51
|
Serres MP, Samwer M, Truong Quang BA, Lavoie G, Perera U, Görlich D, Charras G, Petronczki M, Roux PP, Paluch EK. F-Actin Interactome Reveals Vimentin as a Key Regulator of Actin Organization and Cell Mechanics in Mitosis. Dev Cell 2020; 52:210-222.e7. [PMID: 31928973 PMCID: PMC6983945 DOI: 10.1016/j.devcel.2019.12.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/23/2019] [Accepted: 12/12/2019] [Indexed: 01/27/2023]
Abstract
Most metazoan cells entering mitosis undergo characteristic rounding, which is important for accurate spindle positioning and chromosome separation. Rounding is driven by contractile tension generated by myosin motors in the sub-membranous actin cortex. Recent studies highlight that alongside myosin activity, cortical actin organization is a key regulator of cortex tension. Yet, how mitotic actin organization is controlled remains poorly understood. To address this, we characterized the F-actin interactome in spread interphase and round mitotic cells. Using super-resolution microscopy, we then screened for regulators of cortex architecture and identified the intermediate filament vimentin and the actin-vimentin linker plectin as unexpected candidates. We found that vimentin is recruited to the mitotic cortex in a plectin-dependent manner. We then showed that cortical vimentin controls actin network organization and mechanics in mitosis and is required for successful cell division in confinement. Together, our study highlights crucial interactions between cytoskeletal networks during cell division. Comparison of the F-actin interactome in spread interphase and round mitotic cells Proteomics identifies vimentin and plectin as key regulators of the mitotic cortex Vimentin intermediate filaments localize under the actin cortex in mitosis Sub-cortical vimentin regulates actin cortex organization and mechanics in mitosis
Collapse
Affiliation(s)
- Murielle P Serres
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, UK
| | - Matthias Samwer
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Binh An Truong Quang
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal QC, H3T 1J4, Canada
| | - Upamali Perera
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Mark Petronczki
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, UK
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal QC, H3T 1J4, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
52
|
The cellular and molecular mechanisms that establish the mechanics of Drosophila gastrulation. Curr Top Dev Biol 2020; 136:141-165. [DOI: 10.1016/bs.ctdb.2019.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
53
|
Structure and regulation of human epithelial cell transforming 2 protein. Proc Natl Acad Sci U S A 2019; 117:1027-1035. [PMID: 31888991 DOI: 10.1073/pnas.1913054117] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Epithelial cell transforming 2 (Ect2) protein activates Rho GTPases and controls cytokinesis and many other cellular processes. Dysregulation of Ect2 is associated with various cancers. Here, we report the crystal structure of human Ect2 and complementary mechanistic analyses. The data show the C-terminal PH domain of Ect2 folds back and blocks the canonical RhoA-binding site at the catalytic center of the DH domain, providing a mechanism of Ect2 autoinhibition. Ect2 is activated by binding of GTP-bound RhoA to the PH domain, which suggests an allosteric mechanism of Ect2 activation and a positive-feedback loop reinforcing RhoA signaling. This bimodal RhoA binding of Ect2 is unusual and was confirmed with Förster resonance energy transfer (FRET) and hydrogen-deuterium exchange mass spectrometry (HDX-MS) analyses. Several recurrent cancer-associated mutations map to the catalytic and regulatory interfaces, and dysregulate Ect2 in vitro and in vivo. Together, our findings provide mechanistic insights into Ect2 regulation in normal cells and under disease conditions.
Collapse
|
54
|
Kapoor S, Kotak S. Centrosome Aurora A regulates RhoGEF ECT-2 localisation and ensures a single PAR-2 polarity axis in C. elegans embryos. Development 2019; 146:dev174565. [PMID: 31636075 PMCID: PMC7115938 DOI: 10.1242/dev.174565] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
Abstract
Proper establishment of cell polarity is essential for development. In the one-cell C. elegans embryo, a centrosome-localised signal provides spatial information for polarity establishment. It is hypothesised that this signal causes local inhibition of the cortical actomyosin network, and breaks symmetry to direct partitioning of the PAR proteins. However, the molecular nature of the centrosomal signal that triggers cortical anisotropy in the actomyosin network to promote polarity establishment remains elusive. Here, we discover that depletion of Aurora A kinase (AIR-1 in C. elegans) causes pronounced cortical contractions on the embryo surface, and this creates more than one PAR-2 polarity axis. This function of AIR-1 appears to be independent of its role in microtubule nucleation. Importantly, upon AIR-1 depletion, centrosome positioning becomes dispensable in dictating the PAR-2 axis. Moreover, we uncovered that a Rho GEF, ECT-2, acts downstream of AIR-1 in regulating contractility and PAR-2 localisation, and, notably, AIR-1 depletion influences ECT-2 cortical localisation. Overall, this study provides a novel insight into how an evolutionarily conserved centrosome Aurora A kinase inhibits promiscuous PAR-2 domain formation to ensure singularity in the polarity establishment axis.
Collapse
Affiliation(s)
- Sukriti Kapoor
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science, Bangalore 560012, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
55
|
Hetmanski JHR, de Belly H, Busnelli I, Waring T, Nair RV, Sokleva V, Dobre O, Cameron A, Gauthier N, Lamaze C, Swift J, Del Campo A, Starborg T, Zech T, Goetz JG, Paluch EK, Schwartz JM, Caswell PT. Membrane Tension Orchestrates Rear Retraction in Matrix-Directed Cell Migration. Dev Cell 2019; 51:460-475.e10. [PMID: 31607653 PMCID: PMC6863396 DOI: 10.1016/j.devcel.2019.09.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 07/02/2019] [Accepted: 09/10/2019] [Indexed: 01/11/2023]
Abstract
In development, wound healing, and cancer metastasis, vertebrate cells move through 3D interstitial matrix, responding to chemical and physical guidance cues. Protrusion at the cell front has been extensively studied, but the retraction phase of the migration cycle is not well understood. Here, we show that fast-moving cells guided by matrix cues establish positive feedback control of rear retraction by sensing membrane tension. We reveal a mechanism of rear retraction in 3D matrix and durotaxis controlled by caveolae, which form in response to low membrane tension at the cell rear. Caveolae activate RhoA-ROCK1/PKN2 signaling via the RhoA guanidine nucleotide exchange factor (GEF) Ect2 to control local F-actin organization and contractility in this subcellular region and promote translocation of the cell rear. A positive feedback loop between cytoskeletal signaling and membrane tension leads to rapid retraction to complete the migration cycle in fast-moving cells, providing directional memory to drive persistent cell migration in complex matrices.
Collapse
Affiliation(s)
- Joseph H R Hetmanski
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Henry de Belly
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Ignacio Busnelli
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg 67200, France; Université de Strasbourg, Strasbourg 67000, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France
| | - Thomas Waring
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Roshna V Nair
- INM, Leibniz Institute for New Materials, Campus D226, 66123 Saarbrücken, Germany
| | - Vanesa Sokleva
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Oana Dobre
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Angus Cameron
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Nils Gauthier
- IFOM, the FIRC Institute for Molecular Oncology, Milan 20139, Italy
| | - Christophe Lamaze
- Institut Curie - Centre de Recherche, PSL Research University, CNRS UMR 3666, INSERM U1143, Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, 75248 Paris Cedex 05, France
| | - Joe Swift
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | | | - Tobias Starborg
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Tobias Zech
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg 67200, France; Université de Strasbourg, Strasbourg 67000, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Jean-Marc Schwartz
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| |
Collapse
|
56
|
Papini D, Fant X, Ogawa H, Desban N, Samejima K, Feizbakhsh O, Askin B, Ly T, Earnshaw WC, Ruchaud S. Cell cycle-independent furrowing triggered by phosphomimetic mutations of the INCENP STD motif requires Plk1. J Cell Sci 2019; 132:jcs234401. [PMID: 31601613 PMCID: PMC7115952 DOI: 10.1242/jcs.234401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 11/20/2022] Open
Abstract
Timely and precise control of Aurora B kinase, the chromosomal passenger complex (CPC) catalytic subunit, is essential for accurate chromosome segregation and cytokinesis. Post-translational modifications of CPC subunits are directly involved in controlling Aurora B activity. Here, we identified a highly conserved acidic STD-rich motif of INCENP that is phosphorylated during mitosis in vivo and by Plk1 in vitro and is involved in controlling Aurora B activity. By using an INCENP conditional-knockout cell line, we show that impairing the phosphorylation status of this region disrupts chromosome congression and induces cytokinesis failure. In contrast, mimicking constitutive phosphorylation not only rescues cytokinesis but also induces ectopic furrows and contractile ring formation in a Plk1- and ROCK1-dependent manner independent of cell cycle and microtubule status. Our experiments identify the phospho-regulation of the INCENP STD motif as a novel mechanism that is key for chromosome alignment and cytokinesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Diana Papini
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Xavier Fant
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| | - Hiromi Ogawa
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Nathalie Desban
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Omid Feizbakhsh
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| | - Bilge Askin
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Tony Ly
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C. Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Sandrine Ruchaud
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| |
Collapse
|
57
|
Abstract
The active form of the small GTPase RhoA is necessary and sufficient for formation of a cytokinetic furrow in animal cells. Despite the conceptual simplicity of the process, the molecular mechanisms that control it are intricate and involve redundancy at multiple levels. Here, we discuss our current knowledge of the mechanisms underlying spatiotemporal regulation of RhoA during cytokinesis by upstream activators. The direct upstream activator, the RhoGEF Ect2, requires activation due to autoinhibition. Ect2 is primarily activated by the centralspindlin complex, which contains numerous domains that regulate its subcellular localization, oligomeric state, and Ect2 activation. We review the functions of these domains and how centralspindlin is regulated to ensure correctly timed, equatorial RhoA activation. Highlighting recent evidence, we propose that although centralspindlin does not always prominently accumulate on the plasma membrane, it is the site where it promotes RhoA activation during cytokinesis.
Collapse
|
58
|
The midbody interactome reveals unexpected roles for PP1 phosphatases in cytokinesis. Nat Commun 2019; 10:4513. [PMID: 31586073 PMCID: PMC6778137 DOI: 10.1038/s41467-019-12507-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022] Open
Abstract
The midbody is an organelle assembled at the intercellular bridge between the two daughter cells at the end of mitosis. It controls the final separation of the daughter cells and has been involved in cell fate, polarity, tissue organization, and cilium and lumen formation. Here, we report the characterization of the intricate midbody protein-protein interaction network (interactome), which identifies many previously unknown interactions and provides an extremely valuable resource for dissecting the multiple roles of the midbody. Initial analysis of this interactome revealed that PP1β-MYPT1 phosphatase regulates microtubule dynamics in late cytokinesis and de-phosphorylates the kinesin component MKLP1/KIF23 of the centralspindlin complex. This de-phosphorylation antagonizes Aurora B kinase to modify the functions and interactions of centralspindlin in late cytokinesis. Our findings expand the repertoire of PP1 functions during mitosis and indicate that spatiotemporal changes in the distribution of kinases and counteracting phosphatases finely tune the activity of cytokinesis proteins. The midbody is an organelle present at the bridge connecting two cells at the end of cell division. Here, the authors use mass spectrometry to define the midbody interactome and uncover a role for PP1 phosphatases in microtubule dynamics and regulation of cytokinesis.
Collapse
|
59
|
Asano S, Ikura Y, Nishimoto M, Yamawaki Y, Hamao K, Kamijo K, Hirata M, Kanematsu T. Phospholipase C-related catalytically inactive protein regulates cytokinesis by protecting phosphatidylinositol 4,5-bisphosphate from metabolism in the cleavage furrow. Sci Rep 2019; 9:12729. [PMID: 31484968 PMCID: PMC6726632 DOI: 10.1038/s41598-019-49156-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/19/2019] [Indexed: 12/02/2022] Open
Abstract
Cytokinesis is initiated by the formation and ingression of the cleavage furrow. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] accumulation followed by RhoA translocation to the cleavage furrow are prerequisites for cytokinesis progression. Here, we investigated whether phospholipase C (PLC)-related catalytically inactive protein (PRIP), a metabolic modulator of PI(4,5)P2, regulates PI(4,5)P2-mediated cytokinesis. We found that PRIP localised to the cleavage furrow during cytokinesis. Moreover, HeLa cells with silenced PRIP displayed abnormal cytokinesis. Importantly, PI(4,5)P2 accumulation at the cleavage furrow, as well as the localisation of RhoA and phospho-myosin II regulatory light chain to the cleavage furrow, were reduced in PRIP-silenced cells. The overexpression of oculocerebrorenal syndrome of Lowe-1 (OCRL1), a phosphatidylinositol-5-phosphatase, in cells decreased PI(4,5)P2 levels during early cytokinesis and resulted in cytokinesis abnormalities. However, these abnormal cytokinesis phenotypes were ameliorated by the co-expression of PRIP but not by co-expression of a PI(4,5)P2-unbound PRIP mutant. Collectively, our results indicate that PRIP is a component at the cleavage furrow that maintains PI(4,5)P2 metabolism and regulates RhoA-dependent progression of cytokinesis. Thus, we propose that PRIP regulates phosphoinositide metabolism correctively and mediates normal cytokinesis progression.
Collapse
Affiliation(s)
- Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yasuka Ikura
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Mitsuki Nishimoto
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yosuke Yamawaki
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kozue Hamao
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Keiju Kamijo
- Division of Anatomy and Cell Biology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1, Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Takashi Kanematsu
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan. .,Department of Cell Biology and Pharmacology, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
60
|
Leone M, Musa G, Engel FB. Cardiomyocyte binucleation is associated with aberrant mitotic microtubule distribution, mislocalization of RhoA and IQGAP3, as well as defective actomyosin ring anchorage and cleavage furrow ingression. Cardiovasc Res 2019. [PMID: 29522098 DOI: 10.1093/cvr/cvy056] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aims After birth mammalian cardiomyocytes initiate a last cell cycle which results in binucleation due to cytokinesis failure. Despite its importance for cardiac regenerative therapies, this process is poorly understood. Here, we aimed at a better understanding of the difference between cardiomyocyte proliferation and binucleation and providing a new tool to distinguish these two processes. Methods and results Monitoring of cell division by time-lapse imaging revealed that rat cardiomyocyte binucleation stems from a failure to properly ingress the cleavage furrow. Astral microtubule required for actomyosin ring anchorage and thus furrow ingression were not symmetrically distributed at the periphery of the equatorial region during anaphase in binucleating cardiomyocytes. Consequently, RhoA, the master regulator of actomyosin ring formation and constriction, non-muscle myosin IIB, a central component of the actomyosin ring, as well as IQGAP3 were abnormally localized during cytokinesis. In agreement with improper furrow ingression, binucleation in vitro and in vivo was associated with a failure of RhoA and IQGAP3 to localize to the stembody of the midbody. Conclusion Taken together, these results indicate that naturally occurring cytokinesis failure in primary cardiomyocytes is due to an aberrant mitotic microtubule apparatus resulting in inefficient anchorage of the actomyosin ring to the plasma cell membrane. Thus, cardiomyocyte binucleation and division can be discriminated by the analysis of RhoA as well as IQGAP3 localization.
Collapse
Affiliation(s)
- Marina Leone
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany.,Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany
| | - Gentian Musa
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany
| | - Felix Benedikt Engel
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany.,Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany.,Muscle Research Center Erlangen
| |
Collapse
|
61
|
Abstract
Division of amoebas, fungi, and animal cells into two daughter cells at the end of the cell cycle depends on a common set of ancient proteins, principally actin filaments and myosin-II motors. Anillin, formins, IQGAPs, and many other proteins regulate the assembly of the actin filaments into a contractile ring positioned between the daughter nuclei by different mechanisms in fungi and animal cells. Interactions of myosin-II with actin filaments produce force to assemble and then constrict the contractile ring to form a cleavage furrow. Contractile rings disassemble as they constrict. In some cases, knowledge about the numbers of participating proteins and their biochemical mechanisms has made it possible to formulate molecularly explicit mathematical models that reproduce the observed physical events during cytokinesis by computer simulations.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
62
|
Abstract
Division of amoebas, fungi, and animal cells into two daughter cells at the end of the cell cycle depends on a common set of ancient proteins, principally actin filaments and myosin-II motors. Anillin, formins, IQGAPs, and many other proteins regulate the assembly of the actin filaments into a contractile ring positioned between the daughter nuclei by different mechanisms in fungi and animal cells. Interactions of myosin-II with actin filaments produce force to assemble and then constrict the contractile ring to form a cleavage furrow. Contractile rings disassemble as they constrict. In some cases, knowledge about the numbers of participating proteins and their biochemical mechanisms has made it possible to formulate molecularly explicit mathematical models that reproduce the observed physical events during cytokinesis by computer simulations.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
63
|
Farina F, Ramkumar N, Brown L, Samandar Eweis D, Anstatt J, Waring T, Bithell J, Scita G, Thery M, Blanchoin L, Zech T, Baum B. Local actin nucleation tunes centrosomal microtubule nucleation during passage through mitosis. EMBO J 2019; 38:e99843. [PMID: 31015335 PMCID: PMC6545563 DOI: 10.15252/embj.201899843] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Cells going through mitosis undergo precisely timed changes in cell shape and organisation, which serve to ensure the fair partitioning of cellular components into the two daughter cells. These structural changes are driven by changes in actin filament and microtubule dynamics and organisation. While most evidence suggests that the two cytoskeletal systems are remodelled in parallel during mitosis, recent work in interphase cells has implicated the centrosome in both microtubule and actin nucleation, suggesting the potential for regulatory crosstalk between the two systems. Here, by using both in vitro and in vivo assays to study centrosomal actin nucleation as cells pass through mitosis, we show that mitotic exit is accompanied by a burst in cytoplasmic actin filament formation that depends on WASH and the Arp2/3 complex. This leads to the accumulation of actin around centrosomes as cells enter anaphase and to a corresponding reduction in the density of centrosomal microtubules. Taken together, these data suggest that the mitotic regulation of centrosomal WASH and the Arp2/3 complex controls local actin nucleation, which may function to tune the levels of centrosomal microtubules during passage through mitosis.
Collapse
Affiliation(s)
- Francesca Farina
- MRC-LMCB, UCL, London, UK
- IPLS, UCL, London, UK
- IFOM, the FIRC Institute of Molecular Oncology, University of Milan, Milan, Italy
- University of Grenoble, Grenoble, France
| | | | - Louise Brown
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | | | | | - Thomas Waring
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Jessica Bithell
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, University of Milan, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | - Tobias Zech
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Buzz Baum
- MRC-LMCB, UCL, London, UK
- IPLS, UCL, London, UK
| |
Collapse
|
64
|
Sizek H, Hamel A, Deritei D, Campbell S, Ravasz Regan E. Boolean model of growth signaling, cell cycle and apoptosis predicts the molecular mechanism of aberrant cell cycle progression driven by hyperactive PI3K. PLoS Comput Biol 2019; 15:e1006402. [PMID: 30875364 PMCID: PMC6436762 DOI: 10.1371/journal.pcbi.1006402] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 03/27/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
The PI3K/AKT signaling pathway plays a role in most cellular functions linked to cancer progression, including cell growth, proliferation, cell survival, tissue invasion and angiogenesis. It is generally recognized that hyperactive PI3K/AKT1 are oncogenic due to their boost to cell survival, cell cycle entry and growth-promoting metabolism. That said, the dynamics of PI3K and AKT1 during cell cycle progression are highly nonlinear. In addition to negative feedback that curtails their activity, protein expression of PI3K subunits has been shown to oscillate in dividing cells. The low-PI3K/low-AKT1 phase of these oscillations is required for cytokinesis, indicating that oncogenic PI3K may directly contribute to genome duplication. To explore this, we construct a Boolean model of growth factor signaling that can reproduce PI3K oscillations and link them to cell cycle progression and apoptosis. The resulting modular model reproduces hyperactive PI3K-driven cytokinesis failure and genome duplication and predicts the molecular drivers responsible for these failures by linking hyperactive PI3K to mis-regulation of Polo-like kinase 1 (Plk1) expression late in G2. To do this, our model captures the role of Plk1 in cell cycle progression and accurately reproduces multiple effects of its loss: G2 arrest, mitotic catastrophe, chromosome mis-segregation / aneuploidy due to premature anaphase, and cytokinesis failure leading to genome duplication, depending on the timing of Plk1 inhibition along the cell cycle. Finally, we offer testable predictions on the molecular drivers of PI3K oscillations, the timing of these oscillations with respect to division, and the role of altered Plk1 and FoxO activity in genome-level defects caused by hyperactive PI3K. Our model is an important starting point for the predictive modeling of cell fate decisions that include AKT1-driven senescence, as well as the non-intuitive effects of drugs that interfere with mitosis.
Collapse
Affiliation(s)
- Herbert Sizek
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Andrew Hamel
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Dávid Deritei
- Department of Physics, Pennsylvania State University, State College, PA, United States of America
- Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Sarah Campbell
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Erzsébet Ravasz Regan
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| |
Collapse
|
65
|
IPIP27 Coordinates PtdIns(4,5)P 2 Homeostasis for Successful Cytokinesis. Curr Biol 2019; 29:775-789.e7. [PMID: 30799246 PMCID: PMC6408333 DOI: 10.1016/j.cub.2019.01.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/03/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
During cytokinesis, an actomyosin contractile ring drives the separation of the two daughter cells. A key molecule in this process is the inositol lipid PtdIns(4,5)P2, which recruits numerous factors to the equatorial region for contractile ring assembly. Despite the importance of PtdIns(4,5)P2 in cytokinesis, the regulation of this lipid in cell division remains poorly understood. Here, we identify a role for IPIP27 in mediating cellular PtdIns(4,5)P2 homeostasis. IPIP27 scaffolds the inositol phosphatase oculocerebrorenal syndrome of Lowe (OCRL) by coupling it to endocytic BAR domain proteins. Loss of IPIP27 causes accumulation of PtdIns(4,5)P2 on aberrant endomembrane vacuoles, mislocalization of the cytokinetic machinery, and extensive cortical membrane blebbing. This phenotype is observed in Drosophila and human cells and can result in cytokinesis failure. We have therefore identified IPIP27 as a key modulator of cellular PtdIns(4,5)P2 homeostasis required for normal cytokinesis. The results indicate that scaffolding of inositol phosphatase activity is critical for maintaining PtdIns(4,5)P2 homeostasis and highlight a critical role for this process in cell division. IPIP27 scaffolds the inositol phosphatase OCRL via coupling to BAR domain proteins IPIP27 scaffolding of OCRL is critical for cellular PtdIns(4,5)P2 homeostasis IPIP27 is required for cortical actin and membrane stability during cytokinesis IPIP27 function is conserved from flies to humans
Collapse
|
66
|
O’Shaughnessy B, Thiyagarajan S. Mechanisms of contractile ring tension production and constriction. Biophys Rev 2018; 10:1667-1681. [PMID: 30456601 PMCID: PMC6297097 DOI: 10.1007/s12551-018-0476-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 12/24/2022] Open
Abstract
The contractile ring is a remarkable tension-generating cellular machine that constricts and divides cells into two during cytokinesis, the final stage of the cell cycle. Since the ring's discovery, the parallels with muscle have been emphasized. Both are contractile actomyosin machineries, and long ago, a muscle-like sliding filament mechanism was proposed for the ring. This review focuses on the mechanisms that generate ring tension and constrict contractile rings. The emphasis is on fission yeast, whose contractile ring is sufficiently well characterized that realistic mathematical models are feasible, and possible lessons from fission yeast that may apply to animal cells are discussed. Recent discoveries relevant to the organization in fission yeast rings suggest a stochastic steady-state version of the classic sliding filament mechanism for tension. The importance of different modes of anchoring for tension production and for organizational stability of constricting rings is discussed. Possible mechanisms are discussed that set the constriction rate and enable the contractile ring to meet the technical challenge of maintaining structural integrity and tension-generating capacity while continuously disassembling throughout constriction.
Collapse
Affiliation(s)
- Ben O’Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027 USA
| | | |
Collapse
|
67
|
Dekraker C, Boucher E, Mandato CA. Regulation and Assembly of Actomyosin Contractile Rings in Cytokinesis and Cell Repair. Anat Rec (Hoboken) 2018; 301:2051-2066. [PMID: 30312008 DOI: 10.1002/ar.23962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023]
Abstract
Cytokinesis and single-cell wound repair both involve contractile assemblies of filamentous actin (F-actin) and myosin II organized into characteristic ring-like arrays. The assembly of these actomyosin contractile rings (CRs) is specified spatially and temporally by small Rho GTPases, which trigger local actin polymerization and myosin II contractility via a variety of downstream effectors. We now have a much clearer view of the Rho GTPase signaling cascade that leads to the formation of CRs, but some factors involved in CR positioning, assembly, and function remain poorly understood. Recent studies show that this regulation is multifactorial and goes beyond the long-established Ca2+ -dependent processes. There is substantial evidence that the Ca2+ -independent changes in cell shape, tension, and plasma membrane composition that characterize cytokinesis and single-cell wound repair also regulate CR formation. Elucidating the regulation and mechanistic properties of CRs is important to our understanding of basic cell biology and holds potential for therapeutic applications in human disease. In this review, we present a primer on the factors influencing and regulating CR positioning, assembly, and contraction as they occur in a variety of cytokinetic and single-cell wound repair models. Anat Rec, 301:2051-2066, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Corina Dekraker
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
68
|
Abstract
The cytoskeleton is crucially important for the assembly of cell-cell junctions and the homeostatic regulation of their functions. Junctional proteins act, in turn, as anchors for cytoskeletal filaments, and as regulators of cytoskeletal dynamics and signalling proteins. The cross-talk between junctions and the cytoskeleton is critical for the morphogenesis and physiology of epithelial and other tissues, but is not completely understood. Microtubules are implicated in the delivery of junctional proteins to cell-cell contact sites, in the differentiation and spatial organization of the cytoplasm, and in the stabilization of the barrier and adhesive functions of junctions. Here we focus on the relationships between microtubules and junctions of vertebrate epithelial cells. We highlight recent discoveries on the molecular underpinnings of microtubule-junction interactions, and report new data about the interaction of cingulin and paracingulin with microtubules. We also propose a possible new role of junctions as “molecular sinks” for microtubule-associated signalling proteins.
Collapse
Affiliation(s)
- Ekaterina Vasileva
- a Department of Cell Biology, Faculty of Sciences and Institute for Genetics and Genomics in Geneva (iGE3) , University of Geneva , Geneva , Switzerland
| | - Sandra Citi
- a Department of Cell Biology, Faculty of Sciences and Institute for Genetics and Genomics in Geneva (iGE3) , University of Geneva , Geneva , Switzerland
| |
Collapse
|
69
|
Braga V. Signaling by Small GTPases at Cell-Cell Junctions: Protein Interactions Building Control and Networks. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028746. [PMID: 28893858 DOI: 10.1101/cshperspect.a028746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of interesting reports highlight the intricate network of signaling proteins that coordinate formation and maintenance of cell-cell contacts. We have much yet to learn about how the in vitro binding data is translated into protein association inside the cells and whether such interaction modulates the signaling properties of the protein. What emerges from recent studies is the importance to carefully consider small GTPase activation in the context of where its activation occurs, which upstream regulators are involved in the activation/inactivation cycle and the GTPase interacting partners that determine the intracellular niche and extent of signaling. Data discussed here unravel unparalleled cooperation and coordination of functions among GTPases and their regulators in supporting strong adhesion between cells.
Collapse
Affiliation(s)
- Vania Braga
- Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
70
|
Jacquet K, Banerjee SL, Chartier FJM, Elowe S, Bisson N. Proteomic Analysis of NCK1/2 Adaptors Uncovers Paralog-specific Interactions That Reveal a New Role for NCK2 in Cell Abscission During Cytokinesis. Mol Cell Proteomics 2018; 17:1979-1990. [PMID: 30002203 DOI: 10.1074/mcp.ra118.000689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Signals from cell surface receptors are often relayed via adaptor proteins. NCK1 and NCK2 are Src-Homology (SH) 2 and 3 domain adaptors that regulate processes requiring a remodeling of the actin cytoskeleton. Evidence from gene inactivation in mouse suggests that NCK1 and NCK2 are functionally redundant, although recent reports support the idea of unique functions for NCK1 and NCK2. We sought to examine this question further by delineating NCK1- and NCK2-specific signaling networks. We used both affinity purification-mass spectrometry and BioID proximity labeling to identify NCK1/2 signaling networks comprised of 98 proteins. Strikingly, we found 30 proteins restricted to NCK1 and 28 proteins specifically associated with NCK2, suggesting differences in their function. We report that Nck2 -/-, but not Nck1 -/- mouse embryo fibroblasts (MEFs) are multinucleated and display extended protrusions reminiscent of intercellular bridges, which correlate with an extended time spent in cytokinesis as well as a failure of a significant proportion of cells to complete abscission. Our data also show that the midbody of NCK2-deficient cells is not only increased in length, but also altered in composition, as judged by the mislocalization of AURKB, PLK1 and ECT2. Finally, we show that NCK2 function during cytokinesis requires its SH2 domain. Taken together, our data delineate the first high-confidence interactome for NCK1/2 adaptors and highlight several proteins specifically associated with either protein. Thus, contrary to what is generally accepted, we demonstrate that NCK1 and NCK2 are not completely redundant, and shed light on a previously uncharacterized function for the NCK2 adaptor protein in cell division.
Collapse
Affiliation(s)
- Kévin Jacquet
- From the ‡Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec G1R 2J6, QC, Canada.,§Centre de recherche sur le cancer de l'Université Laval, Québec G1R 2J6, QC, Canada.,¶PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec G1V 0A6, QC, Canada
| | - Sara L Banerjee
- From the ‡Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec G1R 2J6, QC, Canada.,§Centre de recherche sur le cancer de l'Université Laval, Québec G1R 2J6, QC, Canada.,¶PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec G1V 0A6, QC, Canada
| | - François J M Chartier
- From the ‡Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec G1R 2J6, QC, Canada.,§Centre de recherche sur le cancer de l'Université Laval, Québec G1R 2J6, QC, Canada.,¶PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec G1V 0A6, QC, Canada
| | - Sabine Elowe
- §Centre de recherche sur le cancer de l'Université Laval, Québec G1R 2J6, QC, Canada.,¶PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec G1V 0A6, QC, Canada.,‖Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Reproduction, santé de la mère et de l'enfant, Québec G1V 4G2, QC, Canada.,**Department of Pediatrics, Université Laval, Québec, QC, Canada
| | - Nicolas Bisson
- From the ‡Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec G1R 2J6, QC, Canada; .,§Centre de recherche sur le cancer de l'Université Laval, Québec G1R 2J6, QC, Canada.,¶PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec G1V 0A6, QC, Canada.,‡‡Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, QC, Canada
| |
Collapse
|
71
|
Dix CL, Matthews HK, Uroz M, McLaren S, Wolf L, Heatley N, Win Z, Almada P, Henriques R, Boutros M, Trepat X, Baum B. The Role of Mitotic Cell-Substrate Adhesion Re-modeling in Animal Cell Division. Dev Cell 2018; 45:132-145.e3. [PMID: 29634933 DOI: 10.1016/j.devcel.2018.03.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 01/17/2018] [Accepted: 03/13/2018] [Indexed: 12/24/2022]
Abstract
Animal cells undergo a dramatic series of shape changes as they divide, which depend on re-modeling of cell-substrate adhesions. Here, we show that while focal adhesion complexes are disassembled during mitotic rounding, integrins remain in place. These integrin-rich contacts connect mitotic cells to the underlying substrate throughout mitosis, guide polarized cell migration following mitotic exit, and are functionally important, since adherent cells undergo division failure when removed from the substrate. Further, the ability of cells to re-spread along pre-existing adhesive contacts is essential for division in cells compromised in their ability to construct a RhoGEF-dependent (Ect2) actomyosin ring. As a result, following Ect2 depletion, cells fail to divide on small adhesive islands but successfully divide on larger patterns, as the connection between daughter cells narrows and severs as they migrate away from one another. In this way, regulated re-modeling of cell-substrate adhesions during mitotic rounding aids division in animal cells.
Collapse
Affiliation(s)
- Christina L Dix
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Helen K Matthews
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Marina Uroz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Susannah McLaren
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Lucie Wolf
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), and Department for Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Nicholas Heatley
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Zaw Win
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Pedro Almada
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Ricardo Henriques
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), and Department for Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Unitat de Biofisica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona 08028, Spain
| | - Buzz Baum
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.
| |
Collapse
|
72
|
Mangal S, Sacher J, Kim T, Osório DS, Motegi F, Carvalho AX, Oegema K, Zanin E. TPXL-1 activates Aurora A to clear contractile ring components from the polar cortex during cytokinesis. J Cell Biol 2018; 217:837-848. [PMID: 29311228 PMCID: PMC5839786 DOI: 10.1083/jcb.201706021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/13/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023] Open
Abstract
During cytokinesis, a signal from the central spindle that forms between the separating anaphase chromosomes promotes the accumulation of contractile ring components at the cell equator, while a signal from the centrosomal microtubule asters inhibits accumulation of contractile ring components at the cell poles. However, the molecular identity of the inhibitory signal has remained unknown. To identify molecular components of the aster-based inhibitory signal, we developed a means to monitor the removal of contractile ring proteins from the polar cortex after anaphase onset. Using this assay, we show that polar clearing is an active process that requires activation of Aurora A kinase by TPXL-1. TPXL-1 concentrates on astral microtubules coincident with polar clearing in anaphase, and its ability to recruit Aurora A and activate its kinase activity are essential for clearing. In summary, our data identify Aurora A kinase as an aster-based inhibitory signal that restricts contractile ring components to the cell equator during cytokinesis.
Collapse
Affiliation(s)
- Sriyash Mangal
- Center for Integrated Protein Science, Department Biology II, Ludwig-Maximilians University Munich, Planegg-Martinsried, Germany
| | - Jennifer Sacher
- Center for Integrated Protein Science, Department Biology II, Ludwig-Maximilians University Munich, Planegg-Martinsried, Germany
| | - Taekyung Kim
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA
| | - Daniel Sampaio Osório
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Fumio Motegi
- Research Link, National University of Singapore, Singapore
| | - Ana Xavier Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA
| | - Esther Zanin
- Center for Integrated Protein Science, Department Biology II, Ludwig-Maximilians University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
73
|
Abstract
Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.
Collapse
Affiliation(s)
- Elisabeth M Storck
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom;
| | - Cagakan Özbalci
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom;
| | - Ulrike S Eggert
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom; .,Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| |
Collapse
|
74
|
Abstract
Cytokinesis in metazoan cells is mediated by an actomyosin-based contractile ring that assembles in response to activation of the small GTPase RhoA. The guanine nucleotide exchange factor that activates RhoA during cytokinesis, ECT-2, is highly regulated. In most metazoan cells, with the notable exception of the early
Caenorhabditis elegans embryo, RhoA activation and furrow ingression require the centralspindlin complex. This exception is due to the existence of a parallel pathway for RhoA activation in
C. elegans. Centralspindlin contains CYK-4 which contains a predicted Rho family GTPase-activating protein (GAP) domain. The function of this domain has been the subject of considerable debate. Some publications suggest that the GAP domain promotes RhoA activation (for example, Zhang and Glotzer, 2015; Loria, Longhini and Glotzer, 2012), whereas others suggest that it functions to inactivate the GTPase Rac1 (for example, Zhuravlev
et al., 2017). Here, we review the mechanisms underlying RhoA activation during cytokinesis, primarily focusing on data in
C. elegans. We highlight the importance of considering the parallel pathway for RhoA activation and detailed analyses of
cyk-4 mutant phenotypes when evaluating the role of the GAP domain of CYK-4.
Collapse
Affiliation(s)
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
75
|
Abstract
SUMMARYCell division-cytokinesis-involves large-scale rearrangements of the entire cell. Primarily driven by cytoskeletal proteins, cytokinesis also depends on topological rearrangements of the plasma membrane, which are coordinated with nuclear division in both space and time. Despite the fundamental nature of the process, different types of eukaryotic cells show variations in both the structural mechanisms of cytokinesis and the regulatory controls. In animal cells and fungi, a contractile actomyosin-based structure plays a central, albeit flexible, role. Here, the underlying molecular mechanisms are summarized and integrated and common themes are highlighted.
Collapse
Affiliation(s)
- Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
76
|
Montembault E, Claverie MC, Bouit L, Landmann C, Jenkins J, Tsankova A, Cabernard C, Royou A. Myosin efflux promotes cell elongation to coordinate chromosome segregation with cell cleavage. Nat Commun 2017; 8:326. [PMID: 28835609 PMCID: PMC5569077 DOI: 10.1038/s41467-017-00337-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/21/2017] [Indexed: 12/02/2022] Open
Abstract
Chromatid segregation must be coordinated with cytokinesis to preserve genomic stability. Here we report that cells clear trailing chromatids from the cleavage site by undergoing two phases of cell elongation. The first phase relies on the assembly of a wide contractile ring. The second phase requires the activity of a pool of myosin that flows from the ring and enriches the nascent daughter cell cortices. This myosin efflux is a novel feature of cytokinesis and its duration is coupled to nuclear envelope reassembly and the nuclear sequestration of the Rho-GEF Pebble. Trailing chromatids induce a delay in nuclear envelope reassembly concomitant with prolonged cortical myosin activity, thus providing forces for the second elongation. We propose that the modulation of cortical myosin dynamics is part of the cellular response triggered by a “chromatid separation checkpoint” that delays nuclear envelope reassembly and, consequently, Pebble nuclear sequestration when trailing chromatids are present at the midzone. Chromatid segregation must be coordinated with cytokinesis to preserve genomic stability. Here the authors show that cells clear trailing chromatids from the cleavage site in a two-step cell elongation and demonstrate the role of myosin efflux in the second phase.
Collapse
Affiliation(s)
- Emilie Montembault
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France.
| | - Marie-Charlotte Claverie
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - Lou Bouit
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - Cedric Landmann
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - James Jenkins
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - Anna Tsankova
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Clemens Cabernard
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Anne Royou
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France.
| |
Collapse
|
77
|
Ogura Y, Sasakura Y. Emerging mechanisms regulating mitotic synchrony during animal embryogenesis. Dev Growth Differ 2017; 59:565-579. [DOI: 10.1111/dgd.12391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Yosuke Ogura
- Laboratory for Morphogenetic Signaling; RIKEN Center for Developmental Biology; Kobe Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center; University of Tsukuba; Shizuoka Japan
| |
Collapse
|
78
|
Growing functions of the ESCRT machinery in cell biology and viral replication. Biochem Soc Trans 2017; 45:613-634. [PMID: 28620025 DOI: 10.1042/bst20160479] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/31/2023]
Abstract
The vast expansion in recent years of the cellular processes promoted by the endosomal sorting complex required for transport (ESCRT) machinery has reinforced its identity as a modular system that uses multiple adaptors to recruit the core membrane remodelling activity at different intracellular sites and facilitate membrane scission. Functional connections to processes such as the aurora B-dependent abscission checkpoint also highlight the importance of the spatiotemporal regulation of the ESCRT machinery. Here, we summarise the role of ESCRTs in viral budding, and what we have learned about the ESCRT pathway from studying this process. These advances are discussed in the context of areas of cell biology that have been transformed by research in the ESCRT field, including cytokinetic abscission, nuclear envelope resealing and plasma membrane repair.
Collapse
|
79
|
Takaki T, Montagner M, Serres MP, Le Berre M, Russell M, Collinson L, Szuhai K, Howell M, Boulton SJ, Sahai E, Petronczki M. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability. Nat Commun 2017; 8:16013. [PMID: 28737169 PMCID: PMC5527285 DOI: 10.1038/ncomms16013] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 05/24/2017] [Indexed: 12/16/2022] Open
Abstract
Altered nuclear shape is a defining feature of cancer cells. The mechanisms underlying nuclear dysmorphia in cancer remain poorly understood. Here we identify PPP1R12A and PPP1CB, two subunits of the myosin phosphatase complex that antagonizes actomyosin contractility, as proteins safeguarding nuclear integrity. Loss of PPP1R12A or PPP1CB causes nuclear fragmentation, nuclear envelope rupture, nuclear compartment breakdown and genome instability. Pharmacological or genetic inhibition of actomyosin contractility restores nuclear architecture and genome integrity in cells lacking PPP1R12A or PPP1CB. We detect actin filaments at nuclear envelope rupture sites and define the Rho-ROCK pathway as the driver of nuclear damage. Lamin A protects nuclei from the impact of actomyosin activity. Blocking contractility increases nuclear circularity in cultured cancer cells and suppresses deformations of xenograft nuclei in vivo. We conclude that actomyosin contractility is a major determinant of nuclear shape and that unrestrained contractility causes nuclear dysmorphia, nuclear envelope rupture and genome instability.
Collapse
Affiliation(s)
- Tohru Takaki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marco Montagner
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Murielle P. Serres
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Maël Le Berre
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Matt Russell
- Electron Microscopy Group, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Lucy Collinson
- Electron Microscopy Group, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karoly Szuhai
- Department of Molecular Cell Biology, LUMC, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Michael Howell
- High Throughput Screening Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Simon J. Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
- Boehringer Ingelheim RCV GmbH & Co KG, Dr Boehringer Gasse 5-11, A-1121 Vienna, Austria
| |
Collapse
|
80
|
Breznau EB, Murt M, Blasius TL, Verhey KJ, Miller AL. The MgcRacGAP SxIP motif tethers Centralspindlin to microtubule plus ends in Xenopus laevis. J Cell Sci 2017; 130:1809-1821. [PMID: 28389580 DOI: 10.1242/jcs.195891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 04/04/2017] [Indexed: 12/27/2022] Open
Abstract
Centralspindlin, a complex of the kinesin-6-family member MKLP1 and MgcRacGAP (also known as Kif23 and Racgap1, respectively), is required for cytokinesis and cell-cell junctions. During anaphase, Centralspindlin accumulates at overlapping central spindle microtubules and directs contractile ring formation by recruiting the GEF Ect2 to the cell equator to activate RhoA. We found that MgcRacGAP localized to the plus ends of equatorial astral microtubules during cytokinesis in Xenopus laevis embryos. How MgcRacGAP is stabilized at microtubule plus ends is unknown. We identified an SxIP motif in X. laevis MgcRacGAP that is conserved with other proteins that bind to EB1 (also known as Mapre1), a microtubule plus-end tracking protein. Mutation of the SxIP motif in MgcRacGAP resulted in loss of MgcRacGAP tracking with EB3 (also known as Mapre3) on growing microtubule plus ends, abnormal astral microtubule organization, redistribution of MgcRacGAP from the contractile ring to the polar cell cortex, and mislocalization of RhoA and its downstream targets, which together contributed to severe cytokinesis defects. Furthermore, mutation of the MgcRacGAP SxIP motif perturbed adherens junctions. We propose that the MgcRacGAP SxIP motif is functionally important both for its role in regulating adherens junction structure during interphase and for regulating Rho GTPase activity during cytokinesis.
Collapse
Affiliation(s)
- Elaina B Breznau
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Megan Murt
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - T Lynne Blasius
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ann L Miller
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA .,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
81
|
Pascual-Vargas P, Cooper S, Sero J, Bousgouni V, Arias-Garcia M, Bakal C. RNAi screens for Rho GTPase regulators of cell shape and YAP/TAZ localisation in triple negative breast cancer. Sci Data 2017; 4:170018. [PMID: 28248929 PMCID: PMC5332010 DOI: 10.1038/sdata.2017.18] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
In order to metastasise, triple negative breast cancer (TNBC) must make dynamic changes in cell shape. The shape of all eukaryotic cells is regulated by Rho Guanine Nucleotide Exchange Factors (RhoGEFs), which activate Rho-family GTPases in response to mechanical and informational cues. In contrast, Rho GTPase-activating proteins (RhoGAPs) inhibit Rho GTPases. However, which RhoGEFs and RhoGAPS couple TNBC cell shape to changes in their environment is very poorly understood. Moreover, whether the activity of particular RhoGEFs and RhoGAPs become dysregulated as cells evolve the ability to metastasise is not clear. Towards the ultimate goal of identifying RhoGEFs and RhoGAPs that are essential for TNBC metastasis, we performed an RNAi screen to isolate RhoGEFs and RhoGAPs that contribute to the morphogenesis of the highly metastatic TNBC cell line LM2, and its less-metastatic parental cell line MDA-MB-231. For ~6 million cells from each cell line, we measured 127 different features following the depletion of 142 genes. Using a linear classifier scheme we also describe the morphological heterogeneity of each gene-depleted population.
Collapse
Affiliation(s)
- Patricia Pascual-Vargas
- Dynamical Cell Systems Team, Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Samuel Cooper
- Dynamical Cell Systems Team, Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Department of Computational Systems Medicine, Imperial College London, South Kensington Campus, London SW7, UK
| | - Julia Sero
- Dynamical Cell Systems Team, Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Vicky Bousgouni
- Dynamical Cell Systems Team, Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Mar Arias-Garcia
- Dynamical Cell Systems Team, Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Chris Bakal
- Dynamical Cell Systems Team, Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
82
|
Elevated levels of epithelial cell transforming sequence 2 predicts poor prognosis for prostate cancer. Med Oncol 2016; 34:13. [PMID: 28012134 DOI: 10.1007/s12032-016-0872-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022]
Abstract
Epithelial cell transforming sequence 2 (Ect2) was originally reported as an oncogene that is involved in several types of human cancers. However, little is known about its expression and function in prostate cancer. Immunohistochemical staining for Ect2 was performed on a human tissue microarray. The staining intensity was analyzed in association with clinical pathological parameters such as Gleason score, pathological grade, clinical stage, tumor invasion, lymph node and distant metastasis. Furthermore, we repeated such analysis and investigated the prognostic value of Ect2 using the TCGA (The Cancer Genome Atlas) Dataset. Our immunohistochemical results showed that the expression levels of Ect2 protein were enhanced in human prostate cancer tissues. There existed positive correlations between the expression levels of Ect2 and several clinicopathological parameters, including advanced clinical stage, enhanced tumor invasion and lymph node metastasis. Similarly, we found that the expression levels of Ect2 were positively related to Gleason score, tumor invasion, lymph node metastasis and high distant metastasis in the TCGA Dataset. Kaplan-Meier analysis revealed that lower levels of Ect2 mRNA predicted higher overall survivals and biochemical recurrence (BCR)-free survivals in all patients or non-metastatic patients. Multivariate analysis by Cox regression showed that the expression of Ect2 could be an independent prognostic marker of poor BCR-free survivals. Therefore, levels of Ect2 may serve as a novel marker for the diagnosis or prognosis of prostate cancer.
Collapse
|
83
|
Sun HS, Sin ATW, Poirier MB, Harrison RE. Chlamydia trachomatis Inclusion Disrupts Host Cell Cytokinesis to Enhance Its Growth in Multinuclear Cells. J Cell Biochem 2016; 117:132-43. [PMID: 26084267 DOI: 10.1002/jcb.25258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/12/2015] [Indexed: 12/29/2022]
Abstract
Chlamydia trachomatis, the leading cause of bacterial sexually transmitted infections, disrupts cytokinesis and causes significant multinucleation in host cells. Here, we demonstrate that multinuclear cells that result from unsuccessful cell division contain significantly higher Golgi content, an important source of lipids for chlamydiae. Using immunofluorescence and fluorescent live cell imaging, we show that C. trachomatis in multinuclear cells indeed intercept Golgi-derived lipid faster than in mononuclear cells. Moreover, multinuclear cells enhance C. trachomatis inclusion growth and infectious particle formation. Together, these results indicate that C. trachomatis robustly position inclusions to the cell equator to disrupt host cell division in order to acquire host Golgi-derived lipids more quickly in multinucleated progeny cells.
Collapse
Affiliation(s)
- He Song Sun
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Alex T-W Sin
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Mathieu B Poirier
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Rene E Harrison
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
84
|
Kotýnková K, Su KC, West SC, Petronczki M. Plasma Membrane Association but Not Midzone Recruitment of RhoGEF ECT2 Is Essential for Cytokinesis. Cell Rep 2016; 17:2672-2686. [PMID: 27926870 PMCID: PMC5177604 DOI: 10.1016/j.celrep.2016.11.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/29/2016] [Accepted: 11/07/2016] [Indexed: 11/27/2022] Open
Abstract
Cytokinesis, the final step of cell division, begins with the formation of a cleavage furrow. How the mitotic spindle specifies the furrow at the equator in animal cells remains unknown. Current models propose that the concentration of the RhoGEF ECT2 at the spindle midzone and the equatorial plasma membrane directs furrow formation. Using chemical genetic and optogenetic tools, we demonstrate that the association of ECT2 with the plasma membrane during anaphase is required and sufficient for cytokinesis. Local membrane targeting of ECT2 leads to unilateral furrowing, highlighting the importance of local ECT2 activity. ECT2 mutations that prevent centralspindlin binding compromise concentration of ECT2 at the midzone and equatorial membrane but sustain cytokinesis. While the association of ECT2 with the plasma membrane is essential for cytokinesis, our data suggest that ECT2 recruitment to the spindle midzone is insufficient to account for equatorial furrowing and may act redundantly with yet-uncharacterized signals.
Collapse
Affiliation(s)
- Kristýna Kotýnková
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, UK; DNA Recombination and Repair Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kuan-Chung Su
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, UK; Whitehead Institute and Department of Biology, MIT, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, UK; Boehringer Ingelheim RCV, Dr.-Boehringer-Gasse 5-11, 1121 Vienna, Austria.
| |
Collapse
|
85
|
Warga RM, Wicklund A, Webster SE, Kane DA. Progressive loss of RacGAP1/ ogre activity has sequential effects on cytokinesis and zebrafish development. Dev Biol 2016; 418:307-22. [PMID: 27339293 DOI: 10.1016/j.ydbio.2016.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/27/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022]
|
86
|
Smith MB, Chaigne A, Paluch EK. An active contour ImageJ plugin to monitor daughter cell size in 3D during cytokinesis. Methods Cell Biol 2016; 137:323-340. [PMID: 28065314 DOI: 10.1016/bs.mcb.2016.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Controlling relative daughter cell size is key during cytokinesis. Uncontrolled size asymmetries can lead to aneuploidy and division failure. At the same time, precisely regulated size asymmetries are of crucial importance in many divisions during embryonic development. Therefore, being able to monitor daughter cell size is important in cytokinesis studies. However, freely available tools allowing to effectively measure the size of daughter cells in three dimensions during cytokinesis are missing. Here, we describe an open-access plugin for ImageJ or Fiji based on an active contour surface representation of the cells. Our method provides a user-friendly and accurate way to monitor the size of the two daughter cells throughout cytokinesis.
Collapse
Affiliation(s)
- M B Smith
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - A Chaigne
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - E K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
87
|
Abstract
Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell-substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance.
Collapse
|
88
|
Mishima M. Centralspindlin in Rappaport’s cleavage signaling. Semin Cell Dev Biol 2016; 53:45-56. [DOI: 10.1016/j.semcdb.2016.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/02/2016] [Indexed: 02/07/2023]
|
89
|
Goryachev AB, Leda M, Miller AL, von Dassow G, Bement WM. How to make a static cytokinetic furrow out of traveling excitable waves. Small GTPases 2016; 7:65-70. [PMID: 27070950 PMCID: PMC4905281 DOI: 10.1080/21541248.2016.1168505] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Emergence of the cytokinetic Rho zone that orchestrates formation and ingression of the cleavage furrow had been explained previously via microtubule-dependent cortical concentration of Ect2, a guanine nucleotide exchange factor for Rho. The results of a recent publication now demonstrate that, en route from resting cortex to fully established furrow, there lies a regime of cortical excitability in which Rho activity and F-actin play the roles of the prototypical activator and inhibitor, respectively. This cortical excitability is manifest as dramatic traveling waves on the cortex of oocytes and embryos of frogs and starfish. These waves are initiated by autocatalytic activation of Rho at the wave front and extinguished by F-actin-dependent inhibition at their back. It is still unclear how propagating excitable Rho-actin waves give rise to the stable co-existence of Rho activity and F-actin density in the static cleavage furrow during cytokinesis. It is possible that some central spindle-associated signaling molecule simply turns off the inhibition of Rho activity by F-actin. However, mathematical modeling suggests a distinct scenario in which local “re-wiring” of the Rho-actin coupling in the furrow is no longer necessary. Instead, the model predicts that the continuously rising level of Ect2 produces in the furrow a qualitatively new stable steady state that replaces excitability and brings about the stable co-existence of high Rho activity and dense F-actin despite the continuing inhibition of Rho by F-actin.
Collapse
Affiliation(s)
- Andrew B Goryachev
- a Centre for Systems and Synthetic Biology, Cell Biology Institute, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | - Marcin Leda
- a Centre for Systems and Synthetic Biology, Cell Biology Institute, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | - Ann L Miller
- b Department of Molecular , Cellular and Developmental Biology, University of Michigan , Ann-Arbor , MI , USA
| | - George von Dassow
- c Oregon Institute of Marine Biology, University of Oregon , Charleston , OR , USA
| | - William M Bement
- d Laboratory of Cell and Molecular Biology, Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
90
|
Uehara R, Kamasaki T, Hiruma S, Poser I, Yoda K, Yajima J, Gerlich DW, Goshima G. Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission. Mol Biol Cell 2016; 27:812-27. [PMID: 26764096 PMCID: PMC4803307 DOI: 10.1091/mbc.e15-02-0101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 11/11/2022] Open
Abstract
During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission. Augmin depletion reduced the accumulation of anillin, a contractile ring regulator at the cell equator, yet centrosomal MTs were sufficient to mediate RhoA activation at the furrow. This defect in contractile ring organization, combined with incomplete spindle pole separation during anaphase, led to impaired furrow ingression. During the late stages of cytokinesis, astral MTs formed bundles in the intercellular bridge, but these failed to assemble a focused midbody structure and did not establish tight linkage to the plasma membrane, resulting in furrow regression. Thus augmin-dependent acentrosomal MTs and centrosomal MTs contribute to nonredundant targeting mechanisms of different cytokinesis factors, which are required for the formation of a functional contractile ring and midbody.
Collapse
Affiliation(s)
- Ryota Uehara
- Creative Research Institution, Hokkaido University, Sapporo 001-0021, Japan Department of Life Sciences, School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tomoko Kamasaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Shota Hiruma
- Creative Research Institution, Hokkaido University, Sapporo 001-0021, Japan
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Kinya Yoda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Junichiro Yajima
- Department of Life Sciences, School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter Campus, 1030 Vienna, Austria
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
91
|
F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling. Nat Commun 2016; 7:10493. [PMID: 26814335 PMCID: PMC4737874 DOI: 10.1038/ncomms10493] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 12/14/2015] [Indexed: 12/17/2022] Open
Abstract
During immune surveillance and inflammation, leukocytes exit the vasculature through transient openings in the endothelium without causing plasma leakage. However, the exact mechanisms behind this intriguing phenomenon are still unknown. Here we report that maintenance of endothelial barrier integrity during leukocyte diapedesis requires local endothelial RhoA cycling. Endothelial RhoA depletion in vitro or Rho inhibition in vivo provokes neutrophil-induced vascular leakage that manifests during the physical movement of neutrophils through the endothelial layer. Local RhoA activation initiates the formation of contractile F-actin structures that surround emigrating neutrophils. These structures that surround neutrophil-induced endothelial pores prevent plasma leakage through actomyosin-based pore confinement. Mechanistically, we found that the initiation of RhoA activity involves ICAM-1 and the Rho GEFs Ect2 and LARG. In addition, regulation of actomyosin-based endothelial pore confinement involves ROCK2b, but not ROCK1. Thus, endothelial cells assemble RhoA-controlled contractile F-actin structures around endothelial pores that prevent vascular leakage during leukocyte extravasation. Endothelial cells can support leukocyte extravasation without causing vascular leakage, but the exact mechanism underlying this process has not been fully elucidated. Here the authors show that it is regulated through actomyosin-based endothelial pore confinement, which requires local endothelial RhoA activation.
Collapse
|
92
|
Activator-inhibitor coupling between Rho signalling and actin assembly makes the cell cortex an excitable medium. Nat Cell Biol 2015; 17:1471-83. [PMID: 26479320 PMCID: PMC4849138 DOI: 10.1038/ncb3251] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/08/2015] [Indexed: 02/02/2023]
Abstract
Animal cell cytokinesis results from patterned activation of the small GTPase Rho, which directs assembly of actomyosin in the equatorial cortex. Cytokinesis is restricted to a portion of the cell cycle following anaphase onset in which the cortex is responsive to signals from the spindle. We show that shortly after anaphase onset oocytes and embryonic cells of frogs and echinoderms exhibit cortical waves of Rho activity and F-actin polymerization. The waves are modulated by cyclin-dependent kinase 1 (Cdk1) activity and require the Rho GEF (guanine nucleotide exchange factor), Ect2. Surprisingly, during wave propagation, while Rho activity elicits F-actin assembly, F-actin subsequently inactivates Rho. Experimental and modeling results show that waves represent excitable dynamics of a reaction diffusion system with Rho as the activator and F-actin the inhibitor. We propose that cortical excitability explains fundamental features of cytokinesis including its cell cycle regulation.
Collapse
|
93
|
Helms MC, Grabocka E, Martz MK, Fischer CC, Suzuki N, Wedegaertner PB. Mitotic-dependent phosphorylation of leukemia-associated RhoGEF (LARG) by Cdk1. Cell Signal 2015; 28:43-52. [PMID: 26483157 DOI: 10.1016/j.cellsig.2015.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 01/14/2023]
Abstract
Rho GTPases are integral to the regulation of actin cytoskeleton-dependent processes, including mitosis. Rho and leukemia-associated Rho guanine-nucleotide exchange factor (LARG), also known as ARHGEF12, are involved in mitosis as well as diseases such as cancer and heart disease. Since LARG has a role in mitosis and diverse signaling functions beyond mitosis, it is important to understand the regulation of the protein through modifications such as phosphorylation. Here we report that LARG undergoes a mitotic-dependent and cyclin-dependent kinase 1 (Cdk1) inhibitor-sensitive phosphorylation. Additionally, LARG is phosphorylated at the onset of mitosis and dephosphorylated as cells exit mitosis, concomitant with Cdk1 activity. Furthermore, using an in vitro kinase assay, we show that LARG can be directly phosphorylated by Cdk1. Through expression of phosphonull mutants that contain non-phosphorylatable alanine mutations at potential Cdk1 S/TP sites, we demonstrate that LARG phosphorylation occurs in both termini. Using phosphospecific antibodies, we confirm that two sites, serine 190 and serine 1176, are phosphorylated during mitosis in a Cdk1-dependent manner. In addition, these phosphospecific antibodies show phosphorylated LARG at specific mitotic locations, namely the mitotic organizing centers and flanking the midbody. Lastly, RhoA activity assays reveal that phosphonull LARG is more active in cells than phosphomimetic LARG. Our data thus identifies LARG as a phosphoregulated RhoGEF during mitosis.
Collapse
Affiliation(s)
- Michelle C Helms
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elda Grabocka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew K Martz
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher C Fischer
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nobuchika Suzuki
- Department of Signal Dynamics, University of Tokyo, Meguro, Tokyo, Japan
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
94
|
The roles of the oncoprotein GOLPH3 in contractile ring assembly and membrane trafficking during cytokinesis. Biochem Soc Trans 2015; 43:117-21. [PMID: 25619256 DOI: 10.1042/bst20140264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cytokinesis is an intricate process that requires an intimate interplay between actomyosin ring constriction and plasma membrane remodelling at the cleavage furrow. However, the molecular mechanisms involved in coupling the cytoskeleton dynamics with vesicle trafficking during cytokinesis are poorly understood. The highly conserved Golgi phosphoprotein 3 (GOLPH3), functions as a phosphatidylinositol 4-phosphate (PI4P) effector at the Golgi. Recent studies have suggested that GOLPH3 is up-regulated in several cancers and is associated with poor prognosis and more aggressive tumours. In Drosophila melanogaster, GOLPH3 localizes at the cleavage furrow of dividing cells, is required for successful cytokinesis and acts as a key molecule in coupling phosphoinositide (PI) signalling with actomyosin ring dynamics. Because cytokinesis failures have been linked with pre-malignant disease and cancer, the novel connection between GOLPH3 and cytokinesis imposes new fields of investigation in cancer biology and therapy.
Collapse
|
95
|
Campa CC, Martini M, De Santis MC, Hirsch E. How PI3K-derived lipids control cell division. Front Cell Dev Biol 2015; 3:61. [PMID: 26484344 PMCID: PMC4588110 DOI: 10.3389/fcell.2015.00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/14/2015] [Indexed: 01/18/2023] Open
Abstract
To succeed in cell division, intense cytoskeletal and membrane remodeling are required to allow accurate chromosome segregation and cytoplasm partitioning. Spatial restriction of the actin dynamics and vesicle trafficking define the cell symmetry and equivalent membrane scission events, respectively. Protein complexes coordinating mitosis are recruited to membrane microdomains characterized by the presence of the phosphatidylinositol lipid members (PtdIns), like PtdIns(3,4,5)P3,PtdIns(4,5)P2, and PtdIns(3)P. These PtdIns represent a minor component of cell membranes, defining membrane domain identity, ultimately controlling cytoskeleton and membrane dynamics during mitosis. The coordinated presence of PtdIns(3,4,5)P3 at the cell poles and PtdIns(4,5)P2 at the cleavage furrow controls the polarity of the actin cytoskeleton leading to symmetrical cell division. In the endosomal compartment, the trafficking of PtdIns(3)P positive vesicles allows the recruitment of the protein machinery required for the abscission.
Collapse
Affiliation(s)
- Carlo C Campa
- Department of Molecular Biotechnology and Health Sciences, University of Turin Torino, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin Torino, Italy
| | - Maria C De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Turin Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin Torino, Italy
| |
Collapse
|
96
|
Abstract
The establishment and maintenance of epithelial cell-cell junctions is crucially important to regulate adhesion, apico-basal polarity and motility of epithelial cells, and ultimately controls the architecture and physiology of epithelial organs. Junctions are supported, shaped and regulated by cytoskeletal filaments, whose dynamic organization and contractility are finely tuned by GTPases of the Rho family, primarily RhoA, Rac1 and Cdc42. Recent research has identified new molecular mechanisms underlying the cross-talk between these GTPases and epithelial junctions. Here we briefly summarize the current knowledge about the organization, molecular evolution and cytoskeletal anchoring of cell-cell junctions, and we comment on the most recent advances in the characterization of the interactions between Rho GTPases and junctional proteins, and their consequences with regards to junction assembly and regulation of cell behavior in vertebrate model systems. The concept of “zonular signalosome” is proposed, which highlights the close functional relationship between proteins of zonular junctions (zonulae occludentes and adhaerentes) and the control of cytoskeletal organization and signaling through Rho GTPases, transcription factors, and their effectors.
Collapse
Key Words
- AJ, adherens junction
- AMOT, angiomotin
- AMPK, Adenosine Monophosphate-Activated Protein Kinase
- APC, adenomatous poliposis coli
- CD2AP, CD2-associated protein
- CGN, cingulin
- CGNL1, paracingulin
- Cdc42
- Cdc42, cell division cycle 42
- DLC, deleted in liver cancer
- Dbl, diffuse B-cell lymphoma
- EPLIN, epithelial protein lost in neoplasm
- ERK, extracellular regulated kinase
- FERM, four.point.one, ezrin, radixin, moesin
- FGD5, FYVE, RhoGEF and PH domain containing 5
- GAP, GTPase activating protein
- GEF, guanine nucleotide exchange factor
- GST, glutathione -S- transferase; JAM = junctional adhesion molecule
- MCF-7, Michigan Cancer Foundation - 7
- MDCK, Madin Darby Canine Kidney
- MKLP1, mitotic kinesin-like protein-1
- MRCK, myotonic dystrophy-related Cdc42-binding kinase
- MgcRacGAP, male germ cell racGAP
- PA, puncta adhaerentia
- PAK, p21-activated kinase; PATJ, Pals1 associated tight junction protein
- PCNA, proliferating cell nuclear antigen
- PDZ, Post synaptic density protein (PSD95), Drosophila, disc large tumour suppressor (DlgA), and zonula occludens-1
- PLEKHA7, pleckstrin homology domain containing, family A member 7
- RICH-1, RhoGAP interacting with CIP4 homologues
- ROCK, Rho-associated protein kinase
- Rac
- Rho
- SH3BP1, (SH3 domain 490 binding protein-1)
- TJ, tight junction
- Tbx-3, T-box-3
- Tiam, Tumor invasion and metastasis
- WASP, Wiskott-Aldrich Syndrome Protein
- WAVE, WASP family Verprolin-homologous protein
- ZA, zonula adhaerens
- ZO, zonula occludens
- ZONAB, (ZO-1)–associated nucleic acid binding protein.
- cytoseleton
- epithelium
- junctions
Collapse
Affiliation(s)
- Sandra Citi
- a Department of Cell Biology ; University of Geneva ; Geneva , Switzerland
| | | | | | | |
Collapse
|
97
|
Abstract
Poly(ADP-ribosyl)ation is an unique posttranslational modification and required for spindle assembly and function during mitosis. However, the molecular mechanism of poly(ADP-ribose) (PAR) in mitosis remains elusive. Here, we show the evidence that PAR is recognized by ECT2, a key guanine nucleotide exchange factor in mitosis. The BRCT domain of ECT2 directly binds to PAR both in vitro and in vivo. We further found that α-tubulin is PARylated during mitosis. PARylation of α-tubulin is recognized by ECT2 and recruits ECT2 to mitotic spindle for completing mitosis. Taken together, our study reveals a novel mechanism by which PAR regulates mitosis.
Collapse
Affiliation(s)
- Mo Li
- a Division of Molecular Medicine and Genetics ; Department of Internal Medicine ; University of Michigan Medical School ; Ann Arbor , MI USA
| | | | | |
Collapse
|
98
|
Zhang D, Glotzer M. The RhoGAP activity of CYK-4/MgcRacGAP functions non-canonically by promoting RhoA activation during cytokinesis. eLife 2015; 4. [PMID: 26252513 PMCID: PMC4552957 DOI: 10.7554/elife.08898] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/06/2015] [Indexed: 12/29/2022] Open
Abstract
Cytokinesis requires activation of the GTPase RhoA. ECT-2, the exchange factor responsible for RhoA activation, is regulated to ensure spatiotemporal control of contractile ring assembly. Centralspindlin, composed of the Rho family GTPase-activating protein (RhoGAP) MgcRacGAP/CYK-4 and the kinesin MKLP1/ZEN-4, is known to activate ECT-2, but the underlying mechanism is not understood. We report that ECT-2-mediated RhoA activation depends on the ability of CYK-4 to localize to the plasma membrane, bind RhoA, and promote GTP hydrolysis by RhoA. Defects resulting from loss of CYK-4 RhoGAP activity can be rescued by activating mutations in ECT-2 or depletion of RGA-3/4, which functions as a conventional RhoGAP for RhoA. Consistent with CYK-4 RhoGAP activity contributing to GEF activation, the catalytic domains of CYK-4 and ECT-2 directly interact. Thus, counterintuitively, CYK-4 RhoGAP activity promotes RhoA activation. We propose that the most active form of the cytokinetic RhoGEF involves complex formation between ECT-2, centralspindlin and RhoA. DOI:http://dx.doi.org/10.7554/eLife.08898.001 Cell division is a process in which a cell splits to form two daughter cells. In most cases, the cell first duplicates its genetic material and then the two copies are pulled to opposite ends of the cell. A ring of protein filaments—called the contractile ring—then assembles to form a band around the cell at the site of the division. This ring contracts and the force generated separates the cells in a step known as cytokinesis. A protein belonging to the Rho family, called RhoA, is essential for cytokinesis because it controls the formation of the contractile ring. Rho proteins are switched on by the activities of other proteins called guanine nucleotide exchange factors. Another group of proteins known as ‘GTPase activating proteins’ (or GAPs for short) generally act to promote the ability of Rho proteins to turn themselves off. In animals and other multicellular organisms, a GAP called CYK-4 largely concentrates on the spindle midzone, but some of the protein also moves to part of the cell membrane near the future site of cell division. It binds to a guanine nucleotide exchange factor called ECT-2 to switch RhoA on, which in turn promotes the formation of the contractile ring. However, it is not clear why a protein that activates RhoA is also able to trigger its inactivation. In this study, Zhang and Glotzer studied cell division in a roundworm called Caenorhabditis elegans. The experiments show that cells that lacked the GAP activity of CYK-4 were unable to complete cytokinesis because RhoA was not fully switched on. This requirement could be bypassed in cells with mutant forms of ECT-2 that were overactive. Therefore, an activity that was thought to inactivate RhoA actually promotes its activation. Further experiments show that the section (or ‘domain’) of CYK-4 that has GAP activity interacts directly with the guanine nucleotide exchange domain of ECT2. Zhang and Glotzer suggest that this interaction stimulates ECT2 and thereby promotes the activation of RhoA. Further experiments will reveal how CYK-4 stimulates ECT-2. In addition, it will be important to determine whether other proteins with GAP domains also work in this unconventional way. DOI:http://dx.doi.org/10.7554/eLife.08898.002
Collapse
Affiliation(s)
- Donglei Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| |
Collapse
|
99
|
Abstract
Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease.
Collapse
Key Words
- AB, Apicobasal
- AJ, Adherens junction
- Amot, Angiomotin
- Arp2/3, Actin-related protein-2/3
- Baz, Bazooka
- C. elegans, Caenorhabditis elegans
- CA, Constitutively-active
- CD2AP, CD2-associated protein
- Caco2, Human colon carcinoma
- Cdc42
- Cora, Coracle
- Crb, Crumbs
- DN, Dominant-negative
- Dia1, Diaphanous-related formin 1
- Dlg, Discs large
- Drosophila, Drosophila melanogaster
- Dys-β, Dystrobrevin-β
- ECM, Extracellular matrix
- Ect2, Epithelial cell transforming sequence 2 oncogene
- Eya1, Eyes absent 1
- F-actin, Filamentous actin
- FRET, Fluorescence resonance energy transfer
- GAP, GTPase-activating protein
- GDI, Guanine nucleotide dissociation inhibitor
- GEF, Guanine nucleotide exchange factor
- GTPases
- JACOP, Junction-associated coiled-coiled protein
- JAM, Junctional adhesion molecule
- LKB1, Liver kinase B1
- Lgl, Lethal giant larvae
- MDCK, Madin-Darby canine kidney
- MTOC, Microtubule-organizing center
- NrxIV, Neurexin IV
- Pals1, Protein associated with Lin-7 1
- Par, Partitioning-defective
- Patj, Pals1-associated TJ protein
- ROCK, Rho-associated kinase
- Rac
- Rho
- Rich1, RhoGAP interacting with CIP4 homologues
- S. cerevisiae, Saccharomyces cerevisiae
- S. pombe, Schizosaccharomyces pombe
- SH3BP1, SH3-domain binding protein 1
- Scrib, Scribble
- Std, Stardust
- TEM4, Tumor endothelial marker 4
- TJ, Tight junction
- Tiam1, T-cell lymphoma invasion and metastasis-inducing protein 1
- WASp, Wiskott-aldrich syndrome protein
- Yrt, Yurt
- ZA, zonula adherens
- ZO, Zonula occludens
- aPKC, Atypical Protein Kinase C
- apicobasal
- epithelia
- junction
- par
- polarity
- α-cat, Alpha-catenin
- β-cat, Beta-Catenin
- β2-syn, Beta-2-syntrophin
Collapse
Affiliation(s)
- Natalie Ann Mack
- a School of Life Sciences; Queens Medical Center ; University of Nottingham ; Nottingham , UK
| | | |
Collapse
|
100
|
Gera N, Yang A, Holtzman TS, Lee SX, Wong ET, Swanson KD. Tumor treating fields perturb the localization of septins and cause aberrant mitotic exit. PLoS One 2015; 10:e0125269. [PMID: 26010837 PMCID: PMC4444126 DOI: 10.1371/journal.pone.0125269] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/23/2015] [Indexed: 01/04/2023] Open
Abstract
The anti-tumor effects of chemotherapy and radiation are thought to be mediated by triggering G1/S or G2/M cell cycle checkpoints, while spindle poisons, such as paclitaxel, block metaphase exit by initiating the spindle assembly checkpoint. In contrast, we have found that 150 kilohertz (kHz) alternating electric fields, also known as Tumor Treating Fields (TTFields), perturbed cells at the transition from metaphase to anaphase. Cells exposed to the TTFields during mitosis showed normal progression to this point, but exhibited uncontrolled membrane blebbing that coincided with metaphase exit. The ability of such alternating electric fields to affect cellular physiology is likely to be dependent on their interactions with proteins possessing high dipole moments. The mitotic Septin complex consisting of Septin 2, 6 and 7, possesses a high calculated dipole moment of 2711 Debyes (D) and plays a central role in positioning the cytokinetic cleavage furrow, and governing its contraction during ingression. We showed that during anaphase, TTFields inhibited Septin localization to the anaphase spindle midline and cytokinetic furrow, as well as its association with microtubules during cell attachment and spreading on fibronectin. After aberrant metaphase exit as a consequence of TTFields exposure, cells exhibited aberrant nuclear architecture and signs of cellular stress including an overall decrease in cellular proliferation, followed by apoptosis that was strongly influenced by the p53 mutational status. Thus, TTFields are able to diminish cell proliferation by specifically perturbing key proteins involved in cell division, leading to mitotic catastrophe and subsequent cell death.
Collapse
Affiliation(s)
- Nidhi Gera
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aaron Yang
- Department of Neurology, Division of Neuro-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Talia S. Holtzman
- Department of Neurology, Division of Neuro-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Sze Xian Lee
- Department of Neurology, Division of Neuro-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Eric T. Wong
- Department of Neurology, Division of Neuro-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Kenneth D. Swanson
- Department of Neurology, Division of Neuro-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|