apical cortex to prevent actin polymerization-dependent precocious fusion and elongation of microridges. Our data unravels the functional significance of exclusion of Lgl from the apical domain in epithelial cells. Squamous epithelia present actin-rich microridges on the apical surface, but the mechanism of their formation is not known. Here the authors show that, in zebrafish epidermis, the exclusion of the basolateral regulator Lgl from the apical domain by atypical protein kinase C prevents precocious elongation and fusion of microridges.
Collapse
|
87
|
Magi Is Associated with the Par Complex and Functions Antagonistically with Bazooka to Regulate the Apical Polarity Complex. PLoS One 2016; 11:e0153259. [PMID: 27074039 PMCID: PMC4830575 DOI: 10.1371/journal.pone.0153259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/26/2016] [Indexed: 12/15/2022] Open
Abstract
The mammalian MAGI proteins play important roles in the maintenance of adherens and tight junctions. The MAGI family of proteins contains modular domains such as WW and PDZ domains necessary for scaffolding of membrane receptors and intracellular signaling components. Loss of MAGI leads to reduced junction stability while overexpression of MAGI can lead to increased adhesion and stabilization of epithelial morphology. However, how Magi regulates junction assembly in epithelia is largely unknown. We investigated the single Drosophila homologue of Magi to study the in vivo role of Magi in epithelial development. Magi is localized at the adherens junction and forms a complex with the polarity proteins, Par3/Bazooka and aPKC. We generated a Magi null mutant and found that Magi null mutants were viable with no detectable morphological defects even though the Magi protein is highly conserved with vertebrate Magi homologues. However, overexpression of Magi resulted in the displacement of Baz/Par3 and aPKC and lead to an increase in the level of PIP3. Interestingly, we found that Magi and Baz functioned in an antagonistic manner to regulate the localization of the apical polarity complex. Maintaining the balance between the level of Magi and Baz is an important determinant of the levels and localization of apical polarity complex.
Collapse
|
88
|
Pak4 Is Required during Epithelial Polarity Remodeling through Regulating AJ Stability and Bazooka Retention at the ZA. Cell Rep 2016; 15:45-53. [PMID: 27052178 PMCID: PMC4826445 DOI: 10.1016/j.celrep.2016.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/19/2016] [Accepted: 02/26/2016] [Indexed: 11/24/2022] Open
Abstract
The ability of epithelial cells to assemble into sheets relies on their zonula adherens (ZA), a circumferential belt of adherens junction (AJ) material, which can be remodeled during development to shape organs. Here, we show that during ZA remodeling in a model neuroepithelial cell, the Cdc42 effector P21-activated kinase 4 (Pak4/Mbt) regulates AJ morphogenesis and stability through β-catenin (β-cat/Arm) phosphorylation. We find that β-catenin phosphorylation by Mbt, and associated AJ morphogenesis, is needed for the retention of the apical determinant Par3/Bazooka at the remodeling ZA. Importantly, this retention mechanism functions together with Par1-dependent lateral exclusion of Par3/Bazooka to regulate apical membrane differentiation. Our results reveal an important functional link between Pak4, AJ material morphogenesis, and polarity remodeling during organogenesis downstream of Par3. Pak4 regulates adherens junction accumulation at the zonula adherens Pak4 promotes Par3 (Bazooka) retention at the zonula adherens Par1 and Pak4 synergize in preventing lateral accumulation of Par3
Collapse
|
89
|
Molecular Control of Atypical Protein Kinase C: Tipping the Balance between Self-Renewal and Differentiation. J Mol Biol 2016; 428:1455-64. [PMID: 26992354 DOI: 10.1016/j.jmb.2016.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/20/2016] [Accepted: 03/03/2016] [Indexed: 01/05/2023]
Abstract
Complex organisms are faced with the challenge of generating and maintaining diverse cell types, ranging from simple epithelia to neurons and motile immune cells [1-3]. To meet this challenge, a complex set of regulatory pathways controls nearly every aspect of cell growth and function, including genetic and epigenetic programming, cytoskeleton dynamics, and protein trafficking. The far reach of cell fate specification pathways makes it particularly catastrophic when they malfunction, both during development and for tissue homeostasis in adult organisms. Furthermore, the therapeutic promise of stem cells derives from their ability to deftly navigate the multitude of pathways that control cell fate [4]. How the molecular components making up these pathways function to specify cell fate is beginning to become clear. Work from diverse systems suggests that the atypical Protein Kinase C (aPKC) is a key regulator of cell fate decisions in metazoans [5-7]. Here, we examine some of the diverse physiological outcomes of aPKC's function in differentiation, along with the molecular pathways that control aPKC and those that are responsive to changes in its catalytic activity.
Collapse
|
90
|
Sarov M, Barz C, Jambor H, Hein MY, Schmied C, Suchold D, Stender B, Janosch S, K J VV, Krishnan RT, Krishnamoorthy A, Ferreira IRS, Ejsmont RK, Finkl K, Hasse S, Kämpfer P, Plewka N, Vinis E, Schloissnig S, Knust E, Hartenstein V, Mann M, Ramaswami M, VijayRaghavan K, Tomancak P, Schnorrer F. A genome-wide resource for the analysis of protein localisation in Drosophila. eLife 2016; 5:e12068. [PMID: 26896675 PMCID: PMC4805545 DOI: 10.7554/elife.12068] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/19/2016] [Indexed: 02/07/2023] Open
Abstract
The Drosophila genome contains >13000 protein-coding genes, the majority of which remain poorly investigated. Important reasons include the lack of antibodies or reporter constructs to visualise these proteins. Here, we present a genome-wide fosmid library of 10000 GFP-tagged clones, comprising tagged genes and most of their regulatory information. For 880 tagged proteins, we created transgenic lines, and for a total of 207 lines, we assessed protein expression and localisation in ovaries, embryos, pupae or adults by stainings and live imaging approaches. Importantly, we visualised many proteins at endogenous expression levels and found a large fraction of them localising to subcellular compartments. By applying genetic complementation tests, we estimate that about two-thirds of the tagged proteins are functional. Moreover, these tagged proteins enable interaction proteomics from developing pupae and adult flies. Taken together, this resource will boost systematic analysis of protein expression and localisation in various cellular and developmental contexts. DOI:http://dx.doi.org/10.7554/eLife.12068.001 The fruit fly Drosophila melanogaster is a popular model organism in biological research. Studies using Drosophila have led to important insights into human biology, because related proteins often fulfil similar roles in flies and humans. Thus, studying the role of a protein in Drosophila can teach us about what it might do in a human. To fulfil their biological roles, proteins often occupy particular locations inside cells, such as the cell’s nucleus or surface membrane. Many proteins are also only found in specific types of cell, such as neurons or muscle cells. A protein’s location thus provides clues about what it does, however cells contain many thousands of proteins and identifying the location of each one is a herculean task. Sarov et al. took on this challenge and developed a new resource to study the localisation of all Drosophila proteins during this animal’s development. First, genetic engineering was used to tag thousands of Drosophila proteins with a green fluorescent protein, so that they could be tracked under a microscope. Sarov et al. tagged about 10000 Drosophila proteins in bacteria, and then introduced almost 900 of them into flies to create genetically modified flies. Each fly line contains an extra copy of the tagged gene that codes for one tagged protein. About two-thirds of these tagged proteins appeared to work normally after they were introduced into flies. Sarov et al. then looked at over 200 of these fly lines in more detail and observed that many of the proteins were found in particular cell types and localized to specific parts of the cells. Video imaging of the tagged proteins in living fruit fly embryos and pupae revealed the proteins’ movements, while other techniques showed which proteins bind to the tagged proteins, and may therefore work together in protein complexes. This resource is openly available to the community, and so researchers can use it to study their favourite protein and gain new insights into how proteins work and are regulated during Drosophila development. Following on from this work, the next challenge will be to create more flies carrying tagged proteins, and to swap the green fluorescent tag with other experimentally useful tags. DOI:http://dx.doi.org/10.7554/eLife.12068.002
Collapse
Affiliation(s)
- Mihail Sarov
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Christiane Barz
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Helena Jambor
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Marco Y Hein
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Dana Suchold
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Bettina Stender
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stephan Janosch
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Vinay Vikas K J
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - R T Krishnan
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Aishwarya Krishnamoorthy
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Irene R S Ferreira
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Katja Finkl
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susanne Hasse
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Philipp Kämpfer
- Heidelberg Institute of Theoretical Studies, Heidelberg, Germany
| | - Nicole Plewka
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Elisabeth Vinis
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | | | - Elisabeth Knust
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mani Ramaswami
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - K VijayRaghavan
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Pavel Tomancak
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Frank Schnorrer
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
91
|
Loebel DAF, Plageman TF, Tang TL, Jones VJ, Muccioli M, Tam PPL. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction. Biol Open 2016; 5:130-9. [PMID: 26772200 PMCID: PMC4823982 DOI: 10.1242/bio.014415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early development of the gut endoderm and its subsequent remodeling for the formation of organ buds are accompanied by changes to epithelial cell shape and polarity. Members of the Rho-related family of small GTPases and their interacting proteins play multiple roles in regulating epithelial morphogenesis. In this study we examined the role of Cdc42 in foregut development and organ bud formation. Ablation of Cdc42 in post-gastrulation mouse embryos resulted in a loss of apical-basal cell polarity and columnar epithelial morphology in the ventral pharyngeal endoderm, in conjunction with a loss of apical localization of the known CDC42 effector protein PARD6B. Cell viability but not proliferation in the foregut endoderm was impaired. Outgrowth of the liver, lung and thyroid buds was severely curtailed in Cdc42-deficient embryos. In particular, the thyroid bud epithelium did not display the apical constriction that normally occurs concurrently with the outgrowth of the bud into the underlying mesenchyme. SHROOM3, a protein that interacts with Rho GTPases and promotes apical constriction, was strongly expressed in the thyroid bud and its sub-cellular localization was disrupted in Cdc42-deficient embryos. In Shroom3 gene trap mutant embryos, the thyroid bud epithelium showed no apical constriction, while the bud continued to grow and protruded into the foregut lumen. Our findings indicate that Cdc42 is required for epithelial polarity and organization in the endoderm and for apical constriction in the thyroid bud. It is possible that the function of CDC42 is partly mediated by SHROOM3. Summary: Conditional Cdc42 knockout revealed requirements for Cdc42 in endoderm polarity, and in thyroid apical constriction and morphogenesis. Shroom3 mutant embryos also displayed thyroid bud abnormalities, suggesting a possible functional interaction.
Collapse
Affiliation(s)
- David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Timothy F Plageman
- Ohio State University College of Optometry, Columbus, OH 43210-1280, USA
| | - Theresa L Tang
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia
| | - Vanessa J Jones
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia
| | - Maria Muccioli
- Ohio State University College of Optometry, Columbus, OH 43210-1280, USA
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
92
|
Abu-Siniyeh A, Owen DM, Benzing C, Rinkwitz S, Becker TS, Majumdar A, Gaus K. The aPKC/Par3/Par6 Polarity Complex and Membrane Order Are Functionally Interdependent in Epithelia During Vertebrate Organogenesis. Traffic 2015; 17:66-79. [PMID: 26456025 DOI: 10.1111/tra.12339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 12/17/2022]
Abstract
The differential distribution of lipids between apical and basolateral membranes is necessary for many epithelial cell functions, but how this characteristic membrane organization is integrated within the polarity network during ductal organ development is poorly understood. Here we quantified membrane order in the gut, kidney and liver ductal epithelia in zebrafish larvae at 3-11 days post fertilization (dpf) with Laurdan 2-photon microscopy. We then applied a combination of Laurdan imaging, antisense knock-down and analysis of polarity markers to understand the relationship between membrane order and apical-basal polarity. We found a reciprocal relationship between membrane order and the cell polarity network. Reducing membrane condensation by exogenously added oxysterol or depletion of cholesterol reduced apical targeting of the polarity protein, aPKC. Conversely, using morpholino knock down in zebrafish, we found that membrane order was dependent upon the Crb3 and Par3 polarity protein expression in ductal epithelia. Hence our data suggest that the biophysical property of membrane lipid packing is a regulatory element in apical basal polarity.
Collapse
Affiliation(s)
- Ahmed Abu-Siniyeh
- School of Medical Sciences, ARC Centre for Advanced Molecular Imaging and Australian Centre for NanoMedicine, The University of New South Wales, Australia.,Present address: Department of Chemistry and Medical Analysis, Faculty of Science, Al-Balqa' Applied University, Al-Salt, 19117, Jordan
| | - Dylan M Owen
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Carola Benzing
- School of Medical Sciences, ARC Centre for Advanced Molecular Imaging and Australian Centre for NanoMedicine, The University of New South Wales, Australia
| | - Silke Rinkwitz
- Brain and Mind Research Institute, Sydney Medical School and Department of Health Sciences, University of Sydney, Australia
| | - Thomas S Becker
- Brain and Mind Research Institute, Sydney Medical School and Department of Health Sciences, University of Sydney, Australia
| | - Arindam Majumdar
- Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden
| | - Katharina Gaus
- School of Medical Sciences, ARC Centre for Advanced Molecular Imaging and Australian Centre for NanoMedicine, The University of New South Wales, Australia
| |
Collapse
|
93
|
Mruk DD, Cheng CY. The Mammalian Blood-Testis Barrier: Its Biology and Regulation. Endocr Rev 2015; 36:564-91. [PMID: 26357922 PMCID: PMC4591527 DOI: 10.1210/er.2014-1101] [Citation(s) in RCA: 448] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/03/2015] [Indexed: 12/31/2022]
Abstract
Spermatogenesis is the cellular process by which spermatogonia develop into mature spermatids within seminiferous tubules, the functional unit of the mammalian testis, under the structural and nutritional support of Sertoli cells and the precise regulation of endocrine factors. As germ cells develop, they traverse the seminiferous epithelium, a process that involves restructuring of Sertoli-germ cell junctions, as well as Sertoli-Sertoli cell junctions at the blood-testis barrier. The blood-testis barrier, one of the tightest tissue barriers in the mammalian body, divides the seminiferous epithelium into 2 compartments, basal and adluminal. The blood-testis barrier is different from most other tissue barriers in that it is not only comprised of tight junctions. Instead, tight junctions coexist and cofunction with ectoplasmic specializations, desmosomes, and gap junctions to create a unique microenvironment for the completion of meiosis and the subsequent development of spermatids into spermatozoa via spermiogenesis. Studies from the past decade or so have identified the key structural, scaffolding, and signaling proteins of the blood-testis barrier. More recent studies have defined the regulatory mechanisms that underlie blood-testis barrier function. We review here the biology and regulation of the mammalian blood-testis barrier and highlight research areas that should be expanded in future studies.
Collapse
Affiliation(s)
- Dolores D Mruk
- Center for Biomedical Research, Population Council, New York, New York 10065
| | - C Yan Cheng
- Center for Biomedical Research, Population Council, New York, New York 10065
| |
Collapse
|
94
|
Ravid S. The tumor suppressor Lgl1 regulates front-rear polarity of migrating cells. Cell Adh Migr 2015; 8:378-83. [PMID: 25482644 DOI: 10.4161/cam.29387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cell migration is a highly integrated, multistep process that plays an important role in physiological and pathological processes. The migrating cell is highly polarized, with complex regulatory pathways that integrate its component processes spatially and temporally. The Drosophila tumor suppressor, Lethal (2) giant larvae (Lgl), regulates apical-basal polarity in epithelia and asymmetric cell division. But little is known about the role of Lgl in establishing cell polarity in migrating cells. Recently, we showed that the mammalian Lgl1 interacts directly with non-muscle myosin IIA (NMIIA), inhibiting its ability to assemble into filaments in vitro. Lgl1 also regulates the cellular localization of NMIIA, the maturation of focal adhesions, and cell migration. We further showed that phosphorylation of Lgl1 by aPKCζ prevents its interaction with NMIIA and is important for Lgl1 and acto-NMII cytoskeleton cellular organization. Lgl is a critical downstream target of the Par6-aPKC cell polarity complex; we showed that Lgl1 forms two distinct complexes in vivo, Lgl1-NMIIA and Lgl1-Par6-aPKCζ in different cellular compartments. We further showed that aPKCζ and NMIIA compete to bind directly to Lgl1 through the same domain. These data provide new insights into the role of Lgl1, NMIIA, and Par6-aPKCζ in establishing front-rear polarity in migrating cells. In this commentary, I discuss the role of Lgl1 in the regulation of the acto-NMII cytoskeleton and its regulation by the Par6-aPKCζ polarity complex, and how Lgl1 activity may contribute to the establishment of front-rear polarity in migrating cells.
Collapse
Affiliation(s)
- Shoshana Ravid
- a Department of Biochemistry and Molecular Biology; The Institute of Medical Research Israel-Canada ; The Hebrew University-Hadassah Medical School ; Jerusalem , Israel
| |
Collapse
|
95
|
Abstract
Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease.
Collapse
Key Words
- AB, Apicobasal
- AJ, Adherens junction
- Amot, Angiomotin
- Arp2/3, Actin-related protein-2/3
- Baz, Bazooka
- C. elegans, Caenorhabditis elegans
- CA, Constitutively-active
- CD2AP, CD2-associated protein
- Caco2, Human colon carcinoma
- Cdc42
- Cora, Coracle
- Crb, Crumbs
- DN, Dominant-negative
- Dia1, Diaphanous-related formin 1
- Dlg, Discs large
- Drosophila, Drosophila melanogaster
- Dys-β, Dystrobrevin-β
- ECM, Extracellular matrix
- Ect2, Epithelial cell transforming sequence 2 oncogene
- Eya1, Eyes absent 1
- F-actin, Filamentous actin
- FRET, Fluorescence resonance energy transfer
- GAP, GTPase-activating protein
- GDI, Guanine nucleotide dissociation inhibitor
- GEF, Guanine nucleotide exchange factor
- GTPases
- JACOP, Junction-associated coiled-coiled protein
- JAM, Junctional adhesion molecule
- LKB1, Liver kinase B1
- Lgl, Lethal giant larvae
- MDCK, Madin-Darby canine kidney
- MTOC, Microtubule-organizing center
- NrxIV, Neurexin IV
- Pals1, Protein associated with Lin-7 1
- Par, Partitioning-defective
- Patj, Pals1-associated TJ protein
- ROCK, Rho-associated kinase
- Rac
- Rho
- Rich1, RhoGAP interacting with CIP4 homologues
- S. cerevisiae, Saccharomyces cerevisiae
- S. pombe, Schizosaccharomyces pombe
- SH3BP1, SH3-domain binding protein 1
- Scrib, Scribble
- Std, Stardust
- TEM4, Tumor endothelial marker 4
- TJ, Tight junction
- Tiam1, T-cell lymphoma invasion and metastasis-inducing protein 1
- WASp, Wiskott-aldrich syndrome protein
- Yrt, Yurt
- ZA, zonula adherens
- ZO, Zonula occludens
- aPKC, Atypical Protein Kinase C
- apicobasal
- epithelia
- junction
- par
- polarity
- α-cat, Alpha-catenin
- β-cat, Beta-Catenin
- β2-syn, Beta-2-syntrophin
Collapse
Affiliation(s)
- Natalie Ann Mack
- a School of Life Sciences; Queens Medical Center ; University of Nottingham ; Nottingham , UK
| | | |
Collapse
|
96
|
Watson K, Rossi G, Temple B, Brennwald P. Structural basis for recognition of the Sec4 Rab GTPase by its effector, the Lgl/tomosyn homologue, Sro7. Mol Biol Cell 2015. [PMID: 26202462 PMCID: PMC4569318 DOI: 10.1091/mbc.e15-04-0228] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Members of the tomosyn/Lgl/Sro7 family play important roles in vesicle trafficking and cell polarity in eukaryotic cells. The yeast homologue, Sro7, is believed to act as a downstream effector of the Sec4 Rab GTPase to promote soluble N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE) assembly during Golgi-to-cell surface vesicle transport. Here we describe the identification of a Sec4 binding site on the surface of Sro7 that is contained within a cleft created by the junction of two adjacent β-propellers that form the core structure of Sro7. Computational docking experiments suggested four models for interaction of GTP-Sec4 with the Sro7 binding cleft. Further mutational and biochemical analyses confirmed that only one of the four docking arrangements is perfectly consistent with our genetic and biochemical interaction data. Close examination of this docking model suggests a structural basis for the high substrate and nucleotide selectivity in effector binding by Sro7. Finally, analysis of the surface variation within the homologous interaction site on tomosyn-1 and Lgl-1 structural models suggests a possible conserved Rab GTPase effector function in tomosyn vertebrate homologues.
Collapse
Affiliation(s)
- Kelly Watson
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599 Graduate Program in Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Guendalina Rossi
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Brenda Temple
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599 R. L. Juliano Structural Bioinformatics Core, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Patrick Brennwald
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599 Graduate Program in Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
97
|
Abstract
The establishment of polarity is an essential step in epithelial morphogenesis. Polarity proteins promote an apical/basal axis, which, together with the assembly of apical adherens and tight junctions, directed vesicle transport and the reorganization of the actomyosin filament network, generate a stable epithelium. The regulation of these cellular activities is complex, but the Rho family GTPase Cdc42 (cell division cycle 42) is known to play a key role in the establishment of polarity from yeast to humans. Two Cdc42 target proteins, the kinase PAK4 [p21 protein (Cdc42/Rac)-activated kinase 4] and the scaffold partitioning defective (Par) 6B, are required to promote the assembly of apical junctions in human bronchial epithelial cells. We show in the present paper that PAK4 phosphorylates Par6B at Ser143 blocking its interaction with Cdc42. This provides a potential new mechanism for controlling the subcellular localization of Par6B and its interaction with other proteins.
Collapse
|
98
|
Nakajima YI, Gibson MC. Epithelial cell division: Aurora kicks Lgl to the cytoplasmic curb. Curr Biol 2015; 25:R43-5. [PMID: 25562301 DOI: 10.1016/j.cub.2014.11.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Drosophila neoplastic tumor suppressor Lethal giant larvae (Lgl) regulates apico-basal polarity in epithelia as well as the asymmetric segregation of cell fate in neural progenitors. Two new studies uncover a new facet of its regulation in epithelia, where Aurora-dependent phosphorylation triggers Lgl dissociation from the basolateral cortex to facilitate planar orientation of the mitotic spindle.
Collapse
Affiliation(s)
- Yu-ichiro Nakajima
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.
| |
Collapse
|
99
|
Sasaki K, Kakuwa T, Akimoto K, Koga H, Ohno S. Regulation of epithelial cell polarity by PAR-3 depends on Girdin transcription and Girdin-Gαi3 signaling. J Cell Sci 2015; 128:2244-58. [PMID: 25977476 DOI: 10.1242/jcs.160879] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 05/07/2015] [Indexed: 12/31/2022] Open
Abstract
Epithelial apicobasal polarity has fundamental roles in epithelial physiology and morphogenesis. The PAR complex, comprising PAR-3, PAR-6 and atypical protein kinase C (aPKC), is involved in determining cell polarity in various biological contexts, including in epithelial cells. However, it is not fully understood how the PAR complex induces apicobasal polarity. In this study, we found that PAR-3 regulates the protein expression of Girdin (also known as GIV or CCDC88A), a guanine-nucleotide-exchange factor (GEF) for heterotrimeric Gαi subunits, at the transcriptional level by cooperating with the AP-2 transcription factor. In addition, we confirmed that PAR-3 physically interacts with Girdin, and show that Girdin, together with the Gαi3 (also known as GNAI3), controls tight junction formation, apical domain development and actin organization downstream of PAR-3. Taken together, our findings suggest that transcriptional upregulation of Girdin expression and Girdin-Gαi3 signaling play crucial roles in regulating epithelial apicobasal polarity through the PAR complex.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Taku Kakuwa
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kazunori Akimoto
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan Department of Molecular Medical Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hisashi Koga
- Department of Human Genome Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
100
|
Salinas-Saavedra M, Stephenson TQ, Dunn CW, Martindale MQ. Par system components are asymmetrically localized in ectodermal epithelia, but not during early development in the sea anemone Nematostella vectensis. EvoDevo 2015; 6:20. [PMID: 26101582 PMCID: PMC4476184 DOI: 10.1186/s13227-015-0014-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background The evolutionary origins of cell polarity in metazoan embryos are unclear. In most bilaterian animals, embryonic and cell polarity are set up during embryogenesis with the same molecules being utilized to regulate tissue polarity at different life stages. Atypical protein kinase C (aPKC), lethal giant larvae (Lgl), and Partitioning-defective (Par) proteins are conserved components of cellular polarization, and their role in establishing embryonic asymmetry and tissue polarity have been widely studied in model bilaterian groups. However, the deployment and role of these proteins in animals outside Bilateria has not been studied. We address this by characterizing the localization of different components of the Par system during early development of the sea anemone Nematostella vectensis, a member of the clade Cnidaria, the sister group to bilaterian animals. Results Immunostaining using specific N. vectensis antibodies and the overexpression of mRNA-reporter constructs show that components of the N. vectensis Par system (NvPar-1, NvPar-3, NvPar-6, NvaPKC, and NvLgl) distribute throughout the microtubule cytoskeleton of eggs and early embryos without clear polarization along any embryonic axis. However, they become asymmetrically distributed at later stages, when the embryo forms an ectodermal epithelial layer. NvLgl and NvPar-1 localize in the basolateral cortex, and NvaPKC, NvPar-6, and NvPar-3 at the apical zone of the cell in a manner seen in bilaterian animals. Conclusions The cnidarian N. vectensis exhibits clear polarity at all stages of early embryonic development, which appears to be established independent of the Par system reported in many bilaterian embryos. However, in N. vectensis, using multiple immunohistochemical and fluorescently labeled markers in vivo, components of this system are deployed to organize epithelial cell polarity at later stages of development. This suggests that Par system proteins were co-opted to organize early embryonic cell polarity at the base of the Bilateria and that, therefore, different molecular mechanisms operate in early cnidarian embryogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0014-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| | - Thomas Q Stephenson
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912 USA
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| |
Collapse
|