51
|
Zaleska K, Suchorska W, Kowalik A, Kruszyna M, Jackowiak W, Skrobala A, Skorska M, Malicki J. Low dose out-of-field radiotherapy, part 3: Qualitative and quantitative impact of scattered out-of-field radiation on MDA-MB-231 cell lines. Cancer Radiother 2017; 21:358-364. [DOI: 10.1016/j.canrad.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/17/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
|
52
|
Potential genotoxic and cytotoxicity of emamectin benzoate in human normal liver cells. Oncotarget 2017; 8:82185-82195. [PMID: 29137255 PMCID: PMC5669881 DOI: 10.18632/oncotarget.18988] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022] Open
Abstract
Pesticide residue inducing cancer-related health problems draw people more attention recently. Emamectin benzoate (EMB) has been widely used in agriculture around the world based on its specificity targets. Although potential risk and the molecular mechanism of EMB toxicity to human liver has not been well-characterized. Unlike well-reported toxicity upon central nervous system, potential genotoxic and cytotoxicity of EMB in human liver cell was ignored and very limited. In this study, we identify genotoxicity and cytotoxicity of EMB to human normal liver cells (QSG7701 cell line) in vitro. We demonstrate that EMB inhibited the viability of QSG7701 cells and induced the DNA damage. Established assays of cytotoxicity were performed to characterize the mechanism of EMB toxicity on QSG7701 cells. Typical chromatin condensation and DNA fragmentation indicated the apoptosis of QSG7701 cells induced by EMB. And the intracellular biochemical results demonstrated that EMB-enhanced apoptosis of QSG7701 cells concurrent with generated ROS, a loss of mitochondrial membrane potential, the cytochrome-c release, up regulate the Bax/Bcl-2 and the activation of caspase-9/-3. Our results of EMB induces the death of QSG7701 cells maybe via mitochondrial-mediated intrinsic apoptotic pathways would contribute to promote the awareness of EMB as an extensive used pesticide to human being effects and reveal the underlying mechanisms of potential genotoxic.
Collapse
|
53
|
Hauth F, Toulany M, Zips D, Menegakis A. Cell-line dependent effects of hypoxia prior to irradiation in squamous cell carcinoma lines. Clin Transl Radiat Oncol 2017; 5:12-19. [PMID: 29594212 PMCID: PMC5833923 DOI: 10.1016/j.ctro.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/25/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023] Open
Abstract
Purpose To assess the impact of hypoxia exposure on cellular radiation sensitivity and survival of tumor cells with diverse intrinsic radiation sensitivity under normoxic conditions. Materials and methods Three squamous cell carcinoma (SCC) cell lines, with pronounced differences in radiation sensitivity, were exposed to hypoxia prior, during or post irradiation. Cells were seeded in parallel for colony formation assay (CFA) and stained for γH2AX foci or processed for western blot analysis. Results Hypoxia during irradiation led to increased cellular survival and reduced amount of residual γH2AX foci in all the cell lines with similar oxygen enhancement ratios (OER SKX: 2.31, FaDu: 2.44, UT-SCC5: 2.32), while post-irradiation hypoxia did not alter CFA nor residual γH2AX foci. Interestingly, prolonged exposure to hypoxia prior to irradiation resulted in differential outcome, assessed as Hypoxia modifying factor (HMF) namely radiosensitization (SKX HMF: 0.76), radioresistance (FaDu HMF: 1.54) and no effect (UT SCC-5 HMF: 1.1). Notably, radiosensitization was observed in the ATM-deficient SKX cell line while UT SCC-5 and to a lesser extent also FaDu cells showed radiation- and hypoxia-induced upregulation of ATM phosphorylation. Across all the cell lines Rad51 was downregulated whereas phosphor-DNA-PKcs was enhanced under hypoxia for FaDu and UTSCC-5 and was delayed in the SKX cell line. Conclusion We herein report a key role of ATM in the cellular fitness of cells exposed to prolonged moderate hypoxia prior to irradiation. While DNA damage response post-irradiation seem to be mainly driven by non-homologous end joining repair pathway in these conditions, our data suggest an important role for ATM kinase in hypoxia-driven modification of radiation response.
Collapse
Affiliation(s)
- Franziska Hauth
- Division of Radiobiology & Molecular Environmental Research Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology & Molecular Environmental Research Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Daniel Zips
- Division of Radiobiology & Molecular Environmental Research Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
- German Cancer Research Center (DKFZ), Heidelberg and German Consortium for Translational Cancer Research (DKTK) Partner Sites Tübingen, Germany
| | - Apostolos Menegakis
- Division of Radiobiology & Molecular Environmental Research Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
- Corresponding author at: Department of Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Hoppe-Seylerstrasse 3, 72076 Tuebingen, Germany.Department of Radiation OncologyMedical Faculty and University HospitalEberhard Karls University TübingenHoppe-Seylerstrasse 372076 TuebingenGermany
| |
Collapse
|
54
|
Dynamic In Vivo Profiling of DNA Damage and Repair after Radiotherapy Using Canine Patients as a Model. Int J Mol Sci 2017; 18:ijms18061176. [PMID: 28587165 PMCID: PMC5485999 DOI: 10.3390/ijms18061176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/23/2017] [Accepted: 05/27/2017] [Indexed: 01/22/2023] Open
Abstract
Time resolved data of DNA damage and repair after radiotherapy elucidates the relation between damage, repair, and cell survival. While well characterized in vitro, little is known about the time-course of DNA damage response in tumors sampled from individual patients. Kinetics of DNA damage after radiotherapy was assessed in eight dogs using repeated in vivo samples of tumor and co-irradiated normal tissue analyzed with comet assay and phosphorylated H2AX (γH2AX) immunohistochemistry. In vivo results were then compared (in silico) with a dynamic mathematical model for DNA damage formation and repair. Maximum %DNA in tail was observed at 15–60 min after irradiation, with a rapid decrease. Time-courses of γH2AX-foci paralleled these findings with a small time delay and were not influenced by covariates. The evolutionary parameter search based on %DNA in tail revealed a good fit of the DNA repair model to in vivo data for pooled sarcoma time-courses, but fits for individual sarcoma time-courses suffer from the heterogeneous nature of the in vivo data. It was possible to follow dynamics of comet tail intensity and γH2AX-foci during a course of radiation using a minimally invasive approach. DNA repair can be quantitatively investigated as time-courses of individual patients by integrating this resulting data into a dynamic mathematical model.
Collapse
|
55
|
Xu Y, Chen Y, Liu H, Lei X, Guo J, Cao K, Liu C, Li B, Cai J, Ju J, Gao F, Yang Y. Heat-killed salmonella typhimurium (HKST) protects mice against radiation in TLR4-dependent manner. Oncotarget 2017; 8:67082-67093. [PMID: 28978017 PMCID: PMC5620157 DOI: 10.18632/oncotarget.17859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022] Open
Abstract
It is urgently required to develop novel safe and effective radioprotectors to alleviate radiation damages. Recently, several toll like receptors (TLRs), including TLR2, TLR4, TLR5, TLR9, have been proved to exert protective effects against ionizing radiation. Due to different tissue-distribution and distinct functions of TLRs, we hypothesized that co-activation of multiple TLRs simultaneously may produce extensive and stronger radioprotective effects. In this study, we found the co-agonist of TLR2, TLR4 and TLR5, heat-killed salmonella typhimurium (HKST) significantly inhibited radiation-induced cell apoptosis, increased cell survival and alleviated DNA damage. HKST also prolonged animal survival and protected radiosensitive tissues against radiation damages, such as bone marrow, spleen and testis. Decrease of CD4+ and CD8+ cells were also reversed by HKST treatment. By using TLR2 and TLR4 knockout mice, we found that most of radioprotective effects of HKST were abrogated in TLR4 knock out mice. And HKST failed to inhibited cell apoptosis in TLR5 knock down cells. In conclusion, we demonstrated that HKST effectively protected cells and radiosensitive tissues against radiation injury in a TLR4 biased mechanism, suggesting HKST as a potential radioprotector with low toxicity.
Collapse
Affiliation(s)
- Yang Xu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yuanyuan Chen
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Hu Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiao Lei
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jiaming Guo
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Kun Cao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Bailong Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jianming Cai
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jintao Ju
- Faculty of Naval Medicine, Second Military Medical University, 200433, Shanghai, P.R. China
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
56
|
Oeck S, Malewicz NM, Hurst S, Al-Refae K, Krysztofiak A, Jendrossek V. The Focinator v2-0 - Graphical Interface, Four Channels, Colocalization Analysis and Cell Phase Identification. Radiat Res 2017; 188:114-120. [PMID: 28492345 DOI: 10.1667/rr14746.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The quantitative analysis of foci plays an important role in various cell biological methods. In the fields of radiation biology and experimental oncology, the effect of ionizing radiation, chemotherapy or molecularly targeted drugs on DNA damage induction and repair is frequently performed by the analysis of protein clusters or phosphorylated proteins recruited to so called repair foci at DNA damage sites, involving for example γ-H2A.X, 53BP1 or RAD51. We recently developed "The Focinator" as a reliable and fast tool for automated quantitative and qualitative analysis of nuclei and DNA damage foci. The refined software is now even more user-friendly due to a graphical interface and further features. Thus, we included an R-script-based mode for automated image opening, file naming, progress monitoring and an error report. Consequently, the evaluation no longer required the attendance of the operator after initial parameter definition. Moreover, the Focinator v2-0 is now able to perform multi-channel analysis of four channels and evaluation of protein-protein colocalization by comparison of up to three foci channels. This enables for example the quantification of foci in cells of a specific cell cycle phase.
Collapse
Affiliation(s)
- Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany
| | - Nathalie M Malewicz
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany
| | - Sebastian Hurst
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany
| | - Klaudia Al-Refae
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany
| | - Adam Krysztofiak
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany
| |
Collapse
|
57
|
Lambin P, Zindler J, Vanneste BGL, De Voorde LV, Eekers D, Compter I, Panth KM, Peerlings J, Larue RTHM, Deist TM, Jochems A, Lustberg T, van Soest J, de Jong EEC, Even AJG, Reymen B, Rekers N, van Gisbergen M, Roelofs E, Carvalho S, Leijenaar RTH, Zegers CML, Jacobs M, van Timmeren J, Brouwers P, Lal JA, Dubois L, Yaromina A, Van Limbergen EJ, Berbee M, van Elmpt W, Oberije C, Ramaekers B, Dekker A, Boersma LJ, Hoebers F, Smits KM, Berlanga AJ, Walsh S. Decision support systems for personalized and participative radiation oncology. Adv Drug Deliv Rev 2017; 109:131-153. [PMID: 26774327 DOI: 10.1016/j.addr.2016.01.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/08/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Abstract
A paradigm shift from current population based medicine to personalized and participative medicine is underway. This transition is being supported by the development of clinical decision support systems based on prediction models of treatment outcome. In radiation oncology, these models 'learn' using advanced and innovative information technologies (ideally in a distributed fashion - please watch the animation: http://youtu.be/ZDJFOxpwqEA) from all available/appropriate medical data (clinical, treatment, imaging, biological/genetic, etc.) to achieve the highest possible accuracy with respect to prediction of tumor response and normal tissue toxicity. In this position paper, we deliver an overview of the factors that are associated with outcome in radiation oncology and discuss the methodology behind the development of accurate prediction models, which is a multi-faceted process. Subsequent to initial development/validation and clinical introduction, decision support systems should be constantly re-evaluated (through quality assurance procedures) in different patient datasets in order to refine and re-optimize the models, ensuring the continuous utility of the models. In the reasonably near future, decision support systems will be fully integrated within the clinic, with data and knowledge being shared in a standardized, dynamic, and potentially global manner enabling truly personalized and participative medicine.
Collapse
Affiliation(s)
- Philippe Lambin
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Jaap Zindler
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ben G L Vanneste
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lien Van De Voorde
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniëlle Eekers
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kranthi Marella Panth
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jurgen Peerlings
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ruben T H M Larue
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Timo M Deist
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Arthur Jochems
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tim Lustberg
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Johan van Soest
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Evelyn E C de Jong
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Aniek J G Even
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Bart Reymen
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Nicolle Rekers
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marike van Gisbergen
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Erik Roelofs
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sara Carvalho
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ralph T H Leijenaar
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Catharina M L Zegers
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Maria Jacobs
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Janita van Timmeren
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Patricia Brouwers
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jonathan A Lal
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ludwig Dubois
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ala Yaromina
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Evert Jan Van Limbergen
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Maaike Berbee
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Cary Oberije
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Bram Ramaekers
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Liesbeth J Boersma
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Frank Hoebers
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kim M Smits
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Adriana J Berlanga
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sean Walsh
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
58
|
Sun L, Joh DY, Al-Zaki A, Stangl M, Murty S, Davis JJ, Baumann BC, Alonso-Basanta M, Kaol GD, Tsourkas A, Dorsey JF. Theranostic Application of Mixed Gold and Superparamagnetic Iron Oxide Nanoparticle Micelles in Glioblastoma Multiforme. J Biomed Nanotechnol 2016; 12:347-56. [PMID: 27305768 DOI: 10.1166/jbn.2016.2173] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The treatment of glioblastoma multiforme, the most prevalent and lethal form of brain cancer in humans, has been limited in part by poor delivery of drugs through the blood-brain barrier and by unclear delineation of the extent of infiltrating tumor margins. Nanoparticles, which selectively accumulate in tumor tissue due to their leaky vasculature and the enhanced permeability and retention effect, have shown promise as both therapeutic and diagnostic agents for brain tumors. In particular, superparamagnetic iron oxide nanoparticles (SPIONs) have been leveraged as T2-weighted MRI contrast agents for tumor detection and imaging; and gold nanoparticles (AuNP) have been demonstrated as radiosensitizers capable of propagating electron and free radical-induced radiation damage to tumor cells. In this study, we investigated the potential applications of novel gold and SPION-loaded micelles (GSMs) coated by polyethylene glycol-polycaprolactone (PEG-PCL) polymer. By quantifying gh2ax DNA damage foci in glioblastoma cell lines, we tested the radiosensitizing efficacy of these GSMs, and found that GSM administration in conjunction with radiation therapy (RT) led to ~2-fold increase in density of double-stranded DNA breaks. For imaging, we used GSMs as a contrast agent for both computed tomography (CT) and magnetic resonance imaging (MRI) studies of stereotactically implanted GBM tumors in a mouse model, and found that MRI but not CT was sufficiently sensitive to detect and delineate tumor borders after administration and accumulation of GSMs. These results suggest that with further development and testing, GSMs may potentially be integrated into both imaging and treatment of brain tumors, serving a theranostic purpose as both an MRI-based contrast agent and a radiosensitizer.
Collapse
|
59
|
Differences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line. Sci Rep 2016; 6:27043. [PMID: 27245205 PMCID: PMC4887990 DOI: 10.1038/srep27043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/13/2016] [Indexed: 12/14/2022] Open
Abstract
Normal tissue toxicity after radiotherapy shows variability between patients, indicating inter-individual differences in radiosensitivity. Genetic variation probably contributes to these differences. The aim of the present study was to determine if two cell lines, one radiosensitive (RS) and another radioresistant (RR), showed differences in DNA repair capacity, cell viability, cell cycle progression and, in turn, if this response could be characterised by a differential gene expression profile at different post-irradiation times. After irradiation, the RS cell line showed a slower rate of γ-H2AX foci disappearance, a higher frequency of incomplete chromosomal aberrations, a reduced cell viability and a longer disturbance of the cell cycle when compared to the RR cell line. Moreover, a greater and prolonged transcriptional response after irradiation was induced in the RS cell line. Functional analysis showed that 24 h after irradiation genes involved in “DNA damage response”, “direct p53 effectors” and apoptosis were still differentially up-regulated in the RS cell line but not in the RR cell line. The two cell lines showed different response to IR and can be distinguished with cell-based assays and differential gene expression analysis. The results emphasise the importance to identify biomarkers of radiosensitivity for tailoring individualized radiotherapy protocols.
Collapse
|
60
|
Hayama T, Yamaguchi T, Kato‐Itoh M, Ishii Y, Mizuno N, Umino A, Sato H, Sanbo M, Hamanaka S, Masaki H, Hirabayashi M, Nakauchi H. Practical selection methods for rat and mouse round spermatids without DNA staining by flow cytometric cell sorting. Mol Reprod Dev 2016; 83:488-96. [DOI: 10.1002/mrd.22644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/17/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Tomonari Hayama
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Tomoyuki Yamaguchi
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Megumi Kato‐Itoh
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Yumiko Ishii
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Naoaki Mizuno
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Ayumi Umino
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Hideyuki Sato
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Makoto Sanbo
- Center for Genetic Analysis of BehaviorNational Institute for Physiological SciencesOkazakiAichiJapan
| | - Sanae Hamanaka
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Hideki Masaki
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of BehaviorNational Institute for Physiological SciencesOkazakiAichiJapan
| | - Hiromitsu Nakauchi
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
- Institute for Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordCalifornia
| |
Collapse
|
61
|
Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J, Richter C, Zips D, Bortfeld T. Radiation oncology in the era of precision medicine. Nat Rev Cancer 2016; 16:234-49. [PMID: 27009394 DOI: 10.1038/nrc.2016.18] [Citation(s) in RCA: 562] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Technological advances and clinical research over the past few decades have given radiation oncologists the capability to personalize treatments for accurate delivery of radiation dose based on clinical parameters and anatomical information. Eradication of gross and microscopic tumours with preservation of health-related quality of life can be achieved in many patients. Two major strategies, acting synergistically, will enable further widening of the therapeutic window of radiation oncology in the era of precision medicine: technology-driven improvement of treatment conformity, including advanced image guidance and particle therapy, and novel biological concepts for personalized treatment, including biomarker-guided prescription, combined treatment modalities and adaptation of treatment during its course.
Collapse
Affiliation(s)
- Michael Baumann
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden
- OncoRay - National Center for Radiation Research in Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, 01307 Dresden
- National Center for Tumor Diseases (NCT), Fetscherstrasse 74, 01307 Dresden
- German Cancer Consortium (DKTK) Dresden, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Oncology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Mechthild Krause
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden
- OncoRay - National Center for Radiation Research in Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, 01307 Dresden
- National Center for Tumor Diseases (NCT), Fetscherstrasse 74, 01307 Dresden
- German Cancer Consortium (DKTK) Dresden, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Oncology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Jürgen Debus
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg
- Heidelberg Ion Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Im Neuenheimer Feld 400, 69120 Heidelberg
- German Cancer Consortium (DKTK) Heidelberg, Germany
| | - Søren M Bentzen
- Department of Epidemiology and Public Health and Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene Street S9a03, Baltimore, Maryland 21201, USA
| | - Juliane Daartz
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital and Harvard Medical School, 1000 Blossom Street Cox 362, Boston, Massachusetts 02114, USA
| | - Christian Richter
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden
- OncoRay - National Center for Radiation Research in Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, 01307 Dresden
- National Center for Tumor Diseases (NCT), Fetscherstrasse 74, 01307 Dresden
- German Cancer Consortium (DKTK) Dresden, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Daniel Zips
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium Tübingen, Postfach 2669, 72016 Tübingen
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Strasse 3, 72016 Tübingen, Germany
| | - Thomas Bortfeld
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital and Harvard Medical School, 1000 Blossom Street Cox 362, Boston, Massachusetts 02114, USA
| |
Collapse
|
62
|
Ebert MA, Dhal B, Prunster J, McLaren S, Zeps N, House M, Reniers B, Verhaegen F, Corica T, Saunders C, Joseph DJ. Theoretical versus Ex Vivo Assessment of Radiation Damage Repair: An Investigation in Normal Breast Tissue. Radiat Res 2016; 185:393-401. [PMID: 27023258 DOI: 10.1667/rr14235.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In vivo validation of models of DNA damage repair will enable their use for optimizing clinical radiotherapy. In this study, a theoretical assessment was made of DNA double-strand break (DSB) induction in normal breast tissue after intraoperative radiation therapy (IORT), which is now an accepted form of adjuvant radiotherapy for selected patients with early breast cancer. DSB rates and relative biological effectiveness (RBE) were calculated as a function of dose, radiation quality and dose rate, each varying based on the applicator size used during IORT. The spectra of primary electrons in breast tissue adjacent to each applicator were calculated using measured X-ray spectra and Monte Carlo methods, and were used to inform a Monte Carlo damage simulation code. In the absence of repair, asymptotic RBE values (relative to (60)Co) were approximately 1.5. Beam-quality changes led to only minor variations in RBE among applicators, though differences in dose rate and overall dose delivery time led to larger variations and a rapid decrease in RBE. An experimental assessment of DSB induction was performed ex vivo using pre- and postirradiation tissue samples from patients receiving breast intraoperative radiation therapy. Relative DSB rates were assessed via γ-H2AX immunohistochemistry using proportional staining. Maximum-likelihood parameter estimation yielded a DSB repair halftime of 25.9 min (95% CI, 21.5-30.4 min), although the resulting model was not statistically distinguishable from one where there was no change in DSB yield among patients. Although the model yielded an in vivo repair halftime of the order of previous estimates for in vitro repair halftimes, we cannot conclude that it is valid in this context. This study highlights some of the uncertainties inherent in population analysis of ex vivo samples, and of the quantitative limitations of immunohistochemistry for assessment of DSB repair.
Collapse
Affiliation(s)
- Martin A Ebert
- a Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia; Schools of.,b Physics
| | | | - Janelle Prunster
- a Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia; Schools of
| | - Sally McLaren
- e St. John of God Subiaco Hospital, Western Australia
| | - Nikolajs Zeps
- c Surgery and.,e St. John of God Subiaco Hospital, Western Australia
| | | | - Brigitte Reniers
- f Research Group NuTeC, CMK, Hasselt University, Diepenbeek, Belgium; and
| | | | - Tammy Corica
- a Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia; Schools of.,d Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia
| | | | - David J Joseph
- a Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia; Schools of.,c Surgery and
| |
Collapse
|
63
|
Martinel Lamas DJ, Cortina JE, Ventura C, Sterle HA, Valli E, Balestrasse KB, Blanco H, Cremaschi GA, Rivera ES, Medina VA. Enhancement of ionizing radiation response by histamine in vitro and in vivo in human breast cancer. Cancer Biol Ther 2015; 16:137-48. [PMID: 25482934 DOI: 10.4161/15384047.2014.987091] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The radioprotective potential of histamine on healthy tissue has been previously demonstrated. The aims of this work were to investigate the combinatorial effect of histamine or its receptor ligands and gamma radiation in vitro on the radiobiological response of 2 breast cancer cell lines (MDA-MB-231 and MCF-7), to explore the potential molecular mechanisms of the radiosensitizing action and to evaluate the histamine-induced radiosensitization in vivo in a triple negative breast cancer model. Results indicate that histamine significantly increased the radiosensitivity of MDA-MB-231 and MCF-7 cells. This effect was mimicked by the H1R agonist 2-(3-(trifluoromethyl)phenyl)histamine and the H4R agonists (Clobenpropit and VUF8430) in MDA-MB-231 and MCF-7 cells, respectively. Histamine and its agonists enhanced radiation-induced oxidative DNA damage, DNA double-strand breaks, apoptosis and senescence. These effects were associated with increased production of reactive oxygen species, which correlated with the inhibition of catalase, glutathione peroxidase and superoxide dismutase activities in MDA-MB-231 cells. Histamine was able also to potentiate in vivo the anti-tumoral effect of radiation, increasing the exponential tumor doubling time. We conclude that histamine increased radiation response of breast cancer cells, suggesting that it could be used as a potential adjuvant to enhance the efficacy of radiotherapy.
Collapse
Key Words
- 3F-MPHA, 2-(3-(trifluoromethyl)phenyl)histamine
- 8-OHdG, 8-hydroxy-2′-deoxyguanosine
- BSA, bovine seroalbumine
- BrdU, 5-bromo-2′-deoxyuridine
- Clob, clobenpropit
- DCFH-DA, dichlorodihydrofluorescein diacetate
- Dapi, 4′-6-diamidino-2-phenylindole
- ER, estrogen receptor
- FBS, fetal bovine serum
- GPx, glutathione peroxidase
- Gy, gray
- H1R, histamine receptor 1
- H2O2, hydrogen peroxide
- H2R, histamine receptor 2
- H3R, histamine receptor 3
- H4R, histamine receptor 4
- HA, histamine
- IgG, immunoglobuline G
- PBS, phosphate buffer saline
- ROS, reactive oxygen species
- SEM, standard error of mean
- SF, surviving fraction
- SOD, superoxide dismutase
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- U, unit
- apoptosis
- breast cancer
- cell proliferation
- histamine
- ionizing radiation
- radio-potentiation
- reactive oxygen species
- sc, subcutaneous
- γH2AX, phosphorylated histone H2AX
Collapse
Affiliation(s)
- Diego J Martinel Lamas
- a Laboratory of Radioisotopes; School of Pharmacy and Biochemistry , University of Buenos Aires ; Buenos Aires , Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Djuzenova CS, Zimmermann M, Katzer A, Fiedler V, Distel LV, Gasser M, Waaga-Gasser AM, Flentje M, Polat B. A prospective study on histone γ-H2AX and 53BP1 foci expression in rectal carcinoma patients: correlation with radiation therapy-induced outcome. BMC Cancer 2015; 15:856. [PMID: 26541290 PMCID: PMC4635621 DOI: 10.1186/s12885-015-1890-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/30/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The prognostic value of histone γ-H2AX and 53BP1 proteins to predict the radiotherapy (RT) outcome of patients with rectal carcinoma (RC) was evaluated in a prospective study. High expression of the constitutive histone γ-H2AX is indicative of defective DNA repair pathway and/or genomic instability, whereas 53BP1 (p53-binding protein 1) is a conserved checkpoint protein with properties of a DNA double-strand breaks sensor. METHODS Using fluorescence microscopy, we assessed spontaneous and radiation-induced foci of γ-H2AX and 53BP1 in peripheral blood mononuclear cells derived from unselected RC patients (n = 53) undergoing neoadjuvant chemo- and RT. Cells from apparently healthy donors (n = 12) served as references. RESULTS The γ-H2AX assay of in vitro irradiated lymphocytes revealed significantly higher degree of DNA damage in the group of unselected RC patients with respect to the background, initial (0.5 Gy, 30 min) and residual (0.5 Gy and 2 Gy, 24 h post-radiation) damage compared to the control group. Likewise, the numbers of 53BP1 foci analyzed in the samples from 46 RC patients were significantly higher than in controls except for the background DNA damage. However, both markers were not able to predict tumor stage, gastrointestinal toxicity or tumor regression after curative RT. Interestingly, the mean baseline and induced DNA damage was found to be lower in the group of RC patients with tumor stage IV (n = 7) as compared with the stage III (n = 35). The difference, however, did not reach statistical significance, apparently, because of the limited number of patients. CONCLUSIONS The study shows higher expression of γ-H2AX and 53BP1 foci in rectal cancer patients compared with healthy individuals. Yet the data in vitro were not predictive in regard to the radiotherapy outcome.
Collapse
Affiliation(s)
- Cholpon S Djuzenova
- Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany.
| | - Marcus Zimmermann
- Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany.
| | - Astrid Katzer
- Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany.
| | - Vanessa Fiedler
- Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany.
| | - Luitpold V Distel
- Department of Radiation Oncology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Martin Gasser
- Department of Surgery I, University Hospital, Würzburg, Germany.
| | | | - Michael Flentje
- Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany.
| | - Bülent Polat
- Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany.
- Comprehensive Cancer Center Mainfranken, University Hospital, Würzburg, Germany.
| |
Collapse
|
65
|
Marková E, Somsedíková A, Vasilyev S, Pobijaková M, Lacková A, Lukačko P, Belyaev I. DNA repair foci and late apoptosis/necrosis in peripheral blood lymphocytes of breast cancer patients undergoing radiotherapy. Int J Radiat Biol 2015; 91:934-45. [DOI: 10.3109/09553002.2015.1101498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
66
|
Ghosh S, Ghosh A, Krishna M. Role of ATM in bystander signaling between human monocytes and lung adenocarcinoma cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 794:39-45. [PMID: 26653982 DOI: 10.1016/j.mrgentox.2015.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022]
Abstract
The response of a cell or tissue to ionizing radiation is mediated by direct damage to cellular components and indirect damage mediated by radiolysis of water. Radiation affects both irradiated cells and the surrounding cells and tissues. The radiation-induced bystander effect is defined by the presence of biological effects in cells that were not themselves in the field of irradiation. To establish the contribution of the bystander effect in the survival of the neighboring cells, lung carcinoma A549 cells were exposed to gamma-irradiation, 2Gy. The medium from the irradiated cells was transferred to non-irradiated A549 cells. Irradiated A549 cells as well as non-irradiated A549 cells cultured in the presence of medium from irradiated cells showed decrease in survival and increase in γ-H2AX and p-ATM foci, indicating a bystander effect. Bystander signaling was also observed between different cell types. Phorbol-12-myristate-13-acetate (PMA)-stimulated and gamma-irradiated U937 (human monocyte) cells induced a bystander response in non-irradiated A549 (lung carcinoma) cells as shown by decreased survival and increased γ-H2AX and p-ATM foci. Non-stimulated and/or irradiated U937 cells did not induce such effects in non-irradiated A549 cells. Since ATM protein was activated in irradiated cells as well as bystander cells, it was of interest to understand its role in bystander effect. Suppression of ATM with siRNA in A549 cells completely inhibited bystander effect in bystander A549 cells. On the other hand suppression of ATM with siRNA in PMA stimulated U937 cells caused only a partial inhibition of bystander effect in bystander A549 cells. These results indicate that apart from ATM, some additional factor may be involved in bystander effect between different cell types.
Collapse
Affiliation(s)
- Somnath Ghosh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | - Anu Ghosh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Malini Krishna
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
67
|
Borràs M, Armengol G, De Cabo M, Barquinero JF, Barrios L. Comparison of methods to quantify histone H2AX phosphorylation and its usefulness for prediction of radiosensitivity. Int J Radiat Biol 2015; 91:915-24. [DOI: 10.3109/09553002.2015.1101501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
68
|
de Groot S, Vreeswijk MPG, Welters MJP, Gravesteijn G, Boei JJWA, Jochems A, Houtsma D, Putter H, van der Hoeven JJM, Nortier JWR, Pijl H, Kroep JR. The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: a randomized pilot study. BMC Cancer 2015; 15:652. [PMID: 26438237 PMCID: PMC4595051 DOI: 10.1186/s12885-015-1663-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 09/28/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Preclinical evidence shows that short-term fasting (STF) protects healthy cells against side effects of chemotherapy and makes cancer cells more vulnerable to it. This pilot study examines the feasibility of STF and its effects on tolerance of chemotherapy in a homogeneous patient group with early breast cancer (BC). METHODS Eligible patients had HER2-negative, stage II/III BC. Women receiving (neo)-adjuvant TAC (docetaxel/doxorubicin/cyclophosphamide) were randomized to fast 24 h before and after commencing chemotherapy, or to eat according to the guidelines for healthy nutrition. Toxicity in the two groups was compared. Chemotherapy-induced DNA damage in peripheral blood mononuclear cells (PBMCs) was quantified by the level of γ-H2AX analyzed by flow cytometry. RESULTS Thirteen patients were included of whom seven were randomized to the STF arm. STF was well tolerated. Mean erythrocyte- and thrombocyte counts 7 days post-chemotherapy were significantly higher (P = 0.007, 95 % CI 0.106-0.638 and P = 0.00007, 95 % CI 38.7-104, respectively) in the STF group compared to the non-STF group. Non-hematological toxicity did not differ between the groups. Levels of γ-H2AX were significantly increased 30 min post-chemotherapy in CD45 + CD3- cells in non-STF, but not in STF patients. CONCLUSIONS STF during chemotherapy was well tolerated and reduced hematological toxicity of TAC in HER2-negative BC patients. Moreover, STF may reduce a transient increase in, and/or induce a faster recovery of DNA damage in PBMCs after chemotherapy. Larger studies, investigating a longer fasting period, are required to generate more insight into the possible benefits of STF during chemotherapy. TRIAL REGISTRATION ClinicalTrials.gov: NCT01304251 , March 2011.
Collapse
Affiliation(s)
- Stefanie de Groot
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300, RC, Leiden, The Netherlands.
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Marij J P Welters
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300, RC, Leiden, The Netherlands.
| | - Gido Gravesteijn
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Jan J W A Boei
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Anouk Jochems
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300, RC, Leiden, The Netherlands.
| | - Daniel Houtsma
- Department of Internal Medicine, Haga Hospital, The Hague, The Netherlands.
| | - Hein Putter
- Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Jacobus J M van der Hoeven
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300, RC, Leiden, The Netherlands.
| | - Johan W R Nortier
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300, RC, Leiden, The Netherlands.
| | - Hanno Pijl
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Judith R Kroep
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300, RC, Leiden, The Netherlands.
| |
Collapse
|
69
|
Menegakis A, De Colle C, Yaromina A, Hennenlotter J, Stenzl A, Scharpf M, Fend F, Noell S, Tatagiba M, Brucker S, Wallwiener D, Boeke S, Ricardi U, Baumann M, Zips D. Residual γH2AX foci after ex vivo irradiation of patient samples with known tumour-type specific differences in radio-responsiveness. Radiother Oncol 2015; 116:480-5. [PMID: 26297183 DOI: 10.1016/j.radonc.2015.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 02/01/2023]
Abstract
PURPOSE To apply our previously published residual ex vivo γH2AX foci method to patient-derived tumour specimens covering a spectrum of tumour-types with known differences in radiation response. In addition, the data were used to simulate different experimental scenarios to simplify the method. MATERIALS AND METHODS Evaluation of residual γH2AX foci in well-oxygenated tumour areas of ex vivo irradiated patient-derived tumour specimens with graded single doses was performed. Immediately after surgical resection, the samples were cultivated for 24h in culture medium prior to irradiation and fixed 24h post-irradiation for γH2AX foci evaluation. Specimens from a total of 25 patients (including 7 previously published) with 10 different tumour types were included. RESULTS Linear dose response of residual γH2AX foci was observed in all specimens with highly variable slopes among different tumour types ranging from 0.69 (95% CI: 1.14-0.24) to 3.26 (95% CI: 4.13-2.62) for chondrosarcomas (radioresistant) and classical seminomas (radiosensitive) respectively. Simulations suggest that omitting dose levels might simplify the assay without compromising robustness. CONCLUSION Here we confirm clinical feasibility of the assay. The slopes of the residual foci number are well in line with the expected differences in radio-responsiveness of different tumour types implying that intrinsic radiation sensitivity contributes to tumour radiation response. Thus, this assay has a promising potential for individualized radiation therapy and prospective validation is warranted.
Collapse
Affiliation(s)
- Apostolos Menegakis
- Department of Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany; German Cancer Research Center (DKFZ), Heidelberg and German Consortium for Translational Cancer Research (DKTK) Partner Sites Tübingen, Germany.
| | - Chiara De Colle
- Department of Oncology, Radiation Oncology, University of Turin, Italy
| | - Ala Yaromina
- Department of Radiation Oncology (Maastro), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Joerg Hennenlotter
- Department of Urology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Marcus Scharpf
- Department of Pathology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Falko Fend
- Department of Pathology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Susan Noell
- Department of Neurosurgery, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Sara Brucker
- Department of and Research Institute for Women's Health, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Diethelm Wallwiener
- Department of and Research Institute for Women's Health, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Simon Boeke
- Department of Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany; German Cancer Research Center (DKFZ), Heidelberg and German Consortium for Translational Cancer Research (DKTK) Partner Sites Tübingen, Germany
| | - Umberto Ricardi
- Department of Oncology, Radiation Oncology, University of Turin, Italy
| | - Michael Baumann
- German Cancer Research Center (DKFZ), Heidelberg and German Consortium for Translational Cancer Research (DKTK) Partner Sites Dresden, Germany; Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany; German Cancer Research Center (DKFZ), Heidelberg and German Consortium for Translational Cancer Research (DKTK) Partner Sites Tübingen, Germany
| |
Collapse
|
70
|
Oeck S, Malewicz NM, Hurst S, Rudner J, Jendrossek V. The Focinator - a new open-source tool for high-throughput foci evaluation of DNA damage. Radiat Oncol 2015; 10:163. [PMID: 26238507 PMCID: PMC4554354 DOI: 10.1186/s13014-015-0453-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/05/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The quantitative analysis of foci plays an important role in many cell biological methods such as counting of colonies or cells, organelles or vesicles, or the number of protein complexes. In radiation biology and molecular radiation oncology, DNA damage and DNA repair kinetics upon ionizing radiation (IR) are evaluated by counting protein clusters or accumulations of phosphorylated proteins recruited to DNA damage sites. Consistency in counting and interpretation of foci remains challenging. Many current software solutions describe instructions for time-consuming and error-prone manual analysis, provide incomplete algorithms for analysis or are expensive. Therefore, we aimed to develop a tool for costless, automated, quantitative and qualitative analysis of foci. METHODS For this purpose we integrated a user-friendly interface into ImageJ and selected parameters to allow automated selection of regions of interest (ROIs) depending on their size and circularity. We added different export options and a batch analysis. The use of the Focinator was tested by analyzing γ-H2.AX foci in murine prostate adenocarcinoma cells (TRAMP-C1) at different time points after IR with 0.5 to 3 Gray (Gy). Additionally, measurements were performed by users with different backgrounds and experience. RESULTS The Focinator turned out to be an easily adjustable tool for automation of foci counting. It significantly reduced the analysis time of radiation-induced DNA-damage foci. Furthermore, different user groups were able to achieve a similar counting velocity. Importantly, there was no difference in nuclei detection between the Focinator and ImageJ alone. CONCLUSIONS The Focinator is a costless, user-friendly tool for fast high-throughput evaluation of DNA repair foci. The macro allows improved foci evaluation regarding accuracy, reproducibility and analysis speed compared to manual analysis. As innovative option, the macro offers a combination of multichannel evaluation including colocalization analysis and the possibility to run all analyses in a batch mode.
Collapse
Affiliation(s)
- Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122, Essen, Germany.
| | - Nathalie M Malewicz
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122, Essen, Germany.
| | - Sebastian Hurst
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122, Essen, Germany.
| | - Justine Rudner
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122, Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122, Essen, Germany.
| |
Collapse
|
71
|
Murakami N, Kühnel A, Schmid TE, Ilicic K, Stangl S, Braun IS, Gehrmann M, Molls M, Itami J, Multhoff G. Role of membrane Hsp70 in radiation sensitivity of tumor cells. Radiat Oncol 2015. [PMID: 26197988 PMCID: PMC4511458 DOI: 10.1186/s13014-015-0461-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major stress-inducible heat shock protein 70 (Hsp70) is frequently overexpressed in the cytosol and integrated in the plasma membrane of tumor cells via lipid anchorage. Following stress such as non-lethal irradiation Hsp70 synthesis is up-regulated. Intracellular located Hsp70 is known to exert cytoprotective properties, however, less is known about membrane (m)Hsp70. Herein, we investigate the role of mHsp70 in the sensitivity towards irradiation in tumor sublines that differ in their cytosolic and/or mHsp70 levels. METHODS The isogenic human colon carcinoma sublines CX(+) with stable high and CX(-) with stable low expression of mHsp70 were generated by fluorescence activated cell sorting, the mouse mammary carcinoma sublines 4 T1 (4 T1 ctrl) and Hsp70 knock-down (4 T1 Hsp70 KD) were produced using the CRISPR/Cas9 system, and the Hsp70 down-regulation in human lung carcinoma sublines H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/EPLC-272H HSF-1 KD was achieved by small interfering (si)RNA against Heat shock factor 1 (HSF-1). Cytosolic and mHsp70 was quantified by Western blot analysis/ELISA and flow cytometry; double strand breaks (DSBs) and apoptosis were measured by flow cytometry using antibodies against γH2AX and real-time PCR (RT-PCR) using primers and antibodies directed against apoptosis related genes; and radiation sensitivity was determined using clonogenic cell surviving assays. RESULTS CX(+)/CX(-) tumor cells exhibited similar cytosolic but differed significantly in their mHsp70 levels, 4 T1 ctrl/4 T1 Hsp70 KD cells showed significant differences in their cytosolic and mHsp70 levels and H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/EPLC-272H HSF-1 KD lung carcinoma cell sublines had similar mHsp70 but significantly different cytosolic Hsp70 levels. γH2AX was significantly up-regulated in irradiated CX(-) and 4 T1 Hsp70 KD with low basal mHsp70 levels, but not in their mHsp70 high expressing counterparts, irrespectively of their cytosolic Hsp70 content. After irradiation γH2AX, Caspase 3/7 and Annexin V were up-regulated in the lung carcinoma sublines, but no significant differences were observed in H1339 ctrl/H1339 HSF-1 KD, and EPLC-272H ctrl/EPLC-272H HSF-1 KD that exhibit identical mHsp70 but different cytosolic Hsp70 levels. Clonogenic cell survival was significantly lower in CX(-) and 4 T1 Hsp70 KD cells with low mHsp70 expression, than in CX+ and 4 T1 ctrl cells, whereas no difference in clonogenic cell survival was observed in H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/ EPLC-272H HSF-1 KD sublines with identical mHsp70 but different cytosolic Hsp70 levels. CONCLUSION In summary, our results indicate that mHsp70 has an impact on radiation resistance.
Collapse
Affiliation(s)
- Naoya Murakami
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Annett Kühnel
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Thomas E Schmid
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Katarina Ilicic
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Stangl
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Isabella S Braun
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mathias Gehrmann
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Molls
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jun Itami
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. .,Clinical Cooperation Group - Innate Immunity in Tumor Biology, Institute of Biomedical Imaging (IBMI), Helmholtz Zentrum München, Munich, Germany.
| |
Collapse
|
72
|
Siddiqui MS, François M, Fenech MF, Leifert WR. Persistent γH2AX: A promising molecular marker of DNA damage and aging. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 766:1-19. [PMID: 26596544 DOI: 10.1016/j.mrrev.2015.07.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/12/2022]
Abstract
One of the earliest cellular responses to DNA double strand breaks (DSBs) is the phosphorylation of the core histone protein H2AX (termed γH2AX). Persistent γH2AX is the level of γH2AX above baseline, measured at a given time-point beyond which DNA DSBs are normally expected to be repaired (usually persist for days to months). This review summarizes the concept of persistent γH2AX in the context of exogenous source induced DNA DSBs (e.g. ionizing radiation (IR), chemotherapeutic drugs, genotoxic agents), and endogenous γH2AX levels in normal aging and accelerated aging disorders. Summary of the current literature demonstrates the following (i) γH2AX persistence is a common phenomenon that occurs in humans and animals; (ii) nuclei retain persistent γH2AX foci for up to several months after IR exposure, allowing for retrospective biodosimetry; (iii) the combination of various radiosensitizing drugs with ionizing radiation exposure leads to persistent γH2AX response, thus enabling the potential for monitoring cancer patients' response to chemotherapy and radiotherapy as well as tailoring cancer treatments; (iv) persistent γH2AX accumulates in telomeric DNA and in cells undergoing cellular senescence; and (v) increased endogenous γH2AX levels may be associated with diseases of accelerated aging. In summary, measurement of persistent γH2AX could potentially be used as a marker of radiation biodosimetry, evaluating sensitivity to therapeutic genotoxins and radiotherapy, and exploring the association of unrepaired DNA DSBs on telomeres with diseases of accelerated aging.
Collapse
Affiliation(s)
- Mohammad Sabbir Siddiqui
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia; University of Adelaide, School of Agriculture, Food & Wine, Urrbrae, South Australia 5064, Australia
| | - Maxime François
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia
| | - Michael F Fenech
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia
| | - Wayne R Leifert
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
73
|
Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S. DNA damage foci: Meaning and significance. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:491-504. [PMID: 25773265 DOI: 10.1002/em.21944] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
The discovery of DNA damage response proteins such as γH2AX, ATM, 53BP1, RAD51, and the MRE11/RAD50/NBS1 complex, that accumulate and/or are modified in the vicinity of a chromosomal DNA double-strand break to form microscopically visible, subnuclear foci, has revolutionized the detection of these lesions and has enabled studies of the cellular machinery that contributes to their repair. Double-strand breaks are induced directly by a number of physical and chemical agents, including ionizing radiation and radiomimetic drugs, but can also arise as secondary lesions during replication and DNA repair following exposure to a wide range of genotoxins. Here we aim to review the biological meaning and significance of DNA damage foci, looking specifically at a range of different settings in which such markers of DNA damage and repair are being studied and interpreted.
Collapse
Affiliation(s)
- Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
- Department of Radiotherapy, Laboratory of Radiation Biology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Jayne Moquet
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Michele Ellender
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Zohaib Rana
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Susanne Burdak-Rothkamm
- Department of Cellular Pathology, Oxford University Hospitals, Headley Way, Headington, Oxford, United Kingdom
| |
Collapse
|
74
|
Wojewodzka M, Sommer S, Kruszewski M, Sikorska K, Lewicki M, Lisowska H, Wegierek-Ciuk A, Kowalska M, Lankoff A. Defining Blood Processing Parameters for Optimal Detection of γ-H2AX Foci: A Small Blood Volume Method. Radiat Res 2015; 184:95-104. [PMID: 26121226 DOI: 10.1667/rr13897.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biodosimetric methods used to measure the effects of radiation are critical for estimating the health risks to irradiated individuals or populations. The direct measurement of radiation-induced γ-H2AX foci in peripheral blood lymphocytes is one approach that provides a useful end point for triage. Despite the documented advantages of the γ-H2AX assay, there is considerable variation among laboratories regarding foci formation in the same exposure conditions and cell lines. Taking this into account, the goal of our study was to evaluate the influence of different blood processing parameters on the frequency of γ-H2AX foci and optimize a small blood volume protocol for the γ-H2AX assay, which simulates the finger prick blood collection method. We found that the type of fixative, temperature and blood processing time markedly affect the results of the γ-H2AX assay. In addition, we propose a protocol for the γ-H2AX assay that may serve as a potential guideline in the event of large-scale radiation incidents.
Collapse
Affiliation(s)
- Maria Wojewodzka
- a Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - Sylwester Sommer
- a Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - Marcin Kruszewski
- a Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland;,b Faculty of Medicine, University of Information Technology and Management in Rzeszow, 35-225 Rzeszow, Poland
| | - Katarzyna Sikorska
- a Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - Maciej Lewicki
- c Faculty of Physics and Astronomy, University of Wroclaw, 0-204 Wroclaw, Poland; and
| | - Halina Lisowska
- d Jan Kochanowski University, Institute of Biology, Department of Radiobiology and Immunology, 25-406 Kielce, Poland
| | - Aneta Wegierek-Ciuk
- d Jan Kochanowski University, Institute of Biology, Department of Radiobiology and Immunology, 25-406 Kielce, Poland
| | - Magdalena Kowalska
- d Jan Kochanowski University, Institute of Biology, Department of Radiobiology and Immunology, 25-406 Kielce, Poland
| | - Anna Lankoff
- a Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland;,d Jan Kochanowski University, Institute of Biology, Department of Radiobiology and Immunology, 25-406 Kielce, Poland
| |
Collapse
|
75
|
Willers H, Gheorghiu L, Liu Q, Efstathiou JA, Wirth LJ, Krause M, von Neubeck C. DNA Damage Response Assessments in Human Tumor Samples Provide Functional Biomarkers of Radiosensitivity. Semin Radiat Oncol 2015; 25:237-50. [PMID: 26384272 DOI: 10.1016/j.semradonc.2015.05.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Predictive biomarkers are urgently needed for individualization of radiation therapy and treatment with radiosensitizing anticancer agents. Genomic profiling of human cancers provides us with unprecedented insight into the mutational landscape of genes directly or indirectly involved in the response to radiation-induced DNA damage. However, to what extent this wealth of structural information about the cancer genome produces biomarkers of sensitivity to radiation remains to be seen. Investigators are increasingly studying the subnuclear accumulation (ie, foci) of proteins in the DNA damage response (DDR), such as gamma-H2AX, 53BP1, or RAD51, as a surrogate of treatment sensitivity. Recent findings from preclinical studies have demonstrated the predictive potential of DDR foci by correlating foci with clinically relevant end points such as tumor control probability. Therefore, preclinical investigations of DDR foci responses are increasingly moving into cells and tissues from patients, which is the major focus of this review. The advantage of using DDR foci as functional biomarkers is that they can detect alterations in DNA repair due to various mechanisms. Moreover, they provide a global measurement of DDR network function without needing to know the identities of all the components, many of which remain unknown. Foci assays are thus expected to yield functional insight that may complement or supersede genomic information, thereby giving radiation oncologists unique opportunities to individualize cancer treatments in the near future.
Collapse
Affiliation(s)
- Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA.
| | - Liliana Gheorghiu
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - Qi Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - Lori J Wirth
- Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Mechthild Krause
- German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Germany
| | - Cläre von Neubeck
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| |
Collapse
|
76
|
γH2AX assay in ex vivo irradiated tumour specimens: A novel method to determine tumour radiation sensitivity in patient-derived material. Radiother Oncol 2015; 116:473-9. [PMID: 25866027 DOI: 10.1016/j.radonc.2015.03.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/25/2015] [Accepted: 03/23/2015] [Indexed: 11/21/2022]
Abstract
PURPOSE To establish a clinically applicable protocol for quantification of residual γH2AX foci in ex vivo irradiated tumour samples and to apply this method in a proof-of-concept feasibility study to patient-derived tumour specimens. MATERIAL AND METHODS Evaluation of γH2AX foci formation and disappearance in excised FaDu tumour specimens after (a) different incubation times in culture medium, 4Gy irradiation and fixation after 24h (cell recovery), (b) 10h medium incubation, 4Gy irradiation and fixation after various time points (double strand break repair kinetics), and (c) 10h medium incubation, irradiation with graded single radiation doses and fixation after 24h (dose-response). The optimised protocol was applied to patient-derived samples of seminoma, prostate cancer and glioblastoma multiforme. RESULTS Post excision or biopsy, tumour tissues showed stable radiation-induced γH2AX foci values in oxic cells after >6h of recovery in medium. Kinetics of foci disappearance indicated a plateau of residual foci after >12h following ex vivo irradiation. Fitting the dose-response of residual γH2AX foci yielded slopes comparable with in situ irradiation of FaDu tumours. Significant differences in the slopes of ex vivo irradiated patient-derived tumour samples were found. CONCLUSION A novel clinically applicable method to quantify residual γH2AX foci in ex vivo irradiated tumour samples was established. The first clinical results suggest that this method allows to distinguish between radiosensitive and radioresistant tumour types. These findings support further translational evaluation of this assay to individualise radiation therapy.
Collapse
|
77
|
Antonelli F, Campa A, Esposito G, Giardullo P, Belli M, Dini V, Meschini S, Simone G, Sorrentino E, Gerardi S, Cirrone GAP, Tabocchini MA. Induction and Repair of DNA DSB as Revealed by H2AX Phosphorylation Foci in Human Fibroblasts Exposed to Low- and High-LET Radiation: Relationship with Early and Delayed Reproductive Cell Death. Radiat Res 2015; 183:417-31. [PMID: 25844944 DOI: 10.1667/rr13855.1] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The spatial distribution of radiation-induced DNA breaks within the cell nucleus depends on radiation quality in terms of energy deposition pattern. It is generally assumed that the higher the radiation linear energy transfer (LET), the greater the DNA damage complexity. Using a combined experimental and theoretical approach, we examined the phosphorylation-dephosphorylation kinetics of radiation-induced γ-H2AX foci, size distribution and 3D focus morphology, and the relationship between DNA damage and cellular end points (i.e., cell killing and lethal mutations) after exposure to gamma rays, protons, carbon ions and alpha particles. Our results showed that the maximum number of foci are reached 30 min postirradiation for all radiation types. However, the number of foci after 0.5 Gy of each radiation type was different with gamma rays, protons, carbon ions and alpha particles inducing 12.64 ± 0.25, 10.11 ± 0.40, 8.84 ± 0.56 and 4.80 ± 0.35 foci, respectively, which indicated a clear influence of the track structure and fluence on the numbers of foci induced after a dose of 0.5 Gy for each radiation type. The γ-H2AX foci persistence was also dependent on radiation quality, i.e., the higher the LET, the longer the foci persisted in the cell nucleus. The γ-H2AX time course was compared with cell killing and lethal mutation and the results highlighted a correlation between cellular end points and the duration of γ-H2AX foci persistence. A model was developed to evaluate the probability that multiple DSBs reside in the same gamma-ray focus and such probability was found to be negligible for doses lower than 1 Gy. Our model provides evidence that the DSBs inside complex foci, such as those induced by alpha particles, are not processed independently or with the same time constant. The combination of experimental, theoretical and simulation data supports the hypothesis of an interdependent processing of closely associated DSBs, possibly associated with a diminished correct repair capability, which affects cell killing and lethal mutation.
Collapse
Affiliation(s)
- F Antonelli
- a Health and Technology Department, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Sharma PM, Ponnaiya B, Taveras M, Shuryak I, Turner H, Brenner DJ. High throughput measurement of γH2AX DSB repair kinetics in a healthy human population. PLoS One 2015; 10:e0121083. [PMID: 25794041 PMCID: PMC4368624 DOI: 10.1371/journal.pone.0121083] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/30/2015] [Indexed: 11/19/2022] Open
Abstract
The Columbia University RABiT (Rapid Automated Biodosimetry Tool) quantifies DNA damage using fingerstick volumes of blood. One RABiT protocol quantifies the total γ-H2AX fluorescence per nucleus, a measure of DNA double strand breaks (DSB) by an immunofluorescent assay at a single time point. Using the recently extended RABiT system, that assays the γ-H2AX repair kinetics at multiple time points, the present small scale study followed its kinetics post irradiation at 0.5 h, 2 h, 4 h, 7 h and 24 h in lymphocytes from 94 healthy adults. The lymphocytes were irradiated ex vivo with 4 Gy γ rays using an external Cs-137 source. The effect of age, gender, race, ethnicity, alcohol use on the endogenous and post irradiation total γ-H2AX protein yields at various time points were statistically analyzed. The endogenous γ-H2AX levels were influenced by age, race and alcohol use within Hispanics. In response to radiation, induction of γ-H2AX yields at 0.5 h and peak formation at 2 h were independent of age, gender, ethnicity except for race and alcohol use that delayed the peak to 4 h time point. Despite the shift in the peak observed, the γ-H2AX yields reached close to baseline at 24 h for all groups. Age and race affected the rate of progression of the DSB repair soon after the yields reached maximum. Finally we show a positive correlation between endogenous γ-H2AX levels with radiation induced γ-H2AX yields (RIY) (r=0.257, P=0.02) and a negative correlation with residuals (r=-0.521, P=<0.0001). A positive correlation was also observed between RIY and DNA repair rate (r=0.634, P<0.0001). Our findings suggest age, race, ethnicity and alcohol use influence DSB γ-H2AX repair kinetics as measured by RABiT immunofluorescent assay.
Collapse
Affiliation(s)
- Preety M. Sharma
- Center for Radiological Research, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Brian Ponnaiya
- Center for Radiological Research, Columbia University, New York, New York, United States of America
| | - Maria Taveras
- Center for Radiological Research, Columbia University, New York, New York, United States of America
| | - Igor Shuryak
- Center for Radiological Research, Columbia University, New York, New York, United States of America
| | - Helen Turner
- Center for Radiological Research, Columbia University, New York, New York, United States of America
| | - David J. Brenner
- Center for Radiological Research, Columbia University, New York, New York, United States of America
| |
Collapse
|
79
|
Zwicker F, Swartman B, Roeder F, Sterzing F, Hauswald H, Thieke C, Weber KJ, Huber PE, Schubert K, Debus J, Herfarth K. In vivo measurement of dose distribution in patients' lymphocytes: helical tomotherapy versus step-and-shoot IMRT in prostate cancer. JOURNAL OF RADIATION RESEARCH 2015; 56:239-247. [PMID: 25361548 PMCID: PMC4380044 DOI: 10.1093/jrr/rru096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/07/2014] [Accepted: 09/13/2014] [Indexed: 06/04/2023]
Abstract
In radiotherapy, in vivo measurement of dose distribution within patients' lymphocytes can be performed by detecting gamma-H2AX foci in lymphocyte nuclei. This method can help in determining the whole-body dose. Options for risk estimations for toxicities in normal tissue and for the incidence of secondary malignancy are still under debate. In this investigation, helical tomotherapy (TOMO) is compared with step-and-shoot IMRT (SSIMRT) of the prostate gland by measuring the dose distribution within patients' lymphocytes. In this prospective study, blood was taken from 20 patients before and 10 min after their first irradiation fraction for each technique. The isolated leukocytes were fixed 2 h after radiation. DNA double-stranded breaks in lymphocyte nuclei were stained immunocytochemically using anti-gamma-H2AX antibodies. Gamma-H2AX foci distribution in lymphocytes was determined for each patient. Using a calibration line, dose distributions in patients' lymphocytes were determined by studying the gamma-H2AX foci distribution, and these data were used to generate a cumulative dose-lymphocyte histogram (DLH). Measured in vivo (DLH), significantly fewer lymphocytes indicated low-dose exposure (<40% of the applied dose) during TOMO compared with SSIMRT. The dose exposure range, between 45 and 100%, was equal with both radiation techniques. The mean number of gamma-H2AX foci per lymphocyte was significantly lower in the TOMO group compared with the SSIMRT group. In radiotherapy of the prostate gland, TOMO generates a smaller fraction of patients' lymphocytes with low-dose exposure relative to the whole body compared with SSIMRT. Differences in the constructional buildup of the different linear accelerator systems, e.g. the flattening filter, may be the cause thereof. The influence of these methods on the incidence of secondary malignancy should be investigated in further studies.
Collapse
Affiliation(s)
- Felix Zwicker
- Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedict Swartman
- Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Falk Roeder
- Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Sterzing
- Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Henrik Hauswald
- Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Christian Thieke
- Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus-Josef Weber
- Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Peter E Huber
- Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kai Schubert
- Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
80
|
Distinct increased outliers among 136 rectal cancer patients assessed by γH2AX. Radiat Oncol 2015; 10:36. [PMID: 25889915 PMCID: PMC4330982 DOI: 10.1186/s13014-015-0344-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/01/2015] [Indexed: 11/10/2022] Open
Abstract
Background In recent years attention has focused on γH2AX as a very sensitive double strand break indicator. It has been suggested that γH2AX might be able to predict individual radiosensitivity. Our aim was to study the induction and repair of DNA double strand breaks labelled by γH2AX in a large cohort. Methods In a prospective study lymphocytes of 136 rectal cancer (RC) patients and 59 healthy individuals were ex vivo irradiated (IR) and initial DNA damage was compared to remaining DNA damage after 2 Gy and 24 hours repair time and preexisting DNA damage in unirradiated lymphocytes. Lymphocytes were immunostained with anti-γH2AX antibodies and microscopic images with an extended depth of field were acquired. γH2AX foci counting was performed using a semi-automatic image analysis software. Results Distinct increased values of preexisting and remaining γH2AX foci in the group of RC patients were found compared to the healthy individuals. Additionally there are clear differences within the groups and there are outliers in about 12% of the RC patients after ex vivo IR. Conclusions The γH2AX assay has the capability to identify a group of outliers which are most probably patients with increased radiosensitivity having the highest risk of suffering radiotherapy-related late sequelae.
Collapse
|
81
|
Siddiqui MS, François M, Fenech MF, Leifert WR. γH2AX responses in human buccal cells exposed to ionizing radiation. Cytometry A 2014; 87:296-308. [DOI: 10.1002/cyto.a.22607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/15/2014] [Accepted: 11/27/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Mohammad Sabbir Siddiqui
- CSIRO Food & Nutrition Flagship; Nutrigenomics & DNA Damage; Adelaide South Australia 5000 Australia
- University of Adelaide, School of Agriculture, Food & Wine; Urrbrae South Australia 5064 Australia
| | - Maxime François
- CSIRO Food & Nutrition Flagship; Nutrigenomics & DNA Damage; Adelaide South Australia 5000 Australia
| | - Michael F. Fenech
- CSIRO Food & Nutrition Flagship; Nutrigenomics & DNA Damage; Adelaide South Australia 5000 Australia
| | - Wayne R. Leifert
- CSIRO Food & Nutrition Flagship; Nutrigenomics & DNA Damage; Adelaide South Australia 5000 Australia
| |
Collapse
|
82
|
miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat Commun 2014; 5:5671. [PMID: 25476932 PMCID: PMC4377070 DOI: 10.1038/ncomms6671] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/24/2014] [Indexed: 12/14/2022] Open
Abstract
Tumor cells associated with therapy resistance (radioresistance and drug resistance) are likely to give rise to local recurrence and distant metastatic relapse. Recent studies revealed microRNA (miRNA)-mediated regulation of metastasis and epithelial-mesenchymal transition; however, whether specific miRNAs regulate tumor radioresistance and can be exploited as radiosensitizing agents remains unclear. Here we find that miR-205 promotes radiosensitivity and is downregulated in radioresistant subpopulations of breast cancer cells, and that loss of miR-205 is highly associated with poor distant relapse-free survival in breast cancer patients. Notably, therapeutic delivery of miR-205 mimics via nanoliposomes can sensitize the tumor to radiation in a xenograft model. Mechanistically, radiation suppresses miR-205 expression through ataxia telangiectasia mutated (ATM) and zinc finger E-box binding homeobox 1 (ZEB1). Moreover, miR-205 inhibits DNA damage repair by targeting ZEB1 and the ubiquitin-conjugating enzyme Ubc13. These findings identify miR-205 as a radiosensitizing miRNA and reveal a new therapeutic strategy for radioresistant tumors.
Collapse
|
83
|
Djuzenova CS, Blassl C, Roloff K, Kuger S, Katzer A, Niewidok N, Günther N, Polat B, Sukhorukov VL, Flentje M. Hsp90 inhibitor NVP-AUY922 enhances radiation sensitivity of tumor cell lines under hypoxia. Cancer Biol Ther 2014; 13:425-34. [DOI: 10.4161/cbt.19294] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
84
|
Siva S, Callahan J, Kron T, Martin OA, MacManus MP, Ball DL, Hicks RJ, Hofman MS. A prospective observational study of Gallium-68 ventilation and perfusion PET/CT during and after radiotherapy in patients with non-small cell lung cancer. BMC Cancer 2014; 14:740. [PMID: 25277150 PMCID: PMC4192760 DOI: 10.1186/1471-2407-14-740] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 09/25/2014] [Indexed: 12/25/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancers, and is the leading cause of cancer deaths. Radiation therapy (RT), alone or in combination with chemotherapy, is the standard of care for curative intent treatment of patients with locally advanced or inoperable NSCLC. The ability to intensify treatment to achieve a better chance for cure is limited by the risk of injury to the surrounding lung. Methods/Design This is a prospective observational study of 60 patients with NSCLC receiving curative intent RT. Independent human ethics board approval was received from the Peter MacCallum Cancer Centre ethics committee. In this research, Galligas and Gallium-68 macroaggregated albumin (MAA) positron emission tomography (PET) imaging will be used to measure ventilation (V) and perfusion (Q) in the lungs. This is combined with computed tomography (CT) and both performed with a four dimensional (4D) technique that tracks respiratory motion. This state-of-the-art scan has superior resolution, accuracy and quantitative ability than previous techniques. The primary objective of this research is to observe changes in ventilation and perfusion secondary to RT as measured by 4D V/Q PET/CT. Additionally, we plan to model personalised RT plans based on an individual’s lung capacity. Increasing radiation delivery through areas of poorly functioning lung may enable delivery of larger, more effective doses to tumours without increasing toxicity. By performing a second 4D V/Q PET/CT scan during treatment, we plan to simulate biologically adapted RT depending on the individual’s accumulated radiation injury. Tertiary aims of the study are assess the prognostic significance of a novel combination of clinical, imaging and serum biomarkers in predicting for the risk of lung toxicity. These biomarkers include spirometry, 18 F-Fluorodeoxyglucose PET/CT, gamma-H2AX signals in hair and lymphocytes, as well as assessment of blood cytokines. Discussion By correlating these biomarkers to toxicity outcomes, we aim to identify those patients early who will not tolerate RT intensification during treatment. This research is an essential step leading towards the design of future biologically adapted radiotherapy strategies to mitigate the risk of lung injury during dose escalation for patients with locally advanced lung cancer. Trials registration Universal Trial Number (UTN) U1111-1138-4421.
Collapse
Affiliation(s)
- Shankar Siva
- Division of Radiation Oncology and Cancer Imaging, St Andrews Place, East Melbourne 3002, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol 2014; 16:864-75. [PMID: 25086746 PMCID: PMC4150825 DOI: 10.1038/ncb3013] [Citation(s) in RCA: 370] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 06/23/2014] [Indexed: 02/06/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is associated with
characteristics of breast cancer stem cells, including chemoresistance and
radioresistance. However, it is unclear whether EMT itself or specific EMT
regulators play causal roles in these properties. Here we identify an
EMT-inducing transcription factor, zinc finger E-box binding homeobox 1 (ZEB1),
as a regulator of radiosensitivity and DNA damage response (DDR). Radioresistant
subpopulations of breast cancer cells derived from ionizing radiation exhibit
hyperactivation of ATM and upregulation of ZEB1, and ZEB1 promotes tumor cell
radioresistance in vitro and in vivo.
Mechanistically, ATM kinase phosphorylates and stabilizes ZEB1 in response to
DNA damage, and ZEB1 in turn directly interacts with USP7 and enhances its
ability to deubiquitinate and stabilize CHK1, thereby promoting homologous
recombination-dependent DNA repair and resistance to radiation. These findings
identify ZEB1 as an ATM substrate linking ATM to CHK1 and as the mechanism
underlying the association between EMT and radioresistance.
Collapse
|
86
|
Abstract
SIGNIFICANCE Most solid tumors contain regions of low oxygenation or hypoxia. Tumor hypoxia has been associated with a poor clinical outcome and plays a critical role in tumor radioresistance. RECENT ADVANCES Two main types of hypoxia exist in the tumor microenvironment: chronic and cycling hypoxia. Chronic hypoxia results from the limited diffusion distance of oxygen, and cycling hypoxia primarily results from the variation in microvessel red blood cell flux and temporary disturbances in perfusion. Chronic hypoxia may cause either tumor progression or regressive effects depending on the tumor model. However, there is a general trend toward the development of a more aggressive phenotype after cycling hypoxia. With advanced hypoxia imaging techniques, spatiotemporal characteristics of tumor hypoxia and the changes to the tumor microenvironment can be analyzed. CRITICAL ISSUES In this review, we focus on the biological and clinical consequences of chronic and cycling hypoxia on radiation treatment. We also discuss the advanced non-invasive imaging techniques that have been developed to detect and monitor tumor hypoxia in preclinical and clinical studies. FUTURE DIRECTIONS A better understanding of the mechanisms of tumor hypoxia with non-invasive imaging will provide a basis for improved radiation therapeutic practices.
Collapse
Affiliation(s)
- Chen-Ting Lee
- 1 Department of Radiation Oncology, Duke University Medical Center , Durham, North Carolina
| | | | | |
Collapse
|
87
|
Fang X, Ide N, Higashi SI, Kamei Y, Toyooka T, Ibuki Y, Kawai K, Kasai H, Okamoto K, Arimoto-Kobayashi S, Negishi T. Somatic cell mutations caused by 365 nm LED-UVA due to DNA double-strand breaks through oxidative damage. Photochem Photobiol Sci 2014; 13:1338-46. [DOI: 10.1039/c4pp00148f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
88
|
Wang Z, Hu H, Hu M, Zhang X, Wang Q, Qiao Y, Liu H, Shen L, Zhou P, Chen Y. Ratio of γ-H2AX level in lymphocytes to that in granulocytes detected using flow cytometry as a potential biodosimeter for radiation exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:283-290. [PMID: 24687842 DOI: 10.1007/s00411-014-0530-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
This study aims to assess utilisation of the ratio of γ-H2AX in lymphocytes to that in granulocytes (RL/G of γ-H2AX) in blood as a rapid method for population triage and dose estimation during large-scale radiation emergencies. Blood samples from healthy volunteers exposed to 0-10 Gy of (60)Co irradiation were collected. The samples were cultured for 0-24 h and then analysed using flow cytometry to measure the levels of γ-H2AX in lymphocytes and granulocytes. The basal RL/G levels of γ-H2AX in healthy human blood, the response of RL/G of γ-H2AX to ionising radiation and its relationship with doses, time intervals after exposure and individual differences were also analysed. The level of γ-H2AX in lymphocytes increased in a dose-dependent manner after irradiation, whereas the level in granulocytes was not affected. A linear dose-effect relationship with low inter-experimental and inter-individual variations was observed. The RL/G of γ-H2AX may be used as a biomarker for population triage and dose estimation during large-scale radiation emergencies if blood samples can be collected within 24 h.
Collapse
Affiliation(s)
- Zhidong Wang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Lyckesvärd MN, Delle U, Kahu H, Lindegren S, Jensen H, Bäck T, Swanpalmer J, Elmroth K. Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status. Mutat Res 2014; 765:48-56. [PMID: 24769180 DOI: 10.1016/j.mrfmmm.2014.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 04/01/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
Childhood exposure to ionizing radiation increases the risk of developing thyroid cancer later in life and this is suggested to be due to higher proliferation of the young thyroid. The interest of using high-LET alpha particles from Astatine-211 ((211)At), concentrated in the thyroid by the same mechanism as (131)I [1], in cancer treatment has increased during recent years because of its high efficiency in inducing biological damage and beneficial dose distribution when compared to low-LET radiation. Most knowledge of the DNA damage response in thyroid is from studies using low-LET irradiation and much less is known of high-LET irradiation. In this paper we investigated the DNA damage response and biological consequences to photons from Cobolt-60 ((60)Co) and alpha particles from (211)At in normal primary thyrocytes of different cell cycle status. For both radiation qualities the intensity levels of γH2AX decreased during the first 24h in both cycling and stationary cultures and complete repair was seen in all cultures but cycling cells exposed to (211)At. Compared to stationary cells alpha particles were more harmful for cycling cultures, an effect also seen at the pChk2 levels. Increasing ratios of micronuclei per cell nuclei were seen up to 1Gy (211)At. We found that primary thyrocytes were much more sensitive to alpha particle exposure compared with low-LET photons. Calculations of the relative biological effectiveness yielded higher RBE for cycling cells compared with stationary cultures at a modest level of damage, clearly demonstrating that cell cycle status influences the relative effectiveness of alpha particles.
Collapse
Affiliation(s)
| | - Ulla Delle
- Department of Oncology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Helena Kahu
- Department of Oncology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Sture Lindegren
- Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Holger Jensen
- The PET and Cyclotron Unit Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Tom Bäck
- Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - John Swanpalmer
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kecke Elmroth
- Department of Oncology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
90
|
Kunogi H, Sakanishi T, Sueyoshi N, Sasai K. Prediction of radiosensitivity using phosphorylation of histone H2AX and apoptosis in human tumor cell lines. Int J Radiat Biol 2014; 90:587-93. [DOI: 10.3109/09553002.2014.907518] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
91
|
van Oorschot B, Hovingh SE, Moerland PD, Medema JP, Stalpers LJA, Vrieling H, Franken NAP. Reduced activity of double-strand break repair genes in prostate cancer patients with late normal tissue radiation toxicity. Int J Radiat Oncol Biol Phys 2014; 88:664-70. [PMID: 24411188 DOI: 10.1016/j.ijrobp.2013.11.219] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/13/2013] [Accepted: 11/13/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE To investigate clinical parameters and DNA damage response as possible risk factors for radiation toxicity in the setting of prostate cancer. METHODS AND MATERIALS Clinical parameters of 61 prostate cancer patients, 34 with (overresponding, OR) and 27 without (non-responding, NR) severe late radiation toxicity were assembled. In addition, for a matched subset the DNA damage repair kinetics (γ-H2AX assay) and expression profiles of DNA repair genes were determined in ex vivo irradiated lymphocytes. RESULTS Examination of clinical data indicated none of the considered clinical parameters to be correlated with the susceptibility of patients to develop late radiation toxicity. Although frequencies of γ-H2AX foci induced immediately after irradiation were similar (P=.32), significantly higher numbers of γ-H2AX foci were found 24 hours after irradiation in OR compared with NR patients (P=.03). Patient-specific γ-H2AX foci decay ratios were significantly higher in NR patients than in OR patients (P<.0001). Consequently, NR patients seem to repair DNA double-strand breaks (DSBs) more efficiently than OR patients. Moreover, gene expression analysis indicated several genes of the homologous recombination pathway to be stronger induced in NR compared with OR patients (P<.05). A similar trend was observed in genes of the nonhomologous end-joining repair pathway (P=.09). This is congruent with more proficient repair of DNA DSBs in patients without late radiation toxicity. CONCLUSIONS Both gene expression profiling and DNA DSB repair kinetics data imply that less-efficient repair of radiation-induced DSBs may contribute to the development of late normal tissue damage. Induction levels of DSB repair genes (eg, RAD51) may potentially be used to assess the risk for late radiation toxicity.
Collapse
Affiliation(s)
- Bregje van Oorschot
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Suzanne E Hovingh
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lukas J A Stalpers
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Harry Vrieling
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nicolaas A P Franken
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
92
|
Decay of γ-H2AX foci correlates with potentially lethal damage repair and P53 status in human colorectal carcinoma cells. Cell Mol Biol Lett 2013; 19:37-51. [PMID: 24363165 PMCID: PMC6275741 DOI: 10.2478/s11658-013-0113-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/18/2013] [Indexed: 11/20/2022] Open
Abstract
The influence of p53 status on potentially lethal damage repair (PLDR) and DNA double-strand break (DSB) repair was studied in two isogenic human colorectal carcinoma cell lines: RKO (p53 wild-type) and RC10.1 (p53 null). They were treated with different doses of ionizing radiation, and survival and the induction of DNA-DSB were studied. PLDR was determined by using clonogenic assays and then comparing the survival of cells plated immediately with the survival of cells plated 24 h after irradiation. Doses varied from 0 to 8 Gy. Survival curves were analyzed using the linear-quadratic formula: S(D)/S(0) = exp-(αD+βD2). The γ-H2AX foci assay was used to study DNA DSB kinetics. Cells were irradiated with single doses of 0, 0.5, 1 and 2 Gy. Foci levels were studied in non-irradiated control cells and 30 min and 24 h after irradiation. Irradiation was performed with gamma rays from a 137Cs source, with a dose rate of 0.5 Gy/min. The RKO cells show higher survival rates after delayed plating than after immediate plating, while no such difference was found for the RC10.1 cells. Functional p53 seems to be a relevant characteristic regarding PLDR for cell survival. Decay of γ-H2AX foci after exposure to ionizing radiation is associated with DSB repair. More residual foci are observed in RC10.1 than in RKO, indicating that decay of γ-H2AX foci correlates with p53 functionality and PLDR in RKO cells.
Collapse
|
93
|
Wilson IM, Vucic EA, Enfield KSS, Thu KL, Zhang YA, Chari R, Lockwood WW, Radulovich N, Starczynowski DT, Banáth JP, Zhang M, Pusic A, Fuller M, Lonergan KM, Rowbotham D, Yee J, English JC, Buys TPH, Selamat SA, Laird-Offringa IA, Liu P, Anderson M, You M, Tsao MS, Brown CJ, Bennewith KL, MacAulay CE, Karsan A, Gazdar AF, Lam S, Lam WL. EYA4 is inactivated biallelically at a high frequency in sporadic lung cancer and is associated with familial lung cancer risk. Oncogene 2013; 33:4464-73. [PMID: 24096489 PMCID: PMC4527534 DOI: 10.1038/onc.2013.396] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/30/2013] [Accepted: 08/06/2013] [Indexed: 02/07/2023]
Abstract
In an effort to identify novel biallelically inactivated tumor suppressor genes (TSG) in sporadic invasive and pre-invasive non-small cell lung cancer (NSCLC) genomes, we applied a comprehensive integrated multi-‘omics approach to investigate patient matched, paired NSCLC tumor and non-malignant parenchymal tissues. By surveying lung tumor genomes for genes concomitantly inactivated within individual tumors by multiple mechanisms, and by the frequency of disruption in tumors across multiple cohorts, we have identified a putative lung cancer TSG, Eyes Absent 4 (EYA4). EYA4 is frequently and concomitantly deleted, hypermethylated and underexpressed in multiple independent lung tumor data sets, in both major NSCLC subtypes, and in the earliest stages of lung cancer. We find not only that decreased EYA4 expression is associated with poor survival in sporadic lung cancers, but EYA4 SNPs are associated with increased familial cancer risk, consistent with EYA4’s proximity to the previously reported lung cancer susceptibility locus on 6q. Functionally, we find that EYA4 displays TSG-like properties with a role in modulating apoptosis and DNA repair. Cross examination of EYA4 expression across multiple tumor types suggests a cell type-specific tumorigenic role for EYA4, consistent with a tumor suppressor function in cancers of epithelial origin. This work shows a clear role for EYA4 as a putative TSG in NSCLC.
Collapse
Affiliation(s)
- I M Wilson
- Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - E A Vucic
- Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - K S S Enfield
- Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - K L Thu
- Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Y A Zhang
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R Chari
- 1] Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada [2] Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - W W Lockwood
- 1] Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada [2] National Human Genome Research Institute, Cancer Genetics Branch, Bethesda, MD, USA
| | - N Radulovich
- Ontario Cancer Institute/Princess Margaret Hospital, Toronto, ON, Canada
| | - D T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - J P Banáth
- Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - M Zhang
- Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - A Pusic
- Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - M Fuller
- Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - K M Lonergan
- Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - D Rowbotham
- Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - J Yee
- Department of Surgery, Vancouver General Hospital, Vancouver, BC, Canada
| | - J C English
- Department of Pathology, Vancouver General Hospital, Vancouver, BC, Canada
| | - T P H Buys
- Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - S A Selamat
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - I A Laird-Offringa
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - P Liu
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - M Anderson
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - M You
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - M S Tsao
- Ontario Cancer Institute/Princess Margaret Hospital, Toronto, ON, Canada
| | - C J Brown
- Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Vancouver, BC, Canada
| | - K L Bennewith
- Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - C E MacAulay
- Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - A Karsan
- Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - A F Gazdar
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - S Lam
- Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - W L Lam
- Integrative Oncology Genetics Unit, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
94
|
Stegeman H, Span PN, Cockx SC, Peters JPW, Rijken PFJW, van der Kogel AJ, Kaanders JHAM, Bussink J. EGFR-Inhibition Enhances Apoptosis in Irradiated Human Head and Neck Xenograft Tumors Independent of Effects on DNA Repair. Radiat Res 2013; 180:414-21. [DOI: 10.1667/rr3349.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- H. Stegeman
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - P. N. Span
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - S. C. Cockx
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - J. P. W. Peters
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - P. F. J. W. Rijken
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - A. J. van der Kogel
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - J. H. A. M. Kaanders
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - J. Bussink
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
95
|
Villani P, Fresegna AM, Ranaldi R, Eleuteri P, Paris L, Pacchierotti F, Cordelli E. X-ray induced DNA damage and repair in germ cells of PARP1(-/-) male mice. Int J Mol Sci 2013; 14:18078-92. [PMID: 24009020 PMCID: PMC3794770 DOI: 10.3390/ijms140918078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 11/16/2022] Open
Abstract
Poly(ADP-ribose)polymerase-1 (PARP1) is a nuclear protein implicated in DNA repair, recombination, replication, and chromatin remodeling. The aim of this study was to evaluate possible differences between PARP1−/− and wild-type mice regarding induction and repair of DNA lesions in irradiated male germ cells. Comet assay was applied to detect DNA damage in testicular cells immediately, and two hours after 4 Gy X-ray irradiation. A similar level of spontaneous and radiation-induced DNA damage was observed in PARP1−/− and wild-type mice. Conversely, two hours after irradiation, a significant level of residual damage was observed in PARP1−/− cells only. This finding was particularly evident in round spermatids. To evaluate if PARP1 had also a role in the dynamics of H2AX phosphorylation in round spermatids, in which γ-H2AX foci had been shown to persist after completion of DNA repair, we carried out a parallel analysis of γ-H2AX foci at 0.5, 2, and 48 h after irradiation in wild-type and PARP1−/− mice. No evidence was obtained of an effect of PARP1 depletion on H2AX phosphorylation induction and removal. Our results suggest that, in round spermatids, under the tested experimental conditions, PARP1 has a role in radiation-induced DNA damage repair rather than in long-term chromatin modifications signaled by phosphorylated H2AX.
Collapse
Affiliation(s)
- Paola Villani
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-06-3048-4316; Fax: +39-06-3048-6559
| | - Anna Maria Fresegna
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| | - Roberto Ranaldi
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| | - Patrizia Eleuteri
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| | - Lorena Paris
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
- Department of Ecology and Biology, University of Tuscia, Viterbo 01100, Italy
| | - Francesca Pacchierotti
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| | - Eugenia Cordelli
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| |
Collapse
|
96
|
Koch U, Höhne K, von Neubeck C, Thames HD, Yaromina A, Dahm-Daphi J, Baumann M, Krause M. Residual γH2AX foci predict local tumour control after radiotherapy. Radiother Oncol 2013; 108:434-9. [DOI: 10.1016/j.radonc.2013.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 11/28/2022]
|
97
|
Phospholipase D inhibitor enhances radiosensitivity of breast cancer cells. Exp Mol Med 2013; 45:e38. [PMID: 23989060 PMCID: PMC3789262 DOI: 10.1038/emm.2013.75] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/03/2013] [Accepted: 06/21/2013] [Indexed: 01/23/2023] Open
Abstract
Radiation and drug resistance remain the major challenges and causes of mortality in the treatment of locally advanced, recurrent and metastatic breast cancer. Dysregulation of phospholipase D (PLD) has been found in several human cancers and is associated with resistance to anticancer drugs. In the present study, we evaluated the effects of PLD inhibition on cell survival, cell death and DNA damage after exposure to ionizing radiation (IR). Combined IR treatment and PLD inhibition led to an increase in the radiation-induced apoptosis of MDA-MB-231 metastatic breast cancer cells. The selective inhibition of PLD1 and PLD2 led to a significant decrease in the IR-induced colony formation of breast cancer cells. Moreover, PLD inhibition suppressed the radiation-induced activation of extracellular signal-regulated kinase and enhanced the radiation-stimulated phosphorylation of the mitogen-activated protein kinases p38 and c-Jun N-terminal kinase. Furthermore, PLD inhibition, in combination with radiation, was very effective at inducing DNA damage, when compared with radiation alone. Taken together, these results suggest that PLD may be a useful target molecule for the enhancement of the radiotherapy effect.
Collapse
|
98
|
Correlation of dynamic changes in γ-H2AX expression in peripheral blood lymphocytes from head and neck cancer patients with radiation-induced oral mucositis. Radiat Oncol 2013; 8:155. [PMID: 23803252 PMCID: PMC3707835 DOI: 10.1186/1748-717x-8-155] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/23/2013] [Indexed: 01/06/2023] Open
Abstract
Background To evaluate the role of γ-H2AX in peripheral blood lymphocytes (PBLs) as a predictive biomarker of the severity of oral mucositis (OM) in head and neck cancer (HNC) patients with receiving radiotherapy. Methods In vitro assays for evaluating DNA damage and repair kinetics were performed on blood samples withdrawn from 25 HNC patients undergoing radiotherapy or chemoradiotherapy before radiotherapy. As for the in vivo study, blood samples were also withdrawn before radiotherapy, and 1 hour after radiotherapy on the fourth and last days. Flow cytometry was used to assess the expression of γ-H2AX in PBLs. OM was assessed using the World Health Organization (WHO) scores twice a week and correlated with the expression of γ-H2AX. Results The in vitro assay results showed that patients with severe OM had higher γ-H2AX-specific relative fluorescence at various irradiation doses in the damage kinetics assay, with significantly higher γ-H2AX expression at 8 Gy (p = 0.039), and also at 24 hours after irradiation at a dose of 2 Gy in the repair kinetics assay, compared to the patients with mild OM (p = 0.008). The optimal cutoff value for relative fluorescence of γ-H2AX was 0.960, 24 hours post-irradiation. However, there were no significant differences in γ-H2AX expression at different times between the two groups, as assessed with the in vivo assay. Conclusions These results suggest that the damage and repair kinetics of γ-H2AX from PBLs in the in vitro study may have predictive value for identifying the grades of OM among HNC patients prior to radiotherapy.
Collapse
|
99
|
Siddiqui MS, Filomeni E, Francois M, Collins SR, Cooper T, Glatz RV, Taylor PW, Fenech M, Leifert WR. Exposure of insect cells to ionising radiation in vivo induces persistent phosphorylation of a H2AX homologue (H2AvB). Mutagenesis 2013; 28:531-41. [DOI: 10.1093/mutage/get030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
100
|
Djuzenova CS, Elsner I, Katzer A, Worschech E, Distel LV, Flentje M, Polat B. Radiosensitivity in breast cancer assessed by the histone γ-H2AX and 53BP1 foci. Radiat Oncol 2013; 8:98. [PMID: 23617930 PMCID: PMC3653697 DOI: 10.1186/1748-717x-8-98] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 04/17/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High expression of constitutive histone γ-H2AX, a sensitive marker of DNA damage, might be indicative of defective DNA repair pathway or genomic instability. 53BP1 (p53-binding protein 1) is a conserved checkpoint protein with properties of a DNA double-strand breaks sensor. This study explores the relationship between the clinical radiosensitivity of tumor patients and the expression/induction of γ-H2AX and 53BP1 in vitro. METHODS Using immunostaining, we assessed spontaneous and radiation-induced foci of γ-H2AX and 53 BP1 in peripheral blood mononuclear cells derived from unselected breast cancer (BC) patients (n=57) undergoing radiotherapy (RT). Cells from apparently healthy donors (n=12) served as references. RESULTS Non-irradiated cells from controls and unselected BC patients exhibited similar baseline levels of DNA damage assessed by γ-H2AX and 53BP1 foci. At the same time, the γ-H2AX assay of in vitro irradiated cells revealed significant differences between the control group and the group of unselected BC patients with respect to the initial (0.5 Gy, 30 min) and residual (2 Gy, 24 h post-radiation) DNA damage. The numbers of 53BP1 foci analyzed in 35 BC patients were significantly higher than in controls only in case of residual DNA damage. A weak correlation was found between residual foci of both proteins tested. In addition, cells from cancer patients with an adverse acute skin reaction (grade 3) to RT showed significantly increased radiation-induced γ-H2AX foci and their protracted disappearance compared to the group of BC patients with normal skin reaction (grade 0-1). The mean number of γ-H2AX foci after 5 clinical fractions was significantly higher than that before RT, especially in clinically radiosensitive patients. CONCLUSIONS The γ-H2AX assay may have potential for screening individual radiosensitivity of breast cancer patients. TRIAL REGISTRATION http://www.krebshilfe.de/wir-foerdern.html.
Collapse
Affiliation(s)
- Cholpon S Djuzenova
- Department of Radiation Oncology, University of Würzburg, Josef-Schneider-Str, 11, Würzburg D-97080, Germany.
| | | | | | | | | | | | | |
Collapse
|