51
|
Xu LH, Huang M, Fang SG, Liu DX. Coronavirus infection induces DNA replication stress partly through interaction of its nonstructural protein 13 with the p125 subunit of DNA polymerase δ. J Biol Chem 2011; 286:39546-59. [PMID: 21918226 PMCID: PMC3234778 DOI: 10.1074/jbc.m111.242206] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/29/2011] [Indexed: 12/20/2022] Open
Abstract
Perturbation of cell cycle regulation is a characteristic feature of infection by many DNA and RNA viruses, including Coronavirus infectious bronchitis virus (IBV). IBV infection was shown to induce cell cycle arrest at both S and G(2)/M phases for the enhancement of viral replication and progeny production. However, the underlying mechanisms are not well explored. In this study we show that activation of cellular DNA damage response is one of the mechanisms exploited by Coronavirus to induce cell cycle arrest. An ATR-dependent cellular DNA damage response was shown to be activated by IBV infection. Suppression of the ATR kinase activity by chemical inhibitors and siRNA-mediated knockdown of ATR reduced the IBV-induced ATR signaling and inhibited the replication of IBV. Furthermore, yeast two-hybrid screens and subsequent biochemical and functional studies demonstrated that interaction between Coronavirus nsp13 and DNA polymerase δ induced DNA replication stress in IBV-infected cells. These findings indicate that the ATR signaling activated by IBV replication contributes to the IBV-induced S-phase arrest and is required for efficient IBV replication and progeny production.
Collapse
Affiliation(s)
- Ling Hui Xu
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Mei Huang
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Shou Guo Fang
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Ding Xiang Liu
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
52
|
Abstract
Since posttranslational modification (PTM) by the small ubiquitin-related modifiers (SUMOs) was discovered over a decade ago, a huge number of cellular proteins have been found to be reversibly modified, resulting in alteration of differential cellular pathways. Although the molecular consequences of SUMO attachment are difficult to predict, the underlying principle of SUMOylation is altering inter- and/or intramolecular interactions of the modified substrate, changing localization, stability, and/or activity. Unsurprisingly, many different pathogens have evolved to exploit the cellular SUMO modification system due to its functional flexibility and far-reaching functional downstream consequences. Although the extensive knowledge gained so far is impressive, a definitive conclusion about the role of SUMO modification during virus infection in general remains elusive and is still restricted to a few, yet promising concepts. Based on the available data, this review aims, first, to provide a detailed overview of the current state of knowledge and, second, to evaluate the currently known common principles/molecular mechanisms of how human pathogenic microbes, especially viruses and their regulatory proteins, exploit the host cell SUMO modification system.
Collapse
|
53
|
Liao Y, Wang X, Huang M, Tam JP, Liu DX. Regulation of the p38 mitogen-activated protein kinase and dual-specificity phosphatase 1 feedback loop modulates the induction of interleukin 6 and 8 in cells infected with coronavirus infectious bronchitis virus. Virology 2011; 420:106-16. [PMID: 21959016 PMCID: PMC7111953 DOI: 10.1016/j.virol.2011.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/09/2011] [Accepted: 09/01/2011] [Indexed: 12/21/2022]
Abstract
Induction of pro-inflammatory response is a crucial cellular process that detects and controls the invading viruses at early stages of the infection. Along with other innate immunity, this nonspecific response would either clear the invading viruses or allow the adaptive immune system to establish an effective antiviral response at late stages of the infection. The objective of this study was to characterize cellular mechanisms exploited by coronavirus infectious bronchitis virus (IBV) to regulate the induction of two pro-inflammatory cytokines, interleukin (IL)-6 and IL-8, at the transcriptional level. The results showed that IBV infection of cultured human and animal cells activated the p38 mitogen-activated protein kinase (MAPK) pathway and induced the expression of IL-6 and IL-8. Meanwhile, IBV has developed a strategy to counteract the induction of IL-6 and IL-8 by inducing the expression of dual-specificity phosphatase 1 (DUSP1), a negative regulator of the p38 MAPK, in order to limit the production of an excessive amount of IL-6 and IL-8 in the infected cells. As activation of the p38 MAPK pathway and induction of IL-6 and IL-8 may have multiple pathogenic effects on the whole host as well as on individual infected cells, regulation of the p38 MAPK and DUSP1 feedback loop by IBV may modulate the pathogenesis of the virus.
Collapse
Affiliation(s)
- Ying Liao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
54
|
Cho SJ, Woo HM, Kim KS, Oh JW, Jeong YJ. Novel system for detecting SARS coronavirus nucleocapsid protein using an ssDNA aptamer. J Biosci Bioeng 2011; 112:535-40. [PMID: 21920814 PMCID: PMC7106535 DOI: 10.1016/j.jbiosc.2011.08.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/02/2011] [Accepted: 08/11/2011] [Indexed: 11/25/2022]
Abstract
The outbreak of severe acute respiratory syndrome (SARS) in 2002 affected thousands of people and an efficient diagnostic system is needed for accurate detection of SARS coronavirus (SARS CoV) to prevent or limit future outbreaks. Of the several SARS CoV structural proteins, the nucleocapsid protein has been shown to be a good diagnostic marker. In this study, an ssDNA aptamer that specifically binds to SARS CoV nucleocapsid protein was isolated from a DNA library containing 45-nuceotide random sequences in the middle of an 88mer single-stranded DNA. After twelve cycles of systematic evolution of ligands by exponential enrichment (SELEX) procedure, 15 ssDNA aptamers were identified. Enzyme-linked immunosorbent assay (ELISA) analysis was then used to identify the aptamer with the highest binding affinity to the SARS CoV nucleocapsid protein. Using this approach, an ssDNA aptamer that binds to the nucleocapsid protein with a K(d) of 4.93±0.30nM was identified. Western blot analysis further demonstrated that this ssDNA aptamer could be used to efficiently detect the SARS CoV nucleocapsid protein when compared with a nucleocapsid antibody. Therefore, we believe that the selected ssDNA aptamer may be a good alternative detection probe for the rapid and sensitive detection of SARS.
Collapse
Affiliation(s)
- Seong-Je Cho
- Department of Bio and Nanochemistry, Kookmin University, Seoul 136-702, Republic of Korea
| | | | | | | | | |
Collapse
|
55
|
SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 2010; 42:37-45. [PMID: 20976535 PMCID: PMC7088804 DOI: 10.1007/s11262-010-0544-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/13/2010] [Indexed: 11/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes a highly basic nucleocapsid (N) protein which can inhibit the synthesis of type I interferon (IFN), but the molecular mechanism of this antagonism remains to be identified. In this study, we demonstrated that the N protein of SARS-CoV could inhibit IFN-beta (IFN-β) induced by poly(I:C) or Sendai virus. However, we found that N protein could not inhibit IFN-β production induced by overexpression of downstream signaling molecules of two important IFN-β induction pathways, toll-like receptor 3 (TLR3)- and RIG-I-like receptors (RLR)-dependent pathways. These results indicate that SARS-CoV N protein targets the initial step, probably the cellular PRRs (pattern recognition receptors)-RNAs-recognition step in the innate immune pathways, to suppress IFN expression responses. In addition, co-immunoprecipitation assays revealed that N protein did not interact with RIG-I or MDA5. Further, an assay using truncated mutants revealed that the C-terminal domain of N protein was critical for its antagonism of IFN induction, and the N deletion mutant impaired for RNA-binding almost completely lost the IFN-β antagonist activity. These results contribute to our further understanding of the pathogenesis of SARS-CoV.
Collapse
|
56
|
Wang Q, Li C, Zhang Q, Wang T, Li J, Guan W, Yu J, Liang M, Li D. Interactions of SARS coronavirus nucleocapsid protein with the host cell proteasome subunit p42. Virol J 2010; 7:99. [PMID: 20478047 PMCID: PMC2894783 DOI: 10.1186/1743-422x-7-99] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 05/17/2010] [Indexed: 12/16/2022] Open
Abstract
Background Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spreads rapidly and has a high case-mortality rate. The nucleocapsid protein (NP) of SARS-CoV may be critical for pathogenicity. This study sought to discover the host proteins that interact with SARS-CoV NP. Results Using surface plasmon resonance biomolecular interaction analysis (SPR/BIA) and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry, we found that only the proteasome subunit p42 from human fetal lung diploid fibroblast (2BS) cells bound to SARS-CoV NP. This interaction was confirmed by the glutathione S-transferase (GST) fusion protein pulldown technique. The co-localization signal of SARS-CoV NP and proteasome subunit p42 in 2BS cells was detected using indirect immunofluorescence and confocal microscopy. p42 is a subunit of the 26S proteasome; this large, multi-protein complex is a component of the ubiquitin-proteasome pathway, which is involved in a variety of basic cellular processes and inflammatory responses. Conclusion To our knowledge, this is the first report that SARS-CoV NP interacts with the proteasome subunit p42 within host cells. These data enhance our understanding of the molecular mechanisms of SARS-CoV pathogenicity and the means by which SARS-CoV interacts with host cells.
Collapse
Affiliation(s)
- Qin Wang
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China CDC 100 Ying Xin Jie, Xuan Wu Qu, Beijing 100052, China
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
The Nucleocapsid Protein of the SARS Coronavirus: Structure, Function and Therapeutic Potential. MOLECULAR BIOLOGY OF THE SARS-CORONAVIRUS 2009. [PMCID: PMC7176212 DOI: 10.1007/978-3-642-03683-5_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As in other coronaviruses, the nucleocapsid protein is one of the core components of the SARS coronavirus (CoV). It oligomerizes to form a closed capsule, inside which the genomic RNA is securely stored thus providing the SARS-CoV genome with its first line of defense from the harsh conditions of the host environment and aiding in replication and propagation of the virus. In addition to this function, several reports have suggested that the SARS-CoV nucleocapsid protein modulates various host cellular processes, so as to make the internal milieu of the host more conducive for survival of the virus. This article will analyze and discuss the available literature regarding these different properties of the nucleocapsid protein. Towards the end of the article, we will also discuss some recent reports regarding the possible clinically relevant use of the nucleocapsid protein, as a candidate diagnostic tool and vaccine against SARS-CoV infection.
Collapse
|
58
|
Siu KL, Chan CP, Chan C, Zheng BJ, Jin DY. Severe acute respiratory syndrome coronavirus nucleocapsid protein does not modulate transcription of the human FGL2 gene. J Gen Virol 2009. [PMID: 19423547 DOI: v10.1099/vir.0.009209-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Among the structural and nonstructural proteins of severe acute respiratory syndrome coronavirus (SARS-CoV), the nucleocapsid (N) protein plays pivotal roles in the biology and pathogenesis of viral infection. N protein is thought to dysregulate cell signalling and the transcription of cellular genes, including FGL2, which encodes a prothrombinase implicated in vascular thrombosis, fibrin deposition and pneumocyte necrosis. Here, we showed that N protein expressed in cultured human cells was predominantly found in the cytoplasm and was competent in repressing the transcriptional activity driven by interferon-stimulated response elements. However, the expression of N protein did not influence the transcription from the FGL2 promoter. More importantly, N protein did not modulate the expression of FGL2 mRNA or protein in transfected or SARS-CoV-infected cells. Taken together, our findings did not support the model in which SARS-CoV N protein specifically modulates transcription of the FGL2 gene to cause fibrosis and vascular thrombosis.
Collapse
Affiliation(s)
- Kam-Leung Siu
- Department of Biochemistry, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | | | | | | | | |
Collapse
|
59
|
Siu KL, Chan CP, Chan C, Zheng BJ, Jin DY. Severe acute respiratory syndrome coronavirus nucleocapsid protein does not modulate transcription of the human FGL2 gene. J Gen Virol 2009; 90:2107-13. [PMID: 19423547 DOI: 10.1099/vir.0.009209-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Among the structural and nonstructural proteins of severe acute respiratory syndrome coronavirus (SARS-CoV), the nucleocapsid (N) protein plays pivotal roles in the biology and pathogenesis of viral infection. N protein is thought to dysregulate cell signalling and the transcription of cellular genes, including FGL2, which encodes a prothrombinase implicated in vascular thrombosis, fibrin deposition and pneumocyte necrosis. Here, we showed that N protein expressed in cultured human cells was predominantly found in the cytoplasm and was competent in repressing the transcriptional activity driven by interferon-stimulated response elements. However, the expression of N protein did not influence the transcription from the FGL2 promoter. More importantly, N protein did not modulate the expression of FGL2 mRNA or protein in transfected or SARS-CoV-infected cells. Taken together, our findings did not support the model in which SARS-CoV N protein specifically modulates transcription of the FGL2 gene to cause fibrosis and vascular thrombosis.
Collapse
Affiliation(s)
- Kam-Leung Siu
- Department of Biochemistry, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | | | | | | | | |
Collapse
|
60
|
Mark J, Li X, Cyr T, Fournier S, Jaentschke B, Hefford MA. SARS coronavirus: unusual lability of the nucleocapsid protein. Biochem Biophys Res Commun 2008; 377:429-433. [PMID: 18926799 PMCID: PMC7092863 DOI: 10.1016/j.bbrc.2008.09.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 09/30/2008] [Indexed: 01/30/2023]
Abstract
The severe acute respiratory syndrome (SARS) is a contagious disease that killed hundreds and sickened thousands of people worldwide between November 2002 and July 2003. The nucleocapsid (N) protein of the coronavirus responsible for this disease plays a critical role in viral assembly and maturation and is of particular interest because of its potential as an antiviral target or vaccine candidate. Refolding of SARS N-protein during production and purification showed the presence of two additional protein bands by SDS-PAGE. Mass spectroscopy (MALDI, SELDI, and LC/MS) confirmed that the bands are proteolytic products of N-protein and the cleavage sites are four SR motifs in the serine-arginine-rich region-sites not suggestive of any known protease. Furthermore, results of subsequent testing for contaminating protease(s) were negative: cleavage appears to be due to inherent instability and/or autolysis. The importance of N-protein proteolysis to viral life cycle and thus to possible treatment directions are discussed.
Collapse
Affiliation(s)
- John Mark
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2
| | - Xuguang Li
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2
| | - Terry Cyr
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2
| | - Sylvie Fournier
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2
| | - Bozena Jaentschke
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2
| | - Mary Alice Hefford
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2.
| |
Collapse
|
61
|
You JH, Howell G, Pattnaik AK, Osorio FA, Hiscox JA. A model for the dynamic nuclear/nucleolar/cytoplasmic trafficking of the porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein based on live cell imaging. Virology 2008; 378:34-47. [PMID: 18550142 PMCID: PMC7103367 DOI: 10.1016/j.virol.2008.04.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/07/2008] [Accepted: 04/19/2008] [Indexed: 01/09/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, in common with many other positive strand RNA viruses, encodes a nucleocapsid (N) protein which can localise not only to the cytoplasm but also to the nucleolus in virus-infected cells and cells over-expressing N protein. The dynamic trafficking of positive strand RNA virus nucleocapsid proteins and PRRSV N protein in particular between the cytoplasm and nucleolus is unknown. In this study live imaging of permissive and non-permissive cell lines, in conjunction with photo-bleaching (FRAP and FLIP), was used to investigate the trafficking of fluorescent labeled (EGFP) PRRSV-N protein. The data indicated that EGFP-PRRSV-N protein was not permanently sequestered to the nucleolus and had equivalent mobility to cellular nucleolar proteins. Further the nuclear import of N protein appeared to occur faster than nuclear export, which may account for the observed relative distribution of N protein between the cytoplasm and the nucleolus.
Collapse
Affiliation(s)
- Jae-Hwan You
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | | |
Collapse
|
62
|
Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3. J Virol 2008; 82:5279-94. [PMID: 18367524 DOI: 10.1128/jvi.02631-07] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) coronavirus infection and growth are dependent on initiating signaling and enzyme actions upon viral entry into the host cell. Proteins packaged during virus assembly may subsequently form the first line of attack and host manipulation upon infection. A complete characterization of virion components is therefore important to understanding the dynamics of early stages of infection. Mass spectrometry and kinase profiling techniques identified nearly 200 incorporated host and viral proteins. We used published interaction data to identify hubs of connectivity with potential significance for virion formation. Surprisingly, the hub with the most potential connections was not the viral M protein but the nonstructural protein 3 (nsp3), which is one of the novel virion components identified by mass spectrometry. Based on new experimental data and a bioinformatics analysis across the Coronaviridae, we propose a higher-resolution functional domain architecture for nsp3 that determines the interaction capacity of this protein. Using recombinant protein domains expressed in Escherichia coli, we identified two additional RNA-binding domains of nsp3. One of these domains is located within the previously described SARS-unique domain, and there is a nucleic acid chaperone-like domain located immediately downstream of the papain-like proteinase domain. We also identified a novel cysteine-coordinated metal ion-binding domain. Analyses of interdomain interactions and provisional functional annotation of the remaining, so-far-uncharacterized domains are presented. Overall, the ensemble of data surveyed here paint a more complete picture of nsp3 as a conserved component of the viral protein processing machinery, which is intimately associated with viral RNA in its role as a virion component.
Collapse
|
63
|
Diemer C, Schneider M, Seebach J, Quaas J, Frösner G, Schätzl HM, Gilch S. Cell type-specific cleavage of nucleocapsid protein by effector caspases during SARS coronavirus infection. J Mol Biol 2007; 376:23-34. [PMID: 18155731 PMCID: PMC7094231 DOI: 10.1016/j.jmb.2007.11.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Revised: 11/20/2007] [Accepted: 11/26/2007] [Indexed: 12/30/2022]
Abstract
The epidemic outbreak of severe acute respiratory syndrome (SARS) in 2003 was caused by a novel coronavirus (CoV), designated SARS-CoV. The RNA genome of SARS-CoV is complexed by the nucleocapsid protein (N) to form a helical nucleocapsid. Besides this primary function, N seems to be involved in apoptotic scenarios. We show that upon infection of Vero E6 cells with SARS-CoV, which elicits a pronounced cytopathic effect and a high viral titer, N is cleaved by caspases. In contrast, in SARS-CoV-infected Caco-2 cells, which show a moderate cytopathic effect and a low viral titer, this processing of N was not observed. To further verify these observations, we transiently expressed N in different cell lines. Caco-2 and N2a cells served as models for persistent SARS-CoV infection, whereas Vero E6 and A549 cells did as prototype cell lines lytically infected by SARS-CoV. The experiments revealed that N induces the intrinsic apoptotic pathway, resulting in processing of N at residues 400 and 403 by caspase-6 and/or caspase-3. Of note, caspase activation is highly cell type specific in SARS-CoV-infected as well as transiently transfected cells. In Caco-2 and N2a cells, almost no N-processing was detectable. In Vero E6 and A549 cells, a high proportion of N was cleaved by caspases. Moreover, we examined the subcellular localization of SARS-CoV N in these cell lines. In transfected Vero E6 and A549 cells, SARS-CoV N was localized both in the cytoplasm and nucleus, whereas in Caco-2 and N2a cells, nearly no nuclear localization was observed. In addition, our studies indicate that the nuclear localization of N is essential for its caspase-6-mediated cleavage. These data suggest a correlation among the replication cycle of SARS-CoV, subcellular localization of N, induction of apoptosis, and the subsequent activation of caspases leading to cleavage of N.
Collapse
Affiliation(s)
- Claudia Diemer
- Institute of Virology, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
64
|
Surjit M, Lal SK. The SARS-CoV nucleocapsid protein: a protein with multifarious activities. INFECTION GENETICS AND EVOLUTION 2007; 8:397-405. [PMID: 17881296 PMCID: PMC7106238 DOI: 10.1016/j.meegid.2007.07.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 07/10/2007] [Accepted: 07/11/2007] [Indexed: 12/16/2022]
Abstract
Ever since the discovery of SARS-CoV in the year 2003, numerous researchers around the world have been working relentlessly to understand the biology of this virus. As in other coronaviruses, nucleocapsid (N) is one of the most crucial structural components of the SARS-CoV. Hence major attention has been focused on characterization of this protein. Independent studies conducted by several laboratories have elucidated significant insight into the primary function of this protein, which is to encapsidate the viral genome. In addition, many reports also suggest that this protein interferes with different cellular pathways, thus implying it to be a key regulatory component of the virus too. In the first part of this review, we will discuss these different properties of the N-protein in a consolidated manner. Further, this protein has also been proposed to be an efficient diagnostic tool and a candidate vaccine against the SARS-CoV. Hence, towards the end of this article, we will discuss some recent progress regarding the possible clinically relevant use of the N-protein.
Collapse
Affiliation(s)
| | - Sunil K. Lal
- Corresponding author at: Virology Group, ICGEB, P.O. Box 10504, Aruna Asaf Ali Road, New Delhi 110067, India. Tel.: +91 9818522900.
| |
Collapse
|
65
|
You JH, Reed ML, Hiscox JA. Trafficking motifs in the SARS-coronavirus nucleocapsid protein. Biochem Biophys Res Commun 2007; 358:1015-20. [PMID: 17524366 PMCID: PMC7092899 DOI: 10.1016/j.bbrc.2007.05.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 05/02/2007] [Indexed: 01/15/2023]
Abstract
The severe acute respiratory syndrome-coronavirus nucleocapsid (N) protein is involved in virus replication and modulation of cell processes. In this latter respect control may in part be achieved through the sub-cellular localisation of the protein. N protein predominately localises in the cytoplasm (the site of virus replication and assembly) but also in the nucleus/nucleolus. Using a combination of live-cell and confocal microscopy coupled to mutagenesis we identified a cryptic nucleolar localisation signal in the central part of the N protein. In addition, based on structural comparison to the avian coronavirus N protein, a nuclear export signal was identified in the C-terminal region of the protein.
Collapse
|
66
|
Li FQ, Tam JP, Liu DX. Cell cycle arrest and apoptosis induced by the coronavirus infectious bronchitis virus in the absence of p53. Virology 2007; 365:435-45. [PMID: 17493653 PMCID: PMC7103336 DOI: 10.1016/j.virol.2007.04.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 03/04/2007] [Accepted: 04/05/2007] [Indexed: 01/01/2023]
Abstract
Manipulation of the cell cycle and induction of apoptosis are two common strategies used by many viruses to regulate their infection cycles. In cells infected with coronaviruses, cell cycle perturbation and apoptosis were observed in several reports. However, little is known about how these effects are brought out, and how manipulation of the functions of host cells would influence the replication cycle of coronavirus. In this study, we demonstrate that infection with coronavirus infectious bronchitis virus (IBV) imposed a growth-inhibitory effect on cultured cells by inducing cell cycle arrest at S and G2/M phases in both p53-null cell line H1299 and Vero cells. This cell cycle arrest was catalyzed by the modulation of various cell cycle regulatory genes and the accumulation of hypophosphorylated RB, but was independent of p53. Proteasome inhibitors, such as lactacystin and NLVS, could bypass the IBV-induced S-phase arrest by restoring the expression of corresponding cyclin/Cdk complexes. Our data also showed that cell cycle arrest at both S- and G2/M-phases was manipulated by IBV for the enhancement of viral replication. In addition, apoptosis induced by IBV at late stages of the infection cycle in cultured cells was shown to be p53-independent. This conclusion was drawn based on the observations that apoptosis occurred in both IBV-infected H1299 and Vero cells, and that IBV infection did not affect the expression of p53 in host cells.
Collapse
Affiliation(s)
- Frank Q Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | |
Collapse
|
67
|
Saikatendu KS, Joseph JS, Subramanian V, Neuman BW, Buchmeier MJ, Stevens RC, Kuhn P. Ribonucleocapsid formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. J Virol 2007; 81:3913-21. [PMID: 17229691 PMCID: PMC1866093 DOI: 10.1128/jvi.02236-06] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 12/01/2006] [Indexed: 01/06/2023] Open
Abstract
Conserved among all coronaviruses are four structural proteins: the matrix (M), small envelope (E), and spike (S) proteins that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in the lumen. The N-terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding, while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C terminus of the N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17 A (monoclinic) and at 1.85 A (cubic), respectively, resolved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core, is oriented similarly to that in the IBV N-NTD, and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggests a common mode of RNA recognition, but they probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs suggests that they use different modes of both RNA recognition and oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.
Collapse
Affiliation(s)
- Kumar Singh Saikatendu
- Department of Cell Biology, 10550 N. Torrey Pines Rd., CB265, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Reed ML, Howell G, Harrison SM, Spencer KA, Hiscox JA. Characterization of the nuclear export signal in the coronavirus infectious bronchitis virus nucleocapsid protein. J Virol 2007; 81:4298-304. [PMID: 17202223 PMCID: PMC1866115 DOI: 10.1128/jvi.02239-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 12/27/2006] [Indexed: 01/13/2023] Open
Abstract
The nucleocapsid (N) protein of infectious bronchitis virus (IBV) localizes to the cytoplasm and nucleolus and contains an eight-amino-acid nucleolar retention motif. In this study, a leucine-rich nuclear export signal (NES) (291-LQLDGLHL-298) present in the C-terminal region of the IBV N protein was analyzed by using alanine substitution and deletion mutagenesis to investigate the relative contributions that leucine residues make to nuclear export and where these residues are located on the structure of the IBV N protein. The analysis indicated that Leu296 and Leu298 are required for efficient nuclear export of the protein. Structural information indicated that both of these amino acids are available for interaction with protein complexes involved in this process. However, export of N protein from the nucleus/nucleolus was not inhibited by leptomycin B treatment, indicating that N protein nuclear export is independent of the CRM1-mediated export pathway.
Collapse
Affiliation(s)
- Mark L Reed
- Institute of Molecular and Cellular Biology, Faculty of Biology Sciences, Garstang Building, University of Leeds, Leeds LS2 6JT, United Kingdom
| | | | | | | | | |
Collapse
|
69
|
Fan Z, Zhuo Y, Tan X, Zhou Z, Yuan J, Qiang B, Yan J, Peng X, Gao GF. SARS-CoV nucleocapsid protein binds to hUbc9, a ubiquitin conjugating enzyme of the sumoylation system. J Med Virol 2006; 78:1365-73. [PMID: 16998888 PMCID: PMC7167196 DOI: 10.1002/jmv.20707] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SARS‐CoV is a newly identified coronavirus (CoV) that causes severe acute respiratory syndrome (SARS). The SARS‐CoV nucleocapsid (N) protein is an important structural and functional protein. To identify cellular proteins that interact with the SARS‐CoV N protein and to elucidate the possible involvement of N protein in SARS‐CoV pathogenesis, a human lymphocyte cDNA library was screened using a yeast two‐hybrid system assay. hUbc9, a ubiquitin conjugating enzyme of sumoylation system, was found to interact specifically with the N protein, implying the post‐translational sumoylation of the N protein. Mapping studies localized the critical N sequences for this interaction to amino acids 170–210, which includes the SR‐rich motif. However, the consensus motif of sumoylation GK62EE in the N protein is not responsible for binding to hUbc9. Mutations of hUbc9 at the enzyme active site C93A or C93S severely impair the interaction with the N protein. The two proteins were also shown to colocalize in the cytoplasm of the transfected 293T cells. This is the first report demonstrating the interaction of hUbc9 with a structural protein of plus‐strand RNA viruses, indicating a new drug target for SARS‐CoV. J. Med. Virol. 78:1365–1373, 2006. © 2006 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- Zheng Fan
- Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue Zhuo
- Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Department of Biochemistry, Anhui Agricultural University, Hefei, China
| | - Xinyu Tan
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi Zhou
- Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiangang Yuan
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinghua Yan
- Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaozhong Peng
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - George F. Gao
- Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
70
|
Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, Milligan RA, Yeager M, Buchmeier MJ. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol 2006; 80:7918-28. [PMID: 16873249 PMCID: PMC1563832 DOI: 10.1128/jvi.00645-06] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Coronavirus particles are enveloped and pleomorphic and are thus refractory to crystallization and symmetry-assisted reconstruction. A novel methodology of single-particle image analysis was applied to selected virus features to obtain a detailed model of the oligomeric state and spatial relationships among viral structural proteins. Two-dimensional images of the S, M, and N structural proteins of severe acute respiratory syndrome coronavirus and two other coronaviruses were refined to a resolution of approximately 4 nm. Proteins near the viral membrane were arranged in overlapping lattices surrounding a disordered core. Trimeric glycoprotein spikes were in register with four underlying ribonucleoprotein densities. However, the spikes were dispensable for ribonucleoprotein lattice formation. The ribonucleoprotein particles displayed coiled shapes when released from the viral membrane. Our results contribute to the understanding of the assembly pathway used by coronaviruses and other pleomorphic viruses and provide the first detailed view of coronavirus ultrastructure.
Collapse
Affiliation(s)
- Benjamin W Neuman
- Department of Molecular and Integrative Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Tan YW, Fang S, Fan H, Lescar J, Liu D. Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells. Nucleic Acids Res 2006; 34:4816-25. [PMID: 16971454 PMCID: PMC1635287 DOI: 10.1093/nar/gkl650] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The N-terminal domain of the coronavirus nucleocapsid (N) protein adopts a fold resembling a right hand with a flexible, positively charged beta-hairpin and a hydrophobic palm. This domain was shown to interact with the genomic RNA for coronavirus infectious bronchitis virus (IBV) and severe acute respiratory syndrome coronavirus (SARS-CoV). Based on its 3D structure, we used site-directed mutagenesis to identify residues essential for the RNA-binding activity of the IBV N protein and viral infectivity. Alanine substitution of either Arg-76 or Tyr-94 in the N-terminal domain of IBV N protein led to a significant decrease in its RNA-binding activity and a total loss of the infectivity of the viral RNA to Vero cells. In contrast, mutation of amino acid Gln-74 to an alanine, which does not affect the binding activity of the N-terminal domain, showed minimal, if any, detrimental effect on the infectivity of IBV. This study thus identifies residues critical for RNA binding on the nucleocapsid surface, and presents biochemical and genetic evidence that directly links the RNA binding capacity of the coronavirus N protein to the viral infectivity in cultured cells. This information would be useful in development of preventive and treatment approaches against coronavirus infection.
Collapse
Affiliation(s)
- Yong Wah Tan
- Institute of Molecular and Cell Biology61 Biopolis Drive, Proteos, Singapore 138673
| | - Shouguo Fang
- Institute of Molecular and Cell Biology61 Biopolis Drive, Proteos, Singapore 138673
| | - Hui Fan
- School of Biological Sciences, Nanyang Technological University60 Nanyang Drive, Singapore 637551
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University60 Nanyang Drive, Singapore 637551
| | - D.X. Liu
- Institute of Molecular and Cell Biology61 Biopolis Drive, Proteos, Singapore 138673
- School of Biological Sciences, Nanyang Technological University60 Nanyang Drive, Singapore 637551
- To whom correspondence should be addressed. Tel: +65 65869581; Fax: +65 67791117;
| |
Collapse
|
72
|
Bussmann BM, Reiche S, Jacob LH, Braun JM, Jassoy C. Antigenic and cellular localisation analysis of the severe acute respiratory syndrome coronavirus nucleocapsid protein using monoclonal antibodies. Virus Res 2006; 122:119-26. [PMID: 16920216 PMCID: PMC7114340 DOI: 10.1016/j.virusres.2006.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 07/07/2006] [Accepted: 07/12/2006] [Indexed: 01/19/2023]
Abstract
A member of the family of coronaviruses has previously been identified as the cause of the severe acute respiratory syndrome (SARS). In this study, several monoclonal antibodies against the nucleocapsid protein have been generated to examine distribution of the nucleocapsid in virus-infected cells and to study antigenic regions of the protein. Confocal microscopic analysis identified nucleocapsids packaged in vesicles in the perinuclear area indicating viral synthesis at the endoplasmic reticulum and Golgi apparatus. The monoclonal antibodies bound to the central and carboxyterminal half of the nucleocapsid protein indicating prominent exposure and immunogenicity of this part of the protein. Antibodies recognised both linear and conformational epitopes. Predictions of antigenicity using mathematical modelling based on hydrophobicity analysis of SARS nucleoprotein could not be confirmed fully. Antibody binding to discontinuous peptides provides evidence that amino acids 274–283 and 373–382 assemble to a structural unit particularly rich in basic amino acids. In addition, amino acids 286–295, 316–325 and 361–367 that represent the epitope recognised by monoclonal antibody 6D11C1 converge indicating a well-structured C-terminal region of the SARS virus nucleocapsid protein and functional relationship of the peptide regions involved. Alternatively, dimerisation of the nucleocapsid protein may result in juxtaposition of the amino acid sequences 316–325 and 361–367 on one nucleoprotein molecule to amino acid 286–295 on the second peptide. The monoclonal antibodies will be available to assess antigenicity and immunological variabilities between different SARS CoV strains.
Collapse
Affiliation(s)
- Bianca M. Bussmann
- Institute of Virology, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Sven Reiche
- Institute of Virology, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Lotta H. Jacob
- Institute of Virology, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Jan Matthias Braun
- Institute of Clinical Immunology and Transfusion Medicine (IKIT) and Interdisciplinary Centre of Clinical Research (IZKF), Faculty of Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Christian Jassoy
- Institute of Virology, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
- Corresponding author. Tel.: +49 341 9714314; fax: +49 341 9714309.
| |
Collapse
|
73
|
Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol 2006. [PMID: 16873249 DOI: 10.1128/jvi.00645‐06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Coronavirus particles are enveloped and pleomorphic and are thus refractory to crystallization and symmetry-assisted reconstruction. A novel methodology of single-particle image analysis was applied to selected virus features to obtain a detailed model of the oligomeric state and spatial relationships among viral structural proteins. Two-dimensional images of the S, M, and N structural proteins of severe acute respiratory syndrome coronavirus and two other coronaviruses were refined to a resolution of approximately 4 nm. Proteins near the viral membrane were arranged in overlapping lattices surrounding a disordered core. Trimeric glycoprotein spikes were in register with four underlying ribonucleoprotein densities. However, the spikes were dispensable for ribonucleoprotein lattice formation. The ribonucleoprotein particles displayed coiled shapes when released from the viral membrane. Our results contribute to the understanding of the assembly pathway used by coronaviruses and other pleomorphic viruses and provide the first detailed view of coronavirus ultrastructure.
Collapse
|
74
|
Boggio R, Chiocca S. Viruses and sumoylation: recent highlights. Curr Opin Microbiol 2006; 9:430-6. [PMID: 16815735 PMCID: PMC7108358 DOI: 10.1016/j.mib.2006.06.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/20/2006] [Indexed: 12/02/2022]
Abstract
Since its discovery in 1997, SUMO (small ubiquitin-like modifier) has been implicated in a range of activities, indicating that this protein is as important in the cell as ubiquitin is. Although it can function throughout the cell, it appears to be involved more in nuclear functions. The growing list of substrates that are covalently modified by SUMO includes many viral proteins; SUMO appears to facilitate viral infection of cells, making it a possible target for antiviral therapies. It therefore is important to understand how viruses manipulate the cellular sumoylation system and how sumoylation affects viral functions.
Collapse
|
75
|
Dove BK, You JH, Reed ML, Emmett SR, Brooks G, Hiscox JA. Changes in nucleolar morphology and proteins during infection with the coronavirus infectious bronchitis virus. Cell Microbiol 2006; 8:1147-57. [PMID: 16819967 PMCID: PMC7162191 DOI: 10.1111/j.1462-5822.2006.00698.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 12/13/2005] [Accepted: 01/06/2006] [Indexed: 12/28/2022]
Abstract
The nucleolus is a dynamic subnuclear structure involved in ribosome subunit biogenesis, cell cycle control and mediating responses to cell stress, among other functions. While many different viruses target proteins to the nucleolus and recruit nucleolar proteins to facilitate virus replication, the effect of infection on the nucleolus in terms of morphology and protein content is unknown. Previously we have shown that the coronavirus nucleocapsid protein will localize to the nucleolus. In this study, using the avian infectious bronchitis coronavirus, we have shown that virus infection results in a number of changes to the nucleolus both in terms of gross morphology and protein content. Using confocal microscopy coupled with fluorescent labelled nucleolar marker proteins we observed changes in the morphology of the nucleolus including an enlarged fibrillar centre. We found that the tumour suppressor protein, p53, which localizes normally to the nucleus and nucleolus, was redistributed predominately to the cytoplasm.
Collapse
Affiliation(s)
- Brian K Dove
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | | | | |
Collapse
|
76
|
Reed ML, Dove BK, Jackson RM, Collins R, Brooks G, Hiscox JA. Delineation and modelling of a nucleolar retention signal in the coronavirus nucleocapsid protein. Traffic 2006; 7:833-48. [PMID: 16734668 PMCID: PMC7488588 DOI: 10.1111/j.1600-0854.2006.00424.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 03/10/2006] [Indexed: 01/11/2023]
Abstract
Unlike nuclear localization signals, there is no obvious consensus sequence for the targeting of proteins to the nucleolus. The nucleolus is a dynamic subnuclear structure which is crucial to the normal operation of the eukaryotic cell. Studying nucleolar trafficking signals is problematic as many nucleolar retention signals (NoRSs) are part of classical nuclear localization signals (NLSs). In addition, there is no known consensus signal with which to inform a study. The avian infectious bronchitis virus (IBV), coronavirus nucleocapsid (N) protein, localizes to the cytoplasm and the nucleolus. Mutagenesis was used to delineate a novel eight amino acid motif that was necessary and sufficient for nucleolar retention of N protein and colocalize with nucleolin and fibrillarin. Additionally, a classical nuclear export signal (NES) functioned to direct N protein to the cytoplasm. Comparison of the coronavirus NoRSs with known cellular and other viral NoRSs revealed that these motifs have conserved arginine residues. Molecular modelling, using the solution structure of severe acute respiratory (SARS) coronavirus N-protein, revealed that this motif is available for interaction with cellular factors which may mediate nucleolar localization. We hypothesise that the N-protein uses these signals to traffic to and from the nucleolus and the cytoplasm.
Collapse
Affiliation(s)
- Mark L. Reed
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Brian K. Dove
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Richard M. Jackson
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Rebecca Collins
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Gavin Brooks
- School of Pharmacy, University of Reading, Reading, UK
| | - Julian A. Hiscox
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
77
|
Fan H, Ooi A, Tan YW, Wang S, Fang S, Liu DX, Lescar J. The nucleocapsid protein of coronavirus infectious bronchitis virus: crystal structure of its N-terminal domain and multimerization properties. Structure 2006; 13:1859-68. [PMID: 16338414 PMCID: PMC7126683 DOI: 10.1016/j.str.2005.08.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 08/09/2005] [Accepted: 08/30/2005] [Indexed: 12/22/2022]
Abstract
The coronavirus nucleocapsid (N) protein packages viral genomic RNA into a ribonucleoprotein complex. Interactions between N proteins and RNA are thus crucial for the assembly of infectious virus particles. The 45 kDa recombinant nucleocapsid N protein of coronavirus infectious bronchitis virus (IBV) is highly sensitive to proteolysis. We obtained a stable fragment of 14.7 kDa spanning its N-terminal residues 29–160 (IBV-N29-160). Like the N-terminal RNA binding domain (SARS-N45-181) of the severe acute respiratory syndrome virus (SARS-CoV) N protein, the crystal structure of the IBV-N29-160 fragment at 1.85 Å resolution reveals a protein core composed of a five-stranded antiparallel β sheet with a positively charged β hairpin extension and a hydrophobic platform that are probably involved in RNA binding. Crosslinking studies demonstrate the formation of dimers, tetramers, and higher multimers of IBV-N. A model for coronavirus shell formation is proposed in which dimerization of the C-terminal domain of IBV-N leads to oligomerization of the IBV-nucleocapsid protein and viral RNA condensation.
Collapse
Affiliation(s)
- Hui Fan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Amy Ooi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Yong Wah Tan
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | - Sifang Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | - Shouguo Fang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | - Ding Xiang Liu
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
- Ph: (65) 6316 2862; Fax: (65) 6779 1117
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Ph: (65) 6316 2859; Fax: (65) 6791 3856
| |
Collapse
|
78
|
Li FQ, Xiao H, Tam JP, Liu D. Sumoylation of the nucleocapsid protein of severe acute respiratory syndrome coronavirus. FEBS Lett 2005; 579:2387-96. [PMID: 15848177 PMCID: PMC7094623 DOI: 10.1016/j.febslet.2005.03.039] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 03/08/2005] [Accepted: 03/09/2005] [Indexed: 11/30/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS‐CoV) encodes a highly basic nucleocapsid (N) protein of 422 amino acids. Similar to other coronavirus N proteins, SARS‐CoV N protein is predicted to be phosphorylated and may contain nuclear localization signals, serine/arginine‐rich motif, RNA binding domain and regions responsible for self‐association and homo‐oligomerization. In this study, we demonstrate that the protein is posttranslationally modified by covalent attachment to the small ubiquitin‐like modifier. The major sumoylation site was mapped to the 62lysine residue of the N protein. Further expression and characterization of wild type N protein and K62A mutant reveal that sumoylation of the N protein drastically promotes its homo‐oligomerization, and plays certain roles in the N protein‐mediated interference of host cell division. This is the first report showing that a coronavirus N protein undergoes posttranslational modification by sumoylation, and the functional implication of this modification in the formation of coronavirus ribouncleoprotein complex, virion assembly and virus–host interactions.
Collapse
Affiliation(s)
- Frank Qisheng Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Han Xiao
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - D.X. Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|