51
|
Dumasia NP, Khanna AP, Pethe PS. Sonic hedgehog signals hinder the transcriptional network necessary for pancreatic endoderm formation from human embryonic stem cells. Genes Cells 2021; 26:282-297. [PMID: 33599359 DOI: 10.1111/gtc.12839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023]
Abstract
Hedgehog morphogens govern multiple aspects of pancreas organogenesis and functioning with diverse outcomes across species. Although most current differentiation protocols repress Sonic hedgehog (SHH) signals during in vitro endocrine specification, the role and mechanisms through which the SHH pathway antagonizes pancreas development during in vitro human embryonic stem (hES) cell differentiation remain unclear. We modulated SHH signaling at transitory stages of hES cell-derived pancreatic progenitors and analyzed the effect on cellular fate decisions. We identify the Hedgehog pathway as a negative regulator of pancreatic endoderm formation through up-regulation of a set of pancreatobiliary markers required for ductal specification, including SOX17, FOXA2, HNF1β, HNF6, PDX1, and SOX9. Surprisingly, active Hedgehog signals impeded a group of pancreatic epithelium markers, including HNF4α, HHEX, PAX6, and PTF1α. To understand how SHH signals repress the transcription of these specific markers, we analyzed Polycomb group proteins. We found differential expression of Polycomb Repressive Complex 1 subunit, BMI1 upon Shh pathway modulation in the pancreatic progenitors. Ectopic activation of Sonic hedgehog results in over-expression of BMI1 and its associated repressive histone mark, H2AK119Ub1, in the multipotent progenitors. Our data suggest that Sonic hedgehog restricts the pancreatic differentiation program by limiting progenitor cells acquiring pancreatic epithelial fates and instead promotes pancreatobiliary differentiation. We further provide mechanistic cues of an association between Hedgehog signaling and epigenetic silencers during pancreatic lineage decisions.
Collapse
Affiliation(s)
- Niloufer P Dumasia
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be) University, Mumbai, India
| | - Aparna P Khanna
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be) University, Mumbai, India
- Centre for Computational Biology & Translational Research, Amity Institute of Biotechnology (AIB), Amity University, Mumbai, India
| | - Prasad S Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Pune, India
| |
Collapse
|
52
|
Hrudka J, Prouzová Z, Mydlíková K, Jedličková K, Holešta M, Whitley A, Havlůj L. FOXF1 as an Immunohistochemical Marker of Hilar Cholangiocarcinoma or Metastatic Pancreatic Ductal Adenocarcinoma. Single Institution Experience. Pathol Oncol Res 2021; 27:1609756. [PMID: 34257615 PMCID: PMC8262193 DOI: 10.3389/pore.2021.1609756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022]
Abstract
Cholangiocarcinoma (CCA) is a liver malignancy associated with a poor prognosis. Its main subtypes are peripheral/intrahepatic and hilar/extrahepatic CCA. Several molecular, morphological and clinical similarities between hilar/extrahepatic CCA and pancreatic ductal adenocarcinoma (PDAC) have been described. FOXF1 is a transcription factor which has been described to have prognostic significance in various tumors and it is involved in the development of bile ducts. The aim of this study is to determine occurrence of nuclear expression of FOXF1 in both subtypes of CCA and metastatic PDAC and assess its potential usefulness as a diagnostic marker. Secondary aims were to investigate the use of C-reactive protein (CRP) immunohistochemistry for diagnosing intrahepatic peripheral CCA and the significance of histological features in CCA subtypes. 32 archive specimens of CCA, combined hepatocellular carcinoma-CCA (HCC-CCA) and liver metastasis of PDAC were stained by FOXF1 and CRP immunohistochemistry and evaluated to determine histological pattern. The CCAs were classified radiologically into peripheral/intrahepatic and hilar subtype. Using Fisher exact test, we identified nuclear FOXF1 as a fairly specific (87%) but insensitive (65%) marker of hilar and extrahepatic CCA and metastatic PDAC (p = 0.005). CRP immunohistochemistry was characterized by a high sensitivity and specificity, of 79% and 88%, respectively (p = 0.001). We did not identify any histomorphological features associated with either types of CCA or metastatic PDAC. As a conclusion of novel finding, FOXF1 immunohistochemistry may be regarded as a specific but insensitive marker of hilar/extrahepatic CCA and metastatic PDAC and it may help distinguish them from peripheral CCA.
Collapse
Affiliation(s)
- Jan Hrudka
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Zuzana Prouzová
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Katarína Mydlíková
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Kristína Jedličková
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Holešta
- Department of Radiodiagnostics, Charles University, 3rd Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Adam Whitley
- Department of General Surgery, Charles University, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Lukáš Havlůj
- Department of General Surgery, Charles University, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague, Czech Republic
| |
Collapse
|
53
|
Koike H, Iwasawa K, Ouchi R, Maezawa M, Kimura M, Kodaka A, Nishii S, Thompson WL, Takebe T. Engineering human hepato-biliary-pancreatic organoids from pluripotent stem cells. Nat Protoc 2021; 16:919-936. [PMID: 33432231 PMCID: PMC8212777 DOI: 10.1038/s41596-020-00441-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022]
Abstract
Human organoids are emerging as a valuable resource to investigate human organ development and disease. The applicability of human organoids has been limited, partly due to the oversimplified architecture of the current technology, which generates single-tissue organoids that lack inter-organ structural connections. Thus, engineering organoid systems that incorporate connectivity between neighboring organs is a critical unmet challenge in an evolving organoid field. Here, we describe a protocol for the continuous patterning of hepatic, biliary and pancreatic (HBP) structures from a 3D culture of human pluripotent stem cells (PSCs). After differentiating PSCs into anterior and posterior gut spheroids, the two spheroids are fused together in one well. Subsequently, self-patterning of multi-organ (i.e., HBP) domains occurs within the boundary region of the two spheroids, even in the absence of any extrinsic factors. Long-term culture of HBP structures induces differentiation of the domains into segregated organs complete with developmentally relevant invagination and epithelial branching. This in-a-dish model of human hepato-biliary-pancreatic organogenesis provides a unique platform for studying human development, congenital disorders, drug development and therapeutic transplantation. More broadly, our approach could potentially be used to establish inter-organ connectivity models for other organ systems derived from stem cell cultures.
Collapse
Affiliation(s)
- Hiroyuki Koike
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rie Ouchi
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mari Maezawa
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Asuka Kodaka
- Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Shozo Nishii
- Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Wendy L Thompson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama, Japan.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
54
|
Gao C, Peng J. All routes lead to Rome: multifaceted origin of hepatocytes during liver regeneration. CELL REGENERATION 2021; 10:2. [PMID: 33403526 PMCID: PMC7785766 DOI: 10.1186/s13619-020-00063-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
Abstract
Liver is the largest internal organ that serves as the key site for various metabolic activities and maintenance of homeostasis. Liver diseases are great threats to human health. The capability of liver to regain its mass after partial hepatectomy has widely been applied in treating liver diseases either by removing the damaged part of a diseased liver in a patient or transplanting a part of healthy liver into a patient. Vast efforts have been made to study the biology of liver regeneration in different liver-damage models. Regarding the sources of hepatocytes during liver regeneration, convincing evidences have demonstrated that different liver-damage models mobilized different subtype hepatocytes in contributing to liver regeneration. Under extreme hepatocyte ablation, biliary epithelial cells can undergo dedifferentiation to liver progenitor cells (LPCs) and then LPCs differentiate to produce hepatocytes. Here we will focus on summarizing the progresses made in identifying cell types contributing to producing new hepatocytes during liver regeneration in mice and zebrafish.
Collapse
Affiliation(s)
- Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
55
|
Aravalli RN. Generating liver using blastocyst complementation: Opportunities and challenges. Xenotransplantation 2020; 28:e12668. [PMID: 33372360 DOI: 10.1111/xen.12668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/05/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Orthotopic liver transplantation (OLT) is the only definitive treatment option for many patients with end-stage liver disease. Current supply of donor livers for OLT is not keeping up with the growing demand. To overcome this problem, a number of experimental strategies have been developed either to provide a bridge to transplant for patients on the waiting list or to bioengineer whole livers for OLT by replenishing them with fresh supplies of hepatic cells. In recent years, blastocyst complementation has emerged as the most promising approach for generating whole organs and, in combination with gene editing technology, it has revolutionized regenerative medicine. This methodology was successful in producing xenogeneic organs in animal hosts. Blastocyst complementation has the potential to produce whole livers in large animals that could be xenotransplanted in humans, thereby reducing the shortage of livers for OLT. However, significant experimental and ethical barriers remain for the production of human livers in domestic animals, such as the pig. This review summarizes the current knowledge and provides future perspectives for liver xenotransplantation in humans.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
56
|
Mandal P, De D, Yun K, Kim KK. Improved differentiation of human adipose stem cells to insulin-producing β-like cells using PDFGR kinase inhibitor Tyrphostin9. Biochem Biophys Res Commun 2020; 533:132-138. [PMID: 32933751 DOI: 10.1016/j.bbrc.2020.08.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/09/2023]
Abstract
Diabetes mellitus (DM) is a metabolic syndrome where insulin secretion or the response to insulin produced by the body is compromised. The only available long-term treatment is the transplantation of pancreas or islet for procuring β-cells. However, due to the shortage of β-cell sources from the tissues, differentiation of pluripotent stem cells or terminally differentiated cells into β-cell is proposed as an alternative strategy. Previously, human adipose-derived stem cells (ADSCs) were reported to be converted into β-like cells by a stepwise treatment of chemicals and growth factors. However, due to the low conversion efficiency, the clinical application was not feasible. In this study, we developed a modified conversion protocol with improved yield and functionality, which is achieved by changing the culture method and addition of Tyrphostin9, a platelet-derived growth factor receptor (PDGFR) kinase inhibitor. Tyrphostin9 was identified from a cell-based chemical screening using the mCherry reporter under the control of the Pdx1 promoter. The β-like cells differentiated under the new protocol showed a 3.6-fold increase in the expression of Pdx1, a marker for pancreatic differentiation, as compared to the previous protocol. We propose that Tyrphostin9 contributes to the β-like cell differentiation by playing a dual role; enhancing the definitive endoderm generation by inhibiting the PI3K signaling and suppressing the taurine-mediated proliferation of definitive endoderm. Importantly, these differentiated cells responded well to low and high glucose stimulations compared to cells differentiated by the previous protocol, as confirmed by the 2.0-fold increase in the C-peptide release. As ADSCs are abundant, easily isolated, and autologous in nature, improved differentiation approaches to generate β-like cells from ADSCs would provide a better opportunity for treating diabetes.
Collapse
Affiliation(s)
- Paulami Mandal
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Debojyoti De
- Department of Biotechnology, National Institute of Technology Durgapur, 713209, India
| | - Kyunghee Yun
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
57
|
Mu T, Xu L, Zhong Y, Liu X, Zhao Z, Huang C, Lan X, Lufei C, Zhou Y, Su Y, Xu L, Jiang M, Zhou H, Lin X, Wu L, Peng S, Liu S, Brix S, Dean M, Dunn NR, Zaret KS, Fu XY, Hou Y. Embryonic liver developmental trajectory revealed by single-cell RNA sequencing in the Foxa2 eGFP mouse. Commun Biol 2020; 3:642. [PMID: 33144666 PMCID: PMC7642341 DOI: 10.1038/s42003-020-01364-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 10/08/2020] [Indexed: 02/05/2023] Open
Abstract
The liver and gallbladder are among the most important internal organs derived from the endoderm, yet the development of the liver and gallbladder in the early embryonic stages is not fully understood. Using a transgenic Foxa2eGFP reporter mouse line, we performed single-cell full-length mRNA sequencing on endodermal and hepatic cells isolated from ten embryonic stages, ranging from E7.5 to E15.5. We identified the embryonic liver developmental trajectory from gut endoderm to hepatoblasts and characterized the transcriptome of the hepatic lineage. More importantly, we identified liver primordium as the nascent hepatic progenitors with both gut and liver features and documented dynamic gene expression during the epithelial-hepatic transition (EHT) at the stage of liver specification during E9.5–11.5. We found six groups of genes switched on or off in the EHT process, including diverse transcripitional regulators that had not been previously known to be expressed during EHT. Moreover, we identified and revealed transcriptional profiling of gallbladder primordium at E9.5. The present data provides a high-resolution resource and critical insights for understanding the liver and gallbladder development. The authors report a single cell-resolution gene expression atlas for the developing mouse liver and gallbladder using a transgenic Foxa2eGFP mouse line. By tracing the development of cells from gut endoderm to hepatoblasts they identify key transcriptional changes during liver specification.
Collapse
Affiliation(s)
- Tianhao Mu
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, 119615, Singapore.,Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, 610041, Chengdu, China.,Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China.,GenEros Biopharma, 310018, Hangzhou, China
| | - Liqin Xu
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Soltofts Plads, 2800, Kongens Lyngby, Denmark
| | - Yu Zhong
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China.,School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, China
| | - Xinyu Liu
- GenEros Biopharma, 310018, Hangzhou, China.,Cancer Science Institute of Singapore, YLL School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Zhikun Zhao
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China
| | - Chaoben Huang
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xiaofeng Lan
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Chengchen Lufei
- GenEros Biopharma, 310018, Hangzhou, China.,Cancer Science Institute of Singapore, YLL School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Yi Zhou
- GenEros Biopharma, 310018, Hangzhou, China.,Cancer Science Institute of Singapore, YLL School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Yixun Su
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, 119615, Singapore.,Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Luang Xu
- Cancer Science Institute of Singapore, YLL School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Miaomiao Jiang
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China
| | - Hongpo Zhou
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China
| | - Xinxin Lin
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China
| | - Liang Wu
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China
| | - Siqi Peng
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China
| | - Shiping Liu
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Soltofts Plads, 2800, Kongens Lyngby, Denmark
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Gaithersburg, MD, USA
| | - Norris R Dunn
- Endodermal Development and Differentiation Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine, Smilow Center for Translation Research, Philadelphia, PA, 19104, USA
| | - Xin-Yuan Fu
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, 119615, Singapore. .,Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, 610041, Chengdu, China. .,Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China. .,GenEros Biopharma, 310018, Hangzhou, China. .,Cancer Science Institute of Singapore, YLL School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yong Hou
- BGI-Shenzhen, 518033, Shenzhen, China. .,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China.
| |
Collapse
|
58
|
Single-cell patterning and axis characterization in the murine and human definitive endoderm. Cell Res 2020; 31:326-344. [PMID: 33106598 DOI: 10.1038/s41422-020-00426-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Defining the precise regionalization of specified definitive endoderm progenitors is critical for understanding the mechanisms underlying the generation and regeneration of respiratory and digestive organs, yet the patterning of endoderm progenitors remains unresolved, particularly in humans. We performed single-cell RNA sequencing on endoderm cells during the early somitogenesis stages in mice and humans. We developed molecular criteria to define four major endoderm regions (foregut, lip of anterior intestinal portal, midgut, and hindgut) and their developmental pathways. We identified the cell subpopulations in each region and their spatial distributions and characterized key molecular features along the body axes. Dorsal and ventral pancreatic progenitors appear to originate from the midgut population and follow distinct pathways to develop into an identical cell type. Finally, we described the generally conserved endoderm patterning in humans and clear differences in dorsal cell distribution between species. Our study comprehensively defines single-cell endoderm patterning and provides novel insights into the spatiotemporal process that drives establishment of early endoderm domains.
Collapse
|
59
|
Han L, Chaturvedi P, Kishimoto K, Koike H, Nasr T, Iwasawa K, Giesbrecht K, Witcher PC, Eicher A, Haines L, Lee Y, Shannon JM, Morimoto M, Wells JM, Takebe T, Zorn AM. Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis. Nat Commun 2020; 11:4158. [PMID: 32855417 PMCID: PMC7453027 DOI: 10.1038/s41467-020-17968-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Visceral organs, such as the lungs, stomach and liver, are derived from the fetal foregut through a series of inductive interactions between the definitive endoderm (DE) and the surrounding splanchnic mesoderm (SM). While DE patterning is fairly well studied, the paracrine signaling controlling SM regionalization and how this is coordinated with epithelial identity is obscure. Here, we use single cell transcriptomics to generate a high-resolution cell state map of the embryonic mouse foregut. This identifies a diversity of SM cell types that develop in close register with the organ-specific epithelium. We infer a spatiotemporal signaling network of endoderm-mesoderm interactions that orchestrate foregut organogenesis. We validate key predictions with mouse genetics, showing the importance of endoderm-derived signals in mesoderm patterning. Finally, leveraging these signaling interactions, we generate different SM subtypes from human pluripotent stem cells (hPSCs), which previously have been elusive. The single cell data can be explored at: https://research.cchmc.org/ZornLab-singlecell. The fetal murine foregut develops into visceral organs via interactions between the mesoderm and endoderm, but how is unclear. Here, the authors use single cell RNAseq to show a diversity in organ specific splanchnic mesoderm cell-types, infer a signalling network governing organogenesis and use this to differentiate human pluripotent stem cells.
Collapse
Affiliation(s)
- Lu Han
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Praneet Chaturvedi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Keishi Kishimoto
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA.,Laboratory for Lung Development, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan.,CuSTOM-RIKEN BDR Collaborative Laboratory, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Hiroyuki Koike
- CuSTOM, Division of Gastroenterology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Talia Nasr
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Kentaro Iwasawa
- CuSTOM, Division of Gastroenterology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Kirsten Giesbrecht
- CuSTOM, Division of Gastroenterology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Phillip C Witcher
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Alexandra Eicher
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Lauren Haines
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Yarim Lee
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Mitsuru Morimoto
- Laboratory for Lung Development, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan.,CuSTOM-RIKEN BDR Collaborative Laboratory, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - James M Wells
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Takanori Takebe
- CuSTOM, Division of Gastroenterology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA. .,CuSTOM-RIKEN BDR Collaborative Laboratory, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| |
Collapse
|
60
|
Holloway EM, Wu JH, Czerwinski M, Sweet CW, Wu A, Tsai YH, Huang S, Stoddard AE, Capeling MM, Glass I, Spence JR. Differentiation of Human Intestinal Organoids with Endogenous Vascular Endothelial Cells. Dev Cell 2020; 54:516-528.e7. [PMID: 32841595 PMCID: PMC7480827 DOI: 10.1016/j.devcel.2020.07.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
Human pluripotent stem cell (hPSC)-derived intestinal organoids (HIOs) lack some cellular populations found in the native organ, including vasculature. Using single-cell RNA sequencing (scRNA-seq), we have identified a population of endothelial cells (ECs) present early in HIO differentiation that declines over time in culture. Here, we developed a method to expand and maintain this endogenous population of ECs within HIOs (vHIOs). Given that ECs possess organ-specific gene expression, morphology, and function, we used bulk RNA-seq and scRNA-seq to interrogate the developing human intestine, lung, and kidney in order to identify organ-enriched EC gene signatures. By comparing these gene signatures and validated markers to HIO ECs, we find that HIO ECs grown in vitro share the highest similarity with native intestinal ECs relative to kidney and lung. Together, these data demonstrate that HIOs can co-differentiate a native EC population that is properly patterned with an intestine-specific EC transcriptional signature in vitro.
Collapse
Affiliation(s)
- Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael Czerwinski
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Caden W Sweet
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sha Huang
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Amy E Stoddard
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Meghan M Capeling
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| |
Collapse
|
61
|
β-Cell specific transcription factors in the context of diabetes mellitus and β-cell regeneration. Mech Dev 2020; 163:103634. [PMID: 32711047 DOI: 10.1016/j.mod.2020.103634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
All pancreatic cell populations arise from the standard gut endoderm layer in developing embryos, requiring a regulatory gene network to originate and maintain endocrine lineages and endocrine function. The pancreatic organogenesis is regulated by the temporal expression of transcription factors and plays a diverse role in the specification, development, differentiation, maturation, and functional maintenance. Altered expression and activity of these transcription factors are often associated with diabetes mellitus. Recent advancements in the stem cells and invitro derived islets to treat diabetes mellitus has attracted a great deal of interest in the understanding of factors regulating the development, differentiation, and functions of islets including transcription factors. This review discusses the myriad of transcription factors regulating the development of the pancreas, differentiation of β-islets, and how these factors regulated in normal and disease states. Exploring these factors in such critical context and exogenous or endogenous expression of development and differentiation-specific transcription factors with improved epigenetic plasticity/signaling axis in diabetic milieu would useful for the development of β-cells from other cell sources.
Collapse
|
62
|
Bukys MA, Mihas A, Finney K, Sears K, Trivedi D, Wang Y, Oberholzer J, Jensen J. High-Dimensional Design-Of-Experiments Extracts Small-Molecule-Only Induction Conditions for Dorsal Pancreatic Endoderm from Pluripotency. iScience 2020; 23:101346. [PMID: 32745983 PMCID: PMC7398937 DOI: 10.1016/j.isci.2020.101346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 04/15/2020] [Accepted: 07/02/2020] [Indexed: 01/27/2023] Open
Abstract
The derivation of endoderm and descendant organs, such as pancreas, liver, and intestine, impacts disease modeling and regenerative medicine. Use of TGF-β signaling agonism is a common method for induction of definitive endoderm from pluripotency. By using a data-driven, High-Dimensional Design of Experiments (HD-DoE)-based methodology to address multifactorial problems in directed differentiation, we found instead that optimal conditions demanded BMP antagonism and retinoid input leading to induction of dorsal foregut endoderm (DFE). We demonstrate that pancreatic identity can be rapidly, and robustly, induced from DFE and that such cells are of dorsal pancreatic identity. The DFE population was highly competent to differentiate into both stomach organoids and pancreatic tissue types and able to generate fetal-type β cells through two subsequent differentiation steps using only small molecules. This alternative, rapid, and low-cost basis for generating pancreatic insulin-producing cells may have impact for the development of cell-based therapies for diabetes. Method development for addressing multifactorial problems in directed differentiation Generation of endodermal populations without the use of TGF-β agonism Small-molecule-based pancreatic differentiation protocol
Collapse
Affiliation(s)
- Michael A Bukys
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Alexander Mihas
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Krystal Finney
- Trailhead Biosystems Inc, 10000 Cedar Avenue, Cleveland, OH, USA; Cleveland Clinic, Cleveland, OH 44195, USA
| | - Katie Sears
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Divya Trivedi
- Trailhead Biosystems Inc, 10000 Cedar Avenue, Cleveland, OH, USA; Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yong Wang
- Division of Transplantation, University of Virginia, Charlottesville, VA 22903, USA
| | - Jose Oberholzer
- Division of Transplantation, University of Virginia, Charlottesville, VA 22903, USA
| | - Jan Jensen
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Trailhead Biosystems Inc, 10000 Cedar Avenue, Cleveland, OH, USA; Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
63
|
Pattarapanawan M, Uemura M, Miyazaki N, Takami S, Tomiyasu H, Tsunekawa N, Hirate Y, Fujishiro J, Kurohmaru M, Kanai-Azuma M, Higashiyama H, Kanai Y. Anatomical and histological characteristics of the hepatobiliary system in adult Sox17 heterozygote mice. Anat Rec (Hoboken) 2020; 303:3096-3107. [PMID: 32478476 DOI: 10.1002/ar.24466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
Biliary atresia (BA) is a rare neonatal disease characterized by inflammation and obstruction of the extrahepatic bile ducts (EHBDs). The Sox17-haploinsufficient (Sox17+/- ) mouse is an animal model of BA that encompasses bile duct injury and subsequent BA-like inflammation by the neonatal stage. Most Sox17+/- neonates die soon after birth, but some Sox17+/- pups reach adulthood and have a normal life span, unlike human BA. However, the phenotype and BA-derived scars in the hepatobiliary organs of surviving Sox17+/- mice are unknown. Here, we examined the phenotypes of the hepatobiliary organs in post-weaning and young adult Sox17+/- mice. The results confirmed the significant reduction in liver weight, together with peripheral calcinosis and aberrant vasculature in the hepatic lobule, in surviving Sox17+/- mice as compared with their wild-type (WT) littermates. Such hepatic phenotypes may be sequelae of hepatobiliary damage at the fetal and neonatal stages, a notion supported by the slight, but significant, increases in the levels of serum markers of liver damage in adult Sox17+/- mice. The surviving Sox17+/- mice had a shorter gallbladder in which ectopic hepatic ducts were more frequent compared to WT mice. Also, the surviving Sox17+/- mice showed neither obstruction of the EHBDs nor atrophy or inflammation of hepatocytes or the intrahepatic ducts. These data suggest that some Sox17+/- pups with BA naturally escape lethality and recover from fetal hepatobiliary damages during the perinatal period, highlighting the usefulness of the in vivo model in understanding the hepatobiliary healing processes after surgical restoration of bile flow in human BA.
Collapse
Affiliation(s)
| | - Mami Uemura
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | - Nanae Miyazaki
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | - Shohei Takami
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan.,Department of Pediatric Surgery, The University of Tokyo, Tokyo, Japan
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoki Tsunekawa
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Hirate
- Center of Experimental Animal, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, The University of Tokyo, Tokyo, Japan
| | | | - Masami Kanai-Azuma
- Center of Experimental Animal, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Higashiyama
- Department of Physiological Chemistry and Metabolism, The University of Tokyo, Tokyo, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
64
|
Ruzittu S, Willnow D, Spagnoli FM. Direct Lineage Reprogramming: Harnessing Cell Plasticity between Liver and Pancreas. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035626. [PMID: 31767653 DOI: 10.1101/cshperspect.a035626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Direct lineage reprogramming of abundant and accessible cells into therapeutically useful cell types holds tremendous potential in regenerative medicine. To date, a number of different cell types have been generated by lineage reprogramming methods, including cells from the neural, cardiac, hepatic, and pancreatic lineages. The success of this strategy relies on developmental biology and the knowledge of cell-fate-defining transcriptional networks. Hepatocytes represent a prime target for β cell conversion for numerous reasons, including close developmental origin, accessibility, and regenerative potential. We present here an overview of pancreatic and hepatic development, with a particular focus on the mechanisms underlying the divergence between the two cell lineages. Additionally, we discuss to what extent this lineage relationship can be exploited in efforts to reprogram one cell type into the other and whether such an approach may provide a suitable strategy for regenerative therapies of diabetes.
Collapse
Affiliation(s)
- Silvia Ruzittu
- Centre for Stem Cell and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom.,Max Delbrück Center for Molecular Medicine (MDC), D-13125 Berlin, Germany
| | - David Willnow
- Centre for Stem Cell and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Francesca M Spagnoli
- Centre for Stem Cell and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom
| |
Collapse
|
65
|
Brandt ZJ, Echert AE, Bostrom JR, North PN, Link BA. Core Hippo pathway components act as a brake on Yap and Taz in the development and maintenance of the biliary network. Development 2020; 147:dev184242. [PMID: 32439761 PMCID: PMC7328147 DOI: 10.1242/dev.184242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
The development of the biliary system is a complex yet poorly understood process, with relevance to multiple diseases, including biliary atresia, choledochal cysts and gallbladder agenesis. We present here a crucial role for Hippo-Yap/Taz signaling in this context. Analysis of sav1 mutant zebrafish revealed dysplastic morphology and expansion of both intrahepatic and extrahepatic biliary cells, and ultimately larval lethality. Biliary dysgenesis, but not larval lethality, is driven primarily by Yap signaling. Re-expression of Sav1 protein in sav1-/- hepatocytes is able to overcome these initial deficits and allows sav1-/- fish to survive, suggesting cell non-autonomous signaling from hepatocytes. Examination of sav1-/- rescued adults reveals loss of gallbladder and formation of dysplastic cell masses expressing biliary markers, suggesting roles for Hippo signaling in extrahepatic biliary carcinomas. Deletion of stk3 revealed that the phenotypes observed in sav1 mutant fish function primarily through canonical Hippo signaling and supports a role for phosphatase PP2A, but also suggests Sav1 has functions in addition to facilitating Stk3 activity. Overall, this study defines a role for Hippo-Yap signaling in the maintenance of both intra- and extrahepatic biliary ducts.
Collapse
Affiliation(s)
- Zachary J Brandt
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Ashley E Echert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Jonathan R Bostrom
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Paula N North
- Department of Pediatric Pathology, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| |
Collapse
|
66
|
Luce E, Dubart-Kupperschmitt A. Pluripotent stem cell-derived cholangiocytes and cholangiocyte organoids. Methods Cell Biol 2020; 159:69-93. [PMID: 32586450 DOI: 10.1016/bs.mcb.2020.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of protocols for pluripotent stem cell (PSC) differentiation into cholangiocytes and cholangiocyte organoids in three-dimensional structures represent a huge advance in both research and medical fields because of the limited access to primary human cholangiocytes and the potential bias induced by animal models used to study cholangiopathies in vivo. PSC-derived cholangiocyte organoids consisting of either cysts with luminal space or branching tubular structures are composed of cells with apico-basal polarity that can fulfill cholangiocyte functions like the transport of bile salts. Several protocols of PSC differentiation have already been published but we added to the detailed protocol we describe here some notes or advice to facilitate its handling by new users. We also propose detailed protocols to carry out some of the characterization analyses using immunofluorescence to study the expression of specific markers and a functionality test to visualize bile acid transport using cholyl-lysyl-fluorescein (CLF).
Collapse
Affiliation(s)
- Eléanor Luce
- INSERM Unité Mixte de Recherche (UMR_S) 1193, Villejuif, France; UMR_S 1193, Université Paris-Sud/Paris-Saclay, Villejuif, France; Département Hospitalo-Universitaire Hepatinov, Villejuif, France.
| | - Anne Dubart-Kupperschmitt
- INSERM Unité Mixte de Recherche (UMR_S) 1193, Villejuif, France; UMR_S 1193, Université Paris-Sud/Paris-Saclay, Villejuif, France; Département Hospitalo-Universitaire Hepatinov, Villejuif, France
| |
Collapse
|
67
|
Fried S, Gilboa D, Har-Zahav A, Lavrut PM, Du Y, Karjoo S, Russo P, Shamir R, Wells RG, Waisbourd-Zinman O. Extrahepatic cholangiocyte obstruction is mediated by decreased glutathione, Wnt and Notch signaling pathways in a toxic model of biliary atresia. Sci Rep 2020; 10:7599. [PMID: 32371929 PMCID: PMC7200694 DOI: 10.1038/s41598-020-64503-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Biliary atresia is a neonatal liver disease with extrahepatic bile duct obstruction and progressive liver fibrosis. The etiology and pathogenesis of the disease are unknown. We previously identified a plant toxin, biliatresone, responsible for biliary atresia in naturally-occurring animal models, that causes cholangiocyte destruction in in-vitro models. Decreases in reduced glutathione (GSH) mimic the effects of biliatresone, and agents that replenish cellular GSH ameliorate the effects of the toxin. The goals of this study were to define signaling pathways downstream of biliatresone that lead to cholangiocyte destruction and to determine their relationship to GSH. Using cholangiocyte culture and 3D cholangiocyte spheroid cultures, we found that biliatresone and decreases in GSH upregulated RhoU/Wrch1, a Wnt signaling family member, which then mediated an increase in Hey2 in the NOTCH signaling pathway, causing downregulation of the transcription factor Sox17. When these genes were up- or down-regulated, the biliatresone effect on spheroids was phenocopied, resulting in lumen obstruction. Biopsies of patients with biliary atresia demonstrated increased RhoU/Wrch1 and Hey2 expression in cholangiocytes. We present a novel pathway of cholangiocyte injury in a model of biliary atresia, which is relevant to human BA and may suggest potential future therapeutics.
Collapse
Affiliation(s)
- Sophia Fried
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dafna Gilboa
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Har-Zahav
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Yu Du
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Sara Karjoo
- Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Pierre Russo
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Raanan Shamir
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rebecca G Wells
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Orith Waisbourd-Zinman
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
68
|
Nakanuma Y, Kakuda Y, Uesaka K. Characterization of Intraductal Papillary Neoplasm of the Bile Duct with Respect to the Histopathologic Similarities to Pancreatic Intraductal Papillary Mucinous Neoplasm. Gut Liver 2020; 13:617-627. [PMID: 30982236 PMCID: PMC6860037 DOI: 10.5009/gnl18476] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
Intraductal papillary neoplasms of the bile duct (IPNBs) are known to show various pathologic features and biological behaviors. Recently, two categories of IPNBs have been proposed based on their histologic similarities to pancreatic intraductal papillary mucinous neoplasms (IPMNs): type 1 IPNBs, which share many features with IPMNs; and type 2 IPNBs, which are variably different from IPMNs. The four IPNB subtypes were re-evaluated with respect to these two categories. Intestinal IPNBs showing a predominantly villous growth may correspond to type 1, while those showing papillay-tubular or papillay-villous growth correspond to type 2. Regarding gastric IPNB, those with regular foveolar structures with varying numbers of pyloric glands may correspond to type 1, while those with papillary-foveolar structures with gastric immunophenotypes and complicated structures may correspond to type 2. Pancreatobiliary IPNBs that show fine ramifying branching may be categorized as type 1, while others containing many complicated structures may be categorized as type 2. Oncocytic type, which displays solid growth or irregular papillary structures, may correspond to type 2, while papillary configurations with pseudostratified oncocytic lining cells correspond to type 1. Generally, type 1 IPNBs of any subtype develop in the intrahepatic bile ducts, while type 2 IPNBs develop in the extrahepatic bile duct. These findings suggest that IPNBs arising in the intrahepatic ducts are biliary counterparts of IPMNs, while those arising in the extrahepatic ducts display differences from prototypical IPMNs. The recognition of these two categories of IPNBs with reference to IPMNs and their anatomical location along the biliary tree may deepen our understanding of IPNBs.
Collapse
Affiliation(s)
- Yasuni Nakanuma
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Sunto, Japan.,Department of Diagnostic Pathology, Fukui Prefecture Saiseikai Hospital, Fukui, Japan
| | - Yuko Kakuda
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Sunto, Japan
| | - Katsuhiko Uesaka
- Department of Hepatobiliary Pancreatic Surgery, Shizuoka Cancer Center, Sunto, Japan
| |
Collapse
|
69
|
Miller AJ, Yu Q, Czerwinski M, Tsai YH, Conway RF, Wu A, Holloway EM, Walker T, Glass IA, Treutlein B, Camp JG, Spence JR. In Vitro and In Vivo Development of the Human Airway at Single-Cell Resolution. Dev Cell 2020; 53:117-128.e6. [PMID: 32109386 PMCID: PMC7396815 DOI: 10.1016/j.devcel.2020.01.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/09/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Bud tip progenitor cells give rise to all murine lung epithelial lineages and have been described in the developing human lung; however, the mechanisms controlling human bud tip differentiation into specific lineages are unclear. Here, we used homogeneous human bud tip organoid cultures and identified SMAD signaling as a key regulator of the bud tip-to-airway transition. SMAD induction led to the differentiation of airway-like organoids possessing functional basal cells capable of clonal expansion and multilineage differentiation. To benchmark in vitro-derived organoids, we developed a single-cell mRNA sequencing atlas of the human lung from 11.5 to 21 weeks of development, which revealed high degrees of similarity between the in vitro-derived and in vivo airway. Together, this work sheds light on human airway differentiation in vitro and provides a single-cell atlas of the developing human lung.
Collapse
Affiliation(s)
- Alyssa J Miller
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Qianhui Yu
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; University of Basel, Basel, Switzerland; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Michael Czerwinski
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Renee F Conway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Taylor Walker
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ian A Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; University of Basel, Basel, Switzerland; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Jason R Spence
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| |
Collapse
|
70
|
Uemura M, Higashi M, Pattarapanawan M, Takami S, Ichikawa N, Higashiyama H, Furukawa T, Fujishiro J, Fukumura Y, Yao T, Tajiri T, Kanai-Azuma M, Kanai Y. Gallbladder wall abnormality in biliary atresia of mouse Sox17+/- neonates and human infants. Dis Model Mech 2020; 13:dmm042119. [PMID: 31996362 PMCID: PMC7132780 DOI: 10.1242/dmm.042119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/17/2020] [Indexed: 12/15/2022] Open
Abstract
Biliary atresia (BA) is characterized by the inflammation and obstruction of the extrahepatic bile ducts (EHBDs) in newborn infants. SOX17 is a master regulator of fetal EHBD formation. In mouse Sox17+/- BA models, SOX17 reduction causes cell-autonomous epithelial shedding together with the ectopic appearance of SOX9-positive cystic duct-like epithelia in the gallbladder walls, resulting in BA-like symptoms during the perinatal period. However, the similarities with human BA gallbladders are still unclear. In the present study, we conducted phenotypic analysis of Sox17+/- BA neonate mice, in order to compare with the gallbladder wall phenotype of human BA infants. The most characteristic phenotype of the Sox17+/- BA gallbladders is the ectopic appearance of SOX9-positive peribiliary glands (PBGs), so-called pseudopyloric glands (PPGs). Next, we examined SOX17/SOX9 expression profiles of human gallbladders in 13 BA infants. Among them, five BA cases showed a loss or drastic reduction of SOX17-positive signals throughout the whole region of gallbladder epithelia (SOX17-low group). Even in the remaining eight gallbladders (SOX17-high group), the epithelial cells near the decidual sites were frequently reduced in the SOX17-positive signal intensity. Most interestingly, the most characteristic phenotype of human BA gallbladders is the increased density of PBG/PPG-like glands in the gallbladder body, especially near the epithelial decidual site, indicating that PBG/PPG formation is a common phenotype between human BA and mouse Sox17+/- BA gallbladders. These findings provide the first evidence of the potential contribution of SOX17 reduction and PBG/PPG formation to the early pathogenesis of human BA gallbladders.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Mami Uemura
- Department of Veterinary Anatomy, the University of Tokyo, Tokyo 113-8657, Japan
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Mayumi Higashi
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | - Shohei Takami
- Department of Veterinary Anatomy, the University of Tokyo, Tokyo 113-8657, Japan
- Department of Pediatric Surgery, the University of Tokyo, Tokyo 113-0033, Japan
| | - Naoki Ichikawa
- Department of Veterinary Anatomy, the University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroki Higashiyama
- Department of Veterinary Anatomy, the University of Tokyo, Tokyo 113-8657, Japan
| | - Taizo Furukawa
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, the University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Fukumura
- Department of Human Pathology, Juntendo University, Tokyo 113-8421, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University, Tokyo 113-8421, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masami Kanai-Azuma
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, the University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
71
|
NOTO Transcription Factor Directs Human Induced Pluripotent Stem Cell-Derived Mesendoderm Progenitors to a Notochordal Fate. Cells 2020; 9:cells9020509. [PMID: 32102328 PMCID: PMC7072849 DOI: 10.3390/cells9020509] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
The founder cells of the Nucleus pulposus, the centre of the intervertebral disc, originate in the embryonic notochord. After birth, mature notochordal cells (NC) are identified as key regulators of disc homeostasis. Better understanding of their biology has great potential in delaying the onset of disc degeneration or as a regenerative-cell source for disc repair. Using human pluripotent stem cells, we developed a two-step method to generate a stable NC-like population with a distinct molecular signature. Time-course analysis of lineage-specific markers shows that WNT pathway activation and transfection of the notochord-related transcription factor NOTO are sufficient to induce high levels of mesendoderm progenitors and favour their commitment toward the notochordal lineage instead of paraxial and lateral mesodermal or endodermal lineages. This study results in the identification of NOTO-regulated genes including some that are found expressed in human healthy disc tissue and highlights NOTO function in coordinating the gene network to human notochord differentiation.
Collapse
|
72
|
A morphogenetic EphB/EphrinB code controls hepatopancreatic duct formation. Nat Commun 2019; 10:5220. [PMID: 31745086 PMCID: PMC6864101 DOI: 10.1038/s41467-019-13149-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
The hepatopancreatic ductal (HPD) system connects the intrahepatic and intrapancreatic ducts to the intestine and ensures the afferent transport of the bile and pancreatic enzymes. Yet the molecular and cellular mechanisms controlling their differentiation and morphogenesis into a functional ductal system are poorly understood. Here, we characterize HPD system morphogenesis by high-resolution microscopy in zebrafish. The HPD system differentiates from a rod of unpolarized cells into mature ducts by de novo lumen formation in a dynamic multi-step process. The remodeling step from multiple nascent lumina into a single lumen requires active cell intercalation and myosin contractility. We identify key functions for EphB/EphrinB signaling in this dynamic remodeling step. Two EphrinB ligands, EphrinB1 and EphrinB2a, and two EphB receptors, EphB3b and EphB4a, control HPD morphogenesis by remodeling individual ductal compartments, and thereby coordinate the morphogenesis of this multi-compartment ductal system.
Collapse
|
73
|
Fowler JL, Ang LT, Loh KM. A critical look: Challenges in differentiating human pluripotent stem cells into desired cell types and organoids. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e368. [PMID: 31746148 DOI: 10.1002/wdev.368] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022]
Abstract
Too many choices can be problematic. This is certainly the case for human pluripotent stem cells (hPSCs): they harbor the potential to differentiate into hundreds of cell types; yet it is highly challenging to exclusively differentiate hPSCs into a single desired cell type. This review focuses on unresolved and fundamental questions regarding hPSC differentiation and critiquing the identity and purity of the resultant cell populations. These are timely issues in view of the fact that hPSC-derived cell populations have or are being transplanted into patients in over 30 ongoing clinical trials. While many in vitro differentiation protocols purport to "mimic development," the exact number and identity of intermediate steps that a pluripotent cell takes to differentiate into a given cell type in vivo remains largely unknown. Consequently, most differentiation efforts inevitably generate a heterogeneous cellular population, as revealed by single-cell RNA-sequencing and other analyses. The presence of unwanted cell types in differentiated hPSC populations does not portend well for transplantation therapies. This provides an impetus to precisely control differentiation to desired ends-for instance, by logically blocking the formation of unwanted cell types or by overexpressing lineage-specifying transcription factors-or by harnessing technologies to selectively purify desired cell types. Conversely, approaches to differentiate three-dimensional "organoids" from hPSCs intentionally generate heterogeneous cell populations. While this is intended to mimic the rich cellular diversity of developing tissues, whether all such organoids are spatially organized in a manner akin to native organs (and thus, whether they fully qualify as organoids) remains to be fully resolved. This article is categorized under: Adult Stem Cells > Tissue Renewal > Regeneration: Stem Cell Differentiation and Reversion Gene Expression > Transcriptional Hierarchies: Cellular Differentiation Early Embryonic Development: Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Jonas L Fowler
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, California.,Department of Developmental Biology, Bio-X, Cancer Institute, Cardiovascular Institute, ChEM-H, Diabetes Research Center, Maternal & Child Health Research Institute, Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California
| | - Lay Teng Ang
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, California
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, California.,Department of Developmental Biology, Bio-X, Cancer Institute, Cardiovascular Institute, ChEM-H, Diabetes Research Center, Maternal & Child Health Research Institute, Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
74
|
Villasenor A, Gauvrit S, Collins MM, Maischein HM, Stainier DYR. Hhex regulates the specification and growth of the hepatopancreatic ductal system. Dev Biol 2019; 458:228-236. [PMID: 31697936 DOI: 10.1016/j.ydbio.2019.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/08/2019] [Accepted: 10/20/2019] [Indexed: 02/07/2023]
Abstract
Significant efforts have advanced our understanding of foregut-derived organ development; however, little is known about the molecular mechanisms that underlie the formation of the hepatopancreatic ductal (HPD) system. Here, we report a role for the homeodomain transcription factor Hhex in directing HPD progenitor specification in zebrafish. Loss of Hhex function results in impaired HPD system formation. We found that Hhex specifies a distinct population of HPD progenitors that gives rise to the cystic duct, common bile duct, and extra-pancreatic duct. Since hhex is not uniquely expressed in the HPD region but is also expressed in endothelial cells and the yolk syncytial layer (YSL), we tested the role of blood vessels as well as the YSL in HPD formation. We found that blood vessels are required for HPD patterning, but not for HPD progenitor specification. In addition, we found that Hhex is required in both the endoderm and the YSL for HPD development. Our results shed light on the mechanisms directing endodermal progenitors towards the HPD fate and emphasize the tissue specific requirement of Hhex during development.
Collapse
Affiliation(s)
- Alethia Villasenor
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.
| | - Sébastien Gauvrit
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Michelle M Collins
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.
| |
Collapse
|
75
|
Kinnear S, Salamonsen LA, Francois M, Harley V, Evans J. Uterine SOX17: a key player in human endometrial receptivity and embryo implantation. Sci Rep 2019; 9:15495. [PMID: 31664088 PMCID: PMC6820561 DOI: 10.1038/s41598-019-51751-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022] Open
Abstract
The yin and yang of female fertility is a complicated issue; large numbers of women/couples desire fertility and seek assisted reproduction intervention to achieve conception, while others seek to prevent pregnancy. Understanding specific molecules which control endometrial-embryo interactions is essential for both facilitating and preventing pregnancy. SOX17 has recently emerged as an important transcription factor involved in endometrial receptivity and embryo implantation. However, studies to date have examined mouse models of pregnancy which do not necessarily translate to the human. Demonstration of a role for ‘implantation factors’ in a human system is critical to provide a rationale for in depth clinical investigation and targeting of such factors. We demonstrate that SOX17is present within the receptive human endometrium and is up-regulated within human endometrial epithelial cells by combined estrogen & progesterone, the hormonal milieu during the receptive window. SOX17 localizes to the point of adhesive contact between human endometrial epithelial cells and a human ‘embryo mimic’ model (trophectodermal spheroid). Targeting SOX17 in endometrial epithelial cells using CRISPR/Cas9 knockdown or a SOX-F family inhibitor, MCC177, significantly inhibited adhesion of an trophectodermal spheroids to the epithelial cells thereby preventing ‘implantation’. These data confirm the important role of endometrial SOX17 in human endometrial receptivity and embryo implantation.
Collapse
Affiliation(s)
- Sophie Kinnear
- The Hudson Institute of Medical Research, Clayton, Australia.,Department of Medicine, Monash University, Clayton, Australia
| | - Lois A Salamonsen
- The Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, 3168, Victoria, Australia
| | - Mathias Francois
- Institute for Molecular Bioscience, University of Queensland, Queensland, Australia
| | - Vincent Harley
- The Hudson Institute of Medical Research, Clayton, Australia
| | - Jemma Evans
- The Hudson Institute of Medical Research, Clayton, Australia. .,Department of Molecular and Translational Science, Monash University, Clayton, 3168, Victoria, Australia.
| |
Collapse
|
76
|
Koike H, Iwasawa K, Ouchi R, Maezawa M, Giesbrecht K, Saiki N, Ferguson A, Kimura M, Thompson WL, Wells JM, Zorn AM, Takebe T. Modelling human hepato-biliary-pancreatic organogenesis from the foregut-midgut boundary. Nature 2019; 574:112-116. [PMID: 31554966 PMCID: PMC7643931 DOI: 10.1038/s41586-019-1598-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/20/2019] [Indexed: 11/29/2022]
Abstract
Organogenesis is a complex and interconnected process that is orchestrated by multiple boundary tissue interactions1-7. However, it remains unclear how individual, neighbouring components coordinate to establish an integral multi-organ structure. Here we report the continuous patterning and dynamic morphogenesis of hepatic, biliary and pancreatic structures, invaginating from a three-dimensional culture of human pluripotent stem cells. The boundary interactions between anterior and posterior gut spheroids differentiated from human pluripotent stem cells enables retinoic acid-dependent emergence of hepato-biliary-pancreatic organ domains specified at the foregut-midgut boundary organoids in the absence of extrinsic factors. Whereas transplant-derived tissues are dominated by midgut derivatives, long-term-cultured microdissected hepato-biliary-pancreatic organoids develop into segregated multi-organ anlages, which then recapitulate early morphogenetic events including the invagination and branching of three different and interconnected organ structures, reminiscent of tissues derived from mouse explanted foregut-midgut culture. Mis-segregation of multi-organ domains caused by a genetic mutation in HES1 abolishes the biliary specification potential in culture, as seen in vivo8,9. In sum, we demonstrate that the experimental multi-organ integrated model can be established by the juxtapositioning of foregut and midgut tissues, and potentially serves as a tractable, manipulatable and easily accessible model for the study of complex human endoderm organogenesis.
Collapse
Affiliation(s)
- Hiroyuki Koike
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rie Ouchi
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mari Maezawa
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kirsten Giesbrecht
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Norikazu Saiki
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Autumn Ferguson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wendy L Thompson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
77
|
Functions and the Emerging Role of the Foetal Liver into Regenerative Medicine. Cells 2019; 8:cells8080914. [PMID: 31426422 PMCID: PMC6721721 DOI: 10.3390/cells8080914] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
During foetal life, the liver plays the important roles of connection and transient hematopoietic function. Foetal liver cells develop in an environment called a hematopoietic stem cell niche composed of several cell types, where stem cells can proliferate and give rise to mature blood cells. Embryologically, at about the third week of gestation, the liver appears, and it grows rapidly from the fifth to 10th week under WNT/β-Catenin signaling pathway stimulation, which induces hepatic progenitor cells proliferation and differentiation into hepatocytes. Development of new strategies and identification of new cell sources should represent the main aim in liver regenerative medicine and cell therapy. Cells isolated from organs with endodermal origin, like the liver, bile ducts, and pancreas, could be preferable cell sources. Furthermore, stem cells isolated from these organs could be more susceptible to differentiate into mature liver cells after transplantation with respect to stem cells isolated from organs or tissues with a different embryological origin. The foetal liver possesses unique features given the co-existence of cells having endodermal and mesenchymal origin, and it could be highly available source candidate for regenerative medicine in both the liver and pancreas. Taking into account these advantages, the foetal liver can be the highest potential and available cell source for cell therapy regarding liver diseases and diabetes.
Collapse
|
78
|
Lemaigre FP. Development of the Intrahepatic and Extrahepatic Biliary Tract: A Framework for Understanding Congenital Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:1-22. [PMID: 31299162 DOI: 10.1146/annurev-pathmechdis-012418-013013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The involvement of the biliary tract in the pathophysiology of liver diseases and the increased attention paid to bile ducts in the bioconstruction of liver tissue for regenerative therapy have fueled intense research into the fundamental mechanisms of biliary development. Here, I review the molecular, cellular and tissular mechanisms driving differentiation and morphogenesis of the intrahepatic and extrahepatic bile ducts. This review focuses on the dynamics of the transcriptional and signaling modules that promote biliary development in human and mouse liver and discusses studies in which the use of zebrafish uncovered unexplored processes in mammalian biliary development. The review concludes by providing a framework for interpreting the mechanisms that may help us understand the origin of congenital biliary diseases.
Collapse
Affiliation(s)
- Frédéric P Lemaigre
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| |
Collapse
|
79
|
Ang LT, Tan AKY, Autio MI, Goh SH, Choo SH, Lee KL, Tan J, Pan B, Lee JJH, Lum JJ, Lim CYY, Yeo IKX, Wong CJY, Liu M, Oh JLL, Chia CPL, Loh CH, Chen A, Chen Q, Weissman IL, Loh KM, Lim B. A Roadmap for Human Liver Differentiation from Pluripotent Stem Cells. Cell Rep 2019; 22:2190-2205. [PMID: 29466743 PMCID: PMC5854481 DOI: 10.1016/j.celrep.2018.01.087] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
How are closely related lineages, including liver, pancreas, and intestines, diversified from a common endodermal origin? Here, we apply principles learned from developmental biology to rapidly reconstitute liver progenitors from human pluripotent stem cells (hPSCs). Mapping the formation of multiple endodermal lineages revealed how alternate endodermal fates (e.g., pancreas and intestines) are restricted during liver commitment. Human liver fate was encoded by combinations of inductive and repressive extracellular signals at different doses. However, these signaling combinations were temporally re-interpreted: cellular competence to respond to retinoid, WNT, TGF-β, and other signals sharply changed within 24 hr. Consequently, temporally dynamic manipulation of extracellular signals was imperative to suppress the production of unwanted cell fates across six consecutive developmental junctures. This efficiently generated 94.1% ± 7.35% TBX3+HNF4A+ human liver bud progenitors and 81.5% ± 3.2% FAH+ hepatocyte-like cells by days 6 and 18 of hPSC differentiation, respectively; the latter improved short-term survival in the Fah-/-Rag2-/-Il2rg-/- mouse model of liver failure.
Collapse
Affiliation(s)
- Lay Teng Ang
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore.
| | - Antson Kiat Yee Tan
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Matias I Autio
- Human Genetics Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, Singapore 117599, Singapore
| | - Su Hua Goh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Siew Hua Choo
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Kian Leong Lee
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jianmin Tan
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Bangfen Pan
- Human Genetics Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, Singapore 117599, Singapore
| | - Jane Jia Hui Lee
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jen Jen Lum
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Christina Ying Yan Lim
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Isabelle Kai Xin Yeo
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Chloe Jin Yee Wong
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Min Liu
- Humanized Mouse Unit, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Jueween Ling Li Oh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Cheryl Pei Lynn Chia
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Chet Hong Loh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Angela Chen
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Qingfeng Chen
- Humanized Mouse Unit, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Microbiology, Yong Yoo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Irving L Weissman
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bing Lim
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore.
| |
Collapse
|
80
|
Yu XX, Qiu WL, Yang L, Zhang Y, He MY, Li LC, Xu CR. Defining multistep cell fate decision pathways during pancreatic development at single-cell resolution. EMBO J 2019; 38:e100164. [PMID: 30737258 PMCID: PMC6463266 DOI: 10.15252/embj.2018100164] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
The generation of terminally differentiated cell lineages during organogenesis requires multiple, coordinated cell fate choice steps. However, this process has not been clearly delineated, especially in complex solid organs such as the pancreas. Here, we performed single-cell RNA-sequencing in pancreatic cells sorted from multiple genetically modified reporter mouse strains at embryonic stages E9.5-E17.5. We deciphered the developmental trajectories and regulatory strategies of the exocrine and endocrine pancreatic lineages as well as intermediate progenitor populations along the developmental pathways. Notably, we discovered previously undefined programs representing the earliest events in islet α- and β-cell lineage allocation as well as the developmental pathway of the "first wave" of α-cell generation. Furthermore, we demonstrated that repressing ERK pathway activity is essential for inducing both α- and β-lineage differentiation. This study provides key insights into the regulatory mechanisms underlying cell fate choice and stepwise cell fate commitment and can be used as a resource to guide the induction of functional islet lineage cells from stem cells in vitro.
Collapse
Affiliation(s)
- Xin-Xin Yu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wei-Lin Qiu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing, China
| | - Liu Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Mao-Yang He
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing, China
| | - Lin-Chen Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
81
|
Capeling MM, Czerwinski M, Huang S, Tsai YH, Wu A, Nagy MS, Juliar B, Sundaram N, Song Y, Han WM, Takayama S, Alsberg E, Garcia AJ, Helmrath M, Putnam AJ, Spence JR. Nonadhesive Alginate Hydrogels Support Growth of Pluripotent Stem Cell-Derived Intestinal Organoids. Stem Cell Reports 2019; 12:381-394. [PMID: 30612954 PMCID: PMC6373433 DOI: 10.1016/j.stemcr.2018.12.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
Human intestinal organoids (HIOs) represent a powerful system to study human development and are promising candidates for clinical translation as drug-screening tools or engineered tissue. Experimental control and clinical use of HIOs is limited by growth in expensive and poorly defined tumor-cell-derived extracellular matrices, prompting investigation of synthetic ECM-mimetics for HIO culture. Since HIOs possess an inner epithelium and outer mesenchyme, we hypothesized that adhesive cues provided by the matrix may be dispensable for HIO culture. Here, we demonstrate that alginate, a minimally supportive hydrogel with no inherent cell instructive properties, supports HIO growth in vitro and leads to HIO epithelial differentiation that is virtually indistinguishable from Matrigel-grown HIOs. In addition, alginate-grown HIOs mature to a similar degree as Matrigel-grown HIOs when transplanted in vivo, both resembling human fetal intestine. This work demonstrates that purely mechanical support from a simple-to-use and inexpensive hydrogel is sufficient to promote HIO survival and development.
Collapse
Affiliation(s)
- Meghan M Capeling
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Michael Czerwinski
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sha Huang
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Melinda S Nagy
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Benjamin Juliar
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Nambirajan Sundaram
- Division of Pediatric General and Thoracic Surgery Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Yang Song
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Woojin M Han
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andres J Garcia
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Michael Helmrath
- Division of Pediatric General and Thoracic Surgery Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM) Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Jason R Spence
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
82
|
Nteeba J, Kubota K, Wang W, Zhu H, Vivian JL, Dai G, Soares MJ. Pancreatic prolactin receptor signaling regulates maternal glucose homeostasis. J Endocrinol 2019; 241:JOE-18-0518.R2. [PMID: 30798322 PMCID: PMC7189340 DOI: 10.1530/joe-18-0518] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/22/2019] [Indexed: 12/17/2022]
Abstract
Prolactin (PRL) signaling has been implicated in the regulation of glucose homeostatic adaptations to pregnancy. In this report, the PRL receptor (Prlr) gene was conditionally disrupted in the pancreas, creating an animal model which proved useful for investigating the biology and pathology of gestational diabetes including its impacts on fetal and placental development. In mice, pancreatic PRLR signaling was demonstrated to be required for pregnancy-associated changes in maternal β cell mass and function. Disruption of the Prlr gene in the pancreas resulted in fewer insulin producing cells, which failed to expand appropriately during pregnancy resulting in reduced blood insulin levels and maternal glucose intolerance. This inability to sustain normal blood glucose balance during pregnancy worsened with age and a successive pregnancy. The etiology of the insulin insufficiency was attributed to deficits in regulatory pathways controlling β cell development. Additionally, the disturbance in maternal blood glucose homeostasis, was associated with fetal overgrowth and dysregulation of inflammation and prolactin-associated transcripts in the placenta. Overall, these results indicate that the PRLR, acting within the pancreas, mediates maternal pancreatic adaptations to pregnancy and therefore its dysfunction may increase a woman's chances of becoming glucose intolerant during pregnancy.
Collapse
Affiliation(s)
- Jackson Nteeba
- Department of Pathology and Laboratory Medicine, Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kaiyu Kubota
- Department of Pathology and Laboratory Medicine, Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wenfang Wang
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hao Zhu
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jay L Vivian
- Department of Pathology and Laboratory Medicine, Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Guoli Dai
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Michael J Soares
- Department of Pathology and Laboratory Medicine, Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Center for Perinatal Research, Children’s Research Institute, Children’s Mercy, Kansas City, Missouri, USA
| |
Collapse
|
83
|
Bonney S, Dennison BJC, Wendlandt M, Siegenthaler JA. Retinoic Acid Regulates Endothelial β-catenin Expression and Pericyte Numbers in the Developing Brain Vasculature. Front Cell Neurosci 2018; 12:476. [PMID: 30568578 PMCID: PMC6290079 DOI: 10.3389/fncel.2018.00476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/21/2018] [Indexed: 01/24/2023] Open
Abstract
The acquisition of brain vascular properties, like tight junctions and pericytes, to form the blood-brain barrier (BBB) is crucial for a properly functioning central nervous system (CNS). Endothelial WNT signaling is a known driver of brain vascular development and BBB properties, however, it is unclear how endothelial WNT signaling is regulated. We recently showed that mouse embryos with disruptions in endothelial retinoic acid (RA) signaling have ectopic WNT signaling in the brain vasculature. Using immunohistochemistical analysis, we show that increased vascular WNT signaling in RA mutants (Pdgfbicre; dnRAR403-flox and Rdh10 mutants) is associated with elevated expression of the WNT transcriptional effector, β-catenin, in the brain endothelium. In vitro immunocytochemistry and proximity ligation studies in brain endothelial cells reveal that RA, through its receptor RARα, regulates β-catenin expression in brain endothelial cells via transcriptional suppression and phosphorylation events that targets β-catenin for proteasomal degradation, the latter dependent on PKCα. We find that one function of RA in regulating vascular WNT signaling is to modulate the pericyte numbers in the developing brain vasculature. RA-mediated regulation of vascular WNT signaling could be needed to prevent over-recruitment of pericytes that might impair endothelial-pericyte interactions crucial for vascular stability.
Collapse
Affiliation(s)
- Stephanie Bonney
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States.,Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Aurora, CO, United States
| | - Brenna J C Dennison
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States.,Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Aurora, CO, United States
| | - Megan Wendlandt
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Julie A Siegenthaler
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| |
Collapse
|
84
|
Escot S, Willnow D, Naumann H, Di Francescantonio S, Spagnoli FM. Robo signalling controls pancreatic progenitor identity by regulating Tead transcription factors. Nat Commun 2018; 9:5082. [PMID: 30504829 PMCID: PMC6269453 DOI: 10.1038/s41467-018-07474-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
A complex interplay of intrinsic factors and extrinsic signalling pathways controls both cell lineage commitment and maintenance of cell identity. Loss of defined cellular states is the cause of many different cancers, including pancreatic cancer. Recent findings suggest a clinical role for the conserved SLIT/ROBO signalling pathway in pancreatic cancer. However, whilst this pathway has been extensively studied in many processes, a role for Slit and Robo genes in pancreas cell identity and plasticity has not been established yet. Here, we identify Slit/Robo signalling as a key regulator of pancreatic progenitor identity. We find that Robo1 and Robo2 are required for preserving pancreatic cell identity shortly after fate induction and, subsequently, for expansion of the pancreatic progenitor pool in the mouse. Furthermore, we show that Robo receptors control the expression of Tead transcription factors as well as its downstream transcriptional activity. Our work identifies an interplay between Slit/Robo pathway and Tead intrinsic regulators, functioning as gatekeeper of pancreatic cell identity.
Collapse
Affiliation(s)
- Sophie Escot
- Lab. of Molecular and Cellular Basis of Embryonic Development, Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, Berlin, 13125, Germany
| | - David Willnow
- Lab. of Molecular and Cellular Basis of Embryonic Development, Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, Berlin, 13125, Germany.,Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - Heike Naumann
- Lab. of Molecular and Cellular Basis of Embryonic Development, Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, Berlin, 13125, Germany
| | - Silvia Di Francescantonio
- Lab. of Molecular and Cellular Basis of Embryonic Development, Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, Berlin, 13125, Germany
| | - Francesca M Spagnoli
- Lab. of Molecular and Cellular Basis of Embryonic Development, Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, Berlin, 13125, Germany. .,Berlin Institute of Health (BIH), Berlin, 10178, Germany. .,Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
85
|
Sambathkumar R, Migliorini A, Nostro MC. Pluripotent Stem Cell-Derived Pancreatic Progenitors and β-Like Cells for Type 1 Diabetes Treatment. Physiology (Bethesda) 2018; 33:394-402. [DOI: 10.1152/physiol.00026.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, we focus on the processes guiding human pancreas development and provide an update on methods to efficiently generate pancreatic progenitors (PPs) and β-like cells in vitro from human pluripotent stem cells (hPSCs). Furthermore, we assess the strengths and weaknesses of using PPs and β-like cell for cell replacement therapy for the treatment of Type 1 diabetes with respect to cell manufacturing, engrafting, functionality, and safety. Finally, we discuss the identification and use of specific cell surface markers to generate safer populations of PPs for clinical translation and to study the development of PPs in vivo and in vitro.
Collapse
Affiliation(s)
- Rangarajan Sambathkumar
- Toronto General Hospital Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | - Adriana Migliorini
- Toronto General Hospital Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | - Maria Cristina Nostro
- Toronto General Hospital Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
86
|
O'Leary CE, Schneider C, Locksley RM. Tuft Cells-Systemically Dispersed Sensory Epithelia Integrating Immune and Neural Circuitry. Annu Rev Immunol 2018; 37:47-72. [PMID: 30379593 DOI: 10.1146/annurev-immunol-042718-041505] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tuft cells-rare solitary chemosensory cells in mucosal epithelia-are undergoing intense scientific scrutiny fueled by recent discovery of unsuspected connections to type 2 immunity. These cells constitute a conduit by which ligands from the external space are sensed via taste-like signaling pathways to generate outputs unique among epithelial cells: the cytokine IL-25, eicosanoids associated with allergic immunity, and the neurotransmitter acetylcholine. The classic type II taste cell transcription factor POU2F3 is lineage defining, suggesting a conceptualization of these cells as widely distributed environmental sensors with effector functions interfacing type 2 immunity and neural circuits. Increasingly refined single-cell analytics have revealed diversity among tuft cells that extends from nasal epithelia and type II taste cells to ex-Aire-expressing medullary thymic cells and small-intestine cells that mediate tissue remodeling in response to colonizing helminths and protists.
Collapse
Affiliation(s)
- Claire E O'Leary
- Department of Medicine, University of California, San Francisco, California 94143, USA; , ,
| | - Christoph Schneider
- Department of Medicine, University of California, San Francisco, California 94143, USA; , ,
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, California 94143, USA; , , .,Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA.,University of California, San Francisco, Howard Hughes Medical Institute, San Francisco, California 94143, USA
| |
Collapse
|
87
|
Wang X, Li X, Wang T, Wu SP, Jeong JW, Kim TH, Young SL, Lessey BA, Lanz RB, Lydon JP, DeMayo FJ. SOX17 regulates uterine epithelial-stromal cross-talk acting via a distal enhancer upstream of Ihh. Nat Commun 2018; 9:4421. [PMID: 30356064 PMCID: PMC6200785 DOI: 10.1038/s41467-018-06652-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023] Open
Abstract
Mammalian pregnancy depends on the ability of the uterus to support embryo implantation. Previous studies reveal the Sox17 gene as a downstream target of the Pgr-Gata2-dependent transcription network that directs genomic actions in the uterine endometrium receptive for embryo implantation. Here, we report that ablating Sox17 in the uterine epithelium impairs leukemia inhibitory factor (LIF) and Indian hedgehog homolog (IHH) signaling, leading to failure of embryo implantation. In vivo deletion of the SOX17-binding region 19 kb upstream of the Ihh locus by CRISPR-Cas technology reduces Ihh expression specifically in the uterus and alters proper endometrial epithelial-stromal interactions, thereby impairing pregnancy. This SOX17-binding interval is also bound by GATA2, FOXA2, and PGR. This cluster of transcription factor binding is common in 737 uterine genes and may represent a key regulatory element essential for uterine epithelial gene expression.
Collapse
Affiliation(s)
- Xiaoqiu Wang
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Xilong Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - San-Pin Wu
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jae-Wook Jeong
- Department of Obstetrics and Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Tae Hoon Kim
- Department of Obstetrics and Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce A Lessey
- Deptartment of Obstetrics and Gynecology, University of South Carolina School of Medicine, Greenville, SC, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Francesco J DeMayo
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
88
|
El Sebae GK, Malatos JM, Cone MKE, Rhee S, Angelo JR, Mager J, Tremblay KD. Single-cell murine genetic fate mapping reveals bipotential hepatoblasts and novel multi-organ endoderm progenitors. Development 2018; 145:dev.168658. [PMID: 30232173 DOI: 10.1242/dev.168658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
The definitive endoderm (DE) is the embryonic germ layer that forms the gut tube and associated organs, including thymus, lungs, liver and pancreas. To understand how individual DE cells furnish gut organs, genetic fate mapping was performed using the Rosa26lacZ Cre-reporter paired with a tamoxifen-inducible DE-specific Cre-expressing transgene. We established a low tamoxifen dose that infrequently induced heritable lacZ expression in a single cell of individual E8.5 mouse embryos and identified clonal cell descendants at E16.5. As expected, only a fraction of the E16.5 embryos contained lacZ-positive clonal descendants and a subset of these contained descendants in multiple organs, revealing novel ontogeny. Furthermore, immunohistochemical analysis was used to identify lacZ-positive hepatocytes and biliary epithelial cells, which are the cholangiocyte precursors, in each clonally populated liver. Together, these data not only uncover novel and suspected lineage relationships between DE-derived organs, but also illustrate the bipotential nature of individual hepatoblasts by demonstrating that single hepatoblasts contribute to both the hepatocyte and the cholangiocyte lineage in vivo.
Collapse
Affiliation(s)
- Gabriel K El Sebae
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Joseph M Malatos
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Mary-Kate E Cone
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Siyeon Rhee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Jesse R Angelo
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
89
|
Jørgensen MC, de Lichtenberg KH, Collin CA, Klinck R, Ekberg JH, Engelstoft MS, Lickert H, Serup P. Neurog3-dependent pancreas dysgenesis causes ectopic pancreas in Hes1 mutant mice. Development 2018; 145:dev.163568. [PMID: 30093553 DOI: 10.1242/dev.163568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
Abstract
Mutations in Hes1, a target gene of the Notch signalling pathway, lead to ectopic pancreas by a poorly described mechanism. Here, we use genetic inactivation of Hes1 combined with lineage tracing and live imaging to reveal an endodermal requirement for Hes1, and show that ectopic pancreas tissue is derived from the dorsal pancreas primordium. RNA-seq analysis of sorted E10.5 Hes1+/+ and Hes1-/- Pdx1-GFP+ cells suggested that upregulation of endocrine lineage genes in Hes1-/- embryos was the major defect and, accordingly, early pancreas morphogenesis was normalized, and the ectopic pancreas phenotype suppressed, in Hes1-/-Neurog3-/- embryos. In Mib1 mutants, we found a near total depletion of dorsal progenitors, which was replaced by an anterior Gcg+ extension. Together, our results demonstrate that aberrant morphogenesis is the cause of ectopic pancreas and that a part of the endocrine differentiation program is mechanistically involved in the dysgenesis. Our results suggest that the ratio of endocrine lineage to progenitor cells is important for morphogenesis and that a strong endocrinogenic phenotype without complete progenitor depletion, as seen in Hes1 mutants, provokes an extreme dysgenesis that causes ectopic pancreas.
Collapse
Affiliation(s)
- Mette C Jørgensen
- NNF Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kristian H de Lichtenberg
- NNF Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Caitlin A Collin
- NNF Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rasmus Klinck
- Novo Nordisk A/S, Department of User Research and Communication, Brennum Park 1, DK-3400 Hillerød, Denmark
| | - Jeppe H Ekberg
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Laboratory for Molecular Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Maja S Engelstoft
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Laboratory for Molecular Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Heiko Lickert
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Palle Serup
- NNF Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
90
|
Ghurburrun E, Borbath I, Lemaigre FP, Jacquemin P. Liver and Pancreas: Do Similar Embryonic Development and Tissue Organization Lead to Similar Mechanisms of Tumorigenesis? Gene Expr 2018; 18:149-155. [PMID: 29580319 PMCID: PMC6190115 DOI: 10.3727/105221618x15216414278706] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The liver and pancreas are closely associated organs that share a common embryological origin. They display amphicrine properties and have similar exocrine organization with parenchymal cells, namely, hepatocytes and acinar cells, secreting bile and pancreatic juice into the duodenum via a converging network of bile ducts and pancreatic ducts. Here we compare and highlight the similarities of molecular mechanisms leading to liver and pancreatic cancer development. We suggest that unraveling tumor development in an organ may provide insight into our understanding of carcinogenesis in the other organ.
Collapse
Affiliation(s)
- Elsa Ghurburrun
- *Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Ivan Borbath
- †Université catholique de Louvain, Department of Hepato-Gastro-Enterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Patrick Jacquemin
- *Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
91
|
Li LC, Qiu WL, Zhang YW, Xu ZR, Xiao YN, Hou C, Lamaoqiezhong, Yu P, Cheng X, Xu CR. Single-cell transcriptomic analyses reveal distinct dorsal/ventral pancreatic programs. EMBO Rep 2018; 19:embr.201846148. [PMID: 30065074 DOI: 10.15252/embr.201846148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/30/2018] [Accepted: 07/09/2018] [Indexed: 11/09/2022] Open
Abstract
The pancreas of vertebrates is separately derived from both the dorsal and ventral endodermal domains. However, the difference between these two programs has been unclear. Here, using a pancreatic determination gene, Pdx1, driven GFP transgenic mouse strain, we identified Pdx1-GFP highly expressing cells (Pdx1high) and Pdx1-GFP lowly expressing cells (Pdx1low) in both embryonic dorsal Pdx1-expressing region (DPR) and ventral Pdx1-expressing region (VPR). We analyzed the transcriptomes of single Pdx1low and Pdx1high cells from the DPR and VPR. In the VPR, Pdx1low cells have an intermediate progenitor identity and can generate hepatoblasts, extrahepatobiliary cells, and Pdx1high pancreatic progenitor cells. In the DPR, Pdx1high cells are directly specified as pancreatic progenitors, whereas Pdx1low cells are precocious endocrine cells. Therefore, our study defines distinct road maps for dorsal and ventral pancreatic progenitor specification. The findings provide guidance for optimization of current β-cell induction protocols by following the in vivo dorsal pancreatic specification program.
Collapse
Affiliation(s)
- Lin-Chen Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Wei-Lin Qiu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China.,PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing, China
| | - Yu-Wei Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Zi-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China.,PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing, China
| | - Yi-Ni Xiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Caiying Hou
- General Hospital of PLA Rocket Force, Beijing, China
| | - Lamaoqiezhong
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Peng Yu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xin Cheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
92
|
Palaria A, Angelo JR, Guertin TM, Mager J, Tremblay KD. Patterning of the hepato-pancreatobiliary boundary by BMP reveals heterogeneity within the murine liver bud. Hepatology 2018; 68:274-288. [PMID: 29315687 PMCID: PMC6033643 DOI: 10.1002/hep.29769] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/20/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
During development, the endoderm initiates organ-restricted gene expression patterns in a spatiotemporally controlled manner. This process, termed induction, requires signals from adjacent mesodermal derivatives. Fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) emanating from the cardiac mesoderm and the septum transversum mesenchyme (STM), respectively, are believed to be simultaneously and uniformly required to directly induce hepatic gene expression from the murine endoderm. Using small molecule inhibitors of BMP signals during liver bud induction in the developing mouse embryo, we found that BMP signaling was not uniformly required to induce hepatic gene expression. Although BMP inhibition caused an overall reduction in the number of induced hepatoblasts, the STM-bounded posterior liver bud demonstrated the most severe loss of the essential hepatic transcription factor, hepatocyte nuclear factor 4-α (HNF4α), whereas the sinus venosus-lined anterior liver bud was less affected. We found that the posterior liver bud progenitors were anteriorly displaced and aberrantly activated pancreatobiliary markers, including sex-determining region Y-box 9 (SOX9). Additionally, we found that ectopically expressed SOX9 inhibited HNF4α and that BMP was indirectly required for hepatoblast induction. Finally, because previous studies have demonstrated that FGF signals are essential for anterior but not posterior liver bud induction, we examined synchronous BMP and FGF inhibition and found this led to a nearly complete loss of hepatoblasts. CONCLUSION BMP signaling is required to maintain the hepato-pancreatobiliary boundary, at least in part, by indirectly repressing SOX9 in the hepatic endoderm. BMP and FGF signals are each required for the induction of spatially complementary subsets of hepatoblasts. These results underscore the importance of studying early inductive processes in the whole embryo. (Hepatology 2018;68:274-288).
Collapse
Affiliation(s)
- Amrita Palaria
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA
| | - Jesse R Angelo
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
| | - Taylor M Guertin
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA
| |
Collapse
|
93
|
Nakagawa H, Hayata Y, Yamada T, Kawamura S, Suzuki N, Koike K. Peribiliary Glands as the Cellular Origin of Biliary Tract Cancer. Int J Mol Sci 2018; 19:ijms19061745. [PMID: 29895797 PMCID: PMC6032423 DOI: 10.3390/ijms19061745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022] Open
Abstract
The identification of the cellular origin of cancer is important for our understanding of the mechanisms regulating carcinogenesis, thus the cellular origin of cholangiocarcinoma (CCA) is a current topic of interest. Although CCA has been considered to originate from biliary epithelial cells, recent studies have suggested that multiple cell types can develop into CCA. With regard to the hilar and extrahepatic bile ducts, peribiliary glands (PBGs), a potential stem cell niche of biliary epithelial cells, have attracted attention as the cellular origin of biliary tract cancer. Recent histopathological and experimental studies have suggested that some kinds of inflammation-induced CCA and intraductal papillary neoplasms of the bile duct are more likely to originate from PBGs. During inflammation-mediated cholangiocarcinogenesis, the biliary epithelial injury-induced regenerative response by PBGs is considered a key process. Thus, in this review, we discuss recent advances in our understanding of cholangiocarcinogenesis from the viewpoint of inflammation and the cellular origin of CCA, especially focusing on PBGs.
Collapse
Affiliation(s)
- Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Yuki Hayata
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Tomoharu Yamada
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Satoshi Kawamura
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Nobumi Suzuki
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Kazuhiko Koike
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
94
|
Ober EA, Lemaigre FP. Development of the liver: Insights into organ and tissue morphogenesis. J Hepatol 2018; 68:1049-1062. [PMID: 29339113 DOI: 10.1016/j.jhep.2018.01.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/06/2018] [Indexed: 02/08/2023]
Abstract
Recent development of improved tools and methods to analyse tissues at the three-dimensional level has expanded our capacity to investigate morphogenesis of foetal liver. Here, we review the key morphogenetic steps during liver development, from the prehepatic endoderm stage to the postnatal period, and consider several model organisms while focussing on the mammalian liver. We first discuss how the liver buds out of the endoderm and gives rise to an asymmetric liver. We next outline the mechanisms driving liver and lobe growth, and review morphogenesis of the intra- and extrahepatic bile ducts; morphogenetic responses of the biliary tract to liver injury are discussed. Finally, we describe the mechanisms driving formation of the vasculature, namely venous and arterial vessels, as well as sinusoids.
Collapse
Affiliation(s)
- Elke A Ober
- Novo Nordisk Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
95
|
Angelo JR, Tremblay KD. Identification and fate mapping of the pancreatic mesenchyme. Dev Biol 2018; 435:15-25. [PMID: 29329912 DOI: 10.1016/j.ydbio.2018.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/06/2018] [Accepted: 01/06/2018] [Indexed: 12/25/2022]
Abstract
The murine pancreas buds from the ventral embryonic endoderm at approximately 8.75 dpc and a second pancreas bud emerges from the dorsal endoderm by 9.0 dpc. Although it is clear that secreted signals from adjacent mesoderm-derived sources are required for both the appropriate emergence and further refinement of the pancreatic endoderm, neither the exact signals nor the requisite tissue sources have been defined in mammalian systems. Herein we use DiI fate mapping of cultured murine embryos to identify the embryonic sources of both the early inductive and later condensed pancreatic mesenchyme. Despite being capable of supporting pancreas induction from dorsal endoderm in co-culture experiments, we find that in the context of the developing embryo, the dorsal aortae as well as the paraxial, intermediate, and lateral mesoderm derivatives only transiently associate with the dorsal pancreas bud, producing descendants that are decidedly anterior to the pancreas bud. Unlike these other mesoderm derivatives, the axial (notochord) descendants maintain association with the dorsal pre-pancreatic endoderm and early pancreas bud. This fate mapping data points to the notochord as the likely inductive source in vivo while also revealing dynamic morphogenetic movements displayed by individual mesodermal subtypes. Because none of the mesoderm examined above produced the pancreatic mesenchyme that condenses around the induced bud to support exocrine and endocrine differentiation, we also sought to identify the mesodermal origins of this mesenchyme. We identify a portion of the coelomic mesoderm that contributes to the condensed pancreatic mesenchyme. In conclusion, we identify a portion of the notochord as a likely source of the signals required to induce and maintain the early dorsal pancreas bud, demonstrate that the coelomic mesothelium contributes to the dorsal and ventral pancreatic mesenchyme, and provide insight into the dynamic morphological rearrangements of mesoderm-derived tissues during early organogenesis stages of mammalian development.
Collapse
Affiliation(s)
- Jesse R Angelo
- Department of Veterinary&Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kimberly D Tremblay
- Department of Veterinary&Animal Sciences, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
96
|
In Vitro Induction and In Vivo Engraftment of Lung Bud Tip Progenitor Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports 2017; 10:101-119. [PMID: 29249664 PMCID: PMC5770275 DOI: 10.1016/j.stemcr.2017.11.012] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022] Open
Abstract
The current study aimed to understand the developmental mechanisms regulating bud tip progenitor cells in the human fetal lung, which are present during branching morphogenesis, and to use this information to induce a bud tip progenitor-like population from human pluripotent stem cells (hPSCs) in vitro. We identified cues that maintained isolated human fetal lung epithelial bud tip progenitor cells in vitro and induced three-dimensional hPSC-derived organoids with bud tip-like domains. Bud tip-like domains could be isolated, expanded, and maintained as a nearly homogeneous population. Molecular and cellular comparisons revealed that hPSC-derived bud tip-like cells are highly similar to native lung bud tip progenitors. hPSC-derived epithelial bud tip-like structures survived in vitro for over 16 weeks, could be easily frozen and thawed, maintained multilineage potential, and successfully engrafted into the airways of immunocompromised mouse lungs, where they persisted for up to 6 weeks and gave rise to several lung epithelial lineages.
Collapse
|
97
|
Bogacheva MS, Khan S, Kanninen LK, Yliperttula M, Leung AW, Lou YR. Differences in definitive endoderm induction approaches using growth factors and small molecules. J Cell Physiol 2017; 233:3578-3589. [DOI: 10.1002/jcp.26214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/12/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Mariia S. Bogacheva
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences; University of Helsinki; Helsinki Finland
| | - Sofia Khan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL); National Institute of Advanced Industrial Science and Technology (AIST); Tokyo Japan
| | - Liisa K. Kanninen
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences; University of Helsinki; Helsinki Finland
| | - Marjo Yliperttula
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences; University of Helsinki; Helsinki Finland
| | - Alan W. Leung
- Yale Stem Cell Center and Department of Genetics; Yale School of Medicine; Yale University; New Haven Connecticut United States
| | - Yan-Ru Lou
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences; University of Helsinki; Helsinki Finland
| |
Collapse
|
98
|
Higashiyama H, Uemura M, Igarashi H, Kurohmaru M, Kanai-Azuma M, Kanai Y. Anatomy and development of the extrahepatic biliary system in mouse and rat: a perspective on the evolutionary loss of the gallbladder. J Anat 2017; 232:134-145. [PMID: 29023691 DOI: 10.1111/joa.12707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2017] [Indexed: 12/13/2022] Open
Abstract
The gallbladder is the hepatobiliary organ for storing and secreting bile fluid, and is a synapomorphy of extant vertebrates. However, this organ has been frequently lost in several lineages of birds and mammals, including rodents. Although it is known as the traditional problem, the differences in development between animals with and without gallbladders are not well understood. To address this research gap, we compared the anatomy and development of the hepatobiliary systems in mice (gallbladder is present) and rats (gallbladder is absent). Anatomically, almost all parts of the hepatobiliary system of rats are topographically the same as those of mice, but rats have lost the gallbladder and cystic duct completely. During morphogenesis, the gallbladder-cystic duct domain (Gb-Cd domain) and its primordium, the biliary bud, do not develop in the rat. In the early stages, SOX17, a master regulator of gallbladder formation, is positive in the murine biliary bud epithelium, as seen in other vertebrates with a gallbladder, but there is no SOX17-positive domain in the rat hepatobiliary primordia. These findings suggest that the evolutionary loss of the Gb-Cd domain should be translated simply as the absence of a biliary bud at an early stage, which may correlate with alterations in regulatory genes, such as Sox17, in the rat. A SOX17-positive biliary bud is clearly definable as a developmental module that may be involved in the frequent loss of gallbladder in mammals.
Collapse
Affiliation(s)
| | - Mami Uemura
- Laboratory of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan.,Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hitomi Igarashi
- Laboratory of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | | | - Masami Kanai-Azuma
- Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoshiakira Kanai
- Laboratory of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
99
|
Bastidas-Ponce A, Scheibner K, Lickert H, Bakhti M. Cellular and molecular mechanisms coordinating pancreas development. Development 2017; 144:2873-2888. [PMID: 28811309 DOI: 10.1242/dev.140756] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer.
Collapse
Affiliation(s)
- Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany .,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| |
Collapse
|
100
|
Galivo F, Benedetti E, Wang Y, Pelz C, Schug J, Kaestner KH, Grompe M. Reprogramming human gallbladder cells into insulin-producing β-like cells. PLoS One 2017; 12:e0181812. [PMID: 28813430 PMCID: PMC5558938 DOI: 10.1371/journal.pone.0181812] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022] Open
Abstract
The gallbladder and cystic duct (GBCs) are parts of the extrahepatic biliary tree and share a common developmental origin with the ventral pancreas. Here, we report on the very first genetic reprogramming of patient-derived human GBCs to β-like cells for potential autologous cell replacement therapy for type 1 diabetes. We developed a robust method for large-scale expansion of human GBCs ex vivo. GBCs were reprogrammed into insulin-producing pancreatic β-like cells by a combined adenoviral-mediated expression of hallmark pancreatic endocrine transcription factors PDX1, MAFA, NEUROG3, and PAX6 and differentiation culture in vitro. The reprogrammed GBCs (rGBCs) strongly induced the production of insulin and pancreatic endocrine genes and these responded to glucose stimulation in vitro. rGBCs also expressed an islet-specific surface marker, which was used to enrich for the most highly reprogrammed cells. More importantly, global mRNA and microRNA expression profiles and protein immunostaining indicated that rGBCs adopted an overall β-like state and these rGBCs engrafted in immunodeficient mice. Furthermore, comparative global expression analyses identified putative regulators of human biliary to β cell fate conversion. In summary, we have developed, for the first time, a reliable and robust genetic reprogramming and culture expansion of primary human GBCs—derived from multiple unrelated donors—into pancreatic β-like cells ex vivo, thus showing that human gallbladder is a potentially rich source of reprogrammable cells for autologous cell therapy in diabetes.
Collapse
Affiliation(s)
- Feorillo Galivo
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail: (FG); (MG)
| | - Eric Benedetti
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Yuhan Wang
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Carl Pelz
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jonathan Schug
- Department of Genetics, School of Medicine and Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Klaus H. Kaestner
- Department of Genetics, School of Medicine and Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Markus Grompe
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail: (FG); (MG)
| |
Collapse
|