51
|
Saffioti NA, Cavalcanti-Adam EA, Pallarola D. Biosensors for Studies on Adhesion-Mediated Cellular Responses to Their Microenvironment. Front Bioeng Biotechnol 2020; 8:597950. [PMID: 33262979 PMCID: PMC7685988 DOI: 10.3389/fbioe.2020.597950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022] Open
Abstract
Cells interact with their microenvironment by constantly sensing mechanical and chemical cues converting them into biochemical signals. These processes allow cells to respond and adapt to changes in their environment, and are crucial for most cellular functions. Understanding the mechanism underlying this complex interplay at the cell-matrix interface is of fundamental value to decipher key biochemical and mechanical factors regulating cell fate. The combination of material science and surface chemistry aided in the creation of controllable environments to study cell mechanosensing and mechanotransduction. Biologically inspired materials tailored with specific bioactive molecules, desired physical properties and tunable topography have emerged as suitable tools to study cell behavior. Among these materials, synthetic cell interfaces with built-in sensing capabilities are highly advantageous to measure biophysical and biochemical interaction between cells and their environment. In this review, we discuss the design of micro and nanostructured biomaterials engineered not only to mimic the structure, properties, and function of the cellular microenvironment, but also to obtain quantitative information on how cells sense and probe specific adhesive cues from the extracellular domain. This type of responsive biointerfaces provides a readout of mechanics, biochemistry, and electrical activity in real time allowing observation of cellular processes with molecular specificity. Specifically designed sensors based on advanced optical and electrochemical readout are discussed. We further provide an insight into the emerging role of multifunctional micro and nanosensors to control and monitor cell functions by means of material design.
Collapse
Affiliation(s)
- Nicolás Andrés Saffioti
- Instituto de Nanosistemas, Universidad Nacional de General San Martín, San Martín, Argentina
| | | | - Diego Pallarola
- Instituto de Nanosistemas, Universidad Nacional de General San Martín, San Martín, Argentina
| |
Collapse
|
52
|
Ichikawa T, Stuckenholz C, Davidson LA. Non-junctional role of Cadherin3 in cell migration and contact inhibition of locomotion via domain-dependent, opposing regulation of Rac1. Sci Rep 2020; 10:17326. [PMID: 33060598 PMCID: PMC7567069 DOI: 10.1038/s41598-020-73862-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/07/2020] [Indexed: 11/08/2022] Open
Abstract
Classical cadherins are well-known adhesion molecules responsible for physically connecting neighboring cells and signaling this cell-cell contact. Recent studies have suggested novel signaling roles for "non-junctional" cadherins (NJCads); however, the function of cadherin signaling independent of cell-cell contacts remains unknown. In this study, mesendodermal cells and tissues from gastrula stage Xenopus laevis embryos demonstrate that deletion of extracellular domains of Cadherin3 (Cdh3; formerly C-cadherin in Xenopus) disrupts contact inhibition of locomotion. In both bulk Rac1 activity assays and spatio-temporal FRET image analysis, the extracellular and cytoplasmic Cdh3 domains disrupt NJCad signaling and regulate Rac1 activity in opposing directions. Stabilization of the cytoskeleton counteracted this regulation in single cell migration assays. Our study provides novel insights into adhesion-independent signaling by Cadherin3 and its role in regulating single and collective cell migration.
Collapse
Affiliation(s)
- Takehiko Ichikawa
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Avenue, 5059-BST3, Pittsburgh, PA, 15260, USA
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan
| | - Carsten Stuckenholz
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Avenue, 5059-BST3, Pittsburgh, PA, 15260, USA
| | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Avenue, 5059-BST3, Pittsburgh, PA, 15260, USA.
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
53
|
Tsata V, Beis D. In Full Force. Mechanotransduction and Morphogenesis during Homeostasis and Tissue Regeneration. J Cardiovasc Dev Dis 2020; 7:jcdd7040040. [PMID: 33019569 PMCID: PMC7711708 DOI: 10.3390/jcdd7040040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
The interactions of form and function have been the focus of numerous studies in the context of development and more recently regeneration. Our understanding on how cells, tissues and organs sense and interpret external cues, such as mechanical forces, is becoming deeper as novel techniques in imaging are applied and the relevant signaling pathways emerge. These cellular responses can be found from bacteria to all multicellular organisms such as plants and animals. In this review, we focus on hemodynamic flow and endothelial shear stress during cardiovascular development and regeneration, where the interactions of morphogenesis and proper function are more prominent. In addition, we address the recent literature on the role of extracellular matrix and fibrotic response during tissue repair and regeneration. Finally, we refer to examples where the integration of multi-disciplinary approaches to understand the biomechanics of cellular responses could be utilized in novel medical applications.
Collapse
Affiliation(s)
- Vasiliki Tsata
- Correspondence: (V.T.); (D.B.); Tel.: +3021-0659-7439 (V.T. & D.B.)
| | - Dimitris Beis
- Correspondence: (V.T.); (D.B.); Tel.: +3021-0659-7439 (V.T. & D.B.)
| |
Collapse
|
54
|
Zhao J, Manuchehrfar F, Liang J. Cell-substrate mechanics guide collective cell migration through intercellular adhesion: a dynamic finite element cellular model. Biomech Model Mechanobiol 2020; 19:1781-1796. [PMID: 32108272 PMCID: PMC7990038 DOI: 10.1007/s10237-020-01308-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/13/2020] [Indexed: 01/23/2023]
Abstract
During the process of tissue formation and regeneration, cells migrate collectively while remaining connected through intercellular adhesions. However, the roles of cell-substrate and cell-cell mechanical interactions in regulating collective cell migration are still unclear. In this study, we employ a newly developed finite element cellular model to study collective cell migration by exploring the effects of mechanical feedback between cell and substrate and mechanical signal transmission between adjacent cells. Our viscoelastic model of cells consists many triangular elements and is of high resolution. Cadherin adhesion between cells is modeled explicitly as linear springs at subcellular level. In addition, we incorporate a mechano-chemical feedback loop between cell-substrate mechanics and Rac-mediated cell protrusion. Our model can reproduce a number of experimentally observed patterns of collective cell migration during wound healing, including cell migration persistence, separation distance between cell pairs and migration direction. Moreover, we demonstrate that cell protrusion determined by the cell-substrate mechanics plays an important role in guiding persistent and oriented collective cell migration. Furthermore, this guidance cue can be maintained and transmitted to submarginal cells of long distance through intercellular adhesions. Our study illustrates that our finite element cellular model can be employed to study broad problems of complex tissue in dynamic changes at subcellular level.
Collapse
Affiliation(s)
- Jieling Zhao
- INRIA de Paris and Sorbonne Universités UPMC, LJLL Team Mamba, Paris, France.
| | - Farid Manuchehrfar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| |
Collapse
|
55
|
Shellard A, Mayor R. Rules of collective migration: from the wildebeest to the neural crest. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190387. [PMID: 32713298 PMCID: PMC7423382 DOI: 10.1098/rstb.2019.0387] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Collective migration, the movement of groups in which individuals affect the behaviour of one another, occurs at practically every scale, from bacteria up to whole species' populations. Universal principles of collective movement can be applied at all levels. In this review, we will describe the rules governing collective motility, with a specific focus on the neural crest, an embryonic stem cell population that undergoes extensive collective migration during development. We will discuss how the underlying principles of individual cell behaviour, and those that emerge from a supracellular scale, can explain collective migration. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
56
|
Colak-Champollion T, Lan L, Jadhav AR, Yamaguchi N, Venkiteswaran G, Patel H, Cammer M, Meier-Schellersheim M, Knaut H. Cadherin-Mediated Cell Coupling Coordinates Chemokine Sensing across Collectively Migrating Cells. Curr Biol 2020; 29:2570-2579.e7. [PMID: 31386838 DOI: 10.1016/j.cub.2019.06.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/08/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
The directed migration of cells sculpts the embryo, contributes to homeostasis in the adult, and, when dysregulated, underlies many diseases [1, 2]. During these processes, cells move singly or as a collective. In both cases, they follow guidance cues, which direct them to their destination [3-6]. In contrast to single cells, collectively migrating cells need to coordinate with their neighbors to move together in the same direction. Recent studies suggest that leader cells in the front sense the guidance cue, relay the directional information to the follower cells in the back, and can pull the follower cells along [7-19]. In this manner, leader cells steer the collective and set the collective's overall speed. However, whether follower cells also participate in steering and speed setting of the collective is largely unclear. Using chimeras, we analyzed the role of leader and follower cells in the collectively migrating zebrafish posterior lateral line primordium. This tissue expresses the chemokine receptor Cxcr4 and is guided by the chemokine Cxcl12a [20-23]. We find that leader and follower cells need to sense the attractant Cxcl12a for efficient migration, are coupled to each other through cadherins, and require coupling to pull Cxcl12a-insensitive cells along. Analysis of cell dynamics in chimeric and protein-depleted primordia shows that Cxcl12a-sensing and cadherin-mediated adhesion contribute jointly to direct migration at both single-cell and tissue levels. These results suggest that all cells in the primordium need to sense the attractant and adhere to each other to coordinate their movements and migrate with robust directionality.
Collapse
Affiliation(s)
- Tugba Colak-Champollion
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Ling Lan
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Alisha R Jadhav
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Naoya Yamaguchi
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Gayatri Venkiteswaran
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Heta Patel
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Michael Cammer
- NYU Langone's Microscopy Laboratory, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Martin Meier-Schellersheim
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
57
|
Xu M, Feng X, Feng F, Pei H, Liu R, Li Q, Yu C, Zhang D, Wang X, Yao L. Magnetic nanoparticles for the measurement of cell mechanics using force-induced remnant magnetization spectroscopy. NANOSCALE 2020; 12:14573-14580. [PMID: 32613995 DOI: 10.1039/d0nr01421d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell mechanics is a crucial indicator of cell function and health, controlling important biological activities such as cell adhesion, migration, and differentiation, wound healing, and tissue integrity. Particularly, the adhesion of cancer cells to the extracellular matrix significantly contributes to cancer progression and metastasis. Here we develop magnetic nanoparticle-based force-induced remnant magnetization spectroscopy (FIRMS) as a novel method to measure cell adhesion force. Before FIRMS experiments, interactions of magnetic nanoparticles (MNPs) with cells were investigated from a cell mechanics perspective. Subsequently adhesion force for three commonly used cancer cell lines was quantified by FIRMS. Our results indicated that the application of MNPs produced indistinguishable effects on cell viability and cell mechanical properties under experimental conditions for the FIRMS method. Then cell adhesion force was obtained, which provides force information on different cancer cell types. Our work demonstrates that MNP-based FIRMS can be applied to probe cell adhesion force and offer an alternate means for understanding cell mechanics.
Collapse
Affiliation(s)
- Min Xu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyan Feng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Feng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hantao Pei
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Ruping Liu
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Qilong Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chanchan Yu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuyu Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Yao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
58
|
Vishwakarma M, Spatz JP, Das T. Mechanobiology of leader-follower dynamics in epithelial cell migration. Curr Opin Cell Biol 2020; 66:97-103. [PMID: 32663734 DOI: 10.1016/j.ceb.2020.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Collective cell migration is fundamental to biological form and function. It is also relevant to the formation and repair of organs and to various pathological situations, including metastatic propagation of cancer. Technological, experimental, and computational advancements have allowed the researchers to explore various aspects of collective migration, spanning from biochemical signalling to inter-cellular force transduction. Here, we summarize our current understanding of the mechanobiology of collective cell migration, limiting to epithelial tissues. On the basis of recent studies, we describe how cells sense and respond to guidance signals to orchestrate various modes of migration and identify the determining factors dictating leader-follower interactions. We highlight how the inherent mechanics of dense epithelial monolayers at multicellular length scale might instruct individual cells to behave collectively. On the basis of these findings, we propose that mechanical resilience, obtained by a certain extent of cell jamming, allows the epithelium to perform efficient collective migration during wound healing.
Collapse
Affiliation(s)
- Medhavi Vishwakarma
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS81TD, United Kingdom; Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg 69120, Germany; Department of Biophysical Chemistry, University of Heidelberg, Heidelberg 69117, Germany
| | - Tamal Das
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad 500046, India.
| |
Collapse
|
59
|
Emad A, Ray T, Jensen TW, Parat M, Natrajan R, Sinha S, Ray PS. Superior breast cancer metastasis risk stratification using an epithelial-mesenchymal-amoeboid transition gene signature. Breast Cancer Res 2020; 22:74. [PMID: 32641077 PMCID: PMC7341640 DOI: 10.1186/s13058-020-01304-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/01/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Cancer cells are known to display varying degrees of metastatic propensity, but the molecular basis underlying such heterogeneity remains unclear. Our aims in this study were to (i) elucidate prognostic subtypes in primary tumors based on an epithelial-to-mesenchymal-to-amoeboid transition (EMAT) continuum that captures the heterogeneity of metastatic propensity and (ii) to more comprehensively define biologically informed subtypes predictive of breast cancer metastasis and survival in lymph node-negative (LNN) patients. METHODS We constructed a novel metastasis biology-based gene signature (EMAT) derived exclusively from cancer cells induced to undergo either epithelial-to-mesenchymal transition (EMT) or mesenchymal-to-amoeboid transition (MAT) to gauge their metastatic potential. Genome-wide gene expression data obtained from 913 primary tumors of lymph node-negative breast cancer (LNNBC) patients were analyzed. EMAT gene signature-based prognostic stratification of patients was performed to identify biologically relevant subtypes associated with distinct metastatic propensity. RESULTS Delineated EMAT subtypes display a biologic range from less stem-like to more stem-like cell states and from less invasive to more invasive modes of cancer progression. Consideration of EMAT subtypes in combination with standard clinical parameters significantly improved survival prediction. EMAT subtypes outperformed prognosis accuracy of receptor or PAM50-based BC intrinsic subtypes even after adjusting for treatment variables in 3 independent, LNNBC cohorts including a treatment-naïve patient cohort. CONCLUSIONS EMAT classification is a biologically informed method that provides prognostic information beyond that which can be provided by traditional cancer staging or PAM50 molecular subtype status and may improve metastasis risk assessment in early stage, LNNBC patients, who may otherwise be perceived to be at low metastasis risk.
Collapse
Affiliation(s)
- Amin Emad
- Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, Canada
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Tania Ray
- Onconostic Technologies Inc., Champaign, Illinois, USA
| | - Tor W Jensen
- Illinois Health Sciences Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Meera Parat
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA.
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA.
| | - Partha S Ray
- Onconostic Technologies Inc., Champaign, Illinois, USA.
| |
Collapse
|
60
|
van Bodegraven EJ, Etienne-Manneville S. Intermediate filaments against actomyosin: the david and goliath of cell migration. Curr Opin Cell Biol 2020; 66:79-88. [PMID: 32623234 DOI: 10.1016/j.ceb.2020.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/29/2020] [Accepted: 05/05/2020] [Indexed: 01/09/2023]
Abstract
Intermediate filaments (IFs), together with actin and microtubules, constitute the cytoskeleton and regulate essential biological processes including cell migration. Despite the well-described changes in the composition of IFs in migrating cells, the mechanism by which these changes may contribute to cell migration remains elusive. Recent studies show that IFs control cell migration by impacting the actomyosin machinery. This review discusses how the unique physical properties of IFs, the interplay between IFs and the actomyosin network, and the connection of IFs with cell adhesive structures participate in cell migration. We highlight the biochemical and mechanical mechanisms by which IFs control actomyosin-generated forces to influence migration speed and contribute to nuclear integrity and cell resilience to compressive forces in 2D, as well as in confined 3D migration.
Collapse
Affiliation(s)
- Emma J van Bodegraven
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France.
| |
Collapse
|
61
|
Bosze B, Ono Y, Mattes B, Sinner C, Gourain V, Thumberger T, Tlili S, Wittbrodt J, Saunders TE, Strähle U, Schug A, Scholpp S. Pcdh18a regulates endocytosis of E-cadherin during axial mesoderm development in zebrafish. Histochem Cell Biol 2020; 154:463-480. [PMID: 32488346 PMCID: PMC7609436 DOI: 10.1007/s00418-020-01887-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2020] [Indexed: 01/07/2023]
Abstract
The notochord defines the axial structure of all vertebrates during development. Notogenesis is a result of major cell reorganization in the mesoderm, the convergence and the extension of the axial cells. However, it is currently not fully understood how these processes act together in a coordinated way during notochord formation. The prechordal plate is an actively migrating cell population in the central mesoderm anterior to the trailing notochordal plate cells. We show that prechordal plate cells express Protocadherin 18a (Pcdh18a), a member of the cadherin superfamily. We find that Pcdh18a-mediated recycling of E-cadherin adhesion complexes transforms prechordal plate cells into a cohesive and fast migrating cell group. In turn, the prechordal plate cells subsequently instruct the trailing mesoderm. We simulated cell migration during early mesoderm formation using a lattice-based mathematical framework and predicted that the requirement for an anterior, local motile cell cluster could guide the intercalation and extension of the posterior, axial cells. Indeed, a grafting experiment validated the prediction and local Pcdh18a expression induced an ectopic prechordal plate-like cell group migrating towards the animal pole. Our findings indicate that the Pcdh18a is important for prechordal plate formation, which influences the trailing mesodermal cell sheet by orchestrating the morphogenesis of the notochord.
Collapse
Affiliation(s)
- Bernadett Bosze
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Yosuke Ono
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Benjamin Mattes
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Claude Sinner
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76021, Germany.,Department of Physics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Victor Gourain
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Sham Tlili
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Timothy E Saunders
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.,Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Alexander Schug
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76021, Germany
| | - Steffen Scholpp
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany. .,Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
62
|
Keratin intermediate filaments: intermediaries of epithelial cell migration. Essays Biochem 2020; 63:521-533. [PMID: 31652439 DOI: 10.1042/ebc20190017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
Migration of epithelial cells is fundamental to multiple developmental processes, epithelial tissue morphogenesis and maintenance, wound healing and metastasis. While migrating epithelial cells utilize the basic acto-myosin based machinery as do other non-epithelial cells, they are distinguished by their copious keratin intermediate filament (KF) cytoskeleton, which comprises differentially expressed members of two large multigene families and presents highly complex patterns of post-translational modification. We will discuss how the unique mechanophysical and biochemical properties conferred by the different keratin isotypes and their modifications serve as finely tunable modulators of epithelial cell migration. We will furthermore argue that KFs together with their associated desmosomal cell-cell junctions and hemidesmosomal cell-extracellular matrix (ECM) adhesions serve as important counterbalances to the contractile acto-myosin apparatus either allowing and optimizing directed cell migration or preventing it. The differential keratin expression in leaders and followers of collectively migrating epithelial cell sheets provides a compelling example of isotype-specific keratin functions. Taken together, we conclude that the expression levels and specific combination of keratins impinge on cell migration by conferring biomechanical properties on any given epithelial cell affecting cytoplasmic viscoelasticity and adhesion to neighboring cells and the ECM.
Collapse
|
63
|
Abstract
Directed cell migration is critical for embryogenesis and organ development, wound healing and the immune response. Microtubules are dynamic polymers that control directional migration through a number of coordinated processes: microtubules are the tracks for long-distance intracellular transport, crucial for delivery of new membrane components and signalling molecules to the leading edge of a migrating cell and the recycling of adhesion receptors. Microtubules act as force generators and compressive elements to support sustained cell protrusions. The assembly and disassembly of microtubules is coupled to Rho GTPase signalling, thereby controlling actin polymerisation, myosin-driven contractility and the turnover of cellular adhesions locally. Cross-talk of actin and microtubule dynamics is mediated through a number of common binding proteins and regulators. Furthermore, cortical microtubule capture sites are physically linked to focal adhesions, facilitating the delivery of secretory vesicles and efficient cross-talk. Here we summarise the diverse functions of microtubules during cell migration, aiming to show how they contribute to the spatially and temporally coordinated sequence of events that permit efficient, directional and persistent migration.
Collapse
|
64
|
Angulo-Urarte A, van der Wal T, Huveneers S. Cell-cell junctions as sensors and transducers of mechanical forces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183316. [PMID: 32360073 DOI: 10.1016/j.bbamem.2020.183316] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
Epithelial and endothelial monolayers are multicellular sheets that form barriers between the 'outside' and 'inside' of tissues. Cell-cell junctions, made by adherens junctions, tight junctions and desmosomes, hold together these monolayers. They form intercellular contacts by binding their receptor counterparts on neighboring cells and anchoring these structures intracellularly to the cytoskeleton. During tissue development, maintenance and pathogenesis, monolayers encounter a range of mechanical forces from the cells themselves and from external systemic forces, such as blood pressure or tissue stiffness. The molecular landscape of cell-cell junctions is diverse, containing transmembrane proteins that form intercellular bonds and a variety of cytoplasmic proteins that remodel the junctional connection to the cytoskeleton. Many junction-associated proteins participate in mechanotransduction cascades to confer mechanical cues into cellular responses that allow monolayers to maintain their structural integrity. We will discuss force-dependent junctional molecular events and their role in cell-cell contact organization and remodeling.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Amsterdam UMC, University of Amsterdam, Location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Tanne van der Wal
- Amsterdam UMC, University of Amsterdam, Location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
65
|
Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G, Dedhar S, Derynck R, Ford HL, Fuxe J, García de Herreros A, Goodall GJ, Hadjantonakis AK, Huang RYJ, Kalcheim C, Kalluri R, Kang Y, Khew-Goodall Y, Levine H, Liu J, Longmore GD, Mani SA, Massagué J, Mayor R, McClay D, Mostov KE, Newgreen DF, Nieto MA, Puisieux A, Runyan R, Savagner P, Stanger B, Stemmler MP, Takahashi Y, Takeichi M, Theveneau E, Thiery JP, Thompson EW, Weinberg RA, Williams ED, Xing J, Zhou BP, Sheng G. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2020; 21:341-352. [PMID: 32300252 PMCID: PMC7250738 DOI: 10.1038/s41580-020-0237-9] [Citation(s) in RCA: 1329] [Impact Index Per Article: 265.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Epithelial–mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly. This growing interest warrants the need for a consensus among researchers when referring to and undertaking research on EMT. This Consensus Statement, mediated by ‘the EMT International Association’ (TEMTIA), is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications. We trust that these guidelines will help to reduce misunderstanding and misinterpretation of research data generated in various experimental models and to promote cross-disciplinary collaboration to identify and address key open questions in this research field. While recognizing the importance of maintaining diversity in experimental approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research to increasing our understanding of developmental processes and combatting cancer and other diseases depend on the adoption of a unified terminology to describe EMT. In this Consensus Statement, the authors (on behalf of the EMT International Association) propose guidelines to define epithelial–mesenchymal transition, its phenotypic plasticity and the associated multiple intermediate epithelial–mesenchymal cell states. Clarification of nomenclature and definitions will help reduce misinterpretation of research data generated in different experimental model systems and promote cross-disciplinary collaboration.
Collapse
Affiliation(s)
- Jing Yang
- Departments of Pharmacology and Pediatrics, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| | - Parker Antin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Geert Berx
- Molecular and Cellular Oncology Lab, Department of Biomedical Molecular Biology, Ghent University, Cancer Research Institute Ghent (CRIG), VIB Center for Inflammation Research, Ghent, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kyra Campbell
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, UK
| | - Amparo Cano
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPAZ & Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jordi Casanova
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology/Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | | | - Shoukat Dedhar
- Department of Biochemistry and Molecular Biology, University of British Columbia and British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Rik Derynck
- Departments of Cell and Tissue Biology, and Anatomy, University of California at San Francisco, San Francisco, CA, USA
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jonas Fuxe
- Department of Laboratory Medicine (LABMED), Division of Pathology, Karolinska University Hospital and Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM) and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gregory J Goodall
- Centre for Cancer Biology, An alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ruby Y J Huang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute for medical Research Israel-Canada and the Safra Center for Neurosciences, Hebrew University of Jerusalem, Hadassah Medical School, Jerusalem, Israel
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, MD Anderson Cancer Center, Houston, TX, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, an Alliance of SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Herbert Levine
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jinsong Liu
- Department of Anatomic Pathology, The Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory D Longmore
- Department of Medicine (Oncology) and Department of Cell Biology and Physiology, ICCE Institute, Washington University, St. Louis, MO, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, UK
| | - David McClay
- Department of Biology, Duke University, Durham, NC, USA
| | - Keith E Mostov
- Departments of Anatomy and Biochemistry/Biophysics, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Donald F Newgreen
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH) Avda Ramon y Cajal s/n, Sant Joan d´Alacant, Spain
| | - Alain Puisieux
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Institut Curie, PSL Research University, Paris, France
| | - Raymond Runyan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Pierre Savagner
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, University Paris-Saclay, Villejuif, France
| | - Ben Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Yoshiko Takahashi
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Eric Theveneau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean Paul Thiery
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China
| | - Erik W Thompson
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Department of Biology, MIT Ludwig Center for Molecular Oncology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Jianhua Xing
- Department of Computational and Systems Biology and UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry and UK Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.
| | | |
Collapse
|
66
|
Broussard JA, Jaiganesh A, Zarkoob H, Conway DE, Dunn AR, Espinosa HD, Janmey PA, Green KJ. Scaling up single-cell mechanics to multicellular tissues - the role of the intermediate filament-desmosome network. J Cell Sci 2020; 133:jcs228031. [PMID: 32179593 PMCID: PMC7097224 DOI: 10.1242/jcs.228031] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells and tissues sense, respond to and translate mechanical forces into biochemical signals through mechanotransduction, which governs individual cell responses that drive gene expression, metabolic pathways and cell motility, and determines how cells work together in tissues. Mechanotransduction often depends on cytoskeletal networks and their attachment sites that physically couple cells to each other and to the extracellular matrix. One way that cells associate with each other is through Ca2+-dependent adhesion molecules called cadherins, which mediate cell-cell interactions through adherens junctions, thereby anchoring and organizing the cortical actin cytoskeleton. This actin-based network confers dynamic properties to cell sheets and developing organisms. However, these contractile networks do not work alone but in concert with other cytoarchitectural elements, including a diverse network of intermediate filaments. This Review takes a close look at the intermediate filament network and its associated intercellular junctions, desmosomes. We provide evidence that this system not only ensures tissue integrity, but also cooperates with other networks to create more complex tissues with emerging properties in sensing and responding to increasingly stressful environments. We will also draw attention to how defects in intermediate filament and desmosome networks result in both chronic and acquired diseases.
Collapse
Affiliation(s)
- Joshua A Broussard
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Avinash Jaiganesh
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hoda Zarkoob
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Horacio D Espinosa
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Paul A Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen J Green
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
67
|
Mariani RA, Paranjpe S, Dobrowolski R, Weber GF. 14-3-3 targets keratin intermediate filaments to mechanically sensitive cell-cell contacts. Mol Biol Cell 2020; 31:930-943. [PMID: 32074004 PMCID: PMC7185971 DOI: 10.1091/mbc.e18-06-0373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intermediate filament (IF) cytoskeletal networks simultaneously support mechanical integrity and influence signal transduction pathways. Marked remodeling of the keratin IF network accompanies collective cellular morphogenetic movements that occur during early embryonic development in the frog Xenopus laevis. While this reorganization of keratin is initiated by force transduction on cell–cell contacts mediated by C-cadherin, the mechanism by which keratin filament reorganization occurs remains poorly understood. In this work, we demonstrate that 14-3-3 proteins regulate keratin reorganization dynamics in embryonic mesendoderm cells from Xenopus gastrula. 14-3-3 colocalizes with keratin filaments near cell–cell junctions in migrating mesendoderm. Coimmunoprecipitation, mass spectrometry, and bioinformatic analyses indicate 14-3-3 is associated with Keratin 19 (K19) in the whole embryo and, more specifically, mesendoderm tissue. Inhibition of 14-3-3 results in both the decreased exchange of keratin subunits into filaments and blocks keratin filament recruitment toward cell–cell contacts. Synthetically coupling 14-3-3 to K19 through a unique fusion construct conversely induces the localization of this keratin population to the region of cell–cell contacts. Taken together, these findings indicate that 14-3-3 acts on keratin IFs and is involved in their reorganization to sites of cell adhesion.
Collapse
Affiliation(s)
- Richard A Mariani
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102
| | - Shalaka Paranjpe
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102.,Department of Biology, University of Indianapolis, Indianapolis, IN 46227
| | - Gregory F Weber
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102.,Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
68
|
Bott CJ, Winckler B. Intermediate filaments in developing neurons: Beyond structure. Cytoskeleton (Hoboken) 2020; 77:110-128. [PMID: 31970897 DOI: 10.1002/cm.21597] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Neuronal development relies on a highly choreographed progression of dynamic cellular processes by which newborn neurons migrate, extend axons and dendrites, innervate their targets, and make functional synapses. Many of these dynamic processes require coordinated changes in morphology, powered by the cell's cytoskeleton. Intermediate filaments (IFs) are the third major cytoskeletal elements in vertebrate cells, but are rarely considered when it comes to understanding axon and dendrite growth, pathfinding and synapse formation. In this review, we first introduce the many new and exciting concepts of IF function, discovered mostly in non-neuronal cells. These roles include dynamic rearrangements, crosstalk with microtubules and actin filaments, mechano-sensing and -transduction, and regulation of signaling cascades. We then discuss the understudied roles of neuronally expressed IFs, with a particular focus on IFs expressed during development, such as nestin, vimentin and α-internexin. Lastly, we illustrate how signaling modulation by the unconventional IF nestin shapes neuronal morphogenesis in unexpected and novel ways. Even though the first IF knockout mice were made over 20 years ago, the study of the cell biological functions of IFs in the brain still has much room for exciting new discoveries.
Collapse
Affiliation(s)
- Christopher J Bott
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
69
|
Isozaki Y, Sakai K, Kohiro K, Kagoshima K, Iwamura Y, Sato H, Rindner D, Fujiwara S, Yamashita K, Mizuno K, Ohashi K. The Rho-guanine nucleotide exchange factor Solo decelerates collective cell migration by modulating the Rho-ROCK pathway and keratin networks. Mol Biol Cell 2020; 31:741-752. [PMID: 32049581 PMCID: PMC7185966 DOI: 10.1091/mbc.e19-07-0357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Collective cell migration plays crucial roles in tissue remodeling, wound healing, and cancer cell invasion. However, its underlying mechanism remains unknown. Previously, we showed that the RhoA-targeting guanine nucleotide exchange factor Solo (ARHGEF40) is required for tensile force–induced RhoA activation and proper organization of keratin-8/keratin-18 (K8/K18) networks. Here, we demonstrate that Solo knockdown significantly increases the rate at which Madin-Darby canine kidney cells collectively migrate on collagen gels. However, it has no apparent effect on the migratory speed of solitary cultured cells. Therefore, Solo decelerates collective cell migration. Moreover, Solo localized to the anteroposterior regions of cell–cell contact sites in collectively migrating cells and was required for the local accumulation of K8/K18 filaments in the forward areas of the cells. Partial Rho-associated protein kinase (ROCK) inhibition or K18 or plakoglobin knockdown also increased collective cell migration velocity. These results suggest that Solo acts as a brake for collective cell migration by generating pullback force at cell–cell contact sites via the RhoA-ROCK pathway. It may also promote the formation of desmosomal cell–cell junctions related to K8/K18 filaments and plakoglobin.
Collapse
Affiliation(s)
- Yusuke Isozaki
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kouki Sakai
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kenta Kohiro
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Katsuhiko Kagoshima
- Department of Chemistry, Faculty of Science and Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuma Iwamura
- Department of Chemistry, Faculty of Science and Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hironori Sato
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Daniel Rindner
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Sachiko Fujiwara
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kazunari Yamashita
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,Department of Chemistry, Faculty of Science and Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kensaku Mizuno
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kazumasa Ohashi
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,Department of Chemistry, Faculty of Science and Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
70
|
Thomas M, Ladoux B, Toyama Y. Desmosomal Junctions Govern Tissue Integrity and Actomyosin Contractility in Apoptotic Cell Extrusion. Curr Biol 2020; 30:682-690.e5. [DOI: 10.1016/j.cub.2020.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/22/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
|
71
|
Flemming S, Luissint AC, Kusters DHM, Raya-Sandino A, Fan S, Zhou DW, Hasegawa M, Garcia-Hernandez V, García AJ, Parkos CA, Nusrat A. Desmocollin-2 promotes intestinal mucosal repair by controlling integrin-dependent cell adhesion and migration. Mol Biol Cell 2020; 31:407-418. [PMID: 31967937 PMCID: PMC7185897 DOI: 10.1091/mbc.e19-12-0692] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The intestinal mucosa is lined by a single layer of epithelial cells that forms a tight barrier, separating luminal antigens and microbes from underlying tissue compartments. Mucosal damage results in a compromised epithelial barrier that can lead to excessive immune responses as observed in inflammatory bowel disease. Efficient wound repair is critical to reestablish the mucosal barrier and homeostasis. Intestinal epithelial cells (IEC) exclusively express the desmosomal cadherins, Desmoglein-2 and Desmocollin-2 (Dsc2) that contribute to mucosal homeostasis by strengthening intercellular adhesion between cells. Despite this important property, specific contributions of desmosomal cadherins to intestinal mucosal repair after injury remain poorly investigated in vivo. Here we show that mice with inducible conditional knockdown (KD) of Dsc2 in IEC (Villin-CreERT2; Dsc2 fl/fl) exhibited impaired mucosal repair after biopsy-induced colonic wounding and recovery from dextran sulfate sodium-induced colitis. In vitro analyses using human intestinal cell lines after KD of Dsc2 revealed delayed epithelial cell migration and repair after scratch-wound healing assay that was associated with reduced cell–matrix traction forces, decreased levels of integrin β1 and β4, and altered activity of the small GTPase Rap1. Taken together, these results demonstrate that epithelial Dsc2 is a key contributor to intestinal mucosal wound healing in vivo.
Collapse
Affiliation(s)
- Sven Flemming
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | | | | | - Shuling Fan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Dennis W Zhou
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Mizuho Hasegawa
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Charles A Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
72
|
|
73
|
Green KJ, Jaiganesh A, Broussard JA. Desmosomes: Essential contributors to an integrated intercellular junction network. F1000Res 2019; 8. [PMID: 31942240 PMCID: PMC6944264 DOI: 10.12688/f1000research.20942.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The development of adhesive connections between cells was critical for the evolution of multicellularity and for organizing cells into complex organs with discrete compartments. Four types of intercellular junction are present in vertebrates: desmosomes, adherens junctions, tight junctions, and gap junctions. All are essential for the development of the embryonic layers and organs as well as adult tissue homeostasis. While each junction type is defined as a distinct entity, it is now clear that they cooperate physically and functionally to create a robust and functionally diverse system. During evolution, desmosomes first appeared in vertebrates as highly specialized regions at the plasma membrane that couple the intermediate filament cytoskeleton at points of strong cell–cell adhesion. Here, we review how desmosomes conferred new mechanical and signaling properties to vertebrate cells and tissues through their interactions with the existing junctional and cytoskeletal network.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Avinash Jaiganesh
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joshua A Broussard
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
74
|
Johansson M, Giger FA, Fielding T, Houart C. Dkk1 Controls Cell-Cell Interaction through Regulation of Non-nuclear β-Catenin Pools. Dev Cell 2019; 51:775-786.e3. [PMID: 31786070 PMCID: PMC6912161 DOI: 10.1016/j.devcel.2019.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/01/2019] [Accepted: 10/28/2019] [Indexed: 01/23/2023]
Abstract
Dickkopf-1 (Dkk1) is a secreted Wnt antagonist with a well-established role in head induction during development. Numerous studies have emerged implicating Dkk1 in various malignancies and neurodegenerative diseases through an unknown mechanism. Using zebrafish gastrulation as a model for collective cell migration, we unveil such a mechanism, identifying a role for Dkk1 in control of cell connectivity and polarity in vivo, independent of its known function. We find that Dkk1 localizes to adhesion complexes at the plasma membrane and regions of concentrated actomyosin, suggesting a direct involvement in regulation of local cell adhesion. Our results show that Dkk1 represses cell polarization and integrity of cell-cell adhesion, independently of its impact on β-catenin protein degradation. Concurrently, Dkk1 prevents nuclear localization of β-catenin by restricting its distribution to a discrete submembrane pool. We propose that redistribution of cytosolic β-catenin by Dkk1 concomitantly drives repression of cell adhesion and inhibits β-catenin-dependent transcriptional output.
Collapse
Affiliation(s)
- Marie Johansson
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| | - Florence A Giger
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Triona Fielding
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Corinne Houart
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
75
|
Abstract
Cell migration is essential for physiological processes as diverse as development, immune defence and wound healing. It is also a hallmark of cancer malignancy. Thousands of publications have elucidated detailed molecular and biophysical mechanisms of cultured cells migrating on flat, 2D substrates of glass and plastic. However, much less is known about how cells successfully navigate the complex 3D environments of living tissues. In these more complex, native environments, cells use multiple modes of migration, including mesenchymal, amoeboid, lobopodial and collective, and these are governed by the local extracellular microenvironment, specific modalities of Rho GTPase signalling and non-muscle myosin contractility. Migration through 3D environments is challenging because it requires the cell to squeeze through complex or dense extracellular structures. Doing so requires specific cellular adaptations to mechanical features of the extracellular matrix (ECM) or its remodelling. In addition, besides navigating through diverse ECM environments and overcoming extracellular barriers, cells often interact with neighbouring cells and tissues through physical and signalling interactions. Accordingly, cells need to call on an impressively wide diversity of mechanisms to meet these challenges. This Review examines how cells use both classical and novel mechanisms of locomotion as they traverse challenging 3D matrices and cellular environments. It focuses on principles rather than details of migratory mechanisms and draws comparisons between 1D, 2D and 3D migration.
Collapse
Affiliation(s)
- Kenneth M Yamada
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
76
|
Werner S, Keller L, Pantel K. Epithelial keratins: Biology and implications as diagnostic markers for liquid biopsies. Mol Aspects Med 2019; 72:100817. [PMID: 31563278 DOI: 10.1016/j.mam.2019.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023]
Abstract
Keratins are essential elements of the cytoskeleton of normal and malignant epithelial cells. Because carcinomas commonly maintain their specific keratin expression pattern during malignant transformation, keratins are extensively used as tumor markers in cancer diagnosis including the detection of circulating tumor cells in blood of carcinoma patients. Interestingly, recent biological insights demonstrate that epithelial keratins should not only be considered as mere tumor markers. Emerging evidence suggests an active biological role of keratins in tumor cell dissemination and metastasis. In this review, we illustrate the family of keratin proteins, summarize the latest biological insights into keratin function related to cancer metastasis and discuss the current use of keratins for detection of CTCs and other blood biomarkers used in oncology.
Collapse
Affiliation(s)
- Stefan Werner
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Keller
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
77
|
Abstract
The cytoskeleton provides structural integrity to cells and serves as a key component in mechanotransduction. Tensins are thought to provide a force-bearing linkage between integrins and the actin cytoskeleton; yet, direct evidence of tensin’s role in mechanotransduction is lacking. We here report that local force application to epithelial cells using a micrometer-sized needle leads to rapid accumulation of cten (tensin 4), but not tensin 1, along a fibrous intracellular network. Surprisingly, cten-positive fibers are not actin fibers; instead, these fibers are keratin intermediate filaments. The dissociation of cten from tension-free keratin fibers depends on the duration of cell stretch, demonstrating that the external force favors maturation of cten−keratin network interactions over time and that keratin fibers retain remarkable structural memory of a cell’s force-bearing state. These results establish the keratin network as an integral part of force-sensing elements recruiting distinct proteins like cten and suggest the existence of a mechanotransduction pathway via keratin network.
Collapse
|
78
|
Barriga EH, Mayor R. Adjustable viscoelasticity allows for efficient collective cell migration. Semin Cell Dev Biol 2019; 93:55-68. [PMID: 29859995 PMCID: PMC6854469 DOI: 10.1016/j.semcdb.2018.05.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022]
Abstract
Cell migration is essential for a wide range of biological processes such as embryo morphogenesis, wound healing, regeneration, and also in pathological conditions, such as cancer. In such contexts, cells are required to migrate as individual entities or as highly coordinated collectives, both of which requiring cells to respond to molecular and mechanical cues from their environment. However, whilst the function of chemical cues in cell migration is comparatively well understood, the role of tissue mechanics on cell migration is just starting to be studied. Recent studies suggest that the dynamic tuning of the viscoelasticity within a migratory cluster of cells, and the adequate elastic properties of its surrounding tissues, are essential to allow efficient collective cell migration in vivo. In this review we focus on the role of viscoelasticity in the control of collective cell migration in various cellular systems, mentioning briefly some aspects of single cell migration. We aim to provide details on how viscoelasticity of collectively migrating groups of cells and their surroundings is adjusted to ensure correct morphogenesis, wound healing, and metastasis. Finally, we attempt to show that environmental viscoelasticity triggers molecular changes within migrating clusters and that these new molecular setups modify clusters' viscoelasticity, ultimately allowing them to migrate across the challenging geometries of their microenvironment.
Collapse
Affiliation(s)
- Elias H Barriga
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, London, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, London, UK.
| |
Collapse
|
79
|
Norden C, Lecaudey V. Collective cell migration: general themes and new paradigms. Curr Opin Genet Dev 2019; 57:54-60. [PMID: 31430686 DOI: 10.1016/j.gde.2019.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 11/16/2022]
Abstract
Collective cell migration plays essential roles in embryogenesis and also contributes to disease states. Recent years have seen immense progress in understanding mechanisms and overarching concepts of collective cell migration. Self-organization of moving groups emerges as an important common feature. This includes self-generating gradients, internal chemotaxis or mechanotaxis and contact-dependent polarization within migrating cell groups. Here, we will discuss these concepts and their applications to classical models of collective cell migration. Further, we discuss new models and paradigms of collective cell migration and elaborate on open questions and future challenges. Answering these questions will help to expand our appreciation of this exciting theme in developmental cell biology and contribute to the understanding of disease states.
Collapse
Affiliation(s)
- Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany.
| | - Virginie Lecaudey
- Department of Developmental Biology of Vertebrates, Institute for Cell Biology and Neuroscience, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
80
|
Shellard A, Mayor R. Integrating chemical and mechanical signals in neural crest cell migration. Curr Opin Genet Dev 2019; 57:16-24. [PMID: 31306988 PMCID: PMC6838680 DOI: 10.1016/j.gde.2019.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/20/2019] [Accepted: 06/09/2019] [Indexed: 12/17/2022]
Abstract
Neural crest cells are a multipotent embryonic stem cell population that migrate large distances to contribute a variety of tissues. The cranial neural crest, which contribute to tissues of the face and skull, undergo collective migration whose movement has been likened to cancer metastasis. Over the last few years, a variety of mechanisms for the guidance of collective cranial neural crest cell migration have been described: mostly chemical, but more recently mechanical. Here we review these different mechanisms and attempt to integrate them to provide a unified model of collective cranial neural crest cell migration.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
81
|
Abstract
Extracellular matrices (ECMs) are structurally and compositionally diverse networks of collagenous and noncollagenous glycoproteins, glycosaminoglycans, proteoglycans, and associated molecules that together comprise the metazoan matrisome. Proper deposition and assembly of ECM is of profound importance to cell proliferation, survival, and differentiation, and the morphogenesis of tissues and organ systems that define sequential steps in the development of all animals. Importantly, it is now clear that the instructive influence of a particular ECM at various points in development reflects more than a simple summing of component parts; cellular responses also reflect the dynamic assembly and changing topology of embryonic ECM, which in turn affect its biomechanical properties. This review highlights recent advances in understanding how biophysical features attributed to ECM, such as stiffness and viscoelasticity, play important roles in the sculpting of embryonic tissues and the regulation of cell fates. Forces generated within cells and tissues are transmitted both through integrin-based adhesions to ECM, and through cadherin-dependent cell-cell adhesions; the resulting short- and long-range deformations of embryonic tissues drive morphogenesis. This coordinate regulation of cell-ECM and cell-cell adhesive machinery has emerged as a common theme in a variety of developmental processes. In this review we consider select examples in the embryo where ECM is implicated in setting up tissue barriers and boundaries, in resisting pushing or pulling forces, or in constraining or promoting cell and tissue movement. We reflect on how each of these processes contribute to morphogenesis.
Collapse
|
82
|
Periderm invasion contributes to epithelial formation in the teleost pharynx. Sci Rep 2019; 9:10082. [PMID: 31300674 PMCID: PMC6626026 DOI: 10.1038/s41598-019-46040-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 06/17/2019] [Indexed: 01/20/2023] Open
Abstract
The gnathostome pharyngeal cavity functions in food transport and respiration. In amniotes the mouth and nares are the only channels allowing direct contact between internal and external epithelia. In teleost fish, gill slits arise through opening of endodermal pouches and connect the pharynx to the exterior. Using transgenic zebrafish lines, cell tracing, live imaging and different markers, we investigated if pharyngeal openings enable epithelial invasion and how this modifies the pharyngeal epithelium. We conclude that in zebrafish the pharyngeal endoderm becomes overlain by cells with a peridermal phenotype. In a wave starting from pouch 2, peridermal cells from the outer skin layer invade the successive pouches until halfway their depth. Here the peridermal cells connect to a population of cells inside the pharyngeal cavity that express periderm markers, yet do not invade from outside. The latter population expands along the midline from anterior to posterior until the esophagus-gut boundary. Together, our results show a novel role for the periderm as an internal epithelium becomes adapted to function as an external surface.
Collapse
|
83
|
Abstract
Mechanical forces drive the remodeling of tissues during morphogenesis. This relies on the transmission of forces between cells by cadherin-based adherens junctions, which couple the force-generating actomyosin cytoskeletons of neighboring cells. Moreover, components of cadherin adhesions adopt force-dependent conformations that induce changes in the composition of adherens junctions, enabling transduction of mechanical forces into an intracellular response. Cadherin mechanotransduction can mediate reinforcement of cell–cell adhesions to withstand forces but also induce biochemical signaling to regulate cell behavior or direct remodeling of cell–cell adhesions to enable cell rearrangements. By transmission and transduction of mechanical forces, cadherin adhesions coordinate cellular behaviors underlying morphogenetic processes of collective cell migration, cell division, and cell intercalation. Here, we review recent advances in our understanding of this central role of cadherin adhesions in force-dependent regulation of morphogenesis.
Collapse
Affiliation(s)
- Willem-Jan Pannekoek
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan de Rooij
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Gloerich
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
84
|
Chen BJ, Tang YJ, Tang YL, Liang XH. What makes cells move: Requirements and obstacles for leader cells in collective invasion. Exp Cell Res 2019; 382:111481. [PMID: 31247191 DOI: 10.1016/j.yexcr.2019.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/15/2019] [Accepted: 06/23/2019] [Indexed: 02/05/2023]
Abstract
Most recently, mounting evidence has shown that cancer cells can invade as a cohesive and multicellular group with coordinated movement, which is called collective invasion. In this cohesive cancer cell group, cancer cells at the front of collective invasion are defined as leader cell that are responsible for many aspects of collective invasion, including sensing the microenvironment, determining the invasion direction, modifying the path of invasion and transmitting information to other cells. To fulfill their dispensable roles, leader cells are required to embark on some specific phenotypes with unusual expression of some proteins and it's very important to investigate into these proteins as they may serve as potential therapeutic targets. Here, in this review we will summarize current knowledge on four emerging proteins highly expressed in leader cells including K14, ΔNp63α, Dll4 and cysteine protease cathepsin B (CTSB), with a focus on their important roles in collective invasion and special mechanisms by which they promote collective invasion.
Collapse
Affiliation(s)
- Bing-Jun Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, China.
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Pathology, West China Hospital of Stomatology, Sichuan University.China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
85
|
Nowotschin S, Hadjantonakis AK, Campbell K. The endoderm: a divergent cell lineage with many commonalities. Development 2019; 146:146/11/dev150920. [PMID: 31160415 PMCID: PMC6589075 DOI: 10.1242/dev.150920] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endoderm is a progenitor tissue that, in humans, gives rise to the majority of internal organs. Over the past few decades, genetic studies have identified many of the upstream signals specifying endoderm identity in different model systems, revealing them to be divergent from invertebrates to vertebrates. However, more recent studies of the cell behaviours driving endodermal morphogenesis have revealed a surprising number of shared features, including cells undergoing epithelial-to-mesenchymal transitions (EMTs), collective cell migration, and mesenchymal-to-epithelial transitions (METs). In this Review, we highlight how cross-organismal studies of endoderm morphogenesis provide a useful perspective that can move our understanding of this fascinating tissue forward.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyra Campbell
- Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK .,Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
86
|
Jang H, Kim J, Shin JH, Fredberg JJ, Park CY, Park Y. Traction microscopy with integrated microfluidics: responses of the multi-cellular island to gradients of HGF. LAB ON A CHIP 2019; 19:1579-1588. [PMID: 30924490 PMCID: PMC7161022 DOI: 10.1039/c9lc00173e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Collective cellular migration plays a central role in development, regeneration, and metastasis. In these processes, mechanical interactions between cells are fundamental but measurement of these interactions is often hampered by technical limitations. To overcome some of these limitations, here we describe a system that integrates microfluidics with traction microscopy (TM). Using this system we can measure simultaneously, and in real time, migration speeds, tractions, and intercellular tension throughout an island of confluent Madin-Darby canine kidney (MDCK) cells. The cell island is exposed to hepatocyte growth factor (HGF) at a controlled gradient of concentrations; HGF is known to elicit epithelial-to-mesenchymal transition (EMT) and cell scattering. As expected, the rate of expansion of the cell island was dependent on the concentration of HGF. Higher concentrations of HGF reduced intercellular tensions, as expected during EMT. A novel finding, however, is that the effects of HGF concentration and its gradient were seen within an island. This integrated experimental system thus provides an integrated tool to better understand cellular forces during collective cellular migration under chemical gradients.
Collapse
Affiliation(s)
- Hwanseok Jang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
87
|
Shellard A, Mayor R. Supracellular migration - beyond collective cell migration. J Cell Sci 2019; 132:132/8/jcs226142. [PMID: 30988138 DOI: 10.1242/jcs.226142] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Collective cell migration is a highly complex process in which groups of cells move together. A fundamental question is how cell ensembles can migrate efficiently. In some cases, the group is no more than a collection of individual cells. In others, the group behaves as a supracellular unit, whereby the cell group could be considered as a giant 'supracell', the concept of which was conceived over a century ago. The development of recent tools has provided considerable evidence that cell collectives are highly cooperative, and their migration can better be understood at the tissue level, rather than at the cell level. In this Review, we will define supracellular migration as a type of collective cell migration that operates at a scale higher than the individual cells. We will discuss key concepts of supracellular migration, review recent evidence of collectives exhibiting supracellular features and argue that many seemingly complex collective movements could be better explained by considering the participating cells as supracellular entities.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
88
|
Saykali B, Mathiah N, Nahaboo W, Racu ML, Hammou L, Defrance M, Migeotte I. Distinct mesoderm migration phenotypes in extra-embryonic and embryonic regions of the early mouse embryo. eLife 2019; 8:42434. [PMID: 30950395 PMCID: PMC6450669 DOI: 10.7554/elife.42434] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
In mouse embryo gastrulation, epiblast cells delaminate at the primitive streak to form mesoderm and definitive endoderm, through an epithelial-mesenchymal transition. Mosaic expression of a membrane reporter in nascent mesoderm enabled recording cell shape and trajectory through live imaging. Upon leaving the streak, cells changed shape and extended protrusions of distinct size and abundance depending on the neighboring germ layer, as well as the region of the embryo. Embryonic trajectories were meandrous but directional, while extra-embryonic mesoderm cells showed little net displacement. Embryonic and extra-embryonic mesoderm transcriptomes highlighted distinct guidance, cytoskeleton, adhesion, and extracellular matrix signatures. Specifically, intermediate filaments were highly expressed in extra-embryonic mesoderm, while live imaging for F-actin showed abundance of actin filaments in embryonic mesoderm only. Accordingly, Rhoa or Rac1 conditional deletion in mesoderm inhibited embryonic, but not extra-embryonic mesoderm migration. Overall, this indicates separate cytoskeleton regulation coordinating the morphology and migration of mesoderm subpopulations.
Collapse
Affiliation(s)
| | | | - Wallis Nahaboo
- IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Latifa Hammou
- IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Migeotte
- IRIBHM, Université Libre de Bruxelles, Brussels, Belgium.,Walloon Excellence in Lifesciences and Biotechnology, Wallonia, Belgium
| |
Collapse
|
89
|
Majumdar R, Steen K, Coulombe PA, Parent CA. Non-canonical processes that shape the cell migration landscape. Curr Opin Cell Biol 2019; 57:123-134. [PMID: 30852463 PMCID: PMC7087401 DOI: 10.1016/j.ceb.2018.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022]
Abstract
Migration is a vital, intricate, and multi-faceted process that involves the entire cell, entails the integration of multiple external cues and, at times, necessitates high-level coordination among fields of cells that can be physically attached or not, depending on the physiological setting. Recent advances have highlighted the essential role of cellular components that have not been traditionally considered when studying cell migration. This review details how much we recently learned by studying the role of intermediate filaments, the nucleus, extracellular vesicles, and mitochondria during cell migration.
Collapse
Affiliation(s)
- Ritankar Majumdar
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kaylee Steen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
90
|
Hashimoto Y, Kinoshita N, Greco TM, Federspiel JD, Jean Beltran PM, Ueno N, Cristea IM. Mechanical Force Induces Phosphorylation-Mediated Signaling that Underlies Tissue Response and Robustness in Xenopus Embryos. Cell Syst 2019; 8:226-241.e7. [PMID: 30852251 DOI: 10.1016/j.cels.2019.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/17/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
Mechanical forces are essential drivers of numerous biological processes, notably during development. Although it is well recognized that cells sense and adapt to mechanical forces, the signal transduction pathways that underlie mechanosensing have remained elusive. Here, we investigate the impact of mechanical centrifugation force on phosphorylation-mediated signaling in Xenopus embryos. By monitoring temporal phosphoproteome and proteome alterations in response to force, we discover and validate elevated phosphorylation on focal adhesion and tight junction components, leading to several mechanistic insights into mechanosensing and tissue restoration. First, we determine changes in kinase activity profiles during mechanoresponse, identifying the activation of basophilic kinases. Pathway interrogation using kinase inhibitor treatment uncovers a crosstalk between the focal adhesion kinase (FAK) and protein kinase C (PKC) in mechanoresponse. Second, we find LIM domain 7 protein (Lmo7) as upregulated upon centrifugation, contributing to mechanoresponse. Third, we discover that mechanical compression force induces a mesenchymal-to-epithelial transition (MET)-like phenotype.
Collapse
Affiliation(s)
- Yutaka Hashimoto
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA; Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Noriyuki Kinoshita
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Joel D Federspiel
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Pierre M Jean Beltran
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Naoto Ueno
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan.
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
91
|
Alert R, Blanch-Mercader C, Casademunt J. Active Fingering Instability in Tissue Spreading. PHYSICAL REVIEW LETTERS 2019; 122:088104. [PMID: 30932560 DOI: 10.1103/physrevlett.122.088104] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 05/13/2023]
Abstract
During the spreading of epithelial tissues, the advancing tissue front often develops fingerlike protrusions. Their resemblance to traditional viscous fingering patterns in driven fluids suggests that epithelial fingers could arise from an interfacial instability. However, the existence and physical mechanism of such a putative instability remain unclear. Here, based on an active polar fluid model for epithelial spreading, we analytically predict a generic instability of the tissue front. On the one hand, active cellular traction forces impose a velocity gradient that leads to an accelerated front, which is, thus, unstable to long-wavelength perturbations. On the other hand, contractile intercellular stresses typically dominate over surface tension in stabilizing short-wavelength perturbations. Finally, the finite range of hydrodynamic interactions in the tissue selects a wavelength for the fingering pattern, which is, thus, given by the smallest between the tissue size and the hydrodynamic screening length. Overall, we show that spreading epithelia experience an active fingering instability based on a simple kinematic mechanism. Moreover, our results underscore the crucial role of long-range hydrodynamic interactions in the dynamics of tissue morphology.
Collapse
Affiliation(s)
- Ricard Alert
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carles Blanch-Mercader
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS, 26 rue d'Ulm, 75005 Paris, France
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30, Quai Ernest-Ansermet, 1205 Genève, Switzerland
| | - Jaume Casademunt
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
92
|
Topal T, Kim BC, Villa-Diaz LG, Deng CX, Takayama S, Krebsbach PH. Rapid translocation of pluripotency-related transcription factors by external uniaxial forces. Integr Biol (Camb) 2019; 11:41-52. [PMID: 30809641 PMCID: PMC6428113 DOI: 10.1093/intbio/zyz003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 11/14/2022]
Abstract
Human embryonic stem cells subjected to a one-time uniaxial stretch for as short as 30-min on a flexible substrate coated with Matrigel experienced rapid and irreversible nuclear-to-cytoplasmic translocation of NANOG and OCT4, but not Sox2. Translocations were directed by intracellular transmission of biophysical signals from cell surface integrins to nuclear CRM1 and were independent of exogenous soluble factors. On E-CADHERIN-coated substrates, presumably with minimal integrin engagement, mechanical strain-induced rapid nuclear-to-cytoplasmic translocation of the three transcription factors. These findings might provide fundamental insights into early developmental processes and may facilitate mechanotransduction-mediated bioengineering approaches to influencing stem cell fate determination.
Collapse
Affiliation(s)
- Tuğba Topal
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Byoung Choul Kim
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Division of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Luis G Villa-Diaz
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Cheri X Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory School of Medicine, Atlanta, GA, USA
| | - Paul H Krebsbach
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
- Section of Periodontics, University of California, Los Angeles School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
93
|
Pinheiro D, Bellaïche Y. Mechanical Force-Driven Adherens Junction Remodeling and Epithelial Dynamics. Dev Cell 2019; 47:3-19. [PMID: 30300588 DOI: 10.1016/j.devcel.2018.09.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
During epithelial tissue development, repair, and homeostasis, adherens junctions (AJs) ensure intercellular adhesion and tissue integrity while allowing for cell and tissue dynamics. Mechanical forces play critical roles in AJs' composition and dynamics. Recent findings highlight that beyond a well-established role in reinforcing cell-cell adhesion, AJ mechanosensitivity promotes junctional remodeling and polarization, thereby regulating critical processes such as cell intercalation, division, and collective migration. Here, we provide an integrated view of mechanosensing mechanisms that regulate cell-cell contact composition, geometry, and integrity under tension and highlight pivotal roles for mechanosensitive AJ remodeling in preserving epithelial integrity and sustaining tissue dynamics.
Collapse
Affiliation(s)
- Diana Pinheiro
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France.
| |
Collapse
|
94
|
Khalil AA, de Rooij J. Cadherin mechanotransduction in leader-follower cell specification during collective migration. Exp Cell Res 2019; 376:86-91. [PMID: 30633881 DOI: 10.1016/j.yexcr.2019.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 01/23/2023]
Abstract
Collective invasion drives the spread of multicellular cancer groups, into the normal tissue surrounding several epithelial tumors. Collective invasion recapitulates various aspects of the multicellular organization and collective migration that take place during normal development and repair. Collective migration starts with the specification of leader cells in which a polarized, migratory phenotype is established. Leader cells initiate and organize the migration of follower cells, to allow the group of cells to move as a cohesive and polarized unit. Leader-follower specification is essential for coordinated and directional collective movement. Forces exerted by cohesive cells represent key signals that dictate multicellular coordination and directionality. Physical forces originate from the contraction of the actomyosin cytoskeleton, which is linked between cells via cadherin-based cell-cell junctions. The cadherin complex senses and transduces fluctuations in forces into biochemical signals that regulate processes like cell proliferation, motility and polarity. With cadherin junctions being maintained in most collective movements the cadherin complex is ideally positioned to integrate mechanical information into the organization of collective cell migration. Here we discuss the potential roles of cadherin mechanotransduction in the diverse aspects of leader versus follower cell specification during collective migration and neoplastic invasion.
Collapse
Affiliation(s)
- Antoine A Khalil
- Dept. Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Stratenum 3.231, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Johan de Rooij
- Dept. Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Stratenum 3.231, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
95
|
Matellan C, Del Río Hernández AE. Where No Hand Has Gone Before: Probing Mechanobiology at the Cellular Level. ACS Biomater Sci Eng 2018; 5:3703-3719. [PMID: 33405886 DOI: 10.1021/acsbiomaterials.8b01206] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Physical forces and other mechanical stimuli are fundamental regulators of cell behavior and function. Cells are also biomechanically competent: they generate forces to migrate, contract, remodel, and sense their environment. As the knowledge of the mechanisms of mechanobiology increases, the need to resolve and probe increasingly small scales calls for novel technologies to mechanically manipulate cells, examine forces exerted by cells, and characterize cellular biomechanics. Here, we review novel methods to quantify cellular force generation, measure cell mechanical properties, and exert localized piconewton and nanonewton forces on cells, receptors, and proteins. The combination of these technologies will provide further insight on the effect of mechanical stimuli on cells and the mechanisms that convert these stimuli into biochemical and biomechanical activity.
Collapse
Affiliation(s)
- Carlos Matellan
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Armando E Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
96
|
Mechanical loading of desmosomes depends on the magnitude and orientation of external stress. Nat Commun 2018; 9:5284. [PMID: 30538252 PMCID: PMC6290003 DOI: 10.1038/s41467-018-07523-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/08/2018] [Indexed: 01/19/2023] Open
Abstract
Desmosomes are intercellular adhesion complexes that connect the intermediate filament cytoskeletons of neighboring cells, and are essential for the mechanical integrity of mammalian tissues. Mutations in desmosomal proteins cause severe human pathologies including epithelial blistering and heart muscle dysfunction. However, direct evidence for their load-bearing nature is lacking. Here we develop Förster resonance energy transfer (FRET)-based tension sensors to measure the forces experienced by desmoplakin, an obligate desmosomal protein that links the desmosomal plaque to intermediate filaments. Our experiments reveal that desmoplakin does not experience significant tension under most conditions, but instead becomes mechanically loaded when cells are exposed to external mechanical stresses. Stress-induced loading of desmoplakin is transient and sensitive to the magnitude and orientation of the applied tissue deformation, consistent with a stress absorbing function for desmosomes that is distinct from previously analyzed cell adhesion complexes. Desmosomes are intercellular adhesion complexes that connect the intermediate filament cytoskeletons of neighboring cells but direct evidence for their load-bearing nature is lacking. Here the authors develop FRET-based tension sensors to measure the forces experienced by desmoplakin and infer that desmosomes become mechanically loaded when cells are exposed to external mechanical stresses.
Collapse
|
97
|
Spontaneous migration of cellular aggregates from giant keratocytes to running spheroids. Proc Natl Acad Sci U S A 2018; 115:12926-12931. [PMID: 30504144 DOI: 10.1073/pnas.1811348115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Despite extensive knowledge on the mechanisms that drive single-cell migration, those governing the migration of cell clusters, as occurring during embryonic development and cancer metastasis, remain poorly understood. Here, we investigate the collective migration of cell on adhesive gels with variable rigidity, using 3D cellular aggregates as a model system. After initial adhesion to the substrate, aggregates spread by expanding outward a cell monolayer, whose dynamics is optimal in a narrow range of rigidities. Fast expansion gives rise to the accumulation of mechanical tension that leads to the rupture of cell-cell contacts and the nucleation of holes within the monolayer, which becomes unstable and undergoes dewetting like a liquid film. This leads to a symmetry breaking and causes the entire aggregate to move as a single entity. Varying the substrate rigidity modulates the extent of dewetting and induces different modes of aggregate motion: "giant keratocytes," where the lamellipodium is a cell monolayer that expands at the front and retracts at the back; "penguins," characterized by bipedal locomotion; and "running spheroids," for nonspreading aggregates. We characterize these diverse modes of collective migration by quantifying the flows and forces that drive them, and we unveil the fundamental physical principles that govern these behaviors, which underscore the biological predisposition of living material to migrate, independent of length scale.
Collapse
|
98
|
Wang F, Chen S, Liu HB, Parent CA, Coulombe PA. Keratin 6 regulates collective keratinocyte migration by altering cell-cell and cell-matrix adhesion. J Cell Biol 2018; 217:4314-4330. [PMID: 30389720 PMCID: PMC6279382 DOI: 10.1083/jcb.201712130] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/18/2018] [Accepted: 10/16/2018] [Indexed: 01/21/2023] Open
Abstract
Keratin 6 (K6) isoforms are induced in wound-proximal keratinocytes after injury to skin. Paradoxically, absence of K6 isoforms leads to faster directional cell migration. Wang et al. report that K6 promotes collective keratinocyte migration by interacting with desmoplakin and myosin IIA and stabilizing cell adhesion. The a and b isoforms of keratin 6 (K6), a type II intermediate filament (IF) protein, are robustly induced upon injury to interfollicular epidermis. We previously showed that complete loss of K6a/K6b stimulates keratinocyte migration, correlating with enhanced Src activity. In this study, we demonstrate that this property is cell autonomous, depends on the ECM, and results from elevated speed, enhanced directionality, and an increased rate of focal adhesion disassembly. We show that myosin IIA interacts with K6a/K6b, that its levels are markedly reduced in Krt6a/Krt6b-null keratinocytes, and that inhibiting myosin ATPase activity normalizes the enhanced migration potential of Krt6a/Krt6b-null cells. Desmoplakin, which mediates attachment of IFs to desmosomes, is also expressed at reduced levels and is mislocalized to the nucleus in Krt6a/Krt6b-null cells, correlating with defects in cell adhesion. These findings reveal that K6a/K6b modulate keratinocyte migration by regulating cell–matrix and cell–cell adhesion and highlight a role for keratins in collective cell migration.
Collapse
Affiliation(s)
- Fengrong Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI.,Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Song Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Hans B Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Carole A Parent
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI .,Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD.,Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
99
|
Bredov D, Volodyaev I. Increasing complexity: Mechanical guidance and feedback loops as a basis for self-organization in morphogenesis. Biosystems 2018; 173:133-156. [PMID: 30292533 DOI: 10.1016/j.biosystems.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
The article is devoted to physical views on embryo development as a combination of structurally stable dynamics and symmetry-breaking events in the general process of self-organization. The first corresponds to the deterministic aspect of embryo development. The second type of processes is associated with sudden increase of variability in the periods of symmetry-breaking, which manifests unstable dynamics. The biological basis under these considerations includes chemokinetics (a system of inductors, repressors, and interaction with their next surrounding) and morphomechanics (i.e. mechanotransduction, mechanosensing, and related feedback loops). Although the latter research area is evolving rapidly, up to this time the role of mechanical properties of embryonic tissues and mechano-dependent processes in them are integrated in the general picture of embryo development to a lesser extent than biochemical signaling. For this reason, the present article is mostly devoted to experimental data on morphomechanics in the process of embryo development, also including analysis of its limitations and possible contradictions. The general system of feedback-loops and system dynamics delineated in this review is in large part a repetition of the views of Lev Beloussov, who was one of the founders of the whole areas of morphomechanics and morphodynamics, and to whose memory this article is dedicated.
Collapse
Affiliation(s)
- Denis Bredov
- Laboratory of Developmental biophysics, Department of Embryology, Faculty of Biology, Moscow State University, Moscow, 119234, Russia
| | - Ilya Volodyaev
- Laboratory of Developmental biophysics, Department of Embryology, Faculty of Biology, Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
100
|
Zhang J, Raghunathan R, Rippy J, Wu C, Finnell RH, Larin KV, Scarcelli G. Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography. Birth Defects Res 2018; 111:991-998. [PMID: 30239173 DOI: 10.1002/bdr2.1389] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/03/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Embryonic development involves the interplay of driving forces that shape the tissue and the mechanical resistance that the tissue offers in response. While increasing evidence has suggested the crucial role of physical mechanisms underlying embryo development, tissue biomechanics is not well understood because of the lack of techniques that can quantify the stiffness of tissue in situ with 3D high-resolution and in a noncontact manner. METHODS We used two all-optical techniques, optical coherence tomography (OCT) and Brillouin microscopy, to map the longitudinal modulus of the tissue from mouse embryos in situ. RESULTS We acquired 2D mechanical maps of the neural tube region of embryos at embryonic day (E) 8.5 (n = 2) and E9.5 (n = 2) with submicron spatial resolution. We found the modulus of tissue varied distinctly within the neural tube region of the same embryo and between embryos at different development stages, suggesting our technique has enough sensitivity and spatial resolution to monitor the tissue mechanics during embryonic development in a noncontact and noninvasive manner. CONCLUSIONS We demonstrated the capability of OCT-guided Brillouin microscopy to quantify tissue longitudinal modulus of mouse embryos in situ, and observed distinct change in the modulus during the closure of cranial neural tube. Although this preliminary work cannot provide definitive conclusions on biomechanics of neural tube closure yet as a result of the limited number of samples, it provides an approach of quantifying the tissue mechanics during embryo development in situ, thus could be helpful in investigating the role of tissue biomechanics in the regulation of embryonic development. Our next study involving more embryo samples will investigate systematic changes in tissue mechanics during embryonic development.
Collapse
Affiliation(s)
- Jitao Zhang
- Fischell Department of Bioengineering, University of Maryland, Maryland
| | - Raksha Raghunathan
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | - Justin Rippy
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | - Chen Wu
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas.,Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas.,Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
| | | |
Collapse
|