51
|
Fang Z, Wang G, Huang R, Liu C, Yushanjiang F, Mao T, Li J. Astilbin protects from sepsis-induced cardiac injury through the NRF2/HO-1 and TLR4/NF-κB pathway. Phytother Res 2024; 38:1044-1058. [PMID: 38153125 DOI: 10.1002/ptr.8093] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Cardiac dysfunction and arrhythmia are severe complications of sepsis-induced cardiomyopathy and are associated with an increased risk of morbidity and mortality. Currently, the precise mechanism for sepsis-induced myocardial damage remains unclear. Astilbin, a flavonoid, is reported to have anti-inflammatory, antioxidative, and antiapoptotic properties. However, the effects of astilbin on sepsis-induced cardiomyopathy have not been studied so far. This study aims to investigate the effect of astilbin in sepsis-induced myocardial injury and elucidate the underlying mechanism. In vivo and in vitro sepsis models were created using lipopolysaccharide (LPS) as an inducer in H9C2 cardiomyocytes and C57BL/6 mice, respectively. Our results demonstrated that astilbin reduced myocardial injury and improved cardiac function. Moreover, astilbin prolonged the QT and corrected QT intervals, attenuated myocardial electrical remodeling, and promoted gap junction protein (Cx43) and ion channels expression, thereby reducing the susceptibility of ventricular fibrillation. In addition, astilbin alleviated LPS-induced inflammation, oxidative stress, and apoptosis. Astilbin suppressed the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway in vivo and in vitro models. Astilbin remarkedly upregulated the nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase 1 (HO-1) expression. The in vitro treatment with an NRF2 inhibitor reversed the inhibition of the TLR4/NF-κB pathway and antioxidant properties of astilbin. Astilbin attenuated LPS-induced myocardial injury, cardiac dysfunction, susceptibility to VF, inflammation, oxidative stress, and apoptosis by activating the NRF2/HO-1 pathway and inhibiting TLR4/ NF-κB pathway. These results suggest that astilbin could be an effective and promising therapeutics target for the treatment of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Zhao Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Guangji Wang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Huang
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Provincial Key Lab of Selenium Resources and Bioapplications, Enshi, China
| | - Chengyin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Feierkaiti Yushanjiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tuohua Mao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
52
|
Tie X, Zhao Y, Su J, Liu X, Zou T, Yin W. Genetic associations between autoimmune diseases and the risks of severe sepsis and 28-day mortality: a two-sample Mendelian randomization study. Front Med (Lausanne) 2024; 11:1331950. [PMID: 38343642 PMCID: PMC10853392 DOI: 10.3389/fmed.2024.1331950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/08/2024] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Autoimmune diseases exhibit heterogenous dysregulation of pro-inflammatory or anti-inflammatory cytokine expression, akin to the pathophysiology of sepsis. It is speculated that individuals with autoimmune diseases may have an increased likelihood of developing sepsis and face elevated mortality risks following septic events. However, current observational studies have not yielded consistent conclusions. This study aims to explore the causal relationship between autoimmune diseases and the risks of sepsis and mortality using Mendelian randomization (MR) analysis. METHODS We conducted a two-sample MR study involving a European population, with 30 autoimmune diseases as the exposure factors. To assess causal relationships, we employed the inverse variance-weighted (IVW) method and used Cochran's Q test for heterogeneity, as well as the MR pleiotropy residual sum and outlier (MR-PRESSO) global test for potential horizontal pleiotropy. RESULTS Genetically predicted Crohn's disease (β = 0.067, se = 0.034, p = 0.046, OR = 1.069, 95% CI = 1.001-1.141) and idiopathic thrombocytopenic (β = 0.069, se = 0.031, p = 0.023, OR = 1.071, 95% CI = 1.009-1.136) were positively associated with an increased risk of sepsis in critical care. Conversely, rheumatoid arthritis (β = -0.104, se = 0.047, p = 0.025, OR = 0.901, 95% CI = 0.823-0.987), ulcerative colitis (β = -0.208, se = 0.084, p = 0.013, OR = 0.812, 95% CI = 0.690-0.957), and narcolepsy (β = -0.202, se = 0.092, p = 0.028, OR = 0.818, 95% CI = 0.684-0.978) were associated with a reduced risk of sepsis in critical care. Moreover, Crohn's disease (β = 0.234, se = 0.067, p = 0.001, OR = 1.263, 95% CI = 1.108-1.440) and idiopathic thrombocytopenic (β = 0.158, se = 0.061, p = 0.009, OR = 1.171, 95% CI = 1.041-1.317) were also linked to an increased risk of 28-day mortality of sepsis in critical care. In contrast, multiple sclerosis (β = -0.261, se = 0.112, p = 0.020, OR = 0.771, 95% CI = 0.619-0.960) and narcolepsy (β = -0.536, se = 0.184, p = 0.003, OR = 0.585, 95% CI = 0.408-0.838) were linked to a decreased risk of 28-day mortality of sepsis in critical care. CONCLUSION This MR study identified causal associations between certain autoimmune diseases and risks of sepsis in critical care, and 28-day mortality in the European population. These findings suggest that exploring the mechanisms underlying autoimmune diseases may offer new diagnostic and therapeutic strategies for sepsis prevention and treatment.
Collapse
Affiliation(s)
- Xin Tie
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjie Zhao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Su
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xing Liu
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tongjuan Zou
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wanhong Yin
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
53
|
Tao L, Zhu Y, Wu L, Liu J. Comprehensive analysis of senescence-associated genes in sepsis based on bulk and single-cell sequencing data. Front Mol Biosci 2024; 10:1322221. [PMID: 38259686 PMCID: PMC10801732 DOI: 10.3389/fmolb.2023.1322221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Sepsis is a pathological state resulting from dysregulated immune response in host during severe infection, leading to persistent organ dysfunction and ultimately death. Senescence-associated genes (SAGs) have manifested their potential in controlling the proliferation and dissemination of a variety of diseases. Nevertheless, the correlation between sepsis and SAGs remains obscure and requires further investigation. Methods: Two RNA expression datasets (GSE28750 and GSE57065) specifically related to sepsis were employed to filter hub SAGs, based on which a diagnostic model predictive of the incidence of sepsis was developed. The association between the expression of the SAGs identified and immune-related modules was analyzed employing Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) and Microenvironment Cell Populations-counter (MCP-counter) analysis. The identified genes in each cohort were clustered by unsupervised agreement clustering analysis and weighted gene correlation network analysis (WGCNA). Results: A diagnostic model for sepsis established based on hub genes (IGFBP7, GMFG, IL10, IL18, ETS2, HGF, CD55, and MMP9) exhibited a strong clinical reliability (AUC = 0.989). Sepsis patients were randomly assigned and classified by WGCNA into two clusters with distinct immune statuses. Analysis on the single-cell RNA sequencing (scRNA-seq) data revealed high scores of SAGs in the natural killer (NK) cells of the sepsis cohort than the healthy cohort. Conclusion: These findings suggested a close association between SAGs and sepsis alterations. The identified hub genes had potential to serve as a viable diagnostic marker for sepsis.
Collapse
Affiliation(s)
- Linfeng Tao
- Gusu School of Nanjing Medical University, Department of Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, China
| | - Yue Zhu
- Department of Breast and Thyroid Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Lifang Wu
- Department of Critical Care Medicine of Kunshan Third People’s Hospital, Suzhou, China
| | - Jun Liu
- Gusu School of Nanjing Medical University, Department of Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, China
| |
Collapse
|
54
|
Gu Y, Li Z, Li H, Yi X, Liu X, Zhang Y, Gong S, Yu T, Li L. Exploring the efficacious constituents and underlying mechanisms of sini decoction for sepsis treatment through network pharmacology and multi-omics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155212. [PMID: 38029626 DOI: 10.1016/j.phymed.2023.155212] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/28/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Traditional Chinese medicine prescription sini decoction (SND) can alleviate inflammation, improve microcirculation, and modulate immune status in sepsis patients. However, its underlying mechanisms remain unclear, and therapeutic effects may vary among individuals. PURPOSE Through a comprehensive and systematic network pharmacology analysis, the purpose of this study is to investigate the therapeutic mechanisms of SND in treating sepsis. METHODS An analysis of WGCNA identified CX3CR1 as a key gene influencing sepsis prognosis. A drug-active component-target network for SND was created using the traditional Chinese medicine systems pharmacology (TCMSP) database and Cytoscape software. Shared targets between SND and CX3CR1 high-expression gene modules were found through the GEO database. Gene module functionality was analyzed using GO, KEGG, GSEA, and GSVA. Unsupervised clustering of sepsis patients was performed based on the ferroptosis gene set, and immune cell interactions and mechanisms were explored using CIBERSORT, single-cell sequencing, and intercellular communication analysis. RESULTS This study demonstrates that high expression of CX3CR1 improves survival rates in sepsis patients and is associated with immune cell signaling pathways. SND contains 116 active components involved in oxidative stress and lipid metabolism pathways. HMOX1, a co-expressed gene in SND and CX3CR1 high-expression gene module, plays a crucial role in sepsis survival. Unsupervised clustering analysis classified sepsis patients into three clusters based on the ferroptosis gene set, revealing differences in immune cell expression and involvement in heme metabolism pathways. Notably, intercellular interactions among immune cells primarily occur through paracrine and autocrine mechanisms in MIF, GALECTIN, and IL16 signaling pathways, modulating the immune-inflammatory microenvironment in sepsis. CONCLUSIONS This study identifies CX3CR1 as a crucial molecule impacting sepsis prognosis through WGCNA analysis. It reveals that SND's active component, quercetin and kaempferol, target HMOX1 via related pathways to regulate heme metabolism, reduce inflammation, inhibit ferroptosis, and improve immune function, ultimately improving sepsis prognosis. These findings offer a solid pharmacological foundation and potential therapeutic targets for SND in treating sepsis.
Collapse
Affiliation(s)
- Yang Gu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, PR China
| | - Ziying Li
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, PR China
| | - Han Li
- Southern Medical University, Guangzhou 510515, PR China
| | - Xiaoling Yi
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, PR China
| | - Xun Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, PR China
| | - Yan Zhang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, PR China
| | - Shu Gong
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China.
| | - Tao Yu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, PR China.
| | - Li Li
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, PR China.
| |
Collapse
|
55
|
Zhang H, Wang C, Yang N. Diagnostic performance of machine-learning algorithms for sepsis prediction: An updated meta-analysis. Technol Health Care 2024; 32:4291-4307. [PMID: 38968031 PMCID: PMC11613038 DOI: 10.3233/thc-240087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/02/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Early identification of sepsis has been shown to significantly improve patient prognosis. OBJECTIVE Therefore, the aim of this meta-analysis is to systematically evaluate the diagnostic efficacy of machine-learning algorithms for sepsis prediction. METHODS Systematic searches were conducted in PubMed, Embase and Cochrane databases, covering literature up to December 2023. The keywords included machine learning, sepsis and prediction. After screening, data were extracted and analysed from studies meeting the inclusion criteria. Key evaluation metrics included sensitivity, specificity and the area under the curve (AUC) for diagnostic accuracy. RESULTS The meta-analysis included a total of 21 studies with a data sample size of 4,158,941. Overall, the pooled sensitivity was 0.82 (95% confidence interval [CI] = 0.70-0.90; P< 0.001; I2= 99.7%), the specificity was 0.91 (95% CI = 0.86-0.94; P< 0.001; I2= 99.9%), and the AUC was 0.94 (95% CI = 0.91-0.96). The subgroup analysis revealed that in the emergency department setting (6 studies), the pooled sensitivity was 0.79 (95% CI = 0.68-0.87; P< 0.001; I2= 99.6%), the specificity was 0.94 (95% CI 0.90-0.97; P< 0.001; I2= 99.9%), and the AUC was 0.94 (95% CI = 0.92-0.96). In the Intensive Care Unit setting (11 studies), the sensitivity was 0.91 (95% CI = 0.75-0.97; P< 0.001; I2= 98.3%), the specificity was 0.85 (95% CI = 0.75-0.92; P< 0.001; I2= 99.9%), and the AUC was 0.93 (95% CI = 0.91-0.95). Due to the limited number of studies in the in-hospital and mixed settings (n< 3), no pooled analysis was performed. CONCLUSION Machine-learning algorithms have demonstrated excellent diagnostic accuracy in predicting the occurrence of sepsis, showing potential for clinical application.
Collapse
Affiliation(s)
| | | | - Ning Yang
- Department of Pharmacy, Zhang Jiakou First Hospital, Zhangjiakou, Hebei, China
| |
Collapse
|
56
|
Chiscano-Camón L, Ruiz-Rodriguez JC, Plata-Menchaca EP, Martin L, Bajaña I, Martin-Rodríguez C, Palmada C, Ferrer-Costa R, Camos S, Villena-Ortiz Y, Ribas V, Ruiz-Sanmartin A, Pérez-Carrasco M, Ferrer R. Vitamin C deficiency in critically ill COVID-19 patients admitted to intensive care unit. Front Med (Lausanne) 2023; 10:1301001. [PMID: 38188336 PMCID: PMC10769492 DOI: 10.3389/fmed.2023.1301001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
Objectives To determine vitamin C plasma kinetics, through the measurement of vitamin C plasma concentrations, in critically ill Coronavirus infectious disease 2019 (COVID-19) patients, identifying eventually the onset of vitamin C deficiency. Design Prospective, observational, single-center study. Setting Intensive Care Unit (ICU), Vall d'Hebron University Hospital, Barcelona. Study period from November 12th, 2020, to February 24th, 2021. Patients Patients who had a severe hypoxemic acute respiratory failure due to COVID-19 were included. Interventions Plasma vitamin C concentrations were measured on days 1, 5, and 10 of ICU admission. There were no vitamin C enteral nor parenteral supplementation. The supportive treatment was performed following the standard of care or acute respiratory distress syndrome (ARDS) patients. Measurement Plasma vitamin C concentrations were analyzed using an ultra-performance liquid chromatography (UPLC) system with a photodiode array detector (wavelength set to 245 nm). We categorized plasmatic levels of vitamin C as follows: undetectable: < 1,5 mg/L, deficiency: <2 mg/L. Low plasma concentrations: 2-5 mg/L; (normal plasma concentration: > 5 mg/L). Main results Forty-three patients were included (65% men; mean age 62 ± 10 years). The median Sequential Organ Failure Assessment (SOFA) score was 3 (1-4), and the Acute Physiology and Chronic Health disease Classification System (APACHE II) score was 13 (10-22). Five patients had shock. Bacterial coinfection was documented in 7 patients (16%). Initially all patients required high-flow oxygen therapy, and 23 (53%) further needed invasive mechanical ventilation during 21 (± 10) days. The worst PaO2/FIO2 registered was 93 (± 29). ICU and hospital survival were 77 and 74%, respectively. Low or undetectable levels remained constant throughout the study period in the vast majority of patients. Conclusion This observational study showed vitamin C plasma levels were undetectable on ICU admission in 86% of patients with acute respiratory failure due to COVID-19 pneumonia requiring respiratory support. This finding remained consistent throughout the study period.
Collapse
Affiliation(s)
- Luis Chiscano-Camón
- Intensive Care Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Departament de Medicina, Universitat Autonoma de Barcelona, Bellatera, Spain
| | - Juan Carlos Ruiz-Rodriguez
- Intensive Care Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Departament de Medicina, Universitat Autonoma de Barcelona, Bellatera, Spain
| | - Erika P. Plata-Menchaca
- Intensive Care Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Laura Martin
- Intensive Care Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ivan Bajaña
- Intensive Care Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Cristina Martin-Rodríguez
- Intensive Care Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Clara Palmada
- Intensive Care Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Roser Ferrer-Costa
- Clinical Biochemistry Service, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Silvia Camos
- Clinical Biochemistry Laboratory, ICS-IAS Girona Clinical Laboratory, Doctor Josep Trueta University Hospital, Girona, Spain
| | - Yolanda Villena-Ortiz
- Clinical Biochemistry Service, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Vicent Ribas
- Fundació Eurecat Centre Tecnològic de Catalunya, Catalonia, Spain
| | - Adolf Ruiz-Sanmartin
- Intensive Care Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marcos Pérez-Carrasco
- Intensive Care Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ricard Ferrer
- Intensive Care Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Clinical Biochemistry Service, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- CIBER Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
57
|
Stewart J, Bradley J, Smith S, McPeake J, Walsh T, Haines K, Leggett N, Hart N, McAuley D. Do critical illness survivors with multimorbidity need a different model of care? Crit Care 2023; 27:485. [PMID: 38066562 PMCID: PMC10709866 DOI: 10.1186/s13054-023-04770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
There is currently a lack of evidence on the optimal strategy to support patient recovery after critical illness. Previous research has largely focussed on rehabilitation interventions which aimed to address physical, psychological, and cognitive functional sequelae, the majority of which have failed to demonstrate benefit for the selected outcomes in clinical trials. It is increasingly recognised that a person's existing health status, and in particular multimorbidity (usually defined as two or more medical conditions) and frailty, are strongly associated with their long-term outcomes after critical illness. Recent evidence indicates the existence of a distinct subgroup of critical illness survivors with multimorbidity and high healthcare utilisation, whose prior health trajectory is a better predictor of long-term outcomes than the severity of their acute illness. This review examines the complex relationships between multimorbidity and patient outcomes after critical illness, which are likely mediated by a range of factors including the number, severity, and modifiability of a person's medical conditions, as well as related factors including treatment burden, functional status, healthcare delivery, and social support. We explore potential strategies to optimise patient recovery after critical illness in the presence of multimorbidity. A comprehensive and individualized approach is likely necessary including close coordination among healthcare providers, medication reconciliation and management, and addressing the physical, psychological, and social aspects of recovery. Providing patient-centred care that proactively identifies critical illness survivors with multimorbidity and accounts for their unique challenges and needs is likely crucial to facilitate recovery and improve outcomes.
Collapse
Affiliation(s)
- Jonathan Stewart
- Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland.
| | - Judy Bradley
- Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| | - Susan Smith
- Department of Public Health and Primary Care, Trinity College Dublin, Dublin 2, Ireland
| | - Joanne McPeake
- The Healthcare Improvement Studies Institute, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Timothy Walsh
- Usher Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Kimberley Haines
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Australia
| | - Nina Leggett
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Australia
| | - Nigel Hart
- Centre for Medical Education, Queen's University Belfast, Belfast, Northern Ireland
| | - Danny McAuley
- Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
58
|
Zeng N, Jian Z, Xu J, Zheng S, Fan Y, Xiao F. DLK1 overexpression improves sepsis-induced cardiac dysfunction and fibrosis in mice through the TGF-β1/Smad3 signaling pathway and MMPs. J Mol Histol 2023; 54:655-664. [PMID: 37759133 DOI: 10.1007/s10735-023-10161-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Sepsis is a serious inflammatory disease caused by bacterial infection. Cardiovascular dysfunction and remodeling are serious complications of sepsis, which can significantly affect sepsis patients' mortality. Delta-like homologue 1 (DLK1) has been reported could inhibit cardiac myofibroblast differentiation. However, the function of DLK1 in sepsis is unknown. In the present study, the DLK1 expression was first identified based on the online dataset GSE79962 analysis and cecal ligation and puncture (CLP)-induced sepsis mouse model. DLK1 expression was significantly reduced in septic heart tissues. In septic mouse heart, CLP operation decreased the fractional shortening (EF) (%) and ejection fraction (FS) (%) and caused significant edema, disordered myofilament arrangement, and degradation and necrosis in myocardial cells; CLP operation also increased collagen deposition and elevated the protein levels of fibrotic markers (α-SMA and F-actin). DLK1 overexpression in septic mice could effectively increase EF (%) and FS (%), attenuate CLP-caused ECM degradation and deposition and partially inhibit the CLP-induced TGF-β1/Smad signaling activation. In conclusion, DLK1 expression was poorly expressed in the CLP-induced septic mouse heart. DLK1 overexpression partially alleviated sepsis-induced cardiac dysfunction and fibrosis, with the involvement of the TGF-β1/Smad3 signaling pathway and MMPs.
Collapse
Affiliation(s)
- Ni Zeng
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zaijin Jian
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Junmei Xu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Sijia Zheng
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yongmei Fan
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Feng Xiao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
59
|
Li T, Li X, Zhu Z, Liu X, Dong G, Xu Z, Zhang M, Zhou Y, Yang J, Yang J, Fang P, Qiao X. Clinical value of procalcitonin-to-albumin ratio for identifying sepsis in neonates with pneumonia. Ann Med 2023; 55:920-925. [PMID: 36908271 PMCID: PMC10795557 DOI: 10.1080/07853890.2023.2185673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 02/23/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND It is possible that neonates with pneumonia also have unrecognized sepsis. Identifying sepsis in neonates with pneumonia may cause some trouble for clinicians. This study aimed to evaluate the clinical value of the procalcitonin-to-albumin ratio (PAR) in identifying sepsis in neonates with pneumonia. METHODS We retrospectively included 912 neonates with pneumonia from January 2016 to July 2021. Clinical and laboratory data were collected from electronic medical records. Among neonates with pneumonia, 561 neonates were diagnosed with sepsis, according to the International Pediatric Sepsis Consensus. Neonates were divided into a sepsis group and a pneumonia group. A multivariate logistic regression analysis was used to evaluate whether PAR was a potential independent indicator for identifying sepsis in neonates with pneumonia. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic value of PAR in sepsis. RESULTS Neonates with sepsis have a higher PAR (p < 0.001). Correlation analysis showed that PAR was positively correlated with the level of C-reactive protein (r = 0.446, p < 0.001). Multiple logistic regression analysis showed that PAR was an independent predictor of the presence of sepsis in neonates with pneumonia. ROC curve analysis revealed that PAR had good power in identifying sepsis in neonates with pneumonia (area under curve (AUC) = 0.72, 95% confidence interval (CI), 0.68-0.75, p < 0.001). CONCLUSION PAR can be used as a new biomarker to identify sepsis in neonates with pneumonia.
Collapse
Affiliation(s)
- Tiewei Li
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, P.R. China
- The Center of Henan Children’s Neurodevelopmental Engineering Research, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, P.R. China
| | - Xiaojuan Li
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, P.R. China
| | - Zhiwei Zhu
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, P.R. China
| | - Xinrui Liu
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, P.R. China
| | - Geng Dong
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, P.R. China
| | - Zhe Xu
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, P.R. China
| | - Min Zhang
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, P.R. China
| | - Ying Zhou
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, P.R. China
| | - Jianwei Yang
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, P.R. China
| | - Junmei Yang
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, P.R. China
| | - Panpan Fang
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, P.R. China
| | - Xiaoliang Qiao
- Center of Laboratory Medicine, Women & Infants Hospital of Zhengzhou, Zhengzhou, P.R. China
| |
Collapse
|
60
|
Jang SY, Kim SY, Song HA, Kim H, Chung KS, Lee JK, Lee KT. Protective effect of hydrangenol on lipopolysaccharide-induced endotoxemia by suppressing intestinal inflammation. Int Immunopharmacol 2023; 125:111083. [PMID: 37871380 DOI: 10.1016/j.intimp.2023.111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Hydrangenol, a dihydroisocoumarin, isolated from the leaves of Hydrangea serrata, possesses anti-inflammatory, anti-obesity, and anti-photoaging activities. In this study, we investigated the protective effects of hydrangenol (HG) against lipopolysaccharide (LPS)-induced endotoxemia and elucidated the underlying molecular mechanisms of action in C57BL/6 mice. Oral administration of HG (20 or 40 mg/kg) significantly restored the survival rate and population of macrophages, T helper cells (CD3+/CD4+), and Th17 cells (CD3+/CD4+/CCR6+) in the spleens of mice with LPS-induced endotoxemia. HG suppressed the expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β, and Interferon (IFN)-γ and the mRNA and protein expressions of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in the intestine and lung of LPS-treated mice. Molecular data showed that HG ameliorated the activation of nuclear factor kappa B (NF-κB) p65, signal transducers and activators of transcription 3 (STAT3), and c-Fos and c-Jun (AP-1 subunits) via the myeloid differentiation primary response 88 (MyD88) dependent toll-like receptor 4 (TLR4) signaling pathway in the LPS-treated mouse intestines. HG treatment caused the recovery of LPS-induced impaired tight junction (occludin and claudin-2) protein and mRNA expressions. Furthermore, HG improved LPS-induced gut dysbiosis in mice. Taken together, our results suggest that HG protects against LPS-induced endotoxemia by restoring immune cells and the capacity of the intestinal barrier, reducing intestinal inflammation, and improving the composition of the gut microbiota.
Collapse
Affiliation(s)
- Seo-Yun Jang
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Su-Yeon Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Hyeon-A Song
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hyeyun Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
61
|
Lin Y, Ma L, Dan H, Chen G, Dai J, Xu L, Liu Y. MiR-107-3p Knockdown Alleviates Endothelial Injury in Sepsis via Kallikrein-Related Peptidase 5. J Surg Res 2023; 292:264-274. [PMID: 37666089 DOI: 10.1016/j.jss.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Endothelial injury is a major characteristic of sepsis and contributes to sepsis-induced multiple-organ dysfunction. In this study, we investigated the role of miR-107-3p in sepsis-induced endothelial injury. METHODS Human umbilical vein endothelial cells (HUVECs) were exposed to 20 μg/mL of lipopolysaccharide (LPS) for 6-48 h. The levels of miR-107-3p and kallikrein-related peptidase 5 (KLK5) were examined. HUVECs were treated with LPS for 12 h and subsequently transfected with miR-107-3p inhibitor, KLK5 siRNA, or cotransfected with KLK5 siRNA and miR-107-3p inhibitor/negative control inhibitor. Cell survival, apoptosis, invasion, cell permeability, inflammatory response, and the Toll-like receptor 4/nuclear factor κB signaling were evaluated. In addition, the relationship between miR-107-3p and KLK5 expression was predicted and verified. RESULTS LPS significantly elevated miR-107-3p levels, which peaked at 12 h. Conversely, the KLK5 level was lower in the LPS group than in the control group and was lowest at 12 h. MiR-107-3p knockdown significantly attenuated reductions in cell survival and invasion, apoptosis promotion, hyperpermeability and inflammation induction, and activation of the NF-κB signaling caused by LPS. KLK5 knockdown had the opposite effect. Additionally, KLK5 was demonstrated as a target of miR-107-3p. MiR-107-3p knockdown partially reversed the effects of KLK5 depletion in LPS-activated HUVECs. CONCLUSIONS Our findings indicate that miR-107-3p knockdown may protect against sepsis-induced endothelial cell injury by targeting KLK5. This study identified a novel therapeutic target for sepsis-induced endothelial injury.
Collapse
Affiliation(s)
- Yongbo Lin
- Department of Cardiology, People's Hospital of Dongxihu District, Wuhan, China
| | - Li Ma
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hanliang Dan
- Department of Cardiology, People's Hospital of Dongxihu District, Wuhan, China
| | - Gang Chen
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China
| | - Jian Dai
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China
| | - Liang Xu
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China.
| | - Yuqi Liu
- Department of Respiratory and Critical Care Medicine, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
62
|
Wang W, Wang H, Sun T. N 6-methyladenosine modification: Regulatory mechanisms and therapeutic potential in sepsis. Biomed Pharmacother 2023; 168:115719. [PMID: 37839108 DOI: 10.1016/j.biopha.2023.115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and is characterized by multiple biological and clinical features. N6-methyladenosine (m6A) modification is the most common type of RNA modifications in eukaryotes and plays an important regulatory role in various biological processes. Recently, m6A modification has been found to be involved in the regulation of immune responses in sepsis. In addition, several studies have shown that m6A modification is involved in sepsis-induced multiple organ dysfunctions, including cardiovascular dysfunction, acute lung injury (ALI), acute kidney injury (AKI) and etc. Considering the complex pathogenesis of sepsis and the lack of specific therapeutic drugs, m6A modification may be the important bond in the pathophysiological process of sepsis and even therapeutic targets. This review systematically highlights the recent advances regarding the roles of m6A modification in sepsis and sheds light on their use as treatment targets for sepsis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
63
|
Guo J, Miao Y, Nie F, Gao F, Li H, Wang Y, Liu Q, Zhang T, Yang X, Liu L, Fan H, Wang Q, Qiao H. Zn-Shik-PEG nanoparticles alleviate inflammation and multi-organ damage in sepsis. J Nanobiotechnology 2023; 21:448. [PMID: 38001490 PMCID: PMC10675904 DOI: 10.1186/s12951-023-02224-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by excessive formation of reactive oxygen species (ROS) and dysregulated inflammatory response. Previous studies have reported that shikonin (Shik) possess prominent anti-inflammatory and antioxidant effects and holds promise as a potential therapeutic drug for sepsis. However, the poor water solubility and the relatively high toxicity of shikonin hamper its clinical application. To address this challenge, we constructed Zn2+-shikonin nanoparticles, hereafter Zn-Shik-PEG NPs, based on an organic-inorganic hybridization strategy of metal-polyphenol coordination to improve the aqueous solubility and biosafety of shikonin. Mechanistic studies suggest that Zn-Shik-PEG NPs could effectively clear intracellular ROS via regulating the Nrf2/HO-1 pathway, meanwhile Zn-Shik-PEG NPs could inhibit NLRP3 inflammasome-mediated activation of inflammation and apoptosis by regulating the AMPK/SIRT1 pathway. As a result, the Zn-Shik-PEG NPs demonstrated excellent therapeutic efficacies in lipopolysaccharide (LPS) as well as cecal ligation puncture (CLP) induced sepsis model. These findings suggest that Zn-Shik-PEG NPs may have therapeutic potential for the treatment of other ROS-associated and inflammatory diseases.
Collapse
Affiliation(s)
- Jie Guo
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuqing Miao
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Fayi Nie
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Fei Gao
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Hua Li
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuan Wang
- Shaanxi Key Laboratory of Integrated Acupuncture and Drugs, College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Qi Liu
- Shaanxi Key Laboratory of Integrated Acupuncture and Drugs, College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Tingbin Zhang
- Center for Health Science and Engineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Xiaohang Yang
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Li Liu
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Qiang Wang
- Shaanxi Key Laboratory of Integrated Acupuncture and Drugs, College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Haifa Qiao
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- Shaanxi Key Laboratory of Integrated Acupuncture and Drugs, College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
64
|
He W, Fu D, Gai Y, Liu X, Yang C, Ye Z, Chen X, Liu J, Chang B. An infection-microenvironment-targeted and responsive peptide-drug nanosystem for sepsis emergency by suppressing infection and inflammation. Asian J Pharm Sci 2023; 18:100869. [PMID: 38161786 PMCID: PMC10755722 DOI: 10.1016/j.ajps.2023.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 11/19/2023] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a life-threatening emergency that causes millions of deaths every year due to severe infection and inflammation. Nevertheless, current therapeutic regimens are inadequate to promptly address the vast diversity of potential pathogens. Omiganan, an antimicrobial peptide, has shown promise for neutralizing endotoxins and eliminating diverse pathogens. However, its clinical application is hindered by safety and stability concerns. Herein, we present a nanoscale drug delivery system (Omi-hyd-Dex@HA NPs) that selectively targets infectious microenvironments (IMEs) and responds to specific stimuli for efficient intervention in sepsis. The system consists of omiganan-dexamethasone conjugates linked by hydrazone bonds which self-assemble into nanoparticles coated with a hyaluronic acid (HA). The HA coating not only facilitates IMEs-targeting through interaction with intercellular-adhesion-molecule-1 on inflamed endotheliocytes, but also improves the biosafety of the nanosystem and enhances drug accumulation in primary infection sites triggered by hyaluronidase. The nanoparticles release dual drugs in IMEs through pH-sensitive cleavage of hydrazone bonds to eradicate pathogens and suppress inflammation. In multiple tissue infection and sepsis animal models, Omi-hyd-Dex@HA NPs exhibited rapid source control and comprehensive inflammation reduction, thereby preventing subsequent fatal complications and significantly improving survival outcomes. The bio-responsive and self-delivering nanosystem offers a promising strategy for systemic sepsis treatment in emergencies.
Collapse
Affiliation(s)
- Wei He
- The Second Clinical College, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Daan Fu
- Department of Anesthesiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Hubei Province Key Laboratory of Molecular Imaging, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xingxin Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu 610065, China
| | - Chang Yang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Zhilan Ye
- Department of Geriatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xu Chen
- The Second Clinical College, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingcheng Chang
- The Second Clinical College, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| |
Collapse
|
65
|
Shi X, Lv X, Xiao D. Gossypol improves myocardial dysfunction caused by sepsis by regulating histone acetylation. Clin Transl Sci 2023; 16:2189-2197. [PMID: 37626472 PMCID: PMC10651647 DOI: 10.1111/cts.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Gossypol is a polyphenol from the cotton plant with anti-inflammatory and anti-oxidation activities and can also function as a histone deacetylase (HDAC) inhibitor. Sepsis is an inflammatory disease with high mortality. Inflammation, oxidative stress, and epigenetic factors are involved in sepsis and its complications. The biological activities of gossypol strongly suggest the potential effects of gossypol on sepsis. In the present study, the beneficial effects of gossypol on sepsis were evaluated. We established a cecal ligation and puncture (CLP) mouse model of sepsis and treated CLP mice with gossypol. The survival rate, serum level of myocardial injury markers, and myocardial level of oxidation markers were measured. We also administered gossypol to lipopolysaccharide (LPS)-treated primary cardiomyocytes. The production of pro-inflammatory cytokines, activation of protein kinase B (AKT) and IκB kinase (IKK), acetylation of histone, and expression of HDACs were measured. Gossypol prevented the death of CLP mice and ameliorated myocardial damage in CLP mice. Moreover, gossypol decreased oxidative factors, while promoting antioxidant production in CLP mice. Gossypol prevented LPS and cytosine-phosphate-guanosine-induced expression of pro-inflammatory cytokines, suppressed LPS-induced activation of AKT and IKK, inhibited histone acetylation, and decreased the expression of HDACs. In conclusion, gossypol ameliorates myocardial dysfunction in mice with sepsis.
Collapse
Affiliation(s)
- Xiaohui Shi
- Department of Critical Care MedicinePeople's Hospital of Xinjiang Uygur Autonomous RegionXinjiangChina
| | - Xinwei Lv
- Department of Critical Care MedicinePeople's Hospital of Xinjiang Uygur Autonomous RegionXinjiangChina
| | - Dong Xiao
- Department of Critical Care MedicinePeople's Hospital of Xinjiang Uygur Autonomous RegionXinjiangChina
| |
Collapse
|
66
|
Lin S, Mao X, He W. Causal association of circulating cytokines with sepsis: a Mendelian randomization study. Front Immunol 2023; 14:1281845. [PMID: 37915587 PMCID: PMC10616607 DOI: 10.3389/fimmu.2023.1281845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Observational studies have reported an association between circulating cytokines and sepsis. However, the precise causal relationship between these factors remains unclear. The objective of this study was to explore the causal link between circulating cytokines and sepsis using genetic data within the framework of Mendelian Randomization (MR). METHODS We performed a two-sample MR analysis to investigate this causality relationship in individuals of European ancestry. The publicly available genome-wide association studies (GWAS) statistics were used. We selected eligible instrumental single nucleotide polymorphisms (SNPs) that were significantly related to the circulating cytokines. Multiple MR analysis approaches were carried out, which included inverse variance weighted (IVW), Weighted Median, MR-Egger, Weighted Mode, Simple Mode, and MR pleiotropy residual sum and outlier (MR-PRESSO) methods. RESULTS We found evidence to support the causal role of genetically predicted circulating levels on decreased risk of sepsis, including RANTES (OR = 0.920, 95% CI: 0.849-0.997, P = 0.041) and basic fibroblast growth factor (basic-FGF) (OR = 0.869, 95% CI: 0.766-0.986, P = 0.029). Additionally, MR analysis positive causal association of between beta-nerve growth factor (β-NGF) and sepsis (OR = 1.120, 95% CI: 1.037-1.211, P = 0.004). The results of MR-Egger, Weighted Median, Weighted Mode, and Simple Mode methods were consistent with the IVW estimates. Sensitivity analysis showed no horizontal pleiotropy to bias the causal estimates. CONCLUSION This MR study provides first novel evidence that genetically predicted causal association of circulating levels of RANTES, basic-FGF, and β-NGF with altered sepsis risk. The findings shed light on the potential involvement of these cytokines in sepsis pathogenesis. Although requiring additional confirmation, the results contribute new insights into cytokine mediators in sepsis and suggest promising future research directions.
Collapse
Affiliation(s)
- Shan Lin
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xueyan Mao
- Department of Medical Intensive Care Unit, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wanmei He
- Department of Medical Intensive Care Unit, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
67
|
An N, Chen Z, Zhao P, Yin W. Extracellular Vesicles in Sepsis: Pathogenic Roles, Organ Damage, and Therapeutic Implications. Int J Med Sci 2023; 20:1722-1731. [PMID: 37928875 PMCID: PMC10620861 DOI: 10.7150/ijms.86832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Despite significant advances in anti-infective treatment and organ function support technology in recent years, the mortality rate of sepsis remains high. In addition to the high costs of sepsis treatment, the increasing consumption of medical resources also aggravates economic pressure and social burden. Extracellular vesicles (EVs) are membrane vesicles released from different types of activated or apoptotic cells to mediate intercellular communication, which can be detected in both human and animal body fluids. A growing body of researches suggest that EVs play an important role in the pathogenesis of sepsis. In this review, we summarize the predominant roles of EVs in various pathological processes during sepsis and its related organ dysfunction.
Collapse
Affiliation(s)
- Ni An
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhe Chen
- University College London, London, UK
| | - Peng Zhao
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
68
|
Sediqi MS, Wali A, Ibrahimi MA. Prevalence of pediatric sepsis in hospitalized children of Maiwand Teaching Hospital, Kabul, Afghanistan. BMC Pediatr 2023; 23:510. [PMID: 37845607 PMCID: PMC10577964 DOI: 10.1186/s12887-023-04318-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/17/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Sepsis is a clinical syndrome associated with a systemic reaction to infection that is seen as a bacteremia with systemic symptoms. Sepsis is one of the most important problems in children and is associated with many deaths, so recognizing this disease and it's causing factors and identifying the predisposing factors for it is of great importance. Globally, the prevalence and occurrences of sepsis and septic shock are increasing, while the incidence of deaths from them has decreased with the improvement of diagnostic and treatment facilities. According to a 2015 World Health Organization report, approximately 5.9 million children under 5 years old have lost their lives due to sepsis worldwide, the majority of which have occurred in developing countries. METHODS This study was conducted in the pediatric department of Maiwand Teaching Hospital (MTH) in 2020 as a descriptive cross-sectional study. All children who were admitted to the pediatric department of Maiwand Teaching Hospital during 2020 were included in the research. Among them, the prevalence of sepsis in children with respect to age and sex was studied. The study included children over the age of 28 days who were admitted to the Maiwand Teaching Hospital pediatrics department in 2020. However, in this study, patients have been categorized into five categories according to age: less than two months, two months to one year, one to three years, three to five years old, and older than five years old. RESULTS This study was conducted in the pediatric department of Maiwand Teaching Hospital in 2020 as a descriptive cross-sectional study, and it was found that the prevalence of sepsis in children who were admitted to the pediatric department at this year was 50.5%, including the highest prevalence in males (65.75%) and at the age of two months to one year (37.9%). In this study, it was found that the prevalence of sepsis was higher (88.46%) among urban children than children who were living in villages (11.53%). In this study, the mortality rate was 2.44% for patients admitted to Maiwand Teaching Hospital. CONCLUSIONS In this study, it was found that the prevalence of sepsis was 50.5% in children admitted to the pediatrics department of Maiwand Teaching Hospital, of whom 67.75% were boys, 37.94% were aged two months to three years old, and it was more prevalent (88.46%) among children living in cities. The mortality rate was 2.44%.
Collapse
Affiliation(s)
- Mohammad Sharif Sediqi
- Department of Pediatrics, Kabul University of Medical Sciences, P.O. Box 1003, Kabul, 2496300, Afghanistan.
| | - Abdulwali Wali
- Department of Pediatrics, Kabul University of Medical Sciences, P.O. Box 1003, Kabul, 2496300, Afghanistan
| | - Mohammad Akbar Ibrahimi
- Department of Pediatrics, Kabul University of Medical Sciences, P.O. Box 1003, Kabul, 2496300, Afghanistan
| |
Collapse
|
69
|
Seok H, Kim J, Choi WS, Park DW. Effects of Vitamin D Deficiency on Sepsis. Nutrients 2023; 15:4309. [PMID: 37892385 PMCID: PMC10609566 DOI: 10.3390/nu15204309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
A prospective cohort study was conducted to evaluate the effect of vitamin D deficiency on sepsis. A total of 129 patients were enrolled. The median age was 74 years old, with a median SOFA score of 7; septic shock was observed in 60 patients. The median vitamin D level in the overall population was 13 ng/mL. A total of 96 patients had vitamin D deficiency, whereas 62 patients were described to have severe vitamin D deficiency. Severe vitamin D deficiency significantly increased the 14-day mortality (adjusted hazard ratio (aHR) 2.57; 95% confidence interval [CI]: 1.03-6.43; p = 0.043), 28-day mortality (aHR 2.28; 95% CI: 1.17-4.45; p = 0.016), and in-hospital mortality (aHR 2.11; 95% CI: 1.02-4.36; p = 0.044). In Kaplan-Meier analysis, the severe vitamin D deficiency group had significantly higher 14-day and 28-day mortality rates compared with the non-deficient group. Evaluating the vitamin D levels in sepsis patients may become necessary in an aging society. Severe vitamin D deficiency can independently affect poor prognosis related to sepsis. Further studies are needed to evaluate whether vitamin D supplementation in sepsis patients with vitamin D deficiency can help improve the prognosis of sepsis in addition to improving bone mineral metabolism.
Collapse
Affiliation(s)
| | | | | | - Dae Won Park
- Division of Infectious Diseases, Department of Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea; (H.S.)
| |
Collapse
|
70
|
Sawoo R, Dey R, Ghosh R, Bishayi B. Exogenous IL-10 posttreatment along with TLR4 and TNFR1 blockade improves tissue antioxidant status by modulating sepsis-induced macrophage polarization. J Appl Toxicol 2023; 43:1549-1572. [PMID: 37177863 DOI: 10.1002/jat.4496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Multi-organ dysfunction is one of the major reasons behind the high mortality of sepsis throughout the world. With the pathophysiology of sepsis remaining largely unknown, the uncontrolled reactive oxygen species (ROS) production along with the decreased antioxidants contributes to the progression toward septic shock. Being the effector cells of the innate immunity system, macrophages secrete both pro-inflammatory and anti-inflammatory mediators during inflammation. Lipopolysaccharide (LPS) binding to toll-like receptor 4 (TLR4) releases TNF-α, which initiates pro-inflammatory events through tumor necrosis factor receptor 1 (TNFR1) signaling. However, it is counteracted by the anti-inflammatory interleukin 10 (IL-10) causing decreased oxidative stress. Our study thus aimed to assess the effects of exogenous IL-10 treatment post-neutralization of TLR4 and TNFR1 (by anti-TLR4 antibody and anti-TNFR1 antibody, respectively) in an in vivo murine model of LPS-sepsis. We have also examined the tissue-specific antioxidant status in the spleen, liver, and lungs along with the serum cytokine levels in adult male Swiss albino mice to determine the functional association with the disease. The results showed that administration of recombinant IL-10 post-neutralization of the receptors was beneficial in shifting the macrophage polarization to the anti-inflammatory M2 phenotype. IL-10 treatment significantly downregulated the free radicals production resulting in diminished lipid peroxidase (LPO) levels. The increased antioxidant activities of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GRX ) conferred protection against LPS-induced sepsis. Western blot data further confirmed diminished expressions of TLR4 and TNFR1 along with suppressed stress-activated protein kinases/Jun amino-terminal kinases (SAPK/JNK) and increased SOD and CAT expressions, which altogether indicated that neutralization of TLR4 and TNFR1 along with IL-10 posttreatment might be a potential therapeutic measure for the treatment of sepsis.
Collapse
Affiliation(s)
- Ritasha Sawoo
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| | - Rajen Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| | - Rituparna Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| |
Collapse
|
71
|
Wang X, Wang Z, Guo Z, Wang Z, Chen F, Wang Z. Exploring the Role of Different Cell-Death-Related Genes in Sepsis Diagnosis Using a Machine Learning Algorithm. Int J Mol Sci 2023; 24:14720. [PMID: 37834169 PMCID: PMC10572834 DOI: 10.3390/ijms241914720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Sepsis, a disease caused by severe infection, has a high mortality rate. At present, there is a lack of reliable algorithmic models for biomarker mining and diagnostic model construction for sepsis. Programmed cell death (PCD) has been shown to play a vital role in disease occurrence and progression, and different PCD-related genes have the potential to be targeted for the treatment of sepsis. In this paper, we analyzed PCD-related genes in sepsis. Implicated PCD processes include apoptosis, necroptosis, ferroptosis, pyroptosis, netotic cell death, entotic cell death, lysosome-dependent cell death, parthanatos, autophagy-dependent cell death, oxeiptosis, and alkaliptosis. We screened for diagnostic-related genes and constructed models for diagnosing sepsis using multiple machine-learning models. In addition, the immune landscape of sepsis was analyzed based on the diagnosis-related genes that were obtained. In this paper, 10 diagnosis-related genes were screened for using machine learning algorithms, and diagnostic models were constructed. The diagnostic model was validated in the internal and external test sets, and the Area Under Curve (AUC) reached 0.7951 in the internal test set and 0.9627 in the external test set. Furthermore, we verified the diagnostic gene via a qPCR experiment. The diagnostic-related genes and diagnostic genes obtained in this paper can be utilized as a reference for clinical sepsis diagnosis. The results of this study can act as a reference for the clinical diagnosis of sepsis and for target discovery for potential therapeutic drugs.
Collapse
Affiliation(s)
- Xuesong Wang
- School of Clinical Medicine, Tsinghua University, Beijing 100190, China; (X.W.); (Z.W.); (Z.W.); (F.C.)
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China;
| | - Ziyi Wang
- School of Clinical Medicine, Tsinghua University, Beijing 100190, China; (X.W.); (Z.W.); (Z.W.); (F.C.)
| | - Zhe Guo
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China;
| | - Ziwen Wang
- School of Clinical Medicine, Tsinghua University, Beijing 100190, China; (X.W.); (Z.W.); (Z.W.); (F.C.)
| | - Feng Chen
- School of Clinical Medicine, Tsinghua University, Beijing 100190, China; (X.W.); (Z.W.); (Z.W.); (F.C.)
| | - Zhong Wang
- School of Clinical Medicine, Tsinghua University, Beijing 100190, China; (X.W.); (Z.W.); (Z.W.); (F.C.)
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
72
|
Luo S, Gong J, Zhao S, Li M, Li R. Deubiquitinase BAP1 regulates stability of BRCA1 protein and inactivates the NF-κB signaling to protect mice from sepsis-induced acute kidney injury. Chem Biol Interact 2023; 382:110621. [PMID: 37414201 DOI: 10.1016/j.cbi.2023.110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Sepsis and its associated organ dysfunction syndrome is a leading cause of death in critically ill patients. Breast cancer susceptibility protein 1 (BRCA1)-associated protein 1 (BAP1) is a potential regulator in immune regulation and inflammatory responses. This study aims to investigate the function of BAP1 in sepsis-induced acute kidney injury (AKI). A mouse model with sepsis-induced AKI was induced by cecal ligation and puncture, and renal tubular epithelial cells (RTECs) were treated with lipopolysaccharide (LPS) to mimic an AKI condition in vitro. BAP1 was significantly poorly expressed in the kidney tissues of model mice and the LPS-treated RTECs. Artificial upregulation of BAP1 ameliorated the pathological changes, tissue injury and inflammatory responses in kidney tissues of the mice, and it reduced the LPS-induced injury and apoptosis of the RTECs. BAP1 was found to interact with BRCA1 and enhance stability of BRCA1 protein through deubiquitination modification. Further downregulation of BRCA1 activated the nuclear factor-kappa B (NF-κB) signaling pathway and blocked the protective roles of BAP1 in sepsis-induced AKI. In conclusion, this study demonstrates that BAP1 protects mice from sepsis-induced AKI through enhancing stability of BRCA1 protein and inactivating the NF-κB signaling.
Collapse
Affiliation(s)
- Shu Luo
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, PR China.
| | - Junzuo Gong
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, PR China
| | - Shiqiao Zhao
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, PR China
| | - Menqin Li
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, PR China
| | - Ruixiu Li
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, PR China
| |
Collapse
|
73
|
Bilgin M, Aci R, Keskin A, Yilmaz EM, Polat E. Evaluation of the relationship between procalcitonin level and the causative pathogen in intensive care patients with sepsis. Future Microbiol 2023; 18:875-883. [PMID: 37594461 DOI: 10.2217/fmb-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Aim: This study was designed to investigate how procalcitonin (PCT) levels are affected by different pathogens in patients with sepsis. Materials & methods: A total of 110 Gram-positive sepsis, 62 Gram-negative sepsis and 27 fungal sepsis patients were included in the study. Kaplan-Meier and ROC curve analysis was performed to assess PCT levels. Results: PCT levels were 2.36 ng/ml in Gram-negative patients, 0.79 ng/ml in Gram-positive patients and 0.89 ng/ml in fungal patients. The area under the curve for PCT was 0.608, the cutoff value was 1.34, sensitivity was 56.50% the specificity was 56.50%. Conclusion: PCT survival levels of 7.71 ng/ml in Gram-negative patients, 2.65 ng/ml in Gram-positive patients and 1.16 ng/ml in fungal patients can be evaluated to predict survival.
Collapse
Affiliation(s)
- Melek Bilgin
- Department of Microbiology, Samsun Training & Research Hospital, Ilkadim, Samsun, 55090, Turkey
| | - Recai Aci
- Department of Biochemistry, Samsun Training & Research Hospital, Ilkadim, Samsun, 55090, Turkey
| | - Adem Keskin
- Department of Medicinal Biochemistry, Institute of Health Sciences, Aydin Adnan Menderes University, Efeler, Aydın, 09100, Turkey
| | - Esmeray M Yilmaz
- Department of Clinical Microbiology & Infectious Diseases, Samsun Training & Research Hospital, Ilkadim, Samsun, 55090, Turkey
| | - Ebru Polat
- Department of Anesthesiology & Reanimation, Samsun Training & Research Hospital, Ilkadim, Samsun, 55090, Turkey
| |
Collapse
|
74
|
Ji Y, Liu S, Zhang J, Qu L, Wu J, Liu H, Cheng Z. Construction of HPQ-based activatable fluorescent probe for peroxynitrite and its application in ferroptosis and mice model of LPS-induced inflammation. Bioorg Chem 2023; 138:106650. [PMID: 37302314 DOI: 10.1016/j.bioorg.2023.106650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
As one of the important members of reactive oxygen species, ONOO- plays a crucial role in signal transduction, immune response, and other physiological activities. Aberrant changes in ONOO- levels in the living organism are usually associated with many diseases. Therefore, it is important to establish a highly selective and sensitive method for the determination of ONOO- in vivo. Herein, we designed a novel ratio near-infrared fluorescent probe for ONOO- by directly conjugating dicyanoisophorone (DCI) to hydroxyphenyl-quinazolinone (HPQ). Surprisingly, HPQD was unaffected by environmental viscosity and responded rapidly to ONOO- within 40 s. The linear range of ONOO- detection was from 0 μM to 35 μM. Impressively, HPQD did not react with reactive oxygen species and was sensitive to exogenous/endogenous ONOO- in live cells. We also investigated the relationship between ONOO- and ferroptosis and achieved in vivo diagnosis and efficacy evaluation of mice model of LPS-induced inflammation, which showed promising prospects of HPQD in ONOO--related studies.
Collapse
Affiliation(s)
- Yuxiang Ji
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Sha Liu
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Jian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Linruikang Qu
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Jinsheng Wu
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Heng Liu
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Ziyi Cheng
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
75
|
Wang T, Xu S, Zhang L, Yang T, Fan X, Zhu C, Wang Y, Tong F, Mei Q, Pan A. Identification of immune-related lncRNA in sepsis by construction of ceRNA network and integrating bioinformatic analysis. BMC Genomics 2023; 24:484. [PMID: 37620751 PMCID: PMC10464037 DOI: 10.1186/s12864-023-09535-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Sepsis is a high mortality disease which seriously threatens human life and health, for which the pathogenetic mechanism still unclear. There is increasing evidence showed that immune and inflammation responses are key players in the development of sepsis pathology. LncRNAs, which act as ceRNAs, have critical roles in various diseases. However, the regulatory roles of ceRNA in the immunopathogenesis of sepsis have not yet been elucidated. RESULTS In this study, we aimed to identify immune biomarkers associated with sepsis. We first generated a global immune-associated ceRNA (IMCE) network based on data describing interactions pairs of gene-miRNA and miRNA-lncRNA. Afterward, we excavated a dysregulated sepsis immune-associated ceRNA (SPIMC) network from the global IMCE network by means of a multi-step computational approach. Functional enrichment indicated that lncRNAs in SPIMC network have pivotal roles in the immune mechanism underlying sepsis. Subsequently, we identified module and hub genes (CD4 and STAT4) via construction of a sepsis immune-related PPI network. Then, we identified hub genes based on the modular structure of PPI network and generated a ceRNA subnetwork to analyze key lncRNAs associated with sepsis. Finally, 6 lncRNAs (LINC00265, LINC00893, NDUFA6-AS1, NOP14-AS1, PRKCQ-AS1 and ZNF674-AS1) that identified as immune biomarkers of sepsis. Moreover, the CIBERSORT algorithm and the infiltration of circulating immune cells types were performed to identify the inflammatory state of sepsis. Correlation analyses between immune cells and sepsis immune biomarkers showed that the LINC00265 was strongly positive correlated with the macrophages M2 (r = 0.77). CONCLUSION Collectively, these results may suggest that these lncRNAs (LINC00265, LINC00893, NDUFA6-AS1, NOP14-AS1, PRKCQ-AS1 and ZNF674-AS1) played important roles in the immune pathogenesis of sepsis and provide potential therapeutic targets for further researches on immune therapy treatment in patients with sepsis.
Collapse
Affiliation(s)
- Tianfeng Wang
- Department of Critical Care Medicine, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui Province, China
| | - Si Xu
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhang
- Department of Critical Care Medicine, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui Province, China
| | - Tianjun Yang
- Department of Critical Care Medicine, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui Province, China
| | - Xiaoqin Fan
- Department of Critical Care Medicine, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui Province, China
| | - Chunyan Zhu
- Department of Critical Care Medicine, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui Province, China
| | - Yinzhong Wang
- Department of Critical Care Medicine, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui Province, China
| | - Fei Tong
- Department of Critical Care Medicine, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui Province, China
| | - Qing Mei
- Department of Critical Care Medicine, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui Province, China.
| | - Aijun Pan
- Department of Critical Care Medicine, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui Province, China.
| |
Collapse
|
76
|
Jiang M, Wu W, Xia Y, Wang X, Liang J. Platelet-derived extracellular vesicles promote endothelial dysfunction in sepsis by enhancing neutrophil extracellular traps. BMC Immunol 2023; 24:22. [PMID: 37559007 PMCID: PMC10413488 DOI: 10.1186/s12865-023-00560-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/30/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND The role of platelet-derived extracellular vesicles (PEVs) in the development of sepsis was investigated in this study. METHODS After collection of blood samples from sepsis patients and normal volunteers, the extracellular vesicles (EVs) were separated, followed by the isolation of PEVs from the blood of rats. Next, a sepsis rat model was constructed by cecal ligation and puncture (CLP), and rats received tail vein injection of PEVs to explore the role of PEVs in sepsis. Subsequently, nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) were adopted to determine the diameter of EVs and observe the morphology of PEVs, respectively; flow cytometry to detect the percentage of CD41-and CD61-positive EVs in isolated EVs; and ELISA to assess neutrophil extracellular trap (NET) formation, endothelial function injury-related markers in clinical samples or rat blood and serum inflammatory factor level. RESULTS Compared with normal volunteers, the percentage of CD41- and CD61-positive EVs and the number of EVs were significantly elevated in sepsis patients. Moreover, sepsis patients also presented notably increased histone H3, myeloperoxidase (MPO), angiopoietin-2 and endocan levels in the blood, and such increase was positively correlated with the number of EVs. Also, animal experiments demonstrated that PEVs significantly promoted NET formation, mainly manifested as up-regulation of histone H3, high mobility group protein B1 (HMGB1), and MPO; promoted endothelial dysfunction (up-regulation of angiopoietin-2, endocan, and syndecan-1); and stimulated inflammatory response (up-regulation of interleukin (IL) -1β, IL-6, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP) -1) in the blood of sepsis rats. CONCLUSION PEVs aggravate endothelial function injury and inflammatory response in sepsis by promoting NET formation.
Collapse
Affiliation(s)
- Meini Jiang
- Department of critical care medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weidong Wu
- Department of critical care medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanmei Xia
- Department of critical care medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiuzhe Wang
- Department of critical care medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jifang Liang
- Department of critical care medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
77
|
Hao S, Huang M, Xu X, Wang X, Song Y, Jiang W, Huo L, Gu J. Identification and validation of a novel mitochondrion-related gene signature for diagnosis and immune infiltration in sepsis. Front Immunol 2023; 14:1196306. [PMID: 37398680 PMCID: PMC10310918 DOI: 10.3389/fimmu.2023.1196306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Background Owing to the complex pathophysiological features and heterogeneity of sepsis, current diagnostic methods are not sufficiently precise or timely, causing a delay in treatment. It has been suggested that mitochondrial dysfunction plays a critical role in sepsis. However, the role and mechanism of mitochondria-related genes in the diagnostic and immune microenvironment of sepsis have not been sufficiently investigated. Methods Mitochondria-related differentially expressed genes (DEGs) were identified between human sepsis and normal samples from GSE65682 dataset. Least absolute shrinkage and selection operator (LASSO) regression and the Support Vector Machine (SVM) analyses were carried out to locate potential diagnostic biomarkers. Gene ontology and gene set enrichment analyses were conducted to identify the key signaling pathways associated with these biomarker genes. Furthermore, correlation of these genes with the proportion of infiltrating immune cells was estimated using CIBERSORT. The expression and diagnostic value of the diagnostic genes were evaluated using GSE9960 and GSE134347 datasets and septic patients. Furthermore, we established an in vitro sepsis model using lipopolysaccharide (1 µg/mL)-stimulated CP-M191 cells. Mitochondrial morphology and function were evaluated in PBMCs from septic patients and CP-M191 cells, respectively. Results In this study, 647 mitochondrion-related DEGs were obtained. Machine learning confirmed six critical mitochondrion-related DEGs, including PID1, CS, CYP1B1, FLVCR1, IFIT2, and MAPK14. We then developed a diagnostic model using the six genes, and receiver operating characteristic (ROC) curves indicated that the novel diagnostic model based on the above six critical genes screened sepsis samples from normal samples with area under the curve (AUC) = 1.000, which was further demonstrated in the GSE9960 and GSE134347 datasets and our cohort. Importantly, we also found that the expression of these genes was associated with different kinds of immune cells. In addition, mitochondrial dysfunction was mainly manifested by the promotion of mitochondrial fragmentation (p<0.05), impaired mitochondrial respiration (p<0.05), decreased mitochondrial membrane potential (p<0.05), and increased reactive oxygen species (ROS) generation (p<0.05) in human sepsis and LPS-simulated in vitro sepsis models. Conclusion We constructed a novel diagnostic model containing six MRGs, which has the potential to be an innovative tool for the early diagnosis of sepsis.
Collapse
Affiliation(s)
- Shuai Hao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Miao Huang
- Nursing School, Chongqing Medical University, Chongqing, China
| | - Xiaofan Xu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xulin Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuqing Song
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wendi Jiang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liqun Huo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
78
|
Chen C, Wu X, Zhang W, Pu Y, Xu X, Sun Y, Fei Y, Zhou S, Fang B. Predictive value of risk factors for prognosis of patients with sepsis in intensive care unit. Medicine (Baltimore) 2023; 102:e33881. [PMID: 37335653 PMCID: PMC10256413 DOI: 10.1097/md.0000000000033881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
Sepsis has emerged as a major global public health concern due to its elevated mortality and high cost of care. This study aimed to evaluate the risk factors associated with the mortality of sepsis patients in the Intensive Care Unit (ICU), and to intervene in the early stages of sepsis in order to improve patient outcomes and reduce mortality. From January 1st, 2021 to December 31st, 2021, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Huashan Hospital Affiliated to Fudan University, and The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine were designated as sentinel hospitals, and sepsis patients in their respective ICU and Emergency ICU were selected as research subjects, and divided into survivors and non-survivors according to their discharge outcomes. The mortality risk of sepsis patients was subsequently analyzed by logistic regression. A total of 176 patients with sepsis were included, of which 130 (73.9%) were survivors and 46 (26.1%) were non-survivors. Factors identified as having an impact on death among sepsis patients included female [Odds Ratio (OR) = 5.135, 95% confidence interval (CI): 1.709, 15.427, P = .004)], cardiovascular disease (OR = 6.272, 95% CI: 1.828, 21.518, P = .004), cerebrovascular disease (OR = 3.133, 95% CI: 1.093, 8.981, P = .034), pulmonary infections (OR = 6.700, 95% CI: 1.744, 25.748, P = .006), use of vasopressors (OR = 34.085, 95% CI: 10.452, 111.155, P < .001), WBC < 3.5 × 109/L (OR = 9.752, 95% CI: 1.386, 68.620, P = .022), ALT < 7 U/L (OR = 7.672, 95% CI: 1.263, 46.594, P = .027), ALT > 40 U/L (OR = 3.343, 95% CI: 1.097, 10.185, P = .034). Gender, cardiovascular disease, cerebrovascular disease, pulmonary infections, the use of vasopressors, WBC, and ALT are important factors in evaluating the prognostic outcome of sepsis patients in the ICU. This suggests that medical professionals should recognize them expeditiously and implement aggressive treatment tactics to diminish the mortality rate and improve outcomes.
Collapse
Affiliation(s)
- Caiyu Chen
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xinxin Wu
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Wen Zhang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yuting Pu
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiangru Xu
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yuting Sun
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yuerong Fei
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Shuang Zhou
- Acupuncture and Massage College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Bangjiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Emergency and Critical Care Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
79
|
Kong C, Zhu Y, Xie X, Wu J, Qian M. Six potential biomarkers in septic shock: a deep bioinformatics and prospective observational study. Front Immunol 2023; 14:1184700. [PMID: 37359526 PMCID: PMC10285480 DOI: 10.3389/fimmu.2023.1184700] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Background Septic shock occurs when sepsis is related to severe hypotension and leads to a remarkable high number of deaths. The early diagnosis of septic shock is essential to reduce mortality. High-quality biomarkers can be objectively measured and evaluated as indicators to accurately predict disease diagnosis. However, single-gene prediction efficiency is inadequate; therefore, we identified a risk-score model based on gene signature to elevate predictive efficiency. Methods The gene expression profiles of GSE33118 and GSE26440 were downloaded from the Gene Expression Omnibus (GEO) database. These two datasets were merged, and the differentially expressed genes (DEGs) were identified using the limma package in R software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments of DEGs were performed. Subsequently, Lasso regression and Boruta feature selection algorithm were combined to identify the hub genes of septic shock. GSE9692 was then subjected to weighted gene co-expression network analysis (WGCNA) to identify the septic shock-related gene modules. Subsequently, the genes within such modules that matched with septic shock-related DEGs were identified as the hub genes of septic shock. To further understand the function and signaling pathways of hub genes, we performed gene set variation analysis (GSVA) and then used the CIBERSORT tool to analyze the immune cell infiltration pattern of diseases. The diagnostic value of hub genes in septic shock was determined using receiver operating characteristic (ROC) analysis and verified using quantitative PCR (qPCR) and Western blotting in our hospital patients with septic shock. Results A total of 975 DEGs in the GSE33118 and GSE26440 databases were obtained, of which 30 DEGs were remarkably upregulated. With the use of Lasso regression and Boruta feature selection algorithm, six hub genes (CD177, CLEC5A, CYSTM1, MCEMP1, MMP8, and RGL4) with expression differences in septic shock were screened as potential diagnostic markers for septic shock among the significant DEGs and were further validated in the GSE9692 dataset. WGCNA was used to identify the co-expression modules and module-trait correlation. Enrichment analysis showed significant enrichment in the reactive oxygen species pathway, hypoxia, phosphatidylinositol 3-kinases (PI3K)/Protein Kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling, nuclear factor-κβ/tumor necrosis factor alpha (NF-κβ/TNF-α), and interleukin-6 (IL-6)/Janus Kinase (JAK)/Signal Transducers and Activators of Transcription 3 (STAT3) signaling pathways. The receiver operating characteristic curve (ROC) of these signature genes was 0.938, 0.914, 0.939, 0.956, 0.932, and 0.914, respectively. In the immune cell infiltration analysis, the infiltration of M0 macrophages, activated mast cells, neutrophils, CD8 T cells, and naive B cells was more significant in the septic shock group. In addition, higher expression levels of CD177, CLEC5A, CYSTM1, MCEMP1, MMP8, and RGL4 messenger RNA (mRNA) were observed in peripheral blood mononuclear cells (PBMCs) isolated from septic shock patients than from healthy donors. Higher expression levels of CD177 and MMP8 proteins were also observed in the PBMCs isolated from septic shock patients than from control participants. Conclusions CD177, CLEC5A, CYSTM1, MCEMP1, MMP8, and RGL4 were identified as hub genes, which were of considerable value in the early diagnosis of septic shock patients. These preliminary findings are of great significance for studying immune cell infiltration in the pathogenesis of septic shock, which should be further validated in clinical studies and basic studies.
Collapse
Affiliation(s)
- Chang Kong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yurun Zhu
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofan Xie
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiayu Wu
- Department of General Practice, Central Health Center of Yayang Town, Taishun County (Yayang Branch of Medical Community of Taishun County People’s Hospital), Wenzhou, Zhejiang, China
| | - Meizi Qian
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
80
|
Jia Y, Shen K, Liu J, Li Y, Bai X, Yang Y, He T, Zhang Y, Tong L, Gao X, Zhang Z, Guan H, Hu D. The deacetylation of Akt by SIRT1 inhibits inflammation in macrophages and protects against sepsis. Exp Biol Med (Maywood) 2023; 248:922-935. [PMID: 37211747 PMCID: PMC10525408 DOI: 10.1177/15353702231165707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/12/2023] [Indexed: 05/23/2023] Open
Abstract
Sepsis is characterized by uncontrolled inflammatory response and altered polarization of macrophages at the early phase. Akt is known to drive macrophage inflammatory response. However, how macrophage inflammatory response is fine-tuned by Akt is poorly understood. Here, we found that Lys14 and Lys20 of Akt is deacetylated by the histone deacetylase SIRT1 during macrophage activation to suppress macrophages inflammatory response. Mechanistically, SIRT1 promotes Akt deacetylation to inhibit the activation of NF-κB and pro-inflammatory cytokines. Loss of SIRT1 facilitates Akt acetylation and thus promotes inflammatory cytokines in mouse macrophages, potentially worsen the progression of sepsis in mice. By contrast, the upregulation of SIRT1 in macrophages further contributes to the inhibition of pro-inflammatory cytokines via Akt activation in sepsis. Taken together, our findings establish Akt deacetylation as an essential negative regulatory mechanism that curtails M1 polarization.
Collapse
Affiliation(s)
| | | | | | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Lin Tong
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xiaowen Gao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zhi Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
81
|
Chen Y, Gong H, Tang D, Yu L, Long S, Zheng B, Luo D, Cai A. Liver proteomic analysis reveals the key proteins involved in host immune response to sepsis. PeerJ 2023; 11:e15294. [PMID: 37255592 PMCID: PMC10226476 DOI: 10.7717/peerj.15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/04/2023] [Indexed: 06/01/2023] Open
Abstract
Background Sepsis is a serious infection-induced response in the host, which can result in life-threatening organ dysfunction. It is of great importance to unravel the relationship between sepsis and host immune response and its mechanisms of action. Liver is one of the most vulnerable organs in sepsis, however, the specific pathogenesis of septic liver injury has not been well understood at the protein level. Methods A total of 12 healthy Sprague-Dawley (SD) male rats aged from 6 to 8 weeks were adaptively housed in individual cages in the specific pathogen free animal room. These lab rats were grouped into two groups: treatment (N = 9) and control (N = 3) groups; only three mice from the treatment group survived and were used for subsequent experiments. A TMT-based proteomic analysis for liver tissue was performed in the septic rat model. Results A total of 37,012 unique peptides were identified, and then 6,166 proteins were determined, among which 5,701 were quantifiable. Compared to the healthy control group, the septic rat group exhibited 162 upregulated and 103 downregulated differentially expressed proteins (DEPs). The upregulated and downregulated DEPs were the most significantly enriched into the complement and coagulation cascades and metabolic pathways. Protein-protein interaction (PPI) analysis further revealed that the upregulated and downregulated DEPs each clustered in a PPI network. Several highly connected upregulated and downregulated DEPs were also enriched into the complement and coagulation cascades pathways and metabolic pathways, respectively. The parallel reaction monitoring (PRM) results of the selected DEPs were consistent with the results of the TMT analysis, supporting the proteomic data. Conclusion Our findings highlight the roles of complement and coagulation cascades and metabolic pathways that may play vital roles in the host immune response. The DEPs may serve as clinically potential treatment targets for septic liver injury.
Collapse
Affiliation(s)
- Yingying Chen
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Hui Gong
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Lan Yu
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Shoubin Long
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Bao Zheng
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Dixian Luo
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Anji Cai
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
82
|
Wang X, Xia Z, Wang H, Wang D, Sun T, Hossain E, Pang X, Liu Y. Cell-membrane-coated nanoparticles for the fight against pathogenic bacteria, toxins, and inflammatory cytokines associated with sepsis. Theranostics 2023; 13:3224-3244. [PMID: 37351162 PMCID: PMC10283065 DOI: 10.7150/thno.81520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/05/2023] [Indexed: 06/24/2023] Open
Abstract
Sepsis is the main cause of death in patients suffering from serious illness. Yet, there is still no specific treatment for sepsis, and management relies on infection control. Cell membrane-coated nanoparticles (MNPs) are a new class of biomimetic nanoparticles based on covering the surface of synthetic nanoparticles (NPs) with natural cell membranes. They retain the physicochemical properties of synthetic nanomaterials and inherit the specific properties of cellular membranes, showing excellent biological compatibility, enhanced biointerfacing capabilities, capacity to hold cellular functions and characteristics, immunological escape, and longer half-life when in circulation. Additionally, they prevent the decomposition of the encapsulated drug and active targeting. Over the years, studies on MNPs have multiplied and a breakthrough has been achieved for cancer therapy. Nevertheless, the use of "bio"-related approaches is still rare for treating sepsis. Herein, we discussed current state-of-the-art on MNPs for the treatment of bacterial sepsis by combining the pathophysiology and therapeutic benefits of sepsis, i.e., pathogenic bacteria, bacteria-producing toxins, and inflammatory cytokines produced in the dysregulated inflammatory response associated with sepsis.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Henan Key Laboratory of Pediatric Hematology and Oncology Medicine, Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zongping Xia
- Department of Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huaili Wang
- Henan Key Laboratory of Pediatric Hematology and Oncology Medicine, Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dao Wang
- Henan Key Laboratory of Pediatric Hematology and Oncology Medicine, Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tongwen Sun
- Department of Integrated ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Eamran Hossain
- Henan Key Laboratory of Pediatric Hematology and Oncology Medicine, Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Pang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yufeng Liu
- Henan Key Laboratory of Pediatric Hematology and Oncology Medicine, Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
83
|
Yang L, Dutta P, Davuluri RV, Wang J. Rapid, High-Throughput Single-Cell Multiplex In Situ Tagging (MIST) Analysis of Immunological Disease with Machine Learning. Anal Chem 2023; 95:7779-7787. [PMID: 37141575 PMCID: PMC10365012 DOI: 10.1021/acs.analchem.3c01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The cascade of immune responses involves activation of diverse immune cells and release of a large amount of cytokines, which leads to either normal, balanced inflammation or hyperinflammatory responses and even organ damage by sepsis. Conventional diagnosis of immunological disorders based on multiple cytokines in the blood serum has varied accuracy, and it is difficult to distinguish normal inflammation from sepsis. Herein, we present an approach to detect immunological disorders through rapid, ultrahigh-multiplex analysis of T cells using single-cell multiplex in situ tagging (scMIST) technology. scMIST permits simultaneous detection of 46 markers and cytokines from single cells without the assistance of special instruments. A cecal ligation and puncture sepsis model was built to supply T cells from two groups of mice that survived the surgery or died after 1 day. The scMIST assays have captured the T cell features and the dynamics over the course of recovery. Compared with cytokines in the peripheral blood, T cell markers show different dynamics and cytokine levels. We have applied a random forest machine learning model to single T cells from two groups of mice. Through training, the model has been able to predict the group of mice through T cell classification and majority rule with 94% accuracy. Our approach pioneers the direction of single-cell omics and could be widely applicable to human diseases.
Collapse
Affiliation(s)
- Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794
| | - Pratik Dutta
- Department of Biomedical Informatics, State University of New York at Stony Brook, Stony Brook, NY 11794
| | - Ramana V. Davuluri
- Department of Biomedical Informatics, State University of New York at Stony Brook, Stony Brook, NY 11794
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794
| |
Collapse
|
84
|
Krenzlin V, Schöche J, Walachowski S, Reinhardt C, Radsak MP, Bosmann M. Immunomodulation of neutrophil granulocyte functions by bacterial polyphosphates. Eur J Immunol 2023; 53:e2250339. [PMID: 36959687 PMCID: PMC10666560 DOI: 10.1002/eji.202250339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
Polyphosphates are highly conserved, linear polymers of monophosphates that reside in all living cells. Bacteria produce long chains containing hundreds to thousands of phosphate units, which can interfere with host defense to infection. Here, we report that intratracheal long-chain polyphosphate administration to C57BL/6J mice resulted in the release of proinflammatory cytokines and influx of Ly6G+ polymorphonuclear neutrophils in the bronchoalveolar lavage fluid causing a disruption of the physiologic endothelial-epithelial small airway barrier and histologic signs of lung injury. Polyphosphate-induced effects were attenuated after neutrophil depletion in mice. In isolated murine neutrophils, long-chain polyphosphates modulated cytokine release induced by lipopolysaccharides (LPS) from Gram-negative bacteria or lipoteichoic acid from Gram-positive bacteria. In addition, long-chain polyphosphates induced immune evasive effects in human neutrophils. In detail, long-chain polyphosphates downregulated CD11b and curtailed the phagocytosis of Escherichia coli particles by neutrophils. Polyphosphates modulated the migration capacity by inducing CD62L shedding resulting in CD62Llow and CD11blow neutrophils. The release of IL-8 induced by LPS was also significantly reduced. Pharmacologic blockade of PI3K with wortmannin antagonized long-chain polyphosphate-induced effects on LPS-induced IL-8 release. In conclusion, polyphosphates govern immunomodulation in murine and human neutrophils, suggesting polyphosphates as a therapeutic target for bacterial infections to restore innate immune defense.
Collapse
Affiliation(s)
- Viola Krenzlin
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Johannes Schöche
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sarah Walachowski
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Markus P. Radsak
- Third Department of Medicine-Hematology and Oncology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Mainz Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
85
|
Fan L, Yao L, Li Z, Wan Z, Sun W, Qiu S, Zhang W, Xiao D, Song L, Yang G, Zhang Y, Wei M, Yang X. Exosome-Based Mitochondrial Delivery of circRNA mSCAR Alleviates Sepsis by Orchestrating Macrophage Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205692. [PMID: 36965082 DOI: 10.1002/advs.202205692] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/18/2023] [Indexed: 05/18/2023]
Abstract
Sepsis is one of the most common causes of death, which is closely related to the uncontrolled systemic inflammation. Dysregulation of M1 macrophage polarization is the primary contributor to serious inflammation. In this study, it is revealed that the murine homologue of circRNA SCAR (steatohepatitis-associated circRNA ATP5B regulator), denoted as circRNA mSCAR hereafter, decreases in the macrophages of septic mice, which correlates with the excessive M1 polarization. To restore circRNA mSCAR in mitochondria, exosomes encapsulated with circRNA mSCAR are further electroporated with poly-D-lysine-graft-triphenylphosphine (TPP-PDL), and thus TPP-PDL facilitates the bound circRNA delivered into mitochondria when the exosomes engulf by the recipient cells. In in vivo septic mouse model and in vitro cell model, it is shown that the exosome-based mitochondria delivery system delivers circRNA mSCAR into mitochondria preferentially in the macrophages, favoring macrophage polarization toward M2 subtype. Accordingly, the systemic inflammation is attenuated by exosome-based mitochondrial delivery of circRNA mSCAR, together with alleviated mortality. Collectively, the results uncover the critical role of circRNA mSCAR in sepsis, and provide a promising approach to attenuate sepsis via exosome-based mitochondrial delivery of circRNA mSCAR.
Collapse
Affiliation(s)
- Li Fan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Li Yao
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, China
| | - Zhelong Li
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zhuo Wan
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Wenqi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Shuo Qiu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Wei Zhang
- Department of Respiratory Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Liqiang Song
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Zhang
- Department of Dental Clinical Diagnostics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Mengying Wei
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
86
|
Kostenko V, Akimov O, Gutnik O, Kostenko H, Kostenko V, Romantseva T, Morhun Y, Nazarenko S, Taran O. Modulation of redox-sensitive transcription factors with polyphenols as pathogenetically grounded approach in therapy of systemic inflammatory response. Heliyon 2023; 9:e15551. [PMID: 37180884 PMCID: PMC10171461 DOI: 10.1016/j.heliyon.2023.e15551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
One of the adverse outcomes of acute inflammatory response is progressing to the chronic stage or transforming into an aggressive process, which can develop rapidly and result in the multiple organ dysfunction syndrome. The leading role in this process is played by the Systemic Inflammatory Response that is accompanied by the production of pro- and anti-inflammatory cytokines, acute phase proteins, and reactive oxygen and nitrogen species. The purpose of this review that highlights both the recent reports and the results of the authors' own research is to encourage scientists to develop new approaches to the differentiated therapy of various SIR manifestations (low- and high-grade systemic inflammatory response phenotypes) by modulating redox-sensitive transcription factors with polyphenols and to evaluate the saturation of the pharmaceutical market with appropriate dosage forms tailored for targeted delivery of these compounds. Redox-sensitive transcription factors such as NFκB, STAT3, AP1 and Nrf2 have a leading role in mechanisms of the formation of low- and high-grade systemic inflammatory phenotypes as variants of SIR. These phenotypic variants underlie the pathogenesis of the most dangerous diseases of internal organs, endocrine and nervous systems, surgical pathologies, and post-traumatic disorders. The use of individual chemical compounds of the class of polyphenols, or their combinations can be an effective technology in the therapy of SIR. Administering natural polyphenols in oral dosage forms is very beneficial in the therapy and management of the number of diseases accompanied with low-grade systemic inflammatory phenotype. The therapy of diseases associated with high-grade systemic inflammatory phenotype requires medicinal phenol preparations manufactured for parenteral administration.
Collapse
Affiliation(s)
- Vitalii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Oleh Akimov
- Poltava State Medical University, Department of Pathophysiology, Ukraine
- Corresponding author.
| | - Oleksandr Gutnik
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Heorhii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Viktoriia Kostenko
- Poltava State Medical University, Department of Foreign Languages with Latin and Medical Terminology, Ukraine
| | - Tamara Romantseva
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Yevhen Morhun
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Svitlana Nazarenko
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Olena Taran
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| |
Collapse
|
87
|
Guo R, Wang J, Tang W, Xiao D. Rnf144b alleviates the inflammatory responses and cardiac dysfunction in sepsis. ESC Heart Fail 2023. [PMID: 37088470 PMCID: PMC10375149 DOI: 10.1002/ehf2.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/10/2023] [Accepted: 04/02/2023] [Indexed: 04/25/2023] Open
Abstract
AIMS Sepsis is an inflammatory disease with high mortality and morbidity. Inflammation plays an essential role in sepsis, and suppressing inflammation has been shown to ameliorate sepsis. Rnf144b is an ubiquitin E3 ligation with anti-inflammation activities. Its precise roles in sepsis remain unknown. Here, we explored the function of Rnf144b in sepsis. METHODS AND RESULTS We generated conditional knockout mice with Rnf144b deficiency in the myeloid cells. We monitored the Rnf144b expression in peripheral blood mononuclear cells from healthy donor and patients with sepsis, and in lipopolysaccharides (LPS)-treated bone marrow-derived macrophages (BMDMs). The cytokine expression between wild-type BMDMs and Rnf144b-deficient BMDMs after LPS and CpG treatments was compared. The survival rate and cardiac function were monitored. The activation of TANK binding kinase 1 and nuclear factor kappa-B was examined by Western blot and real-time PCR. Up-regulated expression of Rnf144b was observed in peripheral blood mononuclear cells from patients with sepsis. LPS induced the expression of Rnf144b in BMDMs. Rnf144b-deficient BMDMs produced more inflammatory cytokines after LPS or CpG stimulation. Septic mice with Rnf144b deficiency in myeloid cells had higher mortality and exacerbated cardiac dysfunction. Rnf144b interacted with TANK binding kinase 1 and Rnf144b deficiency resulted in impaired activation of TBK1 but enhanced activation of nuclear factor kappa-B. CONCLUSIONS Rnf144b prevents inflammatory responses and cardiac dysfunction in sepsis.
Collapse
Affiliation(s)
- Rennan Guo
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China
| | - Jingjing Wang
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China
| | - Wen Tang
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China
| | - Dong Xiao
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China
| |
Collapse
|
88
|
Li J, Chen Y, Li R, Zhang X, Chen T, Mei F, Liu R, Chen M, Ge Y, Hu H, Wei R, Chen Z, Fan H, Zeng Z, Deng Y, Luo H, Hu S, Cai S, Wu F, Shi N, Wang Z, Zeng Y, Xie M, Jiang Y, Chen Z, Jia W, Chen P. Gut microbial metabolite hyodeoxycholic acid targets the TLR4/MD2 complex to attenuate inflammation and protect against sepsis. Mol Ther 2023; 31:1017-1032. [PMID: 36698311 PMCID: PMC10124078 DOI: 10.1016/j.ymthe.2023.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/08/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Sepsis, a critical condition resulting from the systemic inflammatory response to a severe microbial infection, represents a global public health challenge. However, effective treatment or intervention to prevent and combat sepsis is still lacking. Here, we report that hyodeoxycholic acid (HDCA) has excellent anti-inflammatory properties in sepsis. We discovered that the plasma concentration of HDCA was remarkably lower in patients with sepsis and negatively correlated with the severity of the disease. Similar changes in HDCA levels in plasma and cecal content samples were observed in a mouse model of sepsis, and these changes were associated with a reduced abundance of HDCA-producing strains. Interestingly, HDCA administration significantly decreased systemic inflammatory responses, prevented organ injury, and prolonged the survival of septic mice. We demonstrated that HDCA suppressed excessive activation of inflammatory macrophages by competitively blocking lipopolysaccharide binding to the Toll-like receptor 4 (TLR4) and myeloid differentiation factor 2 receptor complex, a unique mechanism that characterizes HDCA as an endogenous inhibitor of inflammatory signaling. Additionally, we verified these findings in TLR4 knockout mice. Our study highlights the potential value of HDCA as a therapeutic molecule for sepsis.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuqi Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rui Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xianglong Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tao Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengyi Mei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ruofan Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meiling Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Ge
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongbin Hu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rongjuan Wei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhenfeng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongying Fan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yongqiang Deng
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haihua Luo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuiwang Hu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Nengxian Shi
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou 510515, China
| | - Yunong Zeng
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ming Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
89
|
Gao N, Tang AL, Liu XY, Chen J, Zhang GQ. p53-Dependent ferroptosis pathways in sepsis. Int Immunopharmacol 2023; 118:110083. [PMID: 37028271 DOI: 10.1016/j.intimp.2023.110083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
Sepsis is caused by complex infections, trauma, and major surgery that results in high morbidity and mortality. As one of the leading causes of death in the intensive care unit (ICU), sepsis causes organ dysfunction and death via a vicious cycle of uncontrolled inflammatory responses and immunosuppression. Ferroptosis is an iron-dependent cellular death pathway driven by the accumulation of lipid peroxides, which occurs in sepsis. p53 is an important regulator of ferroptosis. Under intracellular/extracellular stimulation and pressure, p53 acts as a transcription factor to regulate the expression of downstream genes, which help cells/bodies to resist stimuli. p53 can also function independently as an important mediator. The understanding of key cellular and molecular mechanisms of ferroptosis facilitates the prognosis of sepsis. This article describes the molecular mechanism and role of p53 in sepsis-induced ferroptosis, and introduces some potential therapeutic targets for sepsis-induced ferroptosis, which highlights the dominant and potential therapeutic role of p53 in sepsis. Keywords: p53, acetylation, Sirt3, ferroptosis, sepsis, therapy.
Collapse
Affiliation(s)
- Nan Gao
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Emergency, China-Japan Friendship Hospital, No. 2 Yinghua Dongjie, Beijing 100029, China
| | - A-Ling Tang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Yu Liu
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Emergency, China-Japan Friendship Hospital, No. 2 Yinghua Dongjie, Beijing 100029, China
| | - Jie Chen
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Emergency, China-Japan Friendship Hospital, No. 2 Yinghua Dongjie, Beijing 100029, China
| | - Guo-Qiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, No. 2 Yinghua Dongjie, Beijing 100029, China.
| |
Collapse
|
90
|
Song R, He S, Wu Y, Chen W, Song J, Zhu Y, Chen H, Wang Q, Wang S, Tan S, Tan S. Validation of reference genes for the normalization of the RT-qPCR in peripheral blood mononuclear cells of septic patients. Heliyon 2023; 9:e15269. [PMID: 37089378 PMCID: PMC10119759 DOI: 10.1016/j.heliyon.2023.e15269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Objective To screen and validate reference genes suitable for gene mRNA expression study in peripheral blood mononuclear cells (PBMCs) between septic patients and healthy controls (HC). Methods Total RNA in PBMCs was extracted and RT-qPCR was used to determine the mRNA expression profiles of 9 candidate genes, including ACTB, B2M, GAPDH, GUSB, HPRT1, PGK1, RPL13A, SDHA and YWHAZ. The genes expression stabilities were assessed by both geNorm and NormFinder software. Results YWHAZ was the most stable gene among the 9 candidate genes evaluated by both geNorm and NormFinder in mixed and sepsis groups. The most stable gene combination in mixed group analyzed by geNorm was the combination of GAPDH, PKG1 and YWHAZ, while that in sepsis group was the combination of ACTB, PKG1 and YWHAZ. Conclusion Our first systematic analysis of the reference genes in PBMC of septic patients suggested YWHAZ was the best candidate. The combination of ACTB, PKG1 and YWHAZ could improve RT-qPCR accuracy in septic patients. Our results identified the most stable reference genes to standardize RT-qPCR of sepsis patients, which can serve as a useful tool for gene function exploration in the future.
Collapse
Affiliation(s)
- Ruoyu Song
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Shijun He
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Yongbin Wu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Wanxin Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Jie Song
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Yaxi Zhu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Huan Chen
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Qianlu Wang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Shouman Wang
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Sichuang Tan
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
- Corresponding author.
| | - Sipin Tan
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Corresponding author.
| |
Collapse
|
91
|
Guo Y, Zhang H, Lv Z, Du Y, Li D, Fang H, You J, Yu L, Li R. Up-regulated CD38 by daphnetin alleviates lipopolysaccharide-induced lung injury via inhibiting MAPK/NF-κB/NLRP3 pathway. Cell Commun Signal 2023; 21:66. [PMID: 36998049 PMCID: PMC10061746 DOI: 10.1186/s12964-023-01041-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/21/2022] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Sepsis is a life-threatening organ dysfunction syndrome resulted from severe infection with high morbidity and mortality. Cluster of differentiation 38 (CD38) is a multifunctional type II transmembrane glycoprotein widely expressed on the surface of various immunocytes membranes that mediates host immune response to infection and plays an important role in many inflammatory diseases. Daphnetin (Daph), isolated from the daphne genus plant, is a natural coumarin derivative that possesses anti-inflammatory and anti-apoptotic effects. The current study aimed to investigate the role and mechanism of Daph in alleviating lipopolysaccharide (LPS)-induced septic lung injury, and to explore whether the protective effect of Daph in mice and cell models was related to CD38. METHODS Firstly, network pharmacology analysis of Daph was performed. Secondly, LPS-induced septic lung injury in mice were treated with Daph or vehicle control respectively and then assessed for survival, pulmonary inflammation and pathological changes. Lastly, Mouse lung epithelial cells (MLE-12 cells) were transfected with CD38 shRNA plasmid or CD38 overexpressed plasmid, followed by LPS and Daph treatment. Cells were assessed for viability and transfection efficiency, inflammatory and signaling. RESULTS Our results indicated that Daph treatment improved survival rate and alleviated pulmonary pathological damage of the sepsis mice, as well as reduced the excessive release of pro-inflammatory cytokines IL-1β, IL-18, IL-6, iNOS and chemokines MCP-1 regulated by MAPK/NF-κB pathway in pulmonary injury. Daph treatment decreased Caspase-3 and Bax, increased Bcl-2, inhibited nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis in lung tissues of septic lung injury. Also, Daph treatment reduced the level of excessive inflammatory mediators, inhibited apoptosis and pyroptosis in MLE-12 cells. It is noteworthy that the protective effect of Daph on MLE-12 cells damage and death was assisted by the enhanced expression of CD38. CONCLUSIONS Our results demonstrated that Daph offered a beneficial therapeutic effect for septic lung injury via the up-regulation of CD38 and inhibition of MAPK/NF-κB/NLRP3 pathway. Video Abstract.
Collapse
Affiliation(s)
- Yujie Guo
- Department of Clinical Laboratory, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Huiqing Zhang
- Department of Clinical Laboratory, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Zhe Lv
- Department of Clinical Laboratory, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Department of Medical Microbiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Yuna Du
- Department of Clinical Laboratory, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Dan Li
- Department of Clinical Laboratory, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Department of Medical Microbiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Hui Fang
- Department of Clinical Laboratory, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Jing You
- Department of Clinical Laboratory, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Lijun Yu
- Department of Clinical Laboratory, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Rong Li
- Department of Clinical Laboratory, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
| |
Collapse
|
92
|
Okan A, Doğanyiğit Z, Yilmaz S, Uçar S, Arikan Söylemez ES, Attar R. Evaluation of the protective role of resveratrol against sepsis caused by LPS via TLR4/NF‐κB/TNF‐α signaling pathways: Experimental study. Cell Biochem Funct 2023. [DOI: 10.1002/cbf.3790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/18/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
|
93
|
Jang WY, Hwang JY, Cho JY. Ginsenosides from Panax ginseng as Key Modulators of NF-κB Signaling Are Powerful Anti-Inflammatory and Anticancer Agents. Int J Mol Sci 2023; 24:6119. [PMID: 37047092 PMCID: PMC10093821 DOI: 10.3390/ijms24076119] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Nuclear factor kappa B (NF-κB) signaling pathways progress inflammation and immune cell differentiation in the host immune response; however, the uncontrollable stimulation of NF-κB signaling is responsible for several inflammatory illnesses regardless of whether the conditions are acute or chronic. Innate immune cells, such as macrophages, microglia, and Kupffer cells, secrete pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1β, via the activation of NF-κB subunits, which may lead to the damage of normal cells, including neurons, cardiomyocytes, hepatocytes, and alveolar cells. This results in the occurrence of neurodegenerative disorders, cardiac infarction, or liver injury, which may eventually lead to systemic inflammation or cancer. Recently, ginsenosides from Panax ginseng, a historical herbal plant used in East Asia, have been used as possible options for curing inflammatory diseases. All of the ginsenosides tested target different steps of the NF-κB signaling pathway, ameliorating the symptoms of severe illnesses. Moreover, ginsenosides inhibit the NF-κB-mediated activation of cancer metastasis and immune resistance, significantly attenuating the expression of MMPs, Snail, Slug, TWIST1, and PD-L1. This review introduces current studies on the therapeutic efficacy of ginsenosides in alleviating NF-κB responses and emphasizes the critical role of ginsenosides in severe inflammatory diseases as well as cancers.
Collapse
Affiliation(s)
| | | | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
94
|
Zhang Y, Fu Q, Ruan J, Shi C, Lu W, Wu J, Zhou Z. Dexpramipexole ameliorates cognitive deficits in sepsis-associated encephalopathy through suppressing mitochondria-mediated pyroptosis and apoptosis. Neuroreport 2023; 34:220-231. [PMID: 36719835 PMCID: PMC10516177 DOI: 10.1097/wnr.0000000000001882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVES This study was aimed at evaluating the effects of dexpramipexole (DPX) - a mitochondrial protectant that sustains mitochondrial function and energy production - on cognitive function in a mouse model of sepsis-associated encephalopathy (SAE) induced by peripheral administration of lipopolysaccharide (LPS) and examining the potential mechanisms. METHODS C57BL/6 male mice were randomized into one of four treatment protocols: Con+Sal, Con+DPX, LPS+Sal or LPS+DPX. The mice were intraperitoneally (i.p.) injected with LPS or equivalent volumes of normal saline once daily for 3 consecutive days. To evaluate the protective effects of DPX, we administered DPX or normal saline i.p. to the mice once daily for 6 consecutive days. Six mice in each group were decapitated on day 7, and each brain was rapidly removed and separated into two halves for biochemical and histochemical analysis. The remaining surviving mice in each group were subjected to behavioral tests from days 7 to 10. RESULTS Peripheral administration of LPS to mice led to learning and memory deficits in behavioral tests, which were associated with mitochondrial impairment and ATP depletion in the hippocampus. Repeated DPX treatment protected the mitochondria against LPS-induced morphological and functional impairment; inhibited the activation of the Nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome-caspase-1-dependent pyroptosis pathway and cytochrome c (Cyt-c)-caspase-3-dependent apoptosis pathway; and attenuated LPS-induced neuroinflammation and cell death in the hippocampus in SAE mice. CONCLUSIONS Mitochondria-mediated pyroptosis and apoptosis are involved in the pathogenesis of cognitive deficits in a mouse model of SAE and DPX protects mitochondria and suppresses the mitochondria-medicated pyroptosis and apoptosis pathways, and ameliorates LPS-induced neuroinflammation and cognitive deficits. This study provides theoretical evidence supporting DPX for the treatment of SAE.
Collapse
Affiliation(s)
- Yibao Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University
| | - Qun Fu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
- Department of Anesthesiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaping Ruan
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
| | - Changxi Shi
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
| | - Wuguang Lu
- Department of Anesthesiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Wu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou
| | - Zhiqiang Zhou
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University
| |
Collapse
|
95
|
Zhang X, Wang X, Sun L, Gao G, Li Y. Tofacitinib reduces acute lung injury and improves survival in a rat model of sepsis by inhibiting the JAK-STAT/NF-κB pathway. J Inflamm (Lond) 2023; 20:5. [PMID: 36737780 PMCID: PMC9896809 DOI: 10.1186/s12950-023-00332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Acute lung injury is a major cause of death in sepsis. Tofacitinib (TOFA), a JAK inhibitor, has anti-inflammatory activity in autoimmune diseases, but its role in acute lung injury in sepsis remains unclear. The purpose of this study is to establish a septic rat model by cecal ligation and perforation, and to evaluate the effect of tofacitinib on the survival rate of septic rat model and its role in acute lung injury in septic rats and the possible mechanism of action. In this study, TOFA (1 mg/kg, 3 mg/kg, 10 mg/kg) was used to observe the survival rate of septic rats. It was found that TOFA (10 mg/kg) significantly improved the survival rate of septic rats. We selected TOFA (10 mg/kg) and focused on the protective effect of TOFA on acute lung injury. The results confirmed that TOFA significantly inhibited the expression of TNF-α, IL-1β, IL-6 and IFN-γ inflammatory factors, reduced the W/D weight ratio of septic lung tissue, and significantly improved lung histopathological damage. These results may be related to the inhibitory effect of TOFA on JAK-STAT/NF-κ B signaling pathway. In conclusion, for the first time, we found that TOFA has a protective effect against sepsis-induced acute lung injury, and it may be a promising drug for the treatment of acute lung injury in sepsis.
Collapse
Affiliation(s)
- Xinxin Zhang
- grid.186775.a0000 0000 9490 772XDepartment of Emergency Medicine, Fuyang People’s Hospital of Anhui Medical University, Fuyang, Anhui China
| | - Xingsheng Wang
- grid.410638.80000 0000 8910 6733Intensive Care Unit, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong China
| | - Li Sun
- grid.410638.80000 0000 8910 6733Department of Health Care, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong China
| | - Guangsheng Gao
- grid.410638.80000 0000 8910 6733Intensive Care Unit, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong China
| | - Yun Li
- grid.410638.80000 0000 8910 6733Intensive Care Unit, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong China
| |
Collapse
|
96
|
Zhao XS, Meng ZL, Zhang T, Yang HN, Zhang JC, Fang W, Wang CT, Chen M. Combining Serum Procalcitonin Level, Thromboelastography, and Platelet Count to Predict Short-term Development of Septic Shock in Intensive Care Unit. Curr Med Sci 2023; 43:86-92. [PMID: 36752938 DOI: 10.1007/s11596-022-2689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/09/2022] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Despite the recent advances in diagnosis and treatment, sepsis continues to lead to high morbidity and mortality. Early diagnosis and prompt treatment are essential to save lives. However, most biomarkers can only help to diagnose sepsis, but cannot predict the development of septic shock in high-risk patients. The present study determined whether the combined measurement of procalcitonin (PCT), thromboelastography (TEG) and platelet (PLT) count can predict the development of septic shock. METHODS A retrospective study was conducted on 175 septic patients who were admitted to the intensive care unit between January 2017 and February 2021. These patients were divided into two groups: 73 patients who developed septic shock were assigned to the septic shock group, while the remaining 102 patients were assigned to the sepsis group. Then, the demographic, clinical and laboratory data were recorded, and the predictive values of PCT, TEG and PLT count for the development of septic shock were analyzed. RESULTS Compared to the sepsis group, the septic shock group had statistically lower PLT count and TEG measurements in the R value, K value, α angle, maximum amplitude, and coagulation index, but had longer prothrombin time (DT), longer activated partial thromboplastin time (APTT), and higher PCT levels. Furthermore, the Sequential Organ Failure Assessment (SOFA) score was higher in the septic shock group. The multivariate logistic regression analysis revealed that PCT, TEG and PLT count were associated with the development of septic shock. The area under the curve analysis revealed that the combined measurement of PCT, TEG and PLT count can be used to predict the development of septic shock with higher accuracy, when compared to individual measurements. CONCLUSION The combined measurement of PCT, TEG and PLT count is a novel approach to predict the development of septic shock in high-risk patients.
Collapse
Affiliation(s)
- Xue-Song Zhao
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
- The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, 250021, China
| | - Zhao-Li Meng
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Tuo Zhang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Hong-Na Yang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Ji-Cheng Zhang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Wei Fang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Chun-Ting Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
- Department of Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| | - Man Chen
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
- Department of Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| |
Collapse
|
97
|
Cui X, Chen F, Zhao J, Li D, Hu M, Chen X, Zhang Y, Han L. Involvement of JNK signaling in Aspergillus fumigatus-induced inflammatory factors release in bronchial epithelial cells. Sci Rep 2023; 13:1293. [PMID: 36690696 PMCID: PMC9871034 DOI: 10.1038/s41598-023-28567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Aspergillus fumigatus (A. fumigatus) is an important fungal pathogen and its conidia can be inhaled and interact with airway epithelial cells; however, the release of inflammatory factors from bronchial epithelial cells upon A. fumigatus infection and its regulation remained unclear. Here it was demonstrated that the release of IL-27, MCP-1 and TNF-α from BEAS-2B cells were upregulated upon stimulation by conidia, while mitogen-activated protein kinase signaling pathway was activated. Further, the inhibition of JNK, but not p38 and ERK, could inhibit inflammatory factors release and the LC3II formation in BEAS-2B cells induced by A. fumigatus conidia. In addition, an inhibitor of autophagy, bafilomycin A1 was able to significantly down-regulate the release of inflammatory factors in BEAS-2B cells upon A. fumigatus conidia, while rapamycin could reverse the effect of JNK inhibitor on IL-27 and TNF-α release. Taken together, these data demonstrated that JNK signal might play an important role in inflammatory factor release regulated by autophagy in bronchial epithelial cells against A. fumigatus infection.
Collapse
Affiliation(s)
- Xiao Cui
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Fangyan Chen
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jingya Zhao
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Dingchen Li
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Mandong Hu
- National Center of Biomedical Analysis, 27 Taiping Lu, Beijing, 100850, China
| | - Xue Chen
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Li Han
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
98
|
Gandhi P, Shrivastava P. Adult sepsis as an emerging hospital-acquired infection: Challenges and solutions. ANTIBIOTICS - THERAPEUTIC SPECTRUM AND LIMITATIONS 2023:575-593. [DOI: 10.1016/b978-0-323-95388-7.00025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
99
|
Xin Y, Tian M, Deng S, Li J, Yang M, Gao J, Pei X, Wang Y, Tan J, Zhao F, Gao Y, Gong Y. The Key Drivers of Brain Injury by Systemic Inflammatory Responses after Sepsis: Microglia and Neuroinflammation. Mol Neurobiol 2023; 60:1369-1390. [PMID: 36445634 PMCID: PMC9899199 DOI: 10.1007/s12035-022-03148-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Sepsis is a leading cause of intensive care unit admission and death worldwide. Most surviving patients show acute or chronic mental disorders, which are known as sepsis-associated encephalopathy (SAE). Although accumulating studies in the past two decades focused on the pathogenesis of SAE, a systematic review of retrospective studies which exclusively focuses on the inflammatory mechanisms of SAE has been lacking yet. This review summarizes the recent advance in the field of neuroinflammation and sheds light on the activation of microglia in SAE. Activation of microglia predominates neuroinflammation. As the gene expression profile changes, microglia show heterogeneous characterizations throughout all stages of SAE. Here, we summarize the systemic inflammation following sepsis and also the relationship of microglial diversity and neuroinflammation. Moreover, a collection of neuroinflammation-related dysfunction has also been reviewed to illustrate the possible mechanisms for SAE. In addition, promising pharmacological or non-pharmacological therapeutic strategies, especially those which target neuroinflammation or microglia, are also concluded in the final part of this review. Collectively, clarification of the vital relationship between neuroinflammation and SAE-related mental disorders would significantly improve our understanding of the pathophysiological mechanisms in SAE and therefore provide potential targets for therapies of SAE aimed at inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Yuewen Xin
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuixiang Deng
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Li
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Miaoxian Yang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jianpeng Gao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xu Pei
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yao Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Tan
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Feng Zhao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanqin Gao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Ye Gong
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
100
|
JIANG S, ZHANG W, LU Y. Development and validation of novel inflammatory response-related gene signature for sepsis prognosis. J Zhejiang Univ Sci B 2022; 23:1028-1041. [PMID: 36518055 PMCID: PMC9758714 DOI: 10.1631/jzus.b2200285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Due to the low specificity and sensitivity of biomarkers in sepsis diagnostics, the prognosis of sepsis patient outcomes still relies on the assessment of clinical symptoms. Inflammatory response is crucial to sepsis onset and progression; however, the significance of inflammatory response-related genes (IRRGs) in sepsis prognosis is uncertain. This study developed an IRRG-based signature for sepsis prognosis and immunological function. The Gene Expression Omnibus (GEO) database was retrieved for two sepsis microarray datasets, GSE64457 and GSE69528, followed by gene set enrichment analysis (GSEA) comparing sepsis and healthy samples. A predictive signature for IRRGs was created using least absolute shrinkage and selection operator (LASSO). To confirm the efficacy and reliability of the new prognostic signature, Cox regression, Kaplan-Meier (K-M) survival, and receiver operating characteristic (ROC) curve analyses were performed. Subsequently, we employed the GSE95233 dataset to independently validate the prognostic signature. A single-sample GSEA (ssGSEA) was conducted to quantify the immune cell enrichment score and immune-related pathway activity. We found that more gene sets were enriched in the inflammatory response in sepsis patient samples than in healthy patient samples, as determined by GSEA. The signature of nine IRRGs permitted the patients to be classified into two risk categories. Patients in the low-risk group showed significantly better 28-d survival than those in the high-risk group. ROC curve analysis corroborated the predictive capacity of the signature, with the area under the curve (AUC) for 28-d survival reaching 0.866. Meanwhile, the ssGSEA showed that the two risk groups had different immune states. The validation set and external dataset showed that the signature was clinically predictive. In conclusion, a signature consisting of nine IRRGs can be utilized to predict prognosis and influence the immunological status of sepsis patients. Thus, intervention based on these IRRGs may become a therapeutic option in the future.
Collapse
Affiliation(s)
- Shuai JIANG
- Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, China,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, Hangzhou310003, China
| | - Wenyuan ZHANG
- Department of Anesthesiology and Intensive Care, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, China
| | - Yuanqiang LU
- Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, China,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, Hangzhou310003, China,Yuanqiang LU,
| |
Collapse
|