51
|
Cellot S, Krosl J, Chagraoui J, Meloche S, Humphries RK, Sauvageau G. Sustained in vitro trigger of self-renewal divisions in Hoxb4hiPbx1(10) hematopoietic stem cells. Exp Hematol 2007; 35:802-16. [PMID: 17577929 PMCID: PMC2752385 DOI: 10.1016/j.exphem.2007.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Factors that trigger and sustain self-renewal divisions in tissue stem cells remain poorly characterized. By modulating the levels of Hoxb4 and its co-factor Pbxl in primary hematopoietic cells (Hoxb4hiPbxl(10) cells), we report an in vitro expansion of mouse hematopoietic stem cells (HSCs) by 105-fold over 2 weeks, with subsequent preservation of HSC properties. Clonal analyses of the hematopoietic system in recipients of expanded HSCs indicate that up to 70% of Hoxb4hiPbxl(10) stem cells present at initiation of culture underwent self-renewal in vitro. In this setting, Hoxb4 and its co-factor did not promote an increase in DNA synthesis, or a decrease in doubling time of Scal+Lin- cells when compared to controls. Q-PCR analyses further revealed a downregulation of Cdknlb (p27Kipl) and Mxdl (MadI) transcript levels in Hoxb4hiPbxl(l0) primitive cells, accompanied by a more subtle increase in c-myc and reduction in Ccnd3 (Cyclin D3). We thus put forward this strategy as an efficient in vitro HSC expansion tool, enabling a further step into the avenue of self-renewal molecular effectors.
Collapse
Affiliation(s)
- Sonia Cellot
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer (IRIC), C.P. 6128 succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Jana Krosl
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer (IRIC), C.P. 6128 succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Jalila Chagraoui
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer (IRIC), C.P. 6128 succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Sylvain Meloche
- Signaling and Cell Growth, Institut de Recherche en Immunologie et Cancérologie (IRIC), C.P. 6128 succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
- Departments of Molecular Biology and Pharmacology, Université de Montréal
| | - R. Keith Humphries
- Terry Fox Laboratories, British Columbia Cancer Agency, Vancouver, British Columbia and Department of Medicine, University of British Columbia, Vancouver, British Columbia
| | - Guy Sauvageau
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer (IRIC), C.P. 6128 succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
- Department of Medicine and Division of Hematology and Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montréal, Québec, Canada
| |
Collapse
|
52
|
|
53
|
Ema H, Morita Y, Yamazaki S, Matsubara A, Seita J, Tadokoro Y, Kondo H, Takano H, Nakauchi H. Adult mouse hematopoietic stem cells: purification and single-cell assays. Nat Protoc 2007; 1:2979-87. [PMID: 17406558 DOI: 10.1038/nprot.2006.447] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mouse hematopoietic stem cells (HSCs) are the best-studied stem cells because functional assays for mouse HSCs were established earliest and purification techniques for mouse HSCs have progressed furthest. Here we describe our current protocols for the purification of CD34-/lowc-Kit+Sca-1+lineage marker- (CD34-KSL) cells, the HSC population making up approximately 0.005% of bone marrow cells in adult C557BL/6 mice. Purified HSCs have been characterized at cellular and molecular levels. Since clonal analysis is essential for the study of self-renewal and lineage commitment in HSCs, here we present our single-cell colony assay and single-cell transplantation procedures. We also introduce our immunostaining procedures for small numbers of HSCs, which are useful for signal transduction analysis. The purification of CD34-KSL cells requires approximately 6 h. Initialization of single-cell culture requires approximately 1 h. Single-cell transplantation requires approximately 6 h. Single-cell immunostaining requires approximately 2 d.
Collapse
Affiliation(s)
- Hideo Ema
- Laboratory of Stem Cell Therapy, Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
|
55
|
Okumoto K, Saito T, Onodera M, Sakamoto A, Tanaka M, Hattori E, Haga H, Ito JI, Sugahara K, Saito K, Togashi H, Kawata S. Serum levels of stem cell factor and thrombopoietin are markedly decreased in fulminant hepatic failure patients with a poor prognosis. J Gastroenterol Hepatol 2007; 22:1265-70. [PMID: 17688667 DOI: 10.1111/j.1440-1746.2006.04497.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Hematopoietic growth factors including stem cell factor (SCF), thrombopoietin (TPO) and granulocyte colony stimulating factor (G-CSF) have a potential role in inducing bone marrow hematopoietic stem cells to move into the circulation, and the association of these factors with liver regeneration has received a lot of attention recently. The aim of this study was to determine the serum levels of such factors in patients with acute liver injury. METHODS The subjects were 25 patients with acute hepatitis (AH) who had a favorable prognosis and 26 patients with fulminant hepatitis (FH), of whom 11 were alive and 15 had died. Sixty-six healthy subjects matched for age and sex served as controls. Serum samples were collected before treatment, and the levels of SCF, TPO and G-CSF were measured using enzyme-linked immunosorbant assays. RESULTS The levels of SCF and TPO were significantly lower in FH patients than in AH patients and the controls, and were also significantly lower in the FH patients who died, compared to the surviving patients. The G-CSF levels did not differ among them. CONCLUSIONS These results suggest that low serum levels of SCF and TPO may be linked to poor prognosis in patients with severe liver injury.
Collapse
Affiliation(s)
- Kazuo Okumoto
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Kamprad M, Kindler S, Schuetze N, Emmrich F. Flow Cytometric Immunophenotyping of Umbilical Cord and Peripheral Blood Haematopoietic Progenitor Cells by Different CD34 Epitopes, CD133, P-Glycoprotein Expression and Rhodamine-123 Efflux. Transfus Med Hemother 2007. [DOI: 10.1159/000101555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
57
|
Wilson A, Oser GM, Jaworski M, Blanco-Bose WE, Laurenti E, Adolphe C, Essers MA, Macdonald HR, Trumpp A. Dormant and Self-Renewing Hematopoietic Stem Cells and Their Niches. Ann N Y Acad Sci 2007; 1106:64-75. [PMID: 17442778 DOI: 10.1196/annals.1392.021] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the mouse, over the last 20 years, a set of cell-surface markers and activities have been identified, enabling the isolation of bone marrow (BM) populations highly enriched in hematopoietic stem cells (HSCs). These HSCs have the ability to generate multiple lineages and are capable of long-term self-renewal activity such that they are able to reconstitute and maintain a functional hematopoietic system after transplantation into lethally irradiated recipients. Using single-cell reconstitution assays, various marker combinations can be used to achieve a functional HSC purity of almost 50%. Here we have used the differential expression of six of these markers (Sca1, c-Kit, CD135, CD48, CD150, and CD34) on lineage-depleted BM to refine cell hierarchies within the HSC population. At the top of the hierarchy, we propose a dormant HSC population (Lin(-)Sca1(+)c-Kit(+) CD48(-)CD150(+)CD34(-)) that gives rise to an active self-renewing CD34(+) HSC population. HSC dormancy, as well as the balance between self-renewal and differentiation activity, is at least, in part, controlled by the stem cell niches individual HSCs are attached to. Here we review the current knowledge about HSC niches and propose that dormant HSCs are located in niches at the endosteum, whereas activated HSCs are in close contact to sinusoids of the BM microvasculature.
Collapse
Affiliation(s)
- Anne Wilson
- Ludwig Institute for Cancer Research Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Bowie MB, Kent DG, Dykstra B, McKnight KD, McCaffrey L, Hoodless PA, Eaves CJ. Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc Natl Acad Sci U S A 2007; 104:5878-82. [PMID: 17379664 PMCID: PMC1829493 DOI: 10.1073/pnas.0700460104] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Indexed: 01/07/2023] Open
Abstract
Hematopoietic stem cells (HSCs) execute self-renewal divisions throughout fetal and adult life, although some of their properties do alter. Here we analyzed the magnitude and timing of changes in the self-renewal properties and differentiated cell outputs of transplanted HSCs obtained from different sources during development. We also assessed the expression of several "stem cell" genes in corresponding populations of highly purified HSCs. Fetal and adult HSCs displayed marked differences in their self-renewal, differentiated cell output, and gene expression properties, with persistence of a fetal phenotype until 3 weeks after birth. Then, 1 week later, the HSCs became functionally indistinguishable from adult HSCs. The same schedule of changes in HSC properties occurred when HSCs from fetal or 3-week-old donors were transplanted into adult recipients. These findings point to the existence of a previously unrecognized, intrinsically regulated master switch that effects a developmental change in key HSC properties.
Collapse
Affiliation(s)
- Michelle B. Bowie
- *Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada V5Z 1L3; and
| | - David G. Kent
- *Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada V5Z 1L3; and
| | - Brad Dykstra
- *Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada V5Z 1L3; and
| | - Kristen D. McKnight
- *Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada V5Z 1L3; and
| | - Lindsay McCaffrey
- *Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada V5Z 1L3; and
| | - Pamela A. Hoodless
- *Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada V5Z 1L3; and
| | - Connie J. Eaves
- *Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada V5Z 1L3; and
- University of British Columbia, Vancouver, BC, Canada V5Z 1L3
| |
Collapse
|
59
|
Bowie MB, Kent DG, Copley MR, Eaves CJ. Steel factor responsiveness regulates the high self-renewal phenotype of fetal hematopoietic stem cells. Blood 2007; 109:5043-8. [PMID: 17327414 DOI: 10.1182/blood-2006-08-037770] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fetal hematopoietic stem cells (HSCs) regenerate daughter HSCs in irradiated recipients more rapidly than do adult HSCs. However, both types of HSCs divide in vitro with the same cell-cycle transit times, suggesting different intrinsically determined self-renewal activities. To investigate the mechanism(s) underlying these differences, we compared fetal and adult HSC responses to Steel factor (SF) stimulation in vitro and in vivo. These experiments were undertaken with both wild-type cells and W(41)/W(41) cells, which have a functionally deficient c-kit kinase. In vitro, fetal HSC self-renewal divisions, like those of adult HSCs, were found to be strongly dependent on c-kit activation, but the fetal HSCs responded to much lower SF concentrations in spite of indistinguishable levels of c-kit expression. Fetal W(41)/W(41) HSCs also mimicked adult wild-type HSCs in showing the same reduced rate of amplification in irradiated adult hosts (relative to fetal wild-type HSCs). Assessment of various proliferation and signaling gene transcripts in fetal and adult HSCs self-renewing in vitro revealed a singular difference in Ink4c expression. We conclude that the ability of fetal HSCs to execute symmetric self-renewal divisions more efficiently than adult HSCs in vivo may be dependent on specific developmentally regulated signals that act downstream of the c-kit kinase.
Collapse
Affiliation(s)
- Michelle B Bowie
- Terry Fox Laboratory, British Columbia Cancer Agency and University of British Columbia, 675 West 10th Avenue, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
60
|
Bowie MB, McKnight KD, Kent DG, McCaffrey L, Hoodless PA, Eaves CJ. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J Clin Invest 2007; 116:2808-16. [PMID: 17016561 PMCID: PMC1578623 DOI: 10.1172/jci28310] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 07/11/2006] [Indexed: 01/18/2023] Open
Abstract
The regulation of HSC proliferation and engraftment of the BM is an important but poorly understood process, particularly during ontogeny. Here we show that in mice, all HSCs are cycling until 3 weeks after birth. Then, within 1 week, most became quiescent. Prior to 4 weeks of age, the proliferating HSCs with long-term multilineage repopulating activity displayed an engraftment defect when transiting S/G2/M. During these cell cycle phases, their expression of CXC chemokine ligand 12 (CXCL12; also referred to as stromal cell-derived factor 1 [SDF-1]) transiently increased. The defective engrafting activity of HSCs in S/G2/M was reversed when cells were allowed to progress into G1 prior to injection or when the hosts (but not the cells) were pretreated with a CXCL12 antagonist. Interestingly, the enhancing effect of CXCL12 antagonist pretreatment was exclusive to transplants of long-term multilineage repopulating HSCs in S/G2/M. These results demonstrate what we believe to be a new HSC regulatory checkpoint during development. They also suggest an ability of HSCs to express CXCL12 in a fashion that changes with cell cycle progression and is associated with a defective engraftment that can be overcome by in vivo administration of a CXCL12 antagonist.
Collapse
Affiliation(s)
- Michelle B. Bowie
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada.
Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristen D. McKnight
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada.
Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David G. Kent
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada.
Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay McCaffrey
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada.
Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pamela A. Hoodless
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada.
Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Connie J. Eaves
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada.
Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
61
|
Pearce DJ, Anjos-Afonso F, Ridler CM, Eddaoudi A, Bonnet D. Age-dependent increase in side population distribution within hematopoiesis: implications for our understanding of the mechanism of aging. Stem Cells 2006; 25:828-35. [PMID: 17158238 DOI: 10.1634/stemcells.2006-0405] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is thought that, as we age, damage to our stem cells may lead to diminished stem cell pool function and, consequently, a reduced organ regeneration potential that contributes to somatic senescence. Stem cells have evolved many antitoxicity mechanisms, and certain mechanisms may be utilized to isolate hematopoietic stem cells. One method exploits the activity of the ATP-binding cassette/G2 transporter to efflux Hoechst 33,342 and results in a stem cell population known as the side population (SP). The SP subset represents a remarkable enrichment for hematopoietic stem cells and provides an opportunity to re-evaluate age-based changes in hematopoietic stem cells. We report here that the frequency of SP cells steadily increases with age, as does the proportion of Lin(-)/Sca-1(+)/c-kit(+) cells that is capable of Hoechst efflux. Phenotyping, progenitor, and long-term repopulation assays have indicated that SP cells in older mice are still stem cells, albeit with a lower homing efficiency than SP cells from younger mice. Analysis of apoptosis within SP cells has revealed an apoptosis-resistant population in SP cells from old mice. Gene expression analysis has determined that SP cells from old mice have a reduced expression of apoptosis-promoting genes than SP cells from young mice. This increase in SP cells with age seems to be an intrinsic property that may be independent of the age of the microenvironment (niche), and our data might provide some clues as to how this alteration in the proportion of stem/progenitor cells occurs. A possible selection-based mechanism of stem cell pool aging is discussed.
Collapse
Affiliation(s)
- Daniel J Pearce
- Hematopoietic Stem Cell Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| | | | | | | | | |
Collapse
|
62
|
Rizo A, Vellenga E, de Haan G, Schuringa JJ. Signaling pathways in self-renewing hematopoietic and leukemic stem cells: do all stem cells need a niche? Hum Mol Genet 2006; 15 Spec No 2:R210-9. [PMID: 16987886 DOI: 10.1093/hmg/ddl175] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many adult tissue stem cells, such as the cells of the hematopoietic system, gastrointestinal epithelium, brain, epidermis, mammary gland and lung have now been identified, all of them fulfilling a crucial role in supplying organisms with mature cells during normal homeostasis as well as in times of tissue generation or repair. Two unique features characterize adult stem cells: the ability to generate new pluripotent stem cells (to self-renew) and the ability to give rise to differentiated progeny that has lost its self-renewal capacity. Our understanding of the mechanisms that determine whether, where and when a stem cell will self-renew or differentiate is still limited, but recent advances have indicated that the stem cell microenvironment, or niche, provides essential cues that direct these cell fate decisions. Moreover, loss of control over these cell fate decisions might lead to cellular transformation and cancer. This review addresses the current understandings of the molecular mechanisms that regulate hematopoietic stem cell self-renewal in the niche and how leukemic transformation might change the dependency of leukemic stem cells on their microenvironment for self-renewal and survival.
Collapse
Affiliation(s)
- Aleksandra Rizo
- Department of Cell Biology, Section Stem Cell Biology, University Medical Centre Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
63
|
Nygren JM, Bryder D, Jacobsen SEW. Prolonged cell cycle transit is a defining and developmentally conserved hemopoietic stem cell property. THE JOURNAL OF IMMUNOLOGY 2006; 177:201-8. [PMID: 16785515 DOI: 10.4049/jimmunol.177.1.201] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adult mouse hemopoietic stem cells (HSCs) are typically quiescent and enter and progress through the cell cycle rarely in steady-state bone marrow, but their rate of proliferation can be dramatically enhanced on demand. We have studied the cell cycle kinetics of HSCs in the developing fetal liver at a stage when they expand extensively. Despite that 100% of fetal liver HSCs divide within a 48-h period, their average cell cycle transit time (10.6 h) is twice that of their downstream progenitors, translating into a prolonged G(1) transit and a period of relative quiescence (G(0)). In agreement with their prolonged G(1) transit when compared with hemopoietic progenitors, competitive transplantation experiments demonstrate that fetal HSCs are highly enriched in G(1) but also functional in S-G(2)-M. This observation combined with experimental data demonstrating that adult HSCs forced to expand ex vivo also sustain a uniquely prolonged cell cycle and G(1) transit, demonstrate at least in part why purified HSCs at any state of development or condition are highly enriched in the G(0)-G(1) phases of the cell cycle. We propose that a uniquely prolonged cell cycle transit is a defining stem cell property, likely to be critical for their maintenance and self-renewal throughout development.
Collapse
Affiliation(s)
- Jens M Nygren
- Hematopoietic Stem Cell Laboratory, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
| | | | | |
Collapse
|
64
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells are functionally heterogeneous even when isolated as phenotypically homogenous populations. How this heterogeneity is generated is incompletely understood. Several models have been formulated to explain the generation of diversity. All of these assume the existence of a single type of hematopoietic stem cell that generates heterogeneous daughter stem cells in response to extrinsic or intrinsic (stochastic) signals. This view has encouraged the idea that stem cells can be instructed to adapt their function. Newer data, however, challenge this concept. Here, we summarize these findings and discuss their implication for applications of stem cells. RECENT FINDINGS Hematopoietic stem cells that differ in function have been documented during development and within the adult stem cell compartment. The differences in function are stably inherited to daughter stem cells when these cells proliferate to self-renew. Collectively, the data show that the adult stem cell compartment consists of a limited number of distinct classes of stem cells. SUMMARY The most important stem cell functions, including self-renewal and differentiation capacity, are preprogrammed through epigenetic or genetic mechanisms. Thus, stem cells are much more predictable than previously thought. Changes in the stem cell compartment through disease or aging can be interpreted as shifts in its clonal composition, rather than a modification of individual hematopoietic stem cells.
Collapse
|
65
|
Dykstra B, Ramunas J, Kent D, McCaffrey L, Szumsky E, Kelly L, Farn K, Blaylock A, Eaves C, Jervis E. High-resolution video monitoring of hematopoietic stem cells cultured in single-cell arrays identifies new features of self-renewal. Proc Natl Acad Sci U S A 2006; 103:8185-90. [PMID: 16702542 PMCID: PMC1461403 DOI: 10.1073/pnas.0602548103] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To search for new indicators of self-renewing hematopoietic stem cells (HSCs), highly purified populations were isolated from adult mouse marrow, micromanipulated into a specially designed microscopic array, and cultured for 4 days in 300 ng/ml Steel factor, 20 ng/ml IL-11, and 1 ng/ml flt3-ligand. During this period, each cell and its progeny were imaged at 3-min intervals by using digital time-lapse photography. Individual clones were then harvested and assayed for HSCs in mice by using a 4-month multilineage repopulation endpoint (>1% contribution to lymphoid and myeloid lineages). In a first experiment, 6 of 14 initial cells (43%) and 17 of 61 clones (28%) had HSC activity, demonstrating that HSC self-renewal divisions had occurred in vitro. Characteristics associated with HSC activity included longer cell-cycle times and the absence of uropodia on a majority of cells within the clone during the final 12 h of culture. Combining these criteria maximized the distinction of clones with HSC activity from those without and identified a subset of 27 of the 61 clones. These 27 clones included all 17 clones that had HSC activity; a detection efficiency of 63% (2.26 times more frequently than in the original group). The utility of these characteristics for discriminating HSC-containing clones was confirmed in two independent experiments where all HSC-containing clones were identified at a similar 2- to 3-fold-greater efficiency. These studies illustrate the potential of this monitoring system to detect new features of proliferating HSCs that are predictive of self-renewal divisions.
Collapse
Affiliation(s)
- Brad Dykstra
- *Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada V5Z 4E6
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V5Z 1L3; and
| | - John Ramunas
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - David Kent
- *Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada V5Z 4E6
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V5Z 1L3; and
| | - Lindsay McCaffrey
- *Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada V5Z 4E6
| | - Erin Szumsky
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Liam Kelly
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Kristen Farn
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - April Blaylock
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Connie Eaves
- *Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada V5Z 4E6
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V5Z 1L3; and
| | - Eric Jervis
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1
- To whom correspondence should be addressed at:
Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1. E-mail:
| |
Collapse
|
66
|
Kim I, He S, Yilmaz OH, Kiel MJ, Morrison SJ. Enhanced purification of fetal liver hematopoietic stem cells using SLAM family receptors. Blood 2006; 108:737-44. [PMID: 16569764 PMCID: PMC1895480 DOI: 10.1182/blood-2005-10-4135] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although adult mouse hematopoietic stem cells (HSCs) have been purified to near homogeneity, it remains impossible to achieve this with fetal HSCs. Adult HSC purity recently has been enhanced using the SLAM family receptors CD150, CD244, and CD48. These markers are expressed at different stages of the hematopoiesis hierarchy, making it possible to highly purify adult HSCs as CD150(+)CD48(-)CD244(-) cells. We found that SLAM family receptors exhibited a similar expression pattern in fetal liver. Fetal liver HSCs were CD150(+)CD48(-)CD244(-), and the vast majority of colony-forming progenitors were CD48(+)CD244(-)CD150(-) or CD48(+)CD244(+)CD150(-), just as in adult bone marrow. SLAM family markers enhanced the purification of fetal liver HSCs. Whereas 1 (11%) of every 8.9 Thy(low)Sca-1(+)lineage(-)Mac-1(+) fetal liver cells gave long-term multilineage reconstitution in irradiated mice, 1 (18%) of every 5.7 CD150(+)CD48(-)CD41(-) cells and 1 (37%) of every 2.7 CD150(+)CD48(-)Sca-1(+)lineage(-)Mac-1(+) fetal liver cells gave long-term multilineage reconstitution. These data emphasize the robustness with which SLAM family markers distinguish progenitors at different stages of the hematopoiesis hierarchy and enhance the purification of definitive HSCs from diverse contexts. Nonetheless, CD150, CD244, and CD48 are not pan-stem cell markers, as they were not detectably expressed by stem cells in the fetal or adult nervous system.
Collapse
Affiliation(s)
- Injune Kim
- Howard Hughes Medical Institute, Life Sciences Institute, Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | | | | | | | | |
Collapse
|
67
|
Abstract
Adult stem cells hold many promises for future clinical applications and regenerative medicine. The haematopoietic stem cell (HSC) is the best-characterized somatic stem cell so far, but in vitro expansion has been unsuccessful, limiting the future therapeutic potential of these cells. Here we review recent progress in characterizing the composition of the HSC bone-marrow microenvironment, known as the HSC niche. During homeostasis, HSCs, and therefore putative bone-marrow HSC niches, are located near bone surfaces or are associated with the sinusoidal endothelium. The molecular crosstalk between HSCs and the cellular constituents of these niches is thought to control the balance between HSC self-renewal and differentiation, indicating that future successful expansion of HSCs for therapeutic use will require three-dimensional reconstruction of a stem-cell-niche unit.
Collapse
Affiliation(s)
- Anne Wilson
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | | |
Collapse
|
68
|
Yeoh JSG, van Os R, Weersing E, Ausema A, Dontje B, Vellenga E, de Haan G. Fibroblast growth factor-1 and -2 preserve long-term repopulating ability of hematopoietic stem cells in serum-free cultures. Stem Cells 2006; 24:1564-72. [PMID: 16527900 DOI: 10.1634/stemcells.2005-0439] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this study, we demonstrate that extended culture of unfractionated mouse bone marrow (BM) cells, in serum-free medium, supplemented only with fibroblast growth factor (FGF)-1, FGF-2, or FGF-1 +2 preserves long-term repopulating hematopoietic stem cells (HSCs). Using competitive repopulation assays, high levels of stem cell activity were detectable at 1, 3, and 5 weeks after initiation of culture. FGFs as single growth factors failed to support cultures of highly purified Lin(-)Sca-1(+)c-Kit(+)(LSK) cells. However, cocultures of purified CD45.1 LSK cells with whole BM CD45.2 cells provided high levels of CD45.1 chimerism after transplant, showing that HSC activity originated from LSK cells. Subsequently, we tested the reconstituting potential of cells cultured in FGF-1 + 2 with the addition of early acting stimulatory molecules, stem cell factor +interleukin-11 + Flt3 ligand. The addition of these growth factors resulted in a strong mitogenic response, inducing rapid differentiation and thereby completely overriding FGF-dependent stem cell conservation. Importantly, although HSC activity is typically rapidly lost after short-term culture in vitro, our current protocol allows us to sustain stem cell repopulation potential for periods up to 5 weeks.
Collapse
Affiliation(s)
- Joyce S G Yeoh
- Department of Cell Biology, Section Stem Cell Biology, University Medical Centre Groningen, Antonius, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
69
|
Muller-Sieburg CE, Sieburg HB. The GOD of hematopoietic stem cells: a clonal diversity model of the stem cell compartment. Cell Cycle 2006; 5:394-8. [PMID: 16479167 PMCID: PMC1464375 DOI: 10.4161/cc.5.4.2487] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hematopoietic stem cells (HSC) show heterogeneous behavior even when isolated as phenotypically homogeneous populations. The cellular and molecular mechanisms that control the generation of diversity (GOD) in the HSC compartment are not well understood, but have been the focus of much debate. There is increasing evidence that the most important HSC functions, self-renewal and differentiation, are epigenetically preprogrammed and therefore predictable. Indeed, recent data show that the adult HSC compartment consists of a limited number of functionally distinct subsets of HSC. This contradicts older models of HSC behavior, which postulated a single type of HSC that can be continuously molded into different subtypes of HSC. We propose a clonal diversity model where the adult HSC compartment consists of a fixed number of different types of HSC, each with epigenetically preprogrammed behavior. Aging or disease may change the overall function of the HSC population. The model predicts that these changes reflect the relative composition of the HSC subsets, rather than changes in individual HSC. This view has implications for using HSC in experimental and clinical settings. Selection for the appropriate subsets of HSC, rather than attempts to force HSC to adjust, should improve their utility in transplantation and gene transfer applications.
Collapse
|
70
|
Sieburg HB, Cho RH, Dykstra B, Uchida N, Eaves CJ, Muller-Sieburg CE. The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 2005; 107:2311-6. [PMID: 16291588 PMCID: PMC1456063 DOI: 10.1182/blood-2005-07-2970] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cells (HSCs) display extensive heterogeneity in their behavior even when isolated as phenotypically homogeneous populations. It is not clear whether this heterogeneity reflects inherently diverse subsets of HSCs or a homogeneous population of HSCs diversified by their response to different external stimuli. To address this, we analyzed 97 individual HSCs in long-term transplantation assays. HSC clones were obtained from unseparated bone marrow (BM) through limiting dilution approaches. Following transplantation into individual hosts, donor-type cells in blood were measured bimonthly and the resulting repopulation kinetics were grouped according to overall shape. Only 16 types of repopulation kinetics were found among the HSC clones even though combinatorially 54 groups were possible. All HSC clones, regardless of their origin, could be assigned to this subset of groups, and the probability of finding new patterns is negligible. Thus, the full repertoire of repopulating HSCs was covered. These data indicate that the HSC compartment consists of a limited number of distinct HSC subsets, each with predictable behavior. Enrichment of HSCs (Lin- Rho- SP) changes the representation of HSC types by selecting for distinct subsets of HSCs. These data from the steady-state HSC repertoire could provide a basis for the diagnosis of perturbed patterns of HSCs potentially caused by disease or aging.
Collapse
Affiliation(s)
- Hans B Sieburg
- Sidney Kimmel Cancer Center, 10835 Altman Row, San Diego, CA 92112, USA
| | | | | | | | | | | |
Collapse
|
71
|
Yilmaz OH, Kiel MJ, Morrison SJ. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 2005; 107:924-30. [PMID: 16219798 PMCID: PMC1895895 DOI: 10.1182/blood-2005-05-2140] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Recent advances have increased the purity of hematopoietic stem cells (HSCs) isolated from young mouse bone marrow. However, little attention has been paid to the purity of HSCs from other contexts. Although Thy-1 low Sca-1+ Lineage- c-kit+ cells from young bone marrow are highly enriched for HSCs (1 in 5 cells gives long-term multilineage reconstitution after transplantation into irradiated mice), the same population from old, reconstituted, or cytokine-mobilized mice engrafts much less efficiently (1 in 78 to 1 in 185 cells gives long-term multilineage reconstitution). To test whether we could increase the purity of HSCs isolated from these contexts, we examined the SLAM family markers CD150 and CD48. All detectable HSCs from old, reconstituted, and cyclophosphamide/G-CSF-mobilized mice were CD150+ CD48-, just as in normal young bone marrow. Thy-1 low Sca-1+ Lineage- c-kit+ cells from old, reconstituted, or mobilized mice included mainly CD48+ and/or CD150- cells that lacked reconstituting ability. CD150+ CD48- Sca-1+ Lineage- c-kit+ cells from old, reconstituted, or mobilized mice were much more highly enriched for HSCs, with 1 in 3 to 1 in 7 cells giving long-term multilineage reconstitution. SLAM family receptor expression is conserved among HSCs from diverse contexts, and HSCs from old, reconstituted, and mobilized mice engraft relatively efficiently after transplantation when contaminating cells are eliminated.
Collapse
Affiliation(s)
- Omer H Yilmaz
- Howard Hughes Medical Institute, Department of Internal Medicine, Ann Arbor, MI, USA
| | | | | |
Collapse
|
72
|
Camargo FD, Chambers SM, Drew E, McNagny KM, Goodell MA. Hematopoietic stem cells do not engraft with absolute efficiencies. Blood 2005; 107:501-7. [PMID: 16204316 PMCID: PMC1895609 DOI: 10.1182/blood-2005-02-0655] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem cells (HSCs) can be isolated from murine bone marrow by their ability to efflux the Hoechst 33342 dye. This method defines an extremely small and hematopoietically potent subset of cells known as the side population (SP). Recent studies suggest that transplanted single SP cells are capable of lymphohematopoietic repopulation at near absolute efficiencies. Here, we carefully reevaluate the hematopoietic potential of individual SP cells and find substantially lower rates of reconstitution. Our strategy involved the cotransplantation of single SP cells along with different populations of competitor cells that varied in their self-renewal capacity. Even with minimized HSC competition, SP cells were only able to reconstitute up to 35% of recipient mice. Furthermore, through immunophenotyping and clonal in vitro assays we find that SP cells are virtually homogeneous. Isolation of HSCs on the basis of Hoechst exclusion and a single cell-surface marker allows enrichment levels similar to that obtained with complex multicolor strategies. Altogether, our results indicate that even an extremely homogeneous HSC population, based on phenotype and dye efflux, cannot reconstitute mice at absolute efficiencies.
Collapse
Affiliation(s)
- Fernando D Camargo
- Program in Cell and Molecular Biology and the Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77098, USA
| | | | | | | | | |
Collapse
|
73
|
Budak MT, Alpdogan OS, Zhou M, Lavker RM, Akinci MM, Wolosin JM. Ocular surface epithelia contain ABCG2-dependent side population cells exhibiting features associated with stem cells. J Cell Sci 2005; 118:1715-24. [PMID: 15811951 PMCID: PMC1237017 DOI: 10.1242/jcs.02279] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
When cell populations are incubated with the DNA-binding dye Hoechst 33342 and subjected to flow cytometry analysis for Hoechst 33342 emissions, active efflux of the dye by the ABCG2/BCRP1 transporter causes certain cells to appear as a segregated cohort, known as a side population (SP). Stem cells from several tissues have been shown to possess the SP phenotype. As the lack of specific surface markers has hindered the isolation and subsequent biochemical characterization of epithelial stem cells this study sought to determine the existence of SP cells and expression of ABCG2 in the epithelia of the ocular surface and evaluate whether such SP cells had features associated with epithelial stem cells. Human and rabbit limbal-corneal and conjunctival epithelial cells were incubated with Hoechst 33342, and analyzed and sorted by flow cytometry. Sorted cells were subjected to several tests to determine whether the isolated SP cells displayed features consistent with the stem cell phenotype. Side populations amounting to <1% of total cells, which were sensitive to the ABCG2-inhibitor fumitremorgin C, were found in the conjunctival and limbal epithelia, but were absent from the stem cell-free corneal epithelium. Immunohistochemistry was used to establish the spatial expression pattern of ABCG2. The antigen was detected in clusters of conjunctival and limbal epithelia basal cells but was not present in the corneal epithelium. SP cells were characterized by extremely low light side scattering and contained a high percentage of cells that: showed slow cycling prior to tissue collection; exhibited an initial delay in proliferation after culturing; and displayed clonogenic capacity and resistance to phorbol-induced differentiation; all features that are consistent with a stem cell phenotype.
Collapse
Affiliation(s)
- Murat T. Budak
- Department of Ophthalmology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Onder S. Alpdogan
- Department of Medicine and Pediatrics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Mingyuan Zhou
- Department of Dermatology, The Feinberg School of Medicine at Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Robert M. Lavker
- Department of Dermatology, The Feinberg School of Medicine at Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- * Authors for correspondence (e-mail:
;
)
| | - M.A. Murat Akinci
- Department of Ophthalmology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - J. Mario Wolosin
- Department of Ophthalmology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
- * Authors for correspondence (e-mail:
;
)
| |
Collapse
|
74
|
Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121:1109-21. [PMID: 15989959 DOI: 10.1016/j.cell.2005.05.026] [Citation(s) in RCA: 2363] [Impact Index Per Article: 118.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/29/2005] [Accepted: 05/13/2005] [Indexed: 12/21/2022]
Abstract
To improve our ability to identify hematopoietic stem cells (HSCs) and their localization in vivo, we compared the gene expression profiles of highly purified HSCs and non-self-renewing multipotent hematopoietic progenitors (MPPs). Cell surface receptors of the SLAM family, including CD150, CD244, and CD48, were differentially expressed among functionally distinct progenitors. HSCs were highly purified as CD150(+)CD244(-)CD48(-) cells while MPPs were CD244(+)CD150(-)CD48(-) and most restricted progenitors were CD48(+)CD244(+)CD150(-). The primitiveness of hematopoietic progenitors could thus be predicted based on the combination of SLAM family members they expressed. This is the first family of receptors whose combinatorial expression precisely distinguishes stem and progenitor cells. The ability to purify HSCs based on a simple combination of SLAM receptors allowed us to identify HSCs in tissue sections. Many HSCs were associated with sinusoidal endothelium in spleen and bone marrow, though some HSCs were associated with endosteum. HSCs thus occupy multiple niches, including sinusoidal endothelium in diverse tissues.
Collapse
Affiliation(s)
- Mark J Kiel
- Howard Hughes Medical Institute and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
75
|
Robinson SN, Seina SM, Gohr JC, Kuszynski CA, Sharp JG. Evidence for a qualitative hierarchy within the Hoechst-33342 'side population' (SP) of murine bone marrow cells. Bone Marrow Transplant 2005; 35:807-18. [PMID: 15750609 DOI: 10.1038/sj.bmt.1704881] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In vitro cobblestone area (CA)-forming cell (CAFC) and in vivo (short-term and competitive repopulation) assays demonstrate that a qualitative hierarchy exists within the Hoechst-33342-defined side population (SP) in murine bone marrow (BM). Consistent with and extending previous studies, we demonstrate that (i) hematopoietic activity found in whole BM (WBM) is concentrated within the SP, rather than the non-SP (NSP); and (ii) within the SP, those cells that more strongly efflux the dye (lower SP, LSP) are qualitatively different from those that less strongly efflux the dye (upper SP, USP). Qualitative differences are highlighted by evidence that (i) CA derived from LSP CAFC persist in culture significantly longer than CA derived from USP CAFC; (ii) short-term, multilineage repopulation of lethally irradiated mice by LSP cells is more rapid than that in mice receiving USP, NSP, whole SP (WSP), or WBM cells and (iii) LSP cells out-compete USP cells in the multilineage hematopoietic repopulation of lethally irradiated recipients. These data suggest that LSP cells are of higher quality than USP cells and potentially provide a means by which qualitative changes in primitive hematopoietic progenitors occurring naturally with aging, or clinically as a consequence of therapeutic manipulation, can be assessed.
Collapse
Affiliation(s)
- S N Robinson
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | | | | | | | | |
Collapse
|
76
|
Glimm H, Schmidt M, Fischer M, Schwarzwaelder K, Wissler M, Klingenberg S, Prinz C, Waller CF, Lange W, Eaves CJ, von Kalle C. Efficient marking of human cells with rapid but transient repopulating activity in autografted recipients. Blood 2005; 106:893-8. [PMID: 15845903 PMCID: PMC1895162 DOI: 10.1182/blood-2004-07-2859] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Short-term hematopoietic reconstituting cells have been identified in mice, nonhuman primates, and among human cells that engraft xenogeneic hosts. We now present clonal marking data demonstrating a rapid but unsustained contribution of cultured human autografts to the initial phase of hematologic recovery in myeloablated patients. Three patients received transplants of granulocyte colony-stimulating factor-mobilized autologous peripheral blood (PB) cells, of which a portion (8%-25% of the CD34+ cells) had been incubated in vitro with growth factors (5 days) and clinical grade LN retrovirus (3-5 days). More than 9% of the clonogenic and long-term culture-initiating cells harvested were transduced. Semiquantitative and linear amplification-mediated polymerase chain reaction analyses of serial PB samples showed that marked white blood cells appeared in all 3 patients within 11 days and transiently constituted up to 0.1% to 1% of those produced in the first month. However, within another 2 to 9 months, marked cells had permanently decreased to very low levels. Analysis of more than 50 vector insertion sites showed none of the clones detected in the first month were active later. Eighty percent of inserts were located within or near genes, 2 near CXCR4. These findings provide direct evidence of cells with rapid but transient repopulating activity in patients and demonstrate their efficient transduction in vitro.
Collapse
Affiliation(s)
- Hanno Glimm
- Department of Internal Medicine I, Albert-Ludwigs-University, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Glimm H, Schmidt M, Fischer M, Klingenberg S, Lange W, Waller CF, Eaves CJ, von Kalle C. Evidence of similar effects of short-term culture on the initial repopulating activity of mobilized peripheral blood transplants assessed in NOD/SCID-beta2microglobulin(null) mice and in autografted patients. Exp Hematol 2005; 33:20-5. [PMID: 15661394 DOI: 10.1016/j.exphem.2004.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 09/07/2004] [Accepted: 09/29/2004] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Human mobilized peripheral blood (mPB) is known to contain high numbers of cells with rapid but short-term repopulating activity in NOD/SCID-beta2microglobulin(-/-) mice. Here we assessed the effect of short-term culture on these cells and compared the levels of retained activity with the pace of hematologic recovery in myeloablated patients transplanted with similarly cultured autografts of the same cells. PATIENTS AND METHODS In a phase 1 clinical study, mPB cells were collected from 6 advanced cancer patients. CD34(+) cells were then harvested, cultured for 3 days in the presence of early-acting growth factors, and transplanted, and posttransplant recovery of blood cell parameters monitored. Assays for primitive hematopoietic activity using both in vivo (in NOD/SCID-beta2microglobulin(-/-) mice) and in vitro (CFC and LTC-IC) endpoints were also performed on the cells pre- and posttransplant. RESULTS All patients showed event-free, timely leukocyte recoveries but slightly delayed platelet recoveries in some cases. During the 3-day period of culture, the CFCs doubled but the LTC-IC activity decreased (twofold), as did the short-term repopulating activity in NOD/SCID-beta2microglobulin(-/-) mice. CONCLUSION Patients can be transplanted with 3-day cultured autografts with minimal effects on hematologic recovery. This is associated with a variable but, on average, modest loss of short-term repopulating activity detectable in NOD/SCID-beta2microglobulin(-/-) mice.
Collapse
Affiliation(s)
- Hanno Glimm
- Department of Internal Medicine I, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Eisterer W, Jiang X, Christ O, Glimm H, Lee KH, Pang E, Lambie K, Shaw G, Holyoake TL, Petzer AL, Auewarakul C, Barnett MJ, Eaves CJ, Eaves AC. Different subsets of primary chronic myeloid leukemia stem cells engraft immunodeficient mice and produce a model of the human disease. Leukemia 2005; 19:435-41. [PMID: 15674418 DOI: 10.1038/sj.leu.2403649] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Xenograft models of chronic phase human chronic myeloid leukemia (CML) have been difficult to develop because of the persistence of normal hematopoietic stem cells in most chronic phase CML patients and the lack of methods to selectively isolate the rarer CML stem cells. To circumvent this problem, we first identified nine patients' samples in which the long-term culture-initiating cells were predominantly leukemic and then transplanted cells from these samples into sublethally irradiated NOD/SCID and NOD/SCID-beta2microglobulin-/- mice. This resulted in the consistent and durable (>5 months) repopulation of both host genotypes with similar numbers of BCR-ABL+/Ph+ cells. The regenerated leukemic cells included an initial, transient population derived from CD34+CD38+ cells as well as more sustained populations derived from CD34+CD38- progenitors, indicative of a hierarchy of transplantable leukemic cells. Analysis of the phenotypes produced revealed a reduced output of B-lineage cells, enhanced myelopoiesis with excessive production of erythroid and megakaropoietic cells and the generation of primitive (CD34+) leukemic cells displaying an autocrine IL-3 and G-CSF phenotype, all characteristics of primary CML cells. These findings demonstrate the validity of this xenograft model of chronic phase human CML, which should enable future investigation of disease pathogenesis and new approaches to therapy.
Collapse
Affiliation(s)
- W Eisterer
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
|
80
|
Lo KC, Brugh VM, Parker M, Lamb DJ. Isolation and enrichment of murine spermatogonial stem cells using rhodamine 123 mitochondrial dye. Biol Reprod 2004; 72:767-71. [PMID: 15576830 DOI: 10.1095/biolreprod.104.033464] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Stem cells possess enormous therapeutic potential in tissue replacement. To study stem cells further, they must be isolated. Techniques are available for enrichment and study of hematopoietic stems cells, but thus far, techniques for purification of spermatogonial stem cells have not been described. Enrichment techniques for hematopoietic stem cells include the use of fluorescence-activated cell sorter analysis with Hoechst 33342 and rhodamine 123 (Rho) dyes. Use of Hoechst dye to isolate spermatogonial stem cells has been unsuccessful in our laboratory, and our results have conflicted with those from other laboratories. Taking advantage of the differential staining of the Rho dye, we report a novel method to enrich murine spermatogonial stem cells. Testicular cells are harvested from cryptorchid ROSA26 male mice. Populations of these cells are then stained with the Hoechst and Rho dyes, allowing them to be sorted by flow cytometry into a side population (SP) of Hoechst low-intensity cells and populations of low (Rho(low)) or high (Rho(hi)) fluorescent intensity. Sterile recipients, W/W(v) mice, with an intrinsic germ cell deficiency were transplanted with the Hoechst SP cells, Rho(low), Rho(hi), and nonsorted donor cells. No spermatogonial stem cell colonies were derived from the Hoechst SP cells. The number of spermatogonial stem cell colonies from transplanted Rho(low) cells showed a 17- and 20-fold enrichment over those of Rho(hi) and nonsorted cells, respectively.
Collapse
Affiliation(s)
- Kirk C Lo
- Department of Urology, Mount Sinai Hospital, University of Toronto, Ontario, Canada, M5G 1X5
| | | | | | | |
Collapse
|
81
|
Abstract
Emerging data suggest that stem cells may be one of the key elements in normal tissue regeneration and cancer development, although they are not necessarily the same entity in both scenarios. As extensively demonstrated in the hematopoietic system, stem cell repopulation is hierarchically organized and is intrinsically limited by the intracellular cell cycle inhibitors. Their inhibitory effects appear to be highly associated with the differentiation stage in stem/progenitor pools. While this negative regulation is important for maintaining homeostasis, especially at the stem cell level under physiological cues or pathological insults, it constrains the therapeutic use of adult stem cells in vitro and restricts endogenous tissue repair after injury. On the other hand, disruption of cell cycle inhibition may contribute to the formation of the so-called 'tumor stem cells' (TSCs) that are currently hypothesized to be partially responsible for tumorigenesis and recurrence of cancer after conventional therapies. Therefore, understanding how cell cycle inhibitors control stem cells may offer new strategies not only for therapeutic manipulations of normal stem cells but also for novel therapies selectively targeting TSCs.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, PA 15213, USA.
| |
Collapse
|
82
|
Coulombel L. Identification of hematopoietic stem/progenitor cells: strength and drawbacks of functional assays. Oncogene 2004; 23:7210-22. [PMID: 15378081 DOI: 10.1038/sj.onc.1207941] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A major challenge in hematopoiesis is to conceive assays that could bring useful insights into experimental and clinical hematology. This means identifying separately the various classes of hematopoietic progenitors that are produced sequentially during the progression from stem cells to differentiated functional cells. Standardized short-term colony assays easily quantify lineage-committed myeloid precursors, but identification of primitive cells, which have both the ability to repopulate durably myeloid and lymphoid lineages and perhaps to self-renew, still depends on in vivo assays. Whatever the assay, two important requisites have to be solved: one is the definition of appropriate read-outs that will depend solely on the function of these cells, and the second is to evaluate precisely their numbers and proliferative potential in quantitative assays. When evaluating hematopoiesis, three parameters have to be taken into account: (1) the lack of reliable correlation between the phenotype of a given cell and its function. This is especially problematic in post-transplantation situations where cells from transplanted animals are analysed; (2) functionally heterogeneous cells are identified in a single assay; and (3) ontogeny-related changes in hematopoietic cell proliferation and self-renewal that, in human beings, hampers the exploration of adult stem cells. Nevertheless, years of progress in the manipulation of hematopoietic stem cells have recently resulted in the purification of a cell subset that repopulates irradiated recipients with absolute efficiency.
Collapse
Affiliation(s)
- Laure Coulombel
- INSERM U 421, Faculté de Médecine, 8 rue du général Sarrail, Créteil 94010, France.
| |
Collapse
|
83
|
Abstract
The capacity for sustained self-renewal--the generation of daughter cells having the same regenerative properties as the parent cell--is the defining feature of hematopoietic stem cells (HSCs). Strong evidence exists that self-renewal of HSC is under extrinsic biological control in vivo. A variety of cytokines, morphogenic ligands and associated signaling components influence self-renewal in culture and in vivo. Specific homeobox transcription factors act as powerful intrinsic agonists of HSC self-renewal in vitro and in vivo when supplied either as transduced cDNAs or as externally delivered proteins. These findings provide tools for deepening our knowledge of mechanism and for achievement of clinically useful levels of HSC expansion.
Collapse
Affiliation(s)
- Guy Sauvageau
- Laboratory of Molecular Genetics of Hemopoietic Stem Cells, Institute of Research in Immunology and Cancer, University of Montreal, CP 6128, Downtown Station, Quebec, Canada H3C 3J7.
| | | | | |
Collapse
|
84
|
Uchida N, Dykstra B, Lyons K, Leung F, Kristiansen M, Eaves C. ABC transporter activities of murine hematopoietic stem cells vary according to their developmental and activation status. Blood 2004; 103:4487-95. [PMID: 14988157 DOI: 10.1182/blood-2003-11-3989] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Primitive hematopoietic cells from several species are known to efflux both Hoechst 33342 and Rhodamine-123. We now show that murine hematopoietic stem cells (HSCs) defined by long-term multilineage repopulation assays efflux both dyes variably according to their developmental or activation status. In day 14.5 murine fetal liver, very few HSCs efflux Hoechst 33342 efficiently, and they are thus not detected as “side population” (SP) cells. HSCs in mouse fetal liver also fail to efflux Rhodamine-123. Both of these features are retained by most of the HSCs present until 4 weeks after birth but are reversed by 8 weeks of age or after a new HSC population is regenerated in adult mice that receive transplants with murine fetal liver cells. Activation of adult HSCs in vivo following 5-fluorouracil treatment, or in vitro with cytokines, induces variable losses in Rhodamine-123 and Hoechst 33342 efflux activities, and HSCs from mdr-1a/1b-/- mice show a dramatic decrease in Rhodamine-123 efflux ability. Thus, the Rhodamine-123 and Hoechst 33342 efflux properties of murine HSCs fluctuate in the same fashion as a number of other HSC markers, suggesting these are regulated by a common control mechanism that operates independently of that regulating the regenerative function of HSCs. (Blood. 2004;103:4487-4495)
Collapse
Affiliation(s)
- Naoyuki Uchida
- Terry Fox Laboratory, British Columbia Cancer Agency, 601 W 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | | | | | | | | | | |
Collapse
|
85
|
Yuan Y, Shen H, Franklin DS, Scadden DT, Cheng T. In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol 2004; 6:436-42. [PMID: 15122268 DOI: 10.1038/ncb1126] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 03/29/2004] [Indexed: 12/27/2022]
Abstract
Self-renewal of stem cells is critical for tissue repair and maintenance of organ integrity in most mammalian systems. The relative asymmetry between self-renewal and differentiation in balance with apoptosis determines the size and durability of a stem-cell pool. Regulation of the cell cycle is one of the fundamental mechanisms underlying determination of cell fate. Absence of p21(Cip1/Waf1), a late G1-phase cyclin-dependent kinase inhibitor (CKI), has previously been shown to enable cell-cycle entry of haematopoietic stem cells, but leads to premature exhaustion of the stem cells under conditions of stress. We show here that deletion of an early G1-phase CKI, p18(INK4C), results in strikingly improved long-term engraftment, largely by increasing self-renewing divisions of the primitive cells in murine transplant models. Therefore, different CKIs have highly distinct effects on the kinetics of stem cells, possibly because of their active position in the cell cycle, and p18(INK4C) appears to be a strong inhibitor limiting the potential of stem-cell self-renewal in vivo.
Collapse
Affiliation(s)
- Youzhong Yuan
- University of Pittsburgh Cancer Institute and Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh PA 15213, USA
| | | | | | | | | |
Collapse
|