51
|
Couturier L, Mazouni K, Bernard F, Besson C, Reynaud E, Schweisguth F. Regulation of cortical stability by RhoGEF3 in mitotic Sensory Organ Precursor cells in Drosophila. Biol Open 2017; 6:1851-1860. [PMID: 29101098 PMCID: PMC5769646 DOI: 10.1242/bio.026641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In epithelia, mitotic cells round up and push against their neighbors to divide. Mitotic rounding results from increased assembly of F-actin and cortical recruitment of Myosin II, leading to increased cortical stability. Whether this process is developmentally regulated is not well known. Here, we examined the regulation of cortical stability in Sensory Organ Precursor cells (SOPs) in the Drosophila pupal notum. SOPs differed in apical shape and actomyosin dynamics from their epidermal neighbors prior to division, and appeared to have a more rigid cortex at mitosis. We identified RhoGEF3 as an actin regulator expressed at higher levels in SOPs, and showed that RhoGEF3 had in vitro GTPase Exchange Factor (GEF) activity for Cdc42. Additionally, RhoGEF3 genetically interacted with both Cdc42 and Rac1 when overexpressed in the fly eye. Using a null RhoGEF3 mutation generated by CRISPR-mediated homologous recombination, we showed using live imaging that the RhoGEF3 gene, despite being dispensable for normal development, contributed to cortical stability in dividing SOPs. We therefore suggest that cortical stability is developmentally regulated in dividing SOPs of the fly notum. Summary: RhoGEF3 is a developmentally regulated Cdc42 GEF that contributes to cortical stability during asymmetric divisions of Sensory Organ Precursor cells in Drosophila.
Collapse
Affiliation(s)
- Lydie Couturier
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France.,CNRS, UMR3738, F-75015 Paris, France
| | - Khalil Mazouni
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France.,CNRS, UMR3738, F-75015 Paris, France
| | - Fred Bernard
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France.,CNRS, UMR3738, F-75015 Paris, France
| | - Charlotte Besson
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France.,CNRS, UMR3738, F-75015 Paris, France.,Université Pierre et Marie Curie, Cellule Pasteur UPMC, rue du Dr Roux, 75015 Paris, France
| | - Elodie Reynaud
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France.,CNRS, UMR3738, F-75015 Paris, France
| | - François Schweisguth
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France .,CNRS, UMR3738, F-75015 Paris, France
| |
Collapse
|
52
|
Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nat Cell Biol 2017; 20:69-80. [PMID: 29230016 DOI: 10.1038/s41556-017-0005-z] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
To establish and maintain organ structure and function, tissues need to balance stem cell proliferation and differentiation rates and coordinate cell fate with position. By quantifying and modelling tissue stress and deformation in the mammalian epidermis, we find that this balance is coordinated through local mechanical forces generated by cell division and delamination. Proliferation within the basal stem/progenitor layer, which displays features of a jammed, solid-like state, leads to crowding, thereby locally distorting cell shape and stress distribution. The resulting decrease in cortical tension and increased cell-cell adhesion trigger differentiation and subsequent delamination, reinstating basal cell layer density. After delamination, cells establish a high-tension state as they increase myosin II activity and convert to E-cadherin-dominated adhesion, thereby reinforcing the boundary between basal and suprabasal layers. Our results uncover how biomechanical signalling integrates single-cell behaviours to couple proliferation, cell fate and positioning to generate a multilayered tissue.
Collapse
|
53
|
Higashi T, Miller AL. Tricellular junctions: how to build junctions at the TRICkiest points of epithelial cells. Mol Biol Cell 2017; 28:2023-2034. [PMID: 28705832 PMCID: PMC5509417 DOI: 10.1091/mbc.e16-10-0697] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 01/07/2023] Open
Abstract
Tricellular contacts are the places where three cells meet. In vertebrate epithelial cells, specialized structures called tricellular tight junctions (tTJs) and tricellular adherens junctions (tAJs) have been identified. tTJs are important for the maintenance of barrier function, and disruption of tTJ proteins contributes to familial deafness. tAJs have recently been attracting the attention of mechanobiologists because these sites are hot spots of epithelial tension. Although the molecular components, regulation, and function of tTJs and tAJs, as well as of invertebrate tricellular junctions, are beginning to be characterized, many questions remain. Here we broadly cover what is known about tricellular junctions, propose a new model for tension transmission at tAJs, and discuss key open questions.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
54
|
Viscoelastic Dissipation Stabilizes Cell Shape Changes during Tissue Morphogenesis. Curr Biol 2017; 27:3132-3142.e4. [DOI: 10.1016/j.cub.2017.09.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/27/2017] [Accepted: 09/05/2017] [Indexed: 12/22/2022]
|
55
|
Chan EH, Chavadimane Shivakumar P, Clément R, Laugier E, Lenne PF. Patterned cortical tension mediated by N-cadherin controls cell geometric order in the Drosophila eye. eLife 2017; 6. [PMID: 28537220 PMCID: PMC5443664 DOI: 10.7554/elife.22796] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Adhesion molecules hold cells together but also couple cell membranes to a contractile actomyosin network, which limits the expansion of cell contacts. Despite their fundamental role in tissue morphogenesis and tissue homeostasis, how adhesion molecules control cell shapes and cell patterns in tissues remains unclear. Here we address this question in vivo using the Drosophila eye. We show that cone cell shapes depend little on adhesion bonds and mostly on contractile forces. However, N-cadherin has an indirect control on cell shape. At homotypic contacts, junctional N-cadherin bonds downregulate Myosin-II contractility. At heterotypic contacts with E-cadherin, unbound N-cadherin induces an asymmetric accumulation of Myosin-II, which leads to a highly contractile cell interface. Such differential regulation of contractility is essential for morphogenesis as loss of N-cadherin disrupts cell rearrangements. Our results establish a quantitative link between adhesion and contractility and reveal an unprecedented role of N-cadherin on cell shapes and cell arrangements. DOI:http://dx.doi.org/10.7554/eLife.22796.001
Collapse
|
56
|
Nematbakhsh A, Sun W, Brodskiy PA, Amiri A, Narciso C, Xu Z, Zartman JJ, Alber M. Multi-scale computational study of the mechanical regulation of cell mitotic rounding in epithelia. PLoS Comput Biol 2017; 13:e1005533. [PMID: 28531187 PMCID: PMC5460904 DOI: 10.1371/journal.pcbi.1005533] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 06/06/2017] [Accepted: 04/24/2017] [Indexed: 12/20/2022] Open
Abstract
Mitotic rounding during cell division is critical for preventing daughter cells from inheriting an abnormal number of chromosomes, a condition that occurs frequently in cancer cells. Cells must significantly expand their apical area and transition from a polygonal to circular apical shape to achieve robust mitotic rounding in epithelial tissues, which is where most cancers initiate. However, how cells mechanically regulate robust mitotic rounding within packed tissues is unknown. Here, we analyze mitotic rounding using a newly developed multi-scale subcellular element computational model that is calibrated using experimental data. Novel biologically relevant features of the model include separate representations of the sub-cellular components including the apical membrane and cytoplasm of the cell at the tissue scale level as well as detailed description of cell properties during mitotic rounding. Regression analysis of predictive model simulation results reveals the relative contributions of osmotic pressure, cell-cell adhesion and cortical stiffness to mitotic rounding. Mitotic area expansion is largely driven by regulation of cytoplasmic pressure. Surprisingly, mitotic shape roundness within physiological ranges is most sensitive to variation in cell-cell adhesivity and stiffness. An understanding of how perturbed mechanical properties impact mitotic rounding has important potential implications on, amongst others, how tumors progressively become more genetically unstable due to increased chromosomal aneuploidy and more aggressive.
Collapse
Affiliation(s)
- Ali Nematbakhsh
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| | - Wenzhao Sun
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Pavel A. Brodskiy
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Aboutaleb Amiri
- Department of Physics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Cody Narciso
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jeremiah J. Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Mark Alber
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| |
Collapse
|
57
|
Cell-Cycle-Coupled Oscillations in Apical Polarity and Intercellular Contact Maintain Order in Embryonic Epithelia. Curr Biol 2017; 27:1381-1386. [DOI: 10.1016/j.cub.2017.03.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/18/2017] [Accepted: 03/27/2017] [Indexed: 11/22/2022]
|
58
|
Actomyosin-generated tension on cadherin is similar between dividing and non-dividing epithelial cells in early Xenopus laevis embryos. Sci Rep 2017; 7:45058. [PMID: 28327558 PMCID: PMC5361196 DOI: 10.1038/srep45058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/20/2017] [Indexed: 12/18/2022] Open
Abstract
Epithelia represent a unique situation where polarized cells must maintain sufficiently strong cell-cell contacts to guarantee the epithelial integrity indispensable for barrier functions. Nevertheless, epithelia must also keep sufficient plasticity which is crucial during development and morphogenesis. Adherens junctions and mechanical forces produced by the actomyosin cytoskeleton are major players for epithelial integrity maintenance and plasticity regulations. To understand how the epithelium is able to meet such a challenge, it is indispensable to determine how cellular junctions and mechanical forces acting at adherens junctions are regulated. Here, we investigate the tensile forces acting on adherens junctions via cadherin during cell division in the Xenopus embryos epithelium. Using the recently developed E-cadherin FRET tension sensor and a fastFLIM prototype microscope, we were able to measure mechanical forces applied on cadherin at cell-cell junctions. We have shown that the Xenopus epithelium is under tension, approximately 3 pN which remains stable, indicating that tensile forces acting on cadherin at the adherens junction are at equilibrium. Unexpectedly, mechanical tension across cadherin was similar between dividing and non-dividing epithelial cells.
Collapse
|
59
|
Pinheiro D, Hannezo E, Herszterg S, Bosveld F, Gaugue I, Balakireva M, Wang Z, Cristo I, Rigaud SU, Markova O, Bellaïche Y. Transmission of cytokinesis forces via E-cadherin dilution and actomyosin flows. Nature 2017; 545:103-107. [PMID: 28296858 DOI: 10.1038/nature22041] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 03/07/2017] [Indexed: 02/08/2023]
Abstract
During epithelial cytokinesis, the remodelling of adhesive cell-cell contacts between the dividing cell and its neighbours has profound implications for the integrity, arrangement and morphogenesis of proliferative tissues. In both vertebrates and invertebrates, this remodelling requires the activity of non-muscle myosin II (MyoII) in the interphasic cells neighbouring the dividing cell. However, the mechanisms that coordinate cytokinesis and MyoII activity in the neighbours are unknown. Here we show that in the Drosophila notum epithelium, each cell division is associated with a mechanosensing and transmission event that controls MyoII dynamics in neighbouring cells. We find that the ring pulling forces promote local junction elongation, which results in local E-cadherin dilution at the ingressing adherens junction. In turn, the reduction in E-cadherin concentration and the contractility of the neighbouring cells promote self-organized actomyosin flows, ultimately leading to accumulation of MyoII at the base of the ingressing junction. Although force transduction has been extensively studied in the context of adherens junction reinforcement to stabilize adhesive cell-cell contacts, we propose an alternative mechanosensing mechanism that coordinates actomyosin dynamics between epithelial cells and sustains the remodelling of the adherens junction in response to mechanical forces.
Collapse
Affiliation(s)
- Diana Pinheiro
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France.,Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, Portugal
| | - Edouard Hannezo
- Cavendish Laboratory, Department of Physics, J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK.,The Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Rd, University of Cambridge, Cambridge CB2 1QN, UK
| | - Sophie Herszterg
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Floris Bosveld
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Isabelle Gaugue
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Maria Balakireva
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Zhimin Wang
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Inês Cristo
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Stéphane U Rigaud
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Olga Markova
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| |
Collapse
|
60
|
Thieleke-Matos C, Osório DS, Carvalho AX, Morais-de-Sá E. Emerging Mechanisms and Roles for Asymmetric Cytokinesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:297-345. [PMID: 28526136 DOI: 10.1016/bs.ircmb.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokinesis completes cell division by physically separating the contents of the mother cell between the two daughter cells. This event requires the highly coordinated reorganization of the cytoskeleton within a precise window of time to ensure faithful genomic segregation. In addition, recent progress in the field highlighted the importance of cytokinesis in providing particularly important cues in the context of multicellular tissues. The organization of the cytokinetic machinery and the asymmetric localization or inheritance of the midbody remnants is critical to define the spatial distribution of mechanical and biochemical signals. After a brief overview of the conserved steps of animal cytokinesis, we review the mechanisms controlling polarized cytokinesis focusing on the challenges of epithelial cytokinesis. Finally, we discuss the significance of these asymmetries in defining embryonic body axes, determining cell fate, and ensuring the correct propagation of epithelial organization during proliferation.
Collapse
Affiliation(s)
- C Thieleke-Matos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - D S Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - A X Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - E Morais-de-Sá
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
61
|
Non-junctional E-Cadherin Clusters Regulate the Actomyosin Cortex in the C. elegans Zygote. Curr Biol 2017; 27:103-112. [DOI: 10.1016/j.cub.2016.10.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 09/16/2016] [Accepted: 10/19/2016] [Indexed: 01/03/2023]
|
62
|
Hatte G, Prigent C, Tassan JP. Tight junctions negatively regulate mechanical forces applied to adherens junctions in vertebrate epithelial tissue. J Cell Sci 2017; 131:jcs.208736. [DOI: 10.1242/jcs.208736] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/08/2017] [Indexed: 12/28/2022] Open
Abstract
Epithelia are layers of polarised cells tightly bound to each other by adhesive contacts. Epithelia act as barriers between an organism and its external environment. Understanding how epithelia maintain their essential integrity while remaining sufficiently plastic to allow events such as cytokinesis to take place is a key biological problem. In vertebrates, the remodelling and reinforcement of adherens junctions maintains epithelial integrity during cytokinesis. The involvement of tight junctions in cell division, however, has remained unexplored. Here, we examine the role of tight junctions during cytokinesis in the epithelium of the Xenopus laevis embryo. Depletion of tight junction-associated proteins ZO-1 and GEF-H1 leads to altered cytokinesis duration and contractile ring geometry. Using a tension biosensor, we show that cytokinesis defects originate from misregulation of tensile forces applied to adherens junctions. Our results reveal that tight junctions regulate mechanical tension applied to adherens junctions, which in turn impacts cytokinesis.
Collapse
Affiliation(s)
- Guillaume Hatte
- CNRS UMR 6290, Rennes, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes, France
| | - Claude Prigent
- CNRS UMR 6290, Rennes, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes, France
| | - Jean-Pierre Tassan
- CNRS UMR 6290, Rennes, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes, France
| |
Collapse
|
63
|
Tassan JP, Wühr M, Hatte G, Kubiak J. Asymmetries in Cell Division, Cell Size, and Furrowing in the Xenopus laevis Embryo. Results Probl Cell Differ 2017; 61:243-260. [PMID: 28409308 DOI: 10.1007/978-3-319-53150-2_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetric cell divisions produce two daughter cells with distinct fate. During embryogenesis, this mechanism is fundamental to build tissues and organs because it generates cell diversity. In adults, it remains crucial to maintain stem cells. The enthusiasm for asymmetric cell division is not only motivated by the beauty of the mechanism and the fundamental questions it raises, but has also very pragmatic reasons. Indeed, misregulation of asymmetric cell divisions is believed to have dramatic consequences potentially leading to pathogenesis such as cancers. In diverse model organisms, asymmetric cell divisions result in two daughter cells, which differ not only by their fate but also in size. This is the case for the early Xenopus laevis embryo, in which the two first embryonic divisions are perpendicular to each other and generate two pairs of blastomeres, which usually differ in size: one pair of blastomeres is smaller than the other. Small blastomeres will produce embryonic dorsal structures, whereas the larger pair will evolve into ventral structures. Here, we present a speculative model on the origin of the asymmetry of this cell division in the Xenopus embryo. We also discuss the apparently coincident asymmetric distribution of cell fate determinants and cell-size asymmetry of the 4-cell stage embryo. Finally, we discuss the asymmetric furrowing during epithelial cell cytokinesis occurring later during Xenopus laevis embryo development.
Collapse
Affiliation(s)
- Jean-Pierre Tassan
- , CNRS UMR 6290, Rennes, France. .,Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes, France.
| | - Martin Wühr
- Department of Molecular Biology and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Guillaume Hatte
- , CNRS UMR 6290, Rennes, France.,Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes, France
| | - Jacek Kubiak
- , CNRS UMR 6290, Rennes, France.,Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes, France
| |
Collapse
|
64
|
Abstract
The midbody is a protein-dense assembly that forms during cytokinesis when the actomyosin ring constricts around bundling central spindle microtubules. After its initial description by Walther Flemming in the late nineteenth century and its rediscovery through electron microscopy in the 1960s and 1970s, its ultrastructural organization and the sequential recruitment of its molecular constituents has only been elucidated in the past decade. Recently, it has become clear that the midbody can serve as a polarity cue during asymmetric cell division, cell polarization, and spindle orientation by coordinating cytoskeletal organization, vesicular transport, and localized cortical cues. In this chapter, these newly emerging functions will be discussed as well as asymmetries during midbody formation and their consequences for cellular organization in tissues.
Collapse
Affiliation(s)
- Christian Pohl
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University Medical School, Max-von-Laue-Strasse 15, 60438, Frankfurt (Main), Germany.
| |
Collapse
|
65
|
Silva AM, Osório DS, Pereira AJ, Maiato H, Pinto IM, Rubinstein B, Gassmann R, Telley IA, Carvalho AX. Robust gap repair in the contractile ring ensures timely completion of cytokinesis. J Cell Biol 2016; 215:789-799. [PMID: 27974482 PMCID: PMC5166501 DOI: 10.1083/jcb.201605080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/14/2016] [Accepted: 11/02/2016] [Indexed: 11/22/2022] Open
Abstract
Using laser microsurgery, Silva et al. show that gaps in the contractile ring can be repaired at any stage of constriction, allowing for successful and timely cytokinesis. Their results support a contractile unit model for constriction of the cytokinetic ring. Cytokinesis in animal cells requires the constriction of an actomyosin contractile ring, whose architecture and mechanism remain poorly understood. We use laser microsurgery to explore the biophysical properties of constricting rings in Caenorhabditis elegans embryos. Laser cutting causes rings to snap open. However, instead of disintegrating, ring topology recovers and constriction proceeds. In response to severing, a finite gap forms and is repaired by recruitment of new material in an actin polymerization–dependent manner. An open ring is able to constrict, and rings repair from successive cuts. After gap repair, an increase in constriction velocity allows cytokinesis to complete at the same time as controls. Our analysis demonstrates that tension in the ring increases while net cortical tension at the site of ingression decreases throughout constriction and suggests that cytokinesis is accomplished by contractile modules that assemble and contract autonomously, enabling local repair of the actomyosin network. Consequently, cytokinesis is a highly robust process impervious to discontinuities in contractile ring structure.
Collapse
Affiliation(s)
- Ana M Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Daniel S Osório
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Antonio J Pereira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Helder Maiato
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Inês Mendes Pinto
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | | | - Reto Gassmann
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Ivo Andreas Telley
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, 2780-156 Oeiras, Portugal
| | - Ana Xavier Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal .,Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| |
Collapse
|
66
|
Coopman P, Djiane A. Adherens Junction and E-Cadherin complex regulation by epithelial polarity. Cell Mol Life Sci 2016; 73:3535-53. [PMID: 27151512 PMCID: PMC11108514 DOI: 10.1007/s00018-016-2260-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/29/2022]
Abstract
E-Cadherin-based Adherens Junctions (AJs) are a defining feature of all epithelial sheets. Through the homophilic association of E-Cadherin molecules expressed on neighboring cells, they ensure intercellular adhesion amongst epithelial cells, and regulate many key aspects of epithelial biology. While their adhesive role requires these structures to remain stable, AJs are also extremely plastic. This plasticity allows for the adaptation of the cell to its changing environment: changes in neighbors after cell division, cell death, or cell movement, and changes in cell shape during differentiation. In this review we focus on the recent advances highlighting the critical role of the apico-basal polarity machinery, and in particular of the Par3/Bazooka scaffold, in the regulation and remodeling of AJs. We propose that by regulating key phosphorylation events on the core E-Cadherin complex components, Par3 and epithelial polarity promote meta-stable protein complexes governing the correct formation, localization, and functioning of AJ.
Collapse
Affiliation(s)
- Peter Coopman
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- IRCM, INSERM U1194, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34090, France
- Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Alexandre Djiane
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.
- IRCM, INSERM U1194, Montpellier, F-34298, France.
- Université de Montpellier, Montpellier, F-34090, France.
- Institut régional du Cancer de Montpellier, Montpellier, F-34298, France.
| |
Collapse
|
67
|
Jungas T, Perchey RT, Fawal M, Callot C, Froment C, Burlet-Schiltz O, Besson A, Davy A. Eph-mediated tyrosine phosphorylation of citron kinase controls abscission. J Cell Biol 2016; 214:555-69. [PMID: 27551053 PMCID: PMC5004443 DOI: 10.1083/jcb.201602057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
Abscission is the last step of cytokinesis, allowing the physical separation of daughter cells at the end of cell division. It has been considered a cell autonomous process, yet Jungas et al. report that Ephrin/Eph signaling controls the completion of abscission. Cytokinesis is the last step of cell division, culminating in the physical separation of daughter cells at the end of mitosis. Cytokinesis is a tightly regulated process that until recently was mostly viewed as a cell-autonomous event. Here, we investigated the role of Ephrin/Eph signaling, a well-known local cell-to-cell communication pathway, in cell division. We show that activation of Eph signaling in vitro leads to multinucleation and polyploidy, and we demonstrate that this is caused by alteration of the ultimate step of cytokinesis, abscission. Control of abscission requires Eph kinase activity, and Src and citron kinase (CitK) are downstream effectors in the Eph-induced signal transduction cascade. CitK is phosphorylated on tyrosines in neural progenitors in vivo, and Src kinase directly phosphorylates CitK. We have identified the specific tyrosine residues of CitK that are phosphorylated and show that tyrosine phosphorylation of CitK impairs cytokinesis. Finally, we show that, similar to CitK, Ephrin/Eph signaling controls neuronal ploidy in the developing neocortex. Our study indicates that CitK integrates intracellular and extracellular signals provided by the local environment to coordinate completion of cytokinesis.
Collapse
Affiliation(s)
- Thomas Jungas
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, 31062 Toulouse, France
| | - Renaud T Perchey
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1037, Cancer Research Center of Toulouse, 31037 Toulouse, France Centre National de la Recherche Scientifique, ERL 5294, Université de Toulouse, Université Paul Sabatier, 31037 Toulouse, France
| | - Mohamad Fawal
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, 31062 Toulouse, France
| | - Caroline Callot
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1037, Cancer Research Center of Toulouse, 31037 Toulouse, France Centre National de la Recherche Scientifique, ERL 5294, Université de Toulouse, Université Paul Sabatier, 31037 Toulouse, France
| | - Carine Froment
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Odile Burlet-Schiltz
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Arnaud Besson
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1037, Cancer Research Center of Toulouse, 31037 Toulouse, France Centre National de la Recherche Scientifique, ERL 5294, Université de Toulouse, Université Paul Sabatier, 31037 Toulouse, France
| | - Alice Davy
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
68
|
Firmino J, Rocancourt D, Saadaoui M, Moreau C, Gros J. Cell Division Drives Epithelial Cell Rearrangements during Gastrulation in Chick. Dev Cell 2016; 36:249-61. [PMID: 26859350 DOI: 10.1016/j.devcel.2016.01.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/19/2015] [Accepted: 01/09/2016] [Indexed: 12/25/2022]
Abstract
During early embryonic development, cells are organized as cohesive epithelial sheets that are continuously growing and remodeled without losing their integrity, giving rise to a wide array of tissue shapes. Here, using live imaging in chick embryo, we investigate how epithelial cells rearrange during gastrulation. We find that cell division is a major rearrangement driver that powers dramatic epithelial cell intercalation events. We show that these cell division-mediated intercalations, which represent the majority of epithelial rearrangements within the early embryo, are absolutely necessary for the spatial patterning of gastrulation movements. Furthermore, we demonstrate that these intercalation events result from overall low cortical actomyosin accumulation within the epithelial cells of the embryo, which enables dividing cells to remodel junctions in their vicinity. These findings uncover a role for cell division as coordinator of epithelial growth and remodeling that might underlie various developmental, homeostatic, or pathological processes in amniotes.
Collapse
Affiliation(s)
- Joao Firmino
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS URA2578, rue du Dr Roux, 75015 Paris, France
| | - Didier Rocancourt
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS URA2578, rue du Dr Roux, 75015 Paris, France
| | - Mehdi Saadaoui
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS URA2578, rue du Dr Roux, 75015 Paris, France
| | - Chloe Moreau
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS URA2578, rue du Dr Roux, 75015 Paris, France; University Pierre et Marie Curie, Cellule Pasteur UPMC, rue du Dr Roux, 75015 Paris, France
| | - Jerome Gros
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS URA2578, rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
69
|
Moreira S, Morais-de-Sá E. Spatiotemporal phosphoregulation of Lgl: Finding meaning in multiple on/off buttons. BIOARCHITECTURE 2016; 6:29-38. [PMID: 26919260 DOI: 10.1080/19490992.2016.1149290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intracellular asymmetries, often termed cell polarity, determine how cells organize and divide to ultimately control cell fate and shape animal tissues. The tumor suppressor Lethal giant larvae (Lgl) functions at the core of the evolutionarily conserved cell polarity machinery that controls apico-basal polarization. This function relies on its restricted basolateral localization via phosphorylation by aPKC. Here, we summarize the spatial and temporal control of Lgl during the cell cycle, highlighting two ideas that emerged from our recent findings: 1) Aurora A directly phosphorylates Lgl during symmetric division to couple reorganization of epithelial polarity with the cell cycle; 2) Phosphorylation of Lgl within three conserved serines controls its localization and function in a site-specific manner. Considering the importance of phosphorylation to regulate the concentration of Lgl at the plasma membrane, we will further discuss how it may work as an on-off switch for the interaction with cortical binding partners, with implications on epithelial polarization and spindle orientation.
Collapse
Affiliation(s)
- Sofia Moreira
- a IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal.,b I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal
| | - Eurico Morais-de-Sá
- a IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal.,b I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal
| |
Collapse
|
70
|
Taneja N, Fenix AM, Rathbun L, Millis BA, Tyska MJ, Hehnly H, Burnette DT. Focal adhesions control cleavage furrow shape and spindle tilt during mitosis. Sci Rep 2016; 6:29846. [PMID: 27432211 PMCID: PMC4949487 DOI: 10.1038/srep29846] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/24/2016] [Indexed: 01/01/2023] Open
Abstract
The geometry of the cleavage furrow during mitosis is often asymmetric in vivo and plays a critical role in stem cell differentiation and the relative positioning of daughter cells during development. Early observations of adhesive cell lines revealed asymmetry in the shape of the cleavage furrow, where the bottom (i.e., substrate attached side) of the cleavage furrow ingressed less than the top (i.e., unattached side). This data suggested substrate attachment could be regulating furrow ingression. Here we report a population of mitotic focal adhesions (FAs) controls the symmetry of the cleavage furrow. In single HeLa cells, stronger adhesion to the substrate directed less ingression from the bottom of the cell through a pathway including paxillin, focal adhesion kinase (FAK) and vinculin. Cell-cell contacts also direct ingression of the cleavage furrow in coordination with FAs in epithelial cells-MDCK-within monolayers and polarized cysts. In addition, mitotic FAs established 3D orientation of the mitotic spindle and the relative positioning of mother and daughter centrosomes. Therefore, our data reveals mitotic FAs as a key link between mitotic cell shape and spindle orientation, and may have important implications in our understanding stem cell homeostasis and tumorigenesis.
Collapse
Affiliation(s)
- Nilay Taneja
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Aidan M. Fenix
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lindsay Rathbun
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bryan A. Millis
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Matthew J. Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Heidi Hehnly
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dylan T. Burnette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
71
|
Partial Functional Diversification of Drosophila melanogaster Septin Genes Sep2 and Sep5. G3-GENES GENOMES GENETICS 2016; 6:1947-57. [PMID: 27172205 PMCID: PMC4938648 DOI: 10.1534/g3.116.028886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The septin family of hetero-oligomeric complex-forming proteins can be divided into subgroups, and subgroup members are interchangeable at specific positions in the septin complex. Drosophila melanogaster has five septin genes, including the two SEPT6 subgroup members Sep2 and Sep5. We previously found that Sep2 has a unique function in oogenesis, which is not performed by Sep5. Here, we find that Sep2 is uniquely required for follicle cell encapsulation of female germline cysts, and that Sep2 and Sep5 are redundant for follicle cell proliferation. The five D. melanogaster septins localize similarly in oogenesis, including as rings flanking the germline ring canals. Pnut fails to localize in Sep5; Sep2 double mutant follicle cells, indicating that septin complexes fail to form in the absence of both Sep2 and Sep5. We also find that mutations in septins enhance the mutant phenotype of bazooka, a key component in the establishment of cell polarity, suggesting a link between septin function and cell polarity. Overall, this work suggests that Sep5 has undergone partial loss of ancestral protein function, and demonstrates redundant and unique functions of septins.
Collapse
|
72
|
Abstract
Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell-substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance.
Collapse
|
73
|
Maintenance of the Epithelial Barrier and Remodeling of Cell-Cell Junctions during Cytokinesis. Curr Biol 2016; 26:1829-42. [PMID: 27345163 DOI: 10.1016/j.cub.2016.05.036] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 01/08/2023]
Abstract
Epithelial integrity and barrier function must be maintained during the complex cell shape changes that occur during cytokinesis in vertebrate epithelial tissue. Here, we investigate how adherens junctions and bicellular and tricellular tight junctions are maintained and remodeled during cell division in the Xenopus laevis embryo. We find that epithelial barrier function is not disrupted during cytokinesis and is mediated by sustained tight junctions. Using fluorescence recovery after photobleaching (FRAP), we demonstrate that adherens junction proteins are stabilized at the cleavage furrow by increased tension. We find that Vinculin is recruited to the adherens junction at the cleavage furrow, and that inhibiting recruitment of Vinculin by expressing a dominant-negative mutant increases the rate of furrow ingression. Furthermore, we show that cells neighboring the cleavage plane are pulled between the daughter cells, making a new interface between neighbors, and two new tricellular tight junctions flank the midbody following cytokinesis. Our data provide new insight into how epithelial integrity and barrier function are maintained throughout cytokinesis in vertebrate epithelial tissue.
Collapse
|
74
|
Abstract
Functional studies in Drosophila have been key for establishing a role for the septin family of proteins in animal cell division and thus extending for the first time observations from the budding yeast to animal cells. Visualizing the distribution of specific septins in different Drosophila tissues and, in particular, in the Drosophila embryo, together with biochemical and mutant phenotype data, has contributed important advances to our understanding of animal septin biology, suggesting roles in processes other than in cytokinesis. Septin localization using immunofluorescence assays has been possible due to the generation of antibodies against different Drosophila septins. The recent availability of lines expressing fluorescent protein fusions of specific septins further promises to facilitate studies on septin dynamics. Here, we provide protocols for preparing early Drosophila embryos to visualize septins using immunofluorescence assays and live fluorescence microscopy. The genetic tractability of the Drosophila embryo together with its amenability to high-resolution fluorescence microscopy promises to provide novel insights into animal septin structure and function.
Collapse
Affiliation(s)
- M Mavrakis
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, Marseille, France.
| |
Collapse
|
75
|
Abstract
Epithelial tissue cohesiveness is ensured through cell-cell junctions that maintain both adhesion and mechanical coupling between neighboring cells. During development, epithelial tissues undergo intensive cell proliferation. Cell division, and particularly cytokinesis, is coupled to the formation of new adhesive contacts, thereby preserving tissue integrity and propagating cell polarity. Remarkably, the geometry of the new interfaces is determined by the combined action of the dividing cell and its neighbors. To further understand the interplay between the dividing cell and its neighbors, as well as the role of cell division for tissue morphogenesis, it is important to analyze cytokinesis in vivo. Here we present methods to perform live imaging of cell division in Drosophila epithelial tissues and discuss some aspects of image processing and analysis.
Collapse
Affiliation(s)
- D Pinheiro
- Institut Curie, PSL Research University, Paris, France; Sorbonne Universités, Paris, France; Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Y Bellaïche
- Institut Curie, PSL Research University, Paris, France; Sorbonne Universités, Paris, France
| |
Collapse
|
76
|
Schwayer C, Sikora M, Slováková J, Kardos R, Heisenberg CP. Actin Rings of Power. Dev Cell 2016; 37:493-506. [DOI: 10.1016/j.devcel.2016.05.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/21/2022]
|
77
|
Asan A, Raiders SA, Priess JR. Morphogenesis of the C. elegans Intestine Involves Axon Guidance Genes. PLoS Genet 2016; 12:e1005950. [PMID: 27035721 PMCID: PMC4817974 DOI: 10.1371/journal.pgen.1005950] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/01/2016] [Indexed: 11/21/2022] Open
Abstract
Genetic and molecular studies have provided considerable insight into how various tissue progenitors are specified in early embryogenesis, but much less is known about how those progenitors create three-dimensional tissues and organs. The C. elegans intestine provides a simple system for studying how a single progenitor, the E blastomere, builds an epithelial tube of 20 cells. As the E descendants divide, they form a primordium that transitions between different shapes over time. We used cell contours, traced from confocal optical z-stacks, to build a 3D graphic reconstruction of intestine development. The reconstruction revealed several new aspects of morphogenesis that extend and clarify previous observations. The first 8 E descendants form a plane of four right cells and four left cells; the plane arises through oriented cell divisions and VANG-1/Van Gogh-dependent repositioning of any non-planar cells. LIN-12/Notch signaling affects the left cells in the E8 primordium, and initiates later asymmetry in cell packing. The next few stages involve cell repositioning and intercalation events that shuttle cells to their final positions, like shifting blocks in a Rubik’s cube. Repositioning involves breaking and replacing specific adhesive contacts, and some of these events involve EFN-4/Ephrin, MAB-20/semaphorin-2a, and SAX-3/Robo. Once cells in the primordium align along a common axis and in the correct order, cells at the anterior end rotate clockwise around the axis of the intestine. The anterior rotation appears to align segments of the developing lumen into a continuous structure, and requires the secreted ligand UNC-6/netrin, the receptor UNC-40/DCC, and an interacting protein called MADD-2. Previous studies showed that rotation requires a second round of LIN-12/Notch signaling in cells on the right side of the primordium, and we show that MADD-2-GFP appears to be downregulated in those cells. This report uses the intestine of the nematode C. elegans as a model system to address how progenitor cells form a three-dimensional organ. The fully formed intestine is a cylindrical tube of only 20 epithelial cells, and all of these cells are descendants of a single cell, the E blastomere. The E descendants form a primordium that changes shape over time as different E descendants divide and move. Cells in the primordium must continually adhere to each other during these movements to maintain the integrity of the primordium. Here, we generated a 3D graphic reconstruction of the developing intestine in order to analyze these events. We found that the cell movements are highly reproducible, suggesting that they are programmed by asymmetric gene expression in the primordium. In particular, we found that the conserved receptor LIN-12/Notch appears to modulate left-right adhesion in the primordium, leading to the asymmetric packing of cells. One of the most remarkable events in intestinal morphogenesis is the circumferential rotation of a subset of cells. We found that rotation appears to have a role in aligning the developing lumen of the intestine, and involves a conserved, UNC-6/netrin signaling pathway that is best known for its roles in the guided growth of neurons.
Collapse
Affiliation(s)
- Alparsan Asan
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Stephan A. Raiders
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
78
|
Dorn JF, Zhang L, Phi TT, Lacroix B, Maddox PS, Liu J, Maddox AS. A theoretical model of cytokinesis implicates feedback between membrane curvature and cytoskeletal organization in asymmetric cytokinetic furrowing. Mol Biol Cell 2016; 27:1286-99. [PMID: 26912796 PMCID: PMC4831882 DOI: 10.1091/mbc.e15-06-0374] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 02/16/2016] [Indexed: 11/11/2022] Open
Abstract
Furrow ingression is asymmetric in cytokinesis in the Caenorhabditis elegans zygote. A combination of quantitative high-resolution live-cell microscopy and theoretical modeling revealed a mechanistic basis for asymmetry: feedback among membrane curvature, cytoskeletal alignment, and contractility. The model also suggests that asymmetry promotes energy efficiency. During cytokinesis, the cell undergoes a dramatic shape change as it divides into two daughter cells. Cell shape changes in cytokinesis are driven by a cortical ring rich in actin filaments and nonmuscle myosin II. The ring closes via actomyosin contraction coupled with actin depolymerization. Of interest, ring closure and hence the furrow ingression are nonconcentric (asymmetric) within the division plane across Metazoa. This nonconcentricity can occur and persist even without preexisting asymmetric cues, such as spindle placement or cellular adhesions. Cell-autonomous asymmetry is not explained by current models. We combined quantitative high-resolution live-cell microscopy with theoretical modeling to explore the mechanistic basis for asymmetric cytokinesis in the Caenorhabditis elegans zygote, with the goal of uncovering basic principles of ring closure. Our theoretical model suggests that feedback among membrane curvature, cytoskeletal alignment, and contractility is responsible for asymmetric cytokinetic furrowing. It also accurately predicts experimental perturbations of conserved ring proteins. The model further suggests that curvature-mediated filament alignment speeds up furrow closure while promoting energy efficiency. Collectively our work underscores the importance of membrane–cytoskeletal anchoring and suggests conserved molecular mechanisms for this activity.
Collapse
Affiliation(s)
- Jonas F Dorn
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Li Zhang
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Tan-Trao Phi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | - Paul S Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jian Liu
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
79
|
Kannan N, Tang VW. Synaptopodin couples epithelial contractility to α-actinin-4-dependent junction maturation. J Cell Biol 2016; 211:407-34. [PMID: 26504173 PMCID: PMC4621826 DOI: 10.1083/jcb.201412003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A novel tension-sensitive junctional protein, synaptopodin, can relay biophysical input from cellular actomyosin contractility to induce biochemical changes at cell–cell contacts, resulting in structural reorganization of the junctional complex and epithelial barrier maturation. The epithelial junction experiences mechanical force exerted by endogenous actomyosin activities and from interactions with neighboring cells. We hypothesize that tension generated at cell–cell adhesive contacts contributes to the maturation and assembly of the junctional complex. To test our hypothesis, we used a hydraulic apparatus that can apply mechanical force to intercellular junction in a confluent monolayer of cells. We found that mechanical force induces α-actinin-4 and actin accumulation at the cell junction in a time- and tension-dependent manner during junction development. Intercellular tension also induces α-actinin-4–dependent recruitment of vinculin to the cell junction. In addition, we have identified a tension-sensitive upstream regulator of α-actinin-4 as synaptopodin. Synaptopodin forms a complex containing α-actinin-4 and β-catenin and interacts with myosin II, indicating that it can physically link adhesion molecules to the cellular contractile apparatus. Synaptopodin depletion prevents junctional accumulation of α-actinin-4, vinculin, and actin. Knockdown of synaptopodin and α-actinin-4 decreases the strength of cell–cell adhesion, reduces the monolayer permeability barrier, and compromises cellular contractility. Our findings underscore the complexity of junction development and implicate a control process via tension-induced sequential incorporation of junctional components.
Collapse
Affiliation(s)
- Nivetha Kannan
- Program in Global Public Health, University of Illinois, Urbana-Champaign, Champaign, IL 61801
| | - Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Champaign, IL 61801
| |
Collapse
|
80
|
Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement. Nat Commun 2015; 6:8872. [PMID: 26602832 PMCID: PMC4696517 DOI: 10.1038/ncomms9872] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 10/12/2015] [Indexed: 01/05/2023] Open
Abstract
Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.
Collapse
|
81
|
Shahbazi MN, Perez-Moreno M. Connections between cadherin-catenin proteins, spindle misorientation, and cancer. Tissue Barriers 2015; 3:e1045684. [PMID: 26451345 DOI: 10.1080/21688370.2015.1045684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 10/25/2022] Open
Abstract
Cadherin-catenin mediated adhesion is an important determinant of tissue architecture in multicellular organisms. Cancer progression and maintenance is frequently associated with loss of their expression or functional activity, which not only leads to decreased cell-cell adhesion, but also to enhanced tumor cell proliferation and loss of differentiated characteristics. This review is focused on the emerging implications of cadherin-catenin proteins in the regulation of polarized divisions through their connections with the centrosomes, cytoskeleton, tissue tension and signaling pathways; and illustrates how alterations in cadherin-catenin levels or functional activity may render cells susceptible to transformation through the loss of their proliferation-differentiation balance.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Department of Physiology, Development, and Neuroscience; University of Cambridge ; Cambridge, UK
| | - Mirna Perez-Moreno
- Epithelial Cell Biology Group; Cancer Cell Biology Program; Spanish National Cancer Research Centre ; Madrid, Spain
| |
Collapse
|
82
|
Jack of all trades: functional modularity in the adherens junction. Curr Opin Cell Biol 2015; 36:32-40. [DOI: 10.1016/j.ceb.2015.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/20/2015] [Accepted: 06/30/2015] [Indexed: 11/22/2022]
|
83
|
Collinet C, Rauzi M, Lenne PF, Lecuit T. Local and tissue-scale forces drive oriented junction growth during tissue extension. Nat Cell Biol 2015; 17:1247-58. [PMID: 26389664 DOI: 10.1038/ncb3226] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/20/2015] [Indexed: 12/16/2022]
Abstract
Convergence-extension is a widespread morphogenetic process driven by polarized cell intercalation. In the Drosophila germ band, epithelial intercalation comprises loss of junctions between anterior-posterior neighbours followed by growth of new junctions between dorsal-ventral neighbours. Much is known about how active stresses drive polarized junction shrinkage. However, it is unclear how tissue convergence-extension emerges from local junction remodelling and what the specific role, if any, of junction growth is. Here we report that tissue convergence and extension correlate mostly with new junction growth. Simulations and in vivo mechanical perturbations reveal that junction growth is due to local polarized stresses driven by medial actomyosin contractions. Moreover, we find that tissue-scale pulling forces at the boundary with the invaginating posterior midgut actively participate in tissue extension by orienting junction growth. Thus, tissue extension is akin to a polarized fluid flow that requires parallel and concerted local and tissue-scale forces to drive junction growth and cell-cell displacement.
Collapse
Affiliation(s)
- Claudio Collinet
- Aix Marseille Université, CNRS, IBDM UMR7288 13009 Marseille, France
| | - Matteo Rauzi
- EMBL Heidelberg, Meyerhofstrasse 1 69117 Heidelberg, Germany
| | | | - Thomas Lecuit
- Aix Marseille Université, CNRS, IBDM UMR7288 13009 Marseille, France
| |
Collapse
|
84
|
Aydogan V, Lenard A, Denes AS, Sauteur L, Belting HG, Affolter M. Endothelial cell division in angiogenic sprouts of differing cellular architecture. Biol Open 2015; 4:1259-69. [PMID: 26369932 PMCID: PMC4610218 DOI: 10.1242/bio.012740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The vasculature of the zebrafish trunk is composed of tubes with different cellular architectures. Unicellular tubes form their lumen through membrane invagination and transcellular cell hollowing, whereas multicellular vessels become lumenized through a chord hollowing process. Endothelial cell proliferation is essential for the subsequent growth and maturation of the blood vessels. However, how cell division, lumen formation and cell rearrangement are coordinated during angiogenic sprouting has so far not been investigated at detailed cellular level. Reasoning that different tubular architectures may impose discrete mechanistic constraints on endothelial cell division, we analyzed and compared the sequential steps of cell division, namely mitotic rounding, cytokinesis, actin re-distribution and adherence junction formation, in different blood vessels. In particular, we characterized the interplay between cell rearrangement, mitosis and lumen dynamics within unicellular and multicellular tubes. The lumen of unicellular tubes becomes constricted and is ultimately displaced from the plane of cell division, where a de novo junction forms through the recruitment of junctional proteins at the site of abscission. By contrast, the new junctions separating the daughter cells within multicellular tubes form through the alteration of pre-existing junctions, and the lumen is retained throughout mitosis. We also describe variations in the progression of cytokinesis: while membrane furrowing between daughter cells is symmetric in unicellular tubes, we found that it is asymmetric in those multicellular tubes that contained a taut intercellular junction close to the plane of division. Our findings illustrate that during the course of normal development, the cell division machinery can accommodate multiple tube architectures, thereby avoiding disruptions to the vascular network.
Collapse
Affiliation(s)
- Vahap Aydogan
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Anna Lenard
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | | | - Loic Sauteur
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| |
Collapse
|
85
|
Imaging and quantitative analysis of cytokinesis in developing brains of Kinesin-6 mutant mice. Methods Cell Biol 2015; 131:233-52. [PMID: 26794517 DOI: 10.1016/bs.mcb.2015.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytokinesis in neural progenitors occurs with specialized constraints due to their highly polarized structure and the need for both symmetric and asymmetric divisions. They must produce proper numbers of progenitors, neurons, and glia in a precise order. Yet very few functional studies of cytokinesis have been done in the developing brain. To elucidate mechanisms of cytokinesis during brain development, we designed a novel method to study cytokinesis in whole mount "slabs" of embryonic mouse cerebral cortex. It takes advantage of cytokinesis occurring on the ventricular surface of the cortex and allows examination of cytokinesis across many cells in the context of an intact brain tissue. The cortical slabs can be fixed for immunohistochemistry or used in live imaging experiments. In particular, we investigated mutants of the Kinesin-6, Kif20b, which show defects in cytokinetic abscission and have small brains. Here, we describe how to dissect neocortex from embryonic cerebral hemispheres, immunostain the cortical slabs for cytokinetic midbodies and other structures, and image the apical surface. We show how to quantitatively analyze apical structures including midbody numbers, organization, and morphology. New images and analyses of Kif20b(magoo) loss of function mutants are shown. Applying and adapting these types of analyses to other cytoskeletal proteins and mouse mutants will help advance our understanding on how the embryonic neuroepithelium generates neurons and builds the brain.
Collapse
|
86
|
Denes AS, Kanca O, Affolter M. A cellular process that includes asymmetric cytokinesis remodels the dorsal tracheal branches in Drosophila larvae. Development 2015; 142:1794-805. [PMID: 25968315 DOI: 10.1242/dev.118372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tubular networks are central to the structure and function of many organs, such as the vertebrate lungs or the Drosophila tracheal system. Their component epithelial cells are able to proliferate and to undergo complex morphogenetic movements, while maintaining their barrier function. Little is known about the details of the mitotic process in tubular epithelia. Our study presents a comprehensive model of cellular remodeling and proliferation in the dorsal branches of third-instar Drosophila larvae. Through a combination of immunostaining and novel live imaging techniques, we identify the key steps in the transition from a unicellular to a multicellular tube. Junctional remodeling precedes mitosis and, as the cells divide, new junctions are formed through several variations of what we refer to as 'asymmetric cytokinesis'. Depending on the spacing of cells along the dorsal branch, mitosis can occur either before or after the transition to a multicellular tube. In both instances, cell separation is accomplished through asymmetric cytokinesis, a process that is initiated by the ingression of the cytokinetic ring. Unequal cell compartments are a possible but rare outcome of completing mitosis through this mechanism. We also found that the Dpp signaling pathway is required but not sufficient for cell division in the dorsal branches.
Collapse
Affiliation(s)
| | - Oguz Kanca
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel CH 4056, Switzerland
| | - Markus Affolter
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel CH 4056, Switzerland
| |
Collapse
|
87
|
E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat Cell Biol 2015; 17:533-9. [PMID: 25925582 DOI: 10.1038/ncb3136] [Citation(s) in RCA: 385] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During epithelial morphogenesis, E-cadherin adhesive junctions play an important part in mechanically coupling the contractile cortices of cells together, thereby distributing the stresses that drive cell rearrangements at both local and tissue levels. Here we discuss the concept that cellular contractility and E-cadherin-based adhesion are functionally integrated by biomechanical feedback pathways that operate on molecular, cellular and tissue scales.
Collapse
|
88
|
Rodal AA, Del Signore SJ, Martin AC. Drosophila comes of age as a model system for understanding the function of cytoskeletal proteins in cells, tissues, and organisms. Cytoskeleton (Hoboken) 2015; 72:207-24. [PMID: 26074334 DOI: 10.1002/cm.21228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 01/30/2023]
Abstract
For the last 100 years, Drosophila melanogaster has been a powerhouse genetic system for understanding mechanisms of inheritance, development, and behavior in animals. In recent years, advances in imaging and genetic tools have led to Drosophila becoming one of the most effective systems for unlocking the subcellular functions of proteins (and particularly cytoskeletal proteins) in complex developmental settings. In this review, written for non-Drosophila experts, we will discuss critical technical advances that have enabled these cell biological insights, highlighting three examples of cytoskeletal discoveries that have arisen as a result: (1) regulation of Arp2/3 complex in myoblast fusion, (2) cooperation of the actin filament nucleators Spire and Cappuccino in establishment of oocyte polarity, and (3) coordination of supracellular myosin cables. These specific examples illustrate the unique power of Drosophila both to uncover new cytoskeletal structures and functions, and to place these discoveries in a broader in vivo context, providing insights that would have been impossible in a cell culture model or in vitro. Many of the cellular structures identified in Drosophila have clear counterparts in mammalian cells and tissues, and therefore elucidating cytoskeletal functions in Drosophila will be broadly applicable to other organisms.
Collapse
Affiliation(s)
- Avital A Rodal
- Department of Biology, Brandeis University, Waltham, Massachusetts
| | | | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
89
|
Rosa A, Vlassaks E, Pichaud F, Baum B. Ect2/Pbl acts via Rho and polarity proteins to direct the assembly of an isotropic actomyosin cortex upon mitotic entry. Dev Cell 2015; 32:604-16. [PMID: 25703349 PMCID: PMC4359025 DOI: 10.1016/j.devcel.2015.01.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 10/06/2014] [Accepted: 01/14/2015] [Indexed: 02/06/2023]
Abstract
Entry into mitosis is accompanied by profound changes in cortical actomyosin organization. Here, we delineate a pathway downstream of the RhoGEF Pbl/Ect2 that directs this process in a model epithelium. Our data suggest that the release of Pbl/Ect2 from the nucleus at mitotic entry drives Rho-dependent activation of Myosin-II and, in parallel, induces a switch from Arp2/3 to Diaphanous-mediated cortical actin nucleation that depends on Cdc42, aPKC, and Par6. At the same time, the mitotic relocalization of these apical protein complexes to more lateral cell surfaces enables Cdc42/aPKC/Par6 to take on a mitosis-specific function—aiding the assembly of a relatively isotropic metaphase cortex. Together, these data reveal how the repolarization and remodeling of the actomyosin cortex are coordinated upon entry into mitosis to provide cells with the isotropic and rigid form they need to undergo faithful chromosome segregation and division in a crowded tissue environment. Pbl/Ect2 drives a shift in epithelial polarity upon entry into mitosis Lateral spreading of Cdc42/aPKC/Par6 aids assembly of an isotropic metaphase cortex Mitosis triggers a switch from Arp2/3 to Dia-mediated cortical actin nucleation
Collapse
Affiliation(s)
- André Rosa
- MRC Laboratory of Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK; Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, 4200-465 Porto, Portugal
| | - Evi Vlassaks
- MRC Laboratory of Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Franck Pichaud
- MRC Laboratory of Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Buzz Baum
- MRC Laboratory of Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
90
|
Menon MB, Gaestel M. Sep(t)arate or not – how some cells take septin-independent routes through cytokinesis. J Cell Sci 2015; 128:1877-86. [PMID: 25690008 DOI: 10.1242/jcs.164830] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cytokinesis is the final step of cell division, and is a process that requires a precisely coordinated molecular machinery to fully separate the cytoplasm of the parent cell and to establish the intact outer cell barrier of the daughter cells. Among various cytoskeletal proteins involved, septins are known to be essential mediators of cytokinesis. In this Commentary, we present recent observations that specific cell divisions can proceed in the absence of the core mammalian septin SEPT7 and its Drosophila homolog Peanut (Pnut) and that thus challenge the view that septins have an essential role in cytokinesis. In the pnut mutant neuroepithelium, orthogonal cell divisions are successfully completed. Similarly, in the mouse, Sept7-null mutant early embryonic cells and, more importantly, planktonically growing adult hematopoietic cells undergo productive proliferation. Hence, as discussed here, mechanisms must exist that compensate for the lack of SEPT7 and the other core septins in a cell-type-specific manner. Despite there being crucial non-canonical immune-relevant functions of septins, septin depletion is well tolerated by the hematopoietic system. Thus differential targeting of cytokinesis could form the basis for more specific anti-proliferative therapies to combat malignancies arising from cell types that require septins for cytokinesis, such as carcinomas and sarcomas, without impairing hematopoiesis that is less dependent on septin.
Collapse
Affiliation(s)
- Manoj B Menon
- Institute of Physiological Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Matthias Gaestel
- Institute of Physiological Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
91
|
Abstract
Cell division ends with the physical separation of the two daughter cells, a process known as cytokinesis. This final event ensures that nuclear and cytoplasmic contents are accurately partitioned between the two nascent cells. Cytokinesis is one of the most dramatic changes in cell shape and requires an extensive reorganization of the cell's cytoskeleton. Here, we describe the cytoskeletal structures, factors, and signaling pathways that orchestrate this robust and yet highly dynamic process in animal cells. Finally, we discuss possible future directions in this growing area of cell division research and its implications in human diseases, including cancer.
Collapse
Affiliation(s)
- Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari c/o Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, 00185 Roma, Italy
| | - Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK-London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| |
Collapse
|
92
|
Sain A, Inamdar MM, Jülicher F. Dynamic force balances and cell shape changes during cytokinesis. PHYSICAL REVIEW LETTERS 2015; 114:048102. [PMID: 25679910 DOI: 10.1103/physrevlett.114.048102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Indexed: 06/04/2023]
Abstract
During the division of animal cells, an actomyosin ring is formed in the cell cortex. The contraction of this ring induces shape changes of the cell and the formation of a cytokinesis furrow. In many cases, a cell-cell interface forms that separates the two new cells. Here we present a simple physical description of the cell shape changes and the dynamics of the interface closure, based on force balances involving active stresses and viscous friction. We discuss conditions in which the interface closure is either axially symmetric or asymmetric. We show that our model can account for the observed dynamics of ring contraction and interface closure in the C. elegans embryo.
Collapse
Affiliation(s)
- Anirban Sain
- Physics Department, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India
| | - Frank Jülicher
- Max-Planck-Institute for the Physics of Complex Systems Nöthnitzer Strasse 38, 01187 Dresden, Germany
| |
Collapse
|
93
|
Abstract
Epithelia are polarized layers of adherent cells that are the building blocks for organ and appendage structures throughout animals. To preserve tissue architecture and barrier function during both homeostasis and rapid growth, individual epithelial cells divide in a highly constrained manner. Building on decades of research focused on single cells, recent work is probing the mechanisms by which the dynamic process of mitosis is reconciled with the global maintenance of epithelial order during development. These studies reveal how symmetrically dividing cells both exploit and conform to tissue organization to orient their mitotic spindles during division and establish new adhesive junctions during cytokinesis.
Collapse
Affiliation(s)
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO 64110 Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS 66160
| |
Collapse
|
94
|
Ishimoto Y, Morishita Y. Bubbly vertex dynamics: A dynamical and geometrical model for epithelial tissues with curved cell shapes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052711. [PMID: 25493820 DOI: 10.1103/physreve.90.052711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Indexed: 06/04/2023]
Abstract
In order to describe two-dimensionally packed cells in epithelial tissues both mathematically and physically, there have been developed several sorts of geometrical models, such as the vertex model, the finite element model, the cell-centered model, and the cellular Potts model. So far, in any case, pressures have not neatly been dealt with and the curvatures of the cell boundaries have been even omitted through their approximations. We focus on these quantities and formulate them in the vertex model. Thus, a model with the curvatures is constructed, and its algorithm for simulation is provided. The possible extensions and applications of this model are also discussed.
Collapse
Affiliation(s)
- Yukitaka Ishimoto
- Laboratory for Developmental Morphogeometry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| |
Collapse
|
95
|
Bourdages KG, Lacroix B, Dorn JF, Descovich CP, Maddox AS. Quantitative analysis of cytokinesis in situ during C. elegans postembryonic development. PLoS One 2014; 9:e110689. [PMID: 25329167 PMCID: PMC4203819 DOI: 10.1371/journal.pone.0110689] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022] Open
Abstract
The physical separation of a cell into two daughter cells during cytokinesis requires cell-intrinsic shape changes driven by a contractile ring. However, in vivo, cells interact with their environment, which includes other cells. How cytokinesis occurs in tissues is not well understood. Here, we studied cytokinesis in an intact animal during tissue biogenesis. We used high-resolution microscopy and quantitative analysis to study the three rounds of division of the C. elegans vulval precursor cells (VPCs). The VPCs are cut in half longitudinally with each division. Contractile ring breadth, but not the speed of ring closure, scales with cell length. Furrowing speed instead scales with division plane dimensions, and scaling is consistent between the VPCs and C. elegans blastomeres. We compared our VPC cytokinesis kinetics data with measurements from the C. elegans zygote and HeLa and Drosophila S2 cells. Both the speed dynamics and asymmetry of ring closure are qualitatively conserved among cell types. Unlike in the C. elegans zygote but similar to other epithelial cells, Anillin is required for proper ring closure speed but not asymmetry in the VPCs. We present evidence that tissue organization impacts the dynamics of cytokinesis by comparing our results on the VPCs with the cells of the somatic gonad. In sum, this work establishes somatic lineages in post-embryonic C. elegans development as cell biological models for the study of cytokinesis in situ.
Collapse
Affiliation(s)
- Karine G. Bourdages
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Benjamin Lacroix
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Jonas F. Dorn
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
- Advanced Quantitative Sciences, Novartis Pharma AG, Basel, Switzerland
| | - Carlos P. Descovich
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Amy S. Maddox
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
96
|
Lye CM, Naylor HW, Sanson B. Subcellular localisations of the CPTI collection of YFP-tagged proteins in Drosophila embryos. Development 2014; 141:4006-17. [PMID: 25294944 PMCID: PMC4197698 DOI: 10.1242/dev.111310] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/20/2014] [Indexed: 12/18/2022]
Abstract
A key challenge in the post-genomic area is to identify the function of the genes discovered, with many still uncharacterised in all metazoans. A first step is transcription pattern characterisation, for which we now have near whole-genome coverage in Drosophila. However, we have much more limited information about the expression and subcellular localisation of the corresponding proteins. The Cambridge Protein Trap Consortium generated, via piggyBac transposition, over 600 novel YFP-trap proteins tagging just under 400 Drosophila loci. Here, we characterise the subcellular localisations and expression patterns of these insertions, called the CPTI lines, in Drosophila embryos. We have systematically analysed subcellular localisations at cellularisation (stage 5) and recorded expression patterns at stage 5, at mid-embryogenesis (stage 11) and at late embryogenesis (stages 15-17). At stage 5, 31% of the nuclear lines (41) and 26% of the cytoplasmic lines (67) show discrete localisations that provide clues on the function of the protein and markers for organelles or regions, including nucleoli, the nuclear envelope, nuclear speckles, centrosomes, mitochondria, the endoplasmic reticulum, Golgi, lysosomes and peroxisomes. We characterised the membranous/cortical lines (102) throughout stage 5 to 10 during epithelial morphogenesis, documenting their apico-basal position and identifying those secreted in the extracellular space. We identified the tricellular vertices as a specialized membrane domain marked by the integral membrane protein Sidekick. Finally, we categorised the localisation of the membranous/cortical proteins during cytokinesis.
Collapse
Affiliation(s)
- Claire M Lye
- The Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Huw W Naylor
- The Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Bénédicte Sanson
- The Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
97
|
Dolat L, Hu Q, Spiliotis ET. Septin functions in organ system physiology and pathology. Biol Chem 2014; 395:123-41. [PMID: 24114910 DOI: 10.1515/hsz-2013-0233] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/08/2013] [Indexed: 02/07/2023]
Abstract
Human septins comprise a family of 13 genes that encode for >30 protein isoforms with ubiquitous and tissue-specific expressions. Septins are GTP-binding proteins that assemble into higher-order oligomers and filamentous polymers, which associate with cell membranes and the cytoskeleton. In the last decade, much progress has been made in understanding the biochemical properties and cell biological functions of septins. In parallel, a growing number of studies show that septins play important roles for the development and physiology of specific tissues and organs. Here, we review the expression and function of septins in the cardiovascular, immune, nervous, urinary, digestive, respiratory, endocrine, reproductive, and integumentary organ systems. Furthermore, we discuss how the tissue-specific functions of septins relate to the pathology of human diseases that arise from aberrations in septin expression.
Collapse
|
98
|
Wang T, Yanger K, Stanger BZ, Cassio D, Bi E. Cytokinesis defines a spatial landmark for hepatocyte polarization and apical lumen formation. J Cell Sci 2014; 127:2483-92. [PMID: 24706948 DOI: 10.1242/jcs.139923] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
By definition, all epithelial cells have apical-basal polarity, but it is unclear how epithelial polarity is acquired and how polarized cells engage in tube formation. Here, we show that hepatocyte polarization is linked to cytokinesis using the rat hepatocyte cell line Can 10. Before abscission, polarity markers are delivered to the site of cell division in a strict spatiotemporal order. Immediately after abscission, daughter cells remain attached through a unique disc-shaped structure, which becomes the site for targeted exocytosis, resulting in the formation of a primitive bile canaliculus. Subsequently, oriented cell division and asymmetric cytokinesis occur at the bile canaliculus midpoint, resulting in its equal partitioning into daughter cells. Finally, successive cycles of oriented cell division and asymmetric cytokinesis lead to the formation of a tubular bile canaliculus, which is shared by two rows of hepatocytes. These findings define a novel mechanism for cytokinesis-linked polarization and tube formation, which appears to be broadly conserved in diverse cell types.
Collapse
Affiliation(s)
- Ting Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kilangsungla Yanger
- Gastroenterology Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben Z Stanger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Gastroenterology Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Doris Cassio
- INSERM, UMR-S 757, Université Paris-Sud, Orsay, F-91405, France
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
99
|
Mavrakis M, Azou-Gros Y, Tsai FC, Alvarado J, Bertin A, Iv F, Kress A, Brasselet S, Koenderink GH, Lecuit T. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles. Nat Cell Biol 2014; 16:322-34. [PMID: 24633326 DOI: 10.1038/ncb2921] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 01/23/2014] [Indexed: 11/09/2022]
Abstract
Animal cell cytokinesis requires a contractile ring of crosslinked actin filaments and myosin motors. How contractile rings form and are stabilized in dividing cells remains unclear. We address this problem by focusing on septins, highly conserved proteins in eukaryotes whose precise contribution to cytokinesis remains elusive. We use the cleavage of the Drosophila melanogaster embryo as a model system, where contractile actin rings drive constriction of invaginating membranes to produce an epithelium in a manner akin to cell division. In vivo functional studies show that septins are required for generating curved and tightly packed actin filament networks. In vitro reconstitution assays show that septins alone bundle actin filaments into rings, accounting for the defects in actin ring formation in septin mutants. The bundling and bending activities are conserved for human septins, and highlight unique functions of septins in the organization of contractile actomyosin rings.
Collapse
Affiliation(s)
- Manos Mavrakis
- Institut de Biologie du Développement de Marseille, CNRS UMR 7288, Aix-Marseille Université, 13288 Marseille, France
| | - Yannick Azou-Gros
- Institut de Biologie du Développement de Marseille, CNRS UMR 7288, Aix-Marseille Université, 13288 Marseille, France
| | - Feng-Ching Tsai
- 1] FOM Institute AMOLF, 1098 XG Amsterdam, The Netherlands [2]
| | - José Alvarado
- 1] FOM Institute AMOLF, 1098 XG Amsterdam, The Netherlands [2]
| | - Aurélie Bertin
- 1] Institut Curie, CNRS UMR 168, 75231 Paris, France [2]
| | - Francois Iv
- Institut de Biologie du Développement de Marseille, CNRS UMR 7288, Aix-Marseille Université, 13288 Marseille, France
| | - Alla Kress
- Institut Fresnel, CNRS UMR 7249, Aix-Marseille Université, Ecole Centrale Marseille, 13397 Marseille, France
| | - Sophie Brasselet
- Institut Fresnel, CNRS UMR 7249, Aix-Marseille Université, Ecole Centrale Marseille, 13397 Marseille, France
| | | | - Thomas Lecuit
- Institut de Biologie du Développement de Marseille, CNRS UMR 7288, Aix-Marseille Université, 13288 Marseille, France
| |
Collapse
|
100
|
Abstract
Cadherins are transmembrane proteins that mediate cell-cell adhesion in animals. By regulating contact formation and stability, cadherins play a crucial role in tissue morphogenesis and homeostasis. Here, we review the three major functions of cadherins in cell-cell contact formation and stability. Two of those functions lead to a decrease in interfacial tension at the forming cell-cell contact, thereby promoting contact expansion--first, by providing adhesion tension that lowers interfacial tension at the cell-cell contact, and second, by signaling to the actomyosin cytoskeleton in order to reduce cortex tension and thus interfacial tension at the contact. The third function of cadherins in cell-cell contact formation is to stabilize the contact by resisting mechanical forces that pull on the contact.
Collapse
|