51
|
Eid RA, Abadi AM, Alghamdi MA, El-Kott AF, Mohamed G, Al-Shraim M, Alaa Eldeen M, Zaki MSA, Shalaby FM. Echinops Asteraceae extract guards against malathion-induced liver damage via minimizing oxidative stress, inflammation, and apoptosis. Toxicon 2024; 244:107750. [PMID: 38750940 DOI: 10.1016/j.toxicon.2024.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Malathion (MAL) is one of the highly toxic organophosphorus (OP) compounds that induces hepatotoxicity. Echinops. ritro leaves extract (ERLE) is traditionally used in the treatment of bacterial/fungal infections. This study's goal was to investigate the potential of extracts from ERLE against hepatotoxicity induced by MAL in male albino rats. Four equal groups of forty mature male albino rats were created: The rats in the first group used as a control. The second group of rats received ERLE orally. The third group received MAL. ERLE and MAL were administered to the fourth group of rats. Six-week treatment groups were conducted. Using lipid peroxidation indicators [malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate aminotransferase (AST)], oxidative stress markers [catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)], apoptotic markers [Bcl-2 & caspase-3] and tumor necrosis factor alpha (TNF-α). Rats treated with MAL underwent a significant increase on MDA, ALT, AST, caspase-3 and TNF-α marker with a significant decrease in antioxidant markers [CAT, SOD, GPx] and Bcl-2. Histologically, MAL-treated group's liver sections displayed damaged hepatocytes with collapsed portions, pyknotic nuclei, vacuolated cytoplasm, and congested central veins. Ultra structurally, rat livers treated with MAL showed dilated cisternae of endoplasmic reticulum, swollen mitochondria with disrupted cristae, nuclei with disrupted chromatin content, multiple lysosomes, multiple vacuolations and a disrupted blood sinusoid. With rats treated with ERLE, these alterations were essentially non-existent. It is possible to conclude that ERLE protects against MAL hepatotoxicity, and that this protection is related, at least in part, to its antioxidant activities.
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia.
| | - Alsaleem Mohammed Abadi
- Department of Family and Community Medicine, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia.
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia; Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia; Department of Zoology, College of Science, Damanhur University, Damanhur 22511, Egypt.
| | - Gamal Mohamed
- Department of Human Anatomy, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| | - Mubarak Al-Shraim
- Department of Pathology, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia.
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed Samir A Zaki
- Department of Anatomy, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia.
| | - Fatma Mohsen Shalaby
- King Khalid University, Faculty of Sciences, Biology Department, Abha, Kingdom of Saudi Arabia; Mansoura University, Faculty of Sciences, Department of Zoology, Mansoura, Egypt.
| |
Collapse
|
52
|
Zhou C, Wang N, Lv Y, Liu J, Su Y, Su X. Hydrogel-involved portable colorimetric sensor based on oxidase mimic Fe/Co-NC for acetylcholinesterase detection and pesticides inhibition assessment. Food Chem 2024; 441:138372. [PMID: 38219364 DOI: 10.1016/j.foodchem.2024.138372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Herein, we synthesized a novel N-doped carbon layer encapsulated Fe/Co bimetallic nanoparticles (Fe/Co-NC), which exhibited superior oxidase-like activity due to the facilitation of electron penetration and the formation of metal-nitrogen active sites. Fe/Co-NC could catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) to blue oxTMB. Acetylcholinesterase (AChE) could catalyze the hydrolysis of thioacetylcholine to produce reducing thiocholine, which prevented TMB from oxidation. Thus, a portable hydrogel colorimetric sensor was developed for on-site and visual monitoring of AChE with the detection limit of 0.36 U L-1, and successfully applied to detect AChE in human erythrocyte samples. Furthermore, this platform was used to investigate the inhibition of triazophos on AChE activity.
Collapse
Affiliation(s)
- Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Junxue Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Yu Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
53
|
Voros C, Dias J, Timperley CM, Nachon F, Brown RCD, Baati R. The risk associated with organophosphorus nerve agents: from their discovery to their unavoidable threat, current medical countermeasures and perspectives. Chem Biol Interact 2024; 395:110973. [PMID: 38574837 DOI: 10.1016/j.cbi.2024.110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
The first organophosphorus nerve agent was discovered accidently during the development of pesticides, shortly after the first use of chemical weapons (chlorine, phosgene) on the battlefield during World War I. Despite the Chemical Weapons Convention banning these substances, they have still been employed in wars, terrorist attacks or political assassinations. Characterised by their high lethality, they target the nervous system by inhibiting the acetylcholinesterase (AChE) enzyme, preventing neurotransmission, which, if not treated rapidly, inevitably leads to serious injury or the death of the person intoxicated. The limited efficacy of current antidotes, known as AChE reactivators, pushes research towards new treatments. Numerous paths have been explored, from modifying the original pyridinium oximes to developing hybrid reactivators seeking a better affinity for the inhibited AChE. Another crucial approach resides in molecules more prone to cross the blood-brain barrier: uncharged compounds, bio-conjugated reactivators or innovative formulations. Our aim is to raise awareness on the threat and toxicity of organophosphorus nerve agents and to present the main synthetic efforts deployed since the first AChE reactivator, to tackle the task of efficiently treating victims of these chemical warfare agents.
Collapse
Affiliation(s)
- Camille Voros
- Ecole de Chimie Polymère et Matériaux ECPM, Université de Strasbourg, ICPEES UMR CNRS 7515, 25 rue Becquerel, F-67087, Strasbourg, France.
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, F-91220 Brétigny-sur-Orge, France
| | - Christopher M Timperley
- Chemical, Biological and Radiological (CBR) Division, Dstl, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK.
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, F-91220 Brétigny-sur-Orge, France
| | - Richard C D Brown
- Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Rachid Baati
- Ecole de Chimie Polymère et Matériaux ECPM, Université de Strasbourg, ICPEES UMR CNRS 7515, 25 rue Becquerel, F-67087, Strasbourg, France; OPGS Pharmaceuticals, Paris BioTech Santé, 24 rue du Faubourg Saint-Jacques, F-75014, Paris, France.
| |
Collapse
|
54
|
Tanveer S, Ilyas N, Akhtar N, Akhtar N, Bostan N, Hasnain Z, Niaz A, Zengin G, Gafur A, Fitriatin BN. Unlocking the interaction of organophosphorus pesticide residues with ecosystem: Toxicity and bioremediation. ENVIRONMENTAL RESEARCH 2024; 249:118291. [PMID: 38301757 DOI: 10.1016/j.envres.2024.118291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/28/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Organophosphorus adulteration in the environment creates terrestrial and aquatic pollution. It causes acute and subacute toxicity in plants, humans, insects, and animals. Due to the excessive use of organophosphorus pesticides, there is a need to develop environmentally friendly, economical, and bio-based strategies. The microbiomes, that exist in the soil, can reduce the devastating effects of organophosphates. The use of cell-free enzymes and yeast is also an advanced method for the degradation of organophosphates. Plant-friendly bacterial strains, that exist in the soil, can help to degrade these contaminants by oxidation-reduction reactions, enzymatic breakdown, and adsorption. The bacterial strains mostly from the genus Bacillus, Pseudomonas, Acinetobacter, Agrobacterium, and Rhizobium have the ability to hydrolyze the bonds of organophosphate compounds like profenofos, quinalphos, malathion, methyl-parathion, and chlorpyrifos. The native bacterial strains also promote the growth abilities of plants and help in detoxification of organophosphate residues. This bioremediation technique is easy to use, relatively cost-effective, very efficient, and ensures the safety of the environment. This review covers the literature gap by describing the major effects of organophosphates on the ecosystem and their bioremediation by using native bacterial strains.
Collapse
Affiliation(s)
- Sadaf Tanveer
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Nosheen Akhtar
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Nazish Akhtar
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Nageen Bostan
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Zuhair Hasnain
- Department of Agronomy, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Abdullah Niaz
- Pesticide Residue Laboratory, Institute of Soil Chemistry & Environmental Sciences, Kala Shah Kaku, Punjab, Pakistan.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang, 28772, Indonesia.
| | - Betty Natalie Fitriatin
- Department of Soil Science and Land Resouces Management, Agriculture Faculty, Universitas Padjadjaran, Indonesia.
| |
Collapse
|
55
|
Swain BB, Mishra S, Samal S, Adak T, Mohapatra PK, Ayyamperumal R. Chlorpyrifos enrichment enhances tolerance of Anabaena sp. PCC 7119 to dimethoate. ENVIRONMENTAL RESEARCH 2024; 249:118310. [PMID: 38331154 DOI: 10.1016/j.envres.2024.118310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Organophosphorus (OP) insecticides are widely used for on-field pest control, constituting about 38% of global pesticide consumption. Insecticide tolerance has been recorded in microorganisms isolated from the contaminated soil. However, the cross-tolerance of laboratory-enriched cultures remains poorly understood. A chlorpyrifos tolerant (T) strain of Anabaena sp. PCC 7119 was developed through continuous enrichment of the wild strain (W). The cross-tolerance of the T strain to the OP insecticide dimethoate was assessed by measuring photosynthetic performance, key enzyme activities and degradation potential. The presence of dimethoate led to a significant reduction in the growth and pigment content of the W strain. In contrast, the T strain demonstrated improved growth and metabolic performance. Chl a and carotenoids were degraded faster than phycobiliproteins in both strains. The T strain exhibited superior photosynthetic performance, metabolic efficiency and photosystem functions, than of W strain, at both the tested dimethoate concentrations (100 and 200 μM). The treated T strain had more or less a normal OJIP fluorescence transient and bioenergetic functions, while the W strain showed a greater fluorescence rise at ≤ 300 μs indicating the inhibition of electron donation to PS II, and at 2 ms due to reduced electron release beyond QA. The T strain had significantly higher levels of esterase and phosphatases, further enhanced by insecticide treatment. Dimethoate degradation efficiency of the T strain was significantly higher than of the W strain. T strain also removed chlorpyrifos more efficiently than W strain at both the tested concentrations. The BCFs of both chlorpyrifos and dimethoate were lower in the T strain compared to the W strain. These findings suggest that the enriched strain exhibits promising results in withstanding dimethoate toxicity and could be explored for its potential as a bioremediating organism for OP degradation.
Collapse
Affiliation(s)
| | | | - Subhashree Samal
- Department of Botany, Ravenshaw University, Cuttack, 753003, India.
| | - Totan Adak
- Crop Protection Division, ICAR- National Rice Research Institute, Cuttack, 753006, India.
| | | | - Ramamoorthy Ayyamperumal
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China; SIMATS Saveetha University, Chennai, Tamilnadu, 600077, India.
| |
Collapse
|
56
|
Medici A, Luongo G, Pedatella S, Previtera L, Di Fabio G, Zarrelli A. Tackling Losartan Contamination: The Promise of Peroxymonosulfate/Fe(II) Advanced Oxidation Processes. Molecules 2024; 29:2237. [PMID: 38792099 PMCID: PMC11123791 DOI: 10.3390/molecules29102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Losartan, an angiotensin II receptor antagonist frequently detected in wastewater effluents, poses considerable risks to both aquatic ecosystems and human health. Seeking to address this challenge, advanced oxidation processes (AOPs) emerge as robust methodologies for the efficient elimination of such contaminants. In this study, the degradation of Losartan was investigated in the presence of activated peroxymonosulfate (PMS), leveraging ferrous iron as a catalyst to enhance the oxidation process. Utilizing advanced analytical techniques such as NMR and mass spectrometry, nine distinct byproducts were characterized. Notably, seven of these byproducts were identified for the first time, providing novel insights into the degradation pathway of Losartan. The study delved into the kinetics of the degradation process, assessing the degradation efficiency attained when employing the catalyst alone versus when using it in combination with PMS. The results revealed that Losartan degradation reached a significant level of 64%, underscoring the efficacy of PMS/Fe(II) AOP techniques as promising strategies for the removal of Losartan from water systems. This research not only enriches our understanding of pollutant degradation mechanisms, but also paves the way for the development of sustainable water treatment technologies, specifically targeting the removal of pharmaceutical contaminants from aquatic environments.
Collapse
Affiliation(s)
- Antonio Medici
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (S.P.); (G.D.F.)
| | - Giovanni Luongo
- Associazione Italiana per la Promozione delle Ricerche su Ambiente e Salute umana, 82030 Dugenta, Italy; (G.L.); (L.P.)
| | - Silvana Pedatella
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (S.P.); (G.D.F.)
| | - Lucio Previtera
- Associazione Italiana per la Promozione delle Ricerche su Ambiente e Salute umana, 82030 Dugenta, Italy; (G.L.); (L.P.)
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (S.P.); (G.D.F.)
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (S.P.); (G.D.F.)
| |
Collapse
|
57
|
Zhang J, Hu H, Wang J, Lu K, Zhou Y, Zhao L, Peng J. Gold nanoclusters-based fluorescence sensor array for herbicides qualitative and quantitative analysis. Anal Chim Acta 2024; 1298:342380. [PMID: 38462337 DOI: 10.1016/j.aca.2024.342380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Herbicides have been extensively used around the world, which poses a potential hazard to humans and wildlife. Accurate detection of herbicides is crucial for the environment and human health. Herein, a simple and sensitive fluorescence sensor array was constructed for discrimination and identification of herbicides. Fluorescent gold nanoclusters modified with 11-mercaptoundecanoic acid or reduced glutathione were prepared, respectively. Metal ions quenched the fluorescence of nanoclusters through coordination and leading to the aggregation of gold nanoclusters. The addition of auxin herbicides (2,4-dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, decamba, picloram, quinclorac) restored the fluorescence of nanoclusters with different degrees. The mechanism study showed auxin herbicides can bind with metal ions and re-disperse the gold nanoclusters from the aggregation state. The "on-off-on" fluorescent sensor array was constructed basic on above detection mechanism. Combined with principal component analysis (PCA) and hierarchical cluster analysis (HCA) methods, auxin herbicides are well separated on 2D/3D PCA score plots and HCA dendrogram in the range of 40-500 μm. In addition, the fluorescence sensor array performed successful in detecting real samples and blind samples. The developed sensor system shows a promising in practical detection of herbicides.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Huihui Hu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jian Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Keqiang Lu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yunyun Zhou
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
58
|
Alanazi IS, Altyar AE, Zaazouee MS, Elshanbary AA, Abdel-Fattah AFM, Kamel M, Albaik M, Ghaboura N. Effect of moringa seed extract in chlorpyrifos-induced cerebral and ocular toxicity in mice. Front Vet Sci 2024; 11:1381428. [PMID: 38659447 PMCID: PMC11041635 DOI: 10.3389/fvets.2024.1381428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/27/2024] [Indexed: 04/26/2024] Open
Abstract
Chlorpyrifos (CPF) is one of the most commonly used organophosphosphate-based (OP) insecticides. Its wide use has led to higher morbidity and mortality, especially in developing countries. Moringa seed extracts (MSE) have shown neuroprotective activity, antioxidant, anti-inflammatory, and antibacterial features. The literature lacks data investigating the role of MSE against CPF-induced cerebral and ocular toxicity in mice. Therefore, we aim to investigate this concern. A total of 40 mature male Wistar Albino mice were randomly distributed to five groups. Initially, they underwent a one-week adaptation period, followed by a one-week treatment regimen. The groups included a control group that received saline, MSE 100 mg/kg, CPF 12 mg/kg, CPF-MSE 50 mg/kg, and CPF-MSE 100 mg/kg. After the treatment phase, analyses were conducted on serum, ocular, and cerebral tissues. MSE100 and CPF-MSE100 normalized the pro-inflammatory markers (interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)) and AChE serum levels. CPF-MSE50 significantly enhanced these serum levels compared to CPF; however, it showed higher levels compared to the control. Moreover, the tissue analysis showed a significant decrease in oxidative stress (malondialdehyde (MDA) and nitric oxide (NO)) and an increase in antioxidant markers (glutathione (GSH), glutathione peroxidase (GSH-PX)), superoxide dismutase (SOD), and catalase (CAT) in the treated groups compared to CPF. Importantly, the significance of these effects was found to be dose-dependent, particularly evident in the CPF-MSE100 group. We conclude that MSE has a promising therapeutic effect in the cerebral and ocular tissues of CPF-intoxicated mice, providing a potential solution for OP public health issues.
Collapse
Affiliation(s)
- Ibtesam S. Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | | | | | | | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mai Albaik
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Nehmat Ghaboura
- Pharmacy Practice Department, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| |
Collapse
|
59
|
Peng B, Xie Y, Lai Q, Liu W, Ye X, Yin L, Zhang W, Xiong S, Wang H, Chen H. Pesticide residue detection technology for herbal medicine: current status, challenges, and prospects. ANAL SCI 2024; 40:581-597. [PMID: 38367162 DOI: 10.1007/s44211-024-00515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
The domains of cancer therapy, disease prevention, and health care greatly benefit from the use of herbal medicine. Herbal medicine has become the mainstay of developing characteristic agriculture in the planting area increasing year by year. One of the most significant factors in affecting the quality of herbal medicines is the pesticide residue problem caused by pesticide abuse during the cultivation of herbal medicines. It is urgent to solve the problem of detecting pesticide residues in herbal medicines efficiently and rapidly. In this review, we provide a comprehensive description of the various methods used for pesticide residue testing, including optical detection, the enzyme inhibition rate method, molecular detection methods, enzyme immunoassays, lateral immunochromatographic, nanoparticle-based detection methods, colorimetric immunosensor, chemiluminescence immunosensor, smartphone-based immunosensor, etc. On this basis, we systematically analyze the mechanisms and some of the findings of the above detection strategies and discuss the challenges and prospects associated with the development of pesticide residue detection tools.
Collapse
Affiliation(s)
- Bin Peng
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Yueliang Xie
- Guangdong Agriculture Industry Business Polytechnic, Guangzhou, 510000, China
| | - Qingfu Lai
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Wen Liu
- Guangdong Agriculture Industry Business Polytechnic, Guangzhou, 510000, China
| | - Xuelan Ye
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Li Yin
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Wanxin Zhang
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Suqin Xiong
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Heng Wang
- Guangdong Haid Group Co., Ltd, Guangzhou, 510000, China.
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
60
|
Chaudhary V, Kumar M, Chauhan C, Sirohi U, Srivastav AL, Rani L. Strategies for mitigation of pesticides from the environment through alternative approaches: A review of recent developments and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120326. [PMID: 38387349 DOI: 10.1016/j.jenvman.2024.120326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Chemical-based peticides are having negative impacts on both the healths of human beings and plants as well. The World Health Organisation (WHO), reported that each year, >25 million individuals in poor nations are having acute pesticide poisoning cases along with 20,000 fatal injuries at global level. Normally, only ∼0.1% of the pesticide reaches to the intended targets, and rest amount is expected to come into the food chain/environment for a longer period of time. Therefore, it is crucial to reduce the amounts of pesticides present in the soil. Physical or chemical treatments are either expensive or incapable to do so. Hence, pesticide detoxification can be achieved through bioremediation/biotechnologies, including nano-based methodologies, integrated approaches etc. These are relatively affordable, efficient and environmentally sound methods. Therefore, alternate strategies like as advanced biotechnological tools like as CRISPR Cas system, RNAi and genetic engineering for development of insects and pest resistant plants which are directly involved in the development of disease- and pest-resistant plants and indirectly reduce the use of pesticides. Omics tools and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation of pesticides also discussed from the literatures. Overall, the review focuses on the most recent advancements in bioremediation methods to lessen the effects of pesticides along with the role of microorganisms in pesticides elimination. Further, pesticide detection is also a big challenge which can be done by using HPLC, GC, SERS, and LSPR ELISA etc. which have also been described in this review.
Collapse
Affiliation(s)
- Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar-Pradesh, India
| | - Mukesh Kumar
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Chetan Chauhan
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Ujjwal Sirohi
- National Institute of Plant Genome Research, New Delhi, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Lata Rani
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
61
|
Baruah P, Srivastava A, Mishra Y, Chaurasia N. Modulation in growth, oxidative stress, photosynthesis, and morphology reveals higher toxicity of alpha-cypermethrin than chlorpyrifos towards a non-target green alga at high doses. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104376. [PMID: 38278501 DOI: 10.1016/j.etap.2024.104376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Considering the frequent detection of pesticides in the aquatic environment, the ecotoxicological effects of Chlorpyrifos (CHP), an organophosphate, and alpha-cypermethrin (ACM), a pyrethroid, on freshwater microalgae were compared for the first time in this study. High concentrations of both CHP and ACM significantly suppressed the growth of test microalga Graesiella emersonii (p < 0.05). The 96-h EC50 of CHP and ACM were 54.42 mg L-1 and 29.40 mg L-1, respectively. Sub-inhibitory doses of both pesticides increased ROS formation in a concentration-dependent manner, which was accompanied by changes in antioxidant enzymes activities, lipid peroxidation, and variations in photosynthetic pigment concentration. Furthermore, both pesticides influenced photosystem II performance, oxygen-evolving complex efficiency and, intracellular ATP levels. Scanning electron microscopy analysis revealed that high concentrations of both CHP and ACM caused considerable morphological changes in the microalga. In comparison, CHP was more toxic than ACM at low concentrations, whereas ACM was more toxic at high concentrations.
Collapse
Affiliation(s)
- Prithu Baruah
- Environmental Biotechnology laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Akanksha Srivastava
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Yogesh Mishra
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Neha Chaurasia
- Environmental Biotechnology laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong 793022, Meghalaya, India.
| |
Collapse
|
62
|
Lin DJ, Zhou JX, Ali A, Fu HY, Gao SJ, Jin L, Fang Y, Wang JD. Biocontrol efficiency and characterization of insecticidal protein from sugarcane endophytic Serratia marcescens (SM) against oriental armyworm Mythimna separata (Walker). Int J Biol Macromol 2024; 262:129978. [PMID: 38340916 DOI: 10.1016/j.ijbiomac.2024.129978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The plant endophytic bacteria are a great source of nature insecticides. However, no such endophytic bacteria have been found in sugarcane, to address this gap, we isolated and identified a strain of Serratia marcescens with moderate insecticidal activity from sugarcane. Taken armyworm Mythimna separata as example, the mortality rates of oral infection and injection infection were 47.06 % and 91 %, respectively. The SM has significant negative affect on the growth, development, and reproduction of M. separata. After determining that these insecticidal substances, 33 potential virulence proteins were screened through the identification and prediction of bacterial proteins. Later we confirmed serralysin was a vital toxic protein from SM that caused M. separata death by prokaryotic expression. In addition, we also found that the intestinal tissue cells infected with SM or serralysin were severely diseased, which may be a major factor in M. separata demise. Finally, through gene expression level, protein molecular docking, we found the aminopeptidase-N would be one of the potential receptors of serralysin. Taken together, our findings indicate that sugarcane endophyte S. marcescens may be beneficial for pest control in sugarcane and explain its insecticidal mechanism. This study provides new ideas and materials for the biological control of pests.
Collapse
Affiliation(s)
- Dong-Jiang Lin
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jiang-Xiong Zhou
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ahmad Ali
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Hua-Ying Fu
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - San-Ji Gao
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Lin Jin
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agriculture science, Changsha, Hunan 410125, PR China
| | - Jin-da Wang
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
63
|
Li X, Song S, Wei F, Huang X, Guo Y, Zhang T. Occurrence, distribution, and translocation of legacy and current-use pesticides in pomelo orchards in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169674. [PMID: 38160827 DOI: 10.1016/j.scitotenv.2023.169674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Pomelo (Citrus grandis) is a highly popular and juicy member of the citrus family. However, little is known regarding the occurrence and distribution of pesticides in pomelo. In this study, we determined the levels of legacy (n = 25) and current-use pesticides (n = 2) in all parts of pomelo (i.e., epicarp, mesocarp, endocarp, pulp, and seed) and paired soil and leaf samples collected from two pomelo orchards in South China. At least one target pesticide was detected in the pomelo fruit, soil, and leaf samples, indicating that these pesticides were ubiquitous. The spatial distribution of the total concentration of pesticides in the pomelo parts was in the order of epicarp (216 ng/g) > mesocarp (9.50 ng/g) > endocarp (4.40 ng/g) > seed (3.80 ng/g) > pulp (1.10 ng/g), revealing different spatial distributions in pomelo. Principal component analysis was performed based on the concentrations of the target pesticides in the pulp and paired samples of epicarp, leaf, topsoil, and deep soil to examine the translocation pathway of the pesticides in pomelo. Close correlations were found among the target pesticides, and the pesticides in the pulp were mainly transferred from the epicarp, topsoil, or deep soil. We also explored the factors that affected such transport and found that the main translocation pathway of the non-systemic pesticide (i.e., buprofezin) into the pulp was the epicarp, whereas the systemic pesticide (i.e., pyriproxyfen) was mainly derived from the soil. The cumulative chronic dietary risks of all the pesticides resulting from pomelo consumption were much lower than the acceptable daily intake values for the general population. However, the prolonged risk of exposure to these pesticides should not be underestimated. The potential health risks posed by legacy and current-use pesticides, which are widely and frequently utilized, should be given increased attention.
Collapse
Affiliation(s)
- Xu Li
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Fenghua Wei
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Xiongfei Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuankai Guo
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, China.
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
64
|
Xue J, Mao K, Cao H, Feng R, Chen Z, Du W, Zhang H. Portable sensors equipped with smartphones for organophosphorus pesticides detection. Food Chem 2024; 434:137456. [PMID: 37716150 DOI: 10.1016/j.foodchem.2023.137456] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
Organophosphorus pesticides (OPs) play an important role in agricultural production and the accurate detection of OP residues is essential to ensure food safety. Portable sensors are expected to be a potential device due to their high detection efficiency, easy-to-use processes and low cost. Due to the widespread popularity and powerful capabilities of smartphones, smartphone-based sensing systems have rapidly developed into ideal tools for portable detection, however, a systematic review on the detection of OPs is still lacking. Therefore, a comprehensive overview of sensors equipped with smartphones for OP detection in recent year is provided; this overview includes their sensing signals (colorimetric, fluorescent, chemiluminescent and electrochemical signals), detection mechanism, analysis applications, advantages/disadvantages and perspectives. Moreover, the progress of sensors equipped with smartphones for the detection of OPs in food is thoroughly summarized. This review contributes to food safety and the development of efficient and reliable methods for smartphone-based OPs detection.
Collapse
Affiliation(s)
- Jiaqi Xue
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rida Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhuo Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
65
|
Mohanty B. Pesticides exposure and compromised fitness in wild birds: Focusing on the reproductive endocrine disruption. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105800. [PMID: 38458691 DOI: 10.1016/j.pestbp.2024.105800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 03/10/2024]
Abstract
Exposure of pesticides to wildlife species, especially on the aspect of endocrine disruption is of great concern. Wildlife species are more at risk to harmful exposures to the pesticides in their natural habitat through diet and several other means. Species at a higher tropic level in the food chain are more susceptible to the deleterious effects due to sequential biomagnifications of the pesticides/metabolites. Pesticides directly affect fitness of the species in the wild causing reproductive endocrine disruption impairing the hormones of the gonads and thyroid glands as reproduction is under the influence of cross regulations of these hormones. This review presents a comprehensive compilation of important literatures on the impact of the current use pesticides in disruption of both the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-thyroid axes particularly in birds addressing impacts on the reproductive impairments and overall fitness. In addition to the epidemiological studies, laboratory investigations those provide supportive evidences of the probable mechanisms of disruption in the wild also have been incorporated in this review. To accurately predict the endocrine-disruption of the pesticides as well as to delineate the risk associated with potential cumulative effects, studies are to be more focused on the environmentally realistic exposure dose, mixture pesticide exposures and transgenerational effects. In addition, strategic screening/appropriate methodologies have to be developed to reveal the endocrine disruption potential of the contemporary use pesticides. Demand for adequate quantitative structure-activity relationships and insilico molecular docking studies for timely validation have been highlighted.
Collapse
|
66
|
Steiger BGK, Wilson LD. Biopolymer-metal composites for selective removal and recovery of waterborne orthophosphate. CHEMOSPHERE 2024; 349:140874. [PMID: 38061562 DOI: 10.1016/j.chemosphere.2023.140874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Orthophosphate (Pi) remediation from effluent serves to address global water security by preventing eutrophication. Herein, chitosan (C), alginate (Alg) and three respective metal systems (Fe3+, Al3+, Cu2+) were used to prepare binary (BMC) or ternary (TMC) metal composite adsorbents. Their physicochemical properties were analyzed through XPS, IR and TGA, while the adsorption properties of the composites were characterized via adsorption isotherms and single-point experiments in saline environmental water. Al-composites formed Al-O complexes, while Fe- and Cu-composites formed in the presence of the biopolymer backbone FeO(OH) and Cu2(OH)3NO3, respectively. While Al-composites showed the highest bound water fraction (up to 16%), the Cu-composites (Cu-TMC-N, CuC-BMC-N; where N = nitrate) revealed the lowest water content. Alginate-based binary composites showed slightly higher water content, as compared to ternary and binary chitosan composites. Among the four materials (Al-TMC-N, Fe-TMC-N, Cu-TMC-N and CuC-BMC-N), the Al-TMC showed the highest Pi selectivity over sulfate, along with high Pi removal-% even in a binary mixture (sulfate + orthophosphate) despite the presence of competitive anion species. Upon spiking saline groundwater samples with low Pi (5 mg/L) that contains 2060 or 6030 mg/g sulfate, Al-TMC-N showed the highest Pi selectivity, followed by Fe-TMC-N. This trend in adsorption of Pi among the various composites is understood based on the HSAB principle for the conditions employed in this study. Removal efficiencies of Pi above 60% in Well 1 (ca. 2000 mg/L sulfate) and above 30% in Well 3 (ca. 6030 mg/L sulfate). Herein, environmentally compatible and sustainable composite adsorbents were prepared that reveal selective Pi recovery from (highly) saline groundwater that can mitigate eutrophication in aqueous media.
Collapse
Affiliation(s)
- Bernd G K Steiger
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
67
|
Rodríguez-Bolaña C, Pérez-Parada A, Niell S, Heinzen H, de Mello FT. Comparative deterministic and probabilistic approaches for assessing the aquatic ecological risk of pesticides in a mixed land use basin: A case study in Uruguay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168704. [PMID: 37992840 DOI: 10.1016/j.scitotenv.2023.168704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Environmental concentrations of 25 pesticides in superficial water were employed to conduct an ecological risk assessment (ERA) in a mixed land-use basin utilized as a drinking water source. A deterministic risk assessment (RQ) was utilized to evaluate the chronic risk to aquatic biota, while a probabilistic risk assessment (PRA) approach was applied to assess the acute and chronic risk in the most sensitive species and at the community level. A high risk was identified for insecticides (pyrethroids, organophosphates and organochlorines). RQs ranged from 4.0e-4 (2,4-D) to 105.3 (ethion) considering median concentrations and from 8.0e-4 (2,4-D) to 230 (p,p'-DDT) considering extreme concentrations. Temporal variation in ΣRQs showed the highest risk during spring and summer months, which is related to the crop calendar and land use in the Laguna del Cisne basin. For PRA, the probability of exceeding the hazardous concentration HC5 (5th percentile) was higher for the most sensitive species in chronic exposure, especially for cypermethrin (38.9 %), permethrin (25.6 %), and chlorpyrifos (16.6 %). In the case of acute exposures, the probability of surpassing HC5 was higher for the entire freshwater biota, with the highest values observed for bifenthrin (28.3 %), cypermethrin (25.5 %), permethrin (11.75 %), and ethion (11.1 %). The advantages and disadvantages of PRA for assessing pesticide ecological risk were compared with the conventional deterministic RQs approach, highlighting that PRA offers improvements over the deterministic risk assessment, especially for organophosphate pesticides. Additionally, PRA provides a more comprehensive evaluation of risk for both short and long-term exposure, has the potential to incorporate others available toxicity data (e.g., LD50, Daily Intake), and utilizes different hazardous concentrations, such as HC5, HC10, and HC50. Our findings emphasize the urgent need to establish a national regulatory framework to evaluate and mitigate pesticide risks in aquatic ecosystems, especially in drinking water source like Laguna del Cisne.
Collapse
Affiliation(s)
- César Rodríguez-Bolaña
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay.
| | - Andrés Pérez-Parada
- Departamento de Desarrollo Tecnológico, Centro Universitario Regional del Este (CURE), Universidad de la República, Ruta 9 y Ruta 15, CP 27000 Rocha, Uruguay; Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Silvina Niell
- Grupo de Análisis de Compuestos Traza, Departamento de Química del Litoral, Facultad de Química, CENUR Litoral Norte, Universidad de la República, Ruta 3, Km 363, 60000 Paysandú, Uruguay
| | - Horacio Heinzen
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Franco Teixeira de Mello
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay.
| |
Collapse
|
68
|
Glover F, Mehta A, Richardson M, Muncey W, Del Giudice F, Belladelli F, Seranio N, Eisenberg ML. Investigating the prevalence of erectile dysfunction among men exposed to organophosphate insecticides. J Endocrinol Invest 2024; 47:389-399. [PMID: 37574529 DOI: 10.1007/s40618-023-02155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Erectile dysfunction (ED) poses a significant disease morbidity and contributor to male infertility, where an estimated 20-40% of men are affected annually. While several risk factors have been identified in the etiology of ED (e.g., aging, heart disease, diabetes, and obesity), the complete pathogenesis remains to be elucidated. Over the last few decades, the contribution of environmental exposures to the pathogenesis of ED has gained some attention, though population studies are limited and results are mixed. Among environmental contaminants, organophosphate (OP) insecticides represent one of the largest chemical classes, and chlorpyrifos is the most commonly used OP in the U.S. OP exposure has been implicated in driving biological processes, including inflammation, reactive oxygen species production, and endocrine and metabolism disruption, which have been demonstrated to adversely affect the hypothalamus and testes and may contribute to ED. Currently, studies evaluating the association between OPs and ED within the U.S. general population are sparse. METHODS Data were leveraged from the National Health and Nutrition Examination Survey (NHANES), which is an annually conducted, population-based cross-sectional study. Urinary levels of 3,5,6-trichloro-2-pyridinol (TCPy), a specific metabolite of the most pervasive OP insecticide chlorpyrifos, were quantified as measures of OP exposure. ED was defined by responses to questionnaire data, where individuals who replied "sometimes able" or "never able" to achieve an erection were classified as ED. Chi-square, analysis of variance (ANOVA), and multivariable, weighted linear and logistic regression analyses were used to compare sociodemographic variables between quartiles of TCPy exposure, identify risk factors for TCPy exposure and ED, and to analyze the relationship between TCPy and ED. RESULTS A total of 671 adult men were included in final analyses, representing 28,949,379 adults after survey weighting. Approximately 37% of our cohort had ED. Smoking, diabetes, aging, Mexican-American self-identification, and physical inactivity were associated with higher ED prevalence. Analysis of TCPy modeled as a continuous variable revealed nonsignificant associations with ED (OR = 1.02 95% CI [0.95, 1.09]). Stratification of total TCPy into quartiles revealed increased odds of ED among adults in the second and fourth quartiles, using the first quartile as the reference (OR = 2.04 95% CI [1.11, 3.72], OR = 1.51 95% CI [0.58, 3.93], OR = 2.62 95% CI [1.18, 5.79], for quartiles 2, 3, and 4, respectively). CONCLUSIONS The results of our study suggest a potential role for chlorpyrifos and other OPs the pathogenesis of ED. Future studies are warranted to validate these findings, determine clinical significance, and to investigate potential mechanisms underlying these associations.
Collapse
Affiliation(s)
- F Glover
- Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - A Mehta
- Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - M Richardson
- Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - W Muncey
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - F Del Giudice
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - F Belladelli
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - N Seranio
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - M L Eisenberg
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
69
|
Ding TT, Liu SS, Wang ZJ, Huang P, Tao MT, Gu ZW. A novel mixture sampling strategy combining latin hypercube sampling with optimized one factor at a time method: A case study on mixtures of antibiotics and pesticides. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132568. [PMID: 37734309 DOI: 10.1016/j.jhazmat.2023.132568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Global sensitivity analysis in conjunction with quantitative high-throughput screening presents a novel technique for identifying the key components that induce the toxicities of mixtures. However, the mixtures currently designed with this method suffer from unequal frequency sampling, repeated mixtures, and only odd factor levels being considered. Accordingly, we use latin hypercube sampling to generate the starting points of the trajectories to achieve equal frequency sampling and non-repeated mixtures, as well as apply different one factor at a time methods for factors with odd and even levels to achieve suitability for factors with both odd and even levels. This method is called LHS-OAT. LHS-OAT was successfully applied to design 110 equal-frequency and non-repeated mixtures consisting of six antibiotics and four pesticides. It was found that four factors, roxithromycin (A5), tetracycline (A6), dichlorvos (P1), and demeton-S (P3), induce the toxicities of mixtures, and A5 and P1 in the Shaying River Basin have risk quotients ≥ 1. Additionally, we developed the toxicity deviation ratio to correct the risk quotients of interacting mixtures for effective risk assessments. This study provides a rational and effective method for mixture design that accurately identifies the important factors that induce the toxicities of mixtures.
Collapse
Affiliation(s)
- Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Ze-Jun Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Peng Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Meng-Ting Tao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zhong-Wei Gu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
70
|
Li Y, Fan T, Ren T, Zhang N, Zhao L, Zhong R, Sun G. Ecotoxicological risk assessment of pesticides against different aquatic and terrestrial species: using mechanistic QSTR and iQSTTR modelling approaches to fill the toxicity data gap. GREEN CHEMISTRY 2024; 26:839-856. [DOI: 10.1039/d3gc03109h] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The toxicity prediction for newly designed or untested pesticides will reduce unnecessary chemical synthesis and animal testing, and contribute to the design of “greener and safer” pesticide chemicals.
Collapse
Affiliation(s)
- Yishan Li
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
- Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
71
|
Petitjean K, Verres Y, Bristeau S, Ribault C, Aninat C, Olivier C, Leroyer P, Ropert M, Loréal O, Herault O, Amalric L, Baran N, Fromenty B, Corlu A, Loyer P. Low concentrations of ethylene bisdithiocarbamate pesticides maneb and mancozeb impair manganese and zinc homeostasis to induce oxidative stress and caspase-dependent apoptosis in human hepatocytes. CHEMOSPHERE 2024; 346:140535. [PMID: 37923018 DOI: 10.1016/j.chemosphere.2023.140535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
The worldwide and intensive use of phytosanitary compounds results in environmental and food contamination by chemical residues. Human exposure to multiple pesticide residues is a major health issue. Considering that the liver is not only the main organ for metabolizing pesticides but also a major target of toxicities induced by xenobiotics, we studied the effects of a mixture of 7 pesticides (chlorpyrifos-ethyl, dimethoate, diazinon, iprodione, imazalil, maneb, mancozeb) often detected in food samples. Effects of the mixture was investigated using metabolically competent HepaRG cells and human hepatocytes in primary culture. We report the strong cytotoxicity of the pesticide mixture towards hepatocytes-like HepaRG cells and human hepatocytes upon acute and chronic exposures at low concentrations extrapolated from the Acceptable Daily Intake (ADI) of each compound. Unexpectedly, we demonstrated that the manganese (Mn)-containing dithiocarbamates (DTCs) maneb and mancozeb were solely responsible for the cytotoxicity induced by the mixture. The mechanism of cell death involved the induction of oxidative stress, which led to cell death by intrinsic apoptosis involving caspases 3 and 9. Importantly, this cytotoxic effect was found only in cells metabolizing these pesticides. Herein, we unveil a novel mechanism of toxicity of the Mn-containing DTCs maneb and mancozeb through their metabolization in hepatocytes generating the main metabolite ethylene thiourea (ETU) and the release of Mn leading to intracellular Mn overload and depletion in zinc (Zn). Alteration of the Mn and Zn homeostasis provokes the oxidative stress and the induction of apoptosis, which can be prevented by Zn supplementation. Our data demonstrate the hepatotoxicity of Mn-containing fungicides at very low doses and unveil their adverse effect in disrupting Mn and Zn homeostasis and triggering oxidative stress in human hepatocytes.
Collapse
Affiliation(s)
- Kilian Petitjean
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France
| | - Yann Verres
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France
| | - Sébastien Bristeau
- BRGM, Direction Eau, Environnement, Procédés et Analyses (DEPA), 3 Avenue Claude-Guillemin - BP 36009, 45060 Orléans Cedex 2, France
| | - Catherine Ribault
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France
| | - Caroline Aninat
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France
| | - Christophe Olivier
- Cancéropole Grand Ouest (CGO), NET "Niches and Epigenetics of Tumors" Network, 44000 Nantes, France; INSERM UMR 1232 CRCINA, 44000 Nantes-Angers, France; Faculty of Pharmaceutical and Biological Sciences, Nantes University, 44000 Nantes, France
| | - Patricia Leroyer
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France
| | - Martine Ropert
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France; AEM2 Platform, CHU Pontchaillou, 2 Rue Henri le Guilloux, 35033 Rennes, France
| | - Olivier Loréal
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France
| | - Olivier Herault
- Cancéropole Grand Ouest (CGO), NET "Niches and Epigenetics of Tumors" Network, 44000 Nantes, France; Department of Biological Hematology, Tours University Hospital, 37000 Tours, France; CNRS ERL 7001 LNOx, EA 7501, Tours University, 37000 Tours, France; CNRS GDR3697 Micronit "Microenvironment of Tumor Niches", Tours, France
| | - Laurence Amalric
- BRGM, Direction Eau, Environnement, Procédés et Analyses (DEPA), 3 Avenue Claude-Guillemin - BP 36009, 45060 Orléans Cedex 2, France
| | - Nicole Baran
- BRGM, Direction Eau, Environnement, Procédés et Analyses (DEPA), 3 Avenue Claude-Guillemin - BP 36009, 45060 Orléans Cedex 2, France
| | - Bernard Fromenty
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France
| | - Anne Corlu
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France; Cancéropole Grand Ouest (CGO), NET "Niches and Epigenetics of Tumors" Network, 44000 Nantes, France.
| | - Pascal Loyer
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France; Cancéropole Grand Ouest (CGO), NET "Niches and Epigenetics of Tumors" Network, 44000 Nantes, France.
| |
Collapse
|
72
|
Chen Y, Xiao Q, Su Z, Yuan G, Ma H, Lu S, Wang L. Discovery and occurrence of organophosphorothioate esters in food contact plastics and foodstuffs from South China: Dietary intake assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167447. [PMID: 37788781 DOI: 10.1016/j.scitotenv.2023.167447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
A recent study revealed the presence of non-pesticide organothiophosphate esters (OTPEs) - precursors to organophosphate esters (OPEs) contaminants - in river water. Since OPEs have demonstrated adverse reproductive outcomes in humans, this accentuates the urgency to explore the prevalence of non-pesticide OTPEs in other potential human exposure matrices. In this study, a nontarget screening method based on high-resolution mass spectrometry was used to identify OTPEs in food contact plastic (FCP) samples collected from South China. O,O,O-triphenyl phosphorothioate (TPhPt) and O,O,O-tris(2,4-di-tert-butylphenyl) phosphorothioate (AO168 = S) were unequivocally identified (Level 1), while O,O-di(di-butylphenyl) O-methyl phosphorothioate (BDBPMPt) was tentatively identified (Level 2b, indicating probable structure based on diagnostic evidence). Among n = 70 FCP samples, AO168 = S emerged with the highest detection frequency and median concentration of 74 % and 111 ng/g, respectively. Significant Pearson correlations were observed in log-transformed peak areas of AO168 = S and TPhPt in FCPs with their respective oxons, respectively. Occurrences of AO168 = S and TPhPt were further investigated in n = 100 foodstuff samples using a market basket method. AO168 = S and TPhPt exhibited detection frequencies of 43 % and 44 % in all food items with mean concentrations of 2.17 ng/g wet weight (ww) (range: <0.53-67.8 ng/g ww) and 0.112 ng/g ww (range: <0.006-2.39 ng/g ww), respectively. The highest mean concentrations for AO168 = S and TPhPt were found in vegetables (4.62 ng/g ww) and oil (3.00 ng/g ww), respectively. The median estimated daily intakes (EDIs) of AO168 = S and TPhPt via diet were calculated as 10.4 and 1.51 ng/kg body weight/day, respectively. For AO168 = S, only meat and vegetables contributed to the median EDI, whereas for TPhPt, oil was identified as the principal contributor to the median EDI. This study for the first time evaluated human exposure to OTPEs via diet, providing new insights to overall human exposure to OPEs.
Collapse
Affiliation(s)
- Yanhao Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhanpeng Su
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Guanxiang Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haojia Ma
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
73
|
Roshani M, Nematollahi D, Ansari A, Adib K, Masoudi-Khoram M. Boosted electrocatalytic oxidation of organophosphorus pesticides by a novel high-efficiency CeO 2-Doped PbO 2 anode: An electrochemical study, parameter optimization and degradation mechanisms. CHEMOSPHERE 2024; 346:140597. [PMID: 37925025 DOI: 10.1016/j.chemosphere.2023.140597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
This article presents a novel and highly efficient electrocatalytic degradation method for two significant organophosphorus pesticides, fenitrothion (FEN), and methyl parathion (MPN), using a Ti/β-PbO2-CeO2 modified anode (indirect oxidation). A comprehensive electrochemical investigation was also carried out to gain new insight into the redox behavior and destruction pathway of these pesticides (direct oxidation). The study also explores the effects of various operating parameters, such as initial solution pH, applied current density, and initial pesticides concentration, on the conversion-paired electrocatalytic removal process. To further enhance the degradation efficiency, a new configuration of the electrochemical cell was designed, employing two types of electrodes and two independent power supply devices. The conversion paired electrocatalytic degradation process of these pesticides involves first the direct reduction of FEN (or MPN) on a graphite cathode and then the indirect oxidation of reduced FEN (or MPN) by hydroxyl radicals electro generated on the Ti/β-PbO2-CeO2 anode. The synergism of these two processes together will effectively lead to FEN (or MPN) degradation. The degradation percentages of 98% for FEN and 95% for MPN at the optimal conditions for the electrochemical degradation of these pesticides were achieved at pH = 7, initial concentration 50 mg L-1, with a current density of 90 mA cm-2 for direct reduction and 11 mA cm-2 for indirect oxidation. Overall, this study presents a promising and efficient approach for the remediation of organophosphorus pesticide-contaminated environments, offering valuable insights into the electrochemical degradation process and highlighting the potential for practical application in wastewater treatment and environmental protection.
Collapse
Affiliation(s)
- Mahsa Roshani
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| | - Davood Nematollahi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65178-38683, Iran.
| | - Amin Ansari
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65178-38683, Iran.
| | - Koroush Adib
- Department of Chemistry, Imam Hossein University, Tehran, 1955735345, Iran
| | | |
Collapse
|
74
|
Zhao H, Li R, Zhang T, Zhou L, Wang L, Han Z, Liu S, Zhang J. Platinum nanoflowers stabilized with aloe polysaccharides for detection of organophosphorus pesticides in food. Int J Biol Macromol 2023; 253:126552. [PMID: 37660849 DOI: 10.1016/j.ijbiomac.2023.126552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023]
Abstract
Organophosphorus pesticides can inhibit the activity of acetylcholinesterase and cause neurological diseases. Therefore, it is crucial to establish an efficient and sensitive platform for organophosphorus pesticide detection. In this work, we extracted aloe polysaccharide (AP) from aloe vera with the number average molecular weight of 27760 Da and investigated its reducing property. We prepared aloe polysaccharide stabilized platinum nanoflowers (AP-Ptn NFs), their particle size ranges were 29.4-67.3 nm. Furthermore, AP-Ptn NFs exhibited excellent oxidase-like activity and the catalytic kinetics followed the typical Michaelis-Menten equation. They showed strong affinity for 3,3',5,5'-tetramethylbenzidine substrates. More importantly, we developed a simple and effective strategy for the sensitive colorimetric detection of organophosphorus pesticides in food using biocompatible AP-Ptn NFs. The detection range was 0.5 μg/L - 140 mg/L, which was wider than many previously reported nanozyme detection systems. This colorimetric biosensor had good selectivity and good promise for bioassay analysis.
Collapse
Affiliation(s)
- Han Zhao
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Ruyu Li
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tingting Zhang
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lijie Zhou
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Longgang Wang
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| | - Zengsheng Han
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Sihang Liu
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Zhang
- Shanxi Datong University, College of Chemical and Environmental Engineering, Datong 037009, China
| |
Collapse
|
75
|
Yang Q, Li G, Jin N, Zhang D. Synergistic/antagonistic toxicity characterization and source-apportionment of heavy metals and organophosphorus pesticides by the biospectroscopy-bioreporter-coupling approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167057. [PMID: 37709080 DOI: 10.1016/j.scitotenv.2023.167057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Many anthropogenic chemicals are manufactured and eventually enter the surrounding environment, threatening food security and human health. Considering the additive or synergistic effects of pollutant mixtures, there is an expanding need for rapid, cost-effective and field-portable screening methods in environmental monitoring. This study used a recently developed biospectroscopy-bioreporter-coupling (BBC) approach to investigate the binary toxicity of Ag(I), Cr(VI) and four organophosphorus pesticides (dichlorvos, parathion, omethoate and monocrotophos). Ag(I) and Cr(VI) altered the toxicity mechanisms of pesticides, explained by the synergistic or antagonistic effect of Ag/Cr-induced cytotoxicity and pesticide-induced genotoxicity. The discriminating Raman spectral peaks associated with organophosphorus pesticides were 1585 and 1682 cm-1, but 750, 1004, 1306 and 1131 cm-1 were found in heavy metal and pesticide mixtures. More spectral alterations were related to pesticides rather than Ag(I) or Cr(VI), hinting at the dominant toxicity mechanisms of pesticides in mixtures. Ag(I) supplement significantly increased the levels of reactive oxygen species induced by organophosphorus pesticides, attributing to the increased permeability of cell membrane and entrance of toxic substances into the cells by the oligodynamic actions. This study lends deeper insights into the interactions between microbes and pollutant mixtures, offering clues to assess the cocktail effects of multiple pollutants comprehensively.
Collapse
Affiliation(s)
- Qiuyuan Yang
- School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Naifu Jin
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
76
|
Wu J, Lv J, Zhao L, Zhao R, Gao T, Xu Q, Liu D, Yu Q, Ma F. Exploring the role of microbial proteins in controlling environmental pollutants based on molecular simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167028. [PMID: 37704131 DOI: 10.1016/j.scitotenv.2023.167028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Molecular simulation has been widely used to study microbial proteins' structural composition and dynamic properties, such as volatility, flexibility, and stability at the microscopic scale. Herein, this review describes the key elements of molecular docking and molecular dynamics (MD) simulations in molecular simulation; reviews the techniques combined with molecular simulation, such as crystallography, spectroscopy, molecular biology, and machine learning, to validate simulation results and bridge information gaps in the structure, microenvironmental changes, expression mechanisms, and intensity quantification; illustrates the application of molecular simulation, in characterizing the molecular mechanisms of interaction of microbial proteins with four different types of contaminants, namely heavy metals (HMs), pesticides, dyes and emerging contaminants (ECs). Finally, the review outlines the important role of molecular simulations in the study of microbial proteins for controlling environmental contamination and provides ideas for the application of molecular simulation in screening microbial proteins and incorporating targeted mutagenesis to obtain more effective contaminant control proteins.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jin Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ruofan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Tian Gao
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, China
| | - Qi Xu
- PetroChina Fushun Petrochemical Company, Fushun 113000, China
| | - Dongbo Liu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Qiqi Yu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
77
|
K Al Rawas H, Al Mawla R, Pham TYN, Truong DH, Nguyen TLA, Taamalli S, Ribaucour M, El Bakali A, Černušák I, Dao DQ, Louis F. New insight into environmental oxidation of phosmet insecticide initiated by HO˙ radicals in gas and water - a theoretical study. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2042-2056. [PMID: 37850503 DOI: 10.1039/d3em00325f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Phosmet is an organophosphorus insecticide widely used in agriculture to control a range of insects; recently, it was banned by the European Union in 2022 due to its harmful effects. However, its environmental degradation and fate have not yet been evident. Thus, phosmet oxidation by HO˙ radicals was theoretically studied in this work using the DFT approach at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level of theory. Three different mechanisms were considered, including formal hydrogen transfer (FHT), radical adduct formation (RAF), and single electron transfer (SET). The mechanisms, kinetics, and lifetime were studied in the gas and aqueous phases, in addition to its ecotoxicity evaluation. The results show that FHT reactions were dominant in the gas phase, while RAF was more favourable in the aqueous phase at 298 K, while SET was negligible. The branching ratio indicated that H-abstractions at the methyl and the methylene groups were the most predominant, while the most favourable HO˙-addition was observed at the phosphorus atom of the dithiophosphate group. The overall rate constant values varied from 1.2 × 109 (at 283 K) to 1.40 × 109 M-1 s-1 (at 323 K) in the aqueous phase and from 6.29 × 1010 (at 253 K) to 1.32 × 1010 M-1 s-1 (at 323 K) in the gas phase. The atmospheric lifetime of phosmet is about 6 hours at 287 K, while it can persist from a few seconds to several years depending on the temperature and [HO˙] concentration in the aqueous environment. The QSAR-based ecotoxicity evaluation indicates that phosmet and its degradation products are all dangerous to aquatic organisms, although the products are less toxic than phosmet. However, they are generally developmental toxicants and mutagenicity-negative compounds.
Collapse
Affiliation(s)
- Hisham K Al Rawas
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France
| | - Reem Al Mawla
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France
| | - Thi Yen Nhi Pham
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
- School of Engineering and Technology, Duy Tan University, Da Nang 550000, Vietnam
| | - Dinh Hieu Truong
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
- School of Engineering and Technology, Duy Tan University, Da Nang 550000, Vietnam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
- School of Engineering and Technology, Duy Tan University, Da Nang 550000, Vietnam
| | - Sonia Taamalli
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France
| | - Marc Ribaucour
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France
| | - Abderrahman El Bakali
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France
| | - Ivan Černušák
- School of Engineering and Technology, Duy Tan University, Da Nang 550000, Vietnam
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
- School of Engineering and Technology, Duy Tan University, Da Nang 550000, Vietnam
| | - Florent Louis
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France
| |
Collapse
|
78
|
Shukla S, Jhamtani RC, Agarwal R. Biochemical and gene expression alterations due to individual exposure of atrazine, dichlorvos, and imidacloprid and their combination in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118291-118303. [PMID: 37821735 DOI: 10.1007/s11356-023-30160-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
In environmental toxicology, combined toxicity has emerged as an important concern. Atrazine (ATZ), dichlorvos (DIC), and imidacloprid (IMD) are the major pesticides, extensively used to control insect, flies, mosquitoes, and weed. Here, we investigate whether the exposure to three different types of pesticides individually and in combination for 24 h alters antioxidant enzyme responses in zebrafish (Danio rerio). Oxidative stress parameters (biochemical and mRNA expression), acetylcholinesterase (AChE) activity, and Metallothionein-II (MT-II) mRNA expression levels were measured. Present work includes toxicological assessment of individual and combined (CMD) exposure of ATZ (185.4 µM), DIC (181 µM), IMD (97.8 µ), and CMD (ATZ 92.7 µM + DIC 90.5 µM + IMD 48.9 µM), in the liver, kidney, and brain of adult zebrafish. Lipid peroxidation (LPO), glutathione (GSH) content, AChE, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity along with mRNA expression of SOD, CAT, GPx, and MT-II were evaluated. Briefly, LPO, GSH content, the activity of AChE, and all antioxidant enzymes enhanced significantly in individual exposure, which was further altered in the CMD group. The mRNA expression of SOD, CAT, GPx, and MT-II in the liver and kidney showed significant down-regulation in all exposed groups. In the brain, significant upregulation in mRNA expression of SOD, CAT, GPx, and MT-II was observed in DIC and IMD groups, while ATZ and CMD showed significant downregulation except for GPx. Findings postulate that the CMD group exhibits synergistic toxic manifestation. The present study provides the baseline data on the combined toxic effects of pesticides and suggests regulating the use of pesticides.
Collapse
Affiliation(s)
- Saurabh Shukla
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India
- Department of Forensic Science, School of Bioengineering and Bioscience, Lovely Professional University, Jalandhar, 144411, India
| | - Reena C Jhamtani
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India
- School of Forensic Science, Centurion University of Technology and Management, 752050, Bhubhaneshwar, Orrisa, India
| | - Rakhi Agarwal
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India.
- National Forensic Sciences University, Delhi Campus, Delhi, 110085, India.
| |
Collapse
|
79
|
Wang Z, Wang Z, Wang G, Zhang Q, Wang Q, Wang W. New insight into biodegradation mechanism of phenylurea herbicides by cytochrome P450 enzymes: Successive N-demethylation mechanism. ENVIRONMENT INTERNATIONAL 2023; 182:108332. [PMID: 37988774 DOI: 10.1016/j.envint.2023.108332] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Phenylurea herbicides (PUHs) present one of the most important herbicides, which have cause serious effects on ecological environment and humans. Nowadays enzyme strategy shows great advantages in degradation of PUHs. Here density functional theory (DFT), quantitative structure - activity relationship (QSAR) and quantum mechanics/molecular mechanics (QM/MM) approaches are used to investigate the degradation mechanism of PUHs catalyzed by P450 enzymes. Two successive N-demethylation pathways are identified and two hydrogen abstraction (H-abstraction) reaction pathways are identified as the rate-determining step through high-throughput DFT calculations. The Boltzmann-weighted average energy barrier of the second H-abstraction pathway (19.95 kcal/mol) is higher than that of the first H-abstraction pathway (16.80 kcal/mol). Two QSAR models are established to predict the energy barriers of the two H-abstraction pathways based on the quantum chemical descriptors and mordred molecular descriptors. The determination coefficient (R2) values of QSAR models are > 0.9, which reveal that the established QSAR models have great predictive capability. QM/MM calculations indicate that human P450 enzymes are more efficient in degradation of PUHs than crop and weed P450 enzymes. Correlations between energy barriers and key structural/charge parameters are revealed and key parameters that have influence on degradation efficiency of PUHs are identified. This study provides lateral insights into the biodegradation strategy and removal method of PUHs and valuable information for designing or engineering of highly efficient degradation enzymes and genetically modified crops.
Collapse
Affiliation(s)
- Zijian Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Zhong Wang
- Shandong Nuclear and Radiation Safety Monitoring Center, Jinan 250117, PR China
| | - Guoqiang Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Qiao Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
80
|
Khani L, Martin L, Pułaski Ł. Cellular and physiological mechanisms of halogenated and organophosphorus flame retardant toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165272. [PMID: 37406685 DOI: 10.1016/j.scitotenv.2023.165272] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Flame retardants (FRs) are chemical substances used to inhibit the spread of fire in numerous industrial applications, and their abundance in modern manufactured products in the indoor and outdoor environment leads to extensive direct and food chain exposure of humans. Although once considered relatively non-toxic, FRs are demonstrated by recent literature to have disruptive effects on many biological processes, including signaling pathways, genome stability, reproduction, and immune system function. This review provides a summary of research investigating the impact of major groups of FRs, including halogenated and organophosphorus FRs, on animals and humans in vitro and/or in vivo. We put in focus those studies that explained or referenced the modes of FR action at the level of cells, tissues and organs. Since FRs are highly hydrophobic chemicals, their biophysical and biochemical modes of action usually involve lipophilic interactions, e.g. with biological membranes or elements of signaling pathways. We present selected toxicological information about these molecular actions to show how they can lead to damaging membrane integrity, damaging DNA and compromising its repair, changing gene expression, and cell cycle as well as accelerating cell death. Moreover, we indicate how this translates to deleterious bioactivity of FRs at the physiological level, with disruption of hormonal action, dysregulation of metabolism, adverse effects on male and female reproduction as well as alteration of normal pattern of immunity. Concentrating on these subjects, we make clear both the advances in knowledge in recent years and the remaining gaps in our understanding, especially at the mechanistic level.
Collapse
Affiliation(s)
- Leila Khani
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Leonardo Martin
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Department of Biochemistry and Molecular Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Łukasz Pułaski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland.
| |
Collapse
|
81
|
Ebrahimnejad P, Davoodi A, Irannejad H, Akhtari J, Mohammadi H. Polyethyleneglycol-serine nanoparticles as a novel antidote for organophosphate poisoning: synthesis, characterization, in vitro and in vivo studies. Drug Chem Toxicol 2023; 46:915-930. [PMID: 35938408 DOI: 10.1080/01480545.2022.2107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/03/2022]
Abstract
Acute organophosphate pesticide poisoning causes considerable worldwide mortality and morbidity. In this study, serine was attached to the polyethylene glycol-bisaldehyde (PEG) as a novel antidote for diazinon (DZ) poisoning. Serine and PEG were conjugated with a reductive amination reaction. PEG-serine NPs (PEG-NPs) were purified and their structure was analyzed by 1H NMR, 13 C NMR, IR, and particle size was determined via dynamic light scattering. In vitro studies, including hemolysis assay and cytotoxicity on SK-BR-3 and HFFF2 cell lines, were performed. In vivo studies of PEG-NPs were evaluated on DZ-exposed mice. PEG-NPs were administered (i.p.) 20 min after a single dose of DZ (LD50; 166 mg/kg). Atropine (20 mg/kg, i.p.) with pralidoxime (20 mg/kg, i.p.) was used as the standard therapy compared to PEG-NPs. NMR and IR data confirmed that the conjugation of PEG to serine occurred successfully. The average NP size was 22.1 ± 1.8 nm. The hemolysis of the PEG-NPs was calculated at 0.867%, 50% inhibitory concentration (IC50) was calculated 36 ± 4.5, and 41 ± 3.4 mg/mL on SK-BR-3 and HFFF2 cell lines, respectively. Percentage of surviving significantly improved by 12.5, 25, and 25% through the usage of PEG-NPs at doses of 100, 200, and 400 mg/kg, respectively, when compared with the DZ group. Cholinesterase enzyme activity, lipid peroxidation, and mitochondrial function significantly improved through PEG-NPs when compared with the DZ group. PEG conjugated serine is very biocompatible with low toxicity and can reduce the acute toxicity of DZ as a new combination therapy.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Pharmacutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Davoodi
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Akhtari
- The Health of Plant and Livestock Products Research Center, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamidreza Mohammadi
- Pharmacutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
82
|
Metwally AA, Khalafallah MM, Dawood MAO. Water quality, human health risk, and pesticides accumulation in African catfish and Nile tilapia from the Kitchener Drain-Egypt. Sci Rep 2023; 13:18482. [PMID: 37898697 PMCID: PMC10613270 DOI: 10.1038/s41598-023-45264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Pesticides are toxic and could negatively impact humans and the ecosystem. The Kitchener Drain is among the longest drains in Egypt and carries a wide range of wastewater from the agriculture sector, which contains pesticides and may pollute the ecosystem. Thus, water quality, human health risk, and pesticide accumulation in African catfish and Nile tilapia from the Kitchener Drain-Egypt. The water and fish samples were collected from Kitchener Drain in Kafr Elsheikh Governorate, Egypt, during the four seasons. The results indicated that heptachlor and diazinon were undetected during the four seasons. However, endosulfan, chlorpyrifos, and dicofol were detected in winter and autumn. Only p,p'-DDT was detected during spring. Endosulfan, heptachlor, and aldrin were detected in Nile tilapia during winter. Only heptachlor and aldrin were detected during spring. Endosulfan, heptachlor, dicofol, p,p'-DDT, chlorpyrifos, and diazinon were detected in the autumn season. In summer, dicofol and p,p'-DDT were detected, while endosulfan, heptachlor p,p'-DDT, aldrin, chlorpyrifos, and diazinon were not detected. In African catfish, endosulfan, heptachlor, dicofol, and p,p'-DDT were detected during winter, while chlorpyrifos, aldrin, and chlorpyrifos, aldrin, and diazinon were not detected. In the spring season, endosulfan, heptachlor, and aldrin were detected. Endosulfan, heptachlor, dicofol, p,p'-DDT, aldrin, chlorpyrifos, and diazinon were detected in the autumn season. Similarly, in the summer season, endosulfan, heptachlor, dicofol, p,p'-DDT, aldrin, chlorpyrifos, and diazinon were detected. The sequence of estimated daily intake (EDI) in Nile tilapia during the four seasons is heptachlor > endosulfan > dicofol > p,p'-DDT > aldrin > diazinon > chlorpyrifos. The sequence of EDI in African catfish during the four seasons is endosulfan > p,p'-DDT > heptachlor > aldrin > dicofol > diazinon > chlorpyrifos. In conclusion, the results confirmed the absence of a hazard index for consuming Nile tilapia and African catfish collected from the Kitchener drain.
Collapse
Affiliation(s)
- Ahmed A Metwally
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt.
| | - Malik M Khalafallah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt
| | - Mahmoud A O Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt
| |
Collapse
|
83
|
Antonio M, Alcaraz MR, Falcone RD, Culzoni MJ. A micellar-enhanced fluorescence photoinduced four-way calibration method for the determination of multiclass pesticides in lemon juice. Anal Chim Acta 2023; 1279:341778. [PMID: 37827676 DOI: 10.1016/j.aca.2023.341778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 10/14/2023]
Abstract
In this work, a four-way multivariate calibration method for the simultaneous determination of four pesticides - carbendazim (CBZ), thiabendazole (TBZ), pirimiphos-methyl (PMM), and clothianidin (CLT) - in lemon juice is presented. Third-order data were acquired by registering the photoinduced fluorescence of the analytes as excitation-emission matrices at different times of UV-light irradiation, in the presence of organized media (direct micelles) as fluorescence enhancers. The optimal experimental conditions (pH 11.5 and 32 mmol L-1 hexadecyltrimethylammonium chloride surfactant) were determined through a central composite design using the response surface methodology. The analytes were individually calibrated, except for TBZ and CBZ due to the inner filter effect of TBZ on CBZ. Test samples containing all analytes and imidacloprid (as potential interference) were analysed. PARAFAC was utilized to evaluate both the trilinearity and quadrilinearity of the third-order data and four-way arrays, respectively. PMM was successfully determined with quadrilinear PARAFAC decomposition, whereas CLT, TBZ, and CBZ were satisfactorily modelled using U-PLS/RTL due to the loss of quadrilinearity caused by different phenomena. The profitable applicability of the analytical method in the CBZ, TBZ, PMM, and CLT determination in lemon juice samples was demonstrated, achieving limits of detection below the maximum residue levels reported by the European Commission, and mean recoveries at 90 ± 5%.
Collapse
Affiliation(s)
- Marina Antonio
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Argentina
| | - Mirta R Alcaraz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Argentina.
| | - R Dario Falcone
- Departamento de Química, Universidad Nacional de Río Cuarto, Ruta Nacional 36, km 601, Río Cuarto, X5804BYA, Córdoba, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS, CONICET-UNRC), Ruta Nacional 36, km 601, Río Cuarto, X5804BYA, Córdoba, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Argentina.
| |
Collapse
|
84
|
Li W, Xin S, Deng W, Wang B, Liu X, Yuan Y, Wang S. Occurrence, spatiotemporal distribution patterns,partitioning and risk assessments of multiple pesticide residues in typical estuarine water environments in eastern China. WATER RESEARCH 2023; 245:120570. [PMID: 37703754 DOI: 10.1016/j.watres.2023.120570] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
The low terrain and the prosperous agriculture in the east of China, have caused the accumulation of pesticide residues in the estuaries. Therefore, this study analyzed the spatiotemporal distribution and partition tendency of 106 pesticides based on their abundance, frequencies, and concentrations in the aquatic environment of 16 river estuaries in 7 major basins in the eastern China by using solid-phase extraction (SPE) with high-performance liquid chromatography tandem mass spectrometry (HPLC‒MS/MS) and gas chromatography tandem mass spectrometry (GC‒MS/MS). In addition, potential risk of multiple pesticides was also evaluated. The results showed that herbicides were the dominant pesticide type, while triazines were the predominate substance group of pesticide. In addition, triadimenol, vinclozolin, diethylatrazine, prometryn, thiamethoxam, atrazine, and metalachlor were the major pesticides in the water, while prometryn, metalachlor, and atrazine were the main pesticides in the sediment. The average total concentration of pesticide was 751.15 ng/L in the dry season, 651.17 ng/L in the wet season, and 617.37 ng/L in the normal season, respectively. The estuaries of the Huai River Basin, the Yangtze River Basin, the Hai River Basin, and the Yellow River Basin have been affected by the low pollution treatment efficiency, weak infrastructure, and agricultural/non-agricultural activities in eastern China, resulting in relatively serious pesticide pollution. The estuaries of Huaihe River, Yangtze River, Xiaoqing River, and Luanhe River had large pesticide abundance and comparatively severe pesticide pollution, while the estuaries of Tuhai River and Haihe River had heavy pesticide contamination in the sediment, which might be induced by historical sedimentary factors. The log KOC values showed that except for thioketone, other pesticides were relatively stable due to the adsorption by sediment. The ecological risk assessment results indicated that insecticides had a high risk. Teenagers were the most severely affected by the noncarcinogenic risk of pesticides, while adults were mostly affected by the carcinogenic risk of pesticides. Therefore, pesticide hazards in the water environment of estuaries in eastern China needs to be further close supervision.
Collapse
Affiliation(s)
- Wanting Li
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Shuhan Xin
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Wenjing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong, China
| | - Bingbing Wang
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Xinxin Liu
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Yin Yuan
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Shiliang Wang
- School of Life Science, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
85
|
Luo Q, Sun C, Zhao J, Cai Q, Yao S. Highly Efficient SnIn 4S 8@ZnO Z-Scheme Heterojunction Photocatalyst for Methylene Blue Photodegradation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6380. [PMID: 37834516 PMCID: PMC10574009 DOI: 10.3390/ma16196380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Building heterojunctions is a promising strategy for the achievement of highly efficient photocatalysis. Herein, a novel SnIn4S8@ZnO Z-scheme heterostructure with a tight contact interface was successfully constructed using a convenient two-step hydrothermal approach. The phase composition, morphology, specific surface area, as well as photophysical characteristics of SnIn4S8@ZnO were investigated through a series of characterization methods, respectively. Methylene blue (MB) was chosen as the target contaminant for photocatalytic degradation. In addition, the degradation process was fitted with pseudo-first-order kinetics. The as-prepared SnIn4S8@ZnO heterojunctions displayed excellent photocatalytic activities toward MB degradation. The optimized sample (ZS800), in which the molar ratio of ZnO to SnIn4S8 was 800, displayed the highest photodegradation efficiency toward MB (91%) after 20 min. Furthermore, the apparent rate constant of MB photodegradation using ZS800 (0.121 min-1) was 2.2 times that using ZnO (0.054 min-1). The improvement in photocatalytic activity could be ascribed to the efficient spatial separation of photoinduced charge carriers through a Z-scheme heterojunction with an intimate contact interface. The results in this paper bring a novel insight into constructing excellent ZnO-based photocatalytic systems for wastewater purification.
Collapse
Affiliation(s)
- Qiang Luo
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (Q.L.); (C.S.)
| | - Changlin Sun
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (Q.L.); (C.S.)
| | - Juan Zhao
- School of Mathematics & Computer Science, Wuhan Polytechnic University, Wuhan 430048, China
| | - Qizhou Cai
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Shanshan Yao
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
86
|
Lin DJ, Zhang YX, Fang Y, Gao SJ, Wang R, Wang JD. The effect of chlorogenic acid, a potential botanical insecticide, on gene transcription and protein expression of carboxylesterases in the armyworm (Mythimna separata). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105575. [PMID: 37666601 DOI: 10.1016/j.pestbp.2023.105575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 09/06/2023]
Abstract
Chlorogenic acid (CGA) is a potential botanical insecticide metabolite that naturally occurs in various plants. Our previous studies revealed CGA is sufficient to control the armyworm Mythimna separata. In this study, we conducted a proteomic analysis of saliva collected from M. separata following exposure to CGA and found that differentially expressed proteins (DEPs) treated with CGA for 6 h and 24 h were primarily enriched in glutathione metabolism and the pentose phosphate pathway. Notably, we observed six carboxylesterase (CarE) proteins that were enriched at both time points. Additionally, these corresponding genes were expressed at levels 5.05 to 130.25 times higher in our laboratory-selected resistance strains. We also noted a significant increase in the enzyme activity of carboxylesterase following treatments with varying CGA concentrations. Finally, we confirmed that knockdown of MsCarE14, MsCarE28, and MsCCE001h decreased the susceptibility to CGA in resistance strain, indicating three CarE genes play crucial roles in CGA detoxification. This study presents the first report on the salivary proteomics of M. separata, offering valuable insights into the role of salivary proteins. Moreover, the determination of CarE mediated susceptibility change to CGA provides new targets for agricultural pest control and highlights the potential insecticide resistance mechanism for pest resistance management.
Collapse
Affiliation(s)
- Dong-Jiang Lin
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya-Xin Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agriculture Science, Changsha 410125, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Jin-da Wang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
87
|
Shen M, Liu S, Jiang C, Zhang T, Chen W. Recent advances in stimuli-response mechanisms of nano-enabled controlled-release fertilizers and pesticides. ECO-ENVIRONMENT & HEALTH 2023; 2:161-175. [PMID: 38074996 PMCID: PMC10702921 DOI: 10.1016/j.eehl.2023.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 10/16/2024]
Abstract
Nanotechnology-enabled fertilizers and pesticides, especially those capable of releasing plant nutrients or pesticide active ingredients (AIs) in a controlled manner, can effectively enhance crop nutrition and protection while minimizing the environmental impacts of agricultural activities. Herein, we review the fundamentals and recent advances in nanofertilizers and nanopesticides with controlled-release properties, enabled by nanocarriers responsive to environmental and biological stimuli, including pH change, temperature, light, redox conditions, and the presence of enzymes. For pH-responsive nanocarriers, pH change can induce structural changes or degradation of the nanocarriers or cleave the bonding between nutrients/pesticide AIs and the nanocarriers. Similarly, temperature response typically involves structural changes in nanocarriers, and higher temperatures can accelerate the release by diffusion promoting or bond breaking. Photothermal materials enable responses to infrared light, and photolabile moieties (e.g., o-nitrobenzyl and azobenzene) are required for achieving ultraviolet light responses. Redox-responsive nanocarriers contain disulfide bonds or ferric iron, whereas enzyme-responsive nanocarriers typically contain the enzyme's substrate as a building block. For fabricating nanofertilizers, pH-responsive nanocarriers have been well explored, but only a few studies have reported temperature- and enzyme-responsive nanocarriers. In comparison, there have been more reports on nanopesticides, which are responsive to a range of stimuli, including many with dual- or triple-responsiveness. Nano-enabled controlled-release fertilizers and pesticides show tremendous potential for enhancing the utilization efficiency of nutrients and pesticide AIs. However, to expand their practical applications, future research should focus on optimizing their performance under realistic conditions, lowering costs, and addressing regulatory and public concerns over environmental and safety risks.
Collapse
Affiliation(s)
- Meimei Shen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Songlin Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| |
Collapse
|
88
|
Zou S, Wang Q, He Q, Liu G, Song J, Li J, Wang F, Huang Y, Hu Y, Zhou D, Lv Y, Zhu Y, Wang B, Zhang L. Brain-targeted nanoreactors prevent the development of organophosphate-induced delayed neurological damage. J Nanobiotechnology 2023; 21:256. [PMID: 37550745 PMCID: PMC10405429 DOI: 10.1186/s12951-023-02039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Organophosphate (OP)-induced delayed neurological damage is attributed to permanent neuropathological lesions caused by irreversible OP-neurocyte interactions, without potent brain-targeted etiological antidotes to date. The development of alternative therapies to achieve intracerebral OP detoxification is urgently needed. METHODS We designed a brain-targeted nanoreactor by integrating enzyme immobilization and biomimetic membrane camouflaging protocols with careful characterization, and then examined its blood-brain barrier (BBB) permeability both in vitro and in vivo. Subsequently, the oxidative stress parameters, neuroinflammatory factors, apoptotic proteins and histopathological changes were measured and neurobehavioral tests were performed. RESULTS The well-characterized nanoreactors exerted favourable BBB penetration capability both in vitro and in vivo, significantly inhibiting OP-induced intracerebral damage. At the cellular and tissue levels, nanoreactors obviously blocked oxidative stress, cellular apoptosis, inflammatory reactions and brain histopathological damage. Furthermore, nanoreactors radically prevented the occurrence of OP-induced delayed cognitive deficits and psychiatric abnormality. CONCLUSION The nanoreactors significantly prevented the development of OP-induced delayed neurological damage, suggesting a potential brain-targeted etiological strategy to attenuate OP-related delayed neurological and neurobehavioral disorders.
Collapse
Affiliation(s)
- Shuaijun Zou
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Qian He
- The Third Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Guoyan Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Juxingsi Song
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Jie Li
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Fan Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Yichao Huang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Yanan Hu
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Dayuan Zhou
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Yongfei Lv
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Yuanjie Zhu
- Department of Marine Biological Injury and Dermatology, Naval Special Medical Centre, Naval Medical University, Shanghai, 200052, China.
| | - Beilei Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China.
| | - Liming Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
89
|
Zhao F, Wang L, Li M, Wang M, Liu G, Ping J. Nanozyme-based biosensor for organophosphorus pesticide monitoring: Functional design, biosensing strategy, and detection application. Trends Analyt Chem 2023; 165:117152. [DOI: 10.1016/j.trac.2023.117152] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
|
90
|
Wang B, Huang D, Weng Z. Recent Advances in Polymer-Based Biosensors for Food Safety Detection. Polymers (Basel) 2023; 15:3253. [PMID: 37571147 PMCID: PMC10422505 DOI: 10.3390/polym15153253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The excessive use of pesticides and drugs, coupled with environmental pollution, has resulted in the persistence of contaminants on food. These pollutants tend to accumulate in humans through the food chain, posing a significant threat to human health. Therefore, it is crucial to develop rapid, low-cost, portable, and on-site biosensors for detecting food contaminants. Among various biosensors, polymer-based biosensors have emerged as promising probes for detection of food contaminants in recent years, due to their various functions such as target binding, enrichment, and simple signal reading. This paper aims to discuss the characteristics of five types of food pollutants-heavy metals, pesticide residues, pathogenic bacteria, allergens, and antibiotics-and their adverse effects on human health. Additionally, this paper focuses on the principle of polymer-based biosensors and their latest applications in detecting these five types of food contaminants in actual food samples. Furthermore, this review briefly examines the future prospects and challenges of biosensors for food safety detection. The insights provided in this review will facilitate the development of biosensors for food safety detection.
Collapse
Affiliation(s)
- Binhui Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
91
|
Zhuang M, Yao W, Han L, Bi Y, Qiao C, Lv X, Cao M, Xie H. Multivariate response surface methodology assisted modified QuEChERS method for the rapid determination of 39 pesticides and metabolites in medlar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115102. [PMID: 37311390 DOI: 10.1016/j.ecoenv.2023.115102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023]
Abstract
A modified QuEChERS method coupled with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established for residue analysis of 39 pollutants (34 commonly used multi-class pesticides and 5 metabolites) in medlar matrices (fresh, dried, and medlar juice). Samples were extracted using water with 0.1 % formic acid: acetonitrile (5: 10, v/v). The phase-out salts and five different cleanup sorbents (including N-propyl ethylenediamine (PSA), octadecyl silane bonded silica gel (C18), graphitized carbon black (GCB), Carbon nanofiber (C-Fiber) and MWCNTs) were investigated to improve the purification efficiency. The Box-Behnken Design (BBD) study was employed for an optimal solution of the volume of extraction solvent, phase-out salt, and the purification sorbents for the analytical method. The average recoveries of the target analytes in the three medlar matrices ranged from 70 % to 119 % with relative standard deviations (RSDs) of 1.0 %-19.9 %. Screening of market samples (fresh and dried medlars) collected from the major producing regions in China showed that 15 pesticides and metabolites were detected in the samples at concentrations of 0.01-2.22 mg/kg, and none of which exceeded the maximum residue limits (MRLs) set in China. The results showed that the risk of food safety by consumption of medlar products caused by the use of pesticides was low. The validated method could be used for rapid and accurate screening of multi-class multi-pesticide residues in Medlar for food safety.
Collapse
Affiliation(s)
- Ming Zhuang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Yao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Beijing Vocational College of Agriculture, Beijing 102500, China
| | - Lijun Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Yingying Bi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xinru Lv
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Mengyuan Cao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
92
|
Chen W, Kang T, Du F, Han P, Gao M, Hu P, Teng F, Fan H. A new S-scheme heterojunction of 1D ZnGa 2O 4/ZnO nanofiber for efficient photocatalytic degradation of TC-HCl. ENVIRONMENTAL RESEARCH 2023:116388. [PMID: 37308071 DOI: 10.1016/j.envres.2023.116388] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
One-dimensional shaped ZnGa2O4, ZnO and ZnGa2O4/ZnO nanofibers were successfully prepared by electrostatic spinning technique and the photocatalytic degradation performance of tetracycline hydrochloride (TC-HCl) were studied. It was found that the S-scheme heterojunction formed in the ZnGa2O4/ZnO could greatly reduce the recombination of the photogenerated carriers and therefore improve the photocatalytic performance. By optimizing the ratio of the ZnGa2O4 and ZnO, the largest degradation rate could reach 0.0573 min-1, which was 20 times of the self-degradation rate of TC-HCl. It was verified that the h+ played the key role in the reactive groups for the high performance decomposition of TC-HCl by capture experiments. This work provides a new method for the highly efficient photocatalytic degradation of TC-HCl.
Collapse
Affiliation(s)
- Wenhui Chen
- School of Physics, Northwest University, Xi'an, 710127, China
| | - Tianxin Kang
- School of Physics, Northwest University, Xi'an, 710127, China
| | - Fenqi Du
- School of Physics, Northwest University, Xi'an, 710127, China
| | - Peipei Han
- School of Physics, Northwest University, Xi'an, 710127, China
| | - Meiling Gao
- School of Physics, Northwest University, Xi'an, 710127, China.
| | - Peng Hu
- School of Physics, Northwest University, Xi'an, 710127, China
| | - Feng Teng
- School of Physics, Northwest University, Xi'an, 710127, China
| | - Haibo Fan
- School of Physics, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
93
|
Zheng L, Gu X, Sun L, Dong M, Gao A, Han Z, Pan H, Zhang H. Adding Metal Ions to the Bacillus mojavensis D50 Promotes Biofilm Formation and Improves Ability of Biocontrol. J Fungi (Basel) 2023; 9:jof9050526. [PMID: 37233237 DOI: 10.3390/jof9050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Bacillus mojavensis D50, a biocontrol strain, is used to prevent and treat the fungal plant pathogen Botrytis cinerea. Bacillus mojavensis D50's biofilms can affect its colonization; thus, the effects of different metal ions and culture conditions on biofilm formation were determined in this study. The results of medium optimization showed that Ca2+ had the best ability to promote biofilm formation. The optimal medium composition for the formation of biofilms contained tryptone (10 g/L), CaCl2 (5.14 g/L), and yeast extract (5.0 g/L), and the optimal fermentation conditions included pH 7, a temperature of 31.4 °C, and a culture time of 51.8 h. We found that the antifungal activity and abilities to form biofilms and colonize roots were improved after optimization. In addition, the levels of expression of the genes luxS, SinR, FlhA, and tasA were up-regulated by 37.56-, 2.87-, 12.46-, and 6.22-fold, respectively. The soil enzymatic activities which related biocontrol-related enzymes were the highest when the soil was treated by strain D50 after optimization. In vivo biocontrol assays indicated that the biocontrol effect of strain D50 after optimization was improved.
Collapse
Affiliation(s)
- Lining Zheng
- College of Plant Protection, Jilin Agricultural University, Changchu 130118, China
| | - Xuehu Gu
- College of Plant Protection, Jilin Agricultural University, Changchu 130118, China
| | - Liangpeng Sun
- College of Plant Protection, Jilin Agricultural University, Changchu 130118, China
| | - Meiqi Dong
- College of Plant Protection, Jilin Agricultural University, Changchu 130118, China
| | - Ao Gao
- College of Plant Protection, Jilin Agricultural University, Changchu 130118, China
| | - Zhe Han
- College of Plant Protection, Jilin Agricultural University, Changchu 130118, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchu 130118, China
| |
Collapse
|
94
|
Li L, Chen R, Wang L, Jia Y, Shen X, Hu J. Discovery of Three Organothiophosphate Esters in River Water Using High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7254-7262. [PMID: 37092689 DOI: 10.1021/acs.est.2c09416] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Records of the environmental occurrence of organothiophosphate esters (OTPEs), which are used as flame retardants and food and industrial additives, are unavailable. In this study, we discovered three OTPEs, namely O,O,O-tris(2,4-di-tert-butylphenyl) phosphorothioate (AO168═S), O-butyl O-(butyl-methylphenyl) O-(di-butylphenyl) phosphorothioate (BBMDBPt)/O,O-bis(dibutylphenyl) O-methyl phosphorothioate (BDBPMPt), and O-butyl O-ethyl O-hydrogen phosphorothioate (BEHPt), in the surface water of the Yangtze River Basin by applying a characteristic phosphorothioate fragment-directed high-resolution mass spectrometry method. Among the 17 water samples tested, the detection frequencies of AO168═S and BEHPt were 100% and that of BBMDBPt/BDBPMPt was 29%. The mean concentration of AO168═S was 56.9 ng/L (30.5-148 ng/L), and semi-quantitative analysis revealed that the mean concentrations of BEHPt and BBMDBPt/BDBPMPt were 17.2 ng/L (5.5-65.4 ng/L) and 0.8 ng/L (<the limit of quantification, LOQ, to 6.3 ng/L), respectively. Twelve organophosphate esters were also detected, of which the highest mean concentration was found for tris(2,4-di-tert-butylphenyl) phosphate (AO168═O, 366 ng/L), followed by triphenyl phosphate (84.3 ng/L), triethyl phosphate (19.3 ng/L), and tributyl phosphate (15.7 ng/L). The Spearman's correlation coefficient between AO168═S and AO168═O was 0.547 (p < 0.05), suggesting that AO168═S commonly transforms into AO168═O or that these chemicals have a similar source and behavior in the environment. Future studies are warranted to assess the potential toxicity, environmental behavior, and health risks posed by OTPEs.
Collapse
Affiliation(s)
- Linwan Li
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ruichao Chen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lei Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yingting Jia
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinming Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
95
|
Xu J, Lv M, Li T, Wen H, Xu H. Optimization of Osthole in the Lactone Ring as an Agrochemical Candidate: Synthesis, Characterization, and Pesticidal Activities of Osthole Amide/Ester Derivatives and Their Effects on Morphological Changes of Mite Epidermis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6570-6583. [PMID: 37083409 DOI: 10.1021/acs.jafc.3c00211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Structural modification of natural products is one of the important ways in the discovery of novel pesticides. Based on a diversity-oriented synthesis strategy, herein, two series of amide/ester derivatives (52 compounds) were obtained by opening the lactone of osthole. Interestingly, the effect of different concentrations of aq. sodium hydroxide on the ratio of two isomers (cis- and trans-2) was investigated, and a magical phenomenon of ultraviolet (UV) light irradiation on intertransformation of two isomers (cis- and trans-2) was observed. Against Mythimna separata, when compared with the precursor osthole, compounds 4b, 4l, 5l, 5m, 7h, 7l, and 7m displayed more pronounced growth inhibitory activity with the final mortality rates of 62.0-68.9%. Compounds 4b, 4i, and 5m showed 5.7-6.6 times stronger acaricidal activity against Tetranychus cinnabarinus than osthole, and notably, control effects of compounds 4i and 5m were 2.4- and 2.7-fold that of osthole in the management of T. cinnabarinus in the greenhouse. Scanning electron microscopy (SEM) images of the epidermis of 5m-treated T. cinnabarinus indicated that compound 5m can destroy the mite cuticle layer. Compounds 4b and 5m can be used as leads to further explore more promising pesticidal agents.
Collapse
Affiliation(s)
- Jianwei Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tianze Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Houpeng Wen
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
96
|
Li W, Wang B, Yuan Y, Wang S. Spatiotemporal distribution patterns and ecological risk of multi-pesticide residues in the surface water of a typical agriculture area in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161872. [PMID: 36716873 DOI: 10.1016/j.scitotenv.2023.161872] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
This study systematically investigated the occurrence, spatiotemporal distribution, and ecological risk of 106 pesticides in the surface water of the Jiaodong Peninsula in China. The results show that 52 pesticides, including 21 insecticides, 10 fungicides, and 21 herbicides, were detectable in the surface water. The concentrations of target pesticides in water samples ranged from 0.42 (tebuconazole in the wet season) to 645.31 ng/L (thiamethoxam in the normal season). The two most polluting and widespread pesticides were quintozene (maximum concentration of 481.46 ng/L and detection rate of 94 %) and atrazine (maximum concentration of 465.73 ng/L and detection rate of 100 %). The total pesticide concentrations in surface water in different seasons revealed the order of dry season > wet season > normal season. Based on aquatic pesticide concentrations, their frequency of occurrence, and effect concentrations, insecticides posed higher risks to aquatic organisms and human health than either fungicides or herbicides. Total pesticide concentrations were significantly positively correlated with suspended particulate matter, dissolved organic carbon, soil pH, normalized difference vegetation index, adjacent cropland area; and were negatively associated with adjacent grassland area. The cropland area largely influences pesticide distribution in the surface water of the Jiaodong Peninsula.
Collapse
Affiliation(s)
- Wanting Li
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Bingbing Wang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yin Yuan
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Shiliang Wang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
97
|
Sharma K, Tewatia P, Kaur M, Pathania D, Banat F, Rattan G, Singhal S, Kaushik A. Bioremediation of multifarious pollutants using laccase immobilized on magnetized and carbonyldiimidazole-functionalized cellulose nanofibers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161137. [PMID: 36566870 DOI: 10.1016/j.scitotenv.2022.161137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
An easily recyclable biocatalyst (Lac@CDI-MCNFs) was synthesized by immobilizing laccase on rice straw-derived carbonyldiimidazole mediated magnetized cellulose nanofibers (MCNFs). Lac@CDI-MCNFs were utilized for bioremediation of cefixime antibiotic (CT), carbofuran pesticide (CF) and safranin O dye (SO) via oxidation-reduction reactions in wastewater. MCNFs provided enhanced pH, temperature and storage stability to laccase and allowed reusability for up to 25 cycles with mere 20 % decline in efficacy. The Lac@CDI-MCNFs effectively degraded 98.2 % CT and 96.8 % CF into benign metabolites within 20 h and completely degraded SO in just 7 h. Response surface modelling (RSM) was employed based on the Box Behnken Design to evaluate the effect of various parameters i.e. pH, catalyst dosage and the pollutants concentration which was further validated with experimental studies. The degradation products were identified using LCMS, which allowed the degradation pathway of the pollutants to be determined. The degradation of all pollutants followed first- order kinetics with rate constants of 0.1775, 0.0832 and 0.958 h-1 and half-life of 3.9, 5.0 and 0.723 h for CT, CF and SO, respectively. Lac@CDI-MCNFs was demonstrated to be an effective catalyst for the degradation of multifarious pollutants.
Collapse
Affiliation(s)
- Kavita Sharma
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Preeti Tewatia
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Manpreet Kaur
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, J&K, India; Department of Chemistry, Sardar Patel University Mandi, Himachal Pradesh 175001, India
| | - Fawzi Banat
- Dept of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Gaurav Rattan
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India
| | - Sonal Singhal
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Anupama Kaushik
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
98
|
Ruomeng B, Meihao O, Siru Z, Shichen G, Yixian Z, Junhong C, Ruijie M, Yuan L, Gezhi X, Xingyu C, Shiyi Z, Aihui Z, Fang B. Degradation strategies of pesticide residue: From chemicals to synthetic biology. Synth Syst Biotechnol 2023; 8:302-313. [PMID: 37122957 PMCID: PMC10130697 DOI: 10.1016/j.synbio.2023.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
The past 50 years have witnessed a massive expansion in the demand and application of pesticides. However, pesticides are difficult to be completely degraded without intervention hence the pesticide residue could pose a persistent threat to non-target organisms in many aspects. To aim at the problem of the abuse of pesticide products and excessive pesticide residues in the environment, chemical and biological degradation methods are widely developed but are scaled and insufficient to solve such a pollution. In recent years, bio-degradative tools instructed by synthetic biological principles have been further studied and have paved a way for pesticide degradation. Combining the customized design strategy and standardized assembly mode, the engineering bacteria for multi-dimensional degradation has become an effective tool for pesticide residue degradation. This review introduces the mechanisms and hazards of different pesticides, summarizes the methods applied in the degradation of pesticide residues, and discusses the advantages, applications, and prospects of synthetic biology in degrading pesticide residues.
Collapse
|
99
|
Immobilized Enzyme-based Novel Biosensing System for Recognition of Toxic Elements in the Aqueous Environment. Top Catal 2023. [DOI: 10.1007/s11244-023-01786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
100
|
Tufail MA, Iltaf J, Zaheer T, Tariq L, Amir MB, Fatima R, Asbat A, Kabeer T, Fahad M, Naeem H, Shoukat U, Noor H, Awais M, Umar W, Ayyub M. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157961. [PMID: 35963399 DOI: 10.1016/j.scitotenv.2022.157961] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals and persistent organic pollutants are causing detrimental effects on the environment. The seepage of heavy metals through untreated industrial waste destroys the crops and lands. Moreover, incineration and combustion of several products are responsible for primary and secondary emissions of pollutants. This review has gathered the remediation strategies, current bioremediation technologies, and their primary use in both in situ and ex situ methods, followed by a detailed explanation for bioremediation over other techniques. However, an amalgam of bioremediation techniques and nanotechnology could be a breakthrough in cleaning the environment by degrading heavy metals and persistant organic pollutants.
Collapse
Affiliation(s)
| | - Jawaria Iltaf
- Institute of Chemistry, University of Sargodha, 40100, Pakistan
| | - Tahreem Zaheer
- Department of Biological Physics, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Leeza Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Bilal Amir
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Rida Fatima
- School of Science, Department of Chemistry, University of Management and Technology, Lahore, Pakistan
| | - Ayesha Asbat
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Tahira Kabeer
- Center of Agriculture Biochemistry and Biotechnology CABB, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Fahad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamna Naeem
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Usama Shoukat
- Integrated Genomics Cellular Development Biology Lab, Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Hazrat Noor
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Awais
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Wajid Umar
- Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Muhaimen Ayyub
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| |
Collapse
|