51
|
Han X, Burrows M, Kim LC, Xu JP, Vostrejs W, Van Le TN, Poltorack C, Jiang Y, Cukierman E, Stanger BZ, Reiss KA, Shaffer SM, Mesaros C, Keith B, Simon MC. Cancer-associated fibroblasts maintain critical pancreatic cancer cell lipid homeostasis in the tumor microenvironment. Cell Rep 2024; 43:114972. [PMID: 39535921 PMCID: PMC11648993 DOI: 10.1016/j.celrep.2024.114972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with abundant cancer-associated fibroblasts (CAFs) creating hallmark desmoplasia that limits oxygen and nutrient delivery. This study explores the importance of lipid homeostasis under stress. Exogenous unsaturated lipids, rather than de novo synthesis, sustain PDAC cell viability by relieving endoplasmic reticulum (ER) stress under nutrient scarcity. Furthermore, CAFs are less hypoxic than adjacent malignant cells in vivo, nominating them as a potential source of unsaturated lipids. CAF-conditioned medium promotes PDAC cell survival upon nutrient and oxygen deprivation, an effect reversed by delipidation. Lysophosphatidylcholines (LPCs) are particularly enriched in CAF-conditioned medium and preferentially taken up by PDAC cells, where they are converted to phosphatidylcholine (PC) to sustain membrane integrity. Blocking LPC-to-PC conversion inhibits PDAC cell survival and increases ER stress. These findings show a critical lipid "cross-feeding" mechanism that promotes PDAC cell survival, offering a potential metabolic target for treatment.
Collapse
Affiliation(s)
- Xu Han
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle Burrows
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura C Kim
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jimmy P Xu
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Will Vostrejs
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tran Ngoc Van Le
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carson Poltorack
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Jiang
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edna Cukierman
- Cancer Signaling & Microenvironment Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111, USA
| | - Ben Z Stanger
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim A Reiss
- Division of Hematology-Oncology, Penn Medicine Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Sydney M Shaffer
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Keith
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
52
|
Feng J, Bin JL, Liao XW, Wu Y, Tang Y, Lu PZ, Zhu GZ, Cui QR, Dan YY, Yang GH, Li LX, Deng JH, Peng T, Hooi SC, Zhou J, Lu GD. The prognostic role of ACSL4 in postoperative adjuvant TACE-treated HCC: implications for therapeutic response and mechanistic insights. J Exp Clin Cancer Res 2024; 43:306. [PMID: 39563427 PMCID: PMC11575417 DOI: 10.1186/s13046-024-03222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The response of hepatocellular carcinoma (HCC) to transarterial chemoembolization (TACE) treatment and its underlying mechanisms remain elusive. This study investigates the role of enzymes involved in fatty acid activation, specifically Acyl-CoA synthetase long chain 4 (ACSL4), in HCC patients treated with postoperative adjuvant TACE (PA-TACE) and in nutrient-deprived HCC cells. METHODS We examined the expression of ACSL4 and its family members in HCC clinical samples and cell lines. The clinical significance of ACSL4, particularly regarding the prognosis of patients treated with PA-TACE, was assessed using two independent HCC cohorts. We further explored the role of ACSL4 in glucose starvation-induced cell death in HCC cells and xenograft mouse models. RESULTS Among the family members, ACSL4 is the most up-regulated enzyme, associated with poor survival in HCC patients, particularly in post-recurrent TACE-treated patients in a Singapore cohort. ACSL4 is essential for HCC cell survival in response to glucose starvation, rather than to hypoxia or to the combination of hypoxia with doxorubicin or cisplatin. ACSL4-mediated arachidonic acid (AA) metabolism supports mitochondrial β-oxidation and energy production. CCAAT/enhancer binding protein α (CEBPA) transcriptionally regulates ACSL4 by binding 3 motifs (-623 to -613, -1197 to -1187 and -1745 to -1735) of ACSL4 upstream promoter region, enhancing its pro-survival effects. Furthermore, canagliflozin (Cana), a clinical-approved drug for type 2 diabetes, mimics glucose starvation and inhibits the growth of ACSL4-low xenograft tumors. Moreover, high ACSL4 or CEBPA expressions correlate with increased recurrence susceptibility after PA-TACE in the China-Guangxi HCC cohort. CONCLUSIONS The CEBPA-ACSL4 pathway is critical in protecting HCC cells from glucose starvation-induced cell death, suggesting that ACSL4 and CEBPA could serve as valuable prognostic indicators and potential therapeutic targets in the context of PA-TACE treatment for HCC.
Collapse
Affiliation(s)
- Ji Feng
- School of Public Health, Fudan University, 130 Dong-An Road, Shanghai, 200032, China
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Basic Research On Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Jin-Lian Bin
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Yong Wu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yue Tang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Pei-Zhi Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Qian-Ru Cui
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Yock Young Dan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Guo-Huan Yang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li-Xin Li
- Department of Hepato-Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing-Huan Deng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education; Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, (Guangxi Medical University), Nanning, Guangxi, 530021, China.
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore, 117593, Singapore.
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China.
| | - Guo-Dong Lu
- School of Public Health, Fudan University, 130 Dong-An Road, Shanghai, 200032, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education; Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, (Guangxi Medical University), Nanning, Guangxi, 530021, China.
| |
Collapse
|
53
|
Zheng Y, Li Y, Zheng C, Yang L, Zhang C, Huang Y, Wang Y, Qian T. A low-fat amino acid diet reverses intestinal failure and shows good growth trends in five infants with diacylglycerol transferase 1 (DGAT1) deficiency: a prospective cohort study. Lipids Health Dis 2024; 23:379. [PMID: 39548446 PMCID: PMC11566179 DOI: 10.1186/s12944-024-02348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Congenital diarrheas and enteropathies (CODEs) caused by diacylglycerol transferase 1 (DGAT1) mutations often cause disease within 2 weeks after birth. If not treated properly, the disease can be life-threatening; therefore, early diagnosis and rational treatment strategies are essential. This study was conducted to improve the understanding of congenital diarrhea caused by DGAT1 deficiency. METHODS Clinical data from five congenital diarrhea infant cases caused by DGAT1 deficiency were analyzed. Infants were prospectively provided with a nutritional intervention with a low-fat amino acid formula for special medical purposes (FSMP). Their gastrointestinal symptoms and nutritional complications before and after interventions were compared. RESULTS Due to poor weight gain and gastrointestinal symptoms after birth, infants were treated by our clinical nutritionist. Genetic testing confirmed a compound heterozygous mutation in DGAT1. Neither hydrolyzed nor high-medium chain triglyceride (MCT) formula significantly alleviated diarrheal symptoms; however, a low-fat amino acid diet rapidly relieved symptoms and significantly improved nutritional status, with infants showing better tolerance to dietary fat content with age. CONCLUSIONS Infants with DGAT1 deficiency can be diagnosed by genetic testing. A low-fat amino acid FSMP formula and diet can quickly relieve diarrhea, vomiting, and other symptoms, and also improve infant growth and development. TRIAL REGISTRATION Ethical approval was obtained from the Medical Ethics Committee of the Children's Hospital of Fudan University (reference code: No.(2022)405).
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Clinical Nutrition Department, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Yongzhen Li
- Clinical Nutrition Department, Starkids Children's Hospital, Shanghai, China
- New Hong Qiao Campus for Children's Hospital of Fudan University, Shanghai, China
| | - Cuifang Zheng
- Gastroenterology Department, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Department of Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Chongfan Zhang
- Clinical Guide Making and Evaluation Centre, Children's Hospital of Fudan University, Shanghai, China
| | - Ying Huang
- Gastroenterology Department, Children's Hospital of Fudan University, Shanghai, China
| | - Yuhuan Wang
- Gastroenterology Department, Children's Hospital of Fudan University, Shanghai, China
| | - Tian Qian
- Clinical Nutrition Department, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai, 201102, China.
| |
Collapse
|
54
|
Zhang C, Zheng M, Bai R, Chen J, Yang H, Luo G. Molecular mechanisms of lipid droplets-mitochondria coupling in obesity and metabolic syndrome: insights and pharmacological implications. Front Physiol 2024; 15:1491815. [PMID: 39588271 PMCID: PMC11586377 DOI: 10.3389/fphys.2024.1491815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024] Open
Abstract
Abnormal lipid accumulation is a fundamental contributor to obesity and metabolic disorders. Lipid droplets (LDs) and mitochondria (MT) serve as organelle chaperones in lipid metabolism and energy balance. LDs play a crucial role in lipid storage and mobilization, working in conjunction with MT to regulate lipid metabolism within the liver, brown adipose tissue, and skeletal muscle, thereby maintaining metabolic homeostasis. The novelty of our review is the comprehensive description of LD and MT interaction mechanisms. We also focus on the current drugs that target this metabolism, which provide novel approaches for obesity and related metabolism disorder treatment.
Collapse
Affiliation(s)
- Chunmei Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Zheng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Runlin Bai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiale Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gan Luo
- Department of Orthopedics, Chengdu Integrated Traditional Chinese Medicine & Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
| |
Collapse
|
55
|
Wang LJ, Lai XH, Luo Z, Feng GL, Song YF. Diallyl disulfide alleviates hepatic steatosis by the conservative mechanism from fish to tetrapod: Augment Mfn2/Atgl-Mediated lipid droplet-mitochondria coupling. Redox Biol 2024; 77:103395. [PMID: 39447254 PMCID: PMC11539707 DOI: 10.1016/j.redox.2024.103395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Despite increasing evidences has highlighted the importance of mitochondria-lipid droplet (LD) coupling in maintaining lipid homeostasis, little progress in unraveling the role of mitochondria-LD coupling in hepatic lipid metabolism has been made. Additionally, diallyl disulfide (DADS), a garlic organosulfur compound, has been proposed to prevent hepatic steatosis; however, no studies have focused on the molecular mechanism to date. To address these gaps, this study investigated the systemic control mechanisms of mitochondria-LD coupling regulating hepatic lipid metabolism, and also explored their function in the process of DADS alleviating hepatic steatosis. To this end, an animal model of lipid metabolism, yellow catfish Pelteobagrus fulvidraco were fed four different diets (control, high-fat, DADS and high-fat + DADS diet) in vivo for 8 weeks; in vitro experiments were conducted to inhibit Mfn2/Atgl-mediated mitochondria-LD coupling in isolated hepatocytes. The key findings are: (1) the activations of hepatic LDs lipolysis and mitochondrial β-oxidation are likely the major drivers for DADS alleviating hepatic steatosis; (2) the underlying mechanism is that DADS enhances mitochondria-LD coupling by promoting the interaction between mitochondrion-localized Mfn2 with LD-localized Atgl, which facilitates the hepatic LDs lipolysis and the transfer of fatty acids (FAs) from LDs to mitochondria for subsequent β-oxidation; (3) Mfn2-mediated mitochondrial fusion facilitates mitochondria to form more PDM, which possess higher β-oxidation capacity in hepatocytes. Significantly, the present research unveils a previously undisclosed mechanism by which Mfn2/Atgl-mitochondria-LD coupling relieves hepatic LDs accumulation, which is a conserved strategy from fish to tetrapod. This study provides another dimension for mitochondria-LD coupling and opens up new avenues for the therapeutic interventions in hepatic steatosis.
Collapse
Affiliation(s)
- Ling-Jiao Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Hong Lai
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Guang-Li Feng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
56
|
Wang S, Zhang B, Mauck J, Loor JJ, Fan W, Tian Y, Yang T, Chang Y, Xie M, Aernouts B, Yang W, Xu C. Diacylglycerol O-acyltransferase isoforms play a role in peridroplet mitochondrial fatty acid metabolism in bovine liver. J Dairy Sci 2024; 107:9897-9914. [PMID: 38851581 DOI: 10.3168/jds.2024-24738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024]
Abstract
Hepatocellular lipid accumulation characterizes fatty liver in dairy cows. Lipid droplets (LD), specialized organelles that store lipids and maintain cellular lipid homeostasis, are responsible for the ectopic storage of lipids associated with several metabolic disorders. In recent years, nonruminant studies have reported that LD-mitochondria interactions play an important role in lipid metabolism. Due to the role of diacylglycerol acyltransferase isoforms (DGAT1 and DGAT2) in LD synthesis, we explored mechanisms of mitochondrial fatty acid transport in ketotic cows using liver biopsies and isolated primary hepatocytes. Compared with healthy cows, cows with fatty liver had massive accumulation of LD and high protein expression of the triglyceride (TAG) synthesis-related enzymes DGAT1 and DGAT2, LD synthesis-related proteins perilipin 2 (PLIN2) and perilipin 5 (PLIN5), and the mitochondrial fragmentation-related proteins dynamin-related protein 1 (DRP1) and fission 1 (FIS1). In contrast, factors associated with fatty acid oxidation, mitochondrial fusion, and mitochondrial electron transport chain complex were lower compared with those in the healthy cows. In addition, transmission electron microscopy revealed significant contacts between LD-mitochondria in liver tissue from cows with fatty liver. Compared with isolated cytoplasmic mitochondria, expression of carnitine palmitoyl transferase 1A (CPT1A) and DRP1 was lower, but mitofusin 2 (MFN2) and mitochondrial electron transport chain complex was greater in isolated peridroplet mitochondria from hepatic tissue of cows with fatty liver. In vitro data indicated that exogenous free fatty acids (FFA) induced hepatocyte LD synthesis and mitochondrial dynamics consistent with in vivo results. Furthermore, DGAT2 inhibitor treatment attenuated the FFA-induced upregulation of PLIN2 and PLIN5 and rescued the impairment of mitochondrial dynamics. Inhibition of DGAT2 also restored mitochondrial membrane potential and reduced hepatocyte reactive oxygen species production. The present in vivo and in vitro results indicated functional differences are present among different types of mitochondria in the liver tissue of dairy cows with ketosis. Activity of DGAT2 may play a key role in maintaining liver mitochondrial function and lipid homeostasis in dairy cows during the transition period.
Collapse
Affiliation(s)
- Shuang Wang
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - John Mauck
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Wenwen Fan
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yan Tian
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Tianjiao Yang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yaqi Chang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Meng Xie
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ben Aernouts
- KU Leuven, Department of Biosystems, Biosystems Technology Cluster, Campus Geel, 2440 Geel, Belgium
| | - Wei Yang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
57
|
Jang W, Haucke V. ER remodeling via lipid metabolism. Trends Cell Biol 2024; 34:942-954. [PMID: 38395735 DOI: 10.1016/j.tcb.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Unlike most other organelles found in multiple copies, the endoplasmic reticulum (ER) is a unique singular organelle within eukaryotic cells. Despite its continuous membrane structure, encompassing more than half of the cellular endomembrane system, the ER is subdivided into specialized sub-compartments, including morphological, membrane contact site (MCS), and de novo organelle biogenesis domains. In this review, we discuss recent emerging evidence indicating that, in response to nutrient stress, cells undergo a reorganization of these sub-compartmental ER domains through two main mechanisms: non-destructive remodeling of morphological ER domains via regulation of MCS and organelle hitchhiking, and destructive remodeling of specialized domains by ER-phagy. We further highlight and propose a critical role of membrane lipid metabolism in this ER remodeling during starvation.
Collapse
Affiliation(s)
- Wonyul Jang
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
58
|
Hu H, Cao B, Huang D, Lin Y, Zhou B, Ying J, Huang L, Zhang L. Withaferin a modulation of microglia autophagy mitigates neuroinflammation and enhances cognitive function in POCD. Sci Rep 2024; 14:26112. [PMID: 39478022 PMCID: PMC11525708 DOI: 10.1038/s41598-024-75284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
With the aging process of the global population and the development of medical technology, the cases of postoperative cognitive dysfunction (POCD) are also increasing. Due to the complexity of the pathogenesis, urgent treatment has been sought. Neuroinflammation induced by the accumulation of lipid droplets (LDs) in microglia has been closely watched in recent years and is also considered to be an important cause of nerve damage. Our study found that derived from Withania somnifera, Withaferin A (WA) could reduce the accumulation of LDs in the hippocampus of POCD mice, inhibit the expression of inflammatory factor interleukin-1β (IL-1β), and improve the cognitive ability of mice. Further in vitro experimental studies showed that WA increased the autophagy level of microglia, promoted the degradation of LDs, and reduced the production of inflammatory factors. In this regard, our comprehensive research endeavor holds the potential to furnish novel insights into therapeutic strategies aimed at addressing POCD and its associated neural impairments.
Collapse
Affiliation(s)
- Haijun Hu
- Department of Anesthesiology, The Second Affliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi Privince, People's Republic of China
| | - Bingbing Cao
- The First Hospital of Xiushui, Jiujiang, Jiangxi Province, People's Republic of China
| | - Dan Huang
- Department of Anesthesiology, The Second Affliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi Privince, People's Republic of China
| | - Yue Lin
- Department of Anesthesiology, The Second Affliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi Privince, People's Republic of China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi Privince, People's Republic of China
| | - Jun Ying
- Department of Anesthesiology, The Second Affliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi Privince, People's Republic of China
| | - Lelin Huang
- Department of Anesthesiology, Lushan Rehabilitation and Recuperation Center, PLA Joint Service Forces, Jiujiang, 3320000, People's Republic of China.
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi Privince, People's Republic of China.
| |
Collapse
|
59
|
Roy-Dorval A, Deagle RC, Roth F, Raybaud M, Ismailova N, Krisna SS, Aboud DGK, Stegen C, Leconte J, Berberi G, Esomojumi A, Fritz JH. Analysis of lipid uptake, storage, and fatty acid oxidation by group 2 innate lymphoid cells. Front Immunol 2024; 15:1493848. [PMID: 39497825 PMCID: PMC11532145 DOI: 10.3389/fimmu.2024.1493848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
Group 2 Innate Lymphoid Cells (ILC2) are critical drivers of both innate and adaptive type 2 immune responses, known to orchestrate processes involved in tissue restoration and wound healing. In addition, ILC2 have been implicated in chronic inflammatory barrier disorders in type 2 immunopathologies such as allergic rhinitis and asthma. ILC2 in the context of allergen-driven airway inflammation have recently been shown to influence local and systemic metabolism, as well as being rich in lipid-storing organelles called lipid droplets. However, mechanisms of ILC2 lipid anabolism and catabolism remain largely unknown and the impact of these metabolic processes in regulating ILC2 phenotypes and effector functions has not been extensively characterized. ILC2 phenotypes and effector functions are shaped by their metabolic status, and determining the metabolic requirements of ILC2 is critical in understanding their role in type 2 immune responses and their associated pathophysiology. We detail here a novel experimental method of implementing flow cytometry for large scale analysis of fatty acid uptake, storage of neutral lipids, and fatty acid oxidation in primary murine ILC2 with complementary morphological analysis of lipid storage using confocal microscopy. By combining flow cytometry and confocal microscopy, we can identify the metabolic lipid requirements for ILC2 functions as well as characterize the phenotype of lipid storage in ILC2. Linking lipid metabolism pathways to ILC2 phenotypes and effector functions is critical for the assessment of novel pharmaceutical strategies to regulate ILC2 functions in type 2 immunopathologies.
Collapse
Affiliation(s)
- Audrey Roy-Dorval
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Rebecca C. Deagle
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Frederik Roth
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Mathilde Raybaud
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Nailya Ismailova
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Sai Sakktee Krisna
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Damon G. K. Aboud
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Camille Stegen
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Julien Leconte
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Gabriel Berberi
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Ademola Esomojumi
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Jörg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
| |
Collapse
|
60
|
Corbo JH, Chung J. Mechanisms of lipid droplet degradation. Curr Opin Cell Biol 2024; 90:102402. [PMID: 39053179 DOI: 10.1016/j.ceb.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Lipid droplets (LDs) are subcellular organelles that play an integral role in lipid metabolism by regulating the storage and release of fatty acids, which are essential for energy production and various cellular processes. Lipolysis and lipophagy are the two major LD degradation pathways that mediate the utilization of lipids stored in these organelles. Recent studies have further uncovered alternative pathways, including direct lysosomal LD degradation and LD exocytosis. Here, we highlight recent findings that dissect the molecular basis of these diverse LD degradation pathways. Then, we discuss speculations on the crosstalk among these pathways and the potential unconventional roles of LD degradation.
Collapse
Affiliation(s)
- J H Corbo
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - J Chung
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
61
|
Tan Y, Huang Z, Jin Y, Wang J, Fan H, Liu Y, Zhang L, Wu Y, Liu P, Li T, Ran J, Tian H, Lam SM, Liu M, Zhou J, Yang Y. Lipid droplets sequester palmitic acid to disrupt endothelial ciliation and exacerbate atherosclerosis in male mice. Nat Commun 2024; 15:8273. [PMID: 39333556 PMCID: PMC11437155 DOI: 10.1038/s41467-024-52621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Disruption of ciliary homeostasis in vascular endothelial cells has been implicated in the development of atherosclerosis. However, the molecular basis for the regulation of endothelial cilia during atherosclerosis remains poorly understood. Herein, we provide evidence in male mice that the accumulation of lipid droplets in vascular endothelial cells induces ciliary loss and contributes to atherosclerosis. Triglyceride accumulation in vascular endothelial cells differentially affects the abundance of free fatty acid species in the cytosol, leading to stimulated lipid droplet formation and suppressed protein S-palmitoylation. Reduced S-palmitoylation of ciliary proteins, including ADP ribosylation factor like GTPase 13B, results in the loss of cilia. Restoring palmitic acid availability, either through pharmacological inhibition of stearoyl-CoA desaturase 1 or a palmitic acid-enriched diet, significantly restores endothelial cilia and mitigates the progression of atherosclerosis. These findings thus uncover a previously unrecognized role of lipid droplets in regulating ciliary homeostasis and provide a feasible intervention strategy for preventing and treating atherosclerosis.
Collapse
Affiliation(s)
- Yanjie Tan
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Zhenzhou Huang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yi Jin
- Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, China
| | - Jiaying Wang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Hongjun Fan
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yangyang Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Liang Zhang
- Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, China
| | - Yue Wu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Peiwei Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Tianliang Li
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Jie Ran
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- LipidALL Technologies Company Limited, 213022, Changzhou, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, 300462, Tianjin, China
| | - Jun Zhou
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China.
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.
| |
Collapse
|
62
|
Labbé K, LeBon L, King B, Vu N, Stoops EH, Ly N, Lefebvre AEYT, Seitzer P, Krishnan S, Heo JM, Bennett B, Sidrauski C. Specific activation of the integrated stress response uncovers regulation of central carbon metabolism and lipid droplet biogenesis. Nat Commun 2024; 15:8301. [PMID: 39333061 PMCID: PMC11436933 DOI: 10.1038/s41467-024-52538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
The integrated stress response (ISR) enables cells to cope with a variety of insults, but its specific contribution to downstream cellular outputs remains unclear. Using a synthetic tool, we selectively activate the ISR without co-activation of parallel pathways and define the resulting cellular state with multi-omics profiling. We identify time- and dose-dependent gene expression modules, with ATF4 driving only a small but sensitive subgroup that includes amino acid metabolic enzymes. This ATF4 response affects cellular bioenergetics, rerouting carbon utilization towards amino acid production and away from the tricarboxylic acid cycle and fatty acid synthesis. We also find an ATF4-independent reorganization of the lipidome that promotes DGAT-dependent triglyceride synthesis and accumulation of lipid droplets. While DGAT1 is the main driver of lipid droplet biogenesis, DGAT2 plays an essential role in buffering stress and maintaining cell survival. Together, we demonstrate the sufficiency of the ISR in promoting a previously unappreciated metabolic state.
Collapse
Affiliation(s)
| | - Lauren LeBon
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Bryan King
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Ngoc Vu
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Nina Ly
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | | | - Jin-Mi Heo
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | |
Collapse
|
63
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
64
|
Jia Y, Dong X, Yang F, Zhou L, Long H. Comprehensive analysis of LD-related genes signature for predicting prognosis and immunotherapy response in clear cell renal cell carcinoma. BMC Nephrol 2024; 25:298. [PMID: 39256647 PMCID: PMC11384682 DOI: 10.1186/s12882-024-03735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Lipid droplets (LD) in renal clear cell carcinoma (ccRCC)play a crucial role in lipid metabolism and immune response modulation. The purpose of this study was to create a LD-related signature to predict prognosis and guide the immunotherapy and targeted therapy in ccRCC patients. METHODS We conducted a comprehensive analysis using transcriptional profiles and clinical data obtained from The Cancer Genome Atlas (TCGA). LD-related genes were identified from existing literature and the GeneCards database, and differentially expressed genes were determined. Sequentially, we conducted Cox regression analysis and Lasso regression analysis, to establish a prognostic risk model. The performance of the risk model was evaluated using Kaplan-Meier (KM) analysis and time-dependent receiver operating characteristic (ROC) analysis. Additionally, gene set enrichment analysis (GSEA), ESTIMATE, CIBERSORT, and immunophenoscore (IPS) algorithm were used to assess the tumor microenvironment (TME) and treatment response. RESULTS We constructed a risk signature with four LD-related genes in the TCGA dataset, which could be an independent prognostic factor in ccRCC patients. Then, patients were classified into two risk groups and exhibited notable differences in overall survival (OS), progression-free survival (PFS), and TME characteristics. Furthermore, we developed a comprehensive nomogram based on clinical features, which demonstrated good prognostic predictive value. According to the results of GSEA analysis, immune-related pathways were found to be significantly enriched in the high-risk group. Additionally, the high-risk group displayed high levels of immune cell infiltration, TMB and IPS scores, indicating better efficacy of immune checkpoint inhibitors (ICIs). Finally, high-risk demonstrated reduced IC50 values compared to the low-risk counterpart for specific targeted and chemotherapeutic drugs, suggesting that the patients receiving these targeted drugs in high-risk group had better treatment outcomes. CONCLUSIONS Our findings suggested that the LD-related gene signature could potentially predict the prognosis of ccRCC patients. Additionally, it showed promise for predicting responses to immunotherapy and targeted therapy in ccRCC patients. These insights might potentially have guided the clinical management of these patients, but further validation and broader data analysis are needed to confirm these preliminary observations.
Collapse
Affiliation(s)
- Yangtao Jia
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Xinke Dong
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Fangzheng Yang
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Libin Zhou
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China.
| | - Huimin Long
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China.
| |
Collapse
|
65
|
Zhang X, Yang Z, Fu C, Yao R, Li H, Peng F, Li N. Emerging roles of liquid-liquid phase separation in liver innate immunity. Cell Commun Signal 2024; 22:430. [PMID: 39227829 PMCID: PMC11373118 DOI: 10.1186/s12964-024-01787-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024] Open
Abstract
Biomolecular condensates formed by liquid-liquid phase separation (LLPS) have become an extensive mechanism of macromolecular metabolism and biochemical reactions in cells. Large molecules like proteins and nucleic acids will spontaneously aggregate and assemble into droplet-like structures driven by LLPS when the physical and chemical properties of cells are altered. LLPS provides a mature molecular platform for innate immune response, which tightly regulates key signaling in liver immune response spatially and physically, including DNA and RNA sensing pathways, inflammasome activation, and autophagy. Take this, LLPS plays a promoting or protecting role in a range of liver diseases, such as viral hepatitis, non-alcoholic fatty liver disease, liver fibrosis, hepatic ischemia-reperfusion injury, autoimmune liver disease, and liver cancer. This review systematically describes the whole landscape of LLPS in liver innate immunity. It will help us to guide a better-personalized approach to LLPS-targeted immunotherapy for liver diseases.
Collapse
Affiliation(s)
- Xinying Zhang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan Province, China
| | - Ziyue Yang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Chunmeng Fu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Run Yao
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Huan Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Fang Peng
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
66
|
Cardaci TD, VanderVeen BN, Huss AR, Bullard BM, Velázquez KT, Frizzell N, Carson JA, Price RL, Murphy EA. Decreased skeletal muscle intramyocellular lipid droplet-mitochondrial contact contributes to myosteatosis in cancer cachexia. Am J Physiol Cell Physiol 2024; 327:C684-C697. [PMID: 39010842 PMCID: PMC11427022 DOI: 10.1152/ajpcell.00345.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Cancer cachexia, the unintentional loss of lean mass, contributes to functional dependency, poor treatment outcomes, and decreased survival. Although its pathogenicity is multifactorial, metabolic dysfunction remains a hallmark of cachexia. However, significant knowledge gaps exist in understanding the role of skeletal muscle lipid metabolism and dynamics in this condition. We examined skeletal muscle metabolic dysfunction, intramyocellular lipid droplet (LD) content, LD morphology and subcellular distribution, and LD-mitochondrial interactions using the Lewis lung carcinoma (LLC) murine model of cachexia. C57/BL6 male mice (n = 20) were implanted with LLC cells (106) in the right flank or underwent PBS sham injections. Skeletal muscle was excised for transmission electron microscopy (TEM; soleus), oil red O/lipid staining [tibialis anterior (TA)], and protein (gastrocnemius). LLC mice had a greater number (232%; P = 0.006) and size (130%; P = 0.023) of intramyocellular LDs further supported by increased oil-red O positive (87%; P = 0.0109) and "very high" oil-red O positive (178%; P = 0.0002) fibers compared with controls and this was inversely correlated with fiber size (R2 = 0.5294; P < 0.0001). Morphological analyses of LDs show increased elongation and complexity [aspect ratio: intermyofibrillar (IMF) = 9%, P = 0.046) with decreases in circularity [circularity: subsarcolemmal (SS) = 6%, P = 0.042] or roundness (roundness: whole = 10%, P = 0.033; IMF = 8%, P = 0.038) as well as decreased LD-mitochondria touch (-15%; P = 0.006), contact length (-38%; P = 0.036), and relative contact (86%; P = 0.004). Furthermore, dysregulation in lipid metabolism (adiponectin, CPT1b) and LD-associated proteins, perilipin-2 and perilipin-5, in cachectic muscle (P < 0.05) were observed. Collectively, we provide evidence that skeletal muscle myosteatosis, altered LD morphology, and decreased LD-mitochondrial interactions occur in a preclinical model of cancer cachexia.NEW & NOTEWORTHY We sought to advance our understanding of skeletal muscle lipid metabolism and dynamics in cancer cachexia. Cachexia increased the number and size of intramyocellular lipid droplets (LDs). Furthermore, decreases in LD-mitochondrial touch, contact length, and relative contact along with increased LD shape complexity with decreases in circularity and roundness. Dysregulation in lipid metabolism and LD-associated proteins was also documented. Collectively, we show that myosteatosis, altered LD morphology, and decreased LD-mitochondrial interactions occur in cancer cachexia.
Collapse
Affiliation(s)
- Thomas D Cardaci
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Brandon N VanderVeen
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Alexander R Huss
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Brooke M Bullard
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Kandy T Velázquez
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
- Columbia Department of Veterans Affairs Health Care System, Columbia, South Carolina, United States
| | - Norma Frizzell
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - James A Carson
- Department of Kinesiology and Sports Management, JL Huffines Institute for Sports Medicine & Human Performance, Texas A&M University, College Station, Texas, United States
| | - Robert L Price
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| |
Collapse
|
67
|
Jonker PB, Muir A. Metabolic ripple effects - deciphering how lipid metabolism in cancer interfaces with the tumor microenvironment. Dis Model Mech 2024; 17:dmm050814. [PMID: 39284708 PMCID: PMC11423921 DOI: 10.1242/dmm.050814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Cancer cells require a constant supply of lipids. Lipids are a diverse class of hydrophobic molecules that are essential for cellular homeostasis, growth and survival, and energy production. How tumors acquire lipids is under intensive investigation, as these mechanisms could provide attractive therapeutic targets for cancer. Cellular lipid metabolism is tightly regulated and responsive to environmental stimuli. Thus, lipid metabolism in cancer is heavily influenced by the tumor microenvironment. In this Review, we outline the mechanisms by which the tumor microenvironment determines the metabolic pathways used by tumors to acquire lipids. We also discuss emerging literature that reveals that lipid availability in the tumor microenvironment influences many metabolic pathways in cancers, including those not traditionally associated with lipid biology. Thus, metabolic changes instigated by the tumor microenvironment have 'ripple' effects throughout the densely interconnected metabolic network of cancer cells. Given the interconnectedness of tumor metabolism, we also discuss new tools and approaches to identify the lipid metabolic requirements of cancer cells in the tumor microenvironment and characterize how these requirements influence other aspects of tumor metabolism.
Collapse
Affiliation(s)
- Patrick B Jonker
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
68
|
Dinh DT, Li CY, Wu MW, Hsieh CF, Chen XY, Chang CC. An acridone based fluorescent dye for lipid droplet tracking and cancer diagnosis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:113000. [PMID: 39121718 DOI: 10.1016/j.jphotobiol.2024.113000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Lipid droplets (LDs) are spherical organelles that localize in the cytosol of eukaryotic cells. Different proteins are embedded on the surface of LDs, so LDs play a vital role in the physiological activities of cells. The dysregulation of LDs is associated with various human diseases, such as diabetes and obesity. Therefore, it is essential to develop a fluorescent dye that labels LDs to detect and monitor illnesses. In this study, we developed the compound BDAA12C for staining LDs in cells. BDAA12C exhibits excellent LD specificity and low toxicity, enabling us to successfully stain and observe the fusion of LDs in A549 cancer cells. Furthermore, we also successfully distinguished A549 cancer cells and MRC-5 normal cells in a co-culture experiment and in normal and tumour tissues. Interestingly, we found different localizations of BDAA12C in well-fed and starved A549 cancer cells and consequently illustrated the transfer of fatty acids (FAs) from LDs to mitochondria to supply energy for β-oxidation upon starvation. Therefore, BDAA12C is a promising LD-targeted probe for cancer diagnosis and tracking lipid trafficking within cells.
Collapse
Affiliation(s)
- Dat Thanh Dinh
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Chia-Ying Li
- Department of Surgery, Show Chwan Memorial Hospital, Changhua City, Taiwan; PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Min-Wei Wu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Chia-Feng Hsieh
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Xuan-Yu Chen
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Cheng-Chung Chang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan; Intelligent Minimally-Invasive Device Center, National Chung Hsing University, Taichung 402, Taiwan..
| |
Collapse
|
69
|
Allevato MM, Trinh S, Koshizuka K, Nachmanson D, Nguyen TTC, Yokoyama Y, Wu X, Andres A, Wang Z, Watrous J, Molinolo AA, Mali P, Harismendy O, Jain M, Wild R, Gutkind JS. A genome-wide CRISPR screen reveals that antagonism of glutamine metabolism sensitizes head and neck squamous cell carcinoma to ferroptotic cell death. Cancer Lett 2024; 598:217089. [PMID: 38964731 DOI: 10.1016/j.canlet.2024.217089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Glutamine is a conditionally essential amino acid for the growth and survival of rapidly proliferating cancer cells. Many cancers are addicted to glutamine, and as a result, targeting glutamine metabolism has been explored clinically as a therapeutic approach. Glutamine-catalyzing enzymes are highly expressed in primary and metastatic head and neck squamous cell carcinoma (HNSCC). However, the nature of the glutamine-associated pathways in this aggressive cancer type has not been elucidated. Here, we explored the therapeutic potential of a broad glutamine antagonist, DRP-104 (sirpiglenastat), in HNSCC tumors and aimed at shedding light on glutamine-dependent pathways in this disease. We observed a potent antitumoral effect of sirpiglenastat in HPV- and HPV + HNSCC xenografts. We conducted a whole-genome CRISPR screen and metabolomics analyses to identify mechanisms of sensitivity and resistance to glutamine metabolism blockade. These approaches revealed that glutamine metabolism blockade results in the rapid buildup of polyunsaturated fatty acids (PUFAs) via autophagy nutrient-sensing pathways. Finally, our analysis demonstrated that GPX4 mediates the protection of HNSCC cells from accumulating toxic lipid peroxides; hence, glutamine blockade sensitizes HNSCC cells to ferroptosis cell death upon GPX4 inhibition. These findings demonstrate the therapeutic potential of sirpiglenastat in HNSCC and establish a novel link between glutamine metabolism and ferroptosis, which may be uniquely translated into targeted glutamine-ferroptosis combination therapies.
Collapse
Affiliation(s)
- Michael M Allevato
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Sally Trinh
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Keiichi Koshizuka
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Daniela Nachmanson
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Thien-Tu C Nguyen
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Yumi Yokoyama
- Dracen Pharmaceuticals Inc., 9276 Scranton Rd. Suite 200, San Diego, CA, USA
| | - Xingyu Wu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Allen Andres
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Zhiyong Wang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jeramie Watrous
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Alfredo A Molinolo
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Olivier Harismendy
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Mohit Jain
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Robert Wild
- Dracen Pharmaceuticals Inc., 9276 Scranton Rd. Suite 200, San Diego, CA, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
70
|
Zheng Y, Chen J, Macwan V, Dixon CL, Li X, Liu S, Yu Y, Xu P, Sun Q, Hu Q, Liu W, Raught B, Fairn GD, Neculai D. S-acylation of ATGL is required for lipid droplet homoeostasis in hepatocytes. Nat Metab 2024; 6:1549-1565. [PMID: 39143266 DOI: 10.1038/s42255-024-01085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Lipid droplets (LDs) are organelles specialized in the storage of neutral lipids, cholesterol esters and triglycerides, thereby protecting cells from the toxicity of excess lipids while allowing for the mobilization of lipids in times of nutrient deprivation. Defects in LD function are associated with many diseases. S-acylation mediated by zDHHC acyltransferases modifies thousands of proteins, yet the physiological impact of this post-translational modification on individual proteins is poorly understood. Here, we show that zDHHC11 regulates LD catabolism by modifying adipose triacylglyceride lipase (ATGL), the rate-limiting enzyme of lipolysis, both in hepatocyte cultures and in mice. zDHHC11 S-acylates ATGL at cysteine 15. Preventing the S-acylation of ATGL renders it catalytically inactive despite proper localization. Overexpression of zDHHC11 reduces LD size, whereas its elimination enlarges LDs. Mutating ATGL cysteine 15 phenocopies zDHHC11 loss, causing LD accumulation, defective lipolysis and lipophagy. Our results reveal S-acylation as a mode of regulation of ATGL function and LD homoeostasis. Modulating this pathway may offer therapeutic potential for treating diseases linked to defective lipolysis, such as fatty liver disease.
Collapse
Affiliation(s)
- Yuping Zheng
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jishun Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Vinitha Macwan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Charneal L Dixon
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Xinran Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Shengjie Liu
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yuyun Yu
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Pinglong Xu
- Life Science Institute, Zhejiang University, Hangzhou, China
| | - Qiming Sun
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qi Hu
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wei Liu
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University Health Network, Toronto, Ontario, Canada.
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Dante Neculai
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| |
Collapse
|
71
|
Cleland NRW, Bruce KD. Fatty acid sensing in the brain: The role of glial-neuronal metabolic crosstalk and horizontal lipid flux. Biochimie 2024; 223:166-178. [PMID: 35998849 DOI: 10.1016/j.biochi.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
The central control of energy homeostasis is a regulatory axis that involves the sensing of nutrients, signaling molecules, adipokines, and neuropeptides by neurons in the metabolic centers of the hypothalamus. However, non-neuronal glial cells are also abundant in the hypothalamus and recent findings have underscored the importance of the metabolic crosstalk and horizontal lipid flux between glia and neurons to the downstream regulation of systemic metabolism. New transgenic models and high-resolution analyses of glial phenotype and function have revealed that glia sit at the nexus between lipid metabolism and neural function, and may markedly impact the brain's response to dietary lipids or the supply of brain-derived lipids. Glia comprise the main cellular compartment involved in lipid synthesis, lipoprotein production, and lipid processing in the brain. In brief, tanycytes provide an interface between peripheral lipids and neurons, astrocytes produce lipoproteins that transport lipids to neurons and other glia, oligodendrocytes use brain-derived and dietary lipids to myelinate axons and influence neuronal function, while microglia can remove unwanted lipids in the brain and contribute to lipid re-utilization through cholesterol efflux. Here, we review recent findings regarding glial-lipid transport and highlight the specific molecular factors necessary for lipid processing in the brain, and how dysregulation of glial-neuronal metabolic crosstalk contributes to imbalanced energy homeostasis. Furthering our understanding of glial lipid metabolism will guide the design of future studies that target horizontal lipid processing in the brain to ameliorate the risk of developing obesity and metabolic disease.
Collapse
Affiliation(s)
- Nicholas R W Cleland
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kimberley D Bruce
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
72
|
Gao R, Wang J, Huang J, Wang T, Guo L, Liu W, Guan J, Liang D, Meng Q, Pan H. FSP1-mediated ferroptosis in cancer: from mechanisms to therapeutic applications. Apoptosis 2024; 29:1019-1037. [PMID: 38615304 DOI: 10.1007/s10495-024-01966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Ferroptosis is a new discovered regulated cell death triggered by the ferrous ion (Fe2+)-dependent accumulation of lipid peroxides associated with cancer and many other diseases. The mechanism of ferroptosis includes oxidation systems (such as enzymatic oxidation and free radical oxidation) and antioxidant systems (such as GSH/GPX4, CoQ10/FSP1, BH4/GCH1 and VKORC1L1/VK). Among them, ferroptosis suppressor protein 1 (FSP1), as a crucial regulatory factor in the antioxidant system, has shown a crucial role in ferroptosis. FSP1 has been well validated to ferroptosis in three ways, and a variety of intracellular factors and drug molecules can alleviate ferroptosis via FSP1, which has been demonstrated to alter the sensitivity and effectiveness of cancer therapies, including chemotherapy, radiotherapy, targeted therapy and immunotherapy. This review aims to provide important frameworks that, bring the regulation of FSP1 mediated ferroptosis into cancer therapies on the basis of existing studies.
Collapse
Affiliation(s)
- Ran Gao
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinge Wang
- School of Public Health, Harbin Medical University, Harbin, China
| | - Jingjing Huang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingfeng Guo
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenlu Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialu Guan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Desen Liang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qinghui Meng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huayang Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
73
|
Zhang Z, Yu Z, Liang D, Song K, Kong X, He M, Liao X, Huang Z, Kang A, Bai R, Ren Y. Roles of lipid droplets and related proteins in metabolic diseases. Lipids Health Dis 2024; 23:218. [PMID: 39030618 PMCID: PMC11264848 DOI: 10.1186/s12944-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Lipid droplets (LDs), which are active organelles, derive from the monolayer membrane of the endoplasmic reticulum and encapsulate neutral lipids internally. LD-associated proteins like RAB, those in the PLIN family, and those in the CIDE family participate in LD formation and development, and they are active players in various diseases, organelles, and metabolic processes (i.e., obesity, non-alcoholic fatty liver disease, and autophagy). Our synthesis on existing research includes insights from the formation of LDs to their mechanisms of action, to provide an overview needed for advancing research into metabolic diseases and lipid metabolism.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
| | - Xinxin Liao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziyan Huang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, China.
| |
Collapse
|
74
|
Choi S, Lee JM, Kim KES, Park JH, Kim LH, Park J, Jeon Y, Jhun BW, Kim SY, Hong JJ, Shin SJ. Protein-energy restriction-induced lipid metabolism disruption causes stable-to-progressive disease shift in Mycobacterium avium-infected female mice. EBioMedicine 2024; 105:105198. [PMID: 38889480 PMCID: PMC11237864 DOI: 10.1016/j.ebiom.2024.105198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Disease susceptibility and progression of Mycobacterium avium complex pulmonary disease (MAC-PD) is associated with multiple factors, including low body mass index (BMI). However, the specific impact of low BMI on MAC-PD progression remains poorly understood. This study aims to examine the progression of MAC-PD in the context of low BMI, utilising a disease-resistant mouse model. METHODS We employed a MAC infection-resistant female A/J mouse model to compare the progression of MAC-PD under two dietary conditions: one group was fed a standard protein diet, representing protein-energy unrestricted conditions, and the other was fed a low protein diet (LPD), representing protein-energy restriction. FINDINGS Our results reveal that protein-energy restriction significantly exacerbates MAC-PD progression by disrupting lipid metabolism. Mice fed an LPD showed elevated fatty acid levels and related gene expressions in lung tissues, similar to findings of increased fatty acids in the serum of patients who exhibited the MAC-PD progression. These mice also exhibited increased CD36 expression and lipid accumulation in macrophages upon MAC infection. In vitro experiments emphasised the crucial role of CD36-mediated palmitic acid uptake in bacterial proliferation. Importantly, in vivo studies demonstrated that administering anti-CD36 antibody to LPD-fed A/J mice reduced macrophage lipid accumulation and impeded bacterial growth, resulting in remarkable slowing disease progression. INTERPRETATION Our findings indicate that the metabolic status of host immune cells critically influences MAC-PD progression. This study highlights the potential of adequate nutrient intake in preventing MAC-PD progression, suggesting that targeting CD36-mediated pathways might be a host-directed therapeutic strategy to managing MAC infection. FUNDING This research was funded by the National Research Foundation of Korea, the Korea Research Institute of Bioscience and Biotechnology, and the Korea National Institute of Health.
Collapse
Affiliation(s)
- Sangwon Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ju Mi Lee
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Keu Eun San Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ji-Hae Park
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Lee-Han Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jiyun Park
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yaerin Jeon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, South Korea; KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
75
|
Xu Q, Fan Y, Mauck J, Loor JJ, Sun X, Jia H, Li X, Xu C. Role of diacylglycerol O-acyltransferase 1 (DGAT1) in lipolysis and autophagy of adipose tissue from ketotic dairy cows. J Dairy Sci 2024; 107:5150-5161. [PMID: 38395404 DOI: 10.3168/jds.2023-24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/21/2024] [Indexed: 02/25/2024]
Abstract
High-yielding dairy cows in early lactation often encounter difficulties in meeting the energy requirements essential for maintaining milk production. This is primarily attributed to insufficient dry matter intake, which consequently leads to sustained lipolysis of adipose tissue. Fatty acids released by lipolysis can disrupt metabolic homeostasis. Autophagy, an adaptive response to intracellular environmental changes, is considered a crucial mechanism for regulating lipid metabolism and maintaining a proper cellular energy status. Despite its close relationship with aberrant lipid metabolism and cytolipotoxicity in animal models of metabolic disorders, the precise function of diacylglycerol o-acyltransferase 1 (DGAT1) in bovine adipose tissue during periods of negative energy balance is not fully understood, particularly regarding its involvement in lipolysis and autophagy. The objective of the present study was to assess the effect of DGAT1 on both lipolysis and autophagy in bovine adipose tissue and isolated adipocytes. Adipose tissue and blood samples were collected from cows diagnosed as clinically ketotic (n = 15) or healthy (n = 15) following a veterinary evaluation based on clinical symptoms and serum concentrations of BHB, which were 3.19 mM (interquartile range = 0.20) and 0.50 mM (interquartile range = 0.06), respectively. Protein abundance of DGAT1 and phosphorylation levels of unc-51-like kinase 1 (ULK1), were greater in adipose tissue from cows with ketosis, whereas phosphorylation levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) were lower. Furthermore, when adipocytes isolated from the harvested adipose tissue of 15 healthy cows were transfected with DGAT1 overexpression adenovirus or DGAT1 small interfering RNA followed by exposure to epinephrine (EPI), it led to greater ratios and protein abundance of phosphorylated hormone-sensitive triglyceride lipase (LIPE) to total LIPE and adipose triglyceride lipase (ATGL), while inhibiting the protein phosphorylation levels of ULK1, PI3K, AKT, and mTOR. Overexpression of DGAT1 in EPI-treated adipocytes reduced lipolysis and autophagy, whereas silencing DGAT1 further exacerbated EPI-induced lipolysis and autophagy. Taken together, these findings indicate that upregulation of DGAT1 may function as an adaptive response to suppress adipocytes lipolysis, highlighting the significance of maintaining metabolic homeostasis in dairy cows during periods of negative energy balance.
Collapse
Affiliation(s)
- Qiushi Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Yunhui Fan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - John Mauck
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Xudong Sun
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Hongdou Jia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Xinwei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
76
|
Fuwa M, Kajita K, Mori I, Asano M, Kajita T, Senda T, Inagaki T, Morita H. Mitochondrial fractions located in the cytoplasmic and peridroplet areas of white adipocytes have distinct roles. FEBS Lett 2024; 598:1753-1768. [PMID: 38658180 DOI: 10.1002/1873-3468.14877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
The role of mitochondria in white adipocytes (WAs) has not been fully explored. A recent study revealed that brown adipocytes contain functionally distinct mitochondrial fractions, cytoplasmic mitochondria, and peridroplet mitochondria. However, it is not known whether such a functional division of mitochondria exists in WA. Herein, we observed that mitochondria could be imaged and mitochondrial DNA and protein detected in pellets obtained from the cytoplasmic layer and oil layer of WAs after centrifugation. The mitochondria in each fraction were designated as cytoplasmic mitochondria (CMw) and peridroplet mitochondria (PDMw) in WAs, respectively. CMw had higher β-oxidation activity than PDMw, and PDMw was associated with diacylglycerol acyltransferase 2. Therefore, CMw may be involved in β-oxidation and PDMw in droplet expansion in WAs.
Collapse
Affiliation(s)
- Masayuki Fuwa
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Japan
| | - Kazuo Kajita
- Department of Health and Nutrition, Faculty of Home Economics, Gifu Women's University, Japan
| | - Ichiro Mori
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Japan
| | - Motochika Asano
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Japan
| | - Toshiko Kajita
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Japan
| | - Takao Senda
- Department of Anatomy, Gifu University Graduate School of Medicine, Japan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunnma University, Maebashi-shi, Japan
| | - Hiroyuki Morita
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Japan
| |
Collapse
|
77
|
Huang XX, Li L, Jiang RH, Yu JB, Sun YQ, Shan J, Yang J, Ji J, Cheng SQ, Dong YF, Zhang XY, Shi HB, Liu S, Sun XL. Lipidomic analysis identifies long-chain acylcarnitine as a target for ischemic stroke. J Adv Res 2024; 61:133-149. [PMID: 37572732 PMCID: PMC11258661 DOI: 10.1016/j.jare.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/09/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023] Open
Abstract
INTRODUCTION Lipid metabolism dysfunction is widely involved in the pathological process of acute ischemic stroke (AIS). The coordination of lipid metabolism between neurons and astrocytes is of great significance. However, the full scope of lipid dynamic changes and the function of key lipids during AIS remain unknown. Hence, identifying lipid alterations and characterizing their key roles in AIS is of great importance. METHODS Untargeted and targeted lipidomic analyses were applied to profile lipid changes in the ischemic penumbra and peripheral blood of transient middle cerebral artery occlusion (tMCAO) mice as well as the peripheral blood of AIS patients. Infarct volume and neurological deficits were assessed after tMCAO. The cell viability and dendritic complexity of primary neurons were evaluated by CCK8 assay and Sholl analysis. Seahorse, MitoTracker Green, tetramethyl rhodamine methyl ester (TMRM), 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and MitoSOX were used as markers of mitochondrial health. Fluorescent and isotopic free fatty acid (FFA) pulse-chase assays were used to track FFA flux in astrocytes. RESULTS Long-chain acylcarnitines (LCACs) were the lipids with the most dramatic changes in the ischemic penumbra and peripheral blood of tMCAO mice. LCACs were significantly elevated on admission in AIS patients and associated with poor outcomes in AIS patients. Increasing LCACs through a bolus administration of palmitoylcarnitine amplified stroke injury, while decreasing LCACs by overexpressing carnitine palmitoyltransferase 2 (CPT2) ameliorated stroke injury. Palmitoylcarnitine aggravated astrocytic mitochondrial damage after OGD/R, while CPT2 overexpression in astrocytes ameliorated cocultured neuron viability. Further study revealed that astrocytes stimulated by OGD/R liberated FFAs from lipid droplets into mitochondria to form LCACs, resulting in mitochondrial damage and lowered astrocytic metabolic support and thereby aggravated neuronal damage. CONCLUSION LCACs could accumulate and damage neurons by inducing astrocytic mitochondrial dysfunction in AIS. LCACs play a crucial role in the pathology of AIS and are novel promising diagnostic and prognostic biomarkers for AIS.
Collapse
Affiliation(s)
- Xin-Xin Huang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lei Li
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Run-Hao Jiang
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Bing Yu
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yu-Qin Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Jinjun Shan
- Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Yang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Shu-Qi Cheng
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yin-Feng Dong
- Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi-Yue Zhang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Hai-Bin Shi
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
78
|
Koenig AB, Tan A, Abdelaal H, Monge F, Younossi ZM, Goodman ZD. Review article: Hepatic steatosis and its associations with acute and chronic liver diseases. Aliment Pharmacol Ther 2024; 60:167-200. [PMID: 38845486 DOI: 10.1111/apt.18059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Hepatic steatosis is a common finding in liver histopathology and the hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), whose global prevalence is rising. AIMS To review the histopathology of hepatic steatosis and its mechanisms of development and to identify common and rare disease associations. METHODS We reviewed literature on the basic science of lipid droplet (LD) biology and clinical research on acute and chronic liver diseases associated with hepatic steatosis using the PubMed database. RESULTS A variety of genetic and environmental factors contribute to the development of chronic hepatic steatosis or steatotic liver disease, which typically appears macrovesicular. Microvesicular steatosis is associated with acute mitochondrial dysfunction and liver failure. Fat metabolic processes in hepatocytes whose dysregulation leads to the development of steatosis include secretion of lipoprotein particles, uptake of remnant lipoprotein particles or free fatty acids from blood, de novo lipogenesis, oxidation of fatty acids, lipolysis and lipophagy. Hepatic insulin resistance is a key feature of MASLD. Seipin is a polyfunctional protein that facilitates LD biogenesis. Assembly of hepatitis C virus takes place on LD surfaces. LDs make important, functional contact with the endoplasmic reticulum and other organelles. CONCLUSIONS Diverse liver pathologies are associated with hepatic steatosis, with MASLD being the most important contributor. The biogenesis and dynamics of LDs in hepatocytes are complex and warrant further investigation. Organellar interfaces permit co-regulation of lipid metabolism to match generation of potentially toxic lipid species with their LD depot storage.
Collapse
Affiliation(s)
- Aaron B Koenig
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Albert Tan
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Hala Abdelaal
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Fanny Monge
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- The Global NASH Council, Center for Outcomes Research in Liver Diseases, Washington, DC, USA
| | - Zachary D Goodman
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| |
Collapse
|
79
|
Sah SK, Fan J, Blanford J, Shanklin J, Xu C. Physiological Functions of Phospholipid:Diacylglycerol Acyltransferases. PLANT & CELL PHYSIOLOGY 2024; 65:863-871. [PMID: 37702708 DOI: 10.1093/pcp/pcad106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Triacylglycerol (TAG) is among the most energy dense storage forms of reduced carbon in living systems. TAG metabolism plays critical roles in cellular energy balance, lipid homeostasis, cell growth and stress responses. In higher plants, microalgae and fungi, TAG is assembled by acyl-CoA-dependent and acyl-CoA-independent pathways catalyzed by diacylglycerol (DAG) acyltransferase and phospholipid:DAG acyltransferase (PDAT), respectively. This review contains a summary of the current understanding of the physiological functions of PDATs. Emphasis is placed on their role in lipid remodeling and lipid homeostasis in response to abiotic stress or perturbations in lipid metabolism.
Collapse
Affiliation(s)
- Saroj Kumar Sah
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
80
|
Fan H, Tan Y. Lipid Droplet-Mitochondria Contacts in Health and Disease. Int J Mol Sci 2024; 25:6878. [PMID: 38999988 PMCID: PMC11240910 DOI: 10.3390/ijms25136878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The orchestration of cellular metabolism and redox balance is a complex, multifaceted process crucial for maintaining cellular homeostasis. Lipid droplets (LDs), once considered inert storage depots for neutral lipids, are now recognized as dynamic organelles critical in lipid metabolism and energy regulation. Mitochondria, the powerhouses of the cell, play a central role in energy production, metabolic pathways, and redox signaling. The physical and functional contacts between LDs and mitochondria facilitate a direct transfer of lipids, primarily fatty acids, which are crucial for mitochondrial β-oxidation, thus influencing energy homeostasis and cellular health. This review highlights recent advances in understanding the mechanisms governing LD-mitochondria interactions and their regulation, drawing attention to proteins and pathways that mediate these contacts. We discuss the physiological relevance of these interactions, emphasizing their role in maintaining energy and redox balance within cells, and how these processes are critical in response to metabolic demands and stress conditions. Furthermore, we explore the pathological implications of dysregulated LD-mitochondria interactions, particularly in the context of metabolic diseases such as obesity, diabetes, and non-alcoholic fatty liver disease, and their potential links to cardiovascular and neurodegenerative diseases. Conclusively, this review provides a comprehensive overview of the current understanding of LD-mitochondria interactions, underscoring their significance in cellular metabolism and suggesting future research directions that could unveil novel therapeutic targets for metabolic and degenerative diseases.
Collapse
Affiliation(s)
- Hongjun Fan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yanjie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
81
|
Hernández-Juárez C, Calahorra M, Peña A, Jiménez-Sánchez A. Fluorescent Probe as Dual-Organelle Localizer Through Differential Proton Gradients Between Lipid Droplets and Mitochondria. Anal Chem 2024; 96:9262-9269. [PMID: 38760019 PMCID: PMC11154735 DOI: 10.1021/acs.analchem.4c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Dual-organelle molecular localizers represent powerful new tools allowing the exploration of interorganelle physical contacts and subcellular chemical communication. Here, we describe new dynamic molecular probes to localize mitochondria and lipid droplets taking advantage of the differential proton gradients present in these organelles as well as the activity of mitochondrial esterase. We unveil their potential utility when organelle retention mechanisms and proton gradients are synchronized, an insight that has not been documented previously. Our discoveries indicate that dual-organelle probes serve as a valuable multiplexing assay during starvation-induced autophagy. The pioneering molecular mechanism they employ opens doors to avoid using labile esters such as acetoxymethyl derivatives which are not optimal in imaging microscopy assays.
Collapse
Affiliation(s)
- Cinthia Hernández-Juárez
- Instituto
de Química, Universidad Nacional Autónoma de México,
Ciudad Universitaria, Circuito Exterior s/n. Coyoacán 04510, Ciudad de México, México
| | - Martha Calahorra
- Instituto
de Fisiología Celular, Universidad Nacional Autónoma
de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán 04510, Ciudad de México, México
| | - Antonio Peña
- Instituto
de Fisiología Celular, Universidad Nacional Autónoma
de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán 04510, Ciudad de México, México
| | - Arturo Jiménez-Sánchez
- Instituto
de Química, Universidad Nacional Autónoma de México,
Ciudad Universitaria, Circuito Exterior s/n. Coyoacán 04510, Ciudad de México, México
| |
Collapse
|
82
|
Sharma AK, Khandelwal R, Wolfrum C. Futile cycles: Emerging utility from apparent futility. Cell Metab 2024; 36:1184-1203. [PMID: 38565147 DOI: 10.1016/j.cmet.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Futile cycles are biological phenomena where two opposing biochemical reactions run simultaneously, resulting in a net energy loss without appreciable productivity. Such a state was presumed to be a biological aberration and thus deemed an energy-wasting "futile" cycle. However, multiple pieces of evidence suggest that biological utilities emerge from futile cycles. A few established functions of futile cycles are to control metabolic sensitivity, modulate energy homeostasis, and drive adaptive thermogenesis. Yet, the physiological regulation, implication, and pathological relevance of most futile cycles remain poorly studied. In this review, we highlight the abundance and versatility of futile cycles and propose a classification scheme. We further discuss the energetic implications of various futile cycles and their impact on basal metabolic rate, their bona fide and tentative pathophysiological implications, and putative drug interactions.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
83
|
Meng Y, Guo D, Lin L, Zhao H, Xu W, Luo S, Jiang X, Li S, He X, Zhu R, Shi R, Xiao L, Wu Q, He H, Tao J, Jiang H, Wang Z, Yao P, Xu D, Lu Z. Glycolytic enzyme PFKL governs lipolysis by promoting lipid droplet-mitochondria tethering to enhance β-oxidation and tumor cell proliferation. Nat Metab 2024; 6:1092-1107. [PMID: 38773347 DOI: 10.1038/s42255-024-01047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/10/2024] [Indexed: 05/23/2024]
Abstract
Lipid droplet tethering with mitochondria for fatty acid oxidation is critical for tumor cells to counteract energy stress. However, the underlying mechanism remains unclear. Here, we demonstrate that glucose deprivation induces phosphorylation of the glycolytic enzyme phosphofructokinase, liver type (PFKL), reducing its activity and favoring its interaction with perilipin 2 (PLIN2). On lipid droplets, PFKL acts as a protein kinase and phosphorylates PLIN2 to promote the binding of PLIN2 to carnitine palmitoyltransferase 1A (CPT1A). This results in the tethering of lipid droplets and mitochondria and the recruitment of adipose triglyceride lipase to the lipid droplet-mitochondria tethering regions to engage lipid mobilization. Interfering with this cascade inhibits tumor cell proliferation, promotes apoptosis and blunts liver tumor growth in male mice. These results reveal that energy stress confers a moonlight function to PFKL as a protein kinase to tether lipid droplets with mitochondria and highlight the crucial role of PFKL in the integrated regulation of glycolysis, lipid metabolism and mitochondrial oxidation.
Collapse
Affiliation(s)
- Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liming Lin
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiting Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shudi Luo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoming Jiang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shan Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuxiao He
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rongxuan Zhu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rongkai Shi
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liwei Xiao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qingang Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyan He
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Tao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongfei Jiang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Zheng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pengbo Yao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
84
|
Inoue M, Sebastian WA, Sonoda S, Miyahara H, Shimizu N, Shiraishi H, Maeda M, Yanagi K, Kaname T, Hanada R, Hanada T, Ihara K. Biallelic variants in LARS1 induce steatosis in developing zebrafish liver via enhanced autophagy. Orphanet J Rare Dis 2024; 19:219. [PMID: 38807157 PMCID: PMC11134648 DOI: 10.1186/s13023-024-03226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/19/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Biallelic pathogenic variants of LARS1 cause infantile liver failure syndrome type 1 (ILFS1), which is characterized by acute hepatic failure with steatosis in infants. LARS functions as a protein associated with mTORC1 and plays a crucial role in amino acid-triggered mTORC1 activation and regulation of autophagy. A previous study demonstrated that larsb-knockout zebrafish exhibit conditions resembling ILFS. However, a comprehensive analysis of larsb-knockout zebrafish has not yet been performed because of early mortality. METHODS We generated a long-term viable zebrafish model carrying a LARS1 variant identified in an ILFS1 patient (larsb-I451F zebrafish) and analyzed the pathogenesis of the affected liver of ILFS1. RESULTS Hepatic dysfunction is most prominent in ILFS1 patients during infancy; correspondingly, the larsb-I451F zebrafish manifested hepatic anomalies during developmental stages. The larsb-I451F zebrafish demonstrates augmented lipid accumulation within the liver during autophagy activation. Inhibition of DGAT1, which converts fatty acids to triacylglycerols, improved lipid droplets in the liver of larsb-I451F zebrafish. Notably, treatment with an autophagy inhibitor ameliorated hepatic lipid accumulation in this model. CONCLUSIONS Our findings suggested that enhanced autophagy caused by biallelic LARS1 variants contributes to ILFS1-associated hepatic dysfunction. Furthermore, the larsb-I451F zebrafish model, which has a prolonged survival rate compared with the larsb-knockout model, highlights its potential utility as a tool for investigating the pathophysiology of ILFS1-associated liver dysfunction.
Collapse
Affiliation(s)
- Masanori Inoue
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan
| | | | - Shota Sonoda
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Oita, Japan
| | - Hiroshi Shiraishi
- Department of Cell Biology, Oita University Faculty of Medicine, Oita, Japan
| | - Miwako Maeda
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Oita University Faculty of Medicine, Oita, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Oita, Japan.
| | - Kenji Ihara
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan.
| |
Collapse
|
85
|
Chao CF, Pesch YY, Yu H, Wang C, Aristizabal MJ, Huan T, Tanentzapf G, Rideout E. An important role for triglyceride in regulating spermatogenesis. eLife 2024; 12:RP87523. [PMID: 38805376 PMCID: PMC11132686 DOI: 10.7554/elife.87523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Drosophila is a powerful model to study how lipids affect spermatogenesis. Yet, the contribution of neutral lipids, a major lipid group which resides in organelles called lipid droplets (LD), to sperm development is largely unknown. Emerging evidence suggests LD are present in the testis and that loss of neutral lipid- and LD-associated genes causes subfertility; however, key regulators of testis neutral lipids and LD remain unclear. Here, we show LD are present in early-stage somatic and germline cells within the Drosophila testis. We identified a role for triglyceride lipase brummer (bmm) in regulating testis LD, and found that whole-body loss of bmm leads to defects in sperm development. Importantly, these represent cell-autonomous roles for bmm in regulating testis LD and spermatogenesis. Because lipidomic analysis of bmm mutants revealed excess triglyceride accumulation, and spermatogenic defects in bmm mutants were rescued by genetically blocking triglyceride synthesis, our data suggest that bmm-mediated regulation of triglyceride influences sperm development. This identifies triglyceride as an important neutral lipid that contributes to Drosophila sperm development, and reveals a key role for bmm in regulating testis triglyceride levels during spermatogenesis.
Collapse
Affiliation(s)
- Charlotte F Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Yanina-Yasmin Pesch
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Huaxu Yu
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | - Chenjingyi Wang
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | | | - Tao Huan
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Elizabeth Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| |
Collapse
|
86
|
Suomalainen A, Nunnari J. Mitochondria at the crossroads of health and disease. Cell 2024; 187:2601-2627. [PMID: 38788685 DOI: 10.1016/j.cell.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Mitochondria reside at the crossroads of catabolic and anabolic metabolism-the essence of life. How their structure and function are dynamically tuned in response to tissue-specific needs for energy, growth repair, and renewal is being increasingly understood. Mitochondria respond to intrinsic and extrinsic stresses and can alter cell and organismal function by inducing metabolic signaling within cells and to distal cells and tissues. Here, we review how the centrality of mitochondrial functions manifests in health and a broad spectrum of diseases and aging.
Collapse
Affiliation(s)
- Anu Suomalainen
- University of Helsinki, Stem Cells and Metabolism Program, Faculty of Medicine, Helsinki, Finland; HiLife, University of Helsinki, Helsinki, Finland; HUS Diagnostics, Helsinki University Hospital, Helsinki, Finland.
| | - Jodi Nunnari
- Altos Labs, Bay Area Institute, Redwood Shores, CA, USA.
| |
Collapse
|
87
|
Su Y, Tang M, Wang M. Mitochondrial Dysfunction of Astrocytes Mediates Lipid Accumulation in Temporal Lobe Epilepsy. Aging Dis 2024; 15:1289-1295. [PMID: 37450928 PMCID: PMC11081153 DOI: 10.14336/ad.2023.0624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023] Open
Abstract
Lipid-accumulated reactive astrocytes (LARAs) have recently been confirmed to be a pivotal cell type present in temporal lobe epilepsy (TLE) lesions. These cells not only induce anomalous lipid accumulation within the epileptic foci but also decrease the seizure threshold by employing upregulated activation of the adenosine A2A receptor (A2AR). Furthermore, disturbances in mitochondrial oxidative phosphorylation (OxPhos) have been noted as significant drivers of lipid accumulation in astrocytes. Moreover, the deficiency of OxPhos in astrocytes can induce severe neuroinflammation, which can worsen the progression of TLE. Accordingly, further exploration of the correlation between mitochondrial dysfunction, LARAs-mediated lipid accumulation, and A2AR activation within epilepsy lesions is warranted. It could potentially elucidate the vital role of mitochondrial dysfunction in the pathogenesis of TLE.
Collapse
Affiliation(s)
- Yang Su
- Department of Laboratory Medicine, West China Hospital of Sichuan University, China.
| | - Meng Tang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, China.
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, China.
- Department of Neurology, West China Hospital of Sichuan University, China.
| |
Collapse
|
88
|
Maruyama R, Kudo Y, Sugiyama T. A new strategy for screening novel functional genes involved in reduction of lipid droplet accumulation. Biofactors 2024; 50:467-476. [PMID: 37983968 DOI: 10.1002/biof.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Lipid droplets (LDs) are organelles that store excess lipids and provide fatty acids for energy production during starvation. LDs are also essential for cellular maintenance, but excessive accumulation of LDs triggers various cancers in addition to metabolic diseases such as diabetes. In this study, we aimed to develop a strategy to identify new genes that reduces accumulation of LDs in cancer cells using an RNA interference (RNAi) screening system employing artificial sequence-enriched shRNA libraries. Monitoring LDs by fluorescent activated cell sorting, the subsequently collected cumulative LDs cells, and shRNA sequence analysis identified a clone that potentially functioned to accumulate LDs. The clone showed no identical sequence to human Refseq. It showed very similar sequence to seven genes by allowing three mismatches. Among these genes, we identified the mediator complex subunit 6 (MED6) gene as a target of this shRNA. Silencing of MED6 led to an increase in LD accumulation and expression of the marker genes, PLIN2 and DGAT1, in fatty cells. MED6 is a member of the mediator complex that regulates RNA polymerase II transcription through transcription factor II. Some mediator complexes play important roles in both normal and pathophysiological transcription processes. These results suggest that MED6 transcriptionally regulates the genes involved in lipid metabolism and suppresses LD accumulation.
Collapse
Affiliation(s)
- Ryuto Maruyama
- Graduate School of Bionics, Tokyo University of Technology, Tokyo, Japan
- Department of Life Science, Rikkyo University, Tokyo, Japan
| | - Yasuhiro Kudo
- Graduate School of Bionics, Tokyo University of Technology, Tokyo, Japan
| | - Tomoyasu Sugiyama
- Graduate School of Bionics, Tokyo University of Technology, Tokyo, Japan
| |
Collapse
|
89
|
Morotti M, Grimm AJ, Hope HC, Arnaud M, Desbuisson M, Rayroux N, Barras D, Masid M, Murgues B, Chap BS, Ongaro M, Rota IA, Ronet C, Minasyan A, Chiffelle J, Lacher SB, Bobisse S, Murgues C, Ghisoni E, Ouchen K, Bou Mjahed R, Benedetti F, Abdellaoui N, Turrini R, Gannon PO, Zaman K, Mathevet P, Lelievre L, Crespo I, Conrad M, Verdeil G, Kandalaft LE, Dagher J, Corria-Osorio J, Doucey MA, Ho PC, Harari A, Vannini N, Böttcher JP, Dangaj Laniti D, Coukos G. PGE 2 inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function. Nature 2024; 629:426-434. [PMID: 38658764 PMCID: PMC11078736 DOI: 10.1038/s41586-024-07352-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Expansion of antigen-experienced CD8+ T cells is critical for the success of tumour-infiltrating lymphocyte (TIL)-adoptive cell therapy (ACT) in patients with cancer1. Interleukin-2 (IL-2) acts as a key regulator of CD8+ cytotoxic T lymphocyte functions by promoting expansion and cytotoxic capability2,3. Therefore, it is essential to comprehend mechanistic barriers to IL-2 sensing in the tumour microenvironment to implement strategies to reinvigorate IL-2 responsiveness and T cell antitumour responses. Here we report that prostaglandin E2 (PGE2), a known negative regulator of immune response in the tumour microenvironment4,5, is present at high concentrations in tumour tissue from patients and leads to impaired IL-2 sensing in human CD8+ TILs via the PGE2 receptors EP2 and EP4. Mechanistically, PGE2 inhibits IL-2 sensing in TILs by downregulating the IL-2Rγc chain, resulting in defective assembly of IL-2Rβ-IL2Rγc membrane dimers. This results in impaired IL-2-mTOR adaptation and PGC1α transcriptional repression, causing oxidative stress and ferroptotic cell death in tumour-reactive TILs. Inhibition of PGE2 signalling to EP2 and EP4 during TIL expansion for ACT resulted in increased IL-2 sensing, leading to enhanced proliferation of tumour-reactive TILs and enhanced tumour control once the cells were transferred in vivo. Our study reveals fundamental features that underlie impairment of human TILs mediated by PGE2 in the tumour microenvironment. These findings have therapeutic implications for cancer immunotherapy and cell therapy, and enable the development of targeted strategies to enhance IL-2 sensing and amplify the IL-2 response in TILs, thereby promoting the expansion of effector T cells with enhanced therapeutic potential.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Dinoprostone/metabolism
- Down-Regulation
- Ferroptosis
- Interleukin Receptor Common gamma Subunit/biosynthesis
- Interleukin Receptor Common gamma Subunit/deficiency
- Interleukin Receptor Common gamma Subunit/metabolism
- Interleukin-2/antagonists & inhibitors
- Interleukin-2/immunology
- Interleukin-2/metabolism
- Interleukin-2 Receptor beta Subunit/metabolism
- Lymphocytes, Tumor-Infiltrating/cytology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mitochondria/metabolism
- Oxidative Stress
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Matteo Morotti
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Alizee J Grimm
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Helen Carrasco Hope
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Marion Arnaud
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Mathieu Desbuisson
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Nicolas Rayroux
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Maria Masid
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Baptiste Murgues
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Bovannak S Chap
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Marco Ongaro
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Ioanna A Rota
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Catherine Ronet
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Aspram Minasyan
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Johanna Chiffelle
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Sebastian B Lacher
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Clément Murgues
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Eleonora Ghisoni
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Khaoula Ouchen
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Ribal Bou Mjahed
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Fabrizio Benedetti
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Naoill Abdellaoui
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Riccardo Turrini
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Philippe O Gannon
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Khalil Zaman
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Patrice Mathevet
- Department of Gynaecology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Loic Lelievre
- Department of Gynaecology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Isaac Crespo
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Target and Therapeutics Centre, Helmholtz Munich, Neuherberg, Germany
| | - Gregory Verdeil
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Lana E Kandalaft
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Julien Dagher
- Unit of Translational Oncopathology, Institute of Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Jesus Corria-Osorio
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Marie-Agnes Doucey
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ping-Chih Ho
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Nicola Vannini
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
90
|
Saukko-Paavola AJ, Klemm RW. Remodelling of mitochondrial function by import of specific lipids at multiple membrane-contact sites. FEBS Lett 2024; 598:1274-1291. [PMID: 38311340 DOI: 10.1002/1873-3468.14813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Organelles form physical and functional contact between each other to exchange information, metabolic intermediates, and signaling molecules. Tethering factors and contact site complexes bring partnering organelles into close spatial proximity to establish membrane contact sites (MCSs), which specialize in unique functions like lipid transport or Ca2+ signaling. Here, we discuss how MCSs form dynamic platforms that are important for lipid metabolism. We provide a perspective on how import of specific lipids from the ER and other organelles may contribute to remodeling of mitochondria during nutrient starvation. We speculate that mitochondrial adaptation is achieved by connecting several compartments into a highly dynamic organelle network. The lipid droplet appears to be a central hub in coordinating the function of these organelle neighborhoods.
Collapse
Affiliation(s)
| | - Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| |
Collapse
|
91
|
Obaseki E, Adebayo D, Bandyopadhyay S, Hariri H. Lipid droplets and fatty acid-induced lipotoxicity: in a nutshell. FEBS Lett 2024; 598:1207-1214. [PMID: 38281809 PMCID: PMC11126361 DOI: 10.1002/1873-3468.14808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting as hubs for storing excess fat, LDs prevent lipotoxicity and preserve cellular homeostasis. LD synthesis and turnover have to be precisely regulated to maintain a balanced lipid distribution and allow for cellular adaptation during stress. Here, we discuss how prolonged exposure to excess lipids affects cellular functions, and the roles of LDs in buffering cellular stress focusing on lipotoxicity.
Collapse
Affiliation(s)
- Eseiwi Obaseki
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| | - Daniel Adebayo
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| | - Sumit Bandyopadhyay
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| | - Hanaa Hariri
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| |
Collapse
|
92
|
Sharma AK, Khandelwal R, Wolfrum C. Futile lipid cycling: from biochemistry to physiology. Nat Metab 2024; 6:808-824. [PMID: 38459186 DOI: 10.1038/s42255-024-01003-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
In the healthy state, the fat stored in our body isn't just inert. Rather, it is dynamically mobilized to maintain an adequate concentration of fatty acids (FAs) in our bloodstream. Our body tends to produce excess FAs to ensure that the FA availability is not limiting. The surplus FAs are actively re-esterified into glycerides, initiating a cycle of breakdown and resynthesis of glycerides. This cycle consumes energy without generating a new product and is commonly referred to as the 'futile lipid cycle' or the glyceride/FA cycle. Contrary to the notion that it's a wasteful process, it turns out this cycle is crucial for systemic metabolic homeostasis. It acts as a control point in intra-adipocyte and inter-organ cross-talk, a metabolic rheostat, an energy sensor and a lipid diversifying mechanism. In this Review, we discuss the metabolic regulation and physiological implications of the glyceride/FA cycle and its mechanistic underpinnings.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
93
|
Nakamura M. Lipotoxicity as a therapeutic target in obesity and diabetic cardiomyopathy. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12568. [PMID: 38706718 PMCID: PMC11066298 DOI: 10.3389/jpps.2024.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Unhealthy sources of fats, ultra-processed foods with added sugars, and a sedentary lifestyle make humans more susceptible to developing overweight and obesity. While lipids constitute an integral component of the organism, excessive and abnormal lipid accumulation that exceeds the storage capacity of lipid droplets disrupts the intracellular composition of fatty acids and results in the release of deleterious lipid species, thereby giving rise to a pathological state termed lipotoxicity. This condition induces endoplasmic reticulum stress, mitochondrial dysfunction, inflammatory responses, and cell death. Recent advances in omics technologies and analytical methodologies and clinical research have provided novel insights into the mechanisms of lipotoxicity, including gut dysbiosis, epigenetic and epitranscriptomic modifications, dysfunction of lipid droplets, post-translational modifications, and altered membrane lipid composition. In this review, we discuss the recent knowledge on the mechanisms underlying the development of lipotoxicity and lipotoxic cardiometabolic disease in obesity, with a particular focus on lipotoxic and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, United States
| |
Collapse
|
94
|
Zhou Y, Sanchez VB, Xu P, Roule T, Flores-Mendez M, Ciesielski B, Yoo D, Teshome H, Jimenez T, Liu S, Henne M, O’Brien T, He Y, Mesaros C, Akizu N. Altered lipid homeostasis is associated with cerebellar neurodegeneration in SNX14 deficiency. JCI Insight 2024; 9:e168594. [PMID: 38625743 PMCID: PMC11141923 DOI: 10.1172/jci.insight.168594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Dysregulated lipid homeostasis is emerging as a potential cause of neurodegenerative disorders. However, evidence of errors in lipid homeostasis as a pathogenic mechanism of neurodegeneration remains limited. Here, we show that cerebellar neurodegeneration caused by Sorting Nexin 14 (SNX14) deficiency is associated with lipid homeostasis defects. Recent studies indicate that SNX14 is an interorganelle lipid transfer protein that regulates lipid transport, lipid droplet (LD) biogenesis, and fatty acid desaturation, suggesting that human SNX14 deficiency belongs to an expanding class of cerebellar neurodegenerative disorders caused by altered cellular lipid homeostasis. To test this hypothesis, we generated a mouse model that recapitulates human SNX14 deficiency at a genetic and phenotypic level. We demonstrate that cerebellar Purkinje cells (PCs) are selectively vulnerable to SNX14 deficiency while forebrain regions preserve their neuronal content. Ultrastructure and lipidomic studies reveal widespread lipid storage and metabolism defects in SNX14-deficient mice. However, predegenerating SNX14-deficient cerebella show a unique accumulation of acylcarnitines and depletion of triglycerides. Furthermore, defects in LD content and telolysosome enlargement in predegenerating PCs suggest lipotoxicity as a pathogenic mechanism of SNX14 deficiency. Our work shows a selective cerebellar vulnerability to altered lipid homeostasis and provides a mouse model for future therapeutic studies.
Collapse
Affiliation(s)
- Yijing Zhou
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Vanessa B. Sanchez
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Peining Xu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas Roule
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Marco Flores-Mendez
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Brianna Ciesielski
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donna Yoo
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Hiab Teshome
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Teresa Jimenez
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Shibo Liu
- The Graduate Center of the City University of New York, Advanced Science Research Center, New York, New York, USA
| | - Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Tim O’Brien
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ye He
- The Graduate Center of the City University of New York, Advanced Science Research Center, New York, New York, USA
- Ph.D. Program in Biology, The Graduate Center of the City University of New York, New York, New York, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Naiara Akizu
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| |
Collapse
|
95
|
Gotvaldová K, Špačková J, Novotný J, Baslarová K, Ježek P, Rossmeislová L, Gojda J, Smolková K. BCAA metabolism in pancreatic cancer affects lipid balance by regulating fatty acid import into mitochondria. Cancer Metab 2024; 12:10. [PMID: 38532464 DOI: 10.1186/s40170-024-00335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has been associated with the host dysmetabolism of branched-chain amino acids (BCAAs), however, the implications for the role of BCAA metabolism in PDAC development or progression are not clear. The mitochondrial catabolism of valine, leucine, and isoleucine is a multistep process leading to the production of short-chain R-CoA species. They can be subsequently exported from mitochondria as short-chain carnitines (SC-CARs), utilized in anabolic pathways, or released from the cells. METHODS We examined the specificities of BCAA catabolism and cellular adaptation strategies to BCAA starvation in PDAC cells in vitro. We used metabolomics and lipidomics to quantify major metabolic changes in response to BCAA withdrawal. Using confocal microscopy and flow cytometry we quantified the fluorescence of BODIPY probe and the level of lipid droplets (LDs). We used BODIPY-conjugated palmitate to evaluate transport of fatty acids (FAs) into mitochondria. Also, we have developed a protocol for quantification of SC-CARs, BCAA-derived metabolites. RESULTS Using metabolic profiling, we found that BCAA starvation leads to massive triglyceride (TG) synthesis and LD accumulation. This was associated with the suppression of activated FA transport into the mitochondrial matrix. The suppression of FA import into mitochondria was rescued with the inhibitor of the acetyl-CoA carboxylase (ACC) and the activator of AMP kinase (AMPK), which both regulate carnitine palmitoyltransferase 1A (CPT1) activation status. CONCLUSIONS Our data suggest that BCAA catabolism is required for the import of long chain carnitines (LC-CARs) into mitochondria, whereas the disruption of this link results in the redirection of activated FAs into TG synthesis and its deposition into LDs. We propose that this mechanism protects cells against mitochondrial overload with LC-CARs and it might be part of the universal reaction to amino acid perturbations during cancer growth, regulating FA handling and storage.
Collapse
Affiliation(s)
- Klára Gotvaldová
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic
| | - Jitka Špačková
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic
| | - Jiří Novotný
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic
| | - Kamila Baslarová
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Ježek
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic
| | - Lenka Rossmeislová
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Third Faculty of Medicine, Franco-Czech Laboratory for Clinical Research on Obesity, Prague, Czech Republic
| | - Jan Gojda
- Third Faculty of Medicine, Franco-Czech Laboratory for Clinical Research on Obesity, Prague, Czech Republic
- Department of Internal Medicine, Královské Vinohrady University Hospital and Third Faculty of Medicine, Prague, Czech Republic
| | - Katarína Smolková
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic.
| |
Collapse
|
96
|
Podleśny-Drabiniok A, Novikova G, Liu Y, Dunst J, Temizer R, Giannarelli C, Marro S, Kreslavsky T, Marcora E, Goate AM. BHLHE40/41 regulate microglia and peripheral macrophage responses associated with Alzheimer's disease and other disorders of lipid-rich tissues. Nat Commun 2024; 15:2058. [PMID: 38448474 PMCID: PMC10917780 DOI: 10.1038/s41467-024-46315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Genetic and experimental evidence suggests that Alzheimer's disease (AD) risk alleles and genes may influence disease susceptibility by altering the transcriptional and cellular responses of macrophages, including microglia, to damage of lipid-rich tissues like the brain. Recently, sc/nRNA sequencing studies identified similar transcriptional activation states in subpopulations of macrophages in aging and degenerating brains and in other diseased lipid-rich tissues. We collectively refer to these subpopulations of microglia and peripheral macrophages as DLAMs. Using macrophage sc/nRNA-seq data from healthy and diseased human and mouse lipid-rich tissues, we reconstructed gene regulatory networks and identified 11 strong candidate transcriptional regulators of the DLAM response across species. Loss or reduction of two of these transcription factors, BHLHE40/41, in iPSC-derived microglia and human THP-1 macrophages as well as loss of Bhlhe40/41 in mouse microglia, resulted in increased expression of DLAM genes involved in cholesterol clearance and lysosomal processing, increased cholesterol efflux and storage, and increased lysosomal mass and degradative capacity. These findings provide targets for therapeutic modulation of macrophage/microglial function in AD and other disorders affecting lipid-rich tissues.
Collapse
Affiliation(s)
- Anna Podleśny-Drabiniok
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gloriia Novikova
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- OMNI Bioinformatics Department, Genentech, Inc., South San Francisco, CA, USA
| | - Yiyuan Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Josefine Dunst
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rose Temizer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chiara Giannarelli
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Samuele Marro
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Taras Kreslavsky
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edoardo Marcora
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Alison Mary Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
97
|
Tan YJ, Jin Y, Zhou J, Yang YF. Lipid droplets in pathogen infection and host immunity. Acta Pharmacol Sin 2024; 45:449-464. [PMID: 37993536 PMCID: PMC10834987 DOI: 10.1038/s41401-023-01189-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
As the hub of cellular lipid metabolism, lipid droplets (LDs) have been linked to a variety of biological processes. During pathogen infection, the biogenesis, composition, and functions of LDs are tightly regulated. The accumulation of LDs has been described as a hallmark of pathogen infection and is thought to be driven by pathogens for their own benefit. Recent studies have revealed that LDs and their subsequent lipid mediators contribute to effective immunological responses to pathogen infection by promoting host stress tolerance and reducing toxicity. In this comprehensive review, we delve into the intricate roles of LDs in governing the replication and assembly of a wide spectrum of pathogens within host cells. We also discuss the regulatory function of LDs in host immunity and highlight the potential for targeting LDs for the diagnosis and treatment of infectious diseases.
Collapse
Affiliation(s)
- Yan-Jie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Jin
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yun-Fan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
98
|
Mathiowetz AJ, Olzmann JA. Lipid droplets and cellular lipid flux. Nat Cell Biol 2024; 26:331-345. [PMID: 38454048 PMCID: PMC11228001 DOI: 10.1038/s41556-024-01364-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Lipid droplets are dynamic organelles that store neutral lipids, serve the metabolic needs of cells, and sequester lipids to prevent lipotoxicity and membrane damage. Here we review the current understanding of the mechanisms of lipid droplet biogenesis and turnover, the transfer of lipids and metabolites at membrane contact sites, and the role of lipid droplets in regulating fatty acid flux in lipotoxicity and cell death.
Collapse
Affiliation(s)
- Alyssa J Mathiowetz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
99
|
Guo D, Zhang M, Qi B, Peng T, Liu M, Li Z, Fu F, Guo Y, Li C, Wang Y, Hu L, Li Y. Lipid overload-induced RTN3 activation leads to cardiac dysfunction by promoting lipid droplet biogenesis. Cell Death Differ 2024; 31:292-308. [PMID: 38017147 PMCID: PMC10923887 DOI: 10.1038/s41418-023-01241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Lipid droplet (LD) accumulation is a notable feature of obesity-induced cardiomyopathy, while underlying mechanism remains poorly understood. Here we show that mice fed with high-fat diet (HFD) exhibited significantly increase in cardiac LD and RTN3 expression, accompanied by cardiac function impairment. Multiple loss- and gain-of function experiments indicate that RTN3 is critical to HFD-induced cardiac LD accumulation. Mechanistically, RTN3 directly bonds with fatty acid binding protein 5 (FABP5) to facilitate the directed transport of fatty acids to endoplasmic reticulum, thereby promoting LD biogenesis in a diacylglycerol acyltransferase 2 dependent way. Moreover, lipid overload-induced RTN3 upregulation is due to increased expression of CCAAT/enhancer binding protein α (C/EBPα), which positively regulates RTN3 transcription by binding to its promoter region. Notably, above findings were verified in the myocardium of obese patients. Our findings suggest that manipulating LD biogenesis by modulating RTN3 may be a potential strategy for treating cardiac dysfunction in obese patients.
Collapse
Affiliation(s)
- Dong Guo
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Bingchao Qi
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Tingwei Peng
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Mingchuan Liu
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Zhelong Li
- Department of Ultrasound Diagnostics, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Feng Fu
- Department of Physiology and Pathophysiology, Airforce Medical University, Xi'an, 710032, China
| | - Yanjie Guo
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Airforce Medical University, 710032, Xi'an, China
| | - Ying Wang
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Lang Hu
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China.
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China.
| |
Collapse
|
100
|
Chen H, Zhao S, Jian Q, Yan Y, Wang S, Zhang X, Ji Y. The role of ApoE in fatty acid transport from neurons to astrocytes under ischemia/hypoxia conditions. Mol Biol Rep 2024; 51:320. [PMID: 38393618 DOI: 10.1007/s11033-023-08921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND The aim of this study was to investigate whether ischemia/hypoxia conditions induce fatty acid transport from neurons to astrocytes and whether this mechanism is affected by ApoE isoforms. METHODS AND RESULTS A neonatal rat model of hypoxic-ischemic brain damage was established. Excessive accumulation of lipid droplets and upregulation of ApoE expression occurred in the hippocampus and cerebral cortex after hypoxia-ischemia, which implied the occurrence of abnormal fatty acid metabolism. Lipid peroxidation was induced in an oxygen-glucose deprivation and reperfusion (OGDR) model of ApoE-/- primary neurons. The number of BODIPY 558/568 C12-positive particles (fatty acid markers) transferred from neurons to astrocytes was significantly increased with the addition of human recombinant ApoE compared with that in the OGDR group, which significantly increased the efficiency of fatty acid transport from neurons to astrocytes and neuronal viability. However, ApoE4 was found to be associated with lower efficiency in fatty acid transport and less protective effects in OGDR-induced neuronal cell death than both ApoE2 and ApoE3. COG133, an ApoE-mimetic peptide, partially compensated for the adverse effects of ApoE4. FABP5 and SOD1 gene and protein expression levels were upregulated in astrocytes treated with BODIPY 558/568 C12 particles. CONCLUSIONS In conclusion, ApoE plays an important role in mediating the transport of fatty acids from neurons to astrocytes under ischemia/hypoxia conditions, and this transport mechanism is ApoE isoform dependent. ApoE4 has a low transfer efficiency and may be a potential target for the clinical treatment of neonatal hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Hongyan Chen
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Shaozhi Zhao
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Qiang Jian
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Yinfang Yan
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
| | - Simin Wang
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
| | - Xinwen Zhang
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China.
| | - Yuqiang Ji
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China.
| |
Collapse
|