51
|
Mollification of Doxorubicin (DOX)-Mediated Cardiotoxicity Using Conjugated Chitosan Nanoparticles with Supplementation of Propionic Acid. NANOMATERIALS 2022; 12:nano12030502. [PMID: 35159847 PMCID: PMC8838624 DOI: 10.3390/nano12030502] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/05/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023]
Abstract
Doxorubicin is an extensively prescribed antineoplastic agent. It is also known for adverse effects, among which cardiotoxicity tops the list. The possible mechanism underlying doxorubicin (DOX)-mediated cardiotoxicity has been investigated in this study. Further, to reduce the DOX-mediated cardiotoxicity, DOX was conjugated with Chitosan Nanoparticles (DCNPs) and supplemented with propionic acid. Initially, the drug loading efficacy and conjugation of DOX with chitosan was confirmed by UV–Visible Spectroscopy (UV) and Fourier Transform Infrared Spectroscopy (FTIR). The average sizes of the synthesized Chitosan Nanoparticles (CNPs) and DCNPs were measured by Dynamic Light Scattering (DLS) analysis as 187.9 ± 1.05 nm and 277.3 ± 8.15 nm, respectively, and the zeta potential values were recorded as 55.2 ± 0.7 mV and 51.9 ± 1.0 mV, respectively. The size and shape of CNPs and DCNPs were recorded using a High-Resolution Electron Microscopy (HRTEM). The particles measured <30 nm and 33–84 nm, respectively. The toxic effects of DCNPs and propionic acid were evaluated in rat model. The data from the electrocardiogram (ECG), cardiac biomarkers, Peroxisome proliferator-activated receptor gamma (PPARγ) and histological observations indicated evidence of DOX-mediated cardiotoxicity, whereas the administration of DCNPs, as well as Propionic Acid (PA), brought about a restoration to normalcy and offered protection in the context of DOX-induced cardiotoxicity.
Collapse
|
52
|
Zhao L, Khan IM, Wang B, Yue L, Zhang Y, Wang Z, Xia W. Synthesis and antibacterial properties of new monomethyl fumaric acid‐modified chitosan oligosaccharide derivatives. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingyu Zhao
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| | - Bin Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| | - Lin Yue
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan Chengdu University Chengdu 610106 PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Key Laboratory of Meat Processing of Sichuan Chengdu University Chengdu 610106 PR China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| |
Collapse
|
53
|
Long LY, Hu C, Liu W, Wu C, Lu L, Yang L, Wang YB. Microfibrillated cellulose-enhanced carboxymethyl chitosan/oxidized starch sponge for chronic diabetic wound repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112669. [DOI: 10.1016/j.msec.2022.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/03/2022] [Accepted: 01/15/2022] [Indexed: 12/01/2022]
|
54
|
Dubey SK, Bhatt T, Agrawal M, Saha RN, Saraf S, Saraf S, Alexander A. Application of chitosan modified nanocarriers in breast cancer. Int J Biol Macromol 2022; 194:521-538. [PMID: 34822820 DOI: 10.1016/j.ijbiomac.2021.11.095] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
As per the WHO, every year around 2.1 million women are detected with breast cancer. It is one of the most invasive cancer in women and second most among all, contributing around 15% of death worldwide. The available anticancer therapies including chemo, radio, and hormone therapy are associated with a high load of reversible and irreversible adverse effects, limited therapeutic efficacy, and low chances of quality survival. To minimize the side effects, improving therapeutic potency and patient compliance promising targeted therapies are highly desirable. In this sequence, various nanocarriers and target modified systems have been explored by researchers throughout the world. Among these chitosan-based nanocarriers offers one of the most interesting, flexible, and biocompatible systems. The unique characteristics of chitosan like surface flexibility, biocompatibility, hydrophilicity, non-toxic and cost-effective behavior assist to overcome the inadequacy of existing therapy. The present review throws light on the successes, failures, and current status of chitosan modified novel techniques for tumor targeting of bioactives. It also emphasizes the molecular classification of breast cancer and current clinical development of novel therapies. The review compiles most relevant works of the past 10 years focusing on the application of chitosan-based nanocarrier against breast cancer.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, 700056 Kolkata, India; Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India.
| | - Tanya Bhatt
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, India, 509301
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, 781101 Guwahati, Assam, India.
| |
Collapse
|
55
|
Gonçalves DDC, Ribeiro WR, Gonçalves DC, Menini L, Costa H. Recent advances and future perspective of essential oils in control Colletotrichum spp.: A sustainable alternative in postharvest treatment of fruits. Food Res Int 2021; 150:110758. [PMID: 34865776 DOI: 10.1016/j.foodres.2021.110758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
The world population growth has raised concerns about food security. Agricultural systems are asked to satisfy a growing demand for food with increasingly limited resources, and simultaneously still must reduce the impacts on the environment. This scenario encourages the search for safe and sustainable production strategies. Reducing losses in the production process can be one of the main ways to guarantee food safety. In fruticulture, it is estimated that more than 50% of the production can be lost between harvest and the final consumer due to postharvest diseases caused by phytopathogenic fungi. The fungi of the genus Colletotrichum are opportunistic and are associated with several diseases, being the anthracnose the most relevant in terms of the quality and yield losses in fruit species around worldwide. To control these diseases, the use of synthetic fungicides has been the main instrument utilized, however, because of their phytotoxicity to human health, the environment, and strong selection pressure imposed by continuous applications, the fungicides have caused resistance in the pathogen populations. So reducing the excessive application of these products is indispensable for human health and for sustainable Agriculture. Towards this purpose, research has been carried out to identify the phytopathological potentiality of essential oils (EOs) extracted from plants. Therefore, this review aims to contribute to the formation of knowledge bases, about the discoveries, recent advances, and the use of EOs as a strategy to alternatively control fungal disease caused by Colletotrichum spp. in postharvest fruits. Here, we provide valuable information exploring the application potential of essential oils as commercially useful biorational pesticides for food preservation, contributing to sustainable production and global food security.
Collapse
Affiliation(s)
- Dalila da Costa Gonçalves
- Instituto Federal do Espírito Santo (IFES - Alegre), Rodovia Br 482, Km 47 s/n, Alegre - ES 29520-000, Brazil.
| | - Wilian Rodrigues Ribeiro
- Centro de Ciências Agrárias e Engenharias da Universidade Federal do Espírito Santo (CCA-UFES), Alto Universitário, S/N Guararema, Alegre - ES 29500-000, Brazil.
| | - Débora Cristina Gonçalves
- Centro de Ciências Agrárias e Engenharias da Universidade Federal do Espírito Santo (CCA-UFES), Alto Universitário, S/N Guararema, Alegre - ES 29500-000, Brazil.
| | - Luciano Menini
- Instituto Federal do Espírito Santo (IFES - Alegre), Rodovia Br 482, Km 47 s/n, Alegre - ES 29520-000, Brazil.
| | - Hélcio Costa
- Fazenda do Estado - Incaper. BR 262, km 94 - Domingos, Martins - ES 29278-000, Brazil.
| |
Collapse
|
56
|
Narmani A, Jafari SM. Chitosan-based nanodelivery systems for cancer therapy: Recent advances. Carbohydr Polym 2021; 272:118464. [PMID: 34420724 DOI: 10.1016/j.carbpol.2021.118464] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 02/06/2023]
Abstract
Nowadays, cancer is one of the most prominent issues related to human health since it causes more than one-tenth of death cases throughout the world. On the other hand, routine therapeutic approaches in cancer suppression such as radiation therapy, chemotherapy, surgery, etc. due to their undesirable therapeutic outputs, including low efficiency in cancer inhibition, non-targeted drug delivery, nonselective distribution, and enormous side effects, have been indicated inefficient potency in cancer therapy or at least its growth inhibition. As a result, the development of novel and practical therapeutic methods such as nanoparticle-based drug delivery systems can be outstandingly beneficial in cancer suppression. Among various nanoparticles used in the delivery of bioactive to the tumor site, chitosan (CS) nanoparticles have received high attention. CS, poly [β-(1-4)-linked-2-amino-2-deoxy-d-glucose], is a natural linear amino polysaccharide derived from chitin which is made of irregularly distributed d-glucosamine and N-acetyl-d-glucosamine units. CS nanoparticles owing to their appropriate aspects, including nanometric size, great drug loading efficacy, ease of manipulation, non-toxicity, excellent availability and biocompatibility, good serum stability, long-term circulation time, suitable pharmacokinetic and pharmacodynamics, non-immunogenicity, and enhanced drug solubility in the human body, have been designated as an efficient candidate for drug delivery systems. They can be involved in both passive (based on the enhanced permeability and retention effect cancer targeting) and active (receptor-mediated or stimuli-responsive cancer targeting) drug delivery systems for potential cancer therapy. This review presents the properties, preparation, modification, and numerous pharmaceutical applications of CS-based drug nanodelivery systems in the diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 1439957131 Tehran, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
57
|
Sharma S, Kaur N, Kaur R, Kaur R. A review on valorization of chitinous waste. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02759-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
58
|
Hydroxyurea-loaded Fe 3O 4/SiO 2/chitosan-g-mPEG2000 nanoparticles; pH-dependent drug release and evaluation of cell cycle arrest and altering p53 and lincRNA-p21 genes expression. Naunyn Schmiedebergs Arch Pharmacol 2021; 395:51-63. [PMID: 34661718 DOI: 10.1007/s00210-021-02168-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
Carbohydrate polymers were widely used in pharmaceuticals and drug delivery systems due to their biodegradability and biocompatibility. Among them, chitosan (Cs) has been considered in many new drug delivery systems. Poly(ethylene glycol) as a hydrophilic polymer can increase the solubility and stealth functions of nanocarriers. The Fe3O4 nanoparticles functionalized with polymers act as non-toxic drug vehicles for tumor targeting under external magnetic fields. In present study, the Fe3O4/SiO2-NH2 nanoparticles were prepared and then functionalized with methoxy-PEGylated chitosan (Cs-g-mPEG2000) and the hydroxyurea (HU) was loaded on this nanoparticles. The structure, crystallinity, and morphology of HU/Fe3O4/SiO2/Cs-g-mPEG2000 were determined using spectroscopic and electron microscopy analysis. Encapsulation efficiency of HU and the percentage of loading and release rate at different pH values at 37 °C were examined. Maximum drug release was observed at pH = 7.4. According to TEM results, the nanoparticle sizes were between 18 and 157 nm. The cytotoxicity effect of HU-loaded nanoparticles against MCF-7 human breast cancer cell was evaluated using MTT assay and cell cycle arrest analysis. The inhibitory concentration (IC50) values were 249 and 85 μg/mL on the MCF-7 cell line compared to the control group in 24 h and 96 h, respectively. In addition, the expression of p53 and lincRNA-P21 genes in treated cells and control group was assessed using real-time PCR, and the results showed that the ratio of p53 expression to lincRNA-P21 in MCF-7 cells was significantly increased (P < 0.05). The cell cycle arrested in the S-phase and the population of cells increased 1.3-fold compared to the control group.
Collapse
|
59
|
A Thermoresponsive Chitosan/β-Glycerophosphate Hydrogel for Minimally Invasive Treatment of Critical Limb Ischaemia. Polymers (Basel) 2021; 13:polym13203568. [PMID: 34685327 PMCID: PMC8539345 DOI: 10.3390/polym13203568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
A reduction in blood supply to any limb causes ischaemia, pain and morbidity. Critical limb ischaemia is the most serious presentation of peripheral vascular disease. One in five patients with critical limb ischaemia will die within six months of diagnosis and one in three will require amputation in this time. Improving blood flow to the limb, via the administration of angiogenic agents, could relieve pain and avoid amputation. Herein, chitosan is combined with β-glycerophosphate to form a thermoresponsive formulation (chitosan/β-GP) that will flow through a syringe and needle at room temperature but will form a gel at body temperature. The chitosan/β-GP hydrogel, with or without the angiogenic molecule desferrioxamine (DFO), was injected into the mouse hind limb, following vessel ligation, to test the ability of the formulations to induce angiogenesis. The effects of the formulations were measured using laser Doppler imaging to determine limb perfusion and CD31 staining to quantify the number of blood vessels. Twenty-eight days following induction of ischaemia, the chitosan/β-GP and chitosan/β-GP + 100 µM DFO formulations had significantly (p < 0.001 and p < 0.05, respectively) improved blood flow in the ischaemic limb compared with an untreated control. Chitosan/β-GP increased vessel number by 1.7-fold in the thigh of the ischaemic limb compared with an untreated control, while chitosan/β-GP + 100 µM DFO increased vessel number 1.8-fold. Chitosan/β-GP represents a potential minimally invasive treatment for critical limb ischaemia.
Collapse
|
60
|
Gracy Jenifer S, Marimuthu G, Raghuram H. Isolation and characterization of chitinolytic bacterium, Escherichia fergusonii AMC01 from insectivorous bat, Taphozous melanopogon. J Basic Microbiol 2021; 61:940-946. [PMID: 34398462 DOI: 10.1002/jobm.202100271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/17/2021] [Accepted: 08/07/2021] [Indexed: 11/12/2022]
Abstract
Chitinases are capable of hydrolyzing insoluble chitin into its oligo and monomeric parts and have received increased consideration because of their wide scope of biotechnological applications. The commercial application of microbial chitinase is appealing due to the relative ease of enormous production and to meet the current world demands. This study aimed at isolation and characterization of chitin degrading bacteria from the gut of Indian tropical insectivorous black-bearded tomb bat, Taphozous melanopogon. The isolated bacterial strains were characterized through biochemical analysis and nucleic acid-based approaches by 16S ribosomal RNA amplification and sequencing. The BLAST (Basic Local Alignment Search Tool) and phylogenetic analysis showed that the bacterial strain exhibited a close resemblance with Escherichia fergusonii. The chitinolytic activity of the E. fergusonii AMC01 was identified using supplemented colloidal chitin with agar medium. Compiling all, these findings would facilitate in constructing a database and presumably promote the use of E. fergusonii AMC01 as an efficient strain for the chitinase production.
Collapse
Affiliation(s)
| | - Ganapathy Marimuthu
- Department of Animal Behaviour and Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Hanumanthan Raghuram
- PG and Research Department of Zoology, The American College, Madurai, Tamil Nadu, India
| |
Collapse
|
61
|
Rheological Characterization of the Influence of Pomegranate Peel Extract Addition and Concentration in Chitosan and Gelatin Coatings. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2030039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, the effects of an agro-industrial residue with active properties, pomegranate peel extract (PPE), were evaluated on the rheological properties of potential coatings based on chitosan (C) and gelatin (G). For this, rheological properties of the polymeric solutions were investigated in relation to PPE concentration (2 or 4 mg PPE g−1 solution), and to its incorporation order into the system (in C or in CG mixture). All solutions were more viscous than elastic (G″ > G′), and the change in PPE concentration had a greater influence accentuating the viscous character of the samples in which PPE was added to the CG mixture (CGPPE2 and CGPPE4). PPE addition to the CG mixture increased the angular frequency at the moduli crossover, indicating the formation of a more resistant polymeric network. This tendency was also observed in flow results, in which PPE addition decreased the pseudoplastic behavior of the solutions, due to a greater cross-linking between the polymers and the phenolic compounds. In general, all the studied solutions showed viscosities suitable for the proposed application, and it was possible to state the importance of standardizing the addition order of the components during the preparation of a coating.
Collapse
|
62
|
Iqbal MW, Riaz T, Yasmin I, Leghari AA, Amin S, Bilal M, Qi X. Chitosan‐Based Materials as Edible Coating of Cheese: A Review. STARCH-STARKE 2021. [DOI: 10.1002/star.202100088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Muhammad Waheed Iqbal
- School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China
- Riphah College of Rehabilitation and Allied Health Sciences Riphah International University Faisalabad 38000 Pakistan
| | - Tahreem Riaz
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Iqra Yasmin
- Center of Excellence for Olive Research and Training Barani Agricultural Research Institute Chakwal 48800 Pakistan
- Department of Food Science and Technology Government College Women University Faisalabad 38000 Pakistan
| | - Ali Ahmad Leghari
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Sabahat Amin
- National Institute of Food Science & Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering Huaiyin Institute of Technology Huaian 223003 China
| | - Xianghui Qi
- School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China
| |
Collapse
|
63
|
Preparation and Antimicrobial Activity of Chitosan and Its Derivatives: A Concise Review. Molecules 2021; 26:molecules26123694. [PMID: 34204251 PMCID: PMC8233993 DOI: 10.3390/molecules26123694] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the advantages presented by synthetic polymers such as strength and durability, the lack of biodegradability associated with the persistence in the environment for a long time turned the attention of researchers to natural polymers. Being biodegradable, biopolymers proved to be extremely beneficial to the environment. At present, they represent an important class of materials with applications in all economic sectors, but also in medicine. They find applications as absorbers, cosmetics, controlled drug delivery, tissue engineering, etc. Chitosan is one of the natural polymers which raised a strong interest for researchers due to some exceptional properties such as biodegradability, biocompatibility, nontoxicity, non-antigenicity, low-cost and numerous pharmacological properties as antimicrobial, antitumor, antioxidant, antidiabetic, immunoenhancing. In addition to this, the free amino and hydroxyl groups make it susceptible to a series of structural modulations, obtaining some derivatives with different biomedical applications. This review approaches the physico-chemical and pharmacological properties of chitosan and its derivatives, focusing on the antimicrobial potential including mechanism of action, factors that influence the antimicrobial activity and the activity against resistant strains, topics of great interest in the context of the concern raised by the available therapeutic options for infections, especially with resistant strains.
Collapse
|
64
|
Cerig S, Geyikoglu F. Oxidative stress and cyto-genotoxicity induced by poly-d-glucosamine in human blood cells in vitro. ACTA ACUST UNITED AC 2021; 77:43-55. [PMID: 34036758 DOI: 10.1515/znc-2021-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/02/2021] [Indexed: 11/15/2022]
Abstract
Poly-N-acetyl-d-glucosamine (CH; chitin) is the main component of the insect skeleton, fungal cell wall, and many crustaceans, including crab and shrimp. CH is the most abundant in nature after cellulose, and it has a complex and hardly soluble structure. Poly-d-glucosamine (CHO; chitosan) is a soluble derivative of CH produced by deacetylation used in many fields, including human health. This study carried out the cytotoxic, genotoxic, and oxidative effects of CHO on human whole blood (hWB) and lymphocytes (LYMs) in dose ranges 6.25-2000 μg/mL, in vitro. Total antioxidant capacity (TAC) and total oxidant status (TOS) analyzes were performed on plasma to appreciate oxidative stress. 3-(4,5-Dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays were applied to understand the cytotoxicity. Chromosomal aberration (CA) and micronucleus (MN) methods were practiced to evaluate genotoxicity. 6.25-150 μg/mL doses increased TAC and decreased TOS. A decreasing and increasing curve from 200 to 2000 μg/mL on TAC and TOS values were determined, respectively. 0-250 μg/mL doses did not provide any cytotoxic data. However, 500-2000 μg/mL doses showed increasing cytotoxicity and genotoxicity. The study results showed that CHO does not pose a toxic risk to human health at low doses but may pose a threat at high doses.
Collapse
Affiliation(s)
- Salim Cerig
- First and Emergency Aid Program, Medical Services and Techniques Department, Vocational School of Health Services, Ibrahim Cecen University, Agri, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
65
|
Biosynthesis of silver nanoparticles for the fabrication of non cytotoxic and antibacterial metallic polymer based nanocomposite system. Sci Rep 2021; 11:10500. [PMID: 34006995 PMCID: PMC8131587 DOI: 10.1038/s41598-021-90016-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/05/2021] [Indexed: 01/08/2023] Open
Abstract
Nanomaterials have significantly contributed in the field of nanomedicine as this subject matter has combined the usefulness of natural macromolecules with organic and inorganic nanomaterials. In this respect, various types of nanocomposites are increasingly being explored in order to discover an effective approach in controlling high morbidity and mortality rate that had triggered by the evolution and emergence of multidrug resistant microorganisms. Current research is focused towards the production of biogenic silver nanoparticles for the fabrication of antimicrobial metallic-polymer-based non-cytotoxic nanocomposite system. An ecofriendly approach was adapted for the production of silver nanoparticles using fungal biomass (Aspergillus fumigatus KIBGE-IB33). The biologically synthesized nanoparticles were further layered with a biodegradable macromolecule (chitosan) to improve and augment the properties of the developed nanocomposite system. Both nanostructures were characterized using different spectrographic analyses including UV–visible and scanning electron microscopy, energy dispersive X-ray analysis, dynamic light scattering, and Fourier transform infrared spectroscopic technique. The biologically mediated approach adapted in this study resulted in the formation of highly dispersed silver nanoparticles that exhibited an average nano size and zeta potential value of 05 nm (77.0%) and − 22.1 mV, respectively with a polydispersity index of 0.4. Correspondingly, fabricated silver–chitosan nanocomposites revealed a size of 941 nm with a zeta potential and polydispersity index of + 63.2 mV and 0.57, respectively. The successful capping of chitosan on silver nanoparticles prevented the agglomeration of nanomaterial and also facilitated the stabilization of the nano system. Both nanoscopic entities exhibited antimicrobial potential against some pathogenic bacterial species but did not displayed any antifungal activity. The lowest minimal inhibitory concentration of nanocomposite system (1.56 µg ml−1) was noticed against Enterococcus faecalis ATCC 29212. Fractional inhibitory concentration index of the developed nanocomposite system confirmed its improved synergistic behavior against various bacterial species with no cytotoxic effect on NIH/3T3 cell lines. Both nanostructures, developed in the present study, could be utilized in the form of nanomedicines or nanocarrier system after some quantifiable trials as both of them are nonhazardous and have substantial antibacterial properties.
Collapse
|
66
|
Ugbaja RN, Ogungbemi K, James AS, Peter Folorunsho A, Abolade SO, Ajamikoko SO, Atayese EO, Adedeji OV. Chitosan from Crabs (Scylla serrata) Represses Hyperlipidemia-Induced Hepato-Renal Dysfunctions in Rats: Modulation of CD43 and p53 Expression. PATHOPHYSIOLOGY 2021; 28:224-237. [PMID: 35366259 PMCID: PMC8830478 DOI: 10.3390/pathophysiology28020015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
Hepato-renal dysfunctions associated with hyperlipidemia necessitates a continuous search for natural remedies. This study thus evaluated the effect of dietary chitosan on diet-induced hyperlipidemia in rats. A total of 30 male Wistar rats (90 ± 10) g were randomly allotted into six (6) groups (n = 5): Normal diet, High-fat diet (HFD), and Normal diet + 5% chitosan. The three other groups received HFD, supplemented with 1%, 3%, and 5% of chitosan. The feeding lasted for 6 weeks, after which the rats were sacrificed. The liver and kidneys were harvested for analyses. Hepatic alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activity, and renal biomarkers (ALT, AST, urea, and creatinine) were assayed spectrophotometrically. Additionally, expression of hepatic and renal CD43 and p53 was estimated immunohistochemically. The HFD group had elevated bodyweight compared to normal which was reversed in the chitosan-supplemented groups. Hyperlipidemia caused a significant (p < 0.05) decrease in the hepatic (AST, ALT, and ALP) and renal (AST and ALT) activities, while renal urea and creatinine increased. Furthermore, the HFD group showed an elevated level of hepatic and renal CD43 while p53 expression decreased. However, groups supplemented with chitosan showed improved hepatic and renal biomarkers, as well as corrected the aberrations in the expressions of p53 and CD43. Conclusively, dietary chitosan inclusion in the diet (between 3% and 5%) could effectively improve kidney and liver functionality via abatement of inflammatory responses.
Collapse
Affiliation(s)
- Regina Ngozi Ugbaja
- Department of Biochemistry, College of Bioscience, Federal University of Agriculture, P.M.B. 2240 Abeokuta, Nigeria; (K.O.); (A.S.J.); (A.P.F.); (S.O.A.); (S.O.A.); (E.O.A.); (O.V.A.)
- Department of Chemistry/Biochemistry, Nigerian Stored Product Research Institute, P.M.B. 5044 Ibadan, Nigeria
- Correspondence: or ; Tel.: +234-(0)7066050043
| | - Kunle Ogungbemi
- Department of Biochemistry, College of Bioscience, Federal University of Agriculture, P.M.B. 2240 Abeokuta, Nigeria; (K.O.); (A.S.J.); (A.P.F.); (S.O.A.); (S.O.A.); (E.O.A.); (O.V.A.)
- Biochemistry Program, Department of Chemical Sciences, Faculty of Science, Augustine University, P.M.B. 1010 Ilara-Epe, Nigeria
| | - Adewale Segun James
- Department of Biochemistry, College of Bioscience, Federal University of Agriculture, P.M.B. 2240 Abeokuta, Nigeria; (K.O.); (A.S.J.); (A.P.F.); (S.O.A.); (S.O.A.); (E.O.A.); (O.V.A.)
| | - Ayodele Peter Folorunsho
- Department of Biochemistry, College of Bioscience, Federal University of Agriculture, P.M.B. 2240 Abeokuta, Nigeria; (K.O.); (A.S.J.); (A.P.F.); (S.O.A.); (S.O.A.); (E.O.A.); (O.V.A.)
| | - Samuel Olanrewaju Abolade
- Department of Biochemistry, College of Bioscience, Federal University of Agriculture, P.M.B. 2240 Abeokuta, Nigeria; (K.O.); (A.S.J.); (A.P.F.); (S.O.A.); (S.O.A.); (E.O.A.); (O.V.A.)
| | - Stella Onajite Ajamikoko
- Department of Biochemistry, College of Bioscience, Federal University of Agriculture, P.M.B. 2240 Abeokuta, Nigeria; (K.O.); (A.S.J.); (A.P.F.); (S.O.A.); (S.O.A.); (E.O.A.); (O.V.A.)
| | - Eniola Olapeju Atayese
- Department of Biochemistry, College of Bioscience, Federal University of Agriculture, P.M.B. 2240 Abeokuta, Nigeria; (K.O.); (A.S.J.); (A.P.F.); (S.O.A.); (S.O.A.); (E.O.A.); (O.V.A.)
| | - Omowunmi Victoria Adedeji
- Department of Biochemistry, College of Bioscience, Federal University of Agriculture, P.M.B. 2240 Abeokuta, Nigeria; (K.O.); (A.S.J.); (A.P.F.); (S.O.A.); (S.O.A.); (E.O.A.); (O.V.A.)
| |
Collapse
|
67
|
Lim MJ, Shahri NNM, Taha H, Mahadi AH, Kusrini E, Lim JW, Usman A. Biocompatible chitin-encapsulated CdS quantum dots: Fabrication and antibacterial screening. Carbohydr Polym 2021; 260:117806. [PMID: 33712152 DOI: 10.1016/j.carbpol.2021.117806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Chitin-encapsulated cadmium sulfide quantum dots (CdS@CTN QDs) were successfully synthesized from chitin and Cd(NO3)2 precursor using the colloidal chemistry method, toward the development of biocompatible and biodegradable QDs for biomedical applications. CdS@CTN QDs exhibited the nanocrystalline cubic CdS encapsulated by α-chitin. The average particle size of CdS@CTN QDs was estimated using empirical Henglein model to be 3.9 nm, while their crystallite size was predicted using Scherrer equation to be 4.3 nm, slightly larger compared to 3-mercaptopropionic acid-capped CdS QDs (3.2 and 3.6 nm, respectively). The mechanism of formation was interpreted based on the spectroscopic data and X-ray crystal structures of CdS@CTN QDs fabricated at different pH values and mass ratios of chitin to Cd(NO3)2 precursor. As an important step to explore potential biomolecular and biological applications of CdS@CTN QDs, their antibacterial activities were tested against four different bacterial strains; i.e. Escherichia coli, Bacillus subtillus, Staphylococcus aureus and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Matin Jasli Lim
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Nurulizzatul Ningsheh M Shahri
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Hussein Taha
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Abdul Hanif Mahadi
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Eny Kusrini
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI-Depok, 16424, Indonesia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam.
| |
Collapse
|
68
|
Taser B, Ozkan H, Adiguzel A, Orak T, Baltaci MO, Taskin M. Preparation of chitosan from waste shrimp shells fermented with Paenibacillus jamilae BAT1. Int J Biol Macromol 2021; 183:1191-1199. [PMID: 33989684 DOI: 10.1016/j.ijbiomac.2021.05.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
In this study, chitin extraction from shrimp shell powder (SSP) using locally isolated Paenibacillus jamilae BAT1 (GenBank: MN176658), the preparation of chitosan from the extracted chitin, and the characterization and biological activity (antimicrobial and antioxidant) of the prepared chitosan (PC) were investigated. It was determined that P. jamilae BAT1 did not have chitinase activity but showed high protease activity and protein removal potential. Optimum pH, shell concentration and incubation time for deproteinization were determined as 7.0, 60 g/L and 4 days, respectively. Addition of KH2PO4 or MgSO4 did not affect chitin extraction and deproteinization yield. The maximum yields of deproteinization, demineralization and chitin extraction yields were 87.67, 41.95 and 24.5%, respectively. The viscosity-average molecular weight of PC was determined as 1.41 × 105 g/mol. The deacetylation degree of PC (86%) was found to be higher that of commercial chitosan (CC) (78%). DPPH scavenging activity of PC (IC50 0.59 mg/mL) was higher than that of CC (IC50 3.72 mg/mL). PC was found to have higher antimicrobial activity against the bacteria E. coli and S. aureus and the yeast C. albicans when compared to CC. This is the first study on the use of the bacterium P. jamilae in biological chitin extraction.
Collapse
Affiliation(s)
- Behiye Taser
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Agri Ibrahim Cecen University, Agri, Turkey
| | - Hakan Ozkan
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey.
| | - Ahmet Adiguzel
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Tugba Orak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
69
|
Patlolla VGR, Popovic N, Peter Holbrook W, Kristmundsdottir T, Gizurarson S. Effect of Doxycycline Microencapsulation on Buccal Films: Stability, Mucoadhesion and In Vitro Drug Release. Gels 2021; 7:gels7020051. [PMID: 33924744 PMCID: PMC8167737 DOI: 10.3390/gels7020051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 01/12/2023] Open
Abstract
The aim of this work was to stabilize doxycycline in mucoadhesive buccal films at room temperature (25 °C). Since doxycycline is susceptible to degradation such as oxidation and epimerization, tablets are currently the only formulation that can keep the drug fully stable at room temperature, while liquid formulations are limited to refrigerated conditions (4 °C). In this study, the aim was to make formulations containing subclinical (antibiotic) doxycycline concentration that can act as matrix metalloproteinase inhibitors (MMPI) and can be stored at temperatures such as 25 °C. Here, doxycycline was complexed with excipients using three techniques and entrapped into microparticles that were stored at 4 °C, 25 °C and 40 °C. Effect of addition of precomplexed doxycycline microparticles on films: stability mucoadhesion capacity, tensile strength, swelling index and in vitro release was studied. The complexation efficiency between drug-excipients, microparticles and films was studied using Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Two of the films were found to be stable at 4 °C but the film containing microparticle composed of precomplexed doxycycline with β-cyclodextrin, MgCl2, sodium thiosulfate, HPMC and Eudragit® RS 12.5 was found to be stable at 25 °C until 26 weeks. The addition of microparticles to the films was found to reduce the mucoadhesive capacity, peak detachment force, tensile strength and elasticity, but improved the stability at room temperature.
Collapse
Affiliation(s)
- Venu Gopal Reddy Patlolla
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (V.G.R.P.); (N.P.); (T.K.)
- Faculty of Odontology, University of Iceland, Vatnsmýrarveg 16, 101 Reykjavík, Iceland;
| | - Nikolina Popovic
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (V.G.R.P.); (N.P.); (T.K.)
- Costco Pharmacy, Kauptúni 3, 210 Garðabær, Iceland
| | | | - Thordis Kristmundsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (V.G.R.P.); (N.P.); (T.K.)
| | - Sveinbjörn Gizurarson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (V.G.R.P.); (N.P.); (T.K.)
- Pharmacy Department, College of Medicine, University of Malawi, Blantyre 3, Malawi
- Correspondence:
| |
Collapse
|
70
|
Multiple chiroptical switches and logic circuit based on salicyl‒ imine‒chitosan hydrogel. Carbohydr Polym 2021; 257:117534. [PMID: 33541623 DOI: 10.1016/j.carbpol.2020.117534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
A chitosan-based chiral hydrogel was fabricated by grafting achiral salicylaldehyde (SA) on chitosan chains, followed by supramolecular assembly (CS-SA hydrogel hereafter). The structures and properties of the CS-SA hydrogel were characterized and investigated. The results indicated that the swelling ability of the CS-SA hydrogel depended on the medium pH and crosslinking degree. Circular dichroism measurements revealed that the chiral information of the chitosan was successfully transcribed to the achiral salicylic chromophores through imine bonds. Chiroptical switches based on acid-base responses of the imine bond and the OH fragment of SA and the swelling properties of the CS-SA hydrogel were fabricated, which is first reported for a chitosan-based hydrogel. In addition, a gel film showed good fatigue resistance under external stimuli. IMPLICATION, INHIBIT, and PASS logic gates and a logic circuit based on the chiroptical switches were successfully designed. This study suggests a new method of constructing biobased chiral functional materials.
Collapse
|
71
|
Xu C, Xing R, Liu S, Qin Y, Li K, Yu H, Li P. The immunostimulatory effects of hydroxypropyltrimethyl ammonium chloride chitosan-carboxymethyl chitosan nanoparticles. Int J Biol Macromol 2021; 181:398-409. [PMID: 33781818 DOI: 10.1016/j.ijbiomac.2021.03.148] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022]
Abstract
In this study, we generated chitosan nanoparticles by exploiting the electrostatic interactions between positively charged hydroxypropyltrimethyl ammonium chloride chitosan (HACC) and negatively charged carboxymethyl chitosan (CMC), and examined the effects of altering the molecular weight and carboxymethyl substitution sites of the chitosan molecules. Particle size, potential, and encapsulation efficiency of the various chitosan nanoparticles were examined; the particle size range was 162.40-332.80 nm, the charge range was 19.50-40.60 mV, and the encapsulation efficiency range was 48.4-70.7%. We then examined the immunostimulatory effects of the nanoparticle variants on dendritic cells (DCs); we found that the site of carboxymethyl substitution significantly affected the immunostimulatory effects of the nanoparticles. Two nanoparticle types, 200 kDa N,O-carboxymethyl chitosan-HACC (NO-CMC-HACC) and N-carboxymethyl chitosan-HACC (N-CMC-HACC), greatly promoted the expression of interleukin-6, tumor necrosis factor, and interleukin-1β in DCs. Moreover, NO-CMC-HACC nanoparticles caused an increase in major histocompatibility complex-II (MHC-II), CD11c, CD80, and CD86 secretion in DCs, indicating that these nanoparticles promoted antigen presentation. We then examined chitosan nanoparticle uptake by DCs using laser confocal microscopy; we found that the NO-CMC-HACC nanoparticles were more readily absorbed by DCs compared to the N-CMC-HACC nanoparticles. Therefore, we concluded that 200 kDa NO-CMC-HACC nanoparticles exhibited strong potential as immunological adjuvants.
Collapse
Affiliation(s)
- Chaojie Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
72
|
Boroumand H, Badie F, Mazaheri S, Seyedi ZS, Nahand JS, Nejati M, Baghi HB, Abbasi-Kolli M, Badehnoosh B, Ghandali M, Hamblin MR, Mirzaei H. Chitosan-Based Nanoparticles Against Viral Infections. Front Cell Infect Microbiol 2021; 11:643953. [PMID: 33816349 PMCID: PMC8011499 DOI: 10.3389/fcimb.2021.643953] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 01/23/2023] Open
Abstract
Viral infections, in addition to damaging host cells, can compromise the host immune system, leading to frequent relapse or long-term persistence. Viruses have the capacity to destroy the host cell while liberating their own RNA or DNA in order to replicate within additional host cells. The viral life cycle makes it challenging to develop anti-viral drugs. Nanotechnology-based approaches have been suggested to deal effectively with viral diseases, and overcome some limitations of anti-viral drugs. Nanotechnology has enabled scientists to overcome the challenges of solubility and toxicity of anti-viral drugs, and can enhance their selectivity towards viruses and virally infected cells, while preserving healthy host cells. Chitosan is a naturally occurring polymer that has been used to construct nanoparticles (NPs), which are biocompatible, biodegradable, less toxic, easy to prepare, and can function as effective drug delivery systems (DDSs). Furthermore, chitosan is Generally Recognized as Safe (GRAS) by the US Food and Drug Administration (U.S. FDA). Chitosan NPs have been used in drug delivery by the oral, ocular, pulmonary, nasal, mucosal, buccal, or vaginal routes. They have also been studied for gene delivery, vaccine delivery, and advanced cancer therapy. Multiple lines of evidence suggest that chitosan NPs could be used as new therapeutic tools against viral infections. In this review we summarize reports concerning the therapeutic potential of chitosan NPs against various viral infections.
Collapse
Affiliation(s)
- Homa Boroumand
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Badie
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Mazaheri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Badehnoosh
- Department of Gynecology and Obstetrics, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
73
|
Glenn G, Shogren R, Jin X, Orts W, Hart-Cooper W, Olson L. Per- and polyfluoroalkyl substances and their alternatives in paper food packaging. Compr Rev Food Sci Food Saf 2021; 20:2596-2625. [PMID: 33682364 DOI: 10.1111/1541-4337.12726] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/06/2021] [Accepted: 02/02/2021] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been used in food contact paper and paperboard for decades due to their unique ability to provide both moisture and oil/grease resistance. Once thought to be innocuous, it is now clear that long chain PFAS bioaccumulate and are linked to reproductive and developmental abnormalities, suppressed immune response, and tumor formation. Second-generation PFAS have shorter biological half-lives but concerns about health risks from chronic exposure underscore the need for safe substitutes. Waxes and polymer film laminates of polyethylene, poly(ethylene-co-vinyl alcohol), and polyethylene terephthalate are commonly used alternatives. However, such laminates are neither compostable nor recyclable. Lamination with biodegradable polymers, including polyesters, such as polylactic acid (PLA), polybutylene adipate terephthalate, polybutylene succinate, and polyhydroxyalkanoates, are of growing research and commercial interest. PLA films are perhaps the most viable alternative, but performance and compostability are suboptimal. Surface sizings and coatings of starches, chitosan, alginates, micro- and nanofibrilated cellulose, and gelatins provide adequate oil barrier properties but have poor moisture resistance without chemical modification. Plant proteins, including soy, wheat gluten, and corn zein, have been tested as paper coatings with soy being the most commercially important. Internal sizing agents, such as alkyl ketene dimers, alkenyl succinic anhydride, and rosin, improve moisture resistance but are poor oil/grease barriers. The difficulty in finding a viable replacement for PFAS chemicals that is cost-effective, fully biodegradable, and environmentally sound underscores the need for more research to improve barrier properties and process economics in food packaging products.
Collapse
Affiliation(s)
- Gregory Glenn
- Bioproduct Research Unit, USDA-ARS, Western Regional Research Center, Albany, California, USA
| | | | - Xing Jin
- World Centric, Rohnert Park, California, USA
| | - William Orts
- Bioproduct Research Unit, USDA-ARS, Western Regional Research Center, Albany, California, USA
| | - William Hart-Cooper
- Bioproduct Research Unit, USDA-ARS, Western Regional Research Center, Albany, California, USA
| | | |
Collapse
|
74
|
Kulkarni N, Shinde SD, Jadhav GS, Adsare DR, Rao K, Kachhia M, Maingle M, Patil SP, Arya N, Sahu B. Peptide-Chitosan Engineered Scaffolds for Biomedical Applications. Bioconjug Chem 2021; 32:448-465. [PMID: 33656319 DOI: 10.1021/acs.bioconjchem.1c00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peptides are signaling epitopes that control many vital biological events. Increased specificity, synthetic feasibility with concomitant lack of toxicity, and immunogenicity make this emerging class of biomolecules suitable for different applications including therapeutics, diagnostics, and biomedical engineering. Further, chitosan, a naturally occurring linear polymer composed of d-glucosamine and N-acetyl-d-glucosamine units, possesses anti-microbial, muco-adhesive, and hemostatic properties along with excellent biocompatibility. As a result, chitosan finds application in drug/gene delivery, tissue engineering, and bioimaging. Despite these applications, chitosan demonstrates limited cell adhesion and lacks biosignaling. Therefore, peptide-chitosan hybrids have emerged as a new class of biomaterial with improved biosignaling properties and cell adhesion properties. As a result, recent studies encompass increased application of peptide-chitosan hybrids as composites or conjugates in drug delivery, cell therapy, and tissue engineering and as anti-microbial material. This review discusses the recent investigations involving chitosan-peptide materials and uncovers various aspects of these interesting hybrid materials for biomedical applications.
Collapse
|
75
|
Nayak D, Thathapudi NC, Ashe S, Nayak B. Bioengineered ethosomes encapsulating AgNPs and Tasar silk sericin proteins for non melanoma skin carcinoma (NMSC) as an alternative therapeutics. Int J Pharm 2021; 596:120265. [PMID: 33486031 DOI: 10.1016/j.ijpharm.2021.120265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Rising cases of Non melanoma skin carcinoma (NMSC) and escalating levels of ultraviolet radiations have underlined a profound correlation with the elevating levels of environmental detoriation and increasing health issues. However, the availability of therapeutics has not aided in controlling the recurrence rates of skin carcinoma. Frequent administration of therapeutics with higher chances of facial deformity escalates the patient's treatment expenses. Thus, this study initiates a low cost effective and biodegradable therapy by exploring four formulations with combinations of silver nanoparticles (AgNPs), sericin (isolated from cocoons of Antherea mylitta) and chitosan. Subsequently, various ethosomal formulations were evaluated as a platform for transdermal delivery vehicle for efficient skin intervention therapeutics. Characterization using UV visible spectroscopy, Dynamic light scattering, Fourier Infrared spectroscopy, X-ray dispersion, Transmission electron microscopy, Fluorescence assisted cell sorting and in vitro studies were done and it was inferenced that equal combination of AgNPs and sericin facilitated to combat the morphological and cellular deformation of the epidermoid A431skin carcinoma cells. The overproduction of superoxide (O2.) and nitric oxide (NO) radicals consequently depolarized the mitochondrial membrane potential triggering apoptosis and necrosis. The in vivo experiments exhibited the stimulation of IgM secretion with T cell-mediated immune response. Therefore, this study proposes a novel approach for treatment of NMSC using biocompatible formulations delivered through ethosomes.
Collapse
Affiliation(s)
- Debasis Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India.
| | - Neethi C Thathapudi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Sarbani Ashe
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India.
| |
Collapse
|
76
|
López-Valverde N, López-Valverde A, Ramírez JM. Systematic Review of Effectiveness of Chitosan as a Biofunctionalizer of Titanium Implants. BIOLOGY 2021; 10:biology10020102. [PMID: 33535712 PMCID: PMC7912802 DOI: 10.3390/biology10020102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary The low bioactivity of titanium limits its applications. The biofunctionalization of its surfaces with certain polymers could improve and accelerate the osseointegration process. Chitosan is a natural polysaccharide derived from chitin, which has been proposed in biomedical engineering. This systematic review evaluated in vivo studies with chitosan-coated titanium implants compared with non-functionalized implants. Abstract Chitosan is a natural polysaccharide extracted from the shells of crustaceans that has been proposed as a scaffold in tissue engineering. Certain studies have proven a greater osseointegration of titanium surfaces that are functionalized with chitosan. The MEDLINE, CENTRAL, PubMed, and Web of Science databases were electronically searched for in vivo studies. Seven studies met the inclusion criteria. Animal models, implant site, chitosan incorporation methods, and methods of analysis were emphasized. The selected studies were individually discussed regarding the coatings, osseointegration potential, and suitability of the experimental models used, analyzing their limitations. We concluded that chitosan-biofunctionalized titanium surfaces have greater osseointegration capacity that uncoated control titanium alloys.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain;
| | - Antonio López-Valverde
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain;
- Correspondence:
| | - Juan Manuel Ramírez
- Department of Morphological Sciences, University of Cordoba, Avenida Menéndez Pidal s/n, 14071 Cordoba, Spain;
| |
Collapse
|
77
|
Chaudhari AK, Singh VK, Das S, Dubey NK. Nanoencapsulation of essential oils and their bioactive constituents: A novel strategy to control mycotoxin contamination in food system. Food Chem Toxicol 2021; 149:112019. [PMID: 33508419 DOI: 10.1016/j.fct.2021.112019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
Spoilage of food by mycotoxigenic fungi poses a serious risk to food security throughout the world. In view of the negative effects of synthetic preservatives, essential oils (EOs) and their bioactive constituents are gaining momentum as suitable substitute to ensure food safety by controlling mycotoxins. However, despite their proven preservative potential against mycotoxins, the use of EOs/bioactive constituents in real food system is still restricted due to instability caused by abiotic factors and negative impact on organoleptic attributes after direct application. Nanoencapsulation in this regard could be a promising approach to address these problems, since the process can increase the stability of EOs/bioactive constituents, barricades their loss and considerably prevent their interaction with food matrices, thus preserving their original organoleptic qualities. The aim of this review is to provide wider and up-to-date overview on recent advances in nanoencapsulation of EOs/bioactive constituents with the objective to control mycotoxin contamination in food system. Further, the information on polymer characteristics, nanoencapsulation techniques, factors affecting the nanoencapsulation, applications of nanoencapsulated formulations, and characterization along with the study on their release kinetics and impacts on organoleptic attributes of food are discussed. Finally, the safety aspects of nanoencapsulated formulations for their safe utilization are also explored.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
78
|
Rasul RM, Tamilarasi Muniandy M, Zakaria Z, Shah K, Chee CF, Dabbagh A, Rahman NA, Wong TW. A review on chitosan and its development as pulmonary particulate anti-infective and anti-cancer drug carriers. Carbohydr Polym 2020; 250:116800. [PMID: 33049807 PMCID: PMC7434482 DOI: 10.1016/j.carbpol.2020.116800] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/24/2022]
Abstract
Chitosan, as a biodegradable and biocompatible polymer, is characterized by anti-microbial and anti-cancer properties. It lately has received a widespread interest for use as the pulmonary particulate backbone materials of drug carrier for the treatment of infectious disease and cancer. The success of chitosan as pulmonary particulate drug carrier is a critical interplay of their mucoadhesive, permeation enhancement and site/cell-specific attributes. In the case of nanocarriers, various microencapsulation and micro-nano blending systems have been devised to equip them with an appropriate aerodynamic character to enable efficient pulmonary aerosolization and inhalation. The late COVID-19 infection is met with acute respiratory distress syndrome and cancer. Chitosan and its derivatives are found useful in combating HCoV and cancer as a function of their molecular weight, substituent type and its degree of substitution. The interest in chitosan is expected to rise in the next decade from the perspectives of drug delivery in combination with its therapeutic performance.
Collapse
Affiliation(s)
- Ruhisy Mohd Rasul
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300, Puncak Alam, Selangor, Malaysia; Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - M Tamilarasi Muniandy
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300, Puncak Alam, Selangor, Malaysia; Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zabliza Zakaria
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300, Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia
| | - Kifayatullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Chin Fei Chee
- Nanotechnology & Catalysis Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ali Dabbagh
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300, Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia; Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University. China.
| |
Collapse
|
79
|
Šimat V, Elabed N, Kulawik P, Ceylan Z, Jamroz E, Yazgan H, Čagalj M, Regenstein JM, Özogul F. Recent Advances in Marine-Based Nutraceuticals and Their Health Benefits. Mar Drugs 2020; 18:E627. [PMID: 33317025 PMCID: PMC7764318 DOI: 10.3390/md18120627] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
The oceans have been the Earth's most valuable source of food. They have now also become a valuable and versatile source of bioactive compounds. The significance of marine organisms as a natural source of new substances that may contribute to the food sector and the overall health of humans are expanding. This review is an update on the recent studies of functional seafood compounds (chitin and chitosan, pigments from algae, fish lipids and omega-3 fatty acids, essential amino acids and bioactive proteins/peptides, polysaccharides, phenolic compounds, and minerals) focusing on their potential use as nutraceuticals and health benefits.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Avenue de la République, BP 77-1054 Amilcar, Tunisia;
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Zafer Ceylan
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Van Yüzüncü Yıl University, 65080 Van, Turkey;
| | - Ewelina Jamroz
- Institute of Chemistry, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Hatice Yazgan
- Faculty of Veterinary Medicine, Cukurova University, 01330 Adana, Turkey;
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
80
|
Structure and functional properties of active packaging films prepared by incorporating different flavonols into chitosan based matrix. Int J Biol Macromol 2020; 165:625-634. [DOI: 10.1016/j.ijbiomac.2020.09.209] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/05/2020] [Accepted: 09/23/2020] [Indexed: 11/19/2022]
|
81
|
Kritchenkov AS, Egorov AR, Volkova OV, Artemjev AA, Kurliuk AV, Anh Le T, Hieu Truong H, Le-Nhat-Thuy G, Van Tran Thi T, Van Tuyen N, Khrustalev VN. Novel biopolymer-based nanocomposite food coatings that exhibit active and smart properties due to a single type of nanoparticles. Food Chem 2020; 343:128676. [PMID: 33250292 DOI: 10.1016/j.foodchem.2020.128676] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 01/07/2023]
Abstract
We used nanoparticles which possess simultaneously active (antimicrobial, UV-protective and antioxidant) and smart (temperature sensing) properties. The nanoparticles (2Rh = 450 nm, PDI = 0.118 ± 0.014, ζ-potential = 21 mV and Tg = 8 ± 1 °C) are based on polyethylene glycol (PEG)/methyl cellulose (MC) core with anthocyanidin and sodium acetate, and chitosan/gallotannin-based shell. The core of nanoparticles acts as a temperature indicator, changing its color from colorless into deep purple at 8 °C, while the shell provides antimicrobial (due to chitosan), UV-protective and antioxidant (due to gallotannin) effects. We incorporated these nanoparticles into the chitosan matrix. The coatings demonstrated improved mechanical and barrier properties compared with the pure chitosan coating. The elaborated coatings pronouncedly improve the shelf-life of Ricotta cheese. Moreover, they serve as thermo indicators, which warn about cheese storage at an unacceptable temperature. Thus, we developed new coatings in which all properties are enabled by a single type of nanoparticles.
Collapse
Affiliation(s)
- Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation; Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus.
| | - Anton R Egorov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Olga V Volkova
- Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Alexey A Artemjev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Aleh V Kurliuk
- Vitebsk State Medical University, Frunze av. 27, Vitebsk 210009, Belarus
| | - Tuan Anh Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Hong Hieu Truong
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Giang Le-Nhat-Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Thanh Van Tran Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation
| |
Collapse
|
82
|
do Nascimento EG, de Azevedo EP, Alves-Silva MF, Aragão CFS, Fernandes-Pedrosa MF, da Silva-Junior AA. Supramolecular aggregates of cyclodextrins with co-solvent modulate drug dispersion and release behavior of poorly soluble corticosteroid from chitosan membranes. Carbohydr Polym 2020; 248:116724. [PMID: 32919548 DOI: 10.1016/j.carbpol.2020.116724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/13/2020] [Accepted: 06/30/2020] [Indexed: 01/29/2023]
Abstract
In this study, the ability of different beta-cyclodextrins to facilitate homogeneous dispersion of triamcinolone acetonide (TA) into chitosan membranes is assessed. Drug loading was assessed through atomic force microscopy (AFM), scanning electron microscopy (MEV-FEG), and X-ray diffraction analyses. Drug interactions with the co-polymer were investigated with Fourier transform infrared spectroscopy, thermal analyses. Swelling assay, and in vitro drug release experiment were used to assess TA release behavior. Undispersed particles of drug were observed to remain in the simple chitosan membranes. Hydroxypropyl-β-cyclodextrin enabled the dispersion of TA into chitosan membranes and subsequent sustained drug release. In addition, the membrane performance as a drug delivery device is improved by adding specified amounts of the co-solvent triethanolamine. The experimental data presented in this study confirm the utility of our novel and alternative approach for obtaining a promising device for slow and controlled release of glucocorticoids, such as triamcinolone acetonide, for topical ulcerations.
Collapse
Affiliation(s)
- Ednaldo Gomes do Nascimento
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Eduardo Pereira de Azevedo
- Department of Pharmacy, Federal University of Potiguar, UnP, Av. Sen. Salgado Filho, 1610, Lagoa Nova, 59056-000, Natal, RN, Brazil
| | - Mariana Farias Alves-Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Cícero Flávio S Aragão
- Laboratory of Quality Control of Pharmaceuticals, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Matheus F Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Arnóbio Antônio da Silva-Junior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil.
| |
Collapse
|
83
|
Romanelli Vicente Bertolo M, Conceição Amaro Martins V, Guzzi Plepis AM, Bogusz Junior S. Rheological study of the incorporation of grape seed extract in chitosan and gelatin coatings. J Appl Polym Sci 2020. [DOI: 10.1002/app.50052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mirella Romanelli Vicente Bertolo
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Avenida do Trabalhador São Carlense São Carlos São Paulo Brazil
| | - Virginia Conceição Amaro Martins
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Avenida do Trabalhador São Carlense São Carlos São Paulo Brazil
| | - Ana Maria Guzzi Plepis
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Avenida do Trabalhador São Carlense São Carlos São Paulo Brazil
| | - Stanislau Bogusz Junior
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Avenida do Trabalhador São Carlense São Carlos São Paulo Brazil
| |
Collapse
|
84
|
Rondon EP, Benabdoun HA, Vallières F, Segalla Petrônio M, Tiera MJ, Benderdour M, Fernandes JC. Evidence Supporting the Safety of Pegylated Diethylaminoethyl-Chitosan Polymer as a Nanovector for Gene Therapy Applications. Int J Nanomedicine 2020; 15:6183-6200. [PMID: 32922001 PMCID: PMC7450204 DOI: 10.2147/ijn.s252397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Diethylaminoethyl-chitosan (DEAE-CH) is a derivative with excellent potential as a delivery vector for gene therapy applications. The aim of this study is to evaluate its toxicological profile for potential future clinical applications. METHODS An endotoxin-free chitosan (CH) modified with DEAE, folic acid (FA) and polyethylene glycol (PEG) was used to complex small interfering RNA (siRNA) and form nanoparticles (DEAE12-CH-PEG-FA2/siRNA). Based on the guidelines from the International Organization for Standardization (ISO), the American Society for Testing and Materials (ASTM), and the Nanotechnology Characterization Laboratory (NCL), we evaluated the effects of the interaction between these nanoparticles and blood components. In vitro screening assays such as hemolysis, hemagglutination, complement activation, platelet aggregation, coagulation times, cytokine production, and reactive species, such as nitric oxide (NO) and reactive oxygen species (ROS), were performed on erythrocytes, plasma, platelets, peripheral blood mononuclear cells (PBMC) and Raw 264.7 macrophages. Moreover, MTS and LDH assays on Raw 264.7 macrophages, PBMC and MG-63 cells were performed. RESULTS Our results show that a targeted theoretical plasma concentration (TPC) of DEAE12-CH-PEG-FA2/siRNA nanoparticles falls within the guidelines' thresholds: <1% hemolysis, 2.9% platelet aggregation, no complement activation, and no effect on coagulation times. ROS and NO production levels were comparable to controls. Cytokine secretion (TNF-α, IL-6, IL-4, and IL-10) was not affected by nanoparticles except for IL-1β and IL-8. Nanoparticles showed a slight agglutination. Cell viability was >70% for TPC in all cell types, although LDH levels were statistically significant in Raw 264.7 macrophages and PBMC after 24 and 48 h of incubation. CONCLUSION These DEAE12-CH-PEG-FA2/siRNA nanoparticles fulfill the existing ISO, ASTM and NCL guidelines' threshold criteria, and their low toxicity and blood biocompatibility warrant further investigation for potential clinical applications.
Collapse
Affiliation(s)
- Elsa Patricia Rondon
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| | - Houda Abir Benabdoun
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| | - Francis Vallières
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| | - Maicon Segalla Petrônio
- Institute of Biosciences, Humanities and Exact Sciences, Department of Chemistry and Environmental Sciences, UNESP-São Paulo State University, São José Do Rio Preto, São Paulo State, Brazil
| | - Marcio José Tiera
- Institute of Biosciences, Humanities and Exact Sciences, Department of Chemistry and Environmental Sciences, UNESP-São Paulo State University, São José Do Rio Preto, São Paulo State, Brazil
| | - Mohamed Benderdour
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| | - Julio Cesar Fernandes
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| |
Collapse
|
85
|
|
86
|
Bezrodnykh EA, Vyshivannaya OV, Polezhaev AV, Abramchuk SS, Blagodatskikh IV, Tikhonov VE. Residual heavy metals in industrial chitosan: State of distribution. Int J Biol Macromol 2020; 155:979-986. [DOI: 10.1016/j.ijbiomac.2019.11.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 11/30/2022]
|
87
|
Encapsulation of Ginger Essential Oil Using Complex Coacervation Method: Coacervate Formation, Rheological Property, and Physicochemical Characterization. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02480-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
88
|
Jiang P, Jacobs KM, Ohr MP, Swindle-Reilly KE. Chitosan-Polycaprolactone Core-Shell Microparticles for Sustained Delivery of Bevacizumab. Mol Pharm 2020; 17:2570-2584. [PMID: 32484677 DOI: 10.1021/acs.molpharmaceut.0c00260] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current therapy for treating neovascular age-related macular degeneration requires monthly intravitreal injection of angiogenesis inhibitors such as bevacizumab or ranibizumab via a 31-gauge needle to inhibit choroidal neovascularization. However, repeated intravitreal injections are associated with poor patient compliance and potential side effects. Microparticle-based injectable devices have shown great promise to address this issue by sustained delivery of protein therapeutics, but critical barriers remain, including limited loading capacity and steady long-term release without compromising the anti-angiogenic activity of drugs. Addressing these challenges, we developed a unique method for synthesizing biodegradable polymer-based core-shell microparticles with sizes around 10 μm, high physical integrity, and uniform size. Subsequent electrostatic and physical interactions to control protein diffusion were designed for the core-shell microparticles to effectively increase the capacity of drug loading to 25%, reduce burst release by almost 30%, and extend the period of drug release from 3 to 6 months. Remarkably, the microparticles enabled a longer-term drug administration and maintained high drug potency up to 6 months in vitro, representing significant advancement compared to conventional microparticle-based delivery platforms or currently commercialized devices. Additionally, the microparticles presented minimal toxicity to human retinal cells in vitro with over 90% cell viability, and they also exhibited good injection feasibility through 31-gauge needles in an ex vivo porcine eye model. These results warrant further studies to evaluate the clinical potential for treating posterior ophthalmic diseases as well as other conditions or injuries requiring long-term local drug administration.
Collapse
Affiliation(s)
- Pengfei Jiang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 134-140 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Kane M Jacobs
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 134-140 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Matthew P Ohr
- Department of Ophthalmology & Visual Science, The Ohio State University, 915 Olentangy River Road, Columbus, Ohio 43212, United States
| | - Katelyn E Swindle-Reilly
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 134-140 West Woodruff Avenue, Columbus, Ohio 43210, United States.,Department of Ophthalmology & Visual Science, The Ohio State University, 915 Olentangy River Road, Columbus, Ohio 43212, United States.,Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Road, Columbus, Ohio 43210, United States
| |
Collapse
|
89
|
Blagodatskikh IV, Vyshivannaya OV, Samoilova NA, Bezrodnykh EA, Klemenkova ZS, Kuryakov VN, Tikhonov VE, Khokhlov AR. Polyelectrolyte Complexes of Partially Betainated Chitosan Derivatives Soluble in Weakly Alkaline Media. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20030037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
90
|
|
91
|
Chen F, Hou L, Zhu L, ChengboYang, Zhu F, Qiu H, Qin S. Effects of selenide chitosan sulfate on glutathione system in hepatocytes and specific pathogen-free chickens. Poult Sci 2020; 99:3979-3986. [PMID: 32731985 PMCID: PMC7597923 DOI: 10.1016/j.psj.2020.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the effects of selenide chitosan sulfate (Se-CTS-S) on glutathione (GSH) system in hepatocytes and chickens. Chitosan, sodium selenite (Na2SeO3), selenide chitosan, chitosan sulfate (CTS-S), and Se-CTS-S were added to the culture medium and the basal diets; glutathione peroxidase (GSH-Px) activity, GSH content, total antioxidant capacity (T-AOC), and mRNA levels of cellular GPx (GPx-1) and phospholipid hydroperoxide GPx (GPx-4) in vivo and in vitro were determined. The results showed that Se-CTS-S increased (P < 0.05) GPx-1 and GPx-4 mRNA levels in hepatocytes and livers, and GSH-Px activity, GSH content, and T-AOC in the medium, hepatocytes, plasma, and livers compared with the control and chitosan treatments. Compared with CTS-S, Se-CTS-S treatments increased (P < 0.05) GPx-1 and GPx-4 mRNA levels in hepatocytes and livers, and GSH-Px activity, GSH content, and T-AOC capacity in the medium, hepatocytes, and livers. Compared with Na2SeO3 and CTS-Se, Se-CTS-S increased (P < 0.05) GPx-1 mRNA levels in hepatocytes and livers, GPx-4 mRNA levels in hepatocytes and livers, GSH-Px activity in the medium, hepatocytes, and livers, GSH contents in plasma and livers, and T-AOC in the medium, plasma, and livers. Thus, Se-CTS-S showed better biological activity that mainly benefited from the synergistic effects of Se and sulfate on GSH system.
Collapse
Affiliation(s)
- Fu Chen
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lele Hou
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lianqin Zhu
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - ChengboYang
- Department of Animal Science, University of Manitoba, Winnipeg Manitoba, R3T 2N2, Canada
| | - Fenghua Zhu
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huiling Qiu
- Haidu College, Qingdao Agricultural University, Laiyang, 265200, China.
| | - Shunyi Qin
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
92
|
Kumar Chaudhari A, Singh A, Kumar Singh V, Kumar Dwivedy A, Das S, Grace Ramsdam M, Dkhar MS, Kayang H, Kishore Dubey N. Assessment of chitosan biopolymer encapsulated α-Terpineol against fungal, aflatoxin B1 (AFB1) and free radicals mediated deterioration of stored maize and possible mode of action. Food Chem 2020; 311:126010. [DOI: 10.1016/j.foodchem.2019.126010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
|
93
|
Kabanov VL, Novinyuk LV. CHITOSAN APPLICATION IN FOOD TECHNOLOGY: A REVIEW OF RESCENT ADVANCES. ACTA ACUST UNITED AC 2020. [DOI: 10.21323/2618-9771-2020-3-1-10-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- V. L. Kabanov
- All-Russia Research Institute for Food Additives — Branch of V. M. Gorbato Federal Research Center for Food Systems of RAS
| | - L. V. Novinyuk
- All-Russia Research Institute for Food Additives — Branch of V. M. Gorbato Federal Research Center for Food Systems of RAS
| |
Collapse
|
94
|
Inanli AG, Tümerkan ETA, Abed NE, Regenstein JM, Özogul F. The impact of chitosan on seafood quality and human health: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
95
|
Quercetin-grafted chitosan prepared by free radical grafting: characterization and evaluation of antioxidant and antibacterial properties. Journal of Food Science and Technology 2020; 57:2259-2268. [PMID: 32431352 DOI: 10.1007/s13197-020-04263-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/26/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
Chitosan (CS) is considered a versatile biopolymer with promising applications. However, it is not a good chain-breaking antioxidant due to the lack of H-atom donors. In this work, CS was combined with quercetin (Q), a natural antioxidant, via a free radical-mediated procedure to strengthen the antioxidant capacity. The successful formation of Q-grafted CS (Q-CS) was confirmed by ultraviolet-visible absorbance and Fourier transform infrared spectroscopy. After combination, the obtained Q-CS had a phenolic content of 13.9 mg QE/g Q-CS and showed a lower crystallinity and thermal stability than the native CS. The 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), superoxide, and hydroxyl radical scavenging activities of Q-CS were higher than those of CS, illustrating that grafting with Q is an available way to improve the antioxidant capacity of CS. In addition, Q-CS showed higher minimal inhibitory concentrations against tested bacteria than CS, suggesting that combining with Q has a negative effect on the antibacterial activity of CS. Our results indicate that Q-CS may have great potential for applications in the fields of food and healthcare.
Collapse
|
96
|
Dong C, Wang B, Li F, Zhong Q, Xia X, Kong B. Effects of edible chitosan coating on Harbin red sausage storage stability at room temperature. Meat Sci 2020; 159:107919. [DOI: 10.1016/j.meatsci.2019.107919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/23/2022]
|
97
|
Sabourian P, Tavakolian M, Yazdani H, Frounchi M, van de Ven TG, Maysinger D, Kakkar A. Stimuli-responsive chitosan as an advantageous platform for efficient delivery of bioactive agents. J Control Release 2020; 317:216-231. [DOI: 10.1016/j.jconrel.2019.11.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/31/2022]
|
98
|
Quadrado RF, Fajardo AR. Microparticles based on carboxymethyl starch/chitosan polyelectrolyte complex as vehicles for drug delivery systems. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
99
|
Yan X, Zhou M, Yu S, Jin Z, Zhao K. An overview of biodegradable nanomaterials and applications in vaccines. Vaccine 2019; 38:1096-1104. [PMID: 31813649 DOI: 10.1016/j.vaccine.2019.11.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
Vaccination is the most cost-effective and sustainable way to prevent and eliminate infectious diseases. Compared with traditional vaccines, novel vaccines have better stability, longer duration and require less antigen usage. In addition, novel vaccines have better immune effects and significantly less toxic side effects. However, both novel vaccines and traditional vaccines require carrier molecules or adjuvants to produce an optimal immune response. There is an increasing demand for vaccine adjuvants and delivery systems that can induce stronger immune response whilst reducing production cost and the dose of vaccine. In recent years, nanotechnology has played an important role in the development of novel vaccine adjuvants and nano-delivery systems. Biodegradable materials have also received a lot of attention in medical science because they have excellent biocompatibility, biodegradability and low toxicity, which can protect antigens from degradation, increase antigen stability and provide slow release; resulting in enhanced immunogenicity. Therefore, biodegradable nanoparticles have attracted much attention in the formulation of vaccines. In this review, we outline some key features of biodegradable nanomaterials in the developing safer and more effective vaccines. The properties, structural characteristics, advantages and disadvantage of the biodegradable nanomaterials will be systematically reviewed. Additionally, applications, research progress and future prospects of biodegradable nanomaterials are discussed. This review will be help in future research work directed at developing biodegradable vaccine adjuvants or delivery carriers.
Collapse
Affiliation(s)
- Xingye Yan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Mo Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Shuang Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China
| | - Kai Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
100
|
Zhang Z, Xia G, Yang Q, Fan X, Lyu S. Effects of chitosan-based coatings on storage quality of Chinese shrimp. Food Sci Nutr 2019; 7:4085-4094. [PMID: 31890188 PMCID: PMC6924340 DOI: 10.1002/fsn3.1275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 01/03/2023] Open
Abstract
We investigated the effects of chitosan-based coatings on the preservation quality of refrigerated Chinese shrimp for 12 days. Samples of Chinese shrimp were subjected to three different coating treatments, namely chitosan (CH), chitosan and ε-polylysine (CH + ε-PL), chitosan combined with ε-polylysine and carrageenan (CH + ε-PL + CA), and compared with a control. The bacteriological characteristics [total viable count (TVC)], chemical indexes including pH, thiobarbituric acid (TBA) value, K-value, and total volatile basic nitrogen (TVB-N), texture (hardness, chewiness, and elasticity), and sensory changes were assessed. The increases in TVC, pH, TBA, K-value, and TVB-N were observed to be delayed by preservation treatments, and the textural and sensory characteristics indicated that the treated shrimp were preserved more effectively than the control. Treatment with chitosan combined with ε-polylysine and carrageenan was the most effective preservation method than treatment with chitosan alone or chitosan and ε-polylysine; the shelf life was also prolonged. Therefore, treatment with chitosan combined with ε-polylysine and carrageenan is proposed as a potential method for shelf life extension of Chinese shrimp for refrigerated storage.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Food ScienceShenyang Agricultural UniversityShenyangChina
| | - Guanghui Xia
- College of Food ScienceShenyang Agricultural UniversityShenyangChina
| | - Qiang Yang
- College of Food ScienceShenyang Agricultural UniversityShenyangChina
| | - Xinwen Fan
- College of Food ScienceShenyang Agricultural UniversityShenyangChina
| | - Shuxia Lyu
- College of Food ScienceShenyang Agricultural UniversityShenyangChina
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangChina
| |
Collapse
|