51
|
Bhatia-Kissova I, Camougrand N. Mitophagy in Yeast: Decades of Research. Cells 2021; 10:3541. [PMID: 34944049 PMCID: PMC8700663 DOI: 10.3390/cells10123541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
Mitophagy, the selective degradation of mitochondria by autophagy, is one of the most important mechanisms of mitochondrial quality control, and its proper functioning is essential for cellular homeostasis. In this review, we describe the most important milestones achieved during almost 2 decades of research on yeasts, which shed light on the molecular mechanisms, regulation, and role of the Atg32 receptor in this process. We analyze the role of ROS in mitophagy and discuss the physiological roles of mitophagy in unicellular organisms, such as yeast; these roles are very different from those in mammals. Additionally, we discuss some of the different tools available for studying mitophagy.
Collapse
Affiliation(s)
- Ingrid Bhatia-Kissova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia;
| | - Nadine Camougrand
- CNRS, UMR 5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, UMR 5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| |
Collapse
|
52
|
Core-Shell Iron-Nickel Hexacyanoferrate Nanoparticle-Based Sensors for Hydrogen Peroxide Scavenging Activity. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To access hydrogen peroxide scavenging activity, we propose a sensor based on core-shell iron-nickel hexacyanoferrate nanoparticles. On the one hand, the sensor preparation procedure is simple: syringing the nanoparticles suspension with subsequent annealing. On the other hand, the sensor demonstrates a stable response to 0.05 mM of H2O2 within one hour, which is sufficient for the evaluation of antioxidant activity (AO). The analytical performance characteristics of the sensor (0.5–0.6 A M−1 cm−2, detection limit 1.5 × 10−7 M and linear dynamic range 1–1000 µM) are leads to advantages over the sensor based on Prussian Blue films. The pseudo-first-order constant of hydrogen peroxide scavenging was chosen as a characteristic value of AO. The latter for trolox (standard antioxidant) was found to be linearly dependent on its concentration, thus allowing for the evaluation of antioxidant activity in trolox equivalents. The approach was validated by analyzing real beverage samples. Both the simplicity of sensor preparation and an expressiveness of analytical procedure would obviously provide a wide use of the proposed approach in the evaluation of antioxidant activity.
Collapse
|
53
|
Hydrolase-Treated Royal Jelly Attenuates H 2O 2- and Glutamate-Induced SH-SY5Y Cell Damage and Promotes Cognitive Enhancement in a Rat Model of Vascular Dementia. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:2213814. [PMID: 34651043 PMCID: PMC8510834 DOI: 10.1155/2021/2213814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022]
Abstract
Vascular dementia (VaD) is the second most common type of dementia following Alzheimer's disease, but the therapeutic efficacy is still not effective. This makes the searching for novel neuroprotective agents important. Therefore, we hypothesized that royal jelly, a well-known traditional medicine, could attenuate memory impairment and brain damage in vascular dementia. This study determined the effects of royal jelly hydrolysate (RJH) and possible mechanism of cell damage and cognitive-enhancing effect in animal study. An in vitro study assessed the effects of RJH on acetylcholinesterase inhibitor, cell viability, and cell damage in SH-SY5Y neuroblastoma cells. Then, an in vivo study examined vascular dementia by the occlusion of the right middle cerebral artery (Rt.MCAO); adult male Wistar rats had been orally given RJH at doses ranging from 10, 50, to 100 mg/kg for 14 days before and 14 days after the occlusion of Rt.MCAO to mimic the VaD condition. Rats' spatial memory was evaluated using Morris water maze and radial arm maze every 7 days after Rt.MCAO throughout a 14-day experimental period, and then, they were sacrificed and the acetylcholinesterase (AChE) activity in the hippocampus was determined. The results showed that RJH has no cytotoxic effect with the final concentration up to 500 μg protein/ml and reduces cell death from the H2O2- and glutamate-induced cell damage in in vitro neuroblastoma cells. Importantly, RJH significantly improved memory performance in Morris water maze test and radial arm maze and decreased the level of acetyl cholinesterase activity. In conclusion, RJH is the potential neuroprotective agent and cognitive enhancer for VaD.
Collapse
|
54
|
Bourg P, Salottolo K, Klein J, Bar-Or D. Can a biomarker for oxidative stress and antioxidant reserves identify frailty in geriatric trauma patients? Injury 2021; 52:2908-2913. [PMID: 33573809 DOI: 10.1016/j.injury.2021.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Frailty is a state of systematic physiologic decline and reduced ability to recover from illness. There are no rapid quantitative biological measures to assess frailty. The study objective was to determine whether oxidation-reduction potential (ORP) is correlated with frailty score. METHODS This prospective, observational cohort study was performed using plasma samples of geriatric trauma patients (≥65 years) admitted to a level I trauma center. Frailty was measured with the Canadian Study of Health and Aging (CSHA) Clinical Frailty Scale (7-point scale; 1 = robust health and 7 = severely frail). Plasma ORP was determined using the RedoxSYS™ system to measure static ORP (aggregate measure of oxidative stress) and capacity ORP (antioxidant reserves; log transformed). Spearman rank correlation (presented as rs) and ordinal logistic regression (presented as adjusted odds ratios, AOR) were used to examine the unadjusted and adjusted relationship between frailty score and ORP values. RESULTS There were 93 geriatric trauma patients in our study. The majority (86%) had frailty scores 1-5, 11% were moderately frail and 3% were severely frail. There was a u-shaped relationship between ORP and frailty scale that became monotonic for scores 1-5. Each increase in frailty score demonstrated significant decreases in antioxidant reserves (log cORP rs = -0.26, p = 0.02) and nonsignificant increases in oxidative stress (sORP rs = 0.17, p = 0.15). After adjustment, variables significantly associated with frailty included log cORP (e.g., fewer antioxidant reserves, AOR: 0.70), age (AOR: 1.82), injury severity score (AOR: 0.50), admission lactate ≥2.5 mMol (AOR: 4.31), and alcohol use (AOR: 0.34). CONCLUSIONS The amount of antioxidant reserves (cORP) appears to be a quantitative marker to differentiate the degree of frailty ranging from robust health to mild frailty in geriatric trauma patients. We propose that direct quantification of frailty by way of a biomarker for oxidative reserves could have application in emergent trauma situations.
Collapse
Affiliation(s)
| | | | | | - David Bar-Or
- Trauma Research Department, St Anthony Hospital, Lakewood, CO; Rocky Vista University, Parker, CO.
| |
Collapse
|
55
|
Zhang Y, Ding C, Cai Y, Chen X, Zhao Y, Liu X, Zhang J, Sun S, Liu W. Astilbin ameliorates oxidative stress and apoptosis in D-galactose-induced senescence by regulating the PI3K/Akt/m-TOR signaling pathway in the brains of mice. Int Immunopharmacol 2021; 99:108035. [PMID: 34435579 DOI: 10.1016/j.intimp.2021.108035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
An increasing amount of evidence has shown that injection of D-galactose (D-gal) can mimic natural aging that typically is associated with brain injury. Oxidative stress and apoptosis has been shown to play an essential role in aging process. The purpose of this study was to investigate the protective effectsof astilbin (ASB) on D-Gal-induced agingin miceand to further explore the underlying mechanisms. We randomly divided 50 mice into 5 groups.To establish this model of aging, 40micewere intraperitoneally administered D-Gal (500 mg/kg). The mice in the treatmentgroupswere intragastricaly administratedASB at doses of 40 and 80 mg/kg. H&E and TUNEL staining were used to determine the effect of ASB on the number of apoptotic cells in the brain. Furthermore, biochemical indices of serum, oxidative stress factors, and apoptosis factors were determined to clarify the underlying mechanism using reagent test kits and western blotting. The results showed that varying doses of ASB could improve D-Gal-induced histopathological damageand significantly alleviatedthe aging induced by D-Galin mice. ASB remarkably decreased the activities of malondialdehyde (MDA)(p < 0.01)and Acetyl cholinesterase (AChE)(p < 0.05) and markedlyincreased the content of catalase (CAT)(p < 0.01)and superoxide dismutase (SOD)(p < 0.01), respectively. In addition, Western blotting revealed thatASB treatment (40 mg/kg)attenuated the D-gal-induced Bax and Caspase 3 protein expression(p < 0.01) and reversed the increase in Bcl-2protein expressionin brain. Moreover, ASB treatment significantly upregulated the protein expression ofp-PI3K/PI3K and altered the p-Akt/Akt ratio (p < 0.05), while inhibiting the expression of p-m-TOR relative to m-TOR(p < 0.05). Moreover, the expression of P53 tended to decreasein the low ASB treatmentgroup (40 mg/kg), whereas no change was observed in the high ASB treatmentgroup (80 mg/kg). In the intestinal flora, the richness of the normal group and the ASB group was higher than that of the D-Gal group. Heat map analysis also showed that ASB promoted Lactobacillus and other probiotics and also confirmed the advantages of ASB. The observed changes in intestinal flora further verified the efficacy of ASB.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China.
| | - Chuanbo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China; College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China.
| | - Yuan Cai
- Jilin Institute of Bioloy, Changchun, Jilin, China.
| | - Xueyan Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China.
| | - Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China.
| | - Xinglong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China.
| | - Jinping Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China.
| | - Shunwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China.
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
56
|
Andreadou I, Efentakis P, Frenis K, Daiber A, Schulz R. Thiol-based redox-active proteins as cardioprotective therapeutic agents in cardiovascular diseases. Basic Res Cardiol 2021; 116:44. [PMID: 34275052 DOI: 10.1007/s00395-021-00885-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Thiol-based redox compounds, namely thioredoxins (Trxs), glutaredoxins (Grxs) and peroxiredoxins (Prxs), stand as a pivotal group of proteins involved in antioxidant processes and redox signaling. Glutaredoxins (Grxs) are considered as one of the major families of proteins involved in redox regulation by removal of S-glutathionylation and thereby reactivation of other enzymes with thiol-dependent activity. Grxs are also coupled to Trxs and Prxs recycling and thereby indirectly contribute to reactive oxygen species (ROS) detoxification. Peroxiredoxins (Prxs) are a ubiquitous family of peroxidases, which play an essential role in the detoxification of hydrogen peroxide, aliphatic and aromatic hydroperoxides, and peroxynitrite. The Trxs, Grxs and Prxs systems, which reversibly induce thiol modifications, regulate redox signaling involved in various biological events in the cardiovascular system. This review focuses on the current knowledge of the role of Trxs, Grxs and Prxs on cardiovascular pathologies and especially in cardiac hypertrophy, ischemia/reperfusion (I/R) injury and heart failure as well as in the presence of cardiovascular risk factors, such as hypertension, hyperlipidemia, hyperglycemia and metabolic syndrome. Further studies on the roles of thiol-dependent redox systems in the cardiovascular system will support the development of novel protective and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Katie Frenis
- Department of Cardiology 1, Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.,Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr 1, 55131, Mainz, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
57
|
Schöttker B, Salem A, Schwenk M, Gào X, Jansen EH, Brenner H. Relationship of Physical Activity at Older Age with Biomarkers of Oxidative Stress: A Large, Population-based Cohort Study. Med Sci Sports Exerc 2021; 53:2528-2535. [PMID: 34310500 DOI: 10.1249/mss.0000000000002731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND No population-based cohort study on the associations of physical activity with biomarkers of oxidative stress has been performed so far. METHODS The total thiol groups of serum proteins (TTP), which can be considered as a proxy biomarker for the antioxidant defense capacity of cells and the derivatives of reactive oxygen metabolites (D-ROM) serum concentration, which is mainly a biomarker of lipid peroxidation, were measured in 2,572 participants of a population-based cohort study of older adults (age range: 57-83 years) of whom 2,068 had repeated measurements 3 years later. Physical activity was assessed by a questionnaire specifically designed for the elderly. RESULTS In multivariable linear regression models, total physical activity was statistically significantly, inversely associated with both D-ROM concentrations measured at baseline and with their 3-year-change. With respect to TTP, a non-significant, positive association with total physical activity was observed in the cross-sectional analysis, which was statistically significant in obese study participants and a statistically significant interaction between physical activity and obesity was detected. However, no longitudinal association between total physical activity and changes in TTP levels was observed. The type of physical activity (sports, leisure time, or household activity) did not have a strong impact on the results. CONCLUSION This first population-based cohort study suggests that regular physical activity at older age could reduce oxidative stress. With the multifold potential adverse health consequences of chronically increased, systemic oxidative stress in mind, physical activity should be intensively promoted for all older adults as a measure to prevent age-related diseases.
Collapse
Affiliation(s)
- Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany Network Aging Research, Heidelberg University, Germany Centre for Health Protection, National Institute of Public Health and the Environment, Bilthoven, The Netherlands Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
58
|
Determinants of Resting Oxidative Stress in Middle-Aged and Elderly Men and Women: WASEDA'S Health Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5566880. [PMID: 34211629 PMCID: PMC8205570 DOI: 10.1155/2021/5566880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
Previous studies have not investigated the determinants of resting oxidative stress, including physical fitness, as it relates to redox regulation. The present study therefore was aimed at identifying lifestyle and biological factors that determine resting oxidative stress, including objectively measured physical fitness. In 873 middle-aged and elderly men and women, age and anthropometric parameters, lifestyle-related parameters, medication and supplementation status, physical fitness, biochemical parameters, and nutritional intake status, as well as three plasma oxidative stress markers: protein carbonyl (PC), F2-isoprostane (F2-IsoP), and thiobarbituric acid reactive substances (TBARS), were surveyed and measured. The determinants of PC, F2-IsoP, and TBARS in all participants were investigated using stepwise multiple regression analysis. In PC, age (β = −0.11, P = 0.002), leg extension power (β = −0.12, P = 0.008), BMI (β = 0.12, P = 0.004), and HDL-C (β = 0.08, P = 0.040) were included in the regression model (adjusted R2 = 0.018). In the F2-IsoP, smoking status (β = 0.07, P = 0.060), BMI (β = 0.07, P = 0.054), and HbA1c (β = −0.06, P = 0.089) were included in the regression model (adjusted R2 = 0.006). In TBARS, glucose (β = 0.18, P < 0.001), CRF (β = 0.16, P < 0.001), age (β = 0.15, P < 0.001), TG (β = 0.11, P = 0.001), antioxidant supplementation (β = 0.10, P = 0.002), and HbA1c (β = −0.13, P = 0.004) were included in the regression model (adjusted R2 = 0.071). In conclusion, the present study showed that age, anthropometric index, lifestyle-related parameters, medication and supplementation status, objectively measured physical fitness, biochemical parameters, and nutritional intake status explain less than 10% of oxidative stress at rest.
Collapse
|
59
|
Harper JM, Holmes DJ. New Perspectives on Avian Models for Studies of Basic Aging Processes. Biomedicines 2021; 9:biomedicines9060649. [PMID: 34200297 PMCID: PMC8230007 DOI: 10.3390/biomedicines9060649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022] Open
Abstract
Avian models have the potential to elucidate basic cellular and molecular mechanisms underlying the slow aging rates and exceptional longevity typical of this group of vertebrates. To date, most studies of avian aging have focused on relatively few of the phenomena now thought to be intrinsic to the aging process, but primarily on responses to oxidative stress and telomere dynamics. But a variety of whole-animal and cell-based approaches to avian aging and stress resistance have been developed-especially the use of primary cell lines and isolated erythrocytes-which permit other processes to be investigated. In this review, we highlight newer studies using these approaches. We also discuss recent research on age-related changes in neural function in birds in the context of sensory changes relevant to homing and navigation, as well as the maintenance of song. More recently, with the advent of "-omic" methodologies, including whole-genome studies, new approaches have gained momentum for investigating the mechanistic basis of aging in birds. Overall, current research suggests that birds exhibit an enhanced resistance to the detrimental effects of oxidative damage and maintain higher than expected levels of cellular function as they age. There is also evidence that genetic signatures associated with cellular defenses, as well as metabolic and immune function, are enhanced in birds but data are still lacking relative to that available from more conventional model organisms. We are optimistic that continued development of avian models in geroscience, especially under controlled laboratory conditions, will provide novel insights into the exceptional longevity of this animal taxon.
Collapse
Affiliation(s)
- James M. Harper
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA
- Correspondence: ; Tel.: +1-936-294-1543
| | - Donna J. Holmes
- Department of Biological Sciences and WWAMI Medical Education Program, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
60
|
Elbialy A. Ageing genetic signature of hypersomatotropism. Open Biol 2021; 11:200265. [PMID: 33849304 PMCID: PMC8059514 DOI: 10.1098/rsob.200265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Acromegaly is a pathological condition that is caused by over-secretion of growth hormone (GH) and develops primarily from a pituitary adenoma. Excess GH exposure over a prolonged period of time leads to a wide range of systemic manifestations and comorbidities. Studying the effect of excess GH on the cellular level could help to understand the underlying causes of acromegaly health complications and comorbidities. In our previous publications, we have shown that excess GH reduces body side population (SP) stem cells and induces signs of premature ageing in an acromegaly zebrafish model. Here, we study acromegaly ageing in greater depth at the level of gene expression. We investigated whether acromegaly induces an ageing genetic signature in different organs. Using the GenAge database, our acromegaly model showed a significant enrichment of ageing genetic datasets in the muscle but not in other organs. Likewise, the hierarchical clustering of wild type (WT), acromegaly and aged RNA data from various organs revealed the similarity of gene expression profiles between the acromegaly and the aged muscles. We therefore identified overlapping differentially expressed genes (DEGs) in different organs between acromegaly and aged zebrafish. Importantly, about half of the muscle, liver and brain acromegaly DEGs overlapped with aged zebrafish DEGs. Interestingly, overlapping was observed in the same way; acromegaly-up DEGs overlapped with aged zebrafish up DEGs, not down DEGs, and vice versa. We then identified the biological functions of overlapping DEGs. Enrichment database analysis and gene ontology showed that most overlapping muscle genes were involved in ageing metabolism, while overlapping liver DEGs were involved in metabolic pathways, response to hypoxia and endoplasmic reticulum stress. Thus, this study provides a full ageing genetic signature of acromegaly at the gene expression level.
Collapse
Affiliation(s)
- Abdalla Elbialy
- Laboratory of Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
61
|
Li S, Cong C, Liu Y, Liu X, Liu H, Zhao L, Gao X, Gui W, Xu L. Tiao Geng decoction inhibits tributyltin chloride-induced GT1-7 neuronal apoptosis through ASK1/MKK7/JNK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113669. [PMID: 33338591 DOI: 10.1016/j.jep.2020.113669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/22/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tiao Geng (TG) decoction is a Chinese herbal medicine extract that has been utilized for the treatment of menopausal symptoms for a history of over 30 years. In our previous study, we suggest that TG decoction possibly exerts an anti-apoptotic effect on hypothalamic neurons of ovariectomized rats via the ASK1/MKK7/JNK pathway. Tributyltin chloride (TBTC) causes oxidative damage and induces apoptosis of primary hypothalamic neurons in rats. AIM OF THE STUDY The present work aimed to explore the inhibition of TG decoction on TBTC-induced GT1-7 cell apoptosis and its possible molecular mechanism. MATERIALS AND METHODS The GT1-7 cell line was exposed to TG decoction at diverse doses (31.25, 62.5, 125 μg/mL) for 24 h and later with TBTC (1 mg/L) for 1 h, with 17β-E2 (100 nM) treatment being the positive control. Then, CCK8 assay was conducted to evaluate cell viability, while flow cytometric analysis was conducted to examine the apoptosis level. Related pathways and differentially expressed proteins were identified by tandem mass tag (TMT)-based quantitative phosphoproteomics. qRT-PCR was carried out to examine mRNA levels of Bax and B-cell lymphoma-2 (Bcl-2). Western blotting was performed to detect the levels of Bax, Bcl-2, c-Jun, c-Jun N-terminal kinase (JNK), Caspase-3 (Casp3), Mitogen-activated protein kinase kinase 7 (MKK7), and apoptosis signal-regulating kinase 1 (ASK1) . Finally, cells were pretreated with SP600125, an inhibitor of JNK, later the expression of JNK and Casp3 was measured. RESULTS Application of TG decoction mitigated the GT1-7 cell apoptosis and injury caused by TBTC; besides, it inhibited the activation of the ASK1/MKK7/JNK pathway. Moreover, Bcl-2/Bax ratio became higher, and the MKK7, ASK1, Casp3 and c-Jun levels were inhibited. Besides, TG decoction combined with SP600125 (the JNK inhibitor) more significantly inhibited GT1-7 cell apoptosis caused by TBTC. CONCLUSION As discovered from the experiment in this study, TG decoction has a neuroprotective effect, which is achieved through inhibiting the ASK1/MKK7/JNK signal transduction pathway to reduce GT1-7 cell apoptosis.
Collapse
Affiliation(s)
- Shengnan Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| | - Chao Cong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| | - Xiaofei Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| | - Huicong Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| | - Li Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| | - Xianwei Gao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| | - Wenjia Gui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| | - Lianwei Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| |
Collapse
|
62
|
Adav SS, Wang Y. Metabolomics Signatures of Aging: Recent Advances. Aging Dis 2021; 12:646-661. [PMID: 33815888 PMCID: PMC7990359 DOI: 10.14336/ad.2020.0909] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 01/17/2023] Open
Abstract
Metabolomics is the latest state-of-the-art omics technology that provides a comprehensive quantitative profile of metabolites. The metabolites are the cellular end products of metabolic reactions that explain the ultimate response to genomic, transcriptomic, proteomic, or environmental changes. Aging is a natural inevitable process characterized by a time-dependent decline of various physiological and metabolic functions and are dominated collectively by genetics, proteomics, metabolomics, environmental factors, diet, and lifestyle. The precise mechanism of the aging process is unclear, but the metabolomics has the potential to add significant insight by providing a detailed metabolite profile and altered metabolomic functions with age. Although the application of metabolomics to aging research is still relatively new, extensive attempts have been made to understand the biology of aging through a quantitative metabolite profile. This review summarises recent developments and up-to-date information on metabolomics studies in aging research with a major emphasis on aging biomarkers in less invasive biofluids. The importance of an integrative approach that combines multi-omics data to understand the complex aging process is discussed. Despite various innovations in metabolomics and metabolite associated with redox homeostasis, central energy pathways, lipid metabolism, and amino acid, a major challenge remains to provide conclusive aging biomarkers.
Collapse
Affiliation(s)
- Sunil S Adav
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
63
|
Marasco V, Sebastiano M, Costantini D, Pola G, Fusani L. Controlled expression of the migratory phenotype affects oxidative status in birds. J Exp Biol 2021; 224:jeb233486. [PMID: 33536304 DOI: 10.1242/jeb.233486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
High caloric intake can increase production of reactive oxygen and nitrogen species. We examined whether the emergence of the migratory phenotype, primarily signalled by increased food intake and fuelling, is accompanied by changes in oxidative status. We induced autumn migration followed by a non-migratory wintering phase in common quails (Coturnix coturnix). We compared three markers of oxidative status - oxidative damage to lipids expressed as thiobarbituric acid reactive substances (TBARS); superoxide dismutase (SOD); and glutathione peroxidase (GPx) - between birds sampled during the migratory and non-migratory phase. We found that the emergence of the migratory phenotype was associated with: (i) higher levels of TBARS in the liver; (ii) lower levels of SOD in red blood cells and, marginally, in the liver; (iii) higher levels of GPx in the pectoral muscle; and (iv) sex-specific changes in red blood cells and liver. We found no link between food intake and variation in markers of oxidative status in any of the tissues examined, despite food intake being higher in the migratory birds. However, the increase in body mass was positively correlated with muscle GPx activity as birds entered the pre-migratory fattening phase, while the amount of decrease in body mass was negatively correlated with muscle GPx as birds transitioned to the non-migratory phase. Such correlations were absent in red blood cells and liver. Our work suggests that during the emergence of the migratory phenotype, birds might strategically displace oxidative costs on the liver in order to safeguard the pectoral muscles, which have a fundamental role in successfully completing the migratory flight.
Collapse
Affiliation(s)
- Valeria Marasco
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160 Vienna, Austria
| | - Manrico Sebastiano
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ, La Rochelle, France
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, CNRS; CP32, 57 rue Cuvier 75005, Paris, France
| | - Gianni Pola
- Istituto Sperimentale Zootecnico per la Sicilia, via Roccazzo 85, 90135, Palermo, Italia
| | - Leonida Fusani
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160 Vienna, Austria
- Department of Behavioural and Cognitive Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
64
|
Hahad O, Frenis K, Kuntic M, Daiber A, Münzel T. Accelerated Aging and Age-Related Diseases (CVD and Neurological) Due to Air Pollution and Traffic Noise Exposure. Int J Mol Sci 2021; 22:2419. [PMID: 33670865 PMCID: PMC7957813 DOI: 10.3390/ijms22052419] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization estimates that only approximately 25% of diversity in longevity is explained by genetic factors, while the other 75% is largely determined by interactions with the physical and social environments. Indeed, aging is a multifactorial process that is influenced by a range of environmental, sociodemographic, and biopsychosocial factors, all of which might act in concert to determine the process of aging. The global average life expectancy increased fundamentally over the past century, toward an aging population, correlating with the development and onset of age-related diseases, mainly from cardiovascular and neurological nature. Therefore, the identification of determinants of healthy and unhealthy aging is a major goal to lower the burden and socioeconomic costs of age-related diseases. The role of environmental factors (such as air pollution and noise exposure) as crucial determinants of the aging process are being increasingly recognized. Here, we critically review recent findings concerning the pathomechanisms underlying the aging process and their correlates in cardiovascular and neurological disease, centered on oxidative stress and inflammation, as well as the influence of prominent environmental pollutants, namely air pollution and traffic noise exposure, which is suggested to accelerate the aging process. Insight into these types of relationships and appropriate preventive strategies are urgently needed to promote healthy aging.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Katie Frenis
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
| | - Marin Kuntic
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| |
Collapse
|
65
|
Effects of Resistance Training on the Redox Status of Skeletal Muscle in Older Adults. Antioxidants (Basel) 2021; 10:antiox10030350. [PMID: 33652958 PMCID: PMC7996821 DOI: 10.3390/antiox10030350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the effects of resistance training (RT) on the redox status of skeletal muscle in older adults. Thirteen males aged 64 ± 9 years performed full-body RT 2x/week for 6 weeks. Muscle biopsies were obtained from the vastus lateralis prior to and following RT. The mRNA, protein, and enzymatic activity levels of various endogenous antioxidants were determined. In addition, skeletal muscle 4-hydroxynonenal and protein carbonyls were determined as markers of oxidative damage. Protein levels of heat shock proteins (HSPs) were also quantified. RT increased mRNA levels of all assayed antioxidant genes, albeit protein levels either did not change or decreased. RT increased total antioxidant capacity, catalase, and glutathione reductase activities, and decreased glutathione peroxidase activity. Lipid peroxidation also decreased and HSP60 protein increased following RT. In summary, 6 weeks of RT decreased oxidative damage and increased antioxidant enzyme activities. Our results suggest the older adult responses to RT involve multi-level (transcriptional, post-transcriptional, and post-translational) control of the redox status of skeletal muscle.
Collapse
|
66
|
Koch RE, Buchanan KL, Casagrande S, Crino O, Dowling DK, Hill GE, Hood WR, McKenzie M, Mariette MM, Noble DWA, Pavlova A, Seebacher F, Sunnucks P, Udino E, White CR, Salin K, Stier A. Integrating Mitochondrial Aerobic Metabolism into Ecology and Evolution. Trends Ecol Evol 2021; 36:321-332. [PMID: 33436278 DOI: 10.1016/j.tree.2020.12.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
Biologists have long appreciated the critical role that energy turnover plays in understanding variation in performance and fitness among individuals. Whole-organism metabolic studies have provided key insights into fundamental ecological and evolutionary processes. However, constraints operating at subcellular levels, such as those operating within the mitochondria, can also play important roles in optimizing metabolism over different energetic demands and time scales. Herein, we explore how mitochondrial aerobic metabolism influences different aspects of organismal performance, such as through changing adenosine triphosphate (ATP) and reactive oxygen species (ROS) production. We consider how such insights have advanced our understanding of the mechanisms underpinning key ecological and evolutionary processes, from variation in life-history traits to adaptation to changing thermal conditions, and we highlight key areas for future research.
Collapse
Affiliation(s)
- Rebecca E Koch
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia.
| | - Katherine L Buchanan
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Stefania Casagrande
- Max Planck Institute for Ornithology, Evolutionary Physiology Group, Seewiesen, Eberhard-Gwinner-Str. Haus 5, 82319, Seewiesen, Germany
| | - Ondi Crino
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Damian K Dowling
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Geoffrey E Hill
- Auburn University, Department of Biological Sciences, Auburn, AL, 36849, USA
| | - Wendy R Hood
- Auburn University, Department of Biological Sciences, Auburn, AL, 36849, USA
| | - Matthew McKenzie
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Mylene M Mariette
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Daniel W A Noble
- The Australian National University, Division of Ecology and Evolution, Research School of Biology, Canberra, ACT, 2600, Australia
| | - Alexandra Pavlova
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Frank Seebacher
- University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, 2006, Australia
| | - Paul Sunnucks
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Eve Udino
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Craig R White
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Karine Salin
- Université de Brest, Ifremer, CNRS, IRD, Laboratory of Environmental Marine Sciences, Plouzané, 29280, France
| | - Antoine Stier
- University of Turku, Department of Biology, Turku, Finland; University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, UK
| |
Collapse
|
67
|
Belyi AA, Alekseev AA, Fedintsev AY, Balybin SN, Proshkina EN, Shaposhnikov MV, Moskalev AA. The Resistance of Drosophila melanogaster to Oxidative, Genotoxic, Proteotoxic, Osmotic Stress, Infection, and Starvation Depends on Age According to the Stress Factor. Antioxidants (Basel) 2020; 9:antiox9121239. [PMID: 33297320 PMCID: PMC7762242 DOI: 10.3390/antiox9121239] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 01/05/2023] Open
Abstract
We studied how aging affects the ability of Drosophila melanogaster to tolerate various types of stress factors. Data were obtained on the resistance of D. melanogaster to oxidative and genotoxic (separately paraquat, Fe3+, Cu2+, and Zn2+ ions), proteotoxic (hyperthermia, Cd2+ ions), and osmotic (NaCl) stresses, starvation, and infection with the pathological Beauveria bassiana fungus at different ages. In all cases, we observed a strong negative correlation between age and stress tolerance. The largest change in the age-dependent decline in survival occurred under oxidative and osmotic stress. In most experiments, we observed that young Drosophila females have higher stress resistance than males. We checked whether it is possible to accurately assess the biological age of D. melanogaster based on an assessment of stress tolerance. We have proposed a new approach for assessing a biological age of D. melanogaster using a two-parameter survival curve model. For the model, we used an algorithm that evaluated the quality of age prediction for different age and gender groups. The best predictions were obtained for females who were exposed to CdCl2 and ZnCl2 with an average error of 0.32 days and 0.36 days, respectively. For males, the best results were observed for paraquat and NaCl with an average error of 0.61 and 0.68 days, respectively. The average accuracy for all stresses in our model was 1.73 days.
Collapse
Affiliation(s)
- Alexei A. Belyi
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Alexey A. Alekseev
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.A.); (S.N.B.)
| | - Alexander Y. Fedintsev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Stepan N. Balybin
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.A.); (S.N.B.)
| | - Ekaterina N. Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Mikhail V. Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Alexey A. Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
- Correspondence: ; Tel.: +78-21-231-2894
| |
Collapse
|
68
|
Eckhardt F, Pauliny A, Rollings N, Mutschmann F, Olsson M, Kraus C, Kappeler PM. Stress-related changes in leukocyte profiles and telomere shortening in the shortest-lived tetrapod, Furcifer labordi. BMC Evol Biol 2020; 20:160. [PMID: 33261558 PMCID: PMC7709289 DOI: 10.1186/s12862-020-01724-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/18/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Life history theory predicts that during the lifespan of an organism, resources are allocated to either growth, somatic maintenance or reproduction. Resource allocation trade-offs determine the evolution and ecology of different life history strategies and define an organisms' position along a fast-slow continuum in interspecific comparisons. Labord's chameleon (Furcifer labordi) from the seasonal dry forests of Madagascar is the tetrapod species with the shortest reported lifespan (4-9 months). Previous investigations revealed that their lifespan is to some degree dependent on environmental factors, such as the amount of rainfall and the length of the vegetation period. However, the intrinsic mechanisms shaping such a fast life history remain unknown. Environmental stressors are known to increase the secretion of glucocorticoids in other vertebrates, which, in turn, can shorten telomeres via oxidative stress. To investigate to what extent age-related changes in these molecular and cellular mechanisms contribute to the relatively short lifetime of F. labordi, we assessed the effects of stressors indirectly via leukocyte profiles (H/L ratio) and quantified relative telomere length from blood samples in a wild population in Kirindy Forest. We compared our findings with the sympatric, but longer-lived sister species F. cf. nicosiai, which exhibit the same annual timing of reproductive events, and with wild-caught F. labordi that were singly housed under ambient conditions. RESULTS We found that H/L ratios were consistently higher in wild F. labordi compared to F. cf. nicosiai. Moreover, F. labordi already exhibited relatively short telomeres during the mating season when they were 3-4 months old, and telomeres further shortened during their post-reproductive lives. At the beginning of their active season, telomere length was relatively longer in F. cf. nicosiai, but undergoing rapid shortening towards the southern winter, when both species gradually die off. Captive F. labordi showed comparatively longer lifespans and lower H/L ratios than their wild counterparts. CONCLUSION We suggest that environmental stress and the corresponding accelerated telomere attrition have profound effects on the lifespan of F. labordi in the wild, and identify physiological mechanisms potentially driving their relatively early senescence and mortality.
Collapse
Affiliation(s)
- Falk Eckhardt
- Department Sociobiology/Anthropology, Institute of Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany
| | - Angela Pauliny
- Department of Biological and Environmental Science, University of Gothenburg, Medicinaregatan 18A, 41390, Göteborg, Sweden
| | - Nicky Rollings
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | | | - Mats Olsson
- Department of Biological and Environmental Science, University of Gothenburg, Medicinaregatan 18A, 41390, Göteborg, Sweden
| | - Cornelia Kraus
- Department Sociobiology/Anthropology, Institute of Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany.,Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primatology, Kellnerweg 4, 37077, Göttingen, Germany
| | - Peter M Kappeler
- Department Sociobiology/Anthropology, Institute of Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany. .,Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primatology, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
69
|
Grosiak M, Koteja P, Bauchinger U, Sadowska ET. Age-Related Changes in the Thermoregulatory Properties in Bank Voles From a Selection Experiment. Front Physiol 2020; 11:576304. [PMID: 33329026 PMCID: PMC7711078 DOI: 10.3389/fphys.2020.576304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/09/2020] [Indexed: 01/21/2023] Open
Abstract
As with many physiological performance traits, the capacity of endotherms to thermoregulate declines with age. Aging compromises both the capacity to conserve or dissipate heat and the thermogenesis, which is fueled by aerobic metabolism. The rate of metabolism, however, not only determines thermogenic capacity but can also affect the process of aging. Therefore, we hypothesized that selection for an increased aerobic exercise metabolism, which has presumably been a crucial factor in the evolution of endothermic physiology in the mammalian and avian lineages, affects not only the thermoregulatory traits but also the age-related changes of these traits. Here, we test this hypothesis on bank voles (Myodes glareolus) from an experimental evolution model system: four lines selected for high swim-induced aerobic metabolism (A lines), which have also increased the basal, average daily, and maximum cold-induced metabolic rates, and four unselected control (C) lines. We measured the resting metabolic rate (RMR), evaporative water loss (EWL), and body temperature in 72 young adult (4 months) and 65 old (22 months) voles at seven ambient temperatures (13-32°C). The RMR was 6% higher in the A than in the C lines, but, regardless of the selection group or temperature, it did not change with age. However, EWL was 12% higher in the old voles. An increased EWL/RMR ratio implies either a compromised efficiency of oxygen extraction in the lungs or increased skin permeability. This effect was more profound in the A lines, which may indicate their increased vulnerability to aging. Body temperature did not differ between the selection and age groups below 32°C, but at 32°C it was markedly higher in the old A-line voles than in those from other groups. As expected, the thermogenic capacity, measured as the maximum cold-induced oxygen consumption, was decreased by about 13% in the old voles from both selection groups, but the performance of old A-line voles was the same as that of the young C-line ones. Thus, the selection for high aerobic exercise metabolism attenuated the adverse effects of aging on cold tolerance, but this advantage has been traded off by a compromised coping with hot conditions by aged voles.
Collapse
Affiliation(s)
- Marta Grosiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Edyta T. Sadowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
70
|
Badawi Y, Nishimune H. Impairment Mechanisms and Intervention Approaches for Aged Human Neuromuscular Junctions. Front Mol Neurosci 2020; 13:568426. [PMID: 33328881 PMCID: PMC7717980 DOI: 10.3389/fnmol.2020.568426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
The neuromuscular junction (NMJ) is a chemical synapse formed between a presynaptic motor neuron and a postsynaptic muscle cell. NMJs in most vertebrate species share many essential features; however, some differences distinguish human NMJs from others. This review will describe the pre- and postsynaptic structures of human NMJs and compare them to NMJs of laboratory animals. We will focus on age-dependent declines in function and changes in the structure of human NMJs. Furthermore, we will describe insights into the aging process revealed from mouse models of accelerated aging. In addition, we will compare aging phenotypes to other human pathologies that cause impairments of pre- and postsynaptic structures at NMJs. Finally, we will discuss potential intervention approaches for attenuating age-related NMJ dysfunction and sarcopenia in humans.
Collapse
Affiliation(s)
- Yomna Badawi
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, United States.,Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Japan
| |
Collapse
|
71
|
Jameel M, Jamal K, Alam MF, Ameen F, Younus H, Siddique HR. Interaction of thiamethoxam with DNA: Hazardous effect on biochemical and biological parameters of the exposed organism. CHEMOSPHERE 2020; 254:126875. [PMID: 32361544 DOI: 10.1016/j.chemosphere.2020.126875] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
In the present scenario, insecticides/pesticides are used intensively to control the various insect pests. Indiscriminate use of these insecticides/pesticides affects the structure and function of the ecosystem. In this context, a thorough toxicological study of each insecticide/pesticide is a must to understand the hazardous effect of these chemicals on the target and non-target organisms. The present study was aimed to understand the hazardous effect of thiamethoxam against the Spodoptera litura. Different concentrations (20-80 μg/mL) of thiamethoxam were prepared, and fourth instar larvae of S. litura were allowed to feed for 12-72 h. We first examined the interaction of thiamethoxam with DNA. Next, treated and non-treated larvae were assessed for different biological parameters such as mortality, emergence, fecundity, fertility, longevities, and biochemical parameters. Our result showed that thiamethoxam directly interacts with the DNA and significantly influenced the different biological and biochemical parameters of exposed the organisms. We observed a significant change in stress enzymes such as SOD, CAT, and GST. A similar observation was also made with the oxidative marker for lipid damage, MDA and DNA damage, 8-OHdG, respectively. In conclusion, our results suggest that improper use of synthetic chemical insecticides influenced both biological and biochemical parameters through oxidative stress and probably damage the genetic material.
Collapse
Affiliation(s)
- Mohd Jameel
- Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Khowaja Jamal
- Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - Md Fazle Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Faisal Ameen
- Department of Biochemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Hifzur R Siddique
- Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| |
Collapse
|
72
|
Wati SM, Matsumaru D, Motohashi H. NRF2 pathway activation by KEAP1 inhibition attenuates the manifestation of aging phenotypes in salivary glands. Redox Biol 2020; 36:101603. [PMID: 32590331 PMCID: PMC7322188 DOI: 10.1016/j.redox.2020.101603] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
Saliva plays an essential role in the maintenance of oral health. The oral cavity environment changes during aging mainly due to alterations in the secretion and composition of saliva. In particular, unstimulated basal salivary flow decreases with age. The functional decline of the salivary glands impairs chewing and swallowing abilities and often becomes one of the predispositions for aging-related disorders, including aspiration pneumonia. The KEAP1-NRF2 system plays a central role in the regulation of the oxidative stress response. NRF2 is a transcription factor that coordinately regulates cytoprotective genes, and KEAP1 is a negative regulator of NRF2. Although NRF2 activation has been suggested to be advantageous for the prevention of aging-related diseases, its role in the course of physiological aging is not well understood. To investigate the impact of NRF2 activation on salivary gland aging, we compared the submandibular glands of Keap1-knockdown (KD) (Keap1FA/FA) mice in which NRF2 is activated with those of wild-type mice. Young mice did not show any apparent differences between the two genotypes, whereas in old mice, clear differences were observed. Aged wild-type submandibular glands exhibited iron and collagen depositions, immune cell infiltration and increased DNA damage and apoptosis accompanied by elevated oxidative stress, which were all markedly attenuated in Keap1-KD mice, suggesting that NRF2 activation has antiaging effects on salivary glands. We propose that appropriate activation of NRF2 is effective for the maintenance of healthy salivary gland conditions and for the prevention of hyposalivation in the elderly.
Collapse
Affiliation(s)
- Sisca Meida Wati
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Daisuke Matsumaru
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Japan.
| |
Collapse
|
73
|
Silva AMS, Socorro S, Hurtado de Llera A, Vaz CV, Correia S, Maia CJ. Overexpression of regucalcin mitigates the ageing-related changes in oxidative stress and sperm quality. Theriogenology 2020; 157:472-482. [PMID: 32898822 DOI: 10.1016/j.theriogenology.2020.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/31/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022]
Abstract
Age-related changes, namely the increase in oxidative stress (OS) with the consequent sperm damage, result in decreased male fertility. Regucalcin (RGN) is a Ca2+-binding protein that has been shown to have beneficial effects on spermatogenesis by suppressing OS and chemical/radiation-induced damage. This work aims to evaluate whether RGN overexpression reduces the ageing-associated decline of male reproductive function. Sperm and testicular function analysis were performed in young-adult and senescent transgenic rats overexpressing RGN (Tg-RGN) comparatively with their wild-type (Wt) littermates. The gonadosomatic index (GI), tubular differentiation index and the expression levels of RGN and other proliferation regulators were evaluated. Moreover, the sperm parameters, OS analysis and immunolocalization of RGN were assessed, as well as morphometric evaluation of epididymal tubules. Both GI and sperm counts were reduced in the senescent Wt rats, but maintained in the Tg-RGN. Also, the levels of stem cell factor (SCF), c-Kit, and Akt were maintained in the testis of aged Tg-RGN rats, suggesting that the normal spermatogenic output was preserved over time in these animals, an effect not observed in Wt. Senescent Tg-RGN rats also presented lower sperm lipid peroxidation and total oxidant status relative to the Wt. Furthermore, aged Tg-RGN rats displayed higher sperm viability, higher frequency of sperm with normal morphology, and reduced incidence of head and neck/midpiece defects when compared with Wt, which may be a consequence of the lower OS levels found in the sperm of these animals. Interestingly, RGN expression increased with ageing in sperm, being mainly localized in the acrosome. Altogether, these findings indicate that the modulation of RGN levels may alleviate the age-related decline in sperm quality and testicular function.
Collapse
Affiliation(s)
- Ana M S Silva
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ana Hurtado de Llera
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Centro de Investigaciones Científicas y Tecnologicas de Extremadura (CICYTEX), Ctra. A-V Km, 372 06187, Guadajira, Badajoz, Spain
| | - Cátia V Vaz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Sara Correia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Cláudio J Maia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
74
|
Khosa S, Trikamji B, Khosa GS, Khanli HM, Mishra SK. An Overview of Neuromuscular Junction Aging Findings in Human and Animal Studies. Curr Aging Sci 2020; 12:28-34. [PMID: 31161982 PMCID: PMC6971950 DOI: 10.2174/1874609812666190603165746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022]
Abstract
Background: Aging is a complex irreversible process that is not only related to an individual’s genetic make-up but also to lifestyle choices and environmental exposures. Like every other structure in human body, the Neuromuscular Junction (NMJ) is not averse to aging. Objectives: The prime objective is to analyse the microscopic and macroscopic changes at the NMJs with aging. Methods: For the purpose of review we evaluated data from resources like Pubmed, Ovid, UCLA libraries and USC libraries. Results: We review various morphological, physiological, immunological, and biochemical changes in NMJs with aging and their management. Conclusion: The alterations in NMJs secondary to aging are inevitable. It is vital that neurologists clearly understand the pathophysiology of NMJ aging and differentiate between physiological and pathological effects of aging. With the current knowledge of science, the changes in NMJ aging can be better prevented rather than cured.
Collapse
Affiliation(s)
- Shaweta Khosa
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - Bhavesh Trikamji
- Department of Neurology, Harbor UCLA Medical Center, Torrance, CA 90502, United States
| | - Gurveer S Khosa
- Department of Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Hadi M Khanli
- Department of Neurology, George Washington University, Washington, DC 20052, United States
| | - Shri K Mishra
- Department of Neurology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, United States
| |
Collapse
|
75
|
Elbialy A, Igarashi Y, Asakawa S, Watabe S, Kinoshita S. An Acromegaly Disease Zebrafish Model Reveals Decline in Body Stem Cell Number along with Signs of Premature Aging. BIOLOGY 2020; 9:biology9060120. [PMID: 32517323 PMCID: PMC7344990 DOI: 10.3390/biology9060120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
In our previous publication, it was shown that growth hormone (GH) excess in acromegaly affects the cell integrity of somatic cells through increased DNA damage throughout the body and impaired DNA repair pathways. Acromegaly is a hormone disorder pathological condition that develops as a result of growth hormone over-secretion from the pituitary gland. We produced a zebrafish acromegaly model to gain a better understanding of the excess GH effects at the cellular level. Here we show that the acromegaly zebrafish model progressively reduced the number of stem cells in different organs and increased oxidative stress in stem cells. Importantly, the decline in the stem cells was even more apparent than in aged fish. The controversy and debate over the use of GH as an anti-aging therapy have been going on for several years. In this study, excess GH induced aging signs such as increased senescence-associated (SA)-β-galactosidase staining of abdominal skin and similarity of the pattern of gene expression between aged and acromegaly zebrafish. Thus, this study highlights the role of excess GH in acromegaly stem cells.
Collapse
Affiliation(s)
- Abdalla Elbialy
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan; (A.E.); (Y.I.); (S.A.)
- Laboratory of Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Yoji Igarashi
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan; (A.E.); (Y.I.); (S.A.)
| | - Shuichi Asakawa
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan; (A.E.); (Y.I.); (S.A.)
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami, Sagamihara, Kanagawa 252-0313, Japan;
| | - Shigeharu Kinoshita
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan; (A.E.); (Y.I.); (S.A.)
- Correspondence:
| |
Collapse
|
76
|
Baek KW, Jung YK, Kim JS, Park JS, Hah YS, Kim SJ, Yoo JI. Rodent Model of Muscular Atrophy for Sarcopenia Study. J Bone Metab 2020; 27:97-110. [PMID: 32572370 PMCID: PMC7297619 DOI: 10.11005/jbm.2020.27.2.97] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/25/2022] Open
Abstract
The hallmark symptom of sarcopenia is the loss of muscle mass and strength without the loss of overall body weight. Sarcopenia patients are likely to have worse clinical outcomes and higher mortality than do healthy individuals. The sarcopenia population shows an annual increase of ~0.8% in the population after age 50, and the prevalence rate is rapidly increasing with the recent worldwide aging trend. Based on International Classification of Diseases, Tenth Revision, a global classification of disease published by the World Health Organization, issued the disease code (M62.84) given to sarcopenia in 2016. Therefore, it is expected that the study of sarcopenia will be further activated based on the classification of disease codes in the aging society. Several epidemiological studies and meta-analyses have looked at the correlation between the prevalence of sarcopenia and several environmental factors. In addition, studies using cell lines and rodents have been done to understand the biological mechanism of sarcopenia. Laboratory rodent models are widely applicable in sarcopenia studies because of the advantages of time savings, cost saving, and various analytical applications that could not be used for human subjects. The rodent models that can be applied to the sarcopenia research are diverse, but a simple and fast method that can cause atrophy or aging is preferred. Therefore, we will introduce various methods of inducing muscular atrophy in rodent models to be applied to the study of sarcopenia.
Collapse
Affiliation(s)
- Kyung-Wan Baek
- Department of Physical Education, Gyeongsang National University, Jinju, Korea
- Department of Orthopaedic Surgery, Gyoengsang National University Hospital, Gyeongsang National University, Jinju, Korea
| | - Youn-Kwan Jung
- Biomedical Research Institute, Gyoengsang National University Hospital, Gyeongsang National University, Jinju, Korea
| | - Ji-Seok Kim
- Department of Physical Education, Gyeongsang National University, Jinju, Korea
| | - Jin Sung Park
- Department of Orthopaedic Surgery, Gyoengsang National University Hospital, Gyeongsang National University, Jinju, Korea
| | - Young-Sool Hah
- Biomedical Research Institute, Gyoengsang National University Hospital, Gyeongsang National University, Jinju, Korea
| | - So-Jeong Kim
- Department of Convergence of Medical Sciences, Gyeongsang National University, Jinju, Korea
| | - Jun-Il Yoo
- Department of Orthopaedic Surgery, Gyoengsang National University Hospital, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
77
|
Shokr H, Dias IHK, Gherghel D. Microvascular function and oxidative stress in adult individuals with early onset of cardiovascular disease. Sci Rep 2020; 10:4881. [PMID: 32184402 PMCID: PMC7078259 DOI: 10.1038/s41598-020-60766-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/29/2020] [Indexed: 01/23/2023] Open
Abstract
The current study aims to investigate retinal vascular function and its relationship with systemic anti-oxidative defence capacity in normal individuals versus those with early hypertensive changes according to the current ESC/ESH guidelines. Retinal microvascular function was assessed in 201 participants by means of dynamic retinal vessel analysis. Blood pressure, lipid panel, oxidized (GSH) & reduced glutathione (GSSG) were also evaluated for each participant. Individuals classed as grade 1 hypertension demonstrated higher retinal arterial baseline diameter fluctuation (p = 0.0012), maximum dilation percentage (p = 0.0007), time to maximum constriction (p = 0.0003) and lower arterial constriction slope (p = 0.0131). Individuals classed as high normal and grade 1 hypertension also demonstrated higher time to maximum dilation than individuals classed as optimal or normal. GSH levels correlated negatively with SBP, DBP and MBP values in all participants (p = 0.0010; p = 0.0350 and p = 0.0050) as well as with MBP values in high normal and grade 1 hypertension (p = 0.0290). The levels of GSSG correlated positively with SBP, DBP and MBP values in all participants (p = 0.0410; p = 0.0330 and, p = 0.0220). Our results point to the fact that microvascular alterations can be identifiable at BP values still considered within normal values and go in parallel with the changes observed in the level of oxidative stress.
Collapse
Affiliation(s)
- Hala Shokr
- Vascular Research Laboratory, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Irundika H K Dias
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, UK
| | - Doina Gherghel
- Vascular Research Laboratory, School of Life and Health Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
78
|
Rutin restores neurobehavioral deficits via alterations in cadmium bioavailability in the brain of rats exposed to cadmium. Neurotoxicology 2020; 77:12-19. [DOI: 10.1016/j.neuro.2019.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 11/27/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
|
79
|
Anusruti A, Jansen EHJM, Gào X, Xuan Y, Brenner H, Schöttker B. Longitudinal Associations of Body Mass Index, Waist Circumference, and Waist-to-Hip Ratio with Biomarkers of Oxidative Stress in Older Adults: Results of a Large Cohort Study. Obes Facts 2020; 13:66-76. [PMID: 31986512 PMCID: PMC7098284 DOI: 10.1159/000504711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/10/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND In the literature, obesity is discussed as a determinant of high oxidative stress (OS). Hence, prevention or reduction of obesity could prevent high OS and subsequently serve as a target for "healthy aging." METHODS Diacron's reactive oxygen metabolites test (D-ROM) and total thiol levels (TTL), a marker of antioxidant defense capacity, were measured in 1,734 participants of a population-based cohort study of older adults (age range: 57-83 years) at 2 time points 3 years apart. The longitudinal associations of body mass index, waist-to-hip ratio, and waist circumference with D-ROM and TTL were assessed with multivariable adjusted generalized linear models. Dose-response analyses were conducted with restricted cubic splines. RESULTS D-ROM was not significantly associated with any of the weight measures. On the contrary, TTL showed statistically significant, inverse linear associations with all weight measures. CONCLUSION A healthy body weight seems to be highly relevant for the antioxidative defense capacity of human beings. In contrast, D-ROM levels were independent of the study participant's weight. Clinical trials are needed to corroborate if loss of weight by obese individuals can effectively increase TTL and subsequently also life expectancy.
Collapse
Affiliation(s)
- Ankita Anusruti
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Eugène H J M Jansen
- Center for Health Protection, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Yang Xuan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany,
- Network Aging Research, Heidelberg University, Heidelberg, Germany,
| |
Collapse
|
80
|
Hoekstra LA, Schwartz TS, Sparkman AM, Miller DAW, Bronikowski AM. The untapped potential of reptile biodiversity for understanding how and why animals age. Funct Ecol 2020; 34:38-54. [PMID: 32921868 PMCID: PMC7480806 DOI: 10.1111/1365-2435.13450] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
1. The field of comparative aging biology has greatly expanded in the past 20 years. Longitudinal studies of populations of reptiles with a range of maximum lifespans have accumulated and been analyzed for evidence of mortality senescence and reproductive decline. While not as well represented in studies of amniote senescence, reptiles have been the subjects of many recent demographic and mechanistic studies of the biology of aging. 2. We review recent literature on reptile demographic senescence, mechanisms of senescence, and identify unanswered questions. Given the ecophysiological and demographic diversity of reptiles, what is the expected range of reptile senescence rates? Are known mechanisms of aging in reptiles consistent with canonical hallmarks of aging in model systems? What are the knowledge gaps in our understanding of reptile aging? 3. We find ample evidence of increasing mortality with advancing age in many reptiles. Testudines stand out as slower aging than other orders, but data on crocodilians and tuatara are sparse. Sex-specific analyses are generally not available. Studies of female reproduction suggest that reptiles are less likely to have reproductive decline with advancing age than mammals. 4. Reptiles share many physiological and molecular pathways of aging with mammals, birds, and laboratory model organisms. Adaptations related to stress physiology coupled with reptilian ectothermy suggest novel comparisons and contrasts that can be made with canonical aging phenotypes in mammals. These include stem cell and regeneration biology, homeostatic mechanisms, IIS/TOR signaling, and DNA repair. 5. To overcome challenges to the study of reptile aging, we recommend extending and expanding long-term monitoring of reptile populations, developing reptile cell lines to aid cellular biology, conducting more comparative studies of reptile morphology and physiology sampled along relevant life-history axes, and sequencing more reptile genomes for comparative genomics. Given the diversity of reptile life histories and adaptations, achieving these directives will likely greatly benefit all aging biology.
Collapse
Affiliation(s)
- Luke A Hoekstra
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50010, USA
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Amanda M Sparkman
- Department of Biology, Westmont College, Santa Barbara, California, 93108, USA
| | - David A W Miller
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50010, USA
| |
Collapse
|
81
|
Luo J, Mills K, le Cessie S, Noordam R, van Heemst D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res Rev 2020; 57:100982. [PMID: 31733333 DOI: 10.1016/j.arr.2019.100982] [Citation(s) in RCA: 343] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Among other mechanisms, oxidative stress has been postulated to play an important role in the rate of ageing. Oxidative damage contributes to the hallmarks of ageing and essential components in pathological pathways which are thought to drive multiple age-related diseases. Nonetheless, results from studies testing the hypothesis of oxidative stress in ageing and diseases showed controversial results. While observational studies mainly found detrimental effects of high oxidative stress levels on disease status, randomized clinical trials examining the effect of antioxidant supplementation on disease status generally showed null effects. However, re-evaluations of these counterinitiative observations are required considering the lack of reliability and specificity of traditionally used biomarkers for measuring oxidative stress. To facilitate these re-evaluations, this review summarizes the basic knowledge of oxidative stress and the present findings regarding the role of oxidative damage in ageing and age-related diseases. Meanwhile, two approaches are highlighted, namely proper participants selection, together with the development of reliable biomarkers. We propose that oxidized vitamin E metabolites may be used to accurately monitor individual functional antioxidant level, which might serve as promising key solutions for future elucidating the impact of oxidative stress on ageing and age-related diseases.
Collapse
|
82
|
Alm-Eldeen A, Khamis A, Elfiky N, Ahmad R. Quercetin modulates age-induced changes in the transcript levels of some apoptosis related genes in the skeletal muscles of male rats. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-979020200003180861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
83
|
Cardenas VA, Hough CM, Durazzo TC, Meyerhoff DJ. Cerebellar Morphometry and Cognition in the Context of Chronic Alcohol Consumption and Cigarette Smoking. Alcohol Clin Exp Res 2020; 44:102-113. [PMID: 31730240 PMCID: PMC6980879 DOI: 10.1111/acer.14222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cerebellar atrophy (especially involving the superior-anterior cerebellar vermis) is among the most salient and clinically significant effects of chronic hazardous alcohol consumption on brain structure. Smaller cerebellar volumes are also associated with chronic cigarette smoking. The present study investigated effects of both chronic alcohol consumption and cigarette smoking on cerebellar structure and its relation to performance on select cognitive/behavioral tasks. METHODS Using T1-weighted Magnetic Resonance Images (MRIs), the Cerebellar Analysis Tool Kit segmented the cerebellum into bilateral hemispheres and 3 vermis parcels from 4 participant groups: smoking (s) and nonsmoking (ns) abstinent alcohol-dependent treatment seekers (ALC) and controls (CON) (i.e., sALC, nsALC, sCON, and nsCON). Cognitive and behavioral data were also obtained. RESULTS We found detrimental effects of chronic drinking on all cerebellar structural measures in ALC participants, with largest reductions seen in vermis areas. Furthermore, both smoking groups had smaller volumes of cerebellar hemispheres but not vermis areas compared to their nonsmoking counterparts. In exploratory analyses, smaller cerebellar volumes were related to lower measures of intelligence. In sCON, but not sALC, greater smoking severity was related to smaller cerebellar volume and smaller superior-anterior vermis area. In sALC, greater abstinence duration was associated with larger cerebellar and superior-anterior vermis areas, suggesting some recovery with abstinence. CONCLUSIONS Our results show that both smoking and alcohol status are associated with smaller cerebellar structural measurements, with vermal areas more vulnerable to chronic alcohol consumption and less affected by chronic smoking. These morphometric cerebellar deficits were also associated with lower intelligence and related to duration of abstinence in sALC only.
Collapse
Affiliation(s)
- Valerie A. Cardenas
- Center for Imaging of Neurodegenerative Diseases (CIND),
San Francisco VA Medical Center, San Francisco, CA, USA
| | - Christina M. Hough
- Center for Imaging of Neurodegenerative Diseases (CIND),
San Francisco VA Medical Center, San Francisco, CA, USA
- Department of Psychiatry, UCSF Weill Institute for
Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Psychology, University of California, Los
Angeles, Los Angeles, CA
| | - Timothy C. Durazzo
- VA Palo Alto Health Care System, Mental Illness Research
and Education Clinical Centers, Sierra-Pacific War Related Illness and Injury Study
Center, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford
University School of Medicine, Stanford, CA, USA
| | - Dieter J. Meyerhoff
- Center for Imaging of Neurodegenerative Diseases (CIND),
San Francisco VA Medical Center, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
84
|
El-Naseery NI, Mousa HSE, Noreldin AE, El-Far AH, Elewa YHA. Aging-associated immunosenescence via alterations in splenic immune cell populations in rat. Life Sci 2019; 241:117168. [PMID: 31838133 DOI: 10.1016/j.lfs.2019.117168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
AIM Immunosenescence is the decline of the host immune system due to aging, resulting in various complications. The splenic lymphoid nodule is the pivotal compartment involved in immunosenescence. In this study, we investigated the important changes in the splenic immune cell populations of aged rats (18-24 months) in comparison with young rats (3-5 months). MATERIALS AND METHODS We, also, studied the effects of aging on the activities of total superoxide dismutase (T-SOD) and malondialdehyde (MDA) levels in spleen of both groups, besides the changes of the splenic architecture. Furthermore, immunohistochemical staining was performed to detect the aging effects in T cells, B cells, macrophages, granulocytes, mast cells, proliferating cells, apoptotic cells, and cells positive for interleukin-1β (IL-1β), interleukin-6 (IL-6), and Toll-like receptor 4 (TLR4). KEY FINDINGS The aged rats had significantly lower spleen/body weight ratios and smaller splenic nodules, indicating a decline in general immunity in them. With aging, T-SOD activities were decreased, while MDA levels were increased, exhibiting that oxidative stress increases in spleens. In addition, the aged group also had significantly fewer T and B cells, macrophages, granulocytes, IL-6 and TLR4 immuno-positive cells, and proliferating cells in the periarterial lymphatic sheaths, marginal zone, and lymphoid follicles compared with the young group. On the other hand, the number of mast cells and apoptotic cells was significantly increased with age. Therefore, we can conclude that cellular immunity and humoral immunity were crumpled with age.
Collapse
Affiliation(s)
- Nesma I El-Naseery
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hanaa S E Mousa
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed E Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Yaser H A Elewa
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Laboratory of Anatomy, Faculty of Veterinary Medicine, Basic Veterinary Sciences, Hokkaido University, Sapporo 060-0818, Japan.
| |
Collapse
|
85
|
Liu Y, Wu Y, Zhang R, Lam J, Ng JC, Xu ZP, Li L, Ta HT. Investigating the Use of Layered Double Hydroxide Nanoparticles as Carriers of Metal Oxides for Theranostics of ROS-Related Diseases. ACS APPLIED BIO MATERIALS 2019; 2:5930-5940. [DOI: 10.1021/acsabm.9b00852] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yajun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Yuao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Jacinta Lam
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Jack C. Ng
- Queensland Alliance for Environment Health Sciences, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Hang T. Ta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia 4072
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia 4072
| |
Collapse
|
86
|
Astaxanthin: A Potential Mitochondrial-Targeted Antioxidant Treatment in Diseases and with Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3849692. [PMID: 31814873 PMCID: PMC6878783 DOI: 10.1155/2019/3849692] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 12/23/2022]
Abstract
Oxidative stress is characterized by an imbalance between prooxidant and antioxidant species, leading to macromolecular damage and disruption of redox signaling and cellular control. It is a hallmark of various diseases including metabolic syndrome, chronic fatigue syndrome, neurodegenerative, cardiovascular, inflammatory, and age-related diseases. Several mitochondrial defects have been considered to contribute to the development of oxidative stress and known as the major mediators of the aging process and subsequent age-associated diseases. Thus, mitochondrial-targeted antioxidants should prevent or slow down these processes and prolong longevity. This is the reason why antioxidant treatments are extensively studied and newer and newer compounds with such an effect appear. Astaxanthin, a xanthophyll carotenoid, is the most abundant carotenoid in marine organisms and is one of the most powerful natural compounds with remarkable antioxidant activity. Here, we summarize its antioxidant targets, effects, and benefits in diseases and with aging.
Collapse
|
87
|
Kaplán P, Tatarková Z, Lichardusová L, Kmeťová Sivoňová M, Tomašcová A, Račay P, Lehotský J. Age-Associated Changes in Antioxidants and Redox Proteins of Rat Heart. Physiol Res 2019; 68:883-892. [PMID: 31647296 DOI: 10.33549/physiolres.934170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and decline in cellular redox regulation have been hypothesized to play a key role in cardiovascular aging; however, data on antioxidant and redox regulating systems in the aging heart are controversial. The aim of the present study was to examine the effect of aging on critical antioxidant enzymes and two major redox-regulatory systems glutathione (GSH) and thioredoxin (Trx) system in hearts from adult (6-month-old), old (15-month-old), and senescent (26-month-old) rats. Aging was associated with a non-uniform array of changes, including decline in contents of reduced GSH and total mercaptans in the senescent heart. The activities of Mn-superoxide dismutase (SOD2), glutathione peroxidase (GPx), glutathione reductase (GR), and thioredoxin reductase (TrxR) exhibited an age-related decline, whereas catalase was unchanged and Cu,Zn-superoxide dismutase (SOD1) displayed only slight decrease in old heart and was unchanged in the senescent heart. GR, Trx, and peroxiredoxin levels were significantly reduced in old and/or senescent hearts, indicating a diminished expression of these proteins. In contrast, SOD2 level was unchanged in the old heart and was slightly elevated in the senescent heart. Decline in GPx activity was accompanied by a loss of GPx level only in old rats, the level in senescent heart was unchanged. These results indicate age-related posttranslational protein modification of SOD2 and GPx. In summary, our data suggest that changes are more pronounced in senescent than in old rat hearts and support the view that aging is associated with disturbed redox balance that could alter cellular signaling and regulation.
Collapse
Affiliation(s)
- P Kaplán
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
88
|
Logan S, Royce GH, Owen D, Farley J, Ranjo-Bishop M, Sonntag WE, Deepa SS. Accelerated decline in cognition in a mouse model of increased oxidative stress. GeroScience 2019; 41:591-607. [PMID: 31641924 DOI: 10.1007/s11357-019-00105-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/13/2019] [Indexed: 02/08/2023] Open
Abstract
Mice deficient in the antioxidant enzyme Cu/Zn-superoxide dismutase (Sod1KO mice) have a significant reduction in lifespan, exhibit many phenotypes of accelerated aging, and have high levels of oxidative stress in various tissues. Age-associated cognitive decline is a hallmark of aging and the increase in oxidative stress/damage with age is one of the mechanisms proposed for cognitive decline with age. Therefore, the goal of this study was to determine if Sod1KO mice exhibit an accelerated loss in cognitive function similar to that observed in aged animals. Cognition was assessed in Sod1KO and wild type (WT) mice using an automated home-cage testing apparatus (Noldus PhenoTyper) that included an initial discrimination and reversal task. Comparison of the total distance moved by the mice during light and dark phases of the study demonstrated that the Sod1KO mice do not show a deficit in movement. Assessment of cognitive function showed no significant difference between Sod1KO and WT mice during the initial discrimination phase of learning. However, during the reversal task, Sod1KO mice showed a significantly greater number of incorrect entries compared to WT mice indicating a decline in cognition similar to that observed in aged animals. Markers of oxidative stress (4-Hydroxynonenal, 4-HNE) and neuroinflammation [proinflammatory cytokines (IL6 and IL-1β) and neuroinflammatory markers (CD68, TLR4, and MCP1)] were significantly elevated in the hippocampus of male and female Sod1KO compared to WT mice. This study provides important evidence that increases in oxidative stress alone are sufficient to induce neuroinflammation and cognitive dysfunction that parallels the memory deficits seen in advanced aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sreemathi Logan
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gordon H Royce
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1372, Oklahoma City, OK, 73104, USA
| | - Daniel Owen
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, BMSB-860, Oklahoma City, OK, 73104, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1372, Oklahoma City, OK, 73104, USA
| | - Julie Farley
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, BMSB-860, Oklahoma City, OK, 73104, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1372, Oklahoma City, OK, 73104, USA
| | - Michelle Ranjo-Bishop
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1372, Oklahoma City, OK, 73104, USA
| | - William E Sonntag
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, BMSB-860, Oklahoma City, OK, 73104, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1372, Oklahoma City, OK, 73104, USA
| | - Sathyaseelan S Deepa
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1372, Oklahoma City, OK, 73104, USA. .,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1372, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
89
|
Liang M, Li H, Wang Z, Cai L, Yang L. Rice protein reduces DNA damage by activating the p53 pathway and stimulating endogenous antioxidant response in growing and adult rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6097-6107. [PMID: 31250448 DOI: 10.1002/jsfa.9888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Reactive oxygen species (ROS) can cause DNA damage. Rice protein (RP) inhibits ROS accumulation. However, a link between the reduction of ROS-derived DNA damage and the intake of RP is far from clear. The main objective of this study is to elucidate the effects of RPs on the reduction of DNA damage in growing and adult rats. RESULTS An intake of RP for 2 weeks significantly reduced the hepatic accumulation of ROS and 8-hydroxydeoxyguanosine (8-OHdG) in growing and adult rats, whereas the hepatic p53 content was markedly increased by RPs. After 2 weeks' feeding, the mRNA levels and protein expressions of p53, ataxia-telangiectasia mutated (ATM), and Checkpoint kinase 2 (Chk2) were up-regulated by RPs, whereas Murine Double Minute 2 (MDM2) expressions were markedly inhibited by RPs, resulting in more p53 being translocated into the nucleus. Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) was activated by RP by reducing Kelch-like ECH-associated protein 1 (Keap1), resulting in the up-regulation of antioxidant expressions of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in RP groups. CONCLUSION Rice protein can exert an endogenous antioxidant activity to reduce ROS-derived DNA damage by activating the Nrf2-Keap1 pathway. This study suggests that the activation of the ATM-Chk2-p53 pathway might be one of the mechanisms exerted by RP for reducing DNA damage in growing and adult rats. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mingcai Liang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Hui Li
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Zhengxuan Wang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Liang Cai
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Lin Yang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
90
|
Jimenez AG, O'Connor ES, Elliott KH. Muscle myonuclear domain, but not oxidative stress, decreases with age in a long-lived seabird with high activity costs. ACTA ACUST UNITED AC 2019; 222:jeb.211185. [PMID: 31488626 DOI: 10.1242/jeb.211185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022]
Abstract
In birds, many physiological parameters appear to remain constant with increasing age, showing no deterioration until 'catastrophic' mortality sets in. Given their high whole-organism metabolic rate and the importance of flight in foraging and predator avoidance, flight muscle deterioration and accumulated oxidative stress and tissue deterioration may be an important contributor to physiological senescence in wild birds. As a by-product of aerobic respiration, reactive oxygen species are produced and can cause structural damage within cells. The anti-oxidant system deters oxidative damage to macromolecules. We examined oxidative stress and muscle ultrastructure in thick-billed murres aged 8 to 37 years (N=50) in pectoralis muscle biopsies. When considered in general linear models with body mass, body size and sex, no oxidative stress parameter varied with age. In contrast, there was a decrease in myonuclear domain similar to that seen in human muscle aging. We conclude that for wild birds with very high flight activity levels, muscle ultrastructural changes may be an important contributor to demographic senescence. Such gradual, linear declines in muscle morphology may eventually contribute to 'catastrophic' failure in foraging or predator avoidance abilities, leading to demographic senescence.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Erin S O'Connor
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Kyle H Elliott
- McGill University, Department of Natural Resources Sciences, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada, H9X 3L9
| |
Collapse
|
91
|
Li DD, Li WJ, Kong SZ, Li SD, Guo JQ, Guo MH, Cai TT, Li N, Chen RZ, Luo RQ, Tan WX. Protective effects of collagen polypeptide from tilapia skin against injuries to the liver and kidneys of mice induced by d-galactose. Biomed Pharmacother 2019; 117:109204. [PMID: 31387177 DOI: 10.1016/j.biopha.2019.109204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 01/12/2023] Open
Abstract
We wished to investigate the role of a tilapia skin collagen polypeptide (TSCP; molecular weight <3 kDa) in alleviating liver and kidney injuries in aging mice induced by d-galactose (d-gal) and its underlying mechanism of action. First, we characterized TSCP. TSCP was passed through a 3-kDa ultrafiltration membrane, desalted in water by a solid-phase extraction column, purified further by reverse phase-high performance liquid chromatography, and analyzed by electrospray ionization mass spectrometry and tandem mass spectrometry. TSCP contained 17 types of amino acids (AAs) and 41 peptide chains of length 7 AAs to 22 AAs. The content of free AAs and total AAs of TSCP was 13.5% and 93.79%, respectively. Next, we undertook animal experiments. Mice were injected once-daily with D-gal (300 mg/kg body weight, s.c.) for 8 weeks, and TSCP was administered simultaneously once-daily by intragastric gavage. TSCP could visibly improve the decreased body weight, depressed appetite, and mental deterioration of mice triggered by d-gal. TSCP could also alleviate d-gal-induced damage to the liver and kidneys according to histopathology (especially high-dose TSCP). Consistent with these macroscopic and pathologic changes, TSCP could also prevent d-gal-induced increases in serum levels of alanine aminotransferase, aspartate transaminase, alkaline phosphatase, lipid peroxidation, creatinine and uric acid, as well as decreases in serum levels of immunoglobulin (Ig)G and IgM. Moreover, TSCP improved the activities of superoxide dismutase, catalase, and glutathione peroxidase, but also inhibited the increases in the levels of malondialdehyde and inducible nitric oxide synthase expression in the liver and kidneys of d-gal-treated mice. These results suggest that TSCP can alleviate the injuries to the liver and kidneys in aging mice induced by d-gal, and that its mechanism of action might be, at least partially, associated with attenuation of oxidative stress and enhancement of immune function.
Collapse
Affiliation(s)
- Dong-Dong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Wen-Jie Li
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China.
| | - Song-Zhi Kong
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China.
| | - Si-Dong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Jia-Qi Guo
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Min-Hui Guo
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Ting-Ting Cai
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Ning Li
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Ri-Zhi Chen
- Zhanjiang Jianliyuan Medical Articles Co., Ltd., Zhanjiang, Guangdong, People's Republic of China
| | - Rong-Qiong Luo
- Zhanjiang Jianliyuan Medical Articles Co., Ltd., Zhanjiang, Guangdong, People's Republic of China
| | - Wei-Xiang Tan
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| |
Collapse
|
92
|
Costantini D. Understanding diversity in oxidative status and oxidative stress: the opportunities and challenges ahead. ACTA ACUST UNITED AC 2019; 222:222/13/jeb194688. [PMID: 31266782 DOI: 10.1242/jeb.194688] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress may be of profound biological relevance. In this Commentary, I discuss some key issues faced by the emerging field of oxidative stress ecology, and seek to provide interpretations and solutions. First, I show that the way in which we define oxidative stress has far-reaching implications for the interpretation of results, and that we need to distinguish between (1) a biochemical definition in terms of the molecular outcomes of oxidative stress (e.g. generation of oxidative damage) and (2) a biological definition in terms of the fitness consequences for the organism (e.g. effects on fertility). Second, I discuss the dangers of comparing different tissues and markers. Third, I highlight the need to pay more attention to the cross-talk between oxidative stress and other important physiological costs and functions; this will allow us to better understand the mechanistic basis of fitness costs. Fourth, I propose the 'redox signalling hypothesis' of life history to complement the current 'oxidative stress hypothesis' of life history. The latter states that oxidative damage underlies trade-offs because it affects traits like growth, reproduction or cell senescence. By contrast, the redox signalling hypothesis states that a trade-off between signalling and biochemical oxidative stress underlies the regulation of reactive oxygen species production and their subsequent control. Finally, I critically appraise our current knowledge of oxidative stress ecology, highlighting key research themes and providing an optimistic overview of future opportunities for the discipline to yield considerable insight into the ecological and evolutionary meaning of oxidative stress.
Collapse
Affiliation(s)
- David Costantini
- UMR 7221 CNRS/MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, 7 rue Cuvier, 75005 Paris, France
| |
Collapse
|
93
|
Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7092151. [PMID: 31341533 PMCID: PMC6612399 DOI: 10.1155/2019/7092151] [Citation(s) in RCA: 419] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a leading cause of death and reduced quality of life, proven by the latest data of the Global Burden of Disease Study, and is only gaining in prevalence worldwide. Clinical trials have identified chronic inflammatory disorders as cardiovascular risks, and recent research has revealed a contribution by various inflammatory cells to vascular oxidative stress. Atherosclerosis and cardiovascular disease are closely associated with inflammation, probably due to the close interaction of inflammation with oxidative stress. Classical therapies for inflammatory disorders have demonstrated protective effects in various models of cardiovascular disease; especially established drugs with pleiotropic immunomodulatory properties have proven beneficial cardiovascular effects; normalization of oxidative stress seems to be a common feature of these therapies. The close link between inflammation and redox balance was also supported by reports on aggravated inflammatory phenotype in the absence of antioxidant defense proteins (e.g., superoxide dismutases, heme oxygenase-1, and glutathione peroxidases) or overexpression of reactive oxygen species producing enzymes (e.g., NADPH oxidases). The value of immunomodulation for the treatment of cardiovascular disease was recently supported by large-scale clinical trials demonstrating reduced cardiovascular mortality in patients with established atherosclerotic disease when treated by highly specific anti-inflammatory therapies (e.g., using monoclonal antibodies against cytokines). Modern antidiabetic cardiovascular drugs (e.g., SGLT2 inhibitors, DPP-4 inhibitors, and GLP-1 analogs) seem to share these immunomodulatory properties and display potent antioxidant effects, all of which may explain their successful lowering of cardiovascular risk.
Collapse
|
94
|
Jameel M, Alam MF, Younus H, Jamal K, Siddique HR. Hazardous sub-cellular effects of Fipronil directly influence the organismal parameters of Spodoptera litura. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:216-224. [PMID: 30710772 DOI: 10.1016/j.ecoenv.2019.01.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Indiscriminate use of insecticides/pesticides affects the structure and function of the ecosystems. The present study was aimed to investigate the toxic potential of Fipronil (a second generation phenylpyrazole) using Spodoptera litura larvae (Lepidoptera: Noctuidae) as an experimental model. Commercial grade of Fipronil, an insecticide was fed (20-80 mg/L) to the 4th instar larvae of S. litura for 12-72 h and examined different molecular, biochemical and organismal parameters. We observed a significant dose- and time-dependent changes in the biochemical parameters such as Superoxide dismutase (SOD), Glutathione-S-transferase (GST), Catalase (CAT), level of 8-hydroxy 2'-deoxyguanosine (8-OHdG) and Thiobarbituric Acid Reactive Substances (TBARS) [Malondialdehyde (MDA) equivalent] in the exposed larvae. We also observed that Fipronil interacts with DNA. Next, we examined the influence of sub-cellular damages at the organismal level. The alterations in the parameter such as the delayed emergence of larvae, reduced fecundity, fertility and increased rate of malformation in pupae and adults indicate the sub-organismal damages influence at the organismal level. The findings of the present study suggest that discriminatory non-scientific use of insecticide/pesticide might influence the population dynamics of insects and in large ecosystem too and needs further thorough investigations.
Collapse
Affiliation(s)
- Mohd Jameel
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Md Fazle Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Khowaja Jamal
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | - Hifzur R Siddique
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
95
|
Muid KA, Kimyon Ö, Reza SH, Karakaya HC, Koc A. Characterization of long living yeast deletion mutants that lack mitochondrial metabolism genes DSS1, PPA2 and AFG3. Gene 2019; 706:172-180. [PMID: 31082499 DOI: 10.1016/j.gene.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 04/15/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
Molecular mechanisms of aging and longevity are still mostly unknown. Mitochondria play central roles in cellular metabolism and aging. In this study, we identified three deletion mutants of mitochondrial metabolism genes (ppa2∆, dss1∆, and afg3∆) that live longer than wild-type cells. These long-lived cells harbored significantly decreased amount of mitochondrial DNA (mtDNA) and reactive oxygen species (ROS). Compared to the serpentine nature of wild-type mitochondria, a different dynamics and distribution pattern of mitochondria were observed in the mutants. Both young and old long-lived cells produced relatively low but adequate levels of ATP for cellular activities. The status of the retrograde signaling was checked by expression of CIT2 gene and found activated in long-lived mutants. The mutant cells were also profiled for their gene expression patterns, and genes that were differentially regulated were determined. All long-lived cells comprised similar pleiotropic phenotype regarding mitochondrial dynamics and functions. Thus, this study suggests that DSS1, PPA2, and AFG3 genes modulate the lifespan by altering the mitochondrial morphology and functions.
Collapse
Affiliation(s)
- K A Muid
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Önder Kimyon
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Shahadat Hasan Reza
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Huseyin Caglar Karakaya
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Ahmet Koc
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey; Inonu University, Medical School, Department of Medical Biology and Genetics, Battalgazi, Malatya, Turkey.
| |
Collapse
|
96
|
Levy D, Reichert CO, Bydlowski SP. Paraoxonases Activities and Polymorphisms in Elderly and Old-Age Diseases: An Overview. Antioxidants (Basel) 2019; 8:antiox8050118. [PMID: 31052559 PMCID: PMC6562914 DOI: 10.3390/antiox8050118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is defined as the accumulation of progressive organ dysfunction. There is much evidence linking the involvement of oxidative stress in the pathogenesis of aging. With increasing age, susceptibility to the development of diseases related to lipid peroxidation and tissue injury increases, due to chronic inflammatory processes, and production of reactive oxygen species (ROS) and free radicals. The paraoxonase (PON) gene family is composed of three members (PON1, PON2, PON3) that share considerable structural homology and are located adjacently on chromosome 7 in humans. The most studied member product is PON1, a protein associated with high-density lipoprotein with paraoxonase/esterase activity. Nevertheless, all the three proteins prevent oxidative stress. The major aim of this review is to highlight the importance of the role of PON enzymes in the aging process, and in the development of the main diseases present in the elderly: cardiovascular disease, diabetes mellitus, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Débora Levy
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
| | - Cadiele Oliana Reichert
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
| | - Sérgio Paulo Bydlowski
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
- Center of Innovation and Translacional Medicine (CIMTRA), Department of Medicine, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
- Instituto Nacional de Ciencia e Tecnologia em Medicina Regenerativa (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, RJ, Brazil.
| |
Collapse
|
97
|
Nascimento CM, Ingles M, Salvador-Pascual A, Cominetti MR, Gomez-Cabrera MC, Viña J. Sarcopenia, frailty and their prevention by exercise. Free Radic Biol Med 2019; 132:42-49. [PMID: 30176345 DOI: 10.1016/j.freeradbiomed.2018.08.035] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/08/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
Sarcopenia is a major component of the frailty syndrome, both being considered as strong predictors of morbidity, disability, and death in older people. In this review, we explore the definitions of sarcopenia and frailty and summarize the current knowledge on their relationship with oxidative stress and the possible therapeutic interventions to prevent or treat them, including exercise-based interventions and multimodal strategies. We highlight the relevance of the impairment of the nervous system and of the anabolic response (protein synthesis) in muscle aging leading to frailty and sarcopenia. We also discuss the importance of malnutrition and physical inactivity in these geriatric syndromes. Finally, we propose multimodal interventions, including exercise programs and nutritional supplementation, as the strategies to prevent and treat both sarcopenia and frailty.
Collapse
Affiliation(s)
- C M Nascimento
- Laboratorio de Biologia do Envelhecimento (LABEN), Departamento de Gerontologia UFSCar, Rod. Washington Luis, km 235, São Carlos, SP, Brazil
| | - M Ingles
- Freshage Research Group. Department of Physiotherapy. University of Valencia, CIBERFES, INCLIVA, Spain
| | - A Salvador-Pascual
- Freshage Research Group. Department of Physiology. University of Valencia, CIBERFES, INCLIVA, Spain
| | - M R Cominetti
- Laboratorio de Biologia do Envelhecimento (LABEN), Departamento de Gerontologia UFSCar, Rod. Washington Luis, km 235, São Carlos, SP, Brazil
| | - M C Gomez-Cabrera
- Freshage Research Group. Department of Physiology. University of Valencia, CIBERFES, INCLIVA, Spain.
| | - J Viña
- Freshage Research Group. Department of Physiology. University of Valencia, CIBERFES, INCLIVA, Spain
| |
Collapse
|
98
|
Deepa SS, Van Remmen H, Brooks SV, Faulkner JA, Larkin L, McArdle A, Jackson MJ, Vasilaki A, Richardson A. Accelerated sarcopenia in Cu/Zn superoxide dismutase knockout mice. Free Radic Biol Med 2019; 132:19-23. [PMID: 30670156 PMCID: PMC6405207 DOI: 10.1016/j.freeradbiomed.2018.06.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 11/21/2022]
Abstract
Mice lacking Cu/Zn-superoxide dismutase (Sod1-/- or Sod1KO mice) show high levels of oxidative stress/damage and a 30% decrease in lifespan. The Sod1KO mice also show many phenotypes of accelerated aging with the loss of muscle mass and function being one of the most prominent aging phenotypes. Using various genetic models targeting the expression of Cu/Zn-superoxide dismutase to specific tissues, we evaluated the role of motor neurons and skeletal muscle in the accelerated loss of muscle mass and function in Sod1KO mice. Our data are consistent with the sarcopenia in Sod1KO mice arising through a two-hit mechanism involving both motor neurons and skeletal muscle. Sarcopenia is initiated in motor neurons leading to a disruption of neuromuscular junctions that results in mitochondrial dysfunction and increased generation of reactive oxygen species (ROS) in skeletal muscle. The mitochondrial ROS generated in muscle feedback on the neuromuscular junctions propagating more disruption of neuromuscular junctions and more ROS production by muscle resulting in a vicious cycle that eventually leads to disaggregation of neuromuscular junctions, denervation, and loss of muscle fibers.
Collapse
Affiliation(s)
- Sathyaseelan S Deepa
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, Oklahoma University Health Science Center, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Aging and Metabolism Division, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology University of Michigan, Ann Arbor, MI, USA
| | - John A Faulkner
- Department of Molecular and Integrative Physiology University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering University of Michigan, Ann Arbor, MI, USA
| | - Lisa Larkin
- Department of Molecular and Integrative Physiology University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering University of Michigan, Ann Arbor, MI, USA
| | - Anne McArdle
- Department of Musculoskeletal Biology, MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Malcolm J Jackson
- Department of Musculoskeletal Biology, MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Aphrodite Vasilaki
- Department of Musculoskeletal Biology, MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Arlan Richardson
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, Oklahoma University Health Science Center, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
99
|
Gao X, Gào X, Zhang Y, Holleczek B, Schöttker B, Brenner H. Oxidative stress and epigenetic mortality risk score: associations with all-cause mortality among elderly people. Eur J Epidemiol 2019; 34:451-462. [PMID: 30771035 DOI: 10.1007/s10654-019-00493-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
Oxidative stress (OS) has been found to be related to accelerated aging and many aging-related health outcomes. Recently, an epigenetic "mortality risk score" (MS) based on whole blood DNA methylation at 10 mortality-related CpG sites has been demonstrated to be associated with all-cause mortality. This study aimed to address the association between OS and MS, and to assess and compare their performance in the prediction of all-cause mortality. For 1448 participants aged 50-75 of the German ESTHER cohort study, the MS was derived from the DNA methylation profiles measured by Illumina HumanMethylation450K Beadchip and the levels of two urinary OS markers, 8-isoprostane (8-iso) and oxidized guanine/guanosine [including 8-hydroxy-2'-deoxyguanosine (8-oxo)], were measured by ELISA kits. Associations between OS markers and the MS were evaluated by linear and ordinal logistic regression models, and their associations with all-cause mortality were examined by Cox regression models. Both OS markers were associated with the MS at baseline. The 8-iso levels and MS, but not 8-oxo levels, were associated with all-cause mortality during a median follow-up of 15.1 years. Fully-adjusted hazard ratios (95% CI) were 1.56 (1.13-2.16) for the 4th quartile of 8-iso levels compared with the 1st, 1.71 (1.27-2.29) and 2.92 (2.03-4.18) for the moderate and high MS defined by 2-5 and > 5 CpG sites with aberrant methylation compared with a MS of 0-1, respectively. After controlling for 8-iso levels, the hazard ratios of MS remained essentially unchanged while the association of 8-iso levels with mortality was attenuated. This study demonstrates that OS is highly associated with the epigenetic MS, and the latter at the same time has a higher predictive value for all-cause mortality.
Collapse
Affiliation(s)
- Xu Gao
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Medical Faculty Heidelberg, University of Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Medical Faculty Heidelberg, University of Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Bergheimer Straße 20, 69115, Heidelberg, Germany
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Bernd Holleczek
- Saarland Cancer Registry, Präsident Baltz Strasse 5, 66119, Saarbrücken, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Bergheimer Straße 20, 69115, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany. .,Network Aging Research, University of Heidelberg, Bergheimer Straße 20, 69115, Heidelberg, Germany. .,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
100
|
Foley HB, Sun PY, Ramirez R, So BK, Venkataraman YR, Nixon EN, Davies KJA, Edmands S. Sex-specific stress tolerance, proteolysis, and lifespan in the invertebrate Tigriopus californicus. Exp Gerontol 2019; 119:146-156. [PMID: 30738921 DOI: 10.1016/j.exger.2019.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/04/2019] [Accepted: 02/06/2019] [Indexed: 11/30/2022]
Abstract
Because stress tolerance and longevity are mechanistically and phenotypically linked, the sex with higher acute stress tolerance might be expected to also live longer. On the other hand, the association between stress tolerance and lifespan may be complicated by tradeoffs between acute tolerance and long-term survival. Here we use the copepod Tigriopus californicus to test for sex differences in stress resistance, proteolytic activity and longevity. Unlike many model organisms, this species does not have sex chromosomes. However, substantial sex differences were still observed. Females were found to have superior tolerance to a range of acute stressors (high temperature, high salinity, low salinity, copper and bisphenol A (BPA)) across a variety of treatments including different populations, pure vs. hybrid crosses, and different shading environments. Upregulation of proteolytic capacity - one molecular mechanism for responding to acute stress - was also found to be sexually dimorphic. In the combined stress treatment of chronic copper exposure followed by acute heat exposure, proteolytic capacity was suppressed for males. Females, however, maintained a robust proteolytic stress response. While females consistently showed greater tolerance to short-term stress, lifespan was largely equivalent between the two sexes under both benign conditions and mild thermal stress. Our findings indicate that short-term stress tolerance does not predict long-term survival under relatively mild conditions.
Collapse
Affiliation(s)
- Helen B Foley
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Patrick Y Sun
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Rocio Ramirez
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Brandon K So
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Yaamini R Venkataraman
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Emily N Nixon
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089, USA; Molecular & Computational Biology Division, Department of Biological Sciences, College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089, USA
| | - Suzanne Edmands
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|