51
|
Heffeter P, Pape VFS, Enyedy ÉA, Keppler BK, Szakacs G, Kowol CR. Anticancer Thiosemicarbazones: Chemical Properties, Interaction with Iron Metabolism, and Resistance Development. Antioxid Redox Signal 2019; 30:1062-1082. [PMID: 29334758 DOI: 10.1089/ars.2017.7487] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE During the past decades, thiosemicarbazones were clinically developed for a variety of diseases, including tuberculosis, viral infections, malaria, and cancer. With regard to malignant diseases, the class of α-N-heterocyclic thiosemicarbazones, and here especially 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (Triapine), was intensively developed in multiple clinical phase I/II trials. Recent Advances: Very recently, two new derivatives, namely COTI-2 and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) have entered phase I evaluation. Based on the strong metal-chelating/metal-interacting properties of thiosemicarbazones, interference with the cellular iron (and copper) homeostasis is assumed to play an important role in their biological activity. CRITICAL ISSUES In this review, we summarize and analyze the data on the interaction of (α-N-heterocyclic) thiosemicarbazones with iron, with the special aim of bridging the current knowledge on their mode of action from chemistry to (cell) biology. In addition, we highlight the difference to classical iron(III) chelators such as desferrioxamine (DFO), which are used for the treatment of iron overload. FUTURE DIRECTIONS We want to emphasize that thiosemicarbazones are not solely removing iron from the cells/organism. In contrast, they should be considered as iron-interacting drugs influencing diverse biological pathways in a complex and multi-faceted mode of action. Consequently, in addition to the discussion of physicochemical properties (e.g., complex stability, redox activity), this review contains an overview on the diversity of cellular thiosemicarbazone targets and drug resistance mechanisms.
Collapse
Affiliation(s)
- Petra Heffeter
- 1 Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Vienna, Austria .,2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria
| | - Veronika F S Pape
- 3 Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary .,4 Department of Physiology, Faculty of Medicine, Semmelweis University , Budapest, Hungary
| | - Éva A Enyedy
- 5 Department of Inorganic and Analytical Chemistry, University of Szeged , Szeged, Hungary
| | - Bernhard K Keppler
- 2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria .,6 Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna , Vienna, Austria
| | - Gergely Szakacs
- 1 Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Vienna, Austria .,3 Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Christian R Kowol
- 2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria .,6 Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna , Vienna, Austria
| |
Collapse
|
52
|
Franco R, Navarro G, Martínez-Pinilla E. Antioxidant Defense Mechanisms in Erythrocytes and in the Central Nervous System. Antioxidants (Basel) 2019; 8:antiox8020046. [PMID: 30781629 PMCID: PMC6406447 DOI: 10.3390/antiox8020046] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
Differential antioxidant action is found upon comparison of organ/tissue systems in the human body. In erythrocytes (red blood cells), which transport oxygen and carbon dioxide through the circulatory system, the most important issue is to keep hemoglobin in a functional state that requires maintaining the haem group in ferrous (Fe2+) state. Conversion of oxidized Fe3+ back into Fe2+ in hemoglobin needs a special mechanism involving a tripeptide glutathione, glucose-6-phosphate dehydrogenase, and glucose and NADPH as suppliers of reducing power. Fava beans are probably a good resource to make the detox innate system more robust as the pro-oxidant molecules in this food likely induce the upregulation of members of such mechanisms. The central nervous system consumes more oxygen than the majority of human tissues, i.e., 20% of the body's total oxygen consumption and, therefore, it is exposed to a high level of oxidative stress. This fact, together with the progressive age-related decline in the efficiency of the antioxidant defense system, leads to neuronal death and disease. The innate mechanism operating in the central nervous system is not well known and seems different to that of the erythrocytes. The strategies of antioxidant intervention in brain will be reviewed here.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Biology School, University of Barcelona, Barcelona 08028, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain.
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain.
- Department of Biochemistry and Physiology, Pharmacy and Food Science School, University of Barcelona, Barcelona 08028, Spain.
| | - Eva Martínez-Pinilla
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias 33006, Spain.
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Asturias 33006, Spain.
- Instituto de Salud del Principado de Asturias (ISPA), Asturias 33006, Spain.
| |
Collapse
|
53
|
Fasinu PS, Nanayakkara NPD, Wang YH, Chaurasiya ND, Herath HMB, McChesney JD, Avula B, Khan I, Tekwani BL, Walker LA. Formation primaquine-5,6-orthoquinone, the putative active and toxic metabolite of primaquine via direct oxidation in human erythrocytes. Malar J 2019; 18:30. [PMID: 30700282 PMCID: PMC6352325 DOI: 10.1186/s12936-019-2658-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 01/17/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The activity and haemolytic toxicity associated with primaquine has been linked to its reactive metabolites. The reactive metabolites are thought to be primarily formed through the action of cytochrome P450-mediated pathways. Human erythrocytes generally are not considered a significant contributor to drug biotransformation. As erythrocytes are the target of primaquine toxicity, the ability of erythrocytes to mediate the formation of reactive oxidative primaquine metabolites in the absence of hepatic enzymes, was evaluated. METHODS Primaquine and its enantiomers were incubated separately with human red blood cells and haemoglobin. Post-incubation analysis was performed with UPLC-MS/MS to identify products of biotransformation. RESULTS The major metabolite detected was identified as primaquine-5,6-orthoquinone, reflecting the pathway yielding putative active and haematotoxic metabolites of primaquine, which was formed by oxidative demethylation of 5-hydroxyprimaquine. Incubation of primaquine with haemoglobin in a cell-free system yielded similar results. It appears that the observed biotransformation is due to non-enzymatic processes, perhaps due to reactive oxygen species (ROS) present in erythrocytes or in the haemoglobin incubates. CONCLUSION This study presents new evidence that primaquine-5,6-orthoquinone, the metabolite of primaquine reflecting the oxidative biotransformation pathway, is generated in erythrocytes, probably by non-enzymatic means, and may not require transport from the liver or other tissues.
Collapse
Affiliation(s)
- Pius S Fasinu
- The National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA. .,Department of Pharmaceutical Sciences, Campbell University, Buies Creek, NC, 27501, USA.
| | - N P Dhammika Nanayakkara
- The National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Yan-Hong Wang
- The National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Narayan D Chaurasiya
- The National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - H M Bandara Herath
- The National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | | | - Bharathi Avula
- The National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Ikhlas Khan
- The National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA.,Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Babu L Tekwani
- The National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA.,Department of Infectious Diseases, Southern Research Institute, Birmingham, AL, USA
| | - Larry A Walker
- The National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA. .,Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
54
|
da Silva DGH, Chaves NA, Miyamoto S, de Almeida EA. Prolonged erythrocyte auto-incubation as an alternative model for oxidant generation system. Toxicol In Vitro 2019; 56:62-74. [PMID: 30654084 DOI: 10.1016/j.tiv.2019.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022]
Abstract
This study investigated the effects of incubation period and melatonin treatment on red blood cell (RBC) metabolism in an auto-incubation model of H2O2-induced oxidative stress. The study was carried out on three healthy adult donors by incubating RBCs in their own plasma at 37 °C, or under the influence of 1 mM H2O2 with and without 100 μM melatonin at different times (0, 1, 3 and 6 h). We assessed incubation period, treatment, as well as any interaction effects between these predictors on erythrocyte osmoregulation, hemolytic rate, oxidative stress markers, and adenylate nucleotide levels. We did not find any relevant effects of both incubation period and treatments on osmotic, antioxidant and adenylate parameters. On the other hand, hemolysis degree and biomolecule oxidation levels in the plasma increased over time, 3-fold and about 25%, respectively, regardless any treatment influence. H2O2 treatment more than doubled protein carbonyl groups, regardless time in plasma, and in a time-depending way in erythrocyte membrane extract, effects that were neutralized by melatonin treatment. Through multivariate analyses, we could expand the understanding of energy and redox metabolisms in the maintenance of cellular integrity and metabolic homeostasis. Another interesting observation was the 65-75% contribution of the oxidative lesion markers on hemolysis. Hence, these findings suggested a new and more intuitive RBC suspension model and reinforced the beneficial use of melatonin in human disorders.
Collapse
Affiliation(s)
- Danilo Grünig Humberto da Silva
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil.
| | - Nayara Alves Chaves
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Eduardo Alves de Almeida
- Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau (FURB), Blumenau, Brazil
| |
Collapse
|
55
|
May WL, Kyaw MP, Blacksell SD, Pukrittayakamee S, Chotivanich K, Hanboonkunupakarn B, Thein KN, Lim CS, Thaipadungpanit J, Althaus T, Jittamala P. Impact of glucose-6-phosphate dehydrogenase deficiency on dengue infection in Myanmar children. PLoS One 2019; 14:e0209204. [PMID: 30601843 PMCID: PMC6314580 DOI: 10.1371/journal.pone.0209204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/01/2018] [Indexed: 01/15/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency may affect the clinical presentation of dengue due to the altered redox state in immune cells. We aimed to determine the association between G6PD deficiency and severity of dengue infection in paediatric patients in Myanmar. A cross-sectional study was conducted among paediatric patients aged 2–13 years with dengue in Yankin Children Hospital, Myanmar. One hundred and ninety-six patients positive for dengue infection, as determined via PCR or ELISA, were enrolled. Dengue severity was determined according to the 2009 WHO classification guidelines. Spectrophotometric assays determined G6PD levels. The adjusted median G6PD value of males in the study population was used to define various cut-off points according to the WHO classification guidelines. G6PD genotyping for Mahidol, Kaiping and Mediterranean mutations was performed for 128 out of 196 samples by real-time multiplex PCR. 51 of 196 (26.0%) patients had severe dengue. The prevalence of G6PD phenotype deficiency (< 60% activity) in paediatric patients was 14.8% (29/196), specifically, 13.6% (14/103) in males and 16.2% (15/93) in females. Severe deficiency (< 10% activity) accounted for 7.1% (14/196) of our cohort, occurring 11.7% (12/103) in males and 2.2% (2/93) in females. Among 128 samples genotyped, the G6PD gene mutations were detected in 19.5% (25/128) of patients, with 20.3% (13/ 64) in males and 18.8% (12/64) in females. The G6PD Mahidol mutation was 96.0% (24/25) while the G6PD Kaiping mutation was 4.0% (1/25). Severe dengue was not associated with G6PD enzyme deficiency or presence of the G6PD gene mutation. Thus, no association between G6PD deficiency and dengue severity could be detected. Trial registration: The study was registered following the WHO International Clinical Trials Registry Platform (WHO-ICTRP) on Thai Clinical Trials Registry (TCTR) website, registration number # TCTR20180720001
Collapse
Affiliation(s)
- Win Lai May
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Medical Research, Yangon, Myanmar
| | | | - Stuart D. Blacksell
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sasithon Pukrittayakamee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Borimas Hanboonkunupakarn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Khin Nyo Thein
- Department of Paediatrics, University of Medicine 2, Yangon, Myanmar
| | | | - Janjira Thaipadungpanit
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thomas Althaus
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Podjanee Jittamala
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
56
|
Wu S, Wu G, Wu H. Hemolytic jaundice induced by pharmacological dose ascorbic acid in glucose-6-phosphate dehydrogenase deficiency: A case report. Medicine (Baltimore) 2018; 97:e13588. [PMID: 30572463 PMCID: PMC6319863 DOI: 10.1097/md.0000000000013588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
RATIONALE Hemolysis induced by high dose ascorbic acid (AA) in patients with G6PD deficiency has been reported, but is rare. To our knowledge, this is the first reported case of a male with G6PD deficiency, coexpressed with cholecystolithiasis and cholecystitis, who developed extreme hemolysis and hyperbilirubinemia after receiving pharmacological doses ascorbic acid infusion. PATIENT CONCERNS A 27-year-old man history with glucose-6-phosphate dehydrogenase deficiency was admitted to our hospital because of cholecystolithiasis and cholecystitis. He appeared with scleral jaundice and very deep colored urine after receiving pharmacological doses ascorbic acid infusion. DIAGNOSES Clinical findings when combined with his medical history and various laboratory results confirmed the diagnosis as hemolysis and hyperbilirubinemia induced by ascorbic acid. INTERVENTIONS The patient was treated with steroids, hepatoprotective drugs, and folic acid in addition avoidance of agents with known hemolysis risk (such as vitamin C). OUTCOMES As a result, the patient's symptoms from hemolytic jaundice improved, hemoglobin remained stable, and the patient was discharged 11 days later. LESSONS Clinicians should bear in mind the possibility that vitamin C exposure may result in hemolysis in patients with G6PD deficiency, especially in those with known severe disease.
Collapse
Affiliation(s)
- Shuxie Wu
- Xiangya School of Medicine, Central South University, Changsha
| | - Gao Wu
- Department of Pharmacy, The 411st Hospital of PLA
| | - Hanbin Wu
- Clinical Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
57
|
Membrane protein carbonylation of Plasmodium falciparum infected erythrocytes under conditions of sickle cell trait and G6PD deficiency. Mol Biochem Parasitol 2018; 227:5-14. [PMID: 30472238 DOI: 10.1016/j.molbiopara.2018.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
Deficiency of glucose-6-phosphate dehydrogenase (G6PD) and sickle cell trait (SCT) are described as the polymorphic disorders prevalent in erythrocytes. Both are considered the result of the selective pressure exerted by Plasmodium parasites over human genome, due to a certain degree of resistance to the clinical symptoms of severe malaria. There exist in both a prooxidant environment that favors the oxidative damage on membrane proteins, which probably is part of molecular protector mechanisms. Nevertheless, mechanisms are not completely understood at molecular level for each polymorphism yet, and even less if are commons for several of them. Here, synchronous cultures at high parasitemia levels of P. falciparum 3D7 were used to quantify oxidative damage in membrane proteins of erythrocytes with G6PD deficient and SCT. Carbonyl index by dot blot assay was used to calculate the variation of oxidative damage during the asexual phases. Besides, protein carbonylation profiles were obtained by Western blot and complemented with mass spectrometry using MALDI-TOF-TOF analysis. Erythrocytes with G6PD deficient and SCT showed higher carbonyl index values than control and similar profiles of carbonylated proteins; moreover, cytoskeletal and stress response proteins were identified as the main targets of oxidative damage. Therefore, both polymorphisms promote carbonylation on the same membrane proteins. Finally, these results allowed to reinforce the hypothesis of oxidative damage in erythrocyte membrane proteins as molecular mechanism of human adaptation to malaria infection.
Collapse
|
58
|
Jilani T, Iqbal MP. Vitamin E deficiency in South Asian population and the therapeutic use of alpha-tocopherol (Vitamin E) for correction of anemia. Pak J Med Sci 2018; 34:1571-1575. [PMID: 30559825 PMCID: PMC6290196 DOI: 10.12669/pjms.346.15880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 01/22/2023] Open
Abstract
Mild to moderate vitamin E deficiency because of inadequate consumption of vitamin E-rich foods and intestinal fat malabsorption is common in growing children, women of reproductive age and elderly South Asian population. Severe vitamin E deficiency may lead to peripheral and motor neurodegenerative diseases (e.g ataxia and motor skeletal myopathy), impaired immune response and free radical-induced hemolytic anemias. Vitamin E insufficiency and/or deficiency status in the general Pakistani population has not been sufficiently investigated. Moreover, there are challenges in determining vitamin E status in apparently healthy humans due to variations in their age, sources of consumed vitamin E and plasma lipid levels. Oxidative stress-induced reactive oxygen species have been shown to cause ineffective erythropoiesis and enhanced lysis of erythrocytes in some of the experimental animals and humans. Several studies on patients with various types of inherited hemolytic anemias, chronic renal disease, premature low birth infants and apparently healthy humans have shown that vitamin E might be therapeutically effective in the prevention and/ or treatment of anemia in these subjects.
Collapse
Affiliation(s)
- Tanveer Jilani
- Dr. Tanveer Jilani, PhD. Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Mohammad Perwaiz Iqbal
- Prof. Dr. Mohammad Perwaiz Iqbal, PhD. Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
59
|
Islam MT, Sarker SK, Talukder S, Bhuyan GS, Rahat A, Islam NN, Mahmud H, Hossain MA, Muraduzzaman AKM, Rahman J, Qadri SK, Shahidullah M, Mannan MA, Tahura S, Hussain M, Saha N, Akhter S, Nahar N, Begum F, Shirin T, Akhteruzzaman S, Qadri SS, Qadri F, Mannoor K. High resolution melting curve analysis enables rapid and reliable detection of G6PD variants in heterozygous females. BMC Genet 2018; 19:58. [PMID: 30097005 PMCID: PMC6086071 DOI: 10.1186/s12863-018-0664-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/31/2018] [Indexed: 12/23/2022] Open
Abstract
Background Like glucose-6-phosphate dehydrogenase (G6PD) deficient hemizygous males and homozygous females, heterozygous females could also manifest hemolytic crisis, neonatal hyperbilirubinemia or kernicterus upon exposure to oxidative stress induced by certain foods such as fava beans, drugs or infections. Although hemizygous males and homozygous females are easily detected by conventional G6PD enzyme assay method, the heterozygous state could be missed by the conventional methods as the mosaic population of both normal and deficient RBCs circulates in the blood. Thus the present study aimed to apply high resolution melting (HRM) curve analysis approach to see whether HRM could be used as a supplemental approach to increase the chance of detection of G6PD heterozygosity. Results Sixty-three clinically suspected females were evaluated for G6PD status using both enzyme assay and HRM analysis. Four out of sixty-three participants came out as G6PD deficient by the enzyme assay method, whereas HRM approach could identify nine participants with G6PD variants, one homozygous and eight heterozygous. Although only three out of eight heterozygous samples had G6PD enzyme deficiency, the HRM-based heterozygous G6PD variants detection for the rest of the samples with normal G6PD enzyme activities could have significance because their newborns might fall victim to serious consequences under certain oxidative stress. Conclusions In addition to the G6PD enzyme assay, HRM curve analysis could be useful as a supplemental approach for detection of G6PD heterozygosity.
Collapse
Affiliation(s)
- Md Tarikul Islam
- Laboratory of Genetics and Genomics, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh
| | - Suprovath Kumar Sarker
- Laboratory of Genetics and Genomics, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh.,Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Shezote Talukder
- Laboratory of Genetics and Genomics, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh
| | - Golam Sarower Bhuyan
- Infectious Diseases Laboratory, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh
| | - Asifuzzaman Rahat
- Infectious Diseases Laboratory, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh
| | - Nafisa Nawal Islam
- Laboratory of Genetics and Genomics, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh
| | - Hasan Mahmud
- Laboratory of Genetics and Genomics, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh
| | - Mohammad Amir Hossain
- Infectious Diseases Laboratory, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh
| | - A K M Muraduzzaman
- Department of Virology, Institute of Epidemiology, Disease Control and Research, Mohakhali, Dhaka, Bangladesh
| | - Jakia Rahman
- Infectious Diseases Laboratory, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh
| | - Syeda Kashfi Qadri
- Department of Paediatric Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Mohammod Shahidullah
- Department of Neonatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Mohammad Abdul Mannan
- Department of Neonatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Sarabon Tahura
- Department of Paediatric hematology and oncology, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Manzoor Hussain
- Department of Paediatric Medicine and Cardiology, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Narayan Saha
- Department of Paediatric Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Shahida Akhter
- Department of Paediatrics, Bangladesh Institute of Research & Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Shahbag, Dhaka, Bangladesh
| | - Nazmun Nahar
- Department of Paediatrics, Bangladesh Institute of Research & Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Shahbag, Dhaka, Bangladesh
| | - Firoza Begum
- Department of Obstetrics and Gynecology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Tahmina Shirin
- Department of Virology, Institute of Epidemiology, Disease Control and Research, Mohakhali, Dhaka, Bangladesh
| | - Sharif Akhteruzzaman
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Syed Saleheen Qadri
- Laboratory of Genetics and Genomics, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh
| | - Firdausi Qadri
- Laboratory of Genetics and Genomics, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh.,Department of Enteric and Respiratory Infectious Diseases, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Kaiissar Mannoor
- Laboratory of Genetics and Genomics, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh. .,Infectious Diseases Laboratory, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh.
| |
Collapse
|
60
|
O'Brien KM, Crockett EL, Philip J, Oldham CA, Hoffman M, Kuhn DE, Barry R, McLaughlin J. The loss of hemoglobin and myoglobin does not minimize oxidative stress in Antarctic icefishes. ACTA ACUST UNITED AC 2018; 221:jeb.162503. [PMID: 29361578 DOI: 10.1242/jeb.162503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/11/2017] [Indexed: 01/07/2023]
Abstract
The unusual pattern of expression of hemoglobin (Hb) and myoglobin (Mb) among Antarctic notothenioid fishes provides an exceptional model system for assessing the impact of these proteins on oxidative stress. We tested the hypothesis that the lack of oxygen-binding proteins may reduce oxidative stress. Levels and activity of pro-oxidants and small-molecule and enzymatic antioxidants, and levels of oxidized lipids and proteins in the liver, oxidative skeletal muscle and heart ventricle were quantified in five species of notothenioid fishes differing in the expression of Hb and Mb. Levels of ubiquitinated proteins and rates of protein degradation by the 20S proteasome were also quantified. Although levels of oxidized proteins and lipids, ubiquitinated proteins, and antioxidants were higher in red-blooded fishes than in Hb-less icefishes in some tissues, this pattern did not persist across all tissues. Expression of Mb was not associated with oxidative damage in the heart ventricle, whereas the activity of citrate synthase and the contents of heme were positively correlated with oxidative damage in most tissues. Despite some tissue differences in levels of protein carbonyls among species, rates of degradation by the 20S proteasome were not markedly different, suggesting either alternative pathways for eliminating oxidized proteins or that redox tone varies among species. Together, our data indicate that the loss of Hb and Mb does not correspond with a clear pattern of either reduced oxidative defense or oxidative damage.
Collapse
Affiliation(s)
- Kristin M O'Brien
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, 99775, USA
| | | | - Jacques Philip
- Center for Alaska Native Health Research, University of Alaska, Fairbanks, Alaska, 99775, USA
| | - Corey A Oldham
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, 99775, USA
| | - Megan Hoffman
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, 99775, USA
| | - Donald E Kuhn
- Department of Biological Sciences, Ohio University, Athens, Ohio, 45701, USA
| | - Ronald Barry
- Department of Mathematics and Statistics, University of Alaska, Fairbanks, Alaska, 99775, USA
| | - Jessica McLaughlin
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, 99775, USA
| |
Collapse
|
61
|
|
62
|
Peters AL, Veldthuis M, van Leeuwen K, Bossuyt PM, Vlaar AP, van Bruggen R, de Korte D, Van Noorden CJ, van Zwieten R. Comparison of Spectrophotometry, Chromate Inhibition, and Cytofluorometry Versus Gene Sequencing for Detection of Heterozygously Glucose-6-Phosphate Dehydrogenase-Deficient Females. J Histochem Cytochem 2017; 65:627-636. [PMID: 28902532 PMCID: PMC5665106 DOI: 10.1369/0022155417730021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 08/15/2017] [Indexed: 11/23/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency worldwide. Detection of heterozygously deficient females can be difficult as residual activity in G6PD-sufficient red blood cells (RBCs) can mask deficiency. In this study, we compared accuracy of 4 methods for detection of G6PD deficiency in females. Blood samples from females more than 3 months of age were used for spectrophotometric measurement of G6PD activity and for determination of the percentage G6PD-negative RBCs by cytofluorometry. An additional sample from females suspected to have G6PD deficiency based on the spectrophotometric G6PD activity was used for measuring chromate inhibition and sequencing of the G6PD gene. Of 165 included females, 114 were suspected to have heterozygous deficiency. From 75 females, an extra sample was obtained. In this group, mutation analysis detected 27 heterozygously deficient females. The sensitivity of spectrophotometry, cytofluorometry, and chromate inhibition was calculated to be 0.52 (confidence interval [CI]: 0.32-0.71), 0.85 (CI: 0.66-0.96), and 0.96 (CI: 0.71-1.00, respectively, and the specificity was 1.00 (CI: 0.93-1.00), 0.88 (CI: 0.75-0.95), and 0.98 (CI: 0.89-1.00), respectively. Heterozygously G6PD-deficient females with a larger percentage of G6PD-sufficient RBCs are missed by routine methods measuring total G6PD activity. However, the majority of these females can be detected with both chromate inhibition and cytofluorometry.
Collapse
Affiliation(s)
- Anna L. Peters
- Department of Intensive Care, Academic Medical Centre, Amsterdam, The Netherlands
| | - Martijn Veldthuis
- Department of Blood Cell Research, Sanquin Amsterdam, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Department of Blood Cell Research, Sanquin Amsterdam, Amsterdam, The Netherlands
| | - Patrick M.M. Bossuyt
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, Amsterdam, The Netherlands
| | - Alexander P.J. Vlaar
- Department of Intensive Care, Academic Medical Centre, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Amsterdam, Amsterdam, The Netherlands
| | - Dirk de Korte
- Department of Blood Cell Research, Sanquin Amsterdam, Amsterdam, The Netherlands
| | | | - Rob van Zwieten
- Department of Blood Cell Research, Sanquin Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
63
|
Diken ME, Doğan S, Turhan Y, Doğan M. Biological properties of PMMA/nHAp and PMMA/3-APT-nHAp nanocomposites. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1378885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mehmet Emin Diken
- Department of Science and Technology, Application and Research Center, Balıkesir University, Balikesir, Turkey
| | - Serap Doğan
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Balıkesir University, Balikesir, Turkey
| | - Yasemin Turhan
- Department of Chemistry, Faculty of Science and Literature, Balıkesir University, Balikesir, Turkey
| | - Mehmet Doğan
- Department of Chemistry, Faculty of Science and Literature, Balıkesir University, Balikesir, Turkey
| |
Collapse
|
64
|
Liu C, Liu B, Zhang EL, Liao WT, Liu J, Sun BD, Xu G, Chen J, Gao YQ. Elevated pentose phosphate pathway is involved in the recovery of hypoxia‑induced erythrocytosis. Mol Med Rep 2017; 16:9441-9448. [PMID: 29039604 PMCID: PMC5780001 DOI: 10.3892/mmr.2017.7801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/27/2017] [Indexed: 12/20/2022] Open
Abstract
As a typical model of hypoxia-induced excessive erythrocytosis, high altitude polycythemia (HAPC) results in microcirculation disturbance, aggravates tissue hypoxia and results in a severe clinical outcome, without any effective intervention methods except for returning to an oxygen-rich environment. The present study aimed to explore potential therapeutic targets which may participate in the recovery of HAPC by studying the mechanisms of reducing the hemoglobin (HB) concentration during re-oxygenation. A total of 14 and 13 subjects were recruited over a 5,300 m distance and 5,170 m area. The patients were classified into HAPC or control groups based on their HB value. Plasma samples were collected on the day when they finished their stay in plateau for a year, and on the 180th day following their reaching in plain. Metabolic profiling was conducted by UPLC-QTOF/MS. MetaboAnalyst platform was performed to explore the most perturbed metabolic pathways. A panel of differential metabolites were obtained in the recovery phase of HAPC and control groups. The present study identified the uniquely upregulated pentose phosphate pathway in HAPC subjects, along with a significantly decreased HB level. The findings were verified via a direct comparison between HAPC and control subjects at a high altitude. An increased pentose phosphate pathway was identified in control groups compared with HAPC subjects. An elevated pentose phosphate pathway may therefore participate in the recovery of HAPC, whereas a downregulated pentose phosphate pathway may contribute to hypoxia-induced erythrocytosis. The results of the present study provide potential therapeutic strategies and novel insights into the pathogenesis of hypoxia-induced polycythemia.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Bao Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Er-Long Zhang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Wen-Ting Liao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jie Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Bing-Da Sun
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Gang Xu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jian Chen
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yu-Qi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
65
|
Gong ZH, Tian GL, Huang QW, Wang YM, Xu HP. Reduced glutathione and glutathione disulfide in the blood of glucose-6-phosphate dehydrogenase-deficient newborns. BMC Pediatr 2017; 17:172. [PMID: 28728551 PMCID: PMC5520230 DOI: 10.1186/s12887-017-0920-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 07/05/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency is commonly detected during mass screening for neonatal disease. We developed a method to measure reduced glutathione (GSH) and glutathione disulfide (GSSG) using tandem mass spectrometry (MS/MS) for detecting G6PD deficiency. METHODS The concentration of GSH and the GSH/GSSG ratio in newborn dry-blood-spot (DBS) screening and in blood plus sodium citrate for test confirmation were examined by MS/MS using labeled glycine as an internal standard. RESULTS G6PD-deficient newborns had a lower GSH content (242.9 ± 15.9 μmol/L)and GSH/GSSG ratio (14.9 ± 7.2) than neonatal controls (370.0 ± 53.2 μmol/L and 46.7 ± 19.6, respectively). Although the results showed a significance of P < 0.001 for DBS samples plus sodium citrate that were examined the first day after preparation, there were no significant differences in the mean GSH concentration and GSH/GSSG ratio between the G6PD deficiency-positive and negative groups when examined three days after sample preparation. CONCLUSION The concentration of GSH and the ratio of GSH/GSSG in blood measured using MS/MS on the first day of sample preparation are consistent with G6PD activity and are helpful for diagnosing G6PD deficiency.
Collapse
Affiliation(s)
- Zhen-Hua Gong
- Department of general surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, road, West Lane 1400, number 24. Shanghai, Beijing, 200040, China.
| | - Guo-Li Tian
- Neonatal screening center, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qi-Wei Huang
- Department of neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Min Wang
- Neonatal screening center, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hong-Ping Xu
- Neonatal screening center, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
66
|
Williams AC, Hill LJ. Meat and Nicotinamide: A Causal Role in Human Evolution, History, and Demographics. Int J Tryptophan Res 2017; 10:1178646917704661. [PMID: 28579800 PMCID: PMC5417583 DOI: 10.1177/1178646917704661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 01/15/2023] Open
Abstract
Hunting for meat was a critical step in all animal and human evolution. A key brain-trophic element in meat is vitamin B3 / nicotinamide. The supply of meat and nicotinamide steadily increased from the Cambrian origin of animal predators ratcheting ever larger brains. This culminated in the 3-million-year evolution of Homo sapiens and our overall demographic success. We view human evolution, recent history, and agricultural and demographic transitions in the light of meat and nicotinamide intake. A biochemical and immunological switch is highlighted that affects fertility in the 'de novo' tryptophan-to-kynurenine-nicotinamide 'immune tolerance' pathway. Longevity relates to nicotinamide adenine dinucleotide consumer pathways. High meat intake correlates with moderate fertility, high intelligence, good health, and longevity with consequent population stability, whereas low meat/high cereal intake (short of starvation) correlates with high fertility, disease, and population booms and busts. Too high a meat intake and fertility falls below replacement levels. Reducing variances in meat consumption might help stabilise population growth and improve human capital.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
67
|
Kuhn V, Diederich L, Keller TCS, Kramer CM, Lückstädt W, Panknin C, Suvorava T, Isakson BE, Kelm M, Cortese-Krott MM. Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia. Antioxid Redox Signal 2017; 26:718-742. [PMID: 27889956 PMCID: PMC5421513 DOI: 10.1089/ars.2016.6954] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Recent clinical evidence identified anemia to be correlated with severe complications of cardiovascular disease (CVD) such as bleeding, thromboembolic events, stroke, hypertension, arrhythmias, and inflammation, particularly in elderly patients. The underlying mechanisms of these complications are largely unidentified. Recent Advances: Previously, red blood cells (RBCs) were considered exclusively as transporters of oxygen and nutrients to the tissues. More recent experimental evidence indicates that RBCs are important interorgan communication systems with additional functions, including participation in control of systemic nitric oxide metabolism, redox regulation, blood rheology, and viscosity. In this article, we aim to revise and discuss the potential impact of these noncanonical functions of RBCs and their dysfunction in the cardiovascular system and in anemia. CRITICAL ISSUES The mechanistic links between changes of RBC functional properties and cardiovascular complications related to anemia have not been untangled so far. FUTURE DIRECTIONS To allow a better understanding of the complications associated with anemia in CVD, basic and translational science studies should be focused on identifying the role of noncanonical functions of RBCs in the cardiovascular system and on defining intrinsic and/or systemic dysfunction of RBCs in anemia and its relationship to CVD both in animal models and clinical settings. Antioxid. Redox Signal. 26, 718-742.
Collapse
Affiliation(s)
- Viktoria Kuhn
- 1 Cardiovascular Research Laboratory, Division of Cardiology, Pneumology, and Vascular Medicine, Medical Faculty, Heinrich Heine University of Düsseldorf , Düsseldorf, Germany
| | - Lukas Diederich
- 1 Cardiovascular Research Laboratory, Division of Cardiology, Pneumology, and Vascular Medicine, Medical Faculty, Heinrich Heine University of Düsseldorf , Düsseldorf, Germany
| | - T C Stevenson Keller
- 2 Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Christian M Kramer
- 1 Cardiovascular Research Laboratory, Division of Cardiology, Pneumology, and Vascular Medicine, Medical Faculty, Heinrich Heine University of Düsseldorf , Düsseldorf, Germany
| | - Wiebke Lückstädt
- 1 Cardiovascular Research Laboratory, Division of Cardiology, Pneumology, and Vascular Medicine, Medical Faculty, Heinrich Heine University of Düsseldorf , Düsseldorf, Germany
| | - Christina Panknin
- 1 Cardiovascular Research Laboratory, Division of Cardiology, Pneumology, and Vascular Medicine, Medical Faculty, Heinrich Heine University of Düsseldorf , Düsseldorf, Germany
| | - Tatsiana Suvorava
- 1 Cardiovascular Research Laboratory, Division of Cardiology, Pneumology, and Vascular Medicine, Medical Faculty, Heinrich Heine University of Düsseldorf , Düsseldorf, Germany
| | - Brant E Isakson
- 2 Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Malte Kelm
- 1 Cardiovascular Research Laboratory, Division of Cardiology, Pneumology, and Vascular Medicine, Medical Faculty, Heinrich Heine University of Düsseldorf , Düsseldorf, Germany
| | - Miriam M Cortese-Krott
- 1 Cardiovascular Research Laboratory, Division of Cardiology, Pneumology, and Vascular Medicine, Medical Faculty, Heinrich Heine University of Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
68
|
da Silva DGH, Belini Junior E, de Souza Torres L, Okumura JV, Marcel Barberino W, Garcia de Oliveira R, Urbinatti Teixeira V, Lopes de Castro Lobo C, Alves de Almeida E, Bonini-Domingos CR. Impact of genetic polymorphisms in key enzymes of homocysteine metabolism on the pathophysiology of sickle cell anemia. Free Radic Biol Med 2017; 106:53-61. [PMID: 28188925 DOI: 10.1016/j.freeradbiomed.2017.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/20/2017] [Accepted: 02/07/2017] [Indexed: 01/08/2023]
Abstract
This work aimed at studying a possible influence of methylenetetrahydrofolate reductase (MTHFR; c. 677C>T) and cystathionine β-synthase (CBS; 844ins68) polymorphisms on overall oxidative status of sickle cell anemia (SCA) patients and on routine markers, correlating them with hydroxycarbamide (HC) treatment. We evaluated 95 unrelated and diagnosed SCA patients. All patients received a prophylactic treatment with folic acid of 5mg/day, while 41 (43.2%) of them were under hydroxycarbamide (HC) treatment (average dose: 22mg/kg/day). MTHFR and CBS polymorphisms were identified by Polymerase Chain Reaction. Biochemical parameters were measured using spectrophotometric and chromatographic methods. Routine markers were developed by specialized laboratory. We did not find any effect of 677T and "I" allele combination on the biomarkers evaluated. On the other hand, MTHFR 677T mutation was related to a depletion of antioxidant capacity, according to the decreased catalase activity and a reduction about 30% of glutathione levels. Moreover, the presence of the insertion was related to about 23% less biomolecule oxidation levels and lower monocytes count, but about 14% higher lactate dehydrogenase activity. These findings may contribute to highlight that the MTHFR and CBS polymorphisms involvement in SCA pathophysiology is likely to be far more complex than it was explored to date.
Collapse
Affiliation(s)
- Danilo Grünig Humberto da Silva
- UNESP - Sao Paulo State University, Department of Biology, Hemoglobin and Hematologic Genetic Diseases Laboratory, Sao Paulo, Brazil; UNESP - Sao Paulo State University, Department of Chemistry and Environmental Sciences, Sao Paulo, Brazil.
| | - Edis Belini Junior
- UNESP - Sao Paulo State University, Department of Biology, Hemoglobin and Hematologic Genetic Diseases Laboratory, Sao Paulo, Brazil
| | - Lidiane de Souza Torres
- UNESP - Sao Paulo State University, Department of Biology, Hemoglobin and Hematologic Genetic Diseases Laboratory, Sao Paulo, Brazil
| | - Jessika Viviani Okumura
- UNESP - Sao Paulo State University, Department of Biology, Hemoglobin and Hematologic Genetic Diseases Laboratory, Sao Paulo, Brazil
| | - Willian Marcel Barberino
- UNESP - Sao Paulo State University, Department of Biology, Hemoglobin and Hematologic Genetic Diseases Laboratory, Sao Paulo, Brazil
| | - Renan Garcia de Oliveira
- UNESP - Sao Paulo State University, Department of Biology, Hemoglobin and Hematologic Genetic Diseases Laboratory, Sao Paulo, Brazil
| | - Vanessa Urbinatti Teixeira
- UNESP - Sao Paulo State University, Department of Biology, Hemoglobin and Hematologic Genetic Diseases Laboratory, Sao Paulo, Brazil
| | | | - Eduardo Alves de Almeida
- UNESP - Sao Paulo State University, Department of Chemistry and Environmental Sciences, Sao Paulo, Brazil; FURB - Fundação Universidade Regional de Blumenau, Department of Natural Sciences, Santa Catarina, Brazil
| | - Claudia Regina Bonini-Domingos
- UNESP - Sao Paulo State University, Department of Biology, Hemoglobin and Hematologic Genetic Diseases Laboratory, Sao Paulo, Brazil
| |
Collapse
|
69
|
Klei TRL, Meinderts SM, van den Berg TK, van Bruggen R. From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis. Front Immunol 2017; 8:73. [PMID: 28210260 PMCID: PMC5288342 DOI: 10.3389/fimmu.2017.00073] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Erythropoiesis is a highly regulated process where sequential events ensure the proper differentiation of hematopoietic stem cells into, ultimately, red blood cells (RBCs). Macrophages in the bone marrow play an important role in hematopoiesis by providing signals that induce differentiation and proliferation of the earliest committed erythroid progenitors. Subsequent differentiation toward the erythroblast stage is accompanied by the formation of so-called erythroblastic islands where a central macrophage provides further cues to induce erythroblast differentiation, expansion, and hemoglobinization. Finally, erythroblasts extrude their nuclei that are phagocytosed by macrophages whereas the reticulocytes are released into the circulation. While in circulation, RBCs slowly accumulate damage that is repaired by macrophages of the spleen. Finally, after 120 days of circulation, senescent RBCs are removed from the circulation by splenic and liver macrophages. Macrophages are thus important for RBCs throughout their lifespan. Finally, in a range of diseases, the delicate interplay between macrophages and both developing and mature RBCs is disturbed. Here, we review the current knowledge on the contribution of macrophages to erythropoiesis and erythrophagocytosis in health and disease.
Collapse
Affiliation(s)
- Thomas R L Klei
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Sanne M Meinderts
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
70
|
Ali SN, Ahmad MK, Mahmood R. Sodium chlorate, a herbicide and major water disinfectant byproduct, generates reactive oxygen species and induces oxidative damage in human erythrocytes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1898-1909. [PMID: 27797001 DOI: 10.1007/s11356-016-7980-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Sodium chlorate (NaClO3) is a widely used non-selective herbicide. It is also generated as a byproduct during disinfection of drinking water by chlorine dioxide. In the present work, the effects of NaClO3 on human erythrocytes were studied under in vitro conditions. Incubation of erythrocytes with different concentrations of NaClO3 at 37 °C for 90 min resulted in significant hemolysis. Cell lysates were prepared from NaClO3-treated and untreated (control) erythrocytes and assayed for various biochemical parameters. Methemoglobin levels were significantly increased and methemoglobin reductase activity was reduced upon NaClO3 treatment. There was a significant increase in protein oxidation and lipid peroxidation with a decrease in reduced glutathione and total sulfhydryl content. This suggests the induction of oxidative stress in erythrocytes upon exposure to NaClO3. The occurrence of oxidative stress was confirmed by significantly increased generation of reactive oxygen species and lowered antioxidant response of the cells. NaClO3 treatment also increased nitric oxide levels showing induction of nitrosative stress. The activities of major antioxidant and membrane-bound and metabolic enzymes were significantly altered upon incubation of erythrocytes with NaClO3. The erythrocytes became more osmotically fragile while electron microscopic images showed gross morphological alterations in NaClO3-treated cells. These results show that NaClO3 induces oxidative stress in human erythrocytes, which results in extensive membrane damage and lowers the antioxidant response.
Collapse
Affiliation(s)
- Shaikh Nisar Ali
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Mir Kaisar Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India.
| |
Collapse
|
71
|
Preanalytic of total antioxidant capacity assays performed in serum, plasma, urine and saliva. Clin Biochem 2016; 50:356-363. [PMID: 27919600 DOI: 10.1016/j.clinbiochem.2016.11.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 01/07/2023]
Abstract
The investigation of oxidative stress (OS), its mechanisms and connections with human diseases, is a topic of interest with more than 36,000 PubMed citations to date. The OS can be approached either from the perspective of pro-oxidation, either of anti-oxidation, and both can be investigated considering individual chemical constituents or their pooled effect. Actually, as it is for any laboratory assay, whatever source of variability introduces a bias potentially undermining the test results regardless of its application. In this regard, the effect of sample collection, handling and storage - that collectively constitute the preanalytical phase - on the likeliness of the measured value represent a major challenge for any researcher. In this review, we will deal with methods devised to assess the so-called total antioxidant capacity (TAC), which represents the sinking capability expressed toward a given load of pro-oxidant species. Thus, it will be presented the information available to date on the preanalytical phase of TAS assessment, focusing on the issues that strictly concern the preservation of antioxidants within the specimen. Obviously, preanalytic should represent a first concern in any laboratory research, to which this work could contribute giving practical indications and raising the researchers' awareness about the issue.
Collapse
|
72
|
Sarker SK, Islam MT, Eckhoff G, Hossain MA, Qadri SK, Muraduzzaman AKM, Bhuyan GS, Shahidullah M, Mannan MA, Tahura S, Hussain M, Akhter S, Nahar N, Shirin T, Qadri F, Mannoor K. Molecular Analysis of Glucose-6-Phosphate Dehydrogenase Gene Mutations in Bangladeshi Individuals. PLoS One 2016; 11:e0166977. [PMID: 27880809 PMCID: PMC5120827 DOI: 10.1371/journal.pone.0166977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/06/2016] [Indexed: 11/25/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked human enzyme defect of red blood cells (RBCs). Individuals with this gene defect appear normal until exposed to oxidative stress which induces hemolysis. Consumption of certain foods such as fava beans, legumes; infection with bacteria or virus; and use of certain drugs such as primaquine, sulfa drugs etc. may result in lysis of RBCs in G6PD deficient individuals. The genetic defect that causes G6PD deficiency has been identified mostly as single base missense mutations. One hundred and sixty G6PD gene mutations, which lead to amino acid substitutions, have been described worldwide. The purpose of this study was to detect G6PD gene mutations in hospital-based settings in the local population of Dhaka city, Bangladesh. Qualitative fluorescent spot test and quantitative enzyme activity measurement using RANDOX G6PDH kit were performed for analysis of blood specimens and detection of G6PD-deficient participants. For G6PD-deficient samples, PCR was done with six sets of primers specific for G6PD gene. Automated Sanger sequencing of the PCR products was performed to identify the mutations in the gene. Based on fluorescence spot test and quantitative enzyme assay followed by G6PD gene sequencing, 12 specimens (11 males and one female) among 121 clinically suspected patient-specimens were found to be deficient, suggesting a frequency of 9.9% G6PD deficiency. Sequencing of the G6PD-deficient samples revealed c.C131G substitution (exon-3: Ala44Gly) in six samples, c.G487A substitution (exon-6:Gly163Ser) in five samples and c.G949A substitution (exon-9: Glu317Lys) of coding sequence in one sample. These mutations either affect NADP binding or disrupt protein structure. From the study it appears that Ala44Gly and Gly163Ser are the most common G6PD mutations in Dhaka, Bangladesh. This is the first study of G6PD mutations in Bangladesh.
Collapse
Affiliation(s)
- Suprovath Kumar Sarker
- Laboratory of Genetics and Genomics, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh
| | - Md Tarikul Islam
- Laboratory of Genetics and Genomics, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh
| | - Grace Eckhoff
- Laboratory of Genetics and Genomics, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh
| | - Mohammad Amir Hossain
- Laboratory of Genetics and Genomics, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh
| | - Syeda Kashfi Qadri
- Department of Paediatric Medicine, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore, Singapore
| | - A. K. M. Muraduzzaman
- Department of Virology, Institute of Epidemiology, Disease Control and Research, Mohakhali, Dhaka, Bangladesh
| | - Golam Sarower Bhuyan
- Laboratory of Genetics and Genomics, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh
| | - Mohammod Shahidullah
- Department of Neonatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Mohammad Abdul Mannan
- Department of Neonatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Sarabon Tahura
- Department of Paediatric Medicine, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Manzoor Hussain
- Department of Paediatric Medicine, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Shahida Akhter
- Department of Paediatrics, Bangladesh Institute of Research & Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Shahbag, Dhaka, Bangladesh
| | - Nazmun Nahar
- Department of Paediatrics, Bangladesh Institute of Research & Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Shahbag, Dhaka, Bangladesh
| | - Tahmina Shirin
- Department of Virology, Institute of Epidemiology, Disease Control and Research, Mohakhali, Dhaka, Bangladesh
| | - Firdausi Qadri
- Laboratory of Genetics and Genomics, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh
- Department of Enteric and Respiratory Infectious Diseases, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Kaiissar Mannoor
- Laboratory of Genetics and Genomics, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, Bangladesh
- * E-mail:
| |
Collapse
|
73
|
Signolet I, Chenouard R, Oca F, Barth M, Reynier P, Denis MC, Simard G. Recurrent Isolated Neonatal Hemolytic Anemia: Think About Glutathione Synthetase Deficiency. Pediatrics 2016; 138:peds.2015-4324. [PMID: 27581854 DOI: 10.1542/peds.2015-4324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 11/24/2022] Open
Abstract
Hemolytic anemia (HA) of the newborn should be considered in cases of rapidly developing, severe, or persistent hyperbilirubinemia. Several causes of corpuscular hemolysis have been described, among which red blood cell enzyme defects are of particular concern. We report a rare case of red blood cell enzyme defect in a male infant, who presented during his first months of life with recurrent and isolated neonatal hemolysis. All main causes were ruled out. At 6.5 months of age, the patient presented with gastroenteritis requiring hospitalization; fortuitously, urine organic acid chromatography revealed a large peak of 5-oxoproline. Before the association between HA and 5-oxoprolinuria was noted, glutathione synthetase deficiency was suspected and confirmed by a low glutathione synthetase concentration and a collapse of glutathione synthetase activity in erythrocytes. Moreover, molecular diagnosis revealed 2 mutations in the glutathione synthetase gene: a previously reported missense mutation (c.[656A>G]; p.[Asp219Gly]) and a mutation not yet described in the binding site of the enzyme (c.[902T>C]; p.[Leu301Pro]). However, 15 days later, a control sample revealed no signs of 5-oxoprolinuria and the clinical history discovered administration of acetaminophen in the 48 hours before hospitalization. Thus, in this patient, acetaminophen exposure allowed the diagnosis of a mild form of glutathione synthetase deficiency, characterized by isolated HA. Early diagnosis is important because treatment with bicarbonate, vitamins C and E, and elimination of trigger factors are recommended to improve long-term outcomes. Glutathione synthetase deficiency should be screened for in cases of unexplained newborn HA.
Collapse
Affiliation(s)
- Isabelle Signolet
- Department of Biochemistry and Genetics, University Hospital, Angers, France
| | - Rachel Chenouard
- Department of Biochemistry and Genetics, University Hospital, Angers, France
| | - Florine Oca
- Department of Biochemistry and Genetics, University Hospital, Angers, France
| | - Magalie Barth
- Department of Biochemistry and Genetics, University Hospital, Angers, France
| | - Pascal Reynier
- Department of Biochemistry and Genetics, University Hospital, Angers, France
| | | | - Gilles Simard
- Department of Biochemistry and Genetics, University Hospital, Angers, France
| |
Collapse
|
74
|
Italia K, Chandrakala S, Ghosh K, Colah R. Can hydroxyurea serve as a free radical scavenger and reduce iron overload in β-thalassemia patients? Free Radic Res 2016; 50:959-65. [DOI: 10.1080/10715762.2016.1209497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
75
|
Hermann PB, Pianovski MAD, Henneberg R, Nascimento AJ, Leonart MSS. Erythrocyte oxidative stress markers in children with sickle cell disease. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2016. [DOI: 10.1016/j.jpedp.2016.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
76
|
Erythrocyte oxidative stress markers in children with sickle cell disease. J Pediatr (Rio J) 2016; 92:394-9. [PMID: 27117632 DOI: 10.1016/j.jped.2015.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE To determine eight parameters of oxidative stress markers in erythrocytes from children with sickle cell disease and compare with the same parameters in erythrocytes from healthy children, since oxidative stress plays an important role in the pathophysiology of sickle cell disease and because this disease is a serious public health problem in many countries. METHODS Blood samples were obtained from 45 children with sickle cell disease (21 males and 24 females with a mean age of 9 years; range: 3-13 years) and 280 blood samples were obtained from children without hemoglobinopathies (137 males and 143 females with a mean age of 10 years; range: 8-11 years), as a control group. All blood samples were analyzed for methemoglobin, reduced glutathione, thiobarbituric acid reactive substances, percentage of hemolysis, reactive oxygen species, and activity of the enzymes glucose 6-phosphate dehydrogenase, superoxide dismutase, and catalase. Data were analyzed using Student's t-test and were expressed as the mean±standard deviation. A p-value of <0.05 was considered significant. RESULTS Significant differences were observed between children with sickle cell disease and the control group for the parameters methemoglobin, thiobarbituric acid reactive substances, hemolysis, glucose 6-phosphate dehydrogenase activity, and reactive oxygen species, with higher levels in the patients than in the controls. CONCLUSIONS Oxidative stress parameters in children's erythrocytes were determined using simple laboratory methods with small volumes of blood; these biomarkers can be useful to evaluate disease progression and outcomes in patients.
Collapse
|
77
|
Tzounakas VL, Kriebardis AG, Papassideri IS, Antonelou MH. Donor-variation effect on red blood cell storage lesion: A close relationship emerges. Proteomics Clin Appl 2016; 10:791-804. [PMID: 27095294 DOI: 10.1002/prca.201500128] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/20/2022]
Abstract
Although the molecular pathways leading to the progressive deterioration of stored red blood cells (RBC storage lesion) and the clinical relevance of storage-induced changes remain uncertain, substantial donor-specific variability in RBC performance during storage, and posttransfusion has been established ("donor-variation effect"). In-bag hemolysis and numerous properties of the RBC units that may affect transfusion efficacy have proved to be strongly donor-specific. Donor-variation effect may lead to the production of highly unequal blood labile products even when similar storage strategy and duration are applied. Genetic, undiagnosed/subclinical medical conditions and lifestyle factors that affect RBC characteristics at baseline, including RBC lifespan, energy metabolism, and sensitivity to oxidative stress, are all likely to influence the storage capacity of individual donors' cells, although not evident by the donor's health or hematological status at blood donation. Consequently, baseline characteristics of the donors, such as membrane peroxiredoxin-2 and serum uric acid concentration, have been proposed as candidate biomarkers of storage quality. This review article focuses on specific factors that might contribute to the donor-variation effect and emphasizes the emerging need for using omics-based technologies in association with in vitro and in vivo transfusion models and clinical trials to discover biomarkers of storage quality and posttransfusion recovery in donor blood.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens, Greece
| | - Anastasios G Kriebardis
- Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological and Educational Institute of Athens, Greece
| | | | - Marianna H Antonelou
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens, Greece
| |
Collapse
|
78
|
Lin HR, Wu YH, Yen WC, Yang CM, Chiu DTY. Diminished COX-2/PGE2-Mediated Antiviral Response Due to Impaired NOX/MAPK Signaling in G6PD-Knockdown Lung Epithelial Cells. PLoS One 2016; 11:e0153462. [PMID: 27097228 PMCID: PMC4838297 DOI: 10.1371/journal.pone.0153462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/30/2016] [Indexed: 11/18/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) provides the reducing agent NADPH to meet the cellular needs for reductive biosynthesis and the maintenance of redox homeostasis. G6PD-deficient cells experience a high level of oxidative stress and an increased susceptibility to viral infections. Cyclooxygenase-2 (COX-2) is a key mediator in the regulation of viral replication and inflammatory response. In the current study, the role of G6PD on the inflammatory response was determined in both scramble control and G6PD-knockdown (G6PD-kd) A549 cells upon tumor necrosis factor-α (TNF-α) stimulation. A decreased expression pattern of induced COX-2 and reduced production of downstream PGE2 occurred upon TNF-α stimulation in G6PD-kd A549 cells compared with scramble control A549 cells. TNF-α-induced antiviral activity revealed that decreased COX-2 expression enhanced the susceptibility to coronavirus 229E infection in G6PD-kd A549 cells and was a result of the decreased phosphorylation levels of MAPK (p38 and ERK1/2) and NF-κB. The impaired inflammatory response in G6PD-kd A549 cells was found to be mediated through NADPH oxidase (NOX) signaling as elucidated by cell pretreatment with a NOX2-siRNA or NOX inhibitor, diphenyleneiodonium chloride (DPI). In addition, NOX activity with TNF-α treatment in G6PD-kd A549 cells was not up-regulated and was coupled with a decrease in NOX subunit expression at the transcriptional level, implying that TNF-α-mediated NOX signaling requires the participation of G6PD. Together, these data suggest that G6PD deficiency affects the cellular inflammatory response and the decreased TNF-α-mediated antiviral response in G6PD-kd A549 cells is a result of dysregulated NOX/MAPK/NF-κB/COX-2 signaling.
Collapse
Affiliation(s)
- Hsin-Ru Lin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Yi-Hsuan Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wei-Chen Yen
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chuen-Mao Yang
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Department of physiology and pharmacology, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- * E-mail: (DTYC); (CMY)
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Department of Pediatric Hematology, Chang Gung Memorial Hospital, Lin-Kou, Taiwan
- * E-mail: (DTYC); (CMY)
| |
Collapse
|
79
|
El-Bialy BE, Abdeen EE, El-Borai NB, El-Diasty EM. Experimental Studies on Some Immunotoxicological Aspects of Aflatoxins Containing Diet and Protective Effect of Bee Pollen Dietary Supplement. Pak J Biol Sci 2016; 19:26-35. [PMID: 26930797 DOI: 10.3923/pjbs.2016.26.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aflatoxins (AFs), widely distributed food-borne mycotoxins, affect quality and safety of food and cause economic losses in livestock. In this study, the protective effect of Bee Pollen (BP) against some immunotoxic hazards elucidated from eating of AFs-containing diet was investigated in Wistar rats. Rats were randomly classified intofour groups and treated for 30 days, Group 1; control negative, Group 2; Total AFs (3 mg kg(-1) basal diet), Group 3; BP (20 g kg(-1) basal diet) and Group 4; AFs+BP in basal diet. The immunoprotective effect of BP was revealed in terms of increasing (relative to levels seen in Group 2 rats that consumed the AFs diet) serum total protein and globulin levels, restored normal neutrophil (PMN)/lymphocyte ratio, increased PMN phagocytic activity and increased lymphocyte proliferative capacity. Also, the use of the BP reduced spleen H2O2 levels and increased GSH content while maintaining normal levels of NO formation. Histopathologic analysis showed thatthe AFs caused lymphocytic depletion in the spleen; however, BP induced lymphocytic hyperplasia and reduced the levels of AFs-inducible cellular exhaustion or depletion. These results provide evidence of a protective effect of BP against some immunotoxic actions induced in situ by consumption of AFs.
Collapse
|
80
|
Gürbüzel M, Sayar I, Cankaya M, Gürbüzel A, Demirtas L, Bakirci EM, Capoglu I. The preventive role of levosimendan against bleomycin-induced pulmonary fibrosis in rats. Pharmacol Rep 2016; 68:378-82. [DOI: 10.1016/j.pharep.2015.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023]
|
81
|
Antioxidant comparative effects of two grape pomace Mexican extracts from vineyards on erythrocytes. Food Chem 2016; 194:1081-8. [DOI: 10.1016/j.foodchem.2015.08.131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/21/2015] [Accepted: 08/29/2015] [Indexed: 11/18/2022]
|
82
|
Research on garlic capsule and selenium-vitamin A, vitamin B, vitamin C applied in therapy of acute hepatocellular damage in a rat model. JOURNAL OF ACUTE DISEASE 2015. [DOI: 10.1016/j.joad.2015.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
83
|
Zhang J, Tan K, Meng X, Yang W, Wei H, Sun R, Yin L, Pu Y. Overexpression of G6PD and HSP90 Beta in Mice with Benzene Exposure Revealed by Serum Peptidome Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:11241-53. [PMID: 26378550 PMCID: PMC4586672 DOI: 10.3390/ijerph120911241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/15/2015] [Accepted: 09/01/2015] [Indexed: 12/04/2022]
Abstract
The small peptides representation of the original proteins are a valuable source of information that can be used as biomarkers involved in toxicity mechanism for chemical exposure. The aim of this study is to investigate serum peptide biomarkers of benzene exposure. C57BL/6 mice were enrolled into control group and benzene groups of 150 and 300 mg/kg/d Serum peptides were identified by mass spectrometry using an assisted laser desorption ionization/time of flight mass spectrometry (MS). Differential peptide spectra were obtained by tandem mass spectrometry and analyzed by searching the International Protein Index using the Sequest program. Forty-one peptide peaks were found in the range of 1000-10,000 Da molecular weight. Among them, seven peaks showed significantly different expression between exposure groups and control group. Two peptide peaks (1231.2 and 1241.8), which showed a two-fold increase in expression, were sequenced and confirmed as glucose 6-phosphate dehydrogenase (G6PD) and heat shock protein 90 Beta (HSP90 Beta), respectively. Furthermore, the expression of the two proteins in liver cells showed the same trend as in serum. In conclusion, G6PD and HSP90 beta might be the candidate serum biomarkers of benzene exposure. It also provided possible clues for the molecular mechanism of benzene-induced oxidative stress.
Collapse
Affiliation(s)
- Juan Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Kehong Tan
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Xing Meng
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Wenwen Yang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Haiyan Wei
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
84
|
Voskou S, Aslan M, Fanis P, Phylactides M, Kleanthous M. Oxidative stress in β-thalassaemia and sickle cell disease. Redox Biol 2015; 6:226-239. [PMID: 26285072 PMCID: PMC4543215 DOI: 10.1016/j.redox.2015.07.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022] Open
Abstract
Sickle cell disease and β-thalassaemia are inherited haemoglobinopathies resulting in structural and quantitative changes in the β-globin chain. These changes lead to instability of the generated haemoglobin or to globin chain imbalance, which in turn impact the oxidative environment both intracellularly and extracellularly. The ensuing oxidative stress and the inability of the body to adequately overcome it are, to a large extent, responsible for the pathophysiology of these diseases. This article provides an overview of the main players and control mechanisms involved in the establishment of oxidative stress in these haemoglobinopathies.
Collapse
Affiliation(s)
- S Voskou
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - M Aslan
- Akdeniz University, Faculty of Medicine, Department of Medical Biochemistry, Antalya, Turkey
| | - P Fanis
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - M Phylactides
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| | - M Kleanthous
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
85
|
Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 2015; 6:183-197. [PMID: 26233704 PMCID: PMC4534574 DOI: 10.1016/j.redox.2015.07.008] [Citation(s) in RCA: 764] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 02/08/2023] Open
Abstract
Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. Antioxidant responses are crucial for both redox signaling and redox damage. Glutathione-mediated reactions and Nrf2-Keap1 pathway are key antioxidant responses. Redox-related post-translational modifications activate specific signaling pathways. Redox-sensitive microRNAs contribute to redox-mediated gene expression regulation. ER stress and ischemia-reperfusion are antioxidant-related pathophysiological events.
Collapse
Affiliation(s)
- Cristina Espinosa-Diez
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Aapistie 7, University of Oulu, FI-90230 Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Aapistie 7, University of Oulu, FI-90230 Oulu, Finland
| | - Patricia Sánchez-Pérez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Susana Cadenas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
86
|
Tang HY, Ho HY, Wu PR, Chen SH, Kuypers FA, Cheng ML, Chiu DTY. Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance. Antioxid Redox Signal 2015; 22:744-59. [PMID: 25556665 PMCID: PMC4361223 DOI: 10.1089/ars.2014.6142] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Glucose 6-phosphate dehydrogenase (G6PD) is essential for maintenance of nicotinamide dinucleotide hydrogen phosphate (NADPH) levels and redox homeostasis. A number of drugs, such as antimalarial drugs, act to induce reactive oxygen species and hemolytic crisis in G6PD-deficient patients. We used diamide (DIA) to mimic drug-induced oxidative stress and studied how these drugs affect cellular metabolism using a metabolomic approach. RESULTS There are a few differences in metabolome between red blood cells (RBCs) from normal and G6PD-deficient individuals. DIA causes modest changes in normal RBC metabolism. In contrast, there are significant changes in various biochemical pathways, namely glutathione (GSH) metabolism, purine metabolism, and glycolysis, in G6PD-deficient cells. GSH depletion is concomitant with a shift in energy metabolism. Adenosine monophosphate (AMP) and adenosine diphosphate (ADP) accumulation activates AMP protein kinase (AMPK) and increases entry of glucose into glycolysis. However, inhibition of pyruvate kinase (PK) reduces the efficacy of energy production. Metabolic changes and protein oxidation occurs to a greater extent in G6PD-deficient RBCs than in normal cells, leading to severe irreversible loss of deformability of the former. INNOVATION AND CONCLUSION Normal and G6PD-deficient RBCs differ in their responses to oxidants. Normal cells have adequate NADPH regeneration for maintenance of GSH pool. In contrast, G6PD-deficient cells are unable to regenerate enough NADPH under a stressful situation, and switch to biosynthetic pathway for GSH supply. Rapid GSH exhaustion causes energy crisis and futile AMPK activation. Our findings suggest that drug-induced oxidative stress differentially affects metabolism and metabolite signaling in normal and G6PD-deficient cells. It also provides an insight into the pathophysiology of acute hemolytic anemia in G6PD-deficient patients.
Collapse
Affiliation(s)
- Hsiang-Yu Tang
- 1 Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Tao-yuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
87
|
Dietary methionine can sustain cytosolic redox homeostasis in the mouse liver. Nat Commun 2015; 6:6479. [PMID: 25790857 PMCID: PMC4369796 DOI: 10.1038/ncomms7479] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/02/2015] [Indexed: 01/28/2023] Open
Abstract
Across phyla, reduced nicotinamide adenine dinucleotide phosphate (NADPH) transfers intracellular reducing power to thioredoxin reductase-1 (TrxR1) and glutathione reductase (GR), thereby supporting fundamental housekeeping and antioxidant pathways. Here we show that a third, NADPH-independent, pathway can bypass the need for TrxR1 and GR in mammalian liver. Most mice genetically engineered to lack both TrxR1 and GR in all hepatocytes (“TR/GR-null livers”) remain long-term viable. TR/GR-null livers cannot reduce oxidized glutathione disulfide but still require continuous glutathione synthesis. Inhibition of cystathionine gamma-lyase causes rapid necrosis of TR/GR-null livers, indicating that methionine-fueled trans-sulfuration supplies the necessary cysteine precursor for glutathione synthesis via an NADPH-independent pathway. We further show that dietary methionine provides the cytosolic disulfide reducing power and all sulfur amino acids in TR/GR-null livers. Although NADPH is generally considered an essential reducing currency, these results indicate that hepatocytes can adequately sustain cytosolic redox homeostasis pathways using either NADPH or methionine.
Collapse
|
88
|
Bøyum A, Forstrøm RJ, Sefland I, Sand KL, Benestad HB. Intricacies of redoxome function demonstrated with a simple in vitro chemiluminescence method, with special reference to vitamin B12 as antioxidant. Scand J Immunol 2015; 80:390-7. [PMID: 25345916 PMCID: PMC4285856 DOI: 10.1111/sji.12220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 08/21/2014] [Indexed: 11/27/2022]
Abstract
The homeostatic control of the redox system (the redoxome) in mammalian cells depends upon a large number of interacting molecules, which tend to buffer the electronegativity of cells against oxidants or reductants. Some of these components kill – at high concentration – microbes and by-stander normal cells, elaborated by professional phagocytes. We examined whether a simple, in vitro chemiluminescence set-up, utilizing redox components from human polymorphonuclear neutrophils (PMN) and red blood cells (RBC), could clarify some unexplained workings of the redoxome. PMN or purified myeloperoxidase (MPO) triggers formation of reactive oxygen species (ROS), quantified by light emission from oxidized luminol. Both PMN and RBC can generate abundant amounts of ROS, necessitating the presence of a high-capacity redoxome to keep the cellular electronegativity within physiological limits. We obtained proof-of-principle evidence that our assay could assess redox effects, but also demonstrated the intricacies of redox reactions. Simple dose–responses were found, as for the PMN proteins S100A9 (A9) and S100A8 (A8), and the system also revealed the reducing capacity of vitamin B12 (Cbl) and lutein. However, increased concentrations of oxidants in the assay mixture could decrease the chemiluminescence. Even more remarkable, A9 and NaOCl together stimulated the MPO response, but alone they inhibited MPO chemiluminescence. Biphasic responses were also recorded for some dose–response set-ups and are tentatively explained by a ‘balance hypothesis’ for the redoxome.
Collapse
Affiliation(s)
- A Bøyum
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
89
|
van 't Erve TJ, Doskey CM, Wagner BA, Hess JR, Darbro BW, Ryckman KK, Murray JC, Raife TJ, Buettner GR. Heritability of glutathione and related metabolites in stored red blood cells. Free Radic Biol Med 2014; 76:107-13. [PMID: 25108189 PMCID: PMC4252477 DOI: 10.1016/j.freeradbiomed.2014.07.040] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/15/2014] [Accepted: 07/29/2014] [Indexed: 12/27/2022]
Abstract
Red blood cells (RBCs) collected for transfusion deteriorate during storage. This deterioration is termed the "RBC storage lesion." There is increasing concern over the safety, therapeutic efficacy, and toxicity of transfusing longer-stored units of blood. The severity of the RBC storage lesion is dependent on storage time and varies markedly between individuals. Oxidative damage is considered a significant factor in the development of the RBC storage lesion. In this study, the variability during storage and heritability of antioxidants and metabolites central to RBC integrity and function were investigated. In a classic twin study, we determined the heritability of glutathione (GSH), glutathione disulfide (GSSG), the status of the GSSG,2H(+)/2GSH couple (Ehc), and total glutathione (tGSH) in donated RBCs over 56 days of storage. Intracellular GSH and GSSG concentrations both decrease during storage (median net loss of 0.52 ± 0.63 mM (median ± SD) and 0.032 ± 0.107 mM, respectively, over 42 days). Taking into account the decline in pH, Ehc became more positive (oxidized) during storage (median net increase of 35 ± 16 mV). In our study population heritability estimates for GSH, GSSG, tGSH, and Ehc measured over 56 days of storage are 79, 60, 67, and, 75%, respectively. We conclude that susceptibility of stored RBCs to oxidative injury due to variations in the GSH redox buffer is highly variable among individual donors and strongly heritable. Identifying the genes that regulate the storage-related changes in this redox buffer could lead to the development of new methods to minimize the RBC storage lesion.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA
| | - Claire M Doskey
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA
| | - Brett A Wagner
- Free Radical and Radiation Biology Program, Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - John R Hess
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Benjamin W Darbro
- Department of Pediatrics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kelli K Ryckman
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey C Murray
- Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Thomas J Raife
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
90
|
Renella R, Schlehe JS, Selkoe DJ, Williams DA, LaVoie MJ. Genetic deletion of the GATA1-regulated protein α-synuclein reduces oxidative stress and nitric oxide synthase levels in mature erythrocytes. Am J Hematol 2014; 89:974-7. [PMID: 25043722 DOI: 10.1002/ajh.23796] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 01/10/2023]
Abstract
α-Synuclein is highly expressed in neural tissue and during erythropoiesis, where the key erythroid regulator GATA1 has been found to modulate its expression. While specific α-synuclein (SNCA) mutations are known to cause autosomal dominant familial Parkinson's disease, its wild-type function remains under debate. To investigate the role of α-synuclein in murine hematopoiesis and erythropoiesis, we utilized Snca knock-out mice and analyzed erythroid compartments for maturation defects, in vivo erythrocyte survival, and erythrocyte-based reactive oxygen species (ROS) and nitric oxide synthase (NOS) levels. Our findings show that while bone marrow and spleen erythropoiesis and peripheral blood erythrocyte survival in Snca(-/-) mice was comparable to controls, the levels of ROS and of NOS-2 were significantly decreased in mature erythrocytes in these animals. These results indicate a role for α-synuclein in regulating oxidative stress in erythrocytes in vivo and could open new avenues for the investigation of its function in non-neural tissue.
Collapse
Affiliation(s)
- Raffaele Renella
- Division of Hematology-Oncology; Boston Children's Hospital, Harvard Medical School; Boston Massachusetts
| | - Julia S. Schlehe
- Center for Neurologic Diseases; Department of Neurology; Brigham & Women's Hospital, Harvard Medical School; Boston Massachusetts
| | - Dennis J. Selkoe
- Center for Neurologic Diseases; Department of Neurology; Brigham & Women's Hospital, Harvard Medical School; Boston Massachusetts
| | - David A. Williams
- Division of Hematology-Oncology; Boston Children's Hospital, Harvard Medical School; Boston Massachusetts
| | - Matthew J. LaVoie
- Center for Neurologic Diseases; Department of Neurology; Brigham & Women's Hospital, Harvard Medical School; Boston Massachusetts
| |
Collapse
|
91
|
Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 2014; 90:927-63. [PMID: 25243985 PMCID: PMC4470864 DOI: 10.1111/brv.12140] [Citation(s) in RCA: 920] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/07/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner–Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the ‘Warburg effect’ of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and parasite infections, neurons, stem cell potency and cancer metabolism.
Collapse
Affiliation(s)
- Anna Stincone
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Alessandro Prigione
- Max Delbrueck Centre for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Thorsten Cramer
- Department of Gastroenterology and Hepatology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mirjam M C Wamelink
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Centre Amsterdam, De Boelelaaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Kate Campbell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Eric Cheung
- Cancer Research UK, Beatson Institute, Switchback Road, Glasgow G61 1BD, U.K
| | - Viridiana Olin-Sandoval
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Nana-Maria Grüning
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Antje Krüger
- Max Planck Institute for Molecular Genetics, Ihnestr 73, 14195 Berlin, Germany
| | - Mohammad Tauqeer Alam
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Markus A Keller
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Michael Breitenbach
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cancer Research UK Cambridge Research Institute (CRI), Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, U.K
| | - Joshua D Rabinowitz
- Department of Chemistry, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, 08544 NJ, U.S.A
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Division of Physiology and Metabolism, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7, U.K
| |
Collapse
|
92
|
Koralkova P, van Solinge WW, van Wijk R. Rare hereditary red blood cell enzymopathies associated with hemolytic anemia - pathophysiology, clinical aspects, and laboratory diagnosis. Int J Lab Hematol 2014; 36:388-97. [DOI: 10.1111/ijlh.12223] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/28/2014] [Indexed: 02/06/2023]
Affiliation(s)
- P. Koralkova
- Department of Biology; Faculty of Medicine and Dentistry; Palacky University; Olomouc Czech Republic
| | - W. W. van Solinge
- Department of Clinical Chemistry and Haematology; University Medical Center Utrecht; Utrecht the Netherlands
| | - R. van Wijk
- Department of Clinical Chemistry and Haematology; University Medical Center Utrecht; Utrecht the Netherlands
| |
Collapse
|