51
|
Wang L, Zhu ZM, Zhang NK, Fang ZR, Xu XH, Zheng N, Gao LR. Apelin: an endogenous peptide essential for cardiomyogenic differentiation of mesenchymal stem cells via activating extracellular signal-regulated kinase 1/2 and 5. Cell Biol Int 2016; 40:501-14. [PMID: 26787000 DOI: 10.1002/cbin.10581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/12/2016] [Indexed: 01/25/2023]
Abstract
Growing evidence has shown that apelin/APJ system functions as a critical mediator of cardiac development as well as cardiovascular function. Here, we investigated the role of apelin in the cardiomyogenic differentiation of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord in vitro. In this research, we used RNA interference methodology and gene transfection technique to regulate the expression of apelin in Wharton's jelly-derived mesenchymal stem cells and induced cells with a effective cardiac differentiation protocol including 5-azacytidine and bFGF. Four weeks after induction, induced cells assumed a stick-like morphology and myotube-like structures except apelin-silenced cells and the control group. The silencing expression of apelin in Wharton's jelly-derived mesenchymal stem cells decreased the expression of several critical cardiac progenitor transcription factors (Mesp1, Mef2c, NKX2.5) and cardiac phenotypes (cardiac α-actin, β-MHC, cTnT, and connexin-43). Meanwhile, endogenous compensation of apelin contributed to differentiating into cells with characteristics of cardiomyocytes in vitro. Further experiment showed that exogenous apelin peptide rescued the cardiomyogenic differentiation of apelin-silenced mesenchymal stem cells in the early stage (1-4 days) of induction. Remarkably, our experiment indicated that apelin up-regulated cardiac specific genes in Wharton's jelly-derived mesenchymal stem cells via activating extracellular signal-regulated kinase (ERK) 1/2 and 5.
Collapse
Affiliation(s)
- Li Wang
- Cardiovascular Center, Navy General Hospital, Beijing, 100048, China
- Department of Internal Medicine, The 413th Hospital of P. L. A., Zhoushan, Zhejiang, 316000, China
| | - Zhi-Ming Zhu
- Cardiovascular Center, Navy General Hospital, Beijing, 100048, China
| | - Ning-Kun Zhang
- Cardiovascular Center, Navy General Hospital, Beijing, 100048, China
| | - Zhi-Rong Fang
- Department of Internal Medicine, The 413th Hospital of P. L. A., Zhoushan, Zhejiang, 316000, China
| | - Xiao-Hong Xu
- Cardiovascular Center, Navy General Hospital, Beijing, 100048, China
| | - Nan Zheng
- Cardiovascular Center, Navy General Hospital, Beijing, 100048, China
| | - Lian-Ru Gao
- Cardiovascular Center, Navy General Hospital, Beijing, 100048, China
| |
Collapse
|
52
|
Dolatshad NF, Hellen N, Jabbour RJ, Harding SE, Földes G. G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells: Implications for Disease Modeling. Front Cell Dev Biol 2015; 3:76. [PMID: 26697426 PMCID: PMC4673467 DOI: 10.3389/fcell.2015.00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cell derivatives show promise as an in vitro platform to study a range of human cardiovascular diseases. A better understanding of the biology of stem cells and their cardiovascular derivatives will help to understand the strengths and limitations of this new model system. G-protein coupled receptors (GPCRs) are key regulators of stem cell maintenance and differentiation and have an important role in cardiovascular cell signaling. In this review, we will therefore describe the state of knowledge concerning the regulatory role of GPCRs in both the generation and function of pluripotent stem cell derived-cardiomyocytes, -endothelial, and -vascular smooth muscle cells. We will consider how far the in vitro disease models recapitulate authentic GPCR signaling and provide a useful basis for discovery of disease mechanisms or design of therapeutic strategies.
Collapse
Affiliation(s)
- Nazanin F Dolatshad
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Nicola Hellen
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Richard J Jabbour
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Sian E Harding
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Gabor Földes
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK ; The Heart and Vascular Center of Semmelweis University, Semmelweis University Budapest, Hungary
| |
Collapse
|
53
|
Characterization of apela, a novel endogenous ligand of apelin receptor, in the adult heart. Basic Res Cardiol 2015; 111:2. [DOI: 10.1007/s00395-015-0521-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/06/2015] [Indexed: 01/04/2023]
|
54
|
Lou X, Burrows JTA, Scott IC. Med14 cooperates with brg1 in the differentiation of skeletogenic neural crest. BMC DEVELOPMENTAL BIOLOGY 2015; 15:41. [PMID: 26553192 PMCID: PMC4640375 DOI: 10.1186/s12861-015-0090-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 10/25/2015] [Indexed: 11/17/2022]
Abstract
Background An intricate gene regulatory network drives neural crest migration and differentiation. How epigenetic regulators contribute to this process is just starting to be understood. Results We found that mutation of med14 or brg1 in zebrafish embryos resulted in a cluster of neural crest cell-related defects. In med14 or brg1 mutants, neural crest cells that form the jaw skeleton were specified normally and migrated to target sites. However, defects in their subsequent terminal differentiation were evident. Transplantation experiments demonstrated that med14 and brg1 are required directly in neural crest cells. Analysis of med14; brg1 double mutant embryos suggested the existence of a strong genetic interaction between members of the Mediator and BAF complexes. Conclusions These results suggest a critical role for Mediator and BAF complex function in neural crest development, and may also clarify the nature of defects in some craniofacial abnormalities.
Collapse
Affiliation(s)
- Xin Lou
- Model Animal Research Center, Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu, China. .,Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Ontario, Canada. .,Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, 101 College Street, Toronto, M5G 1L7, Ontario, Canada.
| | - Jeffrey T A Burrows
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Ontario, Canada.
| | - Ian C Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Ontario, Canada. .,Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, 101 College Street, Toronto, M5G 1L7, Ontario, Canada.
| |
Collapse
|
55
|
Yang P, Maguire JJ, Davenport AP. Apelin, Elabela/Toddler, and biased agonists as novel therapeutic agents in the cardiovascular system. Trends Pharmacol Sci 2015; 36:560-7. [PMID: 26143239 PMCID: PMC4577653 DOI: 10.1016/j.tips.2015.06.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 12/11/2022]
Abstract
Apelin and its G protein-coupled receptor (GPCR) have emerged as a key signalling pathway in the cardiovascular system. The peptide is a potent inotropic agent and vasodilator. Remarkably, a peptide, Elabela/Toddler, that has little sequence similarity to apelin, has been proposed as a second endogenous apelin receptor ligand and is encoded by a gene from a region of the genome previously classified as 'non-coding'. Apelin is downregulated in pulmonary arterial hypertension and heart failure. To replace the missing endogenous peptide, 'biased' apelin agonists have been designed that preferentially activate G protein pathways, resulting in reduced β-arrestin recruitment and receptor internalisation, with the additional benefit of attenuating detrimental β-arrestin signalling. Proof-of-concept studies support the clinical potential for apelin receptor biased agonists.
Collapse
Affiliation(s)
- Peiran Yang
- Experimental Medicine and Immunotherapeutics, Level 6 Addenbrooke's Centre for Clinical Investigation, Box 110 Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, Level 6 Addenbrooke's Centre for Clinical Investigation, Box 110 Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, Level 6 Addenbrooke's Centre for Clinical Investigation, Box 110 Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
56
|
Helker CSM, Schuermann A, Pollmann C, Chng SC, Kiefer F, Reversade B, Herzog W. The hormonal peptide Elabela guides angioblasts to the midline during vasculogenesis. eLife 2015; 4. [PMID: 26017639 PMCID: PMC4468421 DOI: 10.7554/elife.06726] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/22/2015] [Indexed: 12/18/2022] Open
Abstract
A key step in the de novo formation of the embryonic vasculature is the migration of endothelial precursors, the angioblasts, to the position of the future vessels. To form the first axial vessels, angioblasts migrate towards the midline and coalesce underneath the notochord. Vascular endothelial growth factor has been proposed to serve as a chemoattractant for the angioblasts and to regulate this medial migration. Here we challenge this model and instead demonstrate that angioblasts rely on their intrinsic expression of Apelin receptors (Aplr, APJ) for their migration to the midline. We further show that during this angioblast migration Apelin receptor signaling is mainly triggered by the recently discovered ligand Elabela (Ela). As neither of the ligands Ela or Apelin (Apln) nor their receptors have previously been implicated in regulating angioblast migration, we hereby provide a novel mechanism for regulating vasculogenesis, with direct relevance to physiological and pathological angiogenesis. DOI:http://dx.doi.org/10.7554/eLife.06726.001 The circulatory system enables blood to move around the body and deliver substances including nutrients and oxygen to the cells that need them. In the embryos of animals with a backbone, blood flows from the heart through the aorta into branching smaller vessels to the cells. The blood then gets collected by progressively bigger vessels and flows back to the heart via the cardinal vein. The cells that make up these blood vessels develop from cells called angioblasts—but first, during development these angioblasts must move to the place where the vessels will form. A protein called Vascular endothelial growth factor (VEGF) had been suggested to help guide and align the angioblasts as the embryo develops. Now, Helker, Schuermann et al. have examined developing zebrafish embryos using new technologies. This revealed that VEGF is in fact not essential for the dorsal aorta and cardinal vein to develop. Instead, the angioblasts only move to the correct part of the embryo if they can produce the Apelin receptor protein, which forms part of a signaling pathway. There are two hormones—called Apelin and Elabela—that can bind to and activate the Apelin receptor. Helker, Schuermann et al. show that Elabela alone is needed to guide the angioblasts to the right part of the embryo during blood vessel development. However, in embryos where there is not enough Elabela, the Apelin hormone can compensate for this deficiency and the first blood vessels will later develop correctly. Future research will address whether this signaling pathway not only guides angioblasts to establish a circulatory system, but also guides blood vessel growth. As blood vessel growth is very relevant to human disease, identifying the mechanisms that regulate it will have an impact on biomedical research. DOI:http://dx.doi.org/10.7554/eLife.06726.002
Collapse
Affiliation(s)
| | | | - Cathrin Pollmann
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Serene C Chng
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A*STAR, Singapore, Singapore
| | | | - Bruno Reversade
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A*STAR, Singapore, Singapore
| | | |
Collapse
|
57
|
Chaves-Almagro C, Castan-Laurell I, Dray C, Knauf C, Valet P, Masri B. Apelin receptors: From signaling to antidiabetic strategy. Eur J Pharmacol 2015; 763:149-59. [PMID: 26007641 DOI: 10.1016/j.ejphar.2015.05.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/09/2015] [Accepted: 05/11/2015] [Indexed: 01/14/2023]
Abstract
The G protein-coupled receptor APJ and its cognate ligand, apelin, are widely expressed throughout human body. They are implicated in different key physiological processes such as angiogenesis, cardiovascular functions, fluid homeostasis and energy metabolism regulation. On the other hand, this couple ligand-receptor is also involved in the development and progression of different pathologies including diabetes, obesity, cardiovascular disease and cancer. Recently, a new endogenous peptidic ligand of APJ, named Elabela/Toddler, has been identified and shown to play a crucial role in embryonic development. Whereas nothing is yet known regarding Elabela/Toddler functions in adulthood, apelin has been extensively described as a beneficial adipokine regarding to glucose and lipid metabolism and is endowed with anti-diabetic and anti-obesity properties. Indeed, there is a growing body of evidence supporting apelin signaling as a novel promising therapeutic target for metabolic disorders (obesity, type 2 diabetes). In this review, we provide an overview of the pharmacological properties of APJ and its endogenous ligands. We also report the activity of peptidic and non-peptidic agonists and antagonists targeting APJ described in the literature. Finally, we highlight the important role of this signaling pathway in the control of energy metabolism at the peripheral level and in the central nervous system in both physiological conditions and during obesity or diabetes.
Collapse
Affiliation(s)
- C Chaves-Almagro
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France
| | - I Castan-Laurell
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France
| | - C Dray
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France
| | - C Knauf
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France
| | - P Valet
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France
| | - B Masri
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France.
| |
Collapse
|
58
|
Genetic targeting of sprouting angiogenesis using Apln-CreER. Nat Commun 2015; 6:6020. [PMID: 25597280 PMCID: PMC4309445 DOI: 10.1038/ncomms7020] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/02/2014] [Indexed: 02/07/2023] Open
Abstract
Under pathophysiological conditions in adults, endothelial cells (ECs) sprout from pre-existing blood vessels to form new ones by a process termed angiogenesis. During embryonic development, Apelin (APLN) is robustly expressed in vascular ECs. In adult mice, however, APLN expression in the vasculature is significantly reduced. Here we show that APLN expression is reactivated in adult ECs after ischaemia insults. In models of both injury ischaemia and tumor angiogenesis, we find that Apln-CreER genetically labels sprouting but not quiescent vasculature. By leveraging this specific activity, we demonstrate that abolishment of the VEGF-VEGFR2 signalling pathway as well as ablation of sprouting ECs diminished tumour vascularization and growth without compromising vascular homeostasis in other organs. Collectively, we show that Apln-CreER distinguishes sprouting vessels from stabilized vessels in multiple pathological settings. The Apln-CreER line described here will greatly aid future mechanistic studies in both vascular developmental biology and adult vascular diseases.
Collapse
|
59
|
Pathophysiology of Portal Hypertension. PANVASCULAR MEDICINE 2015. [PMCID: PMC7153457 DOI: 10.1007/978-3-642-37078-6_144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The bases of our current knowledge on the physiology of the hepatic portal system are largely owed to the work of three pioneering vascular researchers from the sixteenth and the seventeenth centuries: A. Vesalius, W. Harvey, and F. Glisson. Vesalius is referred to as the founder of modern human anatomy, and in his influential book, De humani corporis fabrica libri septem, he elaborated the first anatomical atlas of the hepatic portal venous system (Vesalius 2013). Sir William Harvey laid the foundations of modern cardiovascular research with his Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus (Harvey 1931) in which he established the nature of blood circulation. Finally, F. Glisson characterized the gastrointestinal-hepatic vascular system (Child 1955). These physiological descriptions were later complemented with clinical observations. In the eighteenth and nineteenth centuries, Morgagni, Puckelt, Cruveilhier, and Osler were the first to make the connection between common hepatic complications – ascites, splenomegaly, and gastrointestinal bleeding – and obstruction of the portal system (Sandblom 1993). These were the foundations that allowed Gilbert, Villaret, and Thompson to establish an early definition of portal hypertension at the beginning of the twentieth century. In this period, Thompson performed the first direct measurement of portal pressure by laparotomy in some patients (Gilbert and Villaret 1906; Thompson et al. 1937). Considering all these milestones, and paraphrasing Sir Isaac Newton, if hepatologists have seen further, it is by standing on the shoulders of giants. Nowadays, our understanding of the pathogenesis of portal hypertension has largely improved thanks to the progress in preclinical and clinical research. However, this field is ever-changing and hepatologists are continually identifying novel pathological mechanisms and developing new therapeutic strategies for this clinical condition. Hence, the aim of this chapter is to summarize the current knowledge about this clinical condition.
Collapse
|
60
|
Lin F, Wu H, Chen H, Xin Z, Yuan D, Wang T, Liu J, Gao Y, Zhang X, Zhou C, Wei R, Chen D, Yang S, Wang Y, Pu Y, Li Z. Molecular and physiological evidences for the role in appetite regulation of apelin and its receptor APJ in Ya-fish (Schizothorax prenanti). Mol Cell Endocrinol 2014; 396:46-57. [PMID: 25150624 DOI: 10.1016/j.mce.2014.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
Apelin is a recently discovered peptide produced by several tissues with diverse physiological actions mediated by its receptor APJ. In order to better understand the role of apelin in the regulation of appetite in fish, we cloned the cDNAs encoding apelin and APJ, and investigated their mRNA distributions in Ya-fish (Schizothorax prenanti) tissues. We also assessed the effects of different nutritional status on apelin and APJ mRNAs abundance. Apelin and APJ mRNAs were ubiquitously expressed in all tissues tested, relatively high expression levels were detected in the heart, spleen, hypothalamus and kidney. Short-term fasting significant increased APJ mRNA expression, but no significant difference between fasted fish and fed control on 5- and 7-day. Meanwhile, apelin mRNA expression consistently increased during the 7-day food deprivation. In order to further characterize apelin in fish, we performed intraperitoneal (i.p.) injection of apelin-13 and examined food intake of the injected fish. Apelin injected at a dose of 100 ng/g body weight induced a significant increase in food intake compared to saline injected fish. Our results suggest that apelin acts as an orexigenic factor in Ya-fish. Their widespread distributions also suggest that apelin and APJ might play multiple physiological regulating roles in fish.
Collapse
Affiliation(s)
- Fangjun Lin
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Hongwei Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Zhiming Xin
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Dengyue Yuan
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Tao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Ju Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Yundi Gao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Chaowei Zhou
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Rongbin Wei
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Shiyong Yang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Yan Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Yundan Pu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China.
| |
Collapse
|
61
|
Xie F, Liu W, Feng F, Li X, Yang L, Lv D, Qin X, Li L, Chen L. A static pressure sensitive receptor APJ promote H9c2 cardiomyocyte hypertrophy via PI3K-autophagy pathway. Acta Biochim Biophys Sin (Shanghai) 2014; 46:699-708. [PMID: 24966188 DOI: 10.1093/abbs/gmu046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study is designed to investigate whether APJ receptor acts as a sensor in static pressure-induced cardiomyocyte hypertrophy and to investigate the mechanism of PI3K-autophagy pathway. The left ventricular hypertrophy rat model was established by coarctation of abdominal aorta. H9c2 rat cardiomyocytes were cultured in the presence of static pressure which was given by a custom-made pressure incubator. The results revealed that the expression of apelin/APJ system, PI3K, Akt and their phosphorylation were significantly increased in the operation group. Static pressure up-regulated the APJ expression, PI3K phosphorylation, Akt phosphorylation, LC3-II/I and beclin-1 expression in cardiomyocytes. APJ shRNA pGPU6/Neo-rat-399, PI3K inhibitor LY294002, Akt inhibitor 1701-1 blocked the up-regulation of APJ, PI3K phosphorylation, Akt phosphorylation, LC3-II/I and beclin-1 expression, respectively. Moreover, static pressure increased the diameter, volume, protein content of cells, and these could be reversed when the cells were treated with pGPU6/Neo-rat-399, LY294002, and autophagy inhibitor 3-methyladenine, respectively. These results suggested that static pressure up-regulates APJ expression to promote cardiomyocyte hypertrophy by a PI3K-autophagy pathway.
Collapse
|
62
|
Lathen C, Zhang Y, Chow J, Singh M, Lin G, Nigam V, Ashraf YA, Yuan JX, Robbins IM, Thistlethwaite PA. ERG-APLNR axis controls pulmonary venule endothelial proliferation in pulmonary veno-occlusive disease. Circulation 2014; 130:1179-91. [PMID: 25062690 DOI: 10.1161/circulationaha.113.007822] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Pulmonary veno-occlusive disease is caused by excessive cell proliferation and fibrosis, which obliterate the lumen of pulmonary venules, leading to pulmonary hypertension, right ventricular failure, and death. This condition has no effective treatment and a 5-year survival of <5%. Understanding the mechanism of this disease and designing effective therapies are urgently needed. METHODS AND RESULTS We show that mice with homozygous deletion of the Ets transcription factor Erg die between embryonic day 16.5 and 3 months of age as a result of pulmonary veno-occlusive disease, capillary hemorrhage, and pancytopenia. We demonstrate that Erg binds to and serves as a transcriptional activator of the G-protein-coupled receptor gene Aplnr, the expression of which is uniquely specific for venous endothelium and that knockout of either Erg or Aplnr results in pulmonary venule-specific endothelial proliferation in vitro. We show that mice with either homozygous-global or endothelium-directed deletion of Aplnr manifest pulmonary veno-occlusive disease and right heart failure, detectable at 8 months of age. Levels of pulmonary ERG and APLNR in patients with pulmonary veno-occlusive disease undergoing lung transplantation were significantly lower than those of control subjects. CONCLUSIONS Our results suggest that ERG and APLNR are essential for endothelial homeostasis in venules in the lung and that perturbation in ERG-APLNR signaling is crucial for the development of pulmonary veno-occlusive disease. We identify this pathway as a potential therapeutic target for the treatment of this incurable disease.
Collapse
Affiliation(s)
- Christopher Lathen
- From the Division of Cardiothoracic Surgery (C.L., Y.Z, J.C., M.S., Y.A.A., P.A.T), Department of Pathology (G.L.), Division of Cardiology (V.N), University of California, San Diego; Department of Medicine, University of Illinois, Chicago (J.X.Y.); and Division of Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, TN (I.M.R.)
| | - Yu Zhang
- From the Division of Cardiothoracic Surgery (C.L., Y.Z, J.C., M.S., Y.A.A., P.A.T), Department of Pathology (G.L.), Division of Cardiology (V.N), University of California, San Diego; Department of Medicine, University of Illinois, Chicago (J.X.Y.); and Division of Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, TN (I.M.R.)
| | - Jennifer Chow
- From the Division of Cardiothoracic Surgery (C.L., Y.Z, J.C., M.S., Y.A.A., P.A.T), Department of Pathology (G.L.), Division of Cardiology (V.N), University of California, San Diego; Department of Medicine, University of Illinois, Chicago (J.X.Y.); and Division of Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, TN (I.M.R.)
| | - Martanday Singh
- From the Division of Cardiothoracic Surgery (C.L., Y.Z, J.C., M.S., Y.A.A., P.A.T), Department of Pathology (G.L.), Division of Cardiology (V.N), University of California, San Diego; Department of Medicine, University of Illinois, Chicago (J.X.Y.); and Division of Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, TN (I.M.R.)
| | - Grace Lin
- From the Division of Cardiothoracic Surgery (C.L., Y.Z, J.C., M.S., Y.A.A., P.A.T), Department of Pathology (G.L.), Division of Cardiology (V.N), University of California, San Diego; Department of Medicine, University of Illinois, Chicago (J.X.Y.); and Division of Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, TN (I.M.R.)
| | - Vishal Nigam
- From the Division of Cardiothoracic Surgery (C.L., Y.Z, J.C., M.S., Y.A.A., P.A.T), Department of Pathology (G.L.), Division of Cardiology (V.N), University of California, San Diego; Department of Medicine, University of Illinois, Chicago (J.X.Y.); and Division of Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, TN (I.M.R.)
| | - Yasser A Ashraf
- From the Division of Cardiothoracic Surgery (C.L., Y.Z, J.C., M.S., Y.A.A., P.A.T), Department of Pathology (G.L.), Division of Cardiology (V.N), University of California, San Diego; Department of Medicine, University of Illinois, Chicago (J.X.Y.); and Division of Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, TN (I.M.R.)
| | - Jason X Yuan
- From the Division of Cardiothoracic Surgery (C.L., Y.Z, J.C., M.S., Y.A.A., P.A.T), Department of Pathology (G.L.), Division of Cardiology (V.N), University of California, San Diego; Department of Medicine, University of Illinois, Chicago (J.X.Y.); and Division of Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, TN (I.M.R.)
| | - Ivan M Robbins
- From the Division of Cardiothoracic Surgery (C.L., Y.Z, J.C., M.S., Y.A.A., P.A.T), Department of Pathology (G.L.), Division of Cardiology (V.N), University of California, San Diego; Department of Medicine, University of Illinois, Chicago (J.X.Y.); and Division of Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, TN (I.M.R.)
| | - Patricia A Thistlethwaite
- From the Division of Cardiothoracic Surgery (C.L., Y.Z, J.C., M.S., Y.A.A., P.A.T), Department of Pathology (G.L.), Division of Cardiology (V.N), University of California, San Diego; Department of Medicine, University of Illinois, Chicago (J.X.Y.); and Division of Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, TN (I.M.R.).
| |
Collapse
|
63
|
Xie F, Lv D, Chen L. ELABELA: a novel hormone in cardiac development acting as a new endogenous ligand for the APJ receptor. Acta Biochim Biophys Sin (Shanghai) 2014; 46:620-2. [PMID: 24829400 DOI: 10.1093/abbs/gmu032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Feng Xie
- Learning Key Laboratory for Pharmaco-proteomics, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Deguan Lv
- Learning Key Laboratory for Pharmaco-proteomics, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Learning Key Laboratory for Pharmaco-proteomics, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| |
Collapse
|
64
|
Reichman-Fried M, Raz E. Small proteins, big roles: The signaling protein Apela extends the complexity of developmental pathways in the early zebrafish embryo. Bioessays 2014; 36:741-5. [DOI: 10.1002/bies.201400048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michal Reichman-Fried
- Institute of Cell Biology; Center for Molecular Biology of Inflammation; Münster Germany
| | - Erez Raz
- Institute of Cell Biology; Center for Molecular Biology of Inflammation; Münster Germany
| |
Collapse
|
65
|
Karpinich NO, Caron KM. Apelin signaling: new G protein-coupled receptor pathway in lymphatic vascular development. Arterioscler Thromb Vasc Biol 2014; 34:239-41. [PMID: 24431421 DOI: 10.1161/atvbaha.113.302905] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Natalie O Karpinich
- From the Departments of Cell Biology and Physiology (N.O.K., K.M.C.) and Genetics (K.M.C.), University of North Carolina at Chapel Hill, NC
| | | |
Collapse
|
66
|
Pauli A, Norris ML, Valen E, Chew GL, Gagnon JA, Zimmerman S, Mitchell A, Ma J, Dubrulle J, Reyon D, Tsai SQ, Joung JK, Saghatelian A, Schier AF. Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science 2014; 343:1248636. [PMID: 24407481 DOI: 10.1126/science.1248636] [Citation(s) in RCA: 486] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It has been assumed that most, if not all, signals regulating early development have been identified. Contrary to this expectation, we identified 28 candidate signaling proteins expressed during zebrafish embryogenesis, including Toddler, a short, conserved, and secreted peptide. Both absence and overproduction of Toddler reduce the movement of mesendodermal cells during zebrafish gastrulation. Local and ubiquitous production of Toddler promote cell movement, suggesting that Toddler is neither an attractant nor a repellent but acts globally as a motogen. Toddler drives internalization of G protein-coupled APJ/Apelin receptors, and activation of APJ/Apelin signaling rescues toddler mutants. These results indicate that Toddler is an activator of APJ/Apelin receptor signaling, promotes gastrulation movements, and might be the first in a series of uncharacterized developmental signals.
Collapse
Affiliation(s)
- Andrea Pauli
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Wilkinson RN, Jopling C, van Eeden FJM. Zebrafish as a model of cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 124:65-91. [PMID: 24751427 DOI: 10.1016/b978-0-12-386930-2.00004-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The zebrafish has been rapidly adopted as a model for cardiac development and disease. The transparency of the embryo, its limited requirement for active oxygen delivery, and ease of use in genetic manipulations and chemical exposure have made it a powerful alternative to rodents. Novel technologies like TALEN/CRISPR-mediated genome engineering and advanced imaging methods will only accelerate its use. Here, we give an overview of heart development and function in the fish and highlight a number of areas where it is most actively contributing to the understanding of cardiac development and disease. We also review the current state of research on a feature that we only could wish to be conserved between fish and human; cardiac regeneration.
Collapse
Affiliation(s)
- Robert N Wilkinson
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Chris Jopling
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, Labex Ion Channel Science and Therapeutics, Montpellier, France; INSERM, U661, Montpellier, France; Universités de Montpellier 1&2, UMR-5203, Montpellier, France
| | - Fredericus J M van Eeden
- MRC Centre for Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
68
|
Chng SC, Ho L, Tian J, Reversade B. ELABELA: a hormone essential for heart development signals via the apelin receptor. Dev Cell 2013; 27:672-80. [PMID: 24316148 DOI: 10.1016/j.devcel.2013.11.002] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/06/2013] [Accepted: 11/04/2013] [Indexed: 02/06/2023]
Abstract
We report here the discovery and characterization of a gene, ELABELA (ELA), encoding a conserved hormone of 32 amino acids. Present in human embryonic stem cells, ELA is expressed at the onset of zebrafish zygotic transcription and is ubiquitous in the naive ectodermal cells of the embryo. Using zinc-finger-nuclease-mediated gene inactivation in zebrafish, we created an allelic series of ela mutants. ela null embryos have impaired endoderm differentiation potential marked by reduced gata5 and sox17 expression. Loss of Ela causes embryos to develop with a rudimentary heart or no heart at all, surprisingly phenocopying the loss of the apelin receptor (aplnr), which we show serves as Ela's cognate G protein-coupled receptor. Our results reveal the existence of a peptide hormone, ELA, which, together with APLNR, forms an essential signaling axis for early cardiovascular development.
Collapse
Affiliation(s)
- Serene C Chng
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore
| | - Lena Ho
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore
| | - Jing Tian
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore
| | - Bruno Reversade
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Institute of Molecular and Cellular Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Pediatrics, National University of Singapore, Singapore 119260, Singapore.
| |
Collapse
|
69
|
Kim JD, Kang Y, Kim J, Papangeli I, Kang H, Wu J, Park H, Nadelmann E, Rockson SG, Chun HJ, Jin SW. Essential role of Apelin signaling during lymphatic development in zebrafish. Arterioscler Thromb Vasc Biol 2013; 34:338-45. [PMID: 24311379 DOI: 10.1161/atvbaha.113.302785] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Apelin and its cognate receptor Aplnr/Apj are essential for diverse biological processes. However, the function of Apelin signaling in lymphatic development remains to be identified, despite the preferential expression of Apelin and Aplnr within developing blood and lymphatic endothelial cells in vertebrates. In this report, we aim to delineate the functions of Apelin signaling during lymphatic development. APPROACH AND RESULTS We investigated the functions of Apelin signaling during lymphatic development using zebrafish embryos and found that attenuation of Apelin signaling substantially decreased the formation of the parachordal vessel and the number of lymphatic endothelial cells within the developing thoracic duct, indicating an essential role of Apelin signaling during the early phase of lymphatic development. Mechanistically, we found that abrogation of Apelin signaling selectively attenuates lymphatic endothelial serine-threonine kinase Akt 1/2 phosphorylation without affecting the phosphorylation status of extracellular signal-regulated kinase 1/2. Moreover, lymphatic abnormalities caused by the reduction of Apelin signaling were significantly exacerbated by the concomitant partial inhibition of serine-threonine kinase Akt/protein kinase B signaling. Apelin and vascular endothelial growth factor-C (VEGF-C) signaling provide a nonredundant activation of serine-threonine kinase Akt/protein kinase B during lymphatic development because overexpression of VEGF-C or apelin was unable to rescue the lymphatic defects caused by the lack of Apelin or VEGF-C, respectively. CONCLUSIONS Taken together, our data present compelling evidence suggesting that Apelin signaling regulates lymphatic development by promoting serine-threonine kinase Akt/protein kinase B activity in a VEGF-C/VEGF receptor 3-independent manner during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Jun-Dae Kim
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (J.-D.K., Y.K., I.P., H.K., J.W., H.P., E.N., H.J.C., S.-W.J.); Department of Life Systems, Sookmyung Women's University, Seoul, Korea (J.K.); and Department of Medicine, Stanford University, School of Medicine, CA (S.G.R.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Sato T, Suzuki T, Watanabe H, Kadowaki A, Fukamizu A, Liu PP, Kimura A, Ito H, Penninger JM, Imai Y, Kuba K. Apelin is a positive regulator of ACE2 in failing hearts. J Clin Invest 2013; 123:5203-11. [PMID: 24177423 DOI: 10.1172/jci69608] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 08/29/2013] [Indexed: 11/17/2022] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is a negative regulator of the renin-angiotensin system (RAS), catalyzing the conversion of Angiotensin II to Angiotensin 1-7. Apelin is a second catalytic substrate for ACE2 and functions as an inotropic and cardioprotective peptide. While an antagonistic relationship between the RAS and apelin has been proposed, such functional interplay remains elusive. Here we found that ACE2 was downregulated in apelin-deficient mice. Pharmacological or genetic inhibition of angiotensin II type 1 receptor (AT1R) rescued the impaired contractility and hypertrophy of apelin mutant mice, which was accompanied by restored ACE2 levels. Importantly, treatment with angiotensin 1-7 rescued hypertrophy and heart dysfunctions of apelin-knockout mice. Moreover, apelin, via activation of its receptor, APJ, increased ACE2 promoter activity in vitro and upregulated ACE2 expression in failing hearts in vivo. Apelin treatment also increased cardiac contractility and ACE2 levels in AT1R-deficient mice. These data demonstrate that ACE2 couples the RAS to the apelin system, adding a conceptual framework for the apelin-ACE2-angiotensin 1-7 axis as a therapeutic target for cardiovascular diseases.
Collapse
|
71
|
Aboutaleb N, Kalalianmoghaddam H, Eftekhari S, Shahbazi A, Abbaspour H, Khaksari M. Apelin-13 Inhibits Apoptosis of Cortical Neurons Following Brain Ischemic Reperfusion Injury in a Transient Model of Focal Cerebral Ischemia. Int J Pept Res Ther 2013. [DOI: 10.1007/s10989-013-9374-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
72
|
Full transcriptome analysis of early dorsoventral patterning in zebrafish. PLoS One 2013; 8:e70053. [PMID: 23922899 PMCID: PMC3726443 DOI: 10.1371/journal.pone.0070053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/14/2013] [Indexed: 11/20/2022] Open
Abstract
Understanding the molecular interactions that lead to the establishment of the major body axes during embryogenesis is one of the main goals of developmental biology. Although the past two decades have revolutionized our knowledge about the genetic basis of these patterning processes, the list of genes involved in axis formation is unlikely to be complete. In order to identify new genes involved in the establishment of the dorsoventral (DV) axis during early stages of zebrafish embryonic development, we employed next generation sequencing for full transcriptome analysis of normal embryos and embryos lacking overt DV pattern. A combination of different statistical approaches yielded 41 differentially expressed candidate genes and we confirmed by in situ hybridization the early dorsal expression of 32 genes that are transcribed shortly after the onset of zygotic transcription. Although promoter analysis of the validated genes suggests no general enrichment for the binding sites of early acting transcription factors, most of these genes carry “bivalent” epigenetic histone modifications at the time when zygotic transcription is initiated, suggesting a “poised” transcriptional status. Our results reveal some new candidates of the dorsal gene regulatory network and suggest that a plurality of the earliest upregulated genes on the dorsal side have a role in the modulation of the canonical Wnt pathway.
Collapse
|
73
|
Affiliation(s)
- Annemarieke E. Loot
- From the Institute for Vascular Signalling, Centre for Molecular Medicine and German Centre for Cardiovascular Research (DZHK) partner site Rhine-Main, Goethe University, Theodor-Stern-Kai, Frankfurt am Main, Germany
| | - Ingrid Fleming
- From the Institute for Vascular Signalling, Centre for Molecular Medicine and German Centre for Cardiovascular Research (DZHK) partner site Rhine-Main, Goethe University, Theodor-Stern-Kai, Frankfurt am Main, Germany
| |
Collapse
|
74
|
The G-protein-coupled receptor APJ is expressed in the second heart field and regulates Cerberus–Baf60c axis in embryonic stem cell cardiomyogenesis. Cardiovasc Res 2013; 100:95-104. [DOI: 10.1093/cvr/cvt166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
75
|
Kang Y, Kim J, Anderson JP, Wu J, Gleim SR, Kundu RK, McLean DL, Kim JD, Park H, Jin SW, Hwa J, Quertermous T, Chun HJ. Apelin-APJ signaling is a critical regulator of endothelial MEF2 activation in cardiovascular development. Circ Res 2013; 113:22-31. [PMID: 23603510 DOI: 10.1161/circresaha.113.301324] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The peptide ligand apelin and its receptor APJ constitute a signaling pathway with numerous effects on the cardiovascular system, including cardiovascular development in model organisms such as xenopus and zebrafish. OBJECTIVE This study aimed to characterize the embryonic lethal phenotype of the Apj-/- mice and to define the involved downstream signaling targets. METHODS AND RESULTS We report the first characterization of the embryonic lethality of the Apj-/- mice. More than half of the expected Apj-/- embryos died in utero because of cardiovascular developmental defects. Those succumbing to early embryonic death had markedly deformed vasculature of the yolk sac and the embryo, as well as poorly looped hearts with aberrantly formed right ventricles and defective atrioventricular cushion formation. Apj-/- embryos surviving to later stages demonstrated incomplete vascular maturation because of a deficiency of vascular smooth muscle cells and impaired myocardial trabeculation and ventricular wall development. The molecular mechanism implicates a novel, noncanonical signaling pathway downstream of apelin-APJ involving Gα13, which induces histone deacetylase (HDAC) 4 and HDAC5 phosphorylation and cytoplasmic translocation, resulting in activation of myocyte enhancer factor 2. Apj-/- mice have greater endocardial Hdac4 and Hdac5 nuclear localization and reduced expression of the myocyte enhancer factor 2 (MEF2) transcriptional target Krüppel-like factor 2. We identify a number of commonly shared transcriptional targets among apelin-APJ, Gα13, and MEF2 in endothelial cells, which are significantly decreased in the Apj-/- embryos and endothelial cells. CONCLUSIONS Our results demonstrate a novel role for apelin-APJ signaling as a potent regulator of endothelial MEF2 function in the developing cardiovascular system.
Collapse
Affiliation(s)
- Yujung Kang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Habbout A, Guenancia C, Lorin J, Rigal E, Fassot C, Rochette L, Vergely C. Postnatal overfeeding causes early shifts in gene expression in the heart and long-term alterations in cardiometabolic and oxidative parameters. PLoS One 2013; 8:e56981. [PMID: 23468899 PMCID: PMC3582632 DOI: 10.1371/journal.pone.0056981] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/16/2013] [Indexed: 01/24/2023] Open
Abstract
Background Postnatal overfeeding (OF) in rodents induces a permanent moderate increase in body weight in adulthood. However, the repercussions of postnatal OF on cardiac gene expression, cardiac metabolism and nitro-oxidative stress are less well known. Methodology/Principal Findings Immediately after birth, litters of C57BL/6 mice were either maintained at 10 (normal-fed group, NF), or reduced to 3 in order to induce OF. At weaning, mice of both groups received a standard diet. The cardiac gene expression profile was determined at weaning and cardiac metabolism and oxidative stress were assessed at 7 months. The cardiac expression of several genes, including members of the extracellular matrix and apelin pathway, was modified in juvenile OF mice. In adult mice, OF led to an increase in body weight (+30%) and to significant increases in plasma cholesterol, insulin and leptin levels. Myocardial oxidative stress, SOD and catalase activity and mRNA expression were increased in OF mice. In vivo, diastolic and systolic blood pressures were significantly higher and LV shortening and ejection fraction were decreased in OF mice. Ex vivo, after 30 min of ischemia, hearts isolated from OF mice showed lower functional recovery and larger infarct size (31% vs. 54%, p<0.05). Increases in collagen deposition and expression/activity of matrix-metalloproteinase-2 were observed in adult OF mouse hearts. Moreover, an increase in the expression of SOCS-3 and a decrease in STAT-3 phosphorylation were observed in ventricular tissues from OF mice. Conclusions/Significance Our study emphasizes that over-nutrition during the immediate postnatal period in mice leads to early changes in cardiac gene expression, which may permanently modify the heart’s structural organization and metabolism and could contribute to a greater susceptibility to myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ahmed Habbout
- Inserm UMR866, Laboratoire de Physiopathologie et Pharmacologie Cardio-Métaboliques (LPPCM), Faculties of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
The discovery of leptin in 1994 sparked dramatic new interest in the study of white adipose tissue. It is now recognised to be a metabolically active endocrine organ, producing important chemical messengers - adipokines and cytokines (adipocytokines). The search for new adipocytokines or adipokines gained added fervour with the prospect of the reconciliation between cardiovascular diseases (CVDs), obesity and metabolic syndrome. The role these new chemical messengers play in inflammation, satiety, metabolism and cardiac function has paved the way for new research and theories examining the effects they have on (in this case) CVD. Adipokines are involved in a 'good-bad', yin-yang homoeostatic balance whereby there are substantial benefits: cardioprotection, promoting endothelial function, angiogenesis and reducing hypertension, atherosclerosis and inflammation. The flip side may show contrasting, detrimental effects in aggravating these cardiac parameters.
Collapse
Affiliation(s)
- Harman S Mattu
- Division of Metabolic and Vascular Health, University of Warwick Medical School, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | |
Collapse
|
78
|
Abstract
Many tissues of the body cannot only repair themselves, but also self-renew, a property mainly due to stem cells and the various mechanisms that regulate their behavior. Stem cell biology is a relatively new field. While advances are slowly being realized, stem cells possess huge potential to ameliorate disease and counteract the aging process, causing its speculation as the next panacea. Amidst public pressure to advance rapidly to clinical trials, there is a need to understand the biology of stem cells and to support basic research programs. Without a proper comprehension of how cells and tissues are maintained during the adult life span, clinical trials are bound to fail. This review will cover the basic biology of stem cells, the various types of stem cells, their potential function, and the advantages and disadvantages to their use in medicine. We will next cover the role of G protein-coupled receptors in the regulation of stem cells and their potential in future clinical applications.
Collapse
Affiliation(s)
- VAN A. DOZE
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA (V.A.D.), and Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA (D.M.P.)
| | - DIANNE M. PEREZ
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA (V.A.D.), and Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA (D.M.P.)
| |
Collapse
|
79
|
Staudt D, Stainier D. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu Rev Genet 2012; 46:397-418. [PMID: 22974299 DOI: 10.1146/annurev-genet-110711-155646] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, the zebrafish has emerged as a powerful model organism for studying cardiac development. Its ability to survive without an active circulation and amenability to forward genetics has led to the identification of numerous mutants whose study has helped elucidate new mechanisms in cardiac development. Furthermore, its transparent, externally developing embryos have allowed detailed cellular analyses of heart development. In this review, we discuss the molecular and cellular processes involved in zebrafish heart development from progenitor specification to development of the valve and the conduction system. We focus on imaging studies that have uncovered the cellular bases of heart development and on zebrafish mutants with cardiac abnormalities whose study has revealed novel molecular pathways in cardiac cell specification and tissue morphogenesis.
Collapse
Affiliation(s)
- David Staudt
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
80
|
Scimia MC, Hurtado C, Ray S, Metzler S, Wei K, Wang J, Woods CE, Purcell NH, Catalucci D, Akasaka T, Bueno OF, Vlasuk GP, Kaliman P, Bodmer R, Smith LH, Ashley E, Mercola M, Brown JH, Ruiz-Lozano P. APJ acts as a dual receptor in cardiac hypertrophy. Nature 2012; 488:394-8. [PMID: 22810587 PMCID: PMC3422434 DOI: 10.1038/nature11263] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/25/2012] [Indexed: 01/08/2023]
Abstract
Cardiac hypertrophy is initiated as an adaptive response to sustained overload but progresses pathologically as heart failure ensues. Here we report that genetic loss of APJ, a G-protein-coupled receptor, confers resistance to chronic pressure overload by markedly reducing myocardial hypertrophy and heart failure. In contrast, mice lacking apelin (the endogenous APJ ligand) remain sensitive, suggesting an apelin-independent function of APJ. Freshly isolated APJ-null cardiomyocytes exhibit an attenuated response to stretch, indicating that APJ is a mechanosensor. Activation of APJ by stretch increases cardiomyocyte cell size and induces molecular markers of hypertrophy. Whereas apelin stimulates APJ to activate Gαi and elicits a protective response, stretch signals in an APJ-dependent, G-protein-independent fashion to induce hypertrophy. Stretch-mediated hypertrophy is prevented by knockdown of β-arrestins or by pharmacological doses of apelin acting through Gαi. Taken together, our data indicate that APJ is a bifunctional receptor for both mechanical stretch and the endogenous peptide apelin. By sensing the balance between these stimuli, APJ occupies a pivotal point linking sustained overload to cardiomyocyte hypertrophy.
Collapse
MESH Headings
- Adipokines
- Animals
- Aorta/pathology
- Apelin
- Apelin Receptors
- Arrestins/deficiency
- Arrestins/genetics
- Arrestins/metabolism
- Blood Pressure
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Cardiomegaly/physiopathology
- Cardiomegaly/prevention & control
- Female
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Intercellular Signaling Peptides and Proteins/deficiency
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Intercellular Signaling Peptides and Proteins/pharmacology
- Male
- Mechanoreceptors/metabolism
- Mechanotransduction, Cellular/drug effects
- Mechanotransduction, Cellular/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- beta-Arrestins
Collapse
Affiliation(s)
| | - Cecilia Hurtado
- Sanford-Burnham Medical Research Institute, Stanford University, CA
| | - Saugata Ray
- Sanford-Burnham Medical Research Institute, Stanford University, CA
| | - Scott Metzler
- Department of Pediatrics, School of Medicine, Stanford University, CA 94304
| | - Ke Wei
- Sanford-Burnham Medical Research Institute, Stanford University, CA
| | - Jianming Wang
- Sanford-Burnham Medical Research Institute, Stanford University, CA
| | - Chris E. Woods
- Department of Medicine, School of Medicine, Stanford University, CA
| | | | - Daniele Catalucci
- Biomedical and Genetic Research Institute, National Research Council, via Fantoli 16/15, 20138, Milan, and Istituto Clinico Humanitas IRCSS, Rozzano, Italy
| | - Takashi Akasaka
- Sanford-Burnham Medical Research Institute, Stanford University, CA
| | | | | | - Perla Kaliman
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS) Villarroel 170, E-08036 Barcelona, Spain
| | - Rolf Bodmer
- Sanford-Burnham Medical Research Institute, Stanford University, CA
| | - Layton H. Smith
- Sanford-Burnham Medical Research Institute, Stanford University, CA
| | - Euan Ashley
- Department of Medicine, School of Medicine, Stanford University, CA
| | - Mark Mercola
- Sanford-Burnham Medical Research Institute, Stanford University, CA
| | | | - Pilar Ruiz-Lozano
- Sanford-Burnham Medical Research Institute, Stanford University, CA
- Department of Pediatrics, School of Medicine, Stanford University, CA 94304
| |
Collapse
|
81
|
Zhu DY, Zhou LM, Zhang YY, Huang JQ, Pan X, Lou YJ. Involvement of Metabotropic Glutamate Receptor 5 in Cardiomyocyte Differentiation from Mouse Embryonic Stem Cells. Stem Cells Dev 2012; 21:2130-41. [DOI: 10.1089/scd.2011.0584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Dan-Yan Zhu
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | - Li-Min Zhou
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | - Ying-Ying Zhang
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | - Jia-Qi Huang
- Research Training Project, Zhejiang University, Hangzhou, China
| | - Xing Pan
- Research Training Project, Zhejiang University, Hangzhou, China
| | - Yi-Jia Lou
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| |
Collapse
|
82
|
Deguchi T, Kawasaki T, Ohnishi H, Yuba S, Takahashi T. Identification and developmental expression of leucine-rich repeat-containing G protein-coupled receptor 6 (lgr6) in the medaka fish, Oryzias latipes. Dev Genes Evol 2012; 222:217-27. [PMID: 22576653 DOI: 10.1007/s00427-012-0403-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
Abstract
G protein-coupled receptors are critical regulators of diverse developmental processes such as oocyte maturation, fertilization, gastrulation, and organogenesis. To further study the molecular mechanisms underlying these processes, we cloned and characterized the orphan leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6), a stem cell marker in mammalian hair follicles, in medaka fish, Oryzias latipes. To examine the expression pattern of lgr6, we performed whole-mount in situ hybridization (WISH) during embryogenesis. The expression of lgr6 was first detected as a band in the anterior part of the posterior brain vesicle in 0.5-1 day post fertilization (dpf) embryos. This band disappeared by 2 dpf, but new signals appeared in the otic vesicles bordering the original band and also detected in the nasal placode and posterior lateral line primordia. At later stages (3-5 dpf), lgr6 was widely expressed in the brain, otic vesicle, neuromasts, root of the pectoral fin, cranial cartilage, and gut. Then, we conducted more detailed expression analysis of lgr6 in adult gut using WISH and immunohistochemical staining. Lgr6-positive cells were detected in the crypt-like proliferative zone and in parts of the villus. We also performed RT-PCR of mRNAs from different tissues. The lgr6 mRNA was found highest in the kidney and gill. The transcript was also present in the brain, heart, liver, spleen, intestine, skeletal muscle, testis, and ovary, similar to that of mammalian LGR6. These results suggest that medaka lgr6 plays an important role in organ development during embryogenesis and serves as a good molecular marker for future studies of postembryonic organ-specific development in mammals.
Collapse
Affiliation(s)
- Tomonori Deguchi
- National Institute of Advanced Industrial Science and Technology, Amagasaki, Hyogo, Japan
| | | | | | | | | |
Collapse
|
83
|
Li L, Zeng H, Chen JX. Apelin-13 increases myocardial progenitor cells and improves repair postmyocardial infarction. Am J Physiol Heart Circ Physiol 2012; 303:H605-18. [PMID: 22752632 DOI: 10.1152/ajpheart.00366.2012] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Apelin is an endogenous ligand for the angiotensin-like 1 receptor (APJ) and has beneficial effects against myocardial ischemia-reperfusion injury. Little is known about the role of apelin in the homing of vascular progenitor cells (PCs) and cardiac functional recovery postmyocardial infarction (post-MI). The present study investigated whether apelin affects PC homing to the infarcted myocardium, thereby mediating repair and functional recovery post-MI. Mice were infarcted by coronary artery ligation, and apelin-13 (1 mg·kg(-1)·day(-1)) was injected for 3 days before MI and for 14 days post-MI. Homing of vascular PCs [CD133(+)/c-Kit(+)/Sca1(+), CD133(+)/stromal cell-derived factor (SDF)-1α(+), and CD133(+)/CXC chemokine receptor (CXCR)-4(+)] into the ischemic area was examined. Myocardial Akt, endothelial nitric oxide synthase (eNOS), VEGF, jagged1, notch3, SDF-1α, and CXCR-4 expression were assessed at 24 h and 14 days post-MI. Functional analyses were performed on day 14 post-MI. Mice that received apelin-13 treatment demonstrated upregulation of SDF-1α/CXCR-4 expression and dramatically increased the number of CD133(+)/c-Kit(+)/Sca1(+), CD133(+)/SDF-1α(+), and c-Kit(+)/CXCR-4(+) cells in infarcted hearts. Apelin-13 also significantly increased Akt and eNOS phosphorylation and upregulated VEGF, jagged1, and notch3 expression in ischemic hearts. This was accompanied by a significant reduction of myocardial apoptosis. Furthermore, treatment with apelin-13 promoted myocardial angiogenesis and attenuated cardiac fibrosis and hypertrophy together with a significant improvement of cardiac function at 14 days post-MI. Apelin-13 increases angiogenesis and improves cardiac repair post-MI by a mechanism involving the upregulation of SDF-1α/CXCR-4 and homing of vascular PCs.
Collapse
Affiliation(s)
- Lanfang Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | |
Collapse
|
84
|
Abstract
Abstract
Transcriptional profiling of differentiating human embryonic stem cells (hESCs) revealed that MIXL1-positive mesodermal precursors were enriched for transcripts encoding the G-protein–coupled APELIN receptor (APLNR). APLNR-positive cells, identified by binding of the fluoresceinated peptide ligand, APELIN (APLN), or an anti-APLNR mAb, were found in both posterior mesoderm and anterior mesendoderm populations and were enriched in hemangioblast colony-forming cells (Bl-CFC). The addition of APLN peptide to the media enhanced the growth of embryoid bodies (EBs), increased the expression of hematoendothelial genes in differentiating hESCs, and increased the frequency of Bl-CFCs by up to 10-fold. Furthermore, APLN peptide also synergized with VEGF to promote the growth of hESC-derived endothelial cells. These studies identified APLN as a novel growth factor for hESC-derived hematopoietic and endothelial cells.
Collapse
|
85
|
Tu S, Chi NC. Zebrafish models in cardiac development and congenital heart birth defects. Differentiation 2012; 84:4-16. [PMID: 22704690 DOI: 10.1016/j.diff.2012.05.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 12/31/2022]
Abstract
The zebrafish has become an ideal vertebrate animal system for investigating cardiac development due to its genetic tractability, external fertilization, early optical clarity and ability to survive without a functional cardiovascular system during development. In particular, recent advances in imaging techniques and the creation of zebrafish transgenics now permit the in vivo analysis of the dynamic cellular events that transpire during cardiac morphogenesis. As a result, the combination of these salient features provides detailed insight as to how specific genes may influence cardiac development at the cellular level. In this review, we will highlight how the zebrafish has been utilized to elucidate not only the underlying mechanisms of cardiac development and human congenital heart diseases (CHDs), but also potential pathways that may modulate cardiac regeneration. Thus, we have organized this review based on the major categories of CHDs-structural heart, functional heart, and vascular/great vessel defects, and will conclude with how the zebrafish may be further used to contribute to our understanding of specific human CHDs in the future.
Collapse
Affiliation(s)
- Shu Tu
- Department of Medicine, Division of Cardiology, University of California, San Diego, CA 92093-0613J, USA
| | | |
Collapse
|
86
|
Wang INE, Wang X, Ge X, Anderson J, Ho M, Ashley E, Liu J, Butte MJ, Yazawa M, Dolmetsch RE, Quertermous T, Yang PC. Apelin enhances directed cardiac differentiation of mouse and human embryonic stem cells. PLoS One 2012; 7:e38328. [PMID: 22675543 PMCID: PMC3365885 DOI: 10.1371/journal.pone.0038328] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/03/2012] [Indexed: 12/12/2022] Open
Abstract
Apelin is a peptide ligand for an orphan G-protein coupled receptor (APJ receptor) and serves as a critical gradient for migration of mesodermal cells fated to contribute to the myocardial lineage. The present study was designed to establish a robust cardiac differentiation protocol, specifically, to evaluate the effect of apelin on directed differentiation of mouse and human embryonic stem cells (mESCs and hESCs) into cardiac lineage. Different concentrations of apelin (50, 100, 500 nM) were evaluated to determine its differentiation potential. The optimized dose of apelin was then combined with mesodermal differentiation factors, including BMP-4, activin-A, and bFGF, in a developmentally specific temporal sequence to examine the synergistic effects on cardiac differentiation. Cellular, molecular, and physiologic characteristics of the apelin-induced contractile embryoid bodies (EBs) were analyzed. It was found that 100 nM apelin resulted in highest percentage of contractile EB for mESCs while 500 nM had the highest effects on hESCs. Functionally, the contractile frequency of mESCs-derived EBs (mEBs) responded appropriately to increasing concentration of isoprenaline and diltiazem. Positive phenotype of cardiac specific markers was confirmed in the apelin-treated groups. The protocol, consisting of apelin and mesodermal differentiation factors, induced contractility in significantly higher percentage of hESC-derived EBs (hEBs), up-regulated cardiac-specific genes and cell surface markers, and increased the contractile force. In conclusion, we have demonstrated that the treatment of apelin enhanced cardiac differentiation of mouse and human ESCs and exhibited synergistic effects with mesodermal differentiation factors.
Collapse
Affiliation(s)
- I-Ning E Wang
- Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Khaksari M, Aboutaleb N, Nasirinezhad F, Vakili A, Madjd Z. Apelin-13 Protects the Brain Against Ischemic Reperfusion Injury and Cerebral Edema in a Transient Model of Focal Cerebral Ischemia. J Mol Neurosci 2012; 48:201-8. [DOI: 10.1007/s12031-012-9808-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/07/2012] [Indexed: 12/20/2022]
|
88
|
Ivars J, Butruille L, Knauf C, Bouckenooghe T, Mayeur S, Vieau D, Valet P, Deruelle P, Lesage J. Maternal hypertension induces tissue-specific modulations of the apelinergic system in the fetoplacental unit in rat. Peptides 2012; 35:136-8. [PMID: 22446510 DOI: 10.1016/j.peptides.2012.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/07/2012] [Accepted: 03/07/2012] [Indexed: 01/08/2023]
Abstract
Apelin and its receptor APJ are expressed in fetal tissues but their function and regulation remain largely unknown. In rat, maternal treatment with a nitric oxide synthase inhibitor inducing hypertension was used to investigate apelin plasma levels in mother/fetus pairs and on the gene expression level of the apelin/APJ system in fetal tissues and placenta. At term, plasma levels of apelin were not modulated but APJ expression was increased in placenta and lung but reduced in heart. Apelin expression was increased only in the heart. We postulate that the apelinergic system may control fetal growth and cardiovascular functions in utero.
Collapse
Affiliation(s)
- Joanna Ivars
- Univ Lille Nord de France, Unité Environnement Périnatal et Croissance, EA 4489, Equipe dénutritions maternelles périnatales, Université de Lille 1, Bâtiment SN4, F-59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Paskaradevan S, Scott IC. The Aplnr GPCR regulates myocardial progenitor development via a novel cell-non-autonomous, Gα(i/o) protein-independent pathway. Biol Open 2012; 1:275-85. [PMID: 23213418 PMCID: PMC3507289 DOI: 10.1242/bio.2012380] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Myocardial progenitor development involves the migration of cells to the anterior lateral plate mesoderm (ALPM) where they are exposed to the necessary signals for heart development to proceed. Whether the arrival of cells to this location is sufficient, or whether earlier signaling events are required, for progenitor development is poorly understood. Here we demonstrate that in the absence of Aplnr signaling, cells fail to migrate to the heart-forming region of the ALPM. Our work uncovers a previously uncharacterized cell-non-autonomous function for Aplnr signaling in cardiac development. Furthermore, we show that both the single known Aplnr ligand, Apelin, and the canonical Gαi/o proteins that signal downstream of Aplnr are dispensable for Aplnr function in the context of myocardial progenitor development. This novel Aplnr signal can be substituted for by activation of Gata5/Smarcd3 in myocardial progenitors, suggesting a novel mechanism for Aplnr signaling in the establishment of a niche required for the proper migration/development of myocardial progenitor cells.
Collapse
Affiliation(s)
- Sivani Paskaradevan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 555 University Avenue , Toronto, ON M5G 1X8 , Canada ; Department of Molecular Genetics, University of Toronto , Toronto, ON M5S 1A8 , Canada
| | | |
Collapse
|
90
|
|
91
|
Piairo P, Moura RS, Nogueira-Silva C, Correia-Pinto J. The apelinergic system in the developing lung: expression and signaling. Peptides 2011; 32:2474-83. [PMID: 22015267 DOI: 10.1016/j.peptides.2011.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/04/2011] [Accepted: 10/05/2011] [Indexed: 11/23/2022]
Abstract
Apelin and its receptor APJ constitute a signaling pathway best recognized as an important regulator of cardiovascular homeostasis. This multifunctional peptidergic system is currently being described to be involved in embryonic events which extend into vascular, ocular and heart development. Additionally, it is highly expressed in pulmonary tissue. Therefore, the aim of this study was to investigate the role of apelinergic system during fetal lung development. Immunohistochemistry and Western blot analysis were used to characterize apelin and APJ expression levels and cellular localization in normal fetal rat lungs, at five different gestational ages as well as in the adult. Fetal rat lung explants were cultured in vitro with increasing doses of apelin. Treated lung explants were morphometrically analyzed and assessed for MAPK signaling modifications. Both components of the apelinergic system are constitutively expressed in the developing lung, with APJ exhibiting monomeric, dimeric and oligomeric forms in the pulmonary tissue. Pulmonary epithelium also displayed constitutive nuclear localization of the receptor. Fetal apelin expression is higher than adult expression. Apelin supplementation inhibitory effect on branching morphogenesis was associated with a dose dependent decrease in p38 and JNK phosphorylation. The results presented provide the first evidence of the presence of an apelinergic system operating in the developing lung. Our findings also suggest that apelin inhibits fetal lung growth by suppressing p38 and JNK signaling pathways.
Collapse
Affiliation(s)
- Paulina Piairo
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | |
Collapse
|
92
|
Sawane M, Kidoya H, Muramatsu F, Takakura N, Kajiya K. Apelin attenuates UVB-induced edema and inflammation by promoting vessel function. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2691-7. [PMID: 21983637 DOI: 10.1016/j.ajpath.2011.08.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/20/2011] [Accepted: 08/31/2011] [Indexed: 01/09/2023]
Abstract
Apelin, the ligand of the G protein-coupled receptor APJ, is involved in the regulation of cardiovascular functions, fluid homeostasis, and vessel formation. Recent reports indicate that apelin secreted from endothelial cells mediates APJ regulation of blood vessel caliber size; however, the function of apelin in lymphatic vessels is unclear. Here we report that APJ was expressed by human lymphatic endothelial cells and that apelin induced migration and cord formation of lymphatic endothelial cells dose-dependently in vitro. Furthermore, permeability assays demonstrated that apelin stabilizes lymphatic endothelial cells. In vivo, transgenic mice harboring apelin under the control of keratin 14 (K14-apelin) exhibited attenuated UVB-induced edema and a decreased number of CD11b-positive macrophages. Moreover, activation of apelin/APJ signaling inhibited UVB-induced enlargement of lymphatic and blood vessels. Finally, K14-apelin mice blocked the hyperpermeability of lymphatic vessels in inflamed skin. These results indicate that apelin plays a functional role in the stabilization of lymphatic vessels in inflamed tissues and that apelin might be a suitable target for prevention of UVB-induced inflammation.
Collapse
Affiliation(s)
- Mika Sawane
- Shiseido Innovative Science Research Center, Yokohama, Japan
| | | | | | | | | |
Collapse
|
93
|
Lou X, Deshwar AR, Crump JG, Scott IC. Smarcd3b and Gata5 promote a cardiac progenitor fate in the zebrafish embryo. Development 2011; 138:3113-23. [DOI: 10.1242/dev.064279] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Development of the heart requires recruitment of cardiovascular progenitor cells (CPCs) to the future heart-forming region. CPCs are the building blocks of the heart, and have the potential to form all the major cardiac lineages. However, little is known regarding what regulates CPC fate and behavior. Activity of GATA4, SMARCD3 and TBX5 – the `cardiac BAF' (cBAF) complex, can promote myocardial differentiation in embryonic mouse mesoderm. Here, we exploit the advantages of the zebrafish embryo to gain mechanistic understanding of cBAF activity. Overexpression of smarcd3b and gata5 in zebrafish results in an enlarged heart, whereas combinatorial loss of cBAF components inhibits cardiac differentiation. In transplantation experiments, cBAF acts cell autonomously to promote cardiac fate. Remarkably, cells overexpressing cBAF migrate to the developing heart and differentiate as cardiomyocytes, endocardium and smooth muscle. This is observed even in host embryos that lack endoderm or cardiac mesoderm. Our results reveal an evolutionarily conserved role for cBAF activity in cardiac differentiation. Importantly, they demonstrate that Smarcd3b and Gata5 can induce a primitive, CPC-like state.
Collapse
Affiliation(s)
- Xin Lou
- Program in Development and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Ashish R. Deshwar
- Program in Development and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - J. Gage Crump
- Broad CIRM Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Ian C. Scott
- Program in Development and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON M5S 3E2, Canada
| |
Collapse
|
94
|
Liu W, Foley AC. Signaling pathways in early cardiac development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:191-205. [PMID: 20830688 DOI: 10.1002/wsbm.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cardiomyocyte differentiation is a complex multistep process requiring the proper temporal and spatial integration of multiple signaling pathways. Previous embryological and genetic studies have identified a number of signaling pathways that are critical to mediate the initial formation of the mesoderm and its allocation to the cardiomyocyte lineage. It has become clear that some of these signaling networks work autonomously, in differentiating myocardial cells whereas others work non-autonomously, in neighboring tissues, to regulate cardiac differentiation indirectly. Here, we provide an overview of three signaling networks that mediate cardiomyocyte specification and review recent insights into their specific roles in heart development. In addition, we demonstrate how systems level, 'omic approaches' and other high-throughput techniques such as small molecules screens are beginning to impact our understanding of cardiomyocyte specification and, to identify novel signaling pathways involved in this process. In particular, it now seems clear that at least one chemokine receptor CXCR4 is an important marker for cardiomyocyte progenitors and may play a functional role in their differentiation. Finally, we discuss some gaps in our current understanding of early lineage selection that could be addressed by various types of omic analysis.
Collapse
Affiliation(s)
- Wenrui Liu
- Greenberg Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | | |
Collapse
|
95
|
Abstract
Over the last decade, the zebrafish has entered the field of cardiovascular research as a new model organism. This is largely due to a number of highly successful small- and large-scale forward genetic screens, which have led to the identification of zebrafish mutants with cardiovascular defects. Genetic mapping and identification of the affected genes have resulted in novel insights into the molecular regulation of vertebrate cardiac development. More recently, the zebrafish has become an attractive model to study the effect of genetic variations identified in patients with cardiovascular defects by candidate gene or whole-genome-association studies. Thanks to an almost entirely sequenced genome and high conservation of gene function compared with humans, the zebrafish has proved highly informative to express and study human disease-related gene variants, providing novel insights into human cardiovascular disease mechanisms, and highlighting the suitability of the zebrafish as an excellent model to study human cardiovascular diseases. In this review, I discuss recent discoveries in the field of cardiac development and specific cases in which the zebrafish has been used to model human congenital and acquired cardiac diseases.
Collapse
Affiliation(s)
- Jeroen Bakkers
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Interuniversity Cardiology Institute of The Netherlands, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
96
|
Vodyanik MA, Yu J, Zhang X, Tian S, Stewart R, Thomson JA, Slukvin II. A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell 2010; 7:718-29. [PMID: 21112566 PMCID: PMC3033587 DOI: 10.1016/j.stem.2010.11.011] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/05/2010] [Accepted: 09/13/2010] [Indexed: 01/17/2023]
Abstract
Among the three embryonic germ layers, the mesoderm is a major source of the mesenchymal precursors giving rise to skeletal and connective tissues, but these precursors have not previously been identified and characterized. Using human embryonic stem cells directed toward mesendodermal differentiation, we show that mesenchymal stem/stromal cells (MSCs) originate from a population of mesodermal cells identified by expression of apelin receptor. In semisolid medium, these precursors form FGF2-dependent compact spheroid colonies containing mesenchymal cells with a transcriptional profile representative of mesoderm-derived embryonic mesenchyme. When transferred to adherent cultures, individual colonies give rise to MSC lines with chondro-, osteo-, and adipogenic differentiation potentials. Although the MSC lines lacked endothelial potential, endothelial cells could be derived from the mesenchymal colonies, suggesting that, similar to hematopoietic cells, MSCs arise from precursors with angiogenic potential. Together, these studies identified a common precursor of mesenchymal and endothelial cells, mesenchymoangioblast, as the source of mesoderm-derived MSCs.
Collapse
Affiliation(s)
- Maxim A Vodyanik
- National Primate Research Center, University of Wisconsin Graduate School, Madison, 53715, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Pitkin SL, Maguire JJ, Bonner TI, Davenport AP. International Union of Basic and Clinical Pharmacology. LXXIV. Apelin receptor nomenclature, distribution, pharmacology, and function. Pharmacol Rev 2010; 62:331-42. [PMID: 20605969 DOI: 10.1124/pr.110.002949] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
A gene encoding a novel class a G-protein-coupled receptor was discovered in 1993 by homology cloning and was called APJ. It was designated an "orphan" receptor until 1998, when its endogenous ligand was identified and named apelin (for APJ endogenous ligand). Since this pairing, both apelin and its receptor have been found to have a widespread distribution in both the central nervous system and the periphery. A number of physiological and pathophysiological roles for the receptor have emerged, including regulation of cardiovascular function, fluid homeostasis, and the adipoinsular axis. This review outlines the official International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification nomenclature, designating the receptor protein as the apelin receptor, together with current knowledge of its pharmacology, distribution, and functions.
Collapse
Affiliation(s)
- Sarah L Pitkin
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | | | | | | |
Collapse
|
98
|
Abstract
RATIONALE The proepicardial organ (PE) contributes to the cellular diversity of the developing heart by giving rise to the epicardium as well as vascular smooth muscle cells and fibroblasts. Despite the importance of these cells in cardiac development, function and regeneration, the signals required for the specification of the PE remain largely unexplored. OBJECTIVE We aim to identify the signaling molecules and transcription factors that regulate PE specification. METHODS AND RESULTS Here, we present the first genetic evidence that bone morphogenetic protein (Bmp) signaling in conjunction with the T-box transcription factor Tbx5a is essential for PE specification in zebrafish. Specifically, Bmp4 from the cardiac region, but not the liver bud, acting through the type I BMP receptor Acvr1l, is required for PE specification. By overexpressing a dominant-negative form of a Bmp receptor at various embryonic stages, we determined when Bmp signaling was required for PE specification. We also found that overexpression of bmp2b right before PE specification led to the ectopic expression of PE specific markers including tbx18. Furthermore, using loss-of-function approaches, we discovered a previously unappreciated PE specification role for Tbx5a at early somite stages; this role occurs earlier than, and appears to be independent from, the requirement for Bmp signaling in this process. CONCLUSION Altogether, these data lead us to propose that Tbx5a confers anterior lateral plate mesodermal cells the competence to respond to Bmp signals and initiate PE development.
Collapse
Affiliation(s)
- Jiandong Liu
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, Cardiovascular Research Institute, and Liver Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, Cardiovascular Research Institute, and Liver Center, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
99
|
Gao LR, Zhang NK, Bai J, Ding QA, Wang ZG, Zhu ZM, Fei YX, Yang Y, Xu RY, Chen Y. The apelin-APJ pathway exists in cardiomyogenic cells derived from mesenchymal stem cells in vitro and in vivo. Cell Transplant 2010; 19:949-58. [PMID: 20447346 DOI: 10.3727/096368910x504450] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Our previous study demonstrated that apelin level increased significantly after the treatment of intracoronary implantation of bone marrow mononuclear cells (BMMCs), followed by the improvement of cardiac function in patients with severe ischemic heart failure. The present studies both in vivo and in vitro explored whether mesenchymal stem cells derived from bone marrow (BMSCs) activate the apelin-APJ pathway when differentiating into cardiomyogenic cells. Isolated BMSCs from rat femurs and tibias were cultured and expanded for three passages, labeled with DAPI, and treated with 5-azacytidine (5-AZ). BMSCs labeled with ad-EGFP were injected intramyocardially into the peri-infarct area of rat models with acute myocardial infarction. Immunofluorescence staining exposed that CMGs expressed apelin together with myogenic-specific proteins such as α-actin, troponin T, GATA-4, and connexin-43 at 7 days after 5-AZ treatment or EGFP-BMSC injection. RT-PCR revealed that mRNA in CMGs started to express apelin and APJ from day 7 and progressively increased until day 28. Cardiac function, as measured by echocardiography in vivo, was significantly improved in parallel with the extent of apelin expression after BMSC transplantation. Our finding indicated that the expression of the apelin-APJ pathway during differentiation of BMSCs into CMGs may be an important mechanism in regulation of myocardial regeneration and functional recovery after BMSC transplantation.
Collapse
Affiliation(s)
- Lian Ru Gao
- Department of Cardiology, Navy General Hospital, Beijing, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Falcão-Pires I, Ladeiras-Lopes R, Leite-Moreira AF. The apelinergic system: a promising therapeutic target. Expert Opin Ther Targets 2010; 14:633-45. [DOI: 10.1517/14728221003752743] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|