51
|
Barker‐Tejeda TC, Bazire R, Obeso D, Mera‐Berriatua L, Rosace D, Vazquez‐Cortes S, Ramos T, Rico MDP, Chivato T, Barbas C, Villaseñor A, Escribese MM, Fernández‐Rivas M, Blanco C, Barber D. Exploring novel systemic biomarker approaches in grass-pollen sublingual immunotherapy using omics. Allergy 2021; 76:1199-1212. [PMID: 32813887 PMCID: PMC8246889 DOI: 10.1111/all.14565] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
Background Sublingual allergen‐specific immunotherapy (SLIT) intervention improves the control of grass pollen allergy by maintaining allergen tolerance after cessation. Despite its widespread use, little is known about systemic effects and kinetics associated to SLIT, as well as the influence of the patient sensitization phenotype (Mono‐ or Poly‐sensitized). In this quest, omics sciences could help to gain new insights to understand SLIT effects. Methods 47 grass‐pollen‐allergic patients were enrolled in a double‐blind, placebo‐controlled, multicenter trial using GRAZAX® during 2 years. Immunological assays (sIgE, sIgG4, and ISAC) were carried out to 31 patients who finished the trial. Additionally, serum and PBMCs samples were analyzed by metabolomics and transcriptomics, respectively. Based on their sensitization level, 22 patients were allocated in Mono‐ or Poly‐sensitized groups, excluding patients allergic to epithelia. Individuals were compared based on their treatment (Active/Placebo) and sensitization level (Mono/Poly). Results Kinetics of serological changes agreed with those previously described. At two years of SLIT, there are scarce systemic changes that could be associated to improvement in systemic inflammation. Poly‐sensitized patients presented a higher inflammation at inclusion, while Mono‐sensitized patients presented a reduced activity of mast cells and phagocytes as an effect of the treatment. Conclusions The most relevant systemic change detected after two years of SLIT was the desensitization of effector cells, which was only detected in Mono‐sensitized patients. This change may be related to the clinical improvement, as previously reported, and, together with the other results, may explain why clinical effect is lost if SLIT is discontinued at this point.
Collapse
Affiliation(s)
- Tomas Clive Barker‐Tejeda
- Facultad de Farmacia Centro de Metabolómica y Bioanálisis (CEMBIO) Universidad San Pablo‐CEU CEU Universities Urbanización Montepríncipe Madrid España
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| | - Raphaelle Bazire
- Servicio de Alergia Instituto de Investigación Sanitaria Princesa (IP) Hospital Universitario de La Princesa Madrid España
- Servicio de Alergia Hospital Infantil Universitario Niño Jesús Fundación para la Investigación Biomédica del Hospital Niño Jesús Madrid España
| | - David Obeso
- Facultad de Farmacia Centro de Metabolómica y Bioanálisis (CEMBIO) Universidad San Pablo‐CEU CEU Universities Urbanización Montepríncipe Madrid España
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| | - Leticia Mera‐Berriatua
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| | - Domenico Rosace
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| | - Sonia Vazquez‐Cortes
- Servicio de Alergia Hospital Clínico San Carlos Universidad Complutense, IdISSC Madrid España
| | - Tania Ramos
- Servicio de Alergia Instituto de Investigación Sanitaria Princesa (IP) Hospital Universitario de La Princesa Madrid España
| | - Maria del Pilar Rico
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| | - Tomás Chivato
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| | - Coral Barbas
- Facultad de Farmacia Centro de Metabolómica y Bioanálisis (CEMBIO) Universidad San Pablo‐CEU CEU Universities Urbanización Montepríncipe Madrid España
| | - Alma Villaseñor
- Facultad de Farmacia Centro de Metabolómica y Bioanálisis (CEMBIO) Universidad San Pablo‐CEU CEU Universities Urbanización Montepríncipe Madrid España
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| | - Maria M. Escribese
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| | | | - Carlos Blanco
- Servicio de Alergia Instituto de Investigación Sanitaria Princesa (IP) Hospital Universitario de La Princesa Madrid España
| | - Domingo Barber
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| |
Collapse
|
52
|
Becattini S, Sorbara MT, Kim SG, Littmann EL, Dong Q, Walsh G, Wright R, Amoretti L, Fontana E, Hohl TM, Pamer EG. Rapid transcriptional and metabolic adaptation of intestinal microbes to host immune activation. Cell Host Microbe 2021; 29:378-393.e5. [PMID: 33539766 PMCID: PMC7954923 DOI: 10.1016/j.chom.2021.01.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/08/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
The gut microbiota produces metabolites that regulate host immunity, thereby impacting disease resistance and susceptibility. The extent to which commensal bacteria reciprocally respond to immune activation, however, remains largely unexplored. Herein, we colonized mice with four anaerobic symbionts and show that acute immune responses result in dramatic transcriptional reprogramming of these commensals with minimal changes in their relative abundance. Transcriptomic changes include induction of stress-response mediators and downregulation of carbohydrate-degrading factors such as polysaccharide utilization loci (PULs). Flagellin and anti-CD3 antibody, two distinct immune stimuli, induced similar transcriptional profiles, suggesting that commensal bacteria detect common effectors or activate shared pathways when facing different host responses. Immune activation altered the intestinal metabolome within 6 hours, decreasing luminal short-chain fatty acid and increasing aromatic metabolite concentrations. Thus, intestinal bacteria, prior to detectable shifts in community composition, respond to acute host immune activation by rapidly changing gene transcription and immunomodulatory metabolite production.
Collapse
Affiliation(s)
- Simone Becattini
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology and Immunology, School of Medicine, University of Geneva, 1206 Geneva, Switzerland.
| | - Matthew T Sorbara
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Sohn G Kim
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Eric L Littmann
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Qiwen Dong
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Gavin Walsh
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Roberta Wright
- Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Luigi Amoretti
- Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Emily Fontana
- Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Tobias M Hohl
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Infectious Diseases Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
53
|
Ashaolu TJ, Ashaolu JO. Prebiotic peptides, their formation, fermentation in the gut, and health implications. Biotechnol Prog 2021; 37:e3142. [PMID: 33666376 DOI: 10.1002/btpr.3142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 12/19/2022]
Abstract
Prebiotics can be synthesized from sources other than dietary fibers, such as proteins. The proteins, when processed into peptides have healthful or deleterious effects on the host. Outside living systems, prebiotic peptides (PP) are formed via preformation of amino acids or related monomeric building blocks, resulting in nonenzymatic polymerization/ligation to produce peptides. Whereas, inside living systems like the human gut, many metabolic pathways are involved in PP production, and mostly involve host-microbiota interactions. The interplay is responsible for PP activities and their implications on host amino acid balance and metabolism. Similar to carbohydrates fermentation, PP will yield short chain fatty acids (SCFA), but also branched chain fatty acids (BCFAs), phenols, indole, hydrogen sulfide, amines, and ammonia, capable of biologically mediating molecular signals. This holistic review considers a brief description of prebiotics, and tracks down prebiotic peptides formation processes, interactions with gut microbes, and health outcomes.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
| | - Joseph O Ashaolu
- International Health Programme, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
54
|
Jia L, Dong X, Li X, Jia R, Zhang HL. Benefits of resistant starch type 2 for patients with end-stage renal disease under maintenance hemodialysis: a systematic review and meta-analysis. Int J Med Sci 2021; 18:811-820. [PMID: 33437217 PMCID: PMC7797550 DOI: 10.7150/ijms.51484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Resistant starch type 2 (RS2) has been documented to regulate gut microbiota and to improve the clinical outcomes of several diseases. However, whether RS2 may benefit patients with end-stage renal disease under maintenance hemodialysis (MHD) remains unknown. Methods: We conducted a systemic review and meta-analysis of randomized controlled trials (RCTs). Adult patients receiving MHD were treated with RS2 (CRD42020160332). The primary outcomes were changes of uremic toxins, and the secondary outcomes were changes of inflammatory indicators, albumin and phosphorus. Results: After screening 65 records, five RCTs (n = 179) were included. A significant decrease of blood urea nitrogen (weighted mean difference (WMD) = -6.91, 95% CI: -11.87 to -1.95, I2 = 0%, P = 0.006), serum creatinine (WMD = -1.11, 95% CI: -2.18 to -0.05, I2 = 44%, P = 0.04) and interleukin (IL)-6 in blood (standard mean difference (SMD) = -1.08, 95% CI: -1.64 to -0.53, I2 = 35%, P = 0.0001) was revealed in the RS2 group. Analyses of blood levels of uric acid, p-cresyl sulfate, indoxyl sulfate, high sensitive C-reaction protein, albumin and phosphorus yielded no significant difference. Conclusions: Our results suggest that RS2 may improve the residual renal function of patients under MHD and mitigate a proinflammatory response.
Collapse
Affiliation(s)
- Linpei Jia
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Changchun Street 45#, 100053, Beijing, China
| | - Xingtong Dong
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Changchun Street 45#, 100053, Beijing, China
| | - Xiaoxia Li
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Changchun Street 45#, 100053, Beijing, China
| | - Rufu Jia
- Central Hospital of Cangzhou, Xinhua Middle Street 201#, 061001, Cangzhou, Hebei Province, China
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Shuangqing Road 83#, 100085, Beijing, China
| |
Collapse
|
55
|
Gong L, Wen T, Wang J. Role of the Microbiome in Mediating Health Effects of Dietary Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12820-12835. [PMID: 32131598 DOI: 10.1021/acs.jafc.9b08231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Numerous recent observation and intervention studies suggest that the microbiota in the gut and oral cavity play important roles in host physiology, including disease development and progression. Of the many environmental factors involved, dietary components play a pivotal role in shaping the microbiota community and function, thus eliciting beneficial or detrimental consequences on host health. The microbiota affect human physiology by altering the chemical structures of dietary components, thus creating new biological properties and modifying their lifetime and bioavailability. This review will describe the causal mechanisms between the microbiota and some specific bacterial species and diet components providing health benefits and how this knowledge could be incorporated in dietary strategies for improving human health.
Collapse
Affiliation(s)
- Lingxiao Gong
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Tingting Wen
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| |
Collapse
|
56
|
Rodriguez J, Olivares M, Delzenne NM. Implication of the Gut Microbiota in Metabolic Inflammation Associated with Nutritional Disorders and Obesity. Mol Nutr Food Res 2020; 65:e1900481. [PMID: 33111450 DOI: 10.1002/mnfr.201900481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/22/2020] [Indexed: 12/12/2022]
Abstract
SCOPE More than a decade ago, the concept of "metabolic endotoxemia" is elaborated on the fact that some bacterial components, classified as microbial associated membrane pathogens (MAMPs) can pass through the gut barrier and create a systemic low tone inflammation. METHODS AND RESULTS The translocation of lipopolysaccharides and its contribution to systemic inflammation are largely studied in murine models of obesity, allowing to unravel the molecular pathways involved in the process. Many different pathological contexts evoke the loss of gut barrier as an event contributing to inflammation and thereby driving metabolic and behavioral alterations. CONCLUSION This review describes the role of nutrition as a modulator of metabolic regulation and focuses on the contribution of the gut microbiota in the process of the production of a large diversity of bioactive metabolites. The two first sections of the review will be dedicated to the impact of nutritional disorders on both the gut microbiota composition and on metabolic inflammation. The last and more prominent section will describe the role of different nutrient-derived gut metabolites on the gut barrier integrity, metabolic inflammation, and peripheral tissue alterations during obesity or associated complications.
Collapse
Affiliation(s)
- Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Marta Olivares
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, 1200, Belgium
| |
Collapse
|
57
|
Zhang H, van der Wielen N, van der Hee B, Wang J, Hendriks W, Gilbert M. Impact of Fermentable Protein, by Feeding High Protein Diets, on Microbial Composition, Microbial Catabolic Activity, Gut Health and beyond in Pigs. Microorganisms 2020; 8:microorganisms8111735. [PMID: 33167470 PMCID: PMC7694525 DOI: 10.3390/microorganisms8111735] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023] Open
Abstract
In pigs, high protein diets have been related to post-weaning diarrhoea, which may be due to the production of protein fermentation metabolites that were shown to have harmful effects on the intestinal epithelium in vitro. In this review, we discussed in vivo effects of protein fermentation on the microbial composition and their protein catabolic activity as well as gut and overall health. The reviewed studies applied different dietary protein levels, which was assumed to result in contrasting fermentable protein levels. A general shift to N-utilisation microbial community including potential pathogens was observed, although microbial richness and diversity were not altered in the majority of the studies. Increasing dietary protein levels resulted in higher protein catabolic activity as evidenced by increased concentration of several protein fermentation metabolites like biogenic amines in the digesta of pigs. Moreover, changes in intestinal morphology, permeability and pro-inflammatory cytokine concentrations were observed and diarrhoea incidence was increased. Nevertheless, higher body weight and average daily gain were observed upon increasing dietary protein level. In conclusion, increasing dietary protein resulted in higher proteolytic fermentation, altered microbial community and intestinal physiology. Supplementing diets with fermentable carbohydrates could be a promising strategy to counteract these effects and should be further investigated.
Collapse
Affiliation(s)
- Hanlu Zhang
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; (H.Z.); (N.v.d.W.); (W.H.)
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Nikkie van der Wielen
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; (H.Z.); (N.v.d.W.); (W.H.)
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bart van der Hee
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands;
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Wouter Hendriks
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; (H.Z.); (N.v.d.W.); (W.H.)
| | - Myrthe Gilbert
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; (H.Z.); (N.v.d.W.); (W.H.)
- Correspondence:
| |
Collapse
|
58
|
Vijayasarathy M, Kiran GK, Balaji S, Jabastin J, Bruntha Devi P, Brindha Priyadarisini V. In Vitro Detoxification Studies of p-Cresol by Intestinal Bacteria Isolated from Human Feces. Curr Microbiol 2020; 77:3000-3012. [DOI: 10.1007/s00284-020-02124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
|
59
|
Beaumont M, Blachier F. Amino Acids in Intestinal Physiology and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:1-20. [PMID: 32761567 DOI: 10.1007/978-3-030-45328-2_1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dietary protein digestion is an efficient process resulting in the absorption of amino acids by epithelial cells, mainly in the jejunum. Some amino acids are extensively metabolized in enterocytes supporting their high energy demand and/or production of bioactive metabolites such as glutathione or nitric oxide. In contrast, other amino acids are mainly used as building blocks for the intense protein synthesis associated with the rapid epithelium renewal and mucin production. Several amino acids have been shown to support the intestinal barrier function and the intestinal endocrine function. In addition, amino acids are metabolized by the gut microbiota that use them for their own protein synthesis and in catabolic pathways releasing in the intestinal lumen numerous metabolites such as ammonia, hydrogen sulfide, branched-chain amino acids, polyamines, phenolic and indolic compounds. Some of them (e.g. hydrogen sulfide) disrupts epithelial energy metabolism and may participate in mucosal inflammation when present in excess, while others (e.g. indole derivatives) prevent gut barrier dysfunction or regulate enteroendocrine functions. Lastly, some recent data suggest that dietary amino acids might regulate the composition of the gut microbiota, but the relevance for the intestinal health remains to be determined. In summary, amino acid utilization by epithelial cells or by intestinal bacteria appears to play a pivotal regulator role for intestinal homeostasis. Thus, adequate dietary supply of amino acids represents a key determinant of gut health and functions.
Collapse
Affiliation(s)
- Martin Beaumont
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | - François Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France.
| |
Collapse
|
60
|
Zorraquín-Peña I, González de Llano D, Tamargo A, Moreno-Arribas MV, Bartolomé B. Moderate Wine Consumption Reduces Faecal Water Cytotoxicity in Healthy Volunteers. Nutrients 2020; 12:nu12092716. [PMID: 32899492 PMCID: PMC7551400 DOI: 10.3390/nu12092716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
There are some studies that suggest that moderate consumption of wine, as part of a healthy and balanced diet, has a favourable effect on intestinal health. This study evaluates the effect of moderate wine consumption on faecal water (FW) cytotoxicity as a parameter of gut health. To that end, faecal samples before and after a red wine intervention study (250 mL of wine/day, 4 weeks) in healthy volunteers (n = 8) and in a parallel control group (n = 3) were collected and assayed for in vitro FW cytotoxicity. Two reference compounds, phenol and p-cresol, were used for assessing the cytotoxicity assays using two colon epithelial cell lines (HT-29 and HCT 116) and different assay conditions (FW dilution and incubation time). For the two cell lines and all assay conditions, the means of percentage cell viability were higher (lower cytotoxicity) for samples collected after the red wine intervention than for those collected before, although significant (p < 0.05) differences were only found in certain assay conditions for both cell lines. Significant positive correlations between the percentage cell viability and the contents of some faecal metabolites (short-chain fatty acids (SCFA) and phenolic acids (PA)) were found for the more resistant cell line (HCT 116), suggesting that the reduction in FW cytotoxicity observed after moderate red wine consumption was related to the production of microbial-derived metabolites such as SCFA and PA, whose faecal contents have been shown to increase after wine consumption. FW cytotoxicity can be deemed as a holistic biomarker that involves diet, gut microbiota and host.
Collapse
|
61
|
Delzenne NM, Rodriguez J, Olivares M, Neyrinck AM. Microbiome response to diet: focus on obesity and related diseases. Rev Endocr Metab Disord 2020; 21:369-380. [PMID: 32691288 DOI: 10.1007/s11154-020-09572-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Numerous studies in humans and animal models describe disturbances of the gut microbial ecosystem associated with adiposity and hallmarks of the metabolic syndrome, including hepatic and cardiovascular diseases. The manipulation of the microbiome, which is largely influenced by the diet, appears as an innovative therapeutic tool to prevent or control obesity and related diseases. This review describes the impact of nutrients on the gut microbiota composition and/or function and when available, the consequences on host physiology. A special emphasis is made on the contribution of bacterial-derived metabolites in the regulation of key gut functions that may explain their systemic effect.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Marta Olivares
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
62
|
Guo Y, Bian X, Liu J, Zhu M, Li L, Yao T, Tang C, Ravichandran V, Liao P, Papadimitriou K, Yin J. Dietary Components, Microbial Metabolites and Human Health: Reading between the Lines. Foods 2020; 9:E1045. [PMID: 32756378 PMCID: PMC7466307 DOI: 10.3390/foods9081045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Trillions of bacteria reside in the human gut and they metabolize dietary substances to obtain nutrients and energy while producing metabolites. Therefore, different dietary components could affect human health in various ways through microbial metabolism. Many such metabolites have been shown to affect human physiological activities, including short-chain fatty acids metabolized from carbohydrates; indole, kynurenic acid and para-cresol, metabolized from amino acids; conjugated linoleic acid and linoleic acid, metabolized from lipids. Here, we review the features of these metabolites and summarize the possible molecular mechanisms of their metabolisms by gut microbiota. We discuss the potential roles of these metabolites in health and diseases, and the interactions between host metabolism and the gut microbiota. We also show some of the major dietary patterns around the world and hope this review can provide insights into our eating habits and improve consumers' health conditions.
Collapse
Affiliation(s)
- Yao Guo
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Xiaohan Bian
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Jiali Liu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Ming Zhu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Lin Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Tingyu Yao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Congjia Tang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Vinothkannan Ravichandran
- State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China;
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Konstantinos Papadimitriou
- Department of Food Science and Technology, School of Agriculture and Food, University of Peloponnese, 22131 Antikalamos, Greece;
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| |
Collapse
|
63
|
Botticelli A, Vernocchi P, Marini F, Quagliariello A, Cerbelli B, Reddel S, Del Chierico F, Di Pietro F, Giusti R, Tomassini A, Giampaoli O, Miccheli A, Zizzari IG, Nuti M, Putignani L, Marchetti P. Gut metabolomics profiling of non-small cell lung cancer (NSCLC) patients under immunotherapy treatment. J Transl Med 2020; 18:49. [PMID: 32014010 PMCID: PMC6998840 DOI: 10.1186/s12967-020-02231-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Despite the efficacy of immune checkpoint inhibitors (ICIs) only the 20-30% of treated patients present long term benefits. The metabolic changes occurring in the gut microbiota metabolome are herein proposed as a factor potentially influencing the response to immunotherapy. METHODS The metabolomic profiling of gut microbiota was characterized in 11 patients affected by non-small cell lung cancer (NSCLC) treated with nivolumab in second-line treatment with anti-PD-1 nivolumab. The metabolomics analyses were performed by GC-MS/SPME and 1H-NMR in order to detect volatile and non-volatile metabolites. Metabolomic data were processed by statistical profiling and chemometric analyses. RESULTS Four out of 11 patients (36%) presented early progression, while the remaining 7 out of 11 (64%) presented disease progression after 12 months. 2-Pentanone (ketone) and tridecane (alkane) were significantly associated with early progression, and on the contrary short chain fatty acids (SCFAs) (i.e., propionate, butyrate), lysine and nicotinic acid were significantly associated with long-term beneficial effects. CONCLUSIONS Our preliminary data suggest a significant role of gut microbiota metabolic pathways in affecting response to immunotherapy. The metabolic approach could be a promising strategy to contribute to the personalized management of cancer patients by the identification of microbiota-linked "indicators" of early progressor and long responder patients.
Collapse
Affiliation(s)
- Andrea Botticelli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,AOU Policlinico Umberto I, Rome, Italy
| | - Pamela Vernocchi
- Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.,NMR-based Metabolomics Laboratory, Sapienza University of Rome, Rome, Italy
| | | | - Bruna Cerbelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Sofia Reddel
- Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | | | - Alberta Tomassini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.,NMR-based Metabolomics Laboratory, Sapienza University of Rome, Rome, Italy
| | | | - Alfredo Miccheli
- NMR-based Metabolomics Laboratory, Sapienza University of Rome, Rome, Italy.,Department of Enviromental Biology, University of Rome, Rome, Italy
| | | | - Marianna Nuti
- Department of Experimental Medicine, University Sapienza, Rome, Italy
| | - Lorenza Putignani
- Unit of Parasitology and Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,AOU Policlinico Umberto I, Rome, Italy.,AOU Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
64
|
Liu Y, Wang Y, Ni Y, Cheung CKY, Lam KSL, Wang Y, Xia Z, Ye D, Guo J, Tse MA, Panagiotou G, Xu A. Gut Microbiome Fermentation Determines the Efficacy of Exercise for Diabetes Prevention. Cell Metab 2020; 31:77-91.e5. [PMID: 31786155 DOI: 10.1016/j.cmet.2019.11.001] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/24/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
Exercise is an effective strategy for diabetes management but is limited by the phenomenon of exercise resistance (i.e., the lack of or the adverse response to exercise on metabolic health). Here, in 39 medication-naive men with prediabetes, we found that exercise-induced alterations in the gut microbiota correlated closely with improvements in glucose homeostasis and insulin sensitivity (clinicaltrials.gov entry NCT03240978). The microbiome of responders exhibited an enhanced capacity for biosynthesis of short-chain fatty acids and catabolism of branched-chain amino acids, whereas those of non-responders were characterized by increased production of metabolically detrimental compounds. Fecal microbial transplantation from responders, but not non-responders, mimicked the effects of exercise on alleviation of insulin resistance in obese mice. Furthermore, a machine-learning algorithm integrating baseline microbial signatures accurately predicted personalized glycemic response to exercise in an additional 30 subjects. These findings raise the possibility of maximizing the benefits of exercise by targeting the gut microbiota.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China; Department of Medicine, the University of Hong Kong, Hong Kong, China
| | - Yao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, the University of Hong Kong, Hong Kong, China
| | - Yueqiong Ni
- Systems Biology & Bioinformatics Group, School of the Biological Sciences, Faculty of Sciences, the University of Hong Kong, Hong Kong, China; Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Jena, Germany
| | - Cynthia K Y Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China; Department of Medicine, the University of Hong Kong, Hong Kong, China
| | - Karen S L Lam
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China; Department of Medicine, the University of Hong Kong, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, the University of Hong Kong, Hong Kong, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China
| | - Dewei Ye
- Joint Laboratory between Guangdong and Hong Kong on Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Joint Laboratory between Guangdong and Hong Kong on Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Michael Andrew Tse
- Active Health Clinic, Centre for Sports and Exercise, the University of Hong Kong, Hong Kong, China.
| | - Gianni Panagiotou
- Systems Biology & Bioinformatics Group, School of the Biological Sciences, Faculty of Sciences, the University of Hong Kong, Hong Kong, China; Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Jena, Germany; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China; Department of Medicine, the University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, the University of Hong Kong, Hong Kong, China.
| |
Collapse
|
65
|
Liu C, Kolida S, Charalampopoulos D, Rastall RA. An evaluation of the prebiotic potential of microbial levans from Erwinia sp. 10119. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
66
|
Neuroactive compounds in foods: Occurrence, mechanism and potential health effects. Food Res Int 2019; 128:108744. [PMID: 31955786 DOI: 10.1016/j.foodres.2019.108744] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023]
Abstract
Neuroactive compounds are synthesized by certain plants and microorganisms by undertaking different tasks, especially as a stress response. Most common neuroactive compounds in foods are gamma-aminobutyric acid (GABA), serotonin, melatonin, kynurenine, kynurenic acid, dopamine, norepinephrine, histamine, tryptamine, tyramine and β-phenylethylamine. Fermented foods contain some of these compounds, which can affect human health and mood. Moreover, food processing such as roasting and malting alter amount and profile of neuroactive compounds in foods. In addition to plant-origin and microbially-formed neuroactive compounds in foods, these substances are also formed by gut microbiota, which is the most attractive subject to assess the interaction between gut microbiota and mental health. The discovery of microbiota-gut-brain axis calls for the investigation of the effects of diet on the formation of neuroactive compounds in the gut. Furthermore, probiotics and prebiotics are indispensable elements for the understanding of the food-mood relationship. The focus of this comprehensive review is to investigate the neuroactive compounds found naturally in foods or formed during fermentation. Their formation pathways in humans, plants and microorganisms, potential health effects, effects of diet on the formation of microbial metabolites including neuroactive compounds in the gut are discussed throughout this review. Furthermore, the importance of gut-brain axis, probiotics and prebiotics are discussed.
Collapse
|
67
|
Cires MJ, Navarrete P, Pastene E, Carrasco-Pozo C, Valenzuela R, Medina DA, Andriamihaja M, Beaumont M, Blachier F, Gotteland M. Protective Effect of an Avocado Peel Polyphenolic Extract Rich in Proanthocyanidins on the Alterations of Colonic Homeostasis Induced by a High-Protein Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11616-11626. [PMID: 31542929 DOI: 10.1021/acs.jafc.9b03905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Avocado peel, a byproduct from the avocado pulp industry, is a promising source of polyphenolic compounds. We evaluated the effect of a proanthocyanidin-rich avocado peel polyphenol extract (AvPPE) on the composition and metabolic activity of human fecal microbiota cultured for 24 h in a bioreactor in the presence of high protein (HP) amounts and the effect of the resulting culture supernatants (CSs) on HT-29Glc-/+ and Caco-2 cells. AvPPE decreased the HP-induced production of ammonia, H2S, propionate, and isovalerate and increased that of indole and butyrate. Microbiota composition was marginally affected by HP, whileAvPPE increased the microorganisms/abundance of phylum Actinobacteria, families Coriobacteriaceae and Ruminococcaceae, and genus Faecalibacterium. AvPPE failed to prevent the HP-induced decrease of HT-29Glc-/+ cell viability and energy efficiency but prevented the HP-induced alterations of barrier function in Caco-2 cells. Additionally, the genotoxic effect of the CSs upon HT-29Glc-/+ was attenuated by AvPPE. Therefore, AvPPE may be considered as a promising product for improving colonic homeostasis.
Collapse
Affiliation(s)
- María José Cires
- Department of Nutrition, Faculty of Medicine , University of Chile , Santiago 8380453 , Chile
| | - Paola Navarrete
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA) , University of Chile , Santiago 7830490 , Chile
- Millennium Nucleus in the Biology of Intestinal Microbiota , Santiago , Chile
| | - Edgar Pastene
- Laboratory of Pharmacognosy, Faculty of Pharmacy , University of Concepción , Concepción 4030000 , Chile
- Laboratorio de Sı́ntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias , Universidad del Bı́o-Bı́o , Chillán 3780000 , Chile
| | - Catalina Carrasco-Pozo
- Department of Nutrition, Faculty of Medicine , University of Chile , Santiago 8380453 , Chile
- Discovery Biology, Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine , University of Chile , Santiago 8380453 , Chile
| | - Daniel A Medina
- Laboratorio de Biotecnología Aplicada, Facultad de Medicina Veterinaria , Universidad San Sebastián , Lago Panguipulli 1390 , Puerto Montt 5480000 , Chile
| | | | - Martin Beaumont
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay , Paris 75005 , France
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT , Toulouse 31326 , France
| | - François Blachier
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay , Paris 75005 , France
| | - Martin Gotteland
- Department of Nutrition, Faculty of Medicine , University of Chile , Santiago 8380453 , Chile
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA) , University of Chile , Santiago 7830490 , Chile
- Millennium Nucleus in the Biology of Intestinal Microbiota , Santiago , Chile
| |
Collapse
|
68
|
Catechin and Procyanidin B 2 Modulate the Expression of Tight Junction Proteins but Do Not Protect from Inflammation-Induced Changes in Permeability in Human Intestinal Cell Monolayers. Nutrients 2019; 11:nu11102271. [PMID: 31546671 PMCID: PMC6836206 DOI: 10.3390/nu11102271] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
The possibility of counteracting inflammation-related barrier defects with dietary compounds such as (poly)phenols has raised much interest, but information is still scarce. We have investigated here if (+)-catechin (CAT) and procyanidin B2 (PB2), two main dietary polyphenols, protect the barrier function of intestinal cells undergoing inflammatory stress. The cell model adopted consisted of co-cultured Caco-2 and HT29-MTX cells, while inflammatory conditions were mimicked through the incubation of epithelial cells with the conditioned medium of activated macrophages (MCM). The epithelial barrier function was monitored through trans-epithelial electrical resistance (TEER), and ROS production was assessed with dichlorofluorescein, while the expression of tight-junctional proteins and signal transduction pathways were evaluated with Western blot. The results indicated that MCM produced significant oxidative stress, the activation of NF-κB and MAPK pathways, a decrease in occludin and ZO-1 expression, and an increase in claudin-7 (CL-7) expression, while TEER was markedly lowered. Neither CAT nor PB2 prevented oxidative stress, transduction pathways activation, ZO-1 suppression, or TEER decrease. However, PB2 prevented the decrease in occludin expression and both polyphenols produced a huge increase in CL-7 abundance. It is concluded that, under the conditions adopted, CAT and PB2 do not prevent inflammation-dependent impairment of the epithelial barrier function of intestinal cell monolayers. However, the two compounds modify the expression of tight-junctional proteins and, in particular, markedly increase the expression of CL-7. These insights add to a better understanding of the potential biological activity of these major dietary flavan-3-ols at intestinal level.
Collapse
|
69
|
Wan Y, Wang F, Yuan J, Li J, Jiang D, Zhang J, Li H, Wang R, Tang J, Huang T, Zheng J, Sinclair AJ, Mann J, Li D. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 2019; 68:1417-1429. [PMID: 30782617 DOI: 10.1136/gutjnl-2018-317609] [Citation(s) in RCA: 406] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/03/2018] [Accepted: 12/08/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate whether diets differing in fat content alter the gut microbiota and faecal metabolomic profiles, and to determine their relationship with cardiometabolic risk factors in healthy adults whose diet is in a transition from a traditional low-fat diet to a diet high in fat and reduced in carbohydrate. METHODS In a 6-month randomised controlled-feeding trial, 217 healthy young adults (aged 18-35 years; body mass index <28 kg/m2; 52% women) who completed the whole trial were included. All the foods were provided during the intervention period. The three isocaloric diets were: a lower-fat diet (fat 20% energy), a moderate-fat diet (fat 30% energy) and a higher-fat diet (fat 40% energy). The effects of the dietary interventions on the gut microbiota, faecal metabolomics and plasma inflammatory factors were investigated. RESULTS The lower-fat diet was associated with increased α-diversity assessed by the Shannon index (p=0.03), increased abundance of Blautia (p=0.007) and Faecalibacterium (p=0.04), whereas the higher-fat diet was associated with increased Alistipes (p=0.04), Bacteroides (p<0.001) and decreased Faecalibacterium (p=0.04). The concentration of total short-chain fatty acids was significantly decreased in the higher-fat diet group in comparison with the other groups (p<0.001). The cometabolites p-cresol and indole, known to be associated with host metabolic disorders, were decreased in the lower-fat diet group. In addition, the higher-fat diet was associated with faecal enrichment in arachidonic acid and the lipopolysaccharide biosynthesis pathway as well as elevated plasma proinflammatory factors after the intervention. CONCLUSION Higher-fat consumption by healthy young adults whose diet is in a state of nutrition transition appeared to be associated with unfavourable changes in gut microbiota, faecal metabolomic profiles and plasma proinflammatory factors, which might confer adverse consequences for long-term health outcomes. TRIAL REGISTRATION NUMBER NCT02355795; Results.
Collapse
Affiliation(s)
- Yi Wan
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Fenglei Wang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China.,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, USA
| | - Jihong Yuan
- No. 1 Department of Nutrition, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jie Li
- No. 1 Department of Nutrition, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Dandan Jiang
- No. 1 Department of Nutrition, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jingjing Zhang
- Department of Gastroenterology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Ruoyi Wang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China.,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, USA
| | - Jun Tang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jusheng Zheng
- Institute of Basic Medical Science, Westlake University, Hangzhou, China
| | - Andrew J Sinclair
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, Australia
| | - Jim Mann
- Department of Human Nutrition and Medicine, University of Otago, Otago, New Zealand
| | - Duo Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China.,Institute of Nutrition and Health, Qingdao University, Qingdao, China
| |
Collapse
|
70
|
Saito Y, Sato T, Nomoto K, Tsuji H. Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiol Ecol 2019; 94:5042942. [PMID: 29982420 PMCID: PMC6424909 DOI: 10.1093/femsec/fiy125] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
To identify intestinal bacteria that produce phenols (phenol and p-cresol), we screened 153 strains within 152 species in 44 genera by culture-based assay using broth media supplemented with 200 µM each of tyrosine and its predicted microbial metabolic intermediates (4-hydroxyphenylpyruvate, DL-4-hydroxyphenyllactate, 3-(p-hydroxyphenyl)propionate, 4-hydroxyphenylacetate and 4-hydroxybenzoate). Phenol-producing activity was found in 36 strains and p-cresol-producing activity in 55 strains. Fourteen strains had both types of activity. Phylogenetic analysis based on the 16S rRNA gene sequences of strains that produced 100 µM or more of phenols revealed that 16 phenol producers belonged to the Coriobacteriaceae, Enterobacteriaceae, Fusobacteriaceae and Clostridium clusters I and XIVa; four p-cresol-producing bacteria belonged to the Coriobacteriaceae and Clostridium clusters XI and XIVa; and one strain producing both belonged to the Coriobacteriaceae. A genomic search for protein homologs of enzymes involved in the metabolism of tyrosine to phenols in 10 phenol producers and four p-cresol producers, the draft genomes of which were available in public databases, predicted that phenol producers harbored tyrosine phenol-lyase or hydroxyarylic acid decarboxylase, or both, and p-cresol producers harbored p-hydroxyphenylacetate decarboxylase or tyrosine lyase, or both. These results provide important information about the bacterial strains that contribute to production of phenols in the intestine.
Collapse
Affiliation(s)
- Yuki Saito
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
- Corresponding author: Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan. Tel: +81-42-577-8960; Fax: +81-42-577-3020; E-mail:
| | - Tadashi Sato
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Koji Nomoto
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
- Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hirokazu Tsuji
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| |
Collapse
|
71
|
Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. MICROBIOME 2019; 7:91. [PMID: 31196177 PMCID: PMC6567490 DOI: 10.1186/s40168-019-0704-8] [Citation(s) in RCA: 749] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/28/2019] [Indexed: 05/11/2023]
Abstract
The human gut microbiome is a critical component of digestion, breaking down complex carbohydrates, proteins, and to a lesser extent fats that reach the lower gastrointestinal tract. This process results in a multitude of microbial metabolites that can act both locally and systemically (after being absorbed into the bloodstream). The impact of these biochemicals on human health is complex, as both potentially beneficial and potentially toxic metabolites can be yielded from such microbial pathways, and in some cases, these effects are dependent upon the metabolite concentration or organ locality. The aim of this review is to summarize our current knowledge of how macronutrient metabolism by the gut microbiome influences human health. Metabolites to be discussed include short-chain fatty acids and alcohols (mainly yielded from monosaccharides); ammonia, branched-chain fatty acids, amines, sulfur compounds, phenols, and indoles (derived from amino acids); glycerol and choline derivatives (obtained from the breakdown of lipids); and tertiary cycling of carbon dioxide and hydrogen. Key microbial taxa and related disease states will be referred to in each case, and knowledge gaps that could contribute to our understanding of overall human wellness will be identified.
Collapse
Affiliation(s)
- Kaitlyn Oliphant
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1 Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
72
|
Muñiz Pedrogo DA, Chen J, Hillmann B, Jeraldo P, Al-Ghalith G, Taneja V, Davis JM, Knights D, Nelson H, Faubion WA, Raffals L, Kashyap PC. An Increased Abundance of Clostridiaceae Characterizes Arthritis in Inflammatory Bowel Disease and Rheumatoid Arthritis: A Cross-sectional Study. Inflamm Bowel Dis 2019; 25:902-913. [PMID: 30321331 PMCID: PMC6458525 DOI: 10.1093/ibd/izy318] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) are a group of heterogeneous inflammatory conditions affecting the gastrointestinal tract. Although there is considerable evidence linking the gut microbiota to intestinal inflammation, there is limited knowledge on its potential role in the development of extraintestinal manifestations of IBD. METHODS Four groups of patients were included: IBD-associated arthropathy (IBD-A); IBD without arthropathy (IBD-N); rheumatoid arthritis (RA); and non-IBD, nonarthritis controls. DNA from stool samples was isolated and sequenced using the Illumina platform. Paired-end reads were quality-controlled using SHI7 and processed with SHOGUN. Abundance and diversity analyses were performed using QIIME, and compositional biomarker identification was performed using LEfSe. RESULTS One hundred eighty patients were included in the analysis. IBD-A was associated with an increased abundance of microbial tyrosine degradation pathways when compared with IBD-N (P = 0.02), whereas IBD-A and RA patients both shared an increased abundance of Clostridiaceae when compared with controls (P = 0.045). We found that history of bowel surgery was a significant source of variability (P = 0.001) among all IBD patients and was associated with decreased alpha diversity and increased abundance of Enterobacteriaceae (P = 0.004). CONCLUSIONS An increased abundance of gut microbial tyrosine degradation pathways was associated with IBD-A. An increased abundance of Clostridiaceae was shared by both IBD-A and RA patients and suggests a potentially common microbial link for inflammatory arthritis. The increased abundance of Enterobacteriaceae, previously reported in IBD, may be due to the effects of previous bowel surgery and highlights the importance of controlling for this variable in future studies.
Collapse
Affiliation(s)
- David A Muñiz Pedrogo
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota,University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Benjamin Hillmann
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota
| | | | - Gabriel Al-Ghalith
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - John M Davis
- Division of Rheumatology, Mayo Clinic, Rochester, Minnesota
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Heidi Nelson
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - William A Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Laura Raffals
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota,Address correspondence to: Purna C. Kashyap, MBBS, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905 ()
| |
Collapse
|
73
|
In vitro impact of amino acid-derived bacterial metabolites on colonocyte mitochondrial activity, oxidative stress response and DNA integrity. Biochim Biophys Acta Gen Subj 2019; 1863:1292-1301. [PMID: 31034912 DOI: 10.1016/j.bbagen.2019.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 04/11/2019] [Accepted: 04/25/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND 4-hydroxyphenylacetic acid (HO-PAA) is produced by intestinal microbiota from L-tyrosine. High concentrations in human fecal water have been associated with cytotoxicity, urging us to test HO-PAA's effects on human colonocytes. We compared these effects with those of phenylacetic acid (PAA), phenol and acetaldehyde, also issued from amino acids fermentation. METHODS HT-29 Glc-/+ human colonocytes were exposed for 24 h to metabolites at concentrations between 350 and 1000 μM for HO-PAA and PAA, 250-1500 μM for phenol and 25-500 μM for acetaldehyde. We evaluated metabolites'cytotoxicity with 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide and DNA quantification assays, reactive oxygen species (ROS) production with H2DCF-DA, and DNA damage with the comet assay. We measured cell oxygen consumption and mitochondrial complexes activity by polarography. RESULTS Although HO-PAA displayed no cytotoxic effect on colonocytes, it decreased mitochondrial complex I activity and oxygen consumption. This was paralleled by an increase in ROS production and DNA alteration. Cells pretreatment with N-acetylcysteine, a ROS scavenger, decreased genotoxic effects of HO-PAA, indicating implication of oxidative stress in HO-PAA's genotoxicity. PAA and phenol did not reproduce these effects, but were cytotoxic towards colonocytes. Last, acetaldehyde displayed no effect in terms of cytotoxicity and mitochondrial metabolic activity, but increased DNA damage. CONCLUSIONS Several bacterial metabolites produced from amino acids displayed deleterious effects on human colonocytes, in terms of genotoxicity (HO-PAA and acetaldehyde) or cytotoxicity (PAA and phenol). GENERAL SIGNIFICANCE This study helps understanding the consequences of intestinal microbiota's metabolic activity on the host since amino acids fermentation can lead to the formation of compounds toxic towards colonic epithelial cells.
Collapse
|
74
|
Xenobiotics Formed during Food Processing: Their Relation with the Intestinal Microbiota and Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20082051. [PMID: 31027304 PMCID: PMC6514608 DOI: 10.3390/ijms20082051] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/25/2022] Open
Abstract
The colonic epithelium is exposed to a mixture of compounds through diet, among which some are procarcinogens, whereas others have a protective effect. Therefore, the net impact of these compounds on human health depends on the overall balance between all factors involved. Strong scientific evidence has demonstrated the relationship between nitrosamines (NA), heterocyclic amines (HCAs), and polycyclic aromatic hydrocarbons (PAHs), which are the major genotoxins derived from cooking and food processing, and cancer. The mechanisms of the relationship between dietary toxic xenobiotics and cancer risk are not yet well understood, but it has been suggested that differences in dietary habits affect the colonic environment by increasing or decreasing the exposure to mutagens directly and indirectly through changes in the composition and activity of the gut microbiota. Several changes in the proportions of specific microbial groups have been proposed as risk factors for the development of neoplastic lesions and the enrichment of enterotoxigenic microbial strains in stool. In addition, changes in the gut microbiota composition and activity promoted by diet may modify the faecal genotoxicity/cytotoxicity, which can be associated with a higher or lower risk of developing cancer. Therefore, the interaction between dietary components and intestinal bacteria may be a modifiable factor for the development of colorectal cancer in humans and deserves more attention in the near future.
Collapse
|
75
|
Celi P, Verlhac V, Pérez Calvo E, Schmeisser J, Kluenter AM. Biomarkers of gastrointestinal functionality in animal nutrition and health. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2018.07.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
76
|
Delzenne NM, Olivares M, Neyrinck AM, Beaumont M, Kjølbæk L, Larsen TM, Benítez-Páez A, Romaní-Pérez M, Garcia-Campayo V, Bosscher D, Sanz Y, van der Kamp JW. Nutritional interest of dietary fiber and prebiotics in obesity: Lessons from the MyNewGut consortium. Clin Nutr 2019; 39:414-424. [PMID: 30904186 DOI: 10.1016/j.clnu.2019.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/24/2019] [Accepted: 03/04/2019] [Indexed: 01/31/2023]
Abstract
The aim of EU project MyNewGut is to contribute to future public health-related recommendations supported by new insight in gut microbiome and nutrition-host relationship. In this Opinion Paper, we first revisit the concept of dietary fiber, taking into account their interaction with the gut microbiota. This paper also summarizes the main effects of dietary fibers with prebiotic properties in intervention studies in humans, with a particular emphasis on the effects of arabinoxylans and arabinoxylo-oligosaccharides on metabolic alterations associated with obesity. Based on the existing state of the art and future development, we elaborate the steps required to propose dietary guidelines related to dietary fibers, taking into account their interaction with the gut microbiota.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| | - Marta Olivares
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Martin Beaumont
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Louise Kjølbæk
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958, Frederiksberg C, Denmark
| | - Thomas Meinert Larsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958, Frederiksberg C, Denmark
| | - Alfonso Benítez-Páez
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Marina Romaní-Pérez
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | | | | | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | | |
Collapse
|
77
|
Vidal-Lletjós S, Andriamihaja M, Blais A, Grauso M, Lepage P, Davila AM, Viel R, Gaudichon C, Leclerc M, Blachier F, Lan A. Dietary Protein Intake Level Modulates Mucosal Healing and Mucosa-Adherent Microbiota in Mouse Model of Colitis. Nutrients 2019; 11:nu11030514. [PMID: 30823387 PMCID: PMC6471602 DOI: 10.3390/nu11030514] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
Mucosal healing after an inflammatory flare is associated with lasting clinical remission. The aim of the present work was to evaluate the impact of the amount of dietary protein on epithelial repair after an acute inflammatory episode. C57BL/6 DSS-treated mice received isocaloric diets with different levels of dietary protein: 14% (P14), 30% (P30) and 53% (P53) for 3 (day 10), 6 (day 13) and 21 (day 28) days after the time of colitis maximal intensity. While the P53 diet worsened the DSS- induced inflammation both in intensity and duration, the P30 diet, when compared to the P14 diet, showed a beneficial effect during the epithelial repair process by accelerating inflammation resolution, reducing colonic permeability and increasing epithelial repair together with epithelial hyperproliferation. Dietary protein intake also impacted mucosa-adherent microbiota composition after inflammation since P30 fed mice showed increased colonization of butyrate-producing genera throughout the resolution phase. This study revealed that in our colitis model, the amount of protein in the diet modulated mucosal healing, with beneficial effects of a moderately high-protein diet, while very high-protein diet displayed deleterious effects on this process.
Collapse
Affiliation(s)
| | | | - Anne Blais
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Marta Grauso
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Patricia Lepage
- UMR MICALIS, AgroParisTech, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Anne-Marie Davila
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Roselyne Viel
- H2P2, Biosit-Biogenouest, Université de Rennes 1, 35005 Rennes, France.
| | - Claire Gaudichon
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Marion Leclerc
- UMR MICALIS, AgroParisTech, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - François Blachier
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Annaïg Lan
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| |
Collapse
|
78
|
Diether NE, Willing BP. Microbial Fermentation of Dietary Protein: An Important Factor in Diet⁻Microbe⁻Host Interaction. Microorganisms 2019; 7:microorganisms7010019. [PMID: 30642098 PMCID: PMC6352118 DOI: 10.3390/microorganisms7010019] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/04/2023] Open
Abstract
Protein fermentation by gut microbiota contributes significantly to the metabolite pool in the large intestine and may contribute to host amino acid balance. However, we have a limited understanding of the role that proteolytic metabolites have, both in the gut and in systemic circulation. A review of recent studies paired with findings from previous culture-based experiments suggests an important role for microbial protein fermentation in altering the gut microbiota and generating a diverse range of bioactive molecules which exert wide-ranging host effects. These metabolic products have been shown to increase inflammatory response, tissue permeability, and colitis severity in the gut. They are also implicated in the development of metabolic disease, including obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD). Specific products of proteolytic fermentation such as hydrogen sulfide, ammonia, and p-Cresol may also contribute to the development of colorectal cancer. These findings are in conflict with other studies showing that tryptophan metabolites may improve gut barrier function and attenuate severity in a multiple sclerosis model. Further research examining proteolytic fermentation in the gut may be key to our understanding of how microbial and host metabolism interact affecting health.
Collapse
Affiliation(s)
- Natalie E Diether
- Department of Agriculture, Food & Nutritional Science, University of Alberta, Ag/For Centre, Edmonton Alberta, T6G 2P5, Canada.
| | - Benjamin P Willing
- Department of Agriculture, Food & Nutritional Science, University of Alberta, Ag/For Centre, Edmonton Alberta, T6G 2P5, Canada.
| |
Collapse
|
79
|
Contribution of the gut microbiota to the regulation of host metabolism and energy balance: a focus on the gut–liver axis. Proc Nutr Soc 2019; 78:319-328. [DOI: 10.1017/s0029665118002756] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review presents mechanistic studies performed in vitro and in animal models, as well as data obtained in patients that contribute to a better understanding of the impact of nutrients interacting with the gut microbiota on metabolic and behavioural alterations linked to obesity. The gut microbiota composition and function are altered in several pathological conditions including obesity and related diseases i.e. non-alcoholic fatty liver diseases (NAFLD). The gut–liver axis is clearly influenced by alterations of the gut barrier that drives inflammation. In addition, recent papers propose that specific metabolites issued from the metabolic cooperation between the gut microbes and host enzymes, modulate inflammation and gene expression in the liver. This review illustrates how dietary intervention with prebiotics or probiotics influences host energy metabolism and inflammation. Indeed, intervention studies are currently underway in obese and NAFLD patients to unravel the relevance of the changes in gut microbiota composition in the management of metabolic and behavioural disorders by nutrients interacting with the gut microbiota. In conclusion, diet is among the main triggers of NAFLD and the gut microbiota is modified accordingly, underlining the importance of the concomitant study of the nutrients and microbial impact on liver health and metabolism, in order to propose innovative, clinically relevant, therapeutic approaches.
Collapse
|
80
|
Al Hinai EA, Kullamethee P, Rowland IR, Swann J, Walton GE, Commane DM. Modelling the role of microbial p-cresol in colorectal genotoxicity. Gut Microbes 2018; 10:398-411. [PMID: 30359553 PMCID: PMC6546321 DOI: 10.1080/19490976.2018.1534514] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: A greater understanding of mechanisms explaining the interactions between diet and the gut microbiota in colorectal cancer is desirable. Genotoxic microbial metabolites present in the colon may be implicated in carcinogenesis and potentially influenced by diet. Aims: We hypothesised that microbial p-cresol is a colonic genotoxin and set out to model potential exposures in the colon and the effects of these exposures on colonic cells. Methods: Batch culture fermentations with human faecal inoculate were used to determine the synthesis of p-cresol and other metabolites in response to various substrates. The fermentation supernatants were evaluated for genotoxicity and the independent effects of p-cresol on colonic cells were studied in vitro. Results: In batch culture fermentation, supplementary protein increased the synthesis of phenols, indoles and p-cresol, whereas supplementary fructoligosaccharide (FOS) increased the synthesis of short chain fatty acids. The p-cresol was the greatest predictor of genotoxicity against colonocytes in the fermentation supernatants. Spiking fermentation supernatants with exogenous p-cresol further increased DNA damage, and independently p-cresol induced DNA damage in a dose-dependent manner against HT29 and Caco-2 cells and influenced cell cycle kinetics. Conclusions: In the colon p-cresol may reach physiologically significant concentrations which contribute to genotoxic exposures in the intestinal lumen, p-cresol production may be attenuated by substrate, and therefore diet, making it a potential modifiable biomarker of genotoxicity in the colon.
Collapse
Affiliation(s)
- Eiman Abdulla Al Hinai
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK,Dietetics Department, Al Nahdha Hospital, Ministry of Health, Muscat, Sultanate of Oman
| | - Piyarach Kullamethee
- Department of innovation and technology of product development, Faculty of Agro-industry, King Mongkut’s University of Technology North Bangkok, Prachinburi, Thailand
| | - Ian R. Rowland
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Jonathan Swann
- Faculty of Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Gemma E. Walton
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Daniel M. Commane
- Department of Applied and Health Sciences, University of Northumbria, Newcastle Upon Tyne, UK,CONTACT Daniel M. Commane Department of Applied and Health Sciences, University of Northumbria, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
81
|
Santovito A, Gendusa C, Ferraro F, Musso I, Costanzo M, Ruberto S, Cervella P. Genomic damage induced by the widely used fungicide chlorothalonil in peripheral human lymphocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:578-583. [PMID: 29929134 DOI: 10.1016/j.ecoenv.2018.06.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Chlorothalonil is an important broad spectrum fungicide widely used in agriculture, silviculture, and urban settings. As a result of its massive use, chlorothalonil was found in all environmental matrices, with consequent risks to the health of terrestrial and aquatic organisms, as well as for humans. We analyzed the effects of chlorothalonil on human lymphocytes using in vitro chromosomal aberrations (CAs) and micronuclei (MNi) assays. Lymphocytes were exposed to five concentrations of chlorothalonil: 0.600 µg/mL, 0.060 µg/mL, 0.030 µg/mL, 0.020 µg/mL, and 0.015 µg/mL, where 0.020 and 0.600 µg/mL represent the ADI and the ARfD concentration values, respectively, established by FAO/WHO for this compound; 0.030 and 0.060 μg/mL represent intermediate values of these concentrations and 0.015 μg/mL represents the ADI value established by the Canadian health and welfare agency. We observed cytogenetic effects of chlorothalonil on cultured human lymphocytes in terms of increased CAs and MNi frequencies at all tested concentrations, including the FAO/WHO ADI and ARfD values of 0.020 and 0.600 μg/mL, respectively, but with exception of the Canadian ADI value of 0.015 μg/mL. Finally, no sexes differences were found in the levels of CAs and MNi induced by different chlorothalonil concentrations. Similarly, the mitotic index and the cytokinesis-block proliferation index did not show any significant effect on the proliferative capacity of the cells, although at the chlorothalonil concentration of 0.600 μg/mL the P-values of both indices were borderline.
Collapse
Affiliation(s)
- Alfredo Santovito
- University of Turin, Department of Life Sciences and Systems Biology, Via Accademia Albertina n. 13, 10123 Torino, Italy.
| | - Claudio Gendusa
- University of Turin, Department of Life Sciences and Systems Biology, Via Accademia Albertina n. 13, 10123 Torino, Italy
| | - Francesca Ferraro
- University of Turin, Department of Life Sciences and Systems Biology, Via Accademia Albertina n. 13, 10123 Torino, Italy
| | - Irene Musso
- University of Turin, Department of Life Sciences and Systems Biology, Via Accademia Albertina n. 13, 10123 Torino, Italy
| | - Maria Costanzo
- University of Turin, Department of Life Sciences and Systems Biology, Via Accademia Albertina n. 13, 10123 Torino, Italy
| | - Stefano Ruberto
- University of Turin, Department of Life Sciences and Systems Biology, Via Accademia Albertina n. 13, 10123 Torino, Italy
| | - Piero Cervella
- University of Turin, Department of Life Sciences and Systems Biology, Via Accademia Albertina n. 13, 10123 Torino, Italy
| |
Collapse
|
82
|
Blachier F, Beaumont M, Portune KJ, Steuer N, Lan A, Audebert M, Khodorova N, Andriamihaja M, Airinei G, Benamouzig R, Davila AM, Armand L, Rampelli S, Brigidi P, Tomé D, Claus SP, Sanz Y. High-protein diets for weight management: Interactions with the intestinal microbiota and consequences for gut health. A position paper by the my new gut study group. Clin Nutr 2018; 38:1012-1022. [PMID: 30274898 DOI: 10.1016/j.clnu.2018.09.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS This review examines to what extent high-protein diets (HPD), which may favor body weight loss and improve metabolic outcomes in overweight and obese individuals, may also impact the gut environment, shaping the microbiota and the host-microbe (co)metabolic pathways and products, possibly affecting large intestine mucosa homeostasis. METHODS PubMed-referenced publications were analyzed with an emphasis on dietary intervention studies involving human volunteers in order to clarify the beneficial vs. deleterious effects of HPD in terms of both metabolic and gut-related health parameters; taking into account the interactions with the gut microbiota. RESULTS HPD generally decrease body weight and improve blood metabolic parameters, but also modify the fecal and urinary contents in various bacterial metabolites and co-metabolites. The effects of HPD on the intestinal microbiota composition appear rather heterogeneous depending on the type of dietary intervention. Recently, HPD consumption was shown to modify the expression of genes playing key roles in homeostatic processes in the rectal mucosa, without evidence of intestinal inflammation. Importantly, the effects of HPD on the gut were dependent on the protein source (i.e. from plant or animal sources), a result which should be considered for further investigations. CONCLUSION Although HPD appear to be efficient for weight loss, the effects of HPD on microbiota-derived metabolites and gene expression in the gut raise new questions on the impact of HPD on the large intestine mucosa homeostasis leading the authors to recommend some caution regarding the utilization of HPD, notably in a recurrent and/or long-term ways.
Collapse
Affiliation(s)
- François Blachier
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France.
| | - Martin Beaumont
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Kevin Joseph Portune
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agronomy and Food Technology, Spanish National Research Council, Valencia, Spain
| | - Nils Steuer
- Department of Gastroenterology, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Annaïg Lan
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Marc Audebert
- Toxalim, Research Centre in Food Toxicology, INRA, Toulouse, France
| | - Nadezda Khodorova
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | | | - Gheorghe Airinei
- Department of Gastroenterology, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Robert Benamouzig
- Department of Gastroenterology, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Anne-Marie Davila
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Lucie Armand
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Daniel Tomé
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Sandrine Paule Claus
- Department of Food Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agronomy and Food Technology, Spanish National Research Council, Valencia, Spain
| |
Collapse
|
83
|
Passmore IJ, Letertre MPM, Preston MD, Bianconi I, Harrison MA, Nasher F, Kaur H, Hong HA, Baines SD, Cutting SM, Swann JR, Wren BW, Dawson LF. Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria. PLoS Pathog 2018; 14:e1007191. [PMID: 30208103 PMCID: PMC6135563 DOI: 10.1371/journal.ppat.1007191] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/29/2018] [Indexed: 11/18/2022] Open
Abstract
Clostridium difficile is a Gram-positive spore-forming anaerobe and a major cause of antibiotic-associated diarrhoea. Disruption of the commensal microbiota, such as through treatment with broad-spectrum antibiotics, is a critical precursor for colonisation by C. difficile and subsequent disease. Furthermore, failure of the gut microbiota to recover colonisation resistance can result in recurrence of infection. An unusual characteristic of C. difficile among gut bacteria is its ability to produce the bacteriostatic compound para-cresol (p-cresol) through fermentation of tyrosine. Here, we demonstrate that the ability of C. difficile to produce p-cresol in vitro provides a competitive advantage over gut bacteria including Escherichia coli, Klebsiella oxytoca and Bacteroides thetaiotaomicron. Metabolic profiling of competitive co-cultures revealed that acetate, alanine, butyrate, isobutyrate, p-cresol and p-hydroxyphenylacetate were the main metabolites responsible for differentiating the parent strain C. difficile (630Δerm) from a defined mutant deficient in p-cresol production. Moreover, we show that the p-cresol mutant displays a fitness defect in a mouse relapse model of C. difficile infection (CDI). Analysis of the microbiome from this mouse model of CDI demonstrates that colonisation by the p-cresol mutant results in a distinctly altered intestinal microbiota, and metabolic profile, with a greater representation of Gammaproteobacteria, including the Pseudomonales and Enterobacteriales. We demonstrate that Gammaproteobacteria are susceptible to exogenous p-cresol in vitro and that there is a clear divide between bacterial Phyla and their susceptibility to p-cresol. In general, Gram-negative species were relatively sensitive to p-cresol, whereas Gram-positive species were more tolerant. This study demonstrates that production of p-cresol by C. difficile has an effect on the viability of intestinal bacteria as well as the major metabolites produced in vitro. These observations are upheld in a mouse model of CDI, in which p-cresol production affects the biodiversity of gut microbiota and faecal metabolite profiles, suggesting that p-cresol production contributes to C. difficile survival and pathogenesis.
Collapse
Affiliation(s)
- Ian J. Passmore
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Mark D. Preston
- Bioinformatics and Next Generation sequencing core facility, National Institute for Biological Standards and Control South Mimms, Potters Bar, United Kingdom
| | - Irene Bianconi
- Department of Biomedical Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Mark A. Harrison
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fauzy Nasher
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Harparkash Kaur
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Huynh A. Hong
- Department of Biomedical Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Simon D. Baines
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Simon M. Cutting
- Department of Biomedical Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Jonathan R. Swann
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Brendan W. Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lisa F. Dawson
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
84
|
Gilbert MS, Ijssennagger N, Kies AK, van Mil SWC. Protein fermentation in the gut; implications for intestinal dysfunction in humans, pigs, and poultry. Am J Physiol Gastrointest Liver Physiol 2018; 315:G159-G170. [PMID: 29597354 DOI: 10.1152/ajpgi.00319.2017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The amount of dietary protein is associated with intestinal disease in different vertebrate species. In humans, this is exemplified by the association between high-protein intake and fermentation metabolite concentrations in patients with inflammatory bowel disease. In production animals, dietary protein intake is associated with postweaning diarrhea in piglets and with the occurrence of wet litter in poultry. The underlying mechanisms by which dietary protein contributes to intestinal problems remain largely unknown. Fermentation of undigested protein in the hindgut results in formation of fermentation products including short-chain fatty acids, branched-chain fatty acids, ammonia, phenolic and indolic compounds, biogenic amines, hydrogen sulfide, and nitric oxide. Here, we review the mechanisms by which these metabolites may cause intestinal disease. Studies addressing how different metabolites induce epithelial damage rely mainly on cell culture studies and occasionally on mice or rat models. Often, contrasting results were reported. The direct relevance of such studies for human, pig, and poultry gut health is therefore questionable and does not suffice for the development of interventions to improve gut health. We discuss a roadmap to improve our understanding of gut metabolites and microbial species associated with intestinal health in humans and production animals and to determine whether these metabolite/bacterial networks cause epithelial damage. The outcomes of these studies will dictate proof-of-principle studies to eliminate specific metabolites and or bacterial strains and will provide the basis for interventions aiming to improve gut health.
Collapse
Affiliation(s)
- Myrthe S Gilbert
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research , Wageningen , The Netherlands
| | - Noortje Ijssennagger
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - Arie K Kies
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research , Wageningen , The Netherlands.,DSM Nutritional Products, Animal Nutrition and Health, Kaiseraugst, Switzerland
| | - Saskia W C van Mil
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| |
Collapse
|
85
|
Mohamadkhani A. Gut Microbiota and Fecal Metabolome Perturbation in Children with Autism Spectrum Disorder. Middle East J Dig Dis 2018; 10:205-212. [PMID: 31049167 PMCID: PMC6488507 DOI: 10.15171/mejdd.2018.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Abstract
The brain-intestinal axis concept describes the communication between the intestinal
microbiota as an ecosystem of a number of dynamic microorganisms and the brain. The
composition of the microbial community of the human gut is important for human health
by influencing the total metabolomic profile. In children with autism spectrum disorder
(ASD), the composition of the fecal microbiota and their metabolic products has a different
configuration of the healthy child. An imbalance in the metabolite derived from the microbiota
in children with ASD affect brain development and social behavior. In this article, we
review recent discoveries about intestinal metabolites derived from microbiota based on
high-yield molecular studies in children with ASD as part of the "intestinal brain axis"
Collapse
Affiliation(s)
- Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
86
|
Beaumont M, Neyrinck AM, Olivares M, Rodriguez J, de Rocca Serra A, Roumain M, Bindels LB, Cani PD, Evenepoel P, Muccioli GG, Demoulin JB, Delzenne NM. The gut microbiota metabolite indole alleviates liver inflammation in mice. FASEB J 2018; 32:fj201800544. [PMID: 29906245 PMCID: PMC6219839 DOI: 10.1096/fj.201800544] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022]
Abstract
The gut microbiota regulates key hepatic functions, notably through the production of bacterial metabolites that are transported via the portal circulation. We evaluated the effects of metabolites produced by the gut microbiota from aromatic amino acids (phenylacetate, benzoate, p-cresol, and indole) on liver inflammation induced by bacterial endotoxin. Precision-cut liver slices prepared from control mice, Kupffer cell (KC)-depleted mice, and obese mice ( ob/ ob) were treated with or without LPS and bacterial metabolites. We observed beneficial effects of indole that dose-dependently reduced the LPS-induced up-regulation of proinflammatory mediators at both mRNA and protein levels in precision-cut liver slices prepared from control or ob/ ob mice. KC depletion partly prevented the antiinflammatory effects of indole, notably through a reduction of nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain-containing 3 (NLRP3) pathway activation. In vivo, the oral administration of indole before an LPS injection reduced the expression of key proteins of the NF-κB pathway and downstream proinflammatory gene up-regulation. Indole also prevented LPS-induced alterations of cholesterol metabolism through a transcriptional regulation associated with increased 4β-hydroxycholesterol hepatic levels. In summary, indole appears as a bacterial metabolite produced from tryptophan that is able to counteract the detrimental effects of LPS in the liver. Indole could be a new target to develop innovative strategies to decrease hepatic inflammation.-Beaumont, M., Neyrinck, A. M., Olivares, M., Rodriguez, J., de Rocca Serra, A., Roumain, M., Bindels, L. B., Cani, P. D., Evenepoel, P., Muccioli, G. G., Demoulin, J.-B., Delzenne, N. M. The gut microbiota metabolite indole alleviates liver inflammation in mice.
Collapse
Affiliation(s)
- Martin Beaumont
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Marta Olivares
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Audrey de Rocca Serra
- Pole of Experimental Medicine, De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Pieter Evenepoel
- Department of Immunology and Microbiology, Laboratory of Nephrology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Baptiste Demoulin
- Pole of Experimental Medicine, De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
87
|
Sanctuary MR, Kain JN, Angkustsiri K, German JB. Dietary Considerations in Autism Spectrum Disorders: The Potential Role of Protein Digestion and Microbial Putrefaction in the Gut-Brain Axis. Front Nutr 2018; 5:40. [PMID: 29868601 PMCID: PMC5968124 DOI: 10.3389/fnut.2018.00040] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Children with autism spectrum disorders (ASD), characterized by a range of behavioral abnormalities and social deficits, display high incidence of gastrointestinal (GI) co-morbidities including chronic constipation and diarrhea. Research is now increasingly able to characterize the “fragile gut” in these children and understand the role that impairment of specific GI functions plays in the GI symptoms associated with ASD. This mechanistic understanding is extending to the interactions between diet and ASD, including food structure and protein digestive capacity in exacerbating autistic symptoms. Children with ASD and gut co-morbidities exhibit low digestive enzyme activity, impaired gut barrier integrity and the presence of antibodies specific for dietary proteins in the peripheral circulation. These findings support the hypothesis that entry of dietary peptides from the gut lumen into the vasculature are associated with an aberrant immune response. Furthermore, a subset of children with ASD exhibit high concentrations of metabolites originating from microbial activity on proteinaceous substrates. Taken together, the combination of specific protein intakes poor digestion, gut barrier integrity, microbiota composition and function all on a background of ASD represents a phenotypic pattern. A potential consequence of this pattern of conditions is that the fragile gut of some children with ASD is at risk for GI symptoms that may be amenable to improvement with specific dietary changes. There is growing evidence that shows an association between gut dysfunction and dysbiosis and ASD symptoms. It is therefore urgent to perform more experimental and clinical research on the “fragile gut” in children with ASD in order to move toward advancements in clinical practice. Identifying those factors that are of clinical value will provide an evidence-based path to individual management and targeted solutions; from real time sensing to the design of diets with personalized protein source/processing, all to improve GI function in children with ASD.
Collapse
Affiliation(s)
- Megan R Sanctuary
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Jennifer N Kain
- Department of Neurobiology, Physiology and Behavior Department, University of California, Davis, Davis, CA, United States
| | - Kathleen Angkustsiri
- School of Medicine, Department of Pediatrics, University of California, Davis, Sacramento, CA, United States.,Department of Pediatrics, UC Davis MIND Institute, Sacramento, CA, United States
| | - J Bruce German
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States.,Foods for Health Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
88
|
Zamora-Gasga VM, Álvarez-Vidal C, Montalvo-González E, Loarca-Piña G, Vázquez-Landaverde PA, Bello-Pérez LA, Tovar J, Sáyago-Ayerdi SG. Gut metabolites associated with pH and antioxidant capacity during in vitro colonic fermentation of Mexican corn products. Cereal Chem 2018. [DOI: 10.1002/cche.10039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Victor M. Zamora-Gasga
- Laboratorio Integral de Investigación en Alimentos; División de Estudios de Posgrado; Tecnológico Nacional de México; Instituto Tecnológico de Tepic; Tepic Nayarit México
| | - Carlos Álvarez-Vidal
- Laboratorio Integral de Investigación en Alimentos; División de Estudios de Posgrado; Tecnológico Nacional de México; Instituto Tecnológico de Tepic; Tepic Nayarit México
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos; División de Estudios de Posgrado; Tecnológico Nacional de México; Instituto Tecnológico de Tepic; Tepic Nayarit México
| | - Guadalupe Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República; Facultad de Química; Universidad Autónoma de Querétaro, Centro Universitario; Santiago de Querétaro Querétaro México
| | - Pedro A. Vázquez-Landaverde
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional; Unidad Querétaro; Santiago de Querétaro Querétaro México
| | - Luis A. Bello-Pérez
- Centro de Desarrollo de Productos Bióticos (CEPROBI) del Instituto Politécnico Nacional; Yautepec Morelos México
| | - Juscelino Tovar
- Department of Food Technology, Engineering and Nutrition; Lund University; Lund Sweden
| | - Sonia G. Sáyago-Ayerdi
- Laboratorio Integral de Investigación en Alimentos; División de Estudios de Posgrado; Tecnológico Nacional de México; Instituto Tecnológico de Tepic; Tepic Nayarit México
| |
Collapse
|
89
|
Kang DW, Ilhan ZE, Isern NG, Hoyt DW, Howsmon DP, Shaffer M, Lozupone CA, Hahn J, Adams JB, Krajmalnik-Brown R. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe 2018; 49:121-131. [DOI: 10.1016/j.anaerobe.2017.12.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/01/2017] [Accepted: 12/18/2017] [Indexed: 12/30/2022]
|
90
|
DALLAS DAVIDC, SANCTUARY MEGANR, QU YUNYAO, KHAJAVI SHABNAMHAGHIGHAT, VAN ZANDT ALEXANDRIAE, DYANDRA MELISSA, FRESE STEVENA, BARILE DANIELA, GERMAN JBRUCE. Personalizing protein nourishment. Crit Rev Food Sci Nutr 2017; 57:3313-3331. [PMID: 26713355 PMCID: PMC4927412 DOI: 10.1080/10408398.2015.1117412] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins are not equally digestible-their proteolytic susceptibility varies by their source and processing method. Incomplete digestion increases colonic microbial protein fermentation (putrefaction), which produces toxic metabolites that can induce inflammation in vitro and have been associated with inflammation in vivo. Individual humans differ in protein digestive capacity based on phenotypes, particularly disease states. To avoid putrefaction-induced intestinal inflammation, protein sources, and processing methods must be tailored to the consumer's digestive capacity. This review explores how food processing techniques alter protein digestibility and examines how physiological conditions alter digestive capacity. Possible solutions to improving digestive function or matching low digestive capacity with more digestible protein sources are explored. Beyond the ileal digestibility measurements of protein digestibility, less invasive, quicker and cheaper techniques for monitoring the extent of protein digestion and fermentation are needed to personalize protein nourishment. Biomarkers of protein digestive capacity and efficiency can be identified with the toolsets of peptidomics, metabolomics, microbial sequencing and multiplexed protein analysis of fecal and urine samples. By monitoring individual protein digestive function, the protein component of diets can be tailored via protein source and processing selection to match individual needs to minimize colonic putrefaction and, thus, optimize gut health.
Collapse
Affiliation(s)
- DAVID C. DALLAS
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - MEGAN R. SANCTUARY
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - YUNYAO QU
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - SHABNAM HAGHIGHAT KHAJAVI
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - ALEXANDRIA E. VAN ZANDT
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - MELISSA DYANDRA
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - STEVEN A. FRESE
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - DANIELA BARILE
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - J. BRUCE GERMAN
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|
91
|
Beaumont M, Portune KJ, Steuer N, Lan A, Cerrudo V, Audebert M, Dumont F, Mancano G, Khodorova N, Andriamihaja M, Airinei G, Tomé D, Benamouzig R, Davila AM, Claus SP, Sanz Y, Blachier F. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. Am J Clin Nutr 2017; 106:1005-1019. [PMID: 28903954 DOI: 10.3945/ajcn.117.158816] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022] Open
Abstract
Background: Although high-protein diets (HPDs) are frequently consumed for body-weight control, little is known about the consequences for gut microbiota composition and metabolic activity and for large intestine mucosal homeostasis. Moreover, the effects of HPDs according to the source of protein need to be considered in this context.Objective: The objective of this study was to evaluate the effects of the quantity and source of dietary protein on microbiota composition, bacterial metabolite production, and consequences for the large intestinal mucosa in humans.Design: A randomized, double-blind, parallel-design trial was conducted in 38 overweight individuals who received a 3-wk isocaloric supplementation with casein, soy protein, or maltodextrin as a control. Fecal and rectal biopsy-associated microbiota composition was analyzed by 16S ribosomal DNA sequencing. Fecal, urinary, and plasma metabolomes were assessed by 1H-nuclear magnetic resonance. Mucosal transcriptome in rectal biopsies was determined with the use of microarrays.Results: HPDs did not alter the microbiota composition, but induced a shift in bacterial metabolism toward amino acid degradation with different metabolite profiles according to the protein source. Correlation analysis identified new potential bacterial taxa involved in amino acid degradation. Fecal water cytotoxicity was not modified by HPDs, but was associated with a specific microbiota and bacterial metabolite profile. Casein and soy protein HPDs did not induce inflammation, but differentially modified the expression of genes playing key roles in homeostatic processes in rectal mucosa, such as cell cycle or cell death.Conclusions: This human intervention study shows that the quantity and source of dietary proteins act as regulators of gut microbiota metabolite production and host gene expression in the rectal mucosa, raising new questions on the impact of HPDs on the large intestine mucosa homeostasis. This trial was registered at clinicaltrials.gov as NCT02351297.
Collapse
Affiliation(s)
- Martin Beaumont
- Mixed research unit Nutrition Physiology and Ingestive Behavior, AgroParisTech, French National Institute for Agricultural Research (INRA), University of Paris-Saclay, Paris, France
| | - Kevin Joseph Portune
- Microbial Ecology, Nutrition and Health Research Unit, Institute of agronomy and food technology - Spanish National Research Council, Valencia, Spain
| | - Nils Steuer
- Department of Gastroenterology, Avicenne Hospital, Public Assistance-Hospital of Paris, Bobigny, France
| | - Annaïg Lan
- Mixed research unit Nutrition Physiology and Ingestive Behavior, AgroParisTech, French National Institute for Agricultural Research (INRA), University of Paris-Saclay, Paris, France
| | - Victor Cerrudo
- Microbial Ecology, Nutrition and Health Research Unit, Institute of agronomy and food technology - Spanish National Research Council, Valencia, Spain
| | - Marc Audebert
- Research Centre in Food Toxicology, University of Toulouse, INRA, Toulouse National Veterinary School, Polytechnic National Institute - Purpan, Paul Sabatier University, Toulouse, France
| | | | - Giulia Mancano
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Nadezda Khodorova
- Mixed research unit Nutrition Physiology and Ingestive Behavior, AgroParisTech, French National Institute for Agricultural Research (INRA), University of Paris-Saclay, Paris, France
| | - Mireille Andriamihaja
- Mixed research unit Nutrition Physiology and Ingestive Behavior, AgroParisTech, French National Institute for Agricultural Research (INRA), University of Paris-Saclay, Paris, France
| | - Gheorghe Airinei
- Department of Gastroenterology, Avicenne Hospital, Public Assistance-Hospital of Paris, Bobigny, France
| | - Daniel Tomé
- Mixed research unit Nutrition Physiology and Ingestive Behavior, AgroParisTech, French National Institute for Agricultural Research (INRA), University of Paris-Saclay, Paris, France
| | - Robert Benamouzig
- Department of Gastroenterology, Avicenne Hospital, Public Assistance-Hospital of Paris, Bobigny, France
| | - Anne-Marie Davila
- Mixed research unit Nutrition Physiology and Ingestive Behavior, AgroParisTech, French National Institute for Agricultural Research (INRA), University of Paris-Saclay, Paris, France
| | - Sandrine Paule Claus
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of agronomy and food technology - Spanish National Research Council, Valencia, Spain
| | - François Blachier
- Mixed research unit Nutrition Physiology and Ingestive Behavior, AgroParisTech, French National Institute for Agricultural Research (INRA), University of Paris-Saclay, Paris, France;
| |
Collapse
|
92
|
Tao S, Tian P, Luo Y, Tian J, Hua C, Geng Y, Cong R, Ni Y, Zhao R. Microbiome-Metabolome Responses to a High-Grain Diet Associated with the Hind-Gut Health of Goats. Front Microbiol 2017; 8:1764. [PMID: 28959247 PMCID: PMC5603706 DOI: 10.3389/fmicb.2017.01764] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/31/2017] [Indexed: 12/11/2022] Open
Abstract
Studies on the effect of a high-concentrate (HC) diet on the hindgut microbiota and metabolome of ruminants are rarely reported. We used 454 pyrosequencing of 16S rDNA genes and gas chromatography-mass spectrometry to evaluate the effects of long-term feeding (HL) or short-term (HS) feeding of an HC diet on changes in bacterial microbiota and their metabolites in the hindgut, with Guanzhong goat as a ruminant model. Results indicated that an HC diet decreased bacterial diversity and induced metabolic disorder in the hindgut. The levels of lactate, endotoxin (lipopolysaccharide, LPS), and volatile fatty acid concentrations were higher in the intestinal digesta of the HC goats than in those of the LC goats (P < 0.05). The level of beta-alanine decreased, whereas the levels of stigmasterol and quinic acid decreased in the cecal and colonic digesta of the HC goats. At the genus level, the abundance of Clostridium and Turicibacter was significantly increased in both the colonic and cecal digesta of the HC goats. Several potential relationships between metabolites and several microbial species were revealed in this study. The mRNA expression of the genes functionally associated with nutrients transport, including NHE2, NHE3, MCT1, and MCT4 were significantly downregulated in the colonic mucosa by the HC diet (P < 0.05). The expression levels of the genes related to the inflammatory response, including TLR4, MYD88, TNF-α, and IL-1β were markedly upregulated in the cecal mucosa by the HC diet (P < 0.05). Our results indicate that an HC diet induces microbiota dysbiosis, metabolic disorders, and mucosal damage in the hindgut of goats.
Collapse
Affiliation(s)
- Shiyu Tao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Ping Tian
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Yanwen Luo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Jing Tian
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Canfeng Hua
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Yali Geng
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Rihua Cong
- Animal physiology teaching and research office, College of Veterinary Medicine, Northwest A & F UniversityYangling, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
93
|
Dietary Protein and Amino Acid Supplementation in Inflammatory Bowel Disease Course: What Impact on the Colonic Mucosa? Nutrients 2017; 9:nu9030310. [PMID: 28335546 PMCID: PMC5372973 DOI: 10.3390/nu9030310] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD), after disease onset, typically progress in two cyclically repeated phases, namely inflammatory flare and remission, with possible nutritional status impairment. Some evidence, either from epidemiological, clinical, and experimental studies indicate that the quantity and the quality of dietary protein consumption and amino acid supplementation may differently influence the IBD course according to the disease phases. For instance, although the dietary protein needs for mucosal healing after an inflammatory episode remain undetermined, there is evidence that amino acids derived from dietary proteins display beneficial effects on this process, serving as building blocks for macromolecule synthesis in the wounded mucosal area, energy substrates, and/or precursors of bioactive metabolites. However, an excessive amount of dietary proteins may result in an increased intestinal production of potentially deleterious bacterial metabolites. This could possibly affect epithelial repair as several of these bacterial metabolites are known to inhibit colonic epithelial cell respiration, cell proliferation, and/or to affect barrier function. In this review, we present the available evidence about the impact of the amount of dietary proteins and supplementary amino acids on IBD onset and progression, with a focus on the effects reported in the colon.
Collapse
|
94
|
Pan L, Ye X, Ding J, Zhou Y. Antiproliferation effect of the uremic toxin para‑cresol on endothelial progenitor cells is related to its antioxidant activity. Mol Med Rep 2017; 15:2308-2312. [PMID: 28260040 PMCID: PMC5364822 DOI: 10.3892/mmr.2017.6230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/10/2017] [Indexed: 01/14/2023] Open
Abstract
Endothelial dysfunction and impaired endothelial regenerative capacity are key contributors to the high incidence of cardiovascular disease in patients with chronic kidney disease (CKD). Uremic toxins are associated with this pathogenesis. Previous studies have revealed that a uremic toxin, para-cresol (p-cresol), exerts an antiproliferation effect on human endothelial progenitor cells (EPCs), but the mechanism remains unclear. In the present study, reactive oxygen species (ROS) were confirmed to function as signaling molecules that regulate growth factor-dependent EPC proliferation. EPCs were treated with p-cresol for 72 h, using a concentration range typically found in CKD patients. ROS production was analyzed by fluorescence microscopy and flow cytometry, and protein expression levels of nicotinamide adenine dinucleotide phosphate oxidase, a major source of ROS, were analyzed by western blot analysis. mRNA expression levels of antioxidant genes were assessed by reverse transcription-quantitative polymerase chain reaction analysis. The results revealed that p-cresol partially inhibits ROS production, and this effect may be associated with a significant reduction in cytochrome b-245 alpha and beta chain expression in EPCs. An increase of glutathione peroxidase 4 mRNA expression was also detected. In conclusion, the present study revealed that the antiproliferation effect of p-cresol on EPCs might act via its antioxidant activity. The results of the present study may facilitate understanding of uremic toxin toxicity on the cardiovascular system.
Collapse
Affiliation(s)
- Limin Pan
- Department of Anesthesiology, The Third Affiliated Hospital to Wenzhou Medical College, Rui'an, Zhejiang 325200, P.R. China
| | - Xiaoting Ye
- Department of Anesthesiology, The Third Affiliated Hospital to Wenzhou Medical College, Rui'an, Zhejiang 325200, P.R. China
| | - Jiguang Ding
- Department of Infectious Diseases, The Third Affiliated Hospital to Wenzhou Medical College, Rui'an, Zhejiang 325200, P.R. China
| | - Yu Zhou
- Department of Infectious Diseases, The Third Affiliated Hospital to Wenzhou Medical College, Rui'an, Zhejiang 325200, P.R. China
| |
Collapse
|
95
|
Beaumont M, Andriamihaja M, Armand L, Grauso M, Jaffrézic F, Laloë D, Moroldo M, Davila AM, Tomé D, Blachier F, Lan A. Epithelial response to a high-protein diet in rat colon. BMC Genomics 2017; 18:116. [PMID: 28137254 PMCID: PMC5282643 DOI: 10.1186/s12864-017-3514-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/25/2017] [Indexed: 01/03/2023] Open
Abstract
Background High-protein diets (HPD) alter the large intestine microbiota composition in association with a metabolic shift towards protein degradation. Some amino acid-derived metabolites produced by the colon bacteria are beneficial for the mucosa while others are deleterious at high concentrations. The aim of the present work was to define the colonic epithelial response to an HPD. Transcriptome profiling was performed on colonocytes of rats fed an HPD or an isocaloric normal-protein diet (NPD) for 2 weeks. Results The HPD downregulated the expression of genes notably implicated in pathways related to cellular metabolism, NF-κB signaling, DNA repair, glutathione metabolism and cellular adhesion in colonocytes. In contrast, the HPD upregulated the expression of genes related to cell proliferation and chemical barrier function. These changes at the mRNA level in colonocytes were not associated with detrimental effects of the HPD on DNA integrity (comet assay), epithelium renewal (quantification of proliferation and apoptosis markers by immunohistochemistry and western blot) and colonic barrier integrity (Ussing chamber experiments). Conclusion The modifications of the luminal environment after an HPD were associated with maintenance of the colonic homeostasis that might be the result of adaptive processes in the epithelium related to the observed transcriptional regulations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3514-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Beaumont
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, 75005, Paris, France
| | - Mireille Andriamihaja
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, 75005, Paris, France
| | - Lucie Armand
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, 75005, Paris, France
| | - Marta Grauso
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, 75005, Paris, France
| | - Florence Jaffrézic
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, 78350, Jouy-en-Josas, France
| | - Denis Laloë
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, 78350, Jouy-en-Josas, France
| | | | - Anne-Marie Davila
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, 75005, Paris, France
| | - Daniel Tomé
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, 75005, Paris, France
| | - François Blachier
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, 75005, Paris, France
| | - Annaïg Lan
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, 75005, Paris, France.
| |
Collapse
|
96
|
Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R, Smith CK, Trinchieri G. Microbes and Cancer. Annu Rev Immunol 2017; 35:199-228. [PMID: 28142322 DOI: 10.1146/annurev-immunol-051116-052133] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Commensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and systemically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue repair. Mostly because of its effects on metabolism, cellular proliferation, inflammation, and immunity, the microbiota regulates cancer at the level of predisposing conditions, initiation, genetic instability, susceptibility to host immune response, progression, comorbidity, and response to therapy. Here, we review the mechanisms underlying the interaction of the microbiota with cancer and the evidence suggesting that the microbiota could be targeted to improve therapy while attenuating adverse reactions.
Collapse
Affiliation(s)
- Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Ernesto Perez-Chanona
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Soumen Roy
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Rosalba Salcedo
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Carolyne K Smith
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
97
|
Changes in the Luminal Environment of the Colonic Epithelial Cells and Physiopathological Consequences. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:476-486. [PMID: 28082121 DOI: 10.1016/j.ajpath.2016.11.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022]
Abstract
Evidence, mostly from experimental models, has accumulated, indicating that modifications of bacterial metabolite concentrations in the large intestine luminal content, notably after changes in the dietary composition, may have important beneficial or deleterious consequences for the colonic epithelial cell metabolism and physiology in terms of mitochondrial energy metabolism, reactive oxygen species production, gene expression, DNA integrity, proliferation, and viability. Recent data suggest that for some bacterial metabolites, like hydrogen sulfide and butyrate, the extent of their oxidation in colonocytes affects their capacity to modulate gene expression in these cells. Modifications of the luminal bacterial metabolite concentrations may, in addition, affect the colonic pH and osmolarity, which are known to affect colonocyte biology per se. Although the colonic epithelium appears able to face, up to some extent, changes in its luminal environment, notably by developing a metabolic adaptive response, some of these modifications may likely affect the homeostatic process of colonic epithelium renewal and the epithelial barrier function. The contribution of major changes in the colonocyte luminal environment in pathological processes, like mucosal inflammation, preneoplasia, and neoplasia, although suggested by several studies, remains to be precisely evaluated, particularly in a long-term perspective.
Collapse
|
98
|
Rybakova D, Rack-Wetzlinger U, Cernava T, Schaefer A, Schmuck M, Berg G. Aerial Warfare: A Volatile Dialogue between the Plant Pathogen Verticillium longisporum and Its Antagonist Paenibacillus polymyxa. FRONTIERS IN PLANT SCIENCE 2017; 8:1294. [PMID: 28798756 PMCID: PMC5529406 DOI: 10.3389/fpls.2017.01294] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/07/2017] [Indexed: 05/20/2023]
Abstract
Verticillium wilt caused by Verticillium spp. results in severe yield losses in a broad range of crops. Verticillium outbreaks are challenging to control, and exacerbated by increases in soil temperatures and drought associated with global warming. Employing natural antagonists as biocontrol agents offers a promising approach to addressing this challenge. Paenibacillus polymyxa Sb3-1 was proven to reduce the growth of Verticillium longisporum during in vitro experiments and was shown to promote the growth of oilseed rape seedlings infested with V. longisporum. Our novel approach combined in vitro and in planta methods with the study of the mode of interaction between Sb3-1 and V. longisporum EVL43 via their volatile organic compounds (VOCs). Volatile and soluble substances, produced by both microorganisms as a reaction to one another's VOCs, were detected by using both gas and liquid chromatography-mass spectrometry. P. polymyxa Sb3-1 continually produced antimicrobial and plant growth promoting VOCs, such as 2-nonanone and 3-hydroxy-2-butanone. Several other antimicrobial volatile substances, such as isoamyl acetate and durenol, were downregulated. The general metabolic activity of Sb3-1, including protein and DNA biotransformations, was upregulated upon contact with EVL43 VOCs. V. longisporum increased its production of antimicrobial substances, such as 1-butanol, and downregulated its metabolic activities upon exposure to Sb3-1 VOCs. Additionally, several stress response substances such as arabitol and protein breakdown products (e.g., L-Isoleucyl-L-glutamic acid), were increased in the co-incubated samples. The results obtained depict an ongoing dialog between these microorganisms resulting in growth inhibition, the slowing down of metabolism, and the cell death of V. longisporum due to contact with the P. polymyxa Sb3-1 VOCs. Moreover, the results indicate that VOCs make a substantial contribution to the interaction between pathogens and their natural antagonists and have the potential to control pathogens in a novel, environmentally friendly manner.
Collapse
Affiliation(s)
- Daria Rybakova
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
- *Correspondence: Daria Rybakova
| | - Ute Rack-Wetzlinger
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| | | | - Angelika Schaefer
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| | - Maria Schmuck
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| |
Collapse
|
99
|
Lancha AH, Zanella R, Tanabe SGO, Andriamihaja M, Blachier F. Dietary protein supplementation in the elderly for limiting muscle mass loss. Amino Acids 2016; 49:33-47. [PMID: 27807658 DOI: 10.1007/s00726-016-2355-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
Supplementation with whey and other dietary protein, mainly associated with exercise training, has been proposed to be beneficial for the elderly to gain and maintain lean body mass and improve health parameters. The main objective of this review is to examine the evidence provided by the scientific literature indicating benefit from such supplementation and to define the likely best strategy of protein uptake for optimal objectified results in the elderly. Overall, it appears that an intake of approximately 0.4 g protein/kg BW per meal thus representing 1.2-1.6 g protein/kg BW/day may be recommended taking into account potential anabolic resistance. The losses of the skeletal muscle mass contribute to lower the capacity to perform activities in daily living, emphasizing that an optimal protein consumption may represent an important parameter to preserve independence and contribute to health status. However, it is worth noting that the maximal intake of protein with no adverse effect is not known, and that high levels of protein intake is associated with increased transfer of protein to the colon with potential deleterious effects. Thus, it is important to examine in each individual case the benefit that can be expected from supplementation with whey protein, taking into account the usual protein dietary intake.
Collapse
Affiliation(s)
- Antonio Herbert Lancha
- Laboratório de Nutrição e Metabolismo, Escola de Educação Física e Esporte da Universidade de São Paulo, EEFE-USP, R. Prof. Mello Moraes, 65, São Paulo, SP, CEP 05508-030, Brazil.
| | - Rudyard Zanella
- Laboratório de Nutrição e Metabolismo, Escola de Educação Física e Esporte da Universidade de São Paulo, EEFE-USP, R. Prof. Mello Moraes, 65, São Paulo, SP, CEP 05508-030, Brazil
| | - Stefan Gleissner Ohara Tanabe
- Laboratório de Nutrição e Metabolismo, Escola de Educação Física e Esporte da Universidade de São Paulo, EEFE-USP, R. Prof. Mello Moraes, 65, São Paulo, SP, CEP 05508-030, Brazil
| | - Mireille Andriamihaja
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| | - Francois Blachier
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France.
| |
Collapse
|
100
|
Portune KJ, Beaumont M, Davila AM, Tomé D, Blachier F, Sanz Y. Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.08.011] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|