51
|
Onishi M, Ochiya T, Tanaka Y. MicroRNA and liver cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:385-400. [PMID: 35582451 PMCID: PMC8992476 DOI: 10.20517/cdr.2019.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 11/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths worldwide. HCC is characterized by a poor prognosis and an ever increasing number of scientific studies aim to find new diagnostic, prognostic, and therapeutic targets. MicroRNAs (miRNAs), small non-coding RNAs that regulate the gene expression in many processes, have been shown to play a crucial role in regulating hepatocellular carcinoma. miRNAs may act as oncogenic miRNAs and tumor suppressor miRNAs and regulate cancer cell proliferation, invasion, and metastasis by being differently upregulated or downregulated and targeting the genes related with carcinogenesis. miRNAs secreted from cancer cells are found circulating in the blood, presenting an opportunity for their use as disease-related biomarkers. Moreover, extracellular vesicle-derived miRNAs are known to reflect the cell of origin and function and may provide effective biomarkers for predicting diagnosis and prognosis and new therapeutic target in HCC. In this article, we describe the most recent findings regarding the molecular mechanisms and gene regulation of microRNA in HCC, as well as their application in diagnosis/prognosis and treatment.
Collapse
Affiliation(s)
- Masaya Onishi
- Department of Virology & Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Yasuhito Tanaka
- Department of Virology & Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
52
|
Yang G, Zhang M, Zhao Y, Pan Y, Kan M, Li J, He K, Zhang X. HNF-4α inhibits hepatocellular carcinoma cell proliferation through mir-122-adam17 pathway. PLoS One 2020; 15:e0230450. [PMID: 32210451 PMCID: PMC7094838 DOI: 10.1371/journal.pone.0230450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/01/2020] [Indexed: 12/31/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common human cancers, its prevalence and severity need us to discover novel early diagnostic biomarkers and new therapeutic strategies. MicroRNA-122 is the most abundant microRNA in the liver, and acts as a tumor suppressor and represses HCC development. In our study we showed that HNF-4α and MiR-122 were down-regulated significantly in hepatocellular carcinoma. Over-expression of HNF-4α inhibit hepatocellular carcinoma cells proliferation. And miR-122 is one of the downstream effector of HNF-4α. Up-regulated miR-122 inhibited hepatocellular carcinoma cells proliferation through regulating ADAM17. Collectively, our results suggested that HNF-4α could inhibit hepatocellular carcinoma proliferation with miR-122 being a downstream target of it. And miR-122 would inhibit hepatocellular carcinoma proliferation by regulating ADAM17 signal pathway.
Collapse
Affiliation(s)
- Guang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Min Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yawei Zhao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yue Pan
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mujie Kan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jing Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
- * E-mail: (XZ); (KH)
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
- * E-mail: (XZ); (KH)
| |
Collapse
|
53
|
Tipanee J, Di Matteo M, Tulalamba W, Samara-Kuko E, Keirsse J, Van Ginderachter JA, Chuah MK, VandenDriessche T. Validation of miR-20a as a Tumor Suppressor Gene in Liver Carcinoma Using Hepatocyte-Specific Hyperactive piggyBac Transposons. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1309-1329. [PMID: 32160703 PMCID: PMC7036702 DOI: 10.1016/j.omtn.2020.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
We established a semi-high-throughput in vivo screening platform using hyperactive piggyBac (hyPB) transposons (designated as PB-miR) to identify microRNAs (miRs) that inhibit hepatocellular carcinoma (HCC) development in vivo, following miR overexpression in hepatocytes. PB-miRs encoding six different miRs from the miR-17-92 cluster and nine miRs from outside this cluster were transfected into mouse livers that were chemically induced to develop HCC. In this slow-onset HCC model, miR-20a significantly inhibited HCC. Next, we developed a more aggressive HCC model by overexpression of oncogenic Harvey rat sarcoma viral oncogene homolog (HRASG12V) and c-MYC oncogenes that accelerated HCC development after only 6 weeks. The tumor suppressor effect of miR-20a could be demonstrated even in this rapid-onset HRASG12V/c-MYC HCC model, consistent with significantly prolonged survival and decreased HCC tumor burden. Comprehensive RNA expression profiling of 95 selected genes typically associated with HCC development revealed differentially expressed genes and functional pathways that were associated with miR-20a-mediated HCC suppression. To our knowledge, this is the first study establishing a direct causal relationship between miR-20a overexpression and liver cancer inhibition in vivo. Moreover, these results demonstrate that hepatocyte-specific hyPB transposons are an efficient platform to screen and identify miRs that affect overall survival and HCC tumor regression.
Collapse
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mario Di Matteo
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jiri Keirsse
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee Khim Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
54
|
Yasukawa K, Liew LC, Hagiwara K, Hironaka‐Mitsuhashi A, Qin X, Furutani Y, Tanaka Y, Nakagama H, Kojima S, Kato T, Ochiya T, Gailhouste L. MicroRNA-493-5p-mediated repression of the MYCN oncogene inhibits hepatic cancer cell growth and invasion. Cancer Sci 2020; 111:869-880. [PMID: 31883160 PMCID: PMC7060481 DOI: 10.1111/cas.14292] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Primary hepatic tumors mainly include hepatocellular carcinoma (HCC), which is one of the most frequent causes of cancer-related deaths worldwide. Thus far, HCC prognosis has remained extremely poor given the lack of effective treatments. Numerous studies have described the roles played by microRNAs (miRNAs) in cancer progression and the potential of these small noncoding RNAs for diagnostic or therapeutic applications. The current consensus supports the idea that direct repression of a wide range of oncogenes by a single key miRNA could critically affect the malignant properties of cancer cells in a synergistic manner. In this study, we aimed to investigate the oncogenes controlled by miR-493-5p, a major tumor suppressor miRNA that inactivates miR-483-3p oncomir in hepatic cancer cells. Using global gene expression analysis, we highlighted a set of candidate genes potentially regulated by miR-493-5p. In particular, the canonical MYCN protooncogene (MYCN) appeared to be an attractive target of miR-493-5p given its significant inhibition through 3'-UTR targeting in miR-493-5p-rescued HCC cells. We showed that MYCN was overexpressed in liver cancer cell lines and clinical samples from HCC patients. Notably, MYCN expression levels were inversely correlated with miR-493-5p in tumor tissues. We confirmed that MYCN knockdown mimicked the anticancer effect of miR-493-5p by inhibiting HCC cell growth and invasion, whereas MYCN rescue hindered miR-493-5p activity. In summary, miR-493-5p is a pivotal miRNA that modulates various oncogenes after its reexpression in liver cancer cells, suggesting that tumor suppressor miRNAs with a large spectrum of action could provide valuable tools for miRNA replacement therapies.
Collapse
Affiliation(s)
- Ken Yasukawa
- Division of Molecular and Cellular MedicineNational Cancer Center Research InstituteTokyoJapan
- Department of Integrative Bioscience and Biomedical EngineeringGraduate School of Advanced Science and EngineeringWaseda UniversityTokyoJapan
| | - Lee Chuen Liew
- Division of Molecular and Cellular MedicineNational Cancer Center Research InstituteTokyoJapan
- Graduate School of MedicineThe University of TokyoTokyoJapan
- Disease Modeling and Therapeutics LaboratoryInstitute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - Keitaro Hagiwara
- Division of Molecular and Cellular MedicineNational Cancer Center Research InstituteTokyoJapan
| | - Ai Hironaka‐Mitsuhashi
- Division of Molecular and Cellular MedicineNational Cancer Center Research InstituteTokyoJapan
| | - Xian‐Yang Qin
- Liver Cancer Prevention Research UnitRIKEN Cluster for Pioneering ResearchWakoJapan
| | - Yutaka Furutani
- Liver Cancer Prevention Research UnitRIKEN Cluster for Pioneering ResearchWakoJapan
| | - Yasuhito Tanaka
- Department of Virology and Liver UnitNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Hitoshi Nakagama
- Graduate School of MedicineThe University of TokyoTokyoJapan
- National Cancer CenterTokyoJapan
| | - Soichi Kojima
- Liver Cancer Prevention Research UnitRIKEN Cluster for Pioneering ResearchWakoJapan
| | - Takashi Kato
- Department of Integrative Bioscience and Biomedical EngineeringGraduate School of Advanced Science and EngineeringWaseda UniversityTokyoJapan
| | - Takahiro Ochiya
- Division of Molecular and Cellular MedicineNational Cancer Center Research InstituteTokyoJapan
- Present address:
Department of Molecular and Cellular MedicineInstitute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Luc Gailhouste
- Division of Molecular and Cellular MedicineNational Cancer Center Research InstituteTokyoJapan
- Present address:
Liver Cancer Prevention Research UnitRIKEN Cluster for Pioneering ResearchWakoJapan
| |
Collapse
|
55
|
Wang S, Luan J, Lv X. Inhibition of Endoplasmic Reticulum Stress Attenuated Ethanol-Induced Exosomal miR-122 and Acute Liver Injury in Mice. Alcohol Alcohol 2020; 54:465-471. [PMID: 31361816 DOI: 10.1093/alcalc/agz058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
AIMS In acute alcoholic liver injury, alcohol can directly or indirectly induce endoplasmic reticulum stress (ERS) to participate in liver injury, and it is found that the expression of serum exosomal miR-122 is significantly affected. Therefore, the present study investigated the effects of endoplasmic reticulum stress inhibition on the expression of serum exosomal miR-122 and acute liver injury. METHODS The acute alcoholic liver injury models were established by the intragastric administration of ethanol (5 g/kg) in ICR mice. Intervention group received 4-phenylbutyric acid (PBA, endoplasmic reticulum stress inhibitor; 75 mg/kg and 150 mg/kg, intraperitoneal) 12 and 24 hours before intragastric administration. Mice treated with saline were used as controls. RESULTS The ethanol treated mice exhibited significantly elevated hepatosomatic index (liver weight/body weight) and alanine aminotransferase (ALT), compared with those in the control group (P < 0.05). The ERS inhibitor 4-phenylbutyric acid protected against ethanol induced acute liver injury and hepatocyte necrosis, and PBA 150 mg/kg significantly attenuated ethanol induced hepatic ER stress-related proteins (GRP78, pIRE1α and pIF2α) (P < 0.05). Moreover, PBA 150 mg/kg markedly alleviated ethanol induced elevation of hepatic and serum exosomal miR-122 and pri-miR-122 (P < 0.05). CONCLUSIONS These findings suggest that ER stress inhibitor PBA attenuated ethanol induced acute liver injury and serum exosomal miR-122, and provides a potential therapy strategy for acute alcoholic liver injury.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
56
|
Abstract
In the present study, we investigated the role of miR-122 in hepatocarcinoma progression and explored the mechanism. In hepatocarcinoma tissues and cells, we used qRT-PCR to validate the miR-122 expression level. Next, we used colony formation by crystal violet staining assay to compare cell proliferation ability, and we used scratch test or Transwell assay to compare cell migration or invasion ability. We then conducted bioinformatics or luciferase reporter gene assay to prove the regulation effect of miR-122 on lamin B2 (LMNB2), and the biological function of LMNB2 was analyzed. We used nude mouse tumorigenicity assay to test the inhibition effect of miR-122 ASO therapy against hepatocarcinoma. miR-122 was reduced in hepatocarcinoma tissues compared to the paracarcinoma tissues, which was relatively low or high in hepatocarcinoma cell line SMMC7721 or Hep3B, and overexpressed miR-122 inhibited proliferation, migration, and invasion in hepatocarcinoma cells. Additionally, some reports showed that LMNB2 was regulated by miR-122, which inhibited the expression of LMNB2. Moreover, LMNB2 functioned to promote cell proliferation, migration, and invasion. We could achieve the inhibition of hepatocarcinoma using miR-122 therapy through decreasing LMNB2 expression in vivo. Our data indicated that miR-122 could inhibit hepatocellular carcinoma cell progression by targeting LMNB2 and as a therapeutic target for hepatocarcinoma treatment.
Collapse
Affiliation(s)
- Xiao-Na Li
- *The Department of General Surgery, Tongde Hospital of Zhejiang Province, Zhejiang Province, P.R. China
| | - Hong Yang
- †The Department of Medical Oncology, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, P.R. China
| | - Tao Yang
- ‡The Department of Hepatological Surgery, Tongde Hospital of Zhejiang Province, Zhejiang Province, P.R. China
| |
Collapse
|
57
|
Mirzadeh Azad F, Arabian M, Maleki M, Malakootian M. Small Molecules with Big Impacts on Cardiovascular Diseases. Biochem Genet 2020; 58:359-383. [PMID: 31997044 DOI: 10.1007/s10528-020-09948-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Although in recent years there has been a significant progress in the diagnosis, treatment, and prognosis of CVD, but due to their complex pathobiology, developing novel biomarkers and therapeutic interventions are still in need. MicroRNAs (miRNAs) are a fraction of non-coding RNAs that act as micro-regulators of gene expression. Mounting evidences over the last decade confirmed that microRNAs were deregulated in several CVDs and manipulating their expression could affect homeostasis, differentiation, and function of cardiovascular system. Here, we review the current knowledge concerning the roles of miRNAs in cardiovascular diseases with more details on cardiac remodeling, arrhythmias, and atherosclerosis. In addition, we discuss the latest findings on the potential therapeutic applications of miRNAs in cardiovascular diseases.
Collapse
Affiliation(s)
- Fatemeh Mirzadeh Azad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maedeh Arabian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
58
|
Guo H, Xu M, Cao Z, Li W, Chen L, Xie X, Wang W, Liu J. Ultrasound-Assisted miR-122-Loaded Polymeric Nanodroplets for Hepatocellular Carcinoma Gene Therapy. Mol Pharm 2020; 17:541-553. [PMID: 31876426 DOI: 10.1021/acs.molpharmaceut.9b00983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huanling Guo
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ming Xu
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhong Cao
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Wei Li
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lida Chen
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Wang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jie Liu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
59
|
Meng L, Chen Z, Jiang Z, Huang T, Hu J, Luo P, Zhang H, Huang M, Huang L, Chen Y, Lu M, Xu AM, Ying S. MiR-122-5p suppresses the proliferation, migration, and invasion of gastric cancer cells by targeting LYN. Acta Biochim Biophys Sin (Shanghai) 2020; 52:49-57. [PMID: 31828293 DOI: 10.1093/abbs/gmz141] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of malignant tumors with high mortality and morbidity in the world. MicroRNA-122 (miR-122) acts as a tumor suppressor in a variety of cancers and has been found to be dominant in gastric adenocarcinoma. However, the specific biological function of miR-122-5p in GC is not completely clear. In this study, we found that miR-122-5p was low-expressed in GC tissues and cell lines by using qRT-PCR. Overexpression of miR-122-5p inhibited the proliferation, migration, and invasion of GC cells by using CCK-8 and transwell assays. On the contrary, downregulation of miR-122-5p promoted the proliferation, migration, and invasion of GC cells. In addition, we found that the expression of LYN, an Src family tyrosine kinase, was inversely correlated with miR-122-5p expression in GC tissues by using western blot analysis, immunohistochemistry, and qRT-PCR assays. Meanwhile, luciferase assay results indicated that LYN is a direct target of miR-122-5p in GC cells. Moreover, silencing LYN expression by its siRNA inhibited the proliferation, migration, and invasion of GC cells. Importantly, overexpression of LYN restored miR-122-5p-mediated inhibition of the proliferation, migration, and invasion of GC cells. Taken together, our results indicated miR-122-5p inhibited the proliferation, migration, and invasion by targeting LYN in GC.
Collapse
Affiliation(s)
- Lei Meng
- Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhangming Chen
- Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhe Jiang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ting Huang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jie Hu
- Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Panquan Luo
- Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Hongli Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Mengqi Huang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Lei Huang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yu Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ming Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - A-man Xu
- Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
60
|
Hojo H, Yashiro Y, Noda Y, Ogami K, Yamagishi R, Okada S, Hoshino SI, Suzuki T. The RNA-binding protein QKI-7 recruits the poly(A) polymerase GLD-2 for 3' adenylation and selective stabilization of microRNA-122. J Biol Chem 2019; 295:390-402. [PMID: 31792053 DOI: 10.1074/jbc.ra119.011617] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
MicroRNA-122 (miR-122) is highly expressed in hepatocytes, where it plays an important role in regulating cholesterol and fatty acid metabolism, and it is also a host factor required for hepatitis C virus replication. miR-122 is selectively stabilized by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2 (also known as PAPD4 or TENT2). However, it is unclear how GLD-2 specifically stabilizes miR-122. Here, we show that QKI7 KH domain-containing RNA binding (QKI-7), one of three isoforms of the QKI proteins, which are members of the signal transduction and activation of RNA (STAR) family of RNA-binding proteins, is involved in miR-122 stabilization. QKI down-regulation specifically decreased the steady-state level of mature miR-122, but did not affect the pre-miR-122 level. We also found that QKI-7 uses its C-terminal region to interact with GLD-2 and its QUA2 domain to associate with the RNA-induced silencing complex protein Argonaute 2 (Ago2), indicating that the GLD-2-QKI-7 interaction recruits GLD-2 to Ago2. QKI-7 exhibited specific affinity to miR-122 and significantly promoted GLD-2-mediated 3' adenylation of miR-122 in vitro Taken together, our findings indicate that miR-122 binds Ago2-interacting QKI-7, which recruits GLD-2 for 3' adenylation and stabilization of miR-122.
Collapse
Affiliation(s)
- Hiroaki Hojo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuka Yashiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuta Noda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Koichi Ogami
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Ryota Yamagishi
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Shunpei Okada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shin-Ichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
61
|
MicroRNAs in Animal Models of HCC. Cancers (Basel) 2019; 11:cancers11121906. [PMID: 31805631 PMCID: PMC6966618 DOI: 10.3390/cancers11121906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality. Molecular heterogeneity and absence of biomarkers for patient allocation to the best therapeutic option contribute to poor prognosis of advanced stages. Aberrant microRNA (miRNA) expression is associated with HCC development and progression and influences drug resistance. Therefore, miRNAs have been assayed as putative biomarkers and therapeutic targets. miRNA-based therapeutic approaches demonstrated safety profiles and antitumor efficacy in HCC animal models; nevertheless, caution should be used when transferring preclinical findings to the clinics, due to possible molecular inconsistency between animal models and the heterogeneous pattern of the human disease. In this context, models with defined genetic and molecular backgrounds might help to identify novel therapeutic options for specific HCC subgroups. In this review, we describe rodent models of HCC, emphasizing their representativeness with the human pathology and their usefulness as preclinical tools for assessing miRNA-based therapeutic strategies.
Collapse
|
62
|
Kim KH, Lee JI, Kim OH, Hong HE, Kwak BJ, Choi HJ, Ahn J, Lee TY, Lee SC, Kim SJ. Ameliorating liver fibrosis in an animal model using the secretome released from miR-122-transfected adipose-derived stem cells. World J Stem Cells 2019; 11:990-1004. [PMID: 31768225 PMCID: PMC6851007 DOI: 10.4252/wjsc.v11.i11.990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/02/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recently, the exclusive use of mesenchymal stem cell (MSC)-secreted molecules, called secretome, rather than cells, has been evaluated for overcoming the limitations of cell-based therapy, while maintaining its advantages. However, the use of naïve secretome may not fully satisfy the specificity of each disease. Therefore, it appears to be more advantageous to use the functionally reinforced secretome through a series of processes involving physico-chemical adjustments or genetic manipulation rather than to the use naïve secretome. AIM To determine the therapeutic potential of the secretome released from miR-122-transfected adipose-derived stromal cells (ASCs). METHODS We collected secretory materials released from ASCs that had been transfected with antifibrotic miR-122 (MCM) and compared their antifibrotic effects with those of the naïve secretome (CM). MCM and CM were intravenously administered to the mouse model of thioacetamide-induced liver fibrosis, and their therapeutic potentials were compared. RESULTS MCM infusion provided higher therapeutic potential in terms of: (A) Reducing collagen content in the liver; (B) Inhibiting proinflammatory cytokines; and (C) Reducing abnormally elevated liver enzymes than the infusion of the naïve secretome. The proteomic analysis of MCM also indicated that the contents of antifibrotic proteins were significantly elevated compared to those in the naïve secretome. CONCLUSION We could, thus, conclude that the secretome released from miR-122-transfected ASCs has higher antifibrotic and anti-inflammatory properties than the naïve secretome. Because miR-122 transfection into ASCs provides a specific way of potentiating the antifibrotic properties of ASC secretome, it could be considered as an enhanced method for reinforcing secretome effectiveness.
Collapse
Affiliation(s)
- Kee-Hwan Kim
- Department of Surgery, Uijeongbu St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 11765, South Korea
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
| | - Jae Im Lee
- Department of Surgery, Uijeongbu St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 11765, South Korea
| | - Ok-Hee Kim
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
| | - Ha-Eun Hong
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
| | - Bong Jun Kwak
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
| | - Ho Joong Choi
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
| | - Joseph Ahn
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
| | - Tae Yun Lee
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
| | - Sang Chul Lee
- Department of Surgery, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 34943, South Korea
| | - Say-June Kim
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea.
| |
Collapse
|
63
|
Zhang HT, Sun J, Yan Y, Cui SH, Wang H, Wang CH, Qiu C, Chen X, Ding JS, Qian HG, Wang JC, Zhang Q. Encapsulated microRNA by gemcitabine prodrug for cancer treatment. J Control Release 2019; 316:317-330. [PMID: 31733293 DOI: 10.1016/j.jconrel.2019.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 01/21/2023]
Abstract
Although microRNAs (miRNAs) function as the important tumor gene regulators, they still confront with many challenges in systemic delivery. Here, the amphiphilic gemcitabine-oleic acid prodrugs (GOA) binding miRNAs with hydrogen bond are assembled into nanoparticles (GOA/miR NPs) through hydrophobic interaction via denaturation-annealing processes and nano-precipitation technique. The non-cationic GOA/miR NPs with an average size of ~150 nm and a zeta potential of ~ - 15 mV exhibit a stable encapsulation of miRNAs with non-sequence selectivity. Either miR-122 or miR-34a encapsulated in the GOA/miR NPs is efficiently delivered into HepG2 cells and significantly downregulate the expression levels of target gene after lysosome escape and pH-responsive disassembly. Moreover, in vivo experiments demonstrate that the GOA/miR-122 NPs exhibit higher tumor accumulation. Compared to GOA micelles, GOA/miR-122 NPs displayed stronger tumor inhibition (73% regression) after intravenous injection in nude mice xenografted with HCC, along with rapid clearance in normal liver tissues. Furthermore, there is no significant influence on biochemical indicators and immune factors during the systematic administration of GOA/miR-122 NPs. The non-cationic GOA/miR NPs engineered by hydrogen bond interaction and hydrophobic forces show the enhanced synergistic antitumor efficacy and good biosafety, which will provide a potential nanomedcine for HCC treatment.
Collapse
Affiliation(s)
- Hai-Tao Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jing Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, China
| | - Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, China
| | - Shi-He Cui
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, China
| | - Hao Wang
- School of Pharmaceutical Sciences, Ningxia Medical University, YinChuan, NingXia 750004, China
| | - Cheng-Han Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, China
| | - Chong Qiu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, China
| | - Xin Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, China
| | - Jin-Song Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Hong-Gang Qian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, China
| |
Collapse
|
64
|
Su J, Wu F, Xia H, Wu Y, Liu S. Accurate cancer cell identification and microRNA silencing induced therapy using tailored DNA tetrahedron nanostructures. Chem Sci 2019; 11:80-86. [PMID: 32110359 PMCID: PMC7012044 DOI: 10.1039/c9sc04823e] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
Accurate cancer cell identification and efficient therapy are extremely desirable and challenging in clinics. Here, we reported the first example of DNA tetrahedron nanostructures (DTNSs) to real-time monitor and image three intracellular miRNAs based on the fluorescence "OFF" to "ON" mode, as well as to realize cancer therapy induced by miRNA silencing. DTNSs were self-assembled by seven customized single-stranded nucleic acid chains containing three recognition sequences for target miRNAs. In the three vertexes of DTNSs, fluorophores and quenchers were brought into close proximity, inducing fluorescence quenching. In the presence of target miRNAs, fluorophores and quenchers would be separated, resulting in fluorescence recovery. Owing to the unique tetrahedron-like spatial structure, DTNSs displayed improved resistance to enzymatic digestion and high cellular uptake efficiency, and exhibited the ability to simultaneously monitor three intracellular miRNAs. DTNSs not only effectively distinguished tumor cells from normal cells, but also identified cancer cell subtypes, which avoided false-positive signals and significantly improved the accuracy of cancer diagnosis. Moreover, the DTNSs could also act as an anti-cancer drug; antagomir-21 (one recognition sequence) was detached from DTNSs to silence endogenous miRNA-21 inside cells, which would suppress cancer cell migration and invasion, and finally induce cancer cell apoptosis; the result was demonstrated by experiments in vitro and in vivo. It is anticipated that the development of smart nanoplatforms will open a door for cancer diagnosis and treatment in clinical systems.
Collapse
Affiliation(s)
- Juan Su
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Fubing Wu
- Department of Pathology , School of Basic Medical Sciences , Department of Oncology , The Affiliated Sir Run Run Hospital , State Key Laboratory of Reproductive Medicine , Key Laboratory of Antibody Technique of National Health Commission , Nanjing Medical University , Nanjing 211166 , China
| | - Hongping Xia
- Department of Pathology , School of Basic Medical Sciences , Department of Oncology , The Affiliated Sir Run Run Hospital , State Key Laboratory of Reproductive Medicine , Key Laboratory of Antibody Technique of National Health Commission , Nanjing Medical University , Nanjing 211166 , China
| | - Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| |
Collapse
|
65
|
Zhang Y, Qian H, Xu J, Gao W. ADAR, the carcinogenesis mechanisms of ADAR and related clinical applications. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:686. [PMID: 31930087 DOI: 10.21037/atm.2019.11.06] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine deaminases acting on RNA (ADARs) catalyze the conversion of adenosine (A) to inosine (I) in double-stranded RNA, which can change the codons after transcription. Abnormal ADAR editing is present in a variety of cancers. However, the study of the biological effects of ADARs in cancer is not very deep. Here, we review current important ADAR-mediated editing events, related carcinogenic mechanisms and applications in clinical medicine. Further exploration in ADARs can provide a new direction for cancer treatment.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huizhu Qian
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
66
|
Ha SY, Yu JI, Choi C, Kang SY, Joh JW, Paik SW, Kim S, Kim M, Park HC, Park CK. Prognostic significance of miR-122 expression after curative resection in patients with hepatocellular carcinoma. Sci Rep 2019; 9:14738. [PMID: 31611609 PMCID: PMC6791887 DOI: 10.1038/s41598-019-50594-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
Downregulation of MicroRNA-122 (miR-122) and its association with cancer progression have been reported in hepatocellular carcinoma (HCC) cell line models and a limited number of HCC samples. Recently, restoration of miR-122 expression by direct delivery of miR-122 yielded promising results in HCCs. However, the prognostic effect of miR-122 expression in human HCC samples is not fully understood. We investigated the expression level of miR-122 by quantitative real-time polymerase chain reaction in 289 curatively resected HCC samples and 20 normal liver samples and evaluated the prognostic effect of miR-122 expression. The relative quantification value of miR-122 was much lower in HCC samples than in normal liver tissues. During a median 119 months of follow-up for survival, the low miR-122 expression group showed shorter recurrence-free survival (RFS) (p = 0.033) and intrahepatic recurrence-free survival (IHRFS) (p = 0.014), and a trend of short distant metastasis-free survival (DMFS) (p = 0.149) than high expression group. On multivariate analysis, miR-122 expression was an independent prognostic factor for RFS, IHRFS and DMFS. Downregulation of miR-122 expression, frequently found in HCC samples, was an independent prognostic factor for RFS after curative resection. Emerging therapeutic approaches targeting miR-122 could be applicable in patients with miR-122 downregulated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sang Yun Ha
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae-Won Joh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Woon Paik
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seonwoo Kim
- Statistics and Data Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Minji Kim
- Statistics and Data Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Cheol-Keun Park
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
- Department of Pathology, Anatomic Pathology Reference Lab, Seegene Medical Foundation, Seoul, Korea.
| |
Collapse
|
67
|
Potential and Challenges of Aptamers as Specific Carriers of Therapeutic Oligonucleotides for Precision Medicine in Cancer. Cancers (Basel) 2019; 11:cancers11101521. [PMID: 31636244 PMCID: PMC6826972 DOI: 10.3390/cancers11101521] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022] Open
Abstract
Due to the progress made in the area of precision and personalized medicine in the field of cancer therapy, strategies to selectively and specifically identify target molecules causative of the diseases are urgently needed. Efforts are being made by a number of different laboratories, companies, and researchers to develop therapeutic molecules that selectively recognize the tissues and the cells of interest, exhibit few or no off-target and side effects, are non-immunogenic, and have a strong action. Aptamers, artificially selected single-stranded DNA or RNA oligonucleotides, are promising molecules satisfying many of the requirements needed for diagnosis and precision medicine. Aptamers can also couple to their native mechanism of action the delivery of additional molecules (oligonucleotides, siRNAs, miRNAs) to target cells. In this review, we summarize recent progress in the aptamer-mediated strategy for the specific delivery of therapeutic oligonucleotides.
Collapse
|
68
|
Rasal KD, Iquebal MA, Jaiswal S, Dixit S, Vasam M, Nandi S, Raza M, Sahoo L, Angadi UB, Rai A, Kumar D, Sundaray JK. Liver-Specific microRNA Identification in Farmed Carp, Labeo bata (Hamilton, 1822), Fed with Starch Diet Using High-Throughput Sequencing. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:589-595. [PMID: 31346855 DOI: 10.1007/s10126-019-09912-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
The liver is an important central organ, which controls carbohydrate metabolism through maintaining glucose homeostasis by a tightly regulated system of genes or enzymes. The microRNAs are small non-coding RNAs playing an important role in the regulation of genes associated with developmental biology, physiology, metabolism, etc. Thus, in this study, we have intended to detect liver-specific microRNAs in farmed carp, Labeo bata, upon being fed a diet with different levels of carbohydrates. Here, we have conducted the experiment for 45 days using fingerlings of farmed carp fed with 20% (control), 40%, and 60% gelatinized starch levels. The liver tissues were collected from each treatment and processed for RNA isolation, small RNA library preparation, and high-throughput sequencing using Illumina NexSeq500. Through sequencing, 15,779,417 reads in 20% CHO, 13,959,039 in 40% CHO, and 13,661,950 in 60% CHO reads were generated for control and treated fishes using three small RNA libraries. We have investigated 445 novel and 231 conserved microRNAs in 20%, 40%, and 60% carbohydrate (CHO), respectively, through computational analysis. The differential expression analysis of miRNAs was carried out between different treatments compared with control and this study depicted 117 known and 114 novel miRNA genes involved in carbohydrate metabolic pathways. Further, target prediction and gene ontology analysis revealed that miRNAs were involved in several pathways such as signaling pathway, G protein pathway, complement receptor-mediated pathway, dopamine receptor signaling pathway, epidermal growth factor pathway, and notch signaling pathway. The predicted miRNA sites in targeted genes were associated with cellular activities, developmental biology, DNA binding, Golgi apparatus, extracellular region, catalytic activity, MAPK cascade, etc. Overall, we have generated a vital resource of liver-specific miRNAs involved in metabolic gene regulation. These studies further will help develop miRNA inhibitors to study their role during carbohydrate metabolism in farmed carp.
Collapse
Affiliation(s)
- Kiran D Rasal
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Sangita Dixit
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Manohar Vasam
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Samiran Nandi
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Mustafa Raza
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Lakshman Sahoo
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - U B Angadi
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Jitendra Kumar Sundaray
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India.
| |
Collapse
|
69
|
Yang X, Sun L, Wang L, Yao B, Mo H, Yang W. LncRNA SNHG7 accelerates the proliferation, migration and invasion of hepatocellular carcinoma cells via regulating miR-122-5p and RPL4. Biomed Pharmacother 2019; 118:109386. [PMID: 31545291 DOI: 10.1016/j.biopha.2019.109386] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 01/14/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play vital roles in the development and progression of hepatocellular carcinoma (HCC). The recent study finds a strong correlation between lncRNA small nucleolar RNA host gene 7 (SNHG7) and HCC metastasis. However, the molecular mechanism by which SNHG7 regulates HCC progression has not been investigated. In this study, we found that SNHG7 was highly expressed in HCC tissues compared to non-tumor tissues. Data from public databases consistently indicated the up-regulated expression of SNHG7 in HCC. Furthermore, the levels of SNHG7 were up-regulated in four HCC cell lines (Huh7, Hep3B, HCCLM3, MHCC97 H) compared with LO2 cells. Interestingly, the elevated expression of SNHG7 was closely correlated with advanced tumor stages, high tumor grades, vascular invasion and poor prognosis of HCC. Knockdown of SNHG7 markedly inhibited cell proliferation, migration and invasion in HCCLM3 and MHCC97H cells, and prominently suppressed the growth and metastasis of HCCLM3 cells in vivo. Mechanistically, SNHG7 silencing increased the level of miR-122-5p in HCC cells. Luciferase reporter assay revealed the direct interaction between SNHG7 and miR-122-5p. Moreover, SNHG7 knockdown decreased the levels of ribosomal protein L4 (RPL4) mRNA and protein in HCC cells. Accordingly, the stability of RPL4 mRNA was reduced by SNHG7 silencing. More importantly, either miR-122-5p knockdown or RPL4 restoration partially reversed SNHG7 silencing-induced tumor suppressive effects on HCC cells. In conclusion, we demonstrated that SNHG7 expression was up-regulated in HCC. SNHG7 contributed to HCC progression by regulating miR-122-5p and RPL4. Therefore, SNHG7 might be a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Xue Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Liankang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huanye Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
70
|
Li A, Wu J, Zhai A, Qian J, Wang X, Qaria MA, Zhang Q, Li Y, Fang Y, Kao W, Song W, Zhang Z, Zhang F. HBV triggers APOBEC2 expression through miR‑122 regulation and affects the proliferation of liver cancer cells. Int J Oncol 2019; 55:1137-1148. [PMID: 31485598 DOI: 10.3892/ijo.2019.4870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/15/2019] [Indexed: 11/05/2022] Open
Abstract
Hepatitis B virus (HBV) infection is responsible for 50% of liver cancer cases globally; this disease is one of the leading causes of cancer‑associated mortality. One reported mechanism underlying the development of liver cancer is the mutation of tumor suppressor genes induced by the overexpression of apolipoprotein B mRNA‑editing enzyme catalytic subunit 2 (APOBEC2) in hepatocytes. In addition, it has been observed that HBV inhibited microRNA (miR)‑122 expression in hepatocytes; however, the molecular mechanisms involved in liver cancer development remain unknown and further investigations are required. In the present study, the mechanistic roles of HBV infection in modulating the expression of miR‑122 and APOBEC2, and the development of liver cancer, were investigated. Reverse transcription‑quantitative PCR and western blot analyses revealed that APOBEC2 expression was markedly upregulated following HBV infection. Of note, the expression profile of APOBEC2 in the Huh7 and HepG2 liver cancer cell lines opposed that of miR‑122; this miR is the most abundant miRNA in the liver and has been associated with hepatocarcinogenesis. Mechanistically, it was demonstrated via a dual‑luciferase assay that miR‑122 could specifically bind to the 3'‑untranslated region (3'UTR) of APOBEC2 mRNA, inhibiting its expression. Collectively, the findings of the present study may provide insight into the mechanistic role of HBV infection in modulating the expression of miR‑122, which targets the 3'UTR of APOBEC2 mRNA, subsequently inducing liver carcinogenesis.
Collapse
Affiliation(s)
- Aimei Li
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jing Wu
- Hangzhou Key Laboratory of Inflammation and Immunoregulation, Department of Basic Medical Science, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310000, P.R. China
| | - Aixia Zhai
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jun Qian
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xinyang Wang
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Majjid A Qaria
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Qingmeng Zhang
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yujun Li
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yong Fang
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Wenping Kao
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Wuqi Song
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhiyi Zhang
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Fengmin Zhang
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
71
|
Li HD, Du XS, Huang HM, Chen X, Yang Y, Huang C, Meng XM, Li J. Noncoding RNAs in alcoholic liver disease. J Cell Physiol 2019; 234:14709-14720. [PMID: 30701547 DOI: 10.1002/jcp.28229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/01/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Alcoholic liver disease (ALD) is a complex process with high morbitity and can cause liver dysfunction, which contains a wide spectrum of hepatic lesions, including steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. To date, the molecular mechanisms for ALD have not been fully explored and an effective therapy is still missing. Overwhelming evidence shows dysregulation of noncoding RNAs (ncRNAs), particularly microRNAs (miRNAs), is correlated with etiopathogenesis and progress of ALD including hepatocyte damage, disrupted lipid metabolism, aggressive inflammatory responses, oxidative stress, programmed cell death, fibrosis, and epigenetic changes induced by alcohol. For example, circulating miRNA-122 is a marker of hepatocyte damage, and miRNA-155 is a potential marker of inflammation, indicating their diagnosis therapeutic potential in ALD. In addition, roles for long noncoding RNAs (lncRNAs) and circular RNAs in ALD are being uncovered. Further, circulating ncRNAs and exosome-derived ncRNAs have attracted more attention lately, suggesting a role in the prevention and treatment of ALD. This review covers the roles of ncRNAs in ALD, and the potential uses as markers for diagnosis and therapeutic options.
Collapse
Affiliation(s)
- Hai-Di Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Sa Du
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hui-Min Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xin Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yang Yang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
72
|
Lv T, Kong L, Jiang L, Wu H, Wen T, Shi Y, Yang J. Dicer1 facilitates liver regeneration in a manner dependent on the inhibitory effect of miR-21 on Pten and Rhob expression. Life Sci 2019; 232:116656. [PMID: 31306658 DOI: 10.1016/j.lfs.2019.116656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/07/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
AIMS Tamoxifen-induced liver-specific Dicer1 deletion (iDicer1-/-) in mature mice may provide clues demonstrating the genuine effects of acute loss of Dicer1 and miRNAs in the liver regeneration process. MAIN METHODS In this study, mice with tamoxifen-induced Dicer1 deletion through the Cre/LoxP system were constructed and then underwent classic 70% partial hepatectomy or CCl4-induced liver injury. To rescue the inhibitory effect of Dicer1 ablation on liver regeneration, miR-21 agomir was injected into the tail vein of iDicer1-/- mice. KEY FINDINGS Unlike constitutive embryonic deletion of Dicer1, tamoxifen-induced Dicer1 deletion did not result in severe liver injury or lesions, providing an ideal model for investigating acute loss of Dicer1 and miRNAs in liver regeneration. Dicer1 deletion led to impaired liver regeneration through the inhibitory effect of miR-21 on PTEN and Rhob expression. SIGNIFICANCE In our previous study, we found that embryonic loss of Dicer1 impairs hepatocyte survival and leads to chronic inflammation and progenitor cell activation, while the role of Dicer1 in liver regeneration remains largely unknown. We clearly identified the promotion effect of Dicer1 on liver regeneration by increasing miR-21 expression, which inhibits the expression of two negative cell proliferation regulators, Pten and Rhob.
Collapse
Affiliation(s)
- Tao Lv
- Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lingxiang Kong
- Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Li Jiang
- Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hong Wu
- Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tianfu Wen
- Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yujun Shi
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu 610041, China
| | - Jiayin Yang
- Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
73
|
Mahmoudian-Sani MR, Asgharzade S, Alghasi A, Saeedi-Boroujeni A, Adnani Sadati SJ, Moradi MT. MicroRNA-122 in patients with hepatitis B and hepatitis B virus-associated hepatocellular carcinoma. J Gastrointest Oncol 2019; 10:789-796. [PMID: 31392060 DOI: 10.21037/jgo.2019.02.14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) infection is known as a serious problem in the domain of public health and approximately 350 million people across the world are affected with this infectious disease. As well, microRNAs are recognized as a type of small non-coding RNAs that can be widely used as a diagnostic biomarker and prognosis method of special diseases. In this respect, microRNA-122 or miR-122 can play a significant role in the pathogenesis of several hepatic diseases. Given the importance of microRNA-122 in the liver as well as its pathology, this study focused on the potential functions of microRNA-122 in pathogenesis, diagnosis, and treatment of HBV infection. In this regard, the findings of previous studies had indicated that expression of microRNA-122 in patients with HBV infection could be significantly deregulated. The results of this study were consistent with the idea that diagnosis and treatment of this infectious disease using microRNA-122 could be an efficient method.
Collapse
Affiliation(s)
- Mohammad Reza Mahmoudian-Sani
- Research Center of Thalassemia and Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arash Alghasi
- Research Center of Thalassemia and Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Seyed Jafar Adnani Sadati
- Department of Microbiology & Immunology, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Taghi Moradi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
74
|
Liu G, Ma X, Wang Z, Wakae K, Yuan Y, He Z, Yoshiyama H, Iizasa H, Zhang H, Matsuda M, Sugiyama R, Yuan Z, Muramatsu M, Li L. Adenosine deaminase acting on RNA-1 (ADAR1) inhibits hepatitis B virus (HBV) replication by enhancing microRNA-122 processing. J Biol Chem 2019; 294:14043-14054. [PMID: 31366735 DOI: 10.1074/jbc.ra119.007970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/04/2019] [Indexed: 12/18/2022] Open
Abstract
Adenosine deaminases acting on RNA-1 (ADAR1) involves adenosine to inosine RNA editing and microRNA processing. ADAR1 is known to be involved in the replication of various viruses, including hepatitis C and D. However, the role of ADAR1 in hepatitis B virus (HBV) infection has not yet been elucidated. Here, for the first time, we demonstrated ADAR1 antiviral activity against HBV. ADAR1 has two splicing isoforms in human hepatocytes: constitutive p110 protein and interferon-α (IFN-α)-responsive p150 protein. We found that overexpression of ADAR1 decreased HBV RNA in an HBV culture model. A catalytic-site mutant ADAR1 also decreased HBV RNA levels, whereas another adenosine deaminases that act on the RNA (ADAR) family protein, ADAR2, did not. Moreover, the induction of ADAR1 by stimulation with IFN-α also reduced HBV RNA levels. Decreases in endogenous ADAR1 expression by knock-down or knock-out increased HBV RNA levels. A major hepatocyte-specific microRNA, miRNA-122, was found to be positively correlated with ADAR1 expression, and exogenous miRNA-122 decreased both HBV RNA and DNA, whereas, conversely, transfection with a miRNA-122 inhibitor increased them. The reduction of HBV RNA by ADAR1 expression was abrogated by p53 knock-down, suggesting the involvement of p53 in the ADAR1-mediated reduction of HBV RNA. This study demonstrated, for the first time, that ADAR1 plays an antiviral role against HBV infection by increasing the level of miRNA-122 in hepatocytes.
Collapse
Affiliation(s)
- Guangyan Liu
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang 110034, China.,Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.,Department of Molecular Genetics, Kanazawa University, Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | - Xiancai Ma
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhe Wang
- Department of Molecular Genetics, Kanazawa University, Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa 920-8640, Japan.,Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, China
| | - Kousho Wakae
- Department of Molecular Genetics, Kanazawa University, Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | - Yaochang Yuan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhangping He
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Hironori Yoshiyama
- Department of Microbiology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| | - Hisashi Iizasa
- Department of Microbiology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Disease, Tokyo 164-8640, Japan
| | - Ryuichi Sugiyama
- Department of Virology II, National Institute of Infectious Disease, Tokyo 164-8640, Japan
| | - Zhiyu Yuan
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang 110034, China
| | - Masamichi Muramatsu
- Department of Molecular Genetics, Kanazawa University, Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa 920-8640, Japan .,Department of Virology II, National Institute of Infectious Disease, Tokyo 164-8640, Japan
| | - Linghua Li
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| |
Collapse
|
75
|
Revealing liver specific microRNAs linked with carbohydrate metabolism of farmed carp, Labeo rohita (Hamilton, 1822). Genomics 2019; 112:32-44. [PMID: 31325488 DOI: 10.1016/j.ygeno.2019.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/11/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
The role of microRNA in gene regulation during developmental biology has been well depicted in several organisms. The present study was performed to investigate miRNAs role in the liver tissues during carbohydrate metabolism and their targets in the farmed carp rohu, Labeo rohita, which is economically important species in aquaculture. Using Illumina-HiSeq technology, a total of 22,612,316; 44,316,046 and 13,338,434 clean reads were obtained from three small-RNA libraries. We have identified 138 conserved and 161 novel miRNAs and studies revealed that miR-22, miR-122, miR-365, miR-200, and miR-146 are involved in carbohydrate metabolism. Further analysis depicted mature miRNA and their predicted target sites in genes that were involved in developmental biology, cellular activities, transportation, etc. This is the first report of the presence of miRNAs in liver tissue of rohu and their comparative profile linked with metabolism serves as a vital resource as a biomarker.
Collapse
|
76
|
Toh TB, Lim JJ, Chow EKH. Epigenetics of hepatocellular carcinoma. Clin Transl Med 2019; 8:13. [PMID: 31056726 PMCID: PMC6500786 DOI: 10.1186/s40169-019-0230-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
In recent years, large scale genomics and genome-wide studies using comprehensive genomic tools have reshaped our understanding of cancer evolution and heterogeneity. Hepatocellular carcinoma, being one of the most deadly cancers in the world has been well established as a disease of the genome that harbours a multitude of genetic and epigenetic aberrations during the process of liver carcinogenesis. As such, in depth understanding of the cancer epigenetics in cancer specimens and biopsy can be useful in clinical settings for molecular subclassification, prognosis, and prediction of therapeutic responses. In this review, we present a concise discussion on recent progress in the field of liver cancer epigenetics and some of the current works that contribute to the progress of liver cancer therapeutics.
Collapse
Affiliation(s)
- Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, MD6 #12-01, Singapore, 117599, Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, MD6 #12-01, Singapore, 117599, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, MD6 #12-01, Singapore, 117599, Singapore. .,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Level 5, Singapore, 117597, Singapore.
| |
Collapse
|
77
|
Yang F, Li L, Yang R, Wei M, Sheng Y, Ji L. Identification of serum microRNAs as potential toxicological biomarkers for toosendanin-induced liver injury in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152867. [PMID: 30844585 DOI: 10.1016/j.phymed.2019.152867] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/26/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Toosendan Fructus is traditionally used as an insecticide or digestive tract parasiticide for treating digestive parasites in China. It is recorded to have little toxicity in Chinese Pharmacopoeia and has been found to cause severe liver injury during clinical practice. PURPOSE This study aims to identify candidate serum microRNAs (miRNAs) as potential toxicological biomarkers for reflecting the hepatotoxicity induced by toosendanin (TSN), which is the main toxic compound isolated from Toosendan Fructus METHODS: Alanine/aspartate aminotransferase (ALT/AST) activities detection and liver histological observation were performed to evaluate the liver injury induced by TSN or other hepatotoxicants in mice. miRNAs chip analysis and Real-time PCR assay were conducted to identify the altered miRNAs in serum from TSN-treated mice RESULTS: The results of serum ALT/AST and liver histological evaluation showed that TSN (10 mg/kg) induced hepatotoxicity in mice. The results of miRNAs chip showed that the expression of 81 serum miRNAs was obviously altered in mice treated with TSN for 12 h, and 22 of them have passed the further validation in serum from mice treated with TSN for both 6 h and 12 h. These 22 miRNAs were supposed to be the candidate toxicological biomarkers for TSN-induced hepatotoxicity with more sensitivity as compared to the alteration of AST or ALT activity. Moreover, the expression of miRNA-122-3p and mcmv-miRNA-m01-4-3p was not only increased in TSN-treated mice, but also increased in mice treated with other hepatotoxicants including acetaminophen (APAP), monocrotaline (MCT) and diosbuibin B (DB). Only the expression of serum miRNA-367-3p was increased in TSN-treated mice but not changed in the liver injury induced by APAP, MCT or DB CONCLUSION: miR-122-3p and mcmv-miRNA-m01-4-3p may be two commonly sensitive biomarkers for reflecting the hepatotoxicity induced by exogenous hepatotoxicants, and miR-367-3p may be a specific biomarker for reflecting the liver injury induced by TSN.
Collapse
Affiliation(s)
- Fan Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Li Li
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Rui Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuchen Sheng
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
78
|
Li X, Jiang P, Yu H, Yang Y, Xia L, Yang R, Fang X, Zhao Z. miR-21-3p TargetsElovl5and Regulates Triglyceride Production in Mammary Epithelial Cells of Cow. DNA Cell Biol 2019; 38:352-357. [DOI: 10.1089/dna.2018.4409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xiaohui Li
- Department of Animal Science, Jilin University, Changchun, Jilin, P.R. China
| | - Ping Jiang
- Department of Animal Science, Jilin University, Changchun, Jilin, P.R. China
| | - Haibin Yu
- Department of Animal Science, Jilin University, Changchun, Jilin, P.R. China
| | - Yuwei Yang
- Department of Animal Science, Jilin University, Changchun, Jilin, P.R. China
| | - Lixin Xia
- Department of Animal Science, Jilin University, Changchun, Jilin, P.R. China
| | - Runjun Yang
- Department of Animal Science, Jilin University, Changchun, Jilin, P.R. China
| | - Xibi Fang
- Department of Animal Science, Jilin University, Changchun, Jilin, P.R. China
| | - Zhihui Zhao
- Department of Animal Science, Jilin University, Changchun, Jilin, P.R. China
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, P.R. China
| |
Collapse
|
79
|
Schwarzenbach H, Gahan PB. MicroRNA Shuttle from Cell-To-Cell by Exosomes and Its Impact in Cancer. Noncoding RNA 2019; 5:E28. [PMID: 30901915 PMCID: PMC6468647 DOI: 10.3390/ncrna5010028] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023] Open
Abstract
The identification of exosomes, their link to multivesicular bodies and their potential role as a messenger vehicle between cancer and healthy cells opens up a new approach to the study of intercellular signaling. Furthermore, the fact that their main cargo is likely to be microRNAs (miRNAs) provides the possibility of the transfer of such molecules to control activities in the recipient cells. This review concerns a brief overview of the biogenesis of both exosomes and miRNAs together with the movement of such structures between cells. The possible roles of miRNAs in the development and progression of breast, ovarian and prostate cancers are discussed.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Peter B Gahan
- Fondazione "Enrico Puccinelli" Onlus, 06126 Perugia, Italy.
| |
Collapse
|
80
|
Sasaki R, Kanda T, Yokosuka O, Kato N, Matsuoka S, Moriyama M. Exosomes and Hepatocellular Carcinoma: From Bench to Bedside. Int J Mol Sci 2019; 20:E1406. [PMID: 30897788 PMCID: PMC6471845 DOI: 10.3390/ijms20061406] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
As hepatocellular carcinoma (HCC) usually occurs in the background of cirrhosis, which is an end-stage form of liver diseases, treatment options for advanced HCC are limited, due to poor liver function. The exosome is a nanometer-sized membrane vesicle structure that originates from the endosome. Exosome-mediated transfer of proteins, DNAs and various forms of RNA, such as microRNA (miRNA), long noncoding RNA (lncRNA) and messenger RNA (mRNA), contributes to the development of HCC. Exosomes mediate communication between both HCC and non-HCC cells involved in tumor-associated cells, and several molecules are implicated in exosome biogenesis. Exosomes may be potential diagnostic biomarkers for early-stage HCC. Exosomal proteins, miRNAs and lncRNAs could provide new biomarker information for HCC. Exosomes are also potential targets for the treatment of HCC. Notably, further efforts are required in this field. We reviewed recent literature and demonstrated how useful exosomes are for diagnosing patients with HCC, treating patients with HCC and predicting the prognosis of HCC patients.
Collapse
Affiliation(s)
- Reina Sasaki
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Naoya Kato
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Shunichi Matsuoka
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
81
|
Fathi-Kazerooni M, Kazemnejad S, Khanjani S, Saltanatpour Z, Tavoosidana G. Down-regulation of miR-122 after transplantation of mesenchymal stem cells in acute liver failure in mice model. Biologicals 2019; 58:64-72. [PMID: 30824230 DOI: 10.1016/j.biologicals.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 11/28/2018] [Accepted: 02/19/2019] [Indexed: 01/13/2023] Open
Abstract
This study investigated the correlation between the hepatic level of miR-122 and the extent of liver tissue regeneration in CCl4 induced liver injury mice model following transplantation of menstrual blood-(MenSCs) and bone marrow-derived stem cells (BMSCs). Hepatic miR-122 levels were significantly up-regulated following administration of CCl4 (P < 0.01). The significant positive correlations were observed between hepatic miR-122 and biochemical serum markers and the severity of liver injury in histopathological assessments (P < 0.01). Following stem cell therapy, all cell treated groups showed a significant down-regulation in miR-122 that was significantly correlated with improvement in histopathological features and biochemical markers (P < 0.01). Furthermore, the hepatic level of miR-122 was lower in the MenSCs-treated group compared with the BMSCs-treated group (P < 0.01) and in HPL cells-treated groups in reference to undifferentiated cells-treated groups (P < 0.05). These data suggest that miR-122 could be used as a potential predictor of outcome of liver injury after mesenchymal stem cell transplantation.
Collapse
Affiliation(s)
- Mina Fathi-Kazerooni
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sayeh Khanjani
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zohreh Saltanatpour
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
82
|
Zhao X, Chen Z, Zhou Z, Li Y, Wang Y, Zhou Z, Lu H, Sun C, Chu X. High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with high-fat diet-induced hepatic insulin resistance in mice. GENES AND NUTRITION 2019; 14:6. [PMID: 30820263 PMCID: PMC6379981 DOI: 10.1186/s12263-019-0630-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/06/2019] [Indexed: 01/06/2023]
Abstract
Background Hepatic insulin resistance (IR) plays a crucial role in the development of many metabolic diseases, such as type 2 diabetes. MicroRNAs (miRNAs) are involved in the pathogenesis of IR and related diseases; however, studies of miRNAs in hepatic IR are limited. Method In this study, we adopted a high-throughput sequencing approach to construct small RNA libraries in the livers of normal mice and high-fat diet-induced hepatic IR mice. Results Through analysis of data, 107 known and 56 novel miRNAs were identified as differentially expressed miRNAs between the two groups. Additionally, bioinformatics methods were used to predict targets of the differentially expressed miRNAs and to explore the potential downstream Gene Ontology categories and Kyoto Encyclopedia of Genes and Genomes pathways. Meanwhile, some differentially expressed miRNAs (miR-34a-5p, miR-149-5p, miR-335-3p, miR-10b-5p, miR-1a-3p, miR-411-5p, and miR-592-5p) were validated by quantitative-time PCR, and their potential target genes related to IR or glycolipid metabolism were also predicted and presented in this study. Conclusion Taken together, our results defined miRNA expression signature that may lead to hepatic IR in mice, and the findings provided a foundation for future studies to further explore the effects and underlying mechanisms of the miRNAs and their target genes in the pathogenesis of hepatic IR and related diseases. Electronic supplementary material The online version of this article (10.1186/s12263-019-0630-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Zhao Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Zengyuan Zhou
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Yuzheng Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Yuanyuan Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Zihao Zhou
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Huimin Lu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Xia Chu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| |
Collapse
|
83
|
Rong X, Sun-Waterhouse D, Wang D, Jiang Y, Li F, Chen Y, Zhao S, Li D. The Significance of Regulatory MicroRNAs: Their Roles in Toxicodynamics of Mycotoxins and in the Protection Offered by Dietary Therapeutics Against Mycotoxin-Induced Toxicity. Compr Rev Food Sci Food Saf 2018; 18:48-66. [DOI: 10.1111/1541-4337.12412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/11/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Rong
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- School of Chemical Sciences; The Univ. of Auckland; Private Bag Auckland 92019 New Zealand
| | - Dan Wang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- Shandong Inst. of Pomology; Taian Shandong 271000 P. R. China
| | - Yang Jiang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Yilun Chen
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Shancang Zhao
- Central Laboratory of Shandong Academy of Agricultural Sciences; Key Laboratory of Test Technology on Food Quality and Safety of Shandong Province; Jinan Shandong 250100 P. R. China
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| |
Collapse
|
84
|
Chen QQ, Zhang C, Qin MQ, Li J, Wang H, Xu DX, Wang JQ. Inositol-Requiring Enzyme 1 Alpha Endoribonuclease Specific Inhibitor STF-083010 Alleviates Carbon Tetrachloride Induced Liver Injury and Liver Fibrosis in Mice. Front Pharmacol 2018; 9:1344. [PMID: 30538632 PMCID: PMC6277551 DOI: 10.3389/fphar.2018.01344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
Accumulating data demonstrated that hepatic endoplasmic reticulum (ER) stress was involved in the pathogenesis of liver fibrosis. Long-term chronic hepatocyte death contributed to liver fibrosis initiation and progression. Previous researches reported that ER stress sensor inositol-requiring enzyme 1 alpha (IRE1α) was first activated in the process of liver fibrosis. STF-083010 was an IRE1α RNase specific inhibitor. This study aimed to explore the effects of STF-083010 on carbon tetrachloride (CCl4)-induced liver injury and subsequent liver fibrosis. Mice were intraperitoneally (i.p.) injected with CCl4 (0.15 ml/kg) for 8 weeks. In STF-083010+CCl4 group, mice were injected with STF-083010 (30 mg/kg, i.p.), twice a week, beginning from the 6th week after CCl4 injection. CCl4 treatment markedly enhanced the levels of serum ALT, TBIL, DBIL and TBA, and STF-083010 had obviously extenuated CCl4-induced exaltation of ALT, DBIL, and TBA levels. CCl4-induced hepatic hydroxyproline and collagen I, major indicators of liver fibrosis, were alleviated by STF-083010. Additionally, CCl4-induced α-smooth muscle actin, a marker for hepatic stellate cells activation, was obviously attenuated in STF-083010-treated mice. Moreover, CCl4-induced upregulation of inflammatory cytokines was suppressed by STF-083010. Mechanistic exploration found that hepatic miR-122 was downregulated in CCl4-treated mice. Hepatic MCP1, CTGF, P4HA1, Col1α1, and Mmp9, target genes of miR-122, were upregulated in CCl4-treated mice. Interestingly, STF-083010 reversed CCl4-induced hepatic miR-122 downregulation. Correspondingly, STF-083010 inhibited CCl4-induced upregulation of miR-122 target genes. This study provides partial evidence that STF-083010 alleviated CCl4-induced liver injury and thus protected against liver fibrosis associated with hepatic miR-122.
Collapse
Affiliation(s)
- Qian-Qian Chen
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China.,The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Ming-Qiang Qin
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China.,The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jian Li
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Jian-Qing Wang
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China.,The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
85
|
Cheng B, Zhu Q, Lin W, Wang L. MicroRNA-122 inhibits epithelial-mesenchymal transition of hepatic stellate cells induced by the TGF-β1/Smad signaling pathway. Exp Ther Med 2018; 17:284-290. [PMID: 30651793 PMCID: PMC6307443 DOI: 10.3892/etm.2018.6962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor (TGF)-β1 may stimulate the activation of hepatic stellate cells (HSCs), resulting in the development of liver fibrosis. As micro RNA (miRNA)-122 is known to be associated with liver inflammation, its effects on the epithelial-mesenchymal transition (EMT) of HSCs through the inhibition of the TGF-β1/drosophila mothers against decapentaplegic protein 4 (Smad4) signaling pathway were investigated. The MTT assay was performed to explore the optimum TGF-β1 concentration suitable for HSC stimulation. Fluorescence microscopy was used to observe the transfection efficiency and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were used to observe gene and protein expression levels of α-smooth muscle actin (α-SMA), E-cadherin, N-cadherin and Smad4, respectively, in HSCs treated with TGF-β1 or TGF-β1 and miRNA-122. MTT assay results indicated that the concentration of 10 µg/l TGF-β1 was suitable for maximum growth and survival of HSCs. Notably, the mRNA expression levels of N-cadherin and α-SMA were significantly increased (each, P<0.05), but the expression levels of E-cadherin were decreased following 10 µg/l TGF-β1 treatment. Similar results were observed regarding the protein expression levels of N-cadherin, α-SMA and E-cadherin. Furthermore, the expression of F-actin was increased in the 10 µg/l TGF-β1 treated group compared with the 0 µg/l TGF-β1 treaded group and stretching of the muscle fiber filament was observed. miRNA-122 lentiviral vector transfection significantly decreased the mRNA expression of N-cadherin and increased the mRNA expression of E-cadherin in HSCs stimulated with TGF-β1, as evident from RT-qPCR results. Similar results were also observed regarding the protein expression levels of N-cadherin and E-cadherin. The expression levels of Smad4, the primary component of the TGF-β1 signaling pathway, were significantly lower in cells treated with TGF-β1 and miRNA-122 (P<0.01) compared those treated with TGF-β1. Thus, miRNA-122 may inhibit the activation and EMT of HSCs stimulated by TGF-β1.
Collapse
Affiliation(s)
- Bianqiao Cheng
- Department of Hepatology, The Second Hospital of Fuzhou Affiliated Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Qi Zhu
- Department of Hepatology, The Second Hospital of Fuzhou Affiliated Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Weiguo Lin
- Department of Hepatology, The Second Hospital of Fuzhou Affiliated Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Lihui Wang
- Department of Hepatology, The Second Hospital of Fuzhou Affiliated Xiamen University, Fuzhou, Fujian 350007, P.R. China
| |
Collapse
|
86
|
De Stefano F, Chacon E, Turcios L, Marti F, Gedaly R. Novel biomarkers in hepatocellular carcinoma. Dig Liver Dis 2018; 50:1115-1123. [PMID: 30217732 DOI: 10.1016/j.dld.2018.08.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths and the fifth most common cancer worldwide. Most of these patients are seen with advanced disease at the time of presentation. In spite of its high prevalence, there are not many therapeutic options available for patients with advanced-stage HCC. There is an urgent need for improving early detection and prognostication of patients with HCC. In addition, the development of new therapies targeting specific pathways involved in the pathogenesis of HCC should be a major goal for future research, with the objective of improving outcomes of patients with HCC. Biomarkers represent a relatively easy and noninvasive way to detect and estimate disease prognosis. In spite of the numerous efforts to find molecules as possible biomarkers, there is not a single ideal marker in HCC. Many new findings have shown promising results both in diagnosing and treating HCC. In this review, we summarized the most recent and relevant biomarkers in HCC.
Collapse
Affiliation(s)
- Felice De Stefano
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Eduardo Chacon
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lilia Turcios
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Francesc Marti
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Roberto Gedaly
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States.
| |
Collapse
|
87
|
Fu H, Zhang X, Wang Q, Sun Y, Liu L, Huang L, Ding L, Shen M, Zhang L, Duan Y. Simple and rational design of a polymer nano-platform for high performance of HCV related miR-122 reduction in the liver. Biomater Sci 2018; 6:2667-2680. [PMID: 30209483 DOI: 10.1039/c8bm00639c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
microRNA-122 (miR-122) is a kind of non-coding RNA expressed specifically in the liver and accumulating evidence elucidates its relationship with HCV virus replication. The utilization of anti-miRNA oligonucleotide (antimiR) offers tremendous potential for future HCV infection therapy. However, multiple existing problems, such as targeting and stability, impede in vivo application of antimiR. To overcome them, we synthesized monomethoxy (polyethylene glycol)-poly (d,l lactide-co-glycolide)-poly (l-lysine) (mPEG-b-PLGA-b-PLL) materials to deliver miR-122 antagomir (AN), and formed stable and well-distributed AN-loaded mPEG-b-PLGA-b-PLL nanoparticles (NP-AN). NP-AN showed a high degree of miR-122 inhibition after 72 h in vitro. In vivo results showed an NP-AN "leak" through a hepatic sinusoid to reach hepatocytes and over 90% reduction of miR-122 after being injected with NP-AN for 72 h. Besides, the inhibition of miR-122 lasted for 28 days with limited dosage in vivo. This study strongly suggests that the silencing of miR-122 was enhanced and the reduction of miR-122 expression could be extended by utilizing an mPEG-b-PLGA-b-PLL nano-platform, which potentially facilitate further studies on miRNA function loss and related RNAi therapy for HCV infection.
Collapse
Affiliation(s)
- Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Cheng D, Deng J, Zhang B, He X, Meng Z, Li G, Ye H, Zheng S, Wei L, Deng X, Chen R, Zhou J. LncRNA HOTAIR epigenetically suppresses miR-122 expression in hepatocellular carcinoma via DNA methylation. EBioMedicine 2018; 36:159-170. [PMID: 30195653 PMCID: PMC6197532 DOI: 10.1016/j.ebiom.2018.08.055] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND MicroRNA-122 (miR-122), a pivotal liver-specific miRNA, is frequently repressed in hepatocellular carcinoma (HCC) and associated with poor prognosis. Long non-coding RNA (lncRNA) HOTAIR has been proved to function as an oncogene in multiple cancers including HCC. However, the relationship between HOTAIR and miR-122 in HCC remains largely unknown. METHODS We investigated the function of HOTAIR and miR-122 in HCC cell models and a xenograft mouse model. The regulatory network between HOTAIR and miR-122 was further detected following overexpression or knockdown of HOTAIR. DNA methylation status of miR-122 promoter region, as well as expression levels of DNMTs, EZH2 and Cyclin G1 were analyzed. FINDINGS In this study, we found that HOTAIR was highly expressed whereas miR-122 was suppressed in HCC, and HOTAIR negatively regulated miR-122 expression in HCC cells. Furthermore, knockdown of HOTAIR dramatically inhibited HCC cell proliferation and induced cell cycle arrest in vitro and suppressed tumorigenicity in vivo by upregulating miR-122 expression. Mechanistically, a CpG island was located in the miR-122 promoter region. HOTAIR epigenetically suppressed miR-122 expression via DNMTs-mediated DNA methylation. Moreover, HOTAIR upregulated DNMTs expression via EZH2. In addition, suppression of miR-122 induced by HOTAIR directly reactivated oncogene Cyclin G1 expression. Collectively, our results suggest that HOTAIR epigenetically suppresses miR-122 expression via DNA methylation, leading to activation of Cyclin G1 and promotion of tumorigenicity in HCC, which provide new insight into the mechanism of HOTAIR-mediated hepatocarcinogenesis via suppressing miR-122.
Collapse
Affiliation(s)
- Di Cheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Junge Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Bin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Xiaoyu He
- Laboratory of Biomechanics and Physiology, Guangdong Provincial Institute of Sports Science, Guangzhou 510663, PR China
| | - Zhe Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Guolin Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Huilin Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Shangyou Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Lusheng Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Xiaogeng Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Rufu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China.
| | - Jiajia Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China.
| |
Collapse
|
89
|
Signature molecules expressed differentially in a liver disease stage-specific manner by HIV-1 and HCV co-infection. PLoS One 2018; 13:e0202524. [PMID: 30138348 PMCID: PMC6107166 DOI: 10.1371/journal.pone.0202524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022] Open
Abstract
To elucidate HIV-1 co-infection-induced acceleration of HCV liver disease and identify stage-specific molecular signatures, we applied a new high-resolution molecular screen, the Affymetrix GeneChip Human Transcriptome Array (HTA2.0), to HCV-mono- and HIV/HCV-co-infected liver specimens from subjects with early and advanced disease. Out of 67,528 well-annotated genes, we have analyzed the functional and statistical significance of 75 and 28 genes expressed differentially between early and advanced stages of HCV mono- and HIV/HCV co-infected patient liver samples, respectively. We also evaluated the expression of 25 and 17 genes between early stages of mono- and co-infected liver tissues and between advanced stages of mono- and co-infected patient's samples, respectively. Based on our analysis of fold-change in gene expression as a function of disease stage (i.e., early vs. advanced), coupled with consideration of the known relevant functions of these genes, we focused on four candidate genes, ACSL4, GNMT, IFI27, and miR122, which are expressed stage-specifically in HCV mono- and HIV-1/HCV co-infective liver disease and are known to play a pivotal role in regulating HCV-mediated hepatocellular carcinoma (HCC). Our qRT-PCR analysis of the four genes in patient liver specimens supported the microarray data. Protein products of each gene were detected in the endoplasmic reticulum (ER) where HCV replication takes place, and the genes' expression significantly altered replicability of HCV in the subgenomic replicon harboring regulatory genes of the JFH1 strain of HCV in Huh7.5.1. With respect to three well-known transferrable HIV-1 viral elements-Env, Nef, and Tat-Nef uniquely augmented replicon expression, while Tat, but not the others, substantially modulated expression of the candidate genes in hepatocytic cells. Combinatorial expression of these cellular and viral genes in the replicon cells further altered replicon expression. Taken together, these results showed that HIV-1 viral proteins can exacerbate liver pathology in the co-infected patients by disparate molecular mechanisms-directly or indirectly dysregulating HCV replication, even if lack of association of HCV load and end-stage liver disease in hemophilic patients were reported, and modulating expression of hepatocellular genes critical for disease progression. These findings also provide major insights into development of stage-specific hepatocellular biomarkers for improved diagnosis and prognosis of HCV-mediated liver disease.
Collapse
|
90
|
Roy S, Trautwein C, Luedde T, Roderburg C. A General Overview on Non-coding RNA-Based Diagnostic and Therapeutic Approaches for Liver Diseases. Front Pharmacol 2018; 9:805. [PMID: 30158867 PMCID: PMC6104154 DOI: 10.3389/fphar.2018.00805] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
Liver diseases contribute to the global mortality and morbidity and still represent a major health problem leading to the death of people worldwide. Although there are several treatment options available for Hepatitis C infections, for most liver disease the pharmacological options are still limited. Therefore, the development of new targets against liver diseases is of high interest. Non-coding RNA (ncRNA) such as microRNA (miRNA) or long ncRNA (lncRNA) have been shown to be deeply involved in the pathophysiology of almost all acute and chronic liver diseases. The emerging evidence showed the potential therapeutic use of miRNA associated with different steps of hepatic pathophysiology. In the present review, we summarize emerging insights of ncRNA in liver diseases. We also highlight example of ncRNAs participating in the pathogenesis of different forms of liver disease and how they can be used as potential therapeutic targets for novel treatment paradigms. Furthermore, we describe an overview of up-to-date clinical trials and discuss about its future in clinical applications. Finally, we highlight the role of circulating ncRNAs in diagnosis of liver diseases and discuss the challenges and drawbacks of the usage of ncRNAs in clinical setting.
Collapse
Affiliation(s)
- Sanchari Roy
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Roderburg
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
91
|
Gailhouste L, Liew LC, Yasukawa K, Hatada I, Tanaka Y, Nakagama H, Ochiya T. Differentiation Therapy by Epigenetic Reconditioning Exerts Antitumor Effects on Liver Cancer Cells. Mol Ther 2018; 26:1840-1854. [PMID: 29759938 PMCID: PMC6035736 DOI: 10.1016/j.ymthe.2018.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023] Open
Abstract
Primary liver tumors are mainly represented by hepatocellular carcinoma (HCC), one of the most aggressive and resistant forms of cancer. Liver tumorigenesis is characterized by an accumulation of epigenetic abnormalities, leading to gene extinction and loss of hepatocyte differentiation. The aim of this work was to investigate the feasibility of converting liver cancer cells toward a less aggressive and differentiated phenotype using a process called epigenetic reconditioning. Here, we showed that an epigenetic regimen with non-cytotoxic doses of the demethylating compound 5-azacytidine (5-AZA) promoted an anti-cancer response by inhibiting HCC cell tumorigenicity. Furthermore, epigenetic reconditioning improved sorafenib response. Remarkably, epigenetic treatment was associated with a significant restoration of differentiation, as attested by the increased expression of characteristic hepatocyte markers in reconditioned cells. In particular, we showed that reexpression of these epigenetically silenced liver genes following 5-AZA treatment or after knockdown of DNA methyltransferase 1 (DNMT1) was the result of regional CpG demethylation. Lastly, we confirmed the efficacy of HCC differentiation therapy by epigenetic reconditioning using an in vivo tumor growth model. In summary, this work demonstrates that epigenetic reconditioning using the demethylating compound 5-AZA shows therapeutic significance for liver cancer and is potentially attractive for the treatment of solid tumors.
Collapse
Affiliation(s)
- Luc Gailhouste
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.
| | - Lee Chuen Liew
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ken Yasukawa
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hitoshi Nakagama
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; National Cancer Center, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
92
|
Li L, Miu KK, Gu S, Cheung HH, Chan WY. Comparison of multi-lineage differentiation of hiPSCs reveals novel miRNAs that regulate lineage specification. Sci Rep 2018; 8:9630. [PMID: 29941943 PMCID: PMC6018499 DOI: 10.1038/s41598-018-27719-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/07/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are known to be crucial players in governing the differentiation of human induced pluripotent stem cells (hiPSCs). Despite their utter importance, identifying key lineage specifiers among the myriads of expressed miRNAs remains challenging. We believe that the current practice in mining miRNA specifiers via delineating dynamic fold-changes only is inadequate. Our study, therefore, provides evidence to pronounce "lineage specificity" as another important attribute to qualify for these lineage specifiers. Adopted hiPSCs were differentiated into representative lineages (hepatic, nephric and neuronal) over all three germ layers whilst the depicted miRNA expression changes compiled into an integrated atlas. We demonstrated inter-lineage analysis shall aid in the identification of key miRNAs with lineage-specificity, while these shortlisted candidates were collectively known as "lineage-specific miRNAs". Subsequently, we followed through the fold-changes along differentiation via computational analysis to identify miR-192 and miR-372-3p, respectively, as representative candidate key miRNAs for the hepatic and nephric lineages. Indeed, functional characterization validated that miR-192 and miR-372-3p regulate lineage differentiation via modulation of the expressions of lineage-specific genes. In summary, our presented miRNA atlas is a resourceful ore for the mining of key miRNAs responsible for lineage specification.
Collapse
Affiliation(s)
- Lu Li
- CUHK-CAS GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Kai-Kei Miu
- CUHK-CAS GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Shen Gu
- CUHK-CAS GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
- M&H Genetics/Baylor Genetics Laboratories, Baylor College of Medicine, Houston, TX, USA
| | - Hoi-Hung Cheung
- CUHK-CAS GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR.
| | - Wai-Yee Chan
- CUHK-CAS GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR.
| |
Collapse
|
93
|
Chaker D, Mouawad C, Azar A, Quilliot D, Achkar I, Fajloun Z, Makdissy N. Inhibition of the RhoGTPase Cdc42 by ML141 enhances hepatocyte differentiation from human adipose-derived mesenchymal stem cells via the Wnt5a/PI3K/miR-122 pathway: impact of the age of the donor. Stem Cell Res Ther 2018; 9:167. [PMID: 29921325 PMCID: PMC6009972 DOI: 10.1186/s13287-018-0910-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/08/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022] Open
Abstract
Background Human adipose-derived mesenchymal stem cells (hADSCs) are promising cells that may promote hepatocyte differentiation (Hep-Dif) and improve liver function, but the involvement of Cdc42, a key small RhoGTPase which plays a crucial role in aging, is still not well established. We hypothesized that the inhibition of Cdc42 may rescue the hepatogenic potential of hADSCs derived from aged donors. Methods hADSCs isolated from 61 women of different ages were cultured for evaluation of the proliferation of cells, adherence, apoptosis, immunomodulation, immunophenotyping, multipotency, gene expression, and cell function during Hep-Dif. Inhibition of Cdc42 by ML141 was realized during two phases: initiation (days –2 to 14 (D–2/14)) from undifferentiated to hepatoblast-like cells, or maturation (days 14 to 28 (D14/28)) from undifferentiated to hepatocyte-like cells. Mechanistic insights of the Wnt(s)/MAPK/PI3K/miR-122 pathways were studied. Results Cdc42 activity in undifferentiated hADSCs showed an age-dependent significant increase in Cdc42-GTP correlated to a decrease in Cdc42GAP; the low potentials of cell proliferation, doubling, adherence, and immunomodulatory ability (proinflammatory over anti-inflammatory) contrary to the apoptotic index of the aged group were significantly reversed by ML141. Aged donor cells showed a decreased potential for Hep-Dif which was rescued by ML141 treatment, giving rise to mature and functional hepatocyte-like cells as assessed by hepatic gene expression, cytochrome activity, urea and albumin production, low-density lipoprotein (LDL) uptake, and glycogen storage. ML141-induced Hep-Dif showed an improvement in mesenchymal-epithelial transition, a switch from Wtn-3a/β-catenin to Wnt5a signaling, involvement of PI3K/PKB but not the MAPK (ERK/JNK/p38) pathway, induction of miR-122 expression, reinforcing the exosomes release and the production of albumin, and epigenetic changes. Inhibition of PI3K and miR-122 abolished completely the effects of ML141 indicating that inhibition of Cdc42 promotes the Hep-Dif through a Wnt5a/PI3K/miR-122/HNF4α/albumin/E-cadherin-positive action. The ML141(D–2/14) protocol had more pronounced effects when compared with ML141(D14/28); inhibition of DNA methylation in combination with ML141(D–2/14) showed more efficacy in rescuing the Hep-Dif of aged hADSCs. In addition to Hep-Dif, the multipotency of aged hADSC-treated ML141 was observed by rescuing the adipocyte and neural differentiation by inducing PPARγ/FABP4 and NeuN/O4 but inhibiting Pref-1 and GFAP, respectively. Conclusion ML141 has the potential to reverse the age-related aberrations in aged stem cells and promotes their hepatogenic differentiation. Selective inhibition of Cdc42 could be a potential target of drug therapy for aging and may give new insights on the improvement of Hep-Dif. Electronic supplementary material The online version of this article (10.1186/s13287-018-0910-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diana Chaker
- Lebanese University, Doctoral School for Sciences and Technology, Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and its Applications, Tripoli, Lebanon.,Reviva Regenerative Medicine Center, Human Genetic Center, Middle East Institute of Health Hospital, Bsalim, Lebanon.,Paris Saclay University, Doctoral School, Therapeutical Innovation, Inserm UMR935, Villejuif, France
| | | | - Albert Azar
- Reviva Regenerative Medicine Center, Human Genetic Center, Middle East Institute of Health Hospital, Bsalim, Lebanon
| | - Didier Quilliot
- Diabetologia-Endocrinology & Nutrition, CHRU Nancy, INSERM 954, University Henri Poincaré de Lorraine, Faculty of Medicine, Nancy, France
| | | | - Ziad Fajloun
- Lebanese University, Doctoral School for Sciences and Technology, Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and its Applications, Tripoli, Lebanon.,Lebanese University, Faculty of Sciences III, Department of Biology, Kobbe, Lebanon
| | - Nehman Makdissy
- Lebanese University, Doctoral School for Sciences and Technology, Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and its Applications, Tripoli, Lebanon. .,Lebanese University, Faculty of Sciences III, Department of Biology, Kobbe, Lebanon.
| |
Collapse
|
94
|
Suehiro T, Miyaaki H, Kanda Y, Shibata H, Honda T, Ozawa E, Miuma S, Taura N, Nakao K. Serum exosomal microRNA-122 and microRNA-21 as predictive biomarkers in transarterial chemoembolization-treated hepatocellular carcinoma patients. Oncol Lett 2018; 16:3267-3273. [PMID: 30127924 DOI: 10.3892/ol.2018.8991] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022] Open
Abstract
Exosomal microRNAs (miRNAs) have been investigated as potential novel biomarkers, and miR-122 and miR-21 were shown to be important in hepatocellular carcinoma (HCC). We analyzed the importance of serum exosomal miRNA expression levels in HCC patients that underwent transarterial chemoembolization (TACE). Seventy-five HCC patients who underwent TACE as the initial treatment in Nagasaki University Hospital were enrolled. Exosomal miRNAs were isolated from serum samples collected before and after TACE. Exosomal miR-122 expression levels significantly decreased after TACE (P=0.012), while the exosomal miR-21 expression levels did not significantly change. The expression levels of exosomal miR-122 before TACE were shown to correlate significantly with aspartate aminotransferase (r=0.31, P=0.004) and alanine aminotransferase (r=0.33, P=0.003) levels, tumor diameter (r=0.29, P=0.010) and Child-Pugh score (r=-0.28, P=0.013). The median survival time for all patients was 47 months, and neither of the investigated exosomal miRNAs were shown to be independent factors associated with the disease-specific survival. According to the median relative expression of miR-122 after TACE/before TACE (miR-122 ratio) in liver cirrhosis patients (n=57), the patients with a higher miR-122 ratio had significantly longer disease-specific survival, compared with that of the patients with the lower miR-122 ratio (P=0.0461). Multivariate Cox proportional hazards regression analysis of clinical parameters revealed that a lower exosomal miR-122 ratio (HR 2.720; 95% confidence interval, 1.035-8.022; P=0.042) is associated with the disease-specific survival. Taken together, our results demonstrate that the exosomal miR-122 level alterations may represent a predictive biomarker in HCC patients with liver cirrhosis treated with TACE.
Collapse
Affiliation(s)
- Tomoyuki Suehiro
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hisamitsu Miyaaki
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yasuko Kanda
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hidetaka Shibata
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Takuya Honda
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Eisuke Ozawa
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Satoshi Miuma
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Naota Taura
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
95
|
Tarver JE, Taylor RS, Puttick MN, Lloyd GT, Pett W, Fromm B, Schirrmeister BE, Pisani D, Peterson KJ, Donoghue PCJ. Well-Annotated microRNAomes Do Not Evidence Pervasive miRNA Loss. Genome Biol Evol 2018; 10:1457-1470. [PMID: 29788279 PMCID: PMC6007596 DOI: 10.1093/gbe/evy096] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2018] [Indexed: 12/18/2022] Open
Abstract
microRNAs are conserved noncoding regulatory factors implicated in diverse physiological and developmental processes in multicellular organisms, as causal macroevolutionary agents and for phylogeny inference. However, the conservation and phylogenetic utility of microRNAs has been questioned on evidence of pervasive loss. Here, we show that apparent widespread losses are, largely, an artefact of poorly sampled and annotated microRNAomes. Using a curated data set of animal microRNAomes, we reject the view that miRNA families are never lost, but they are rarely lost (92% are never lost). A small number of families account for a majority of losses (1.7% of families account for >45% losses), and losses are associated with lineages exhibiting phenotypic simplification. Phylogenetic analyses based on the presence/absence of microRNA families among animal lineages, and based on microRNA sequences among Osteichthyes, demonstrate the power of these small data sets in phylogenetic inference. Perceptions of widespread evolutionary loss of microRNA families are due to the uncritical use of public archives corrupted by spurious microRNA annotations, and failure to discriminate false absences that occur because of incomplete microRNAome annotation.
Collapse
Affiliation(s)
- James E Tarver
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| | - Richard S Taylor
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| | - Mark N Puttick
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
- Department of Biology and Biochemistry, University of Bath, United Kingdom
| | - Graeme T Lloyd
- School of Earth and Environment, University of Leeds, United Kingdom
| | - Walker Pett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| | - Bastian Fromm
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Bettina E Schirrmeister
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| | - Davide Pisani
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | - Philip C J Donoghue
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| |
Collapse
|
96
|
Abstract
The molecular mechanisms of liver pathology and clinical disease in hepatitis E virus (HEV) infection remain unclear. MicroRNAs (miRNAs) are known to modulate viral pathogenesis either by directly altering viral gene expression or by enhancing cellular antiviral responses. Given the importance of microRNA-122 (miR-122) in liver pathobiology, we investigated possible role of miR-122 in HEV infection. In silico predictions using HEV genotype 1 (HEV-1), HEV-2, HEV-3, and HEV-4 sequences showed that the majority of genomes (203/222) harbor at least one miR-122/microRNA-122-3p (miR-122*) target site. Interestingly, HEV-1 genomes showed a highly (97%) conserved miR-122 target site in the RNA-dependent RNA polymerase (RdRp) region (RdRpc). We analyzed the significance of miR-122 target sites in HEV-1/HEV-3 (HEV-1/3) genomes by using a replicon-based cell culture system. HEV infection did not change the basal levels of miR-122 in hepatoma cells. However, transfection of these cells with miR-122 mimics enhanced HEV-1/3 replication and depletion of miR-122 with inhibitors led to suppression of HEV-1/3 replication. Mutant HEV-1 replicons with an altered target RdRpc sequence (CACTCC) showed a drastic decrease in virus replication, whereas introduction of alternative miR-122 target sites in mutant replicons rescued viral replication. There was enrichment of HEV-1 RNA and miR-122 molecules in RNA-induced silencing complexes in HEV-infected cells. Furthermore, pulldown of miR-122 molecules from HEV-infected cells resulted in pulldown of HEV genomic RNA along with miR-122 molecules. These observations indicate that miR-122 facilitates HEV-1 replication, probably via direct interaction with a target site in the viral genome. The positive role of miR-122 in viral replication presents novel opportunities for antiviral therapy and management of hepatitis E.IMPORTANCE Hepatitis E is a problem in both developing and developed countries. HEV infection in most patients follows a self-limited course; however, 20% to 30% mortality is seen in infected pregnant women. HEV superinfections in patients with chronic hepatitis B or hepatitis C virus infections are associated with adverse clinical outcomes, and both conditions warrant therapy. Chronic HEV infections in immunocompromised transplant recipients are known to rapidly progress into cirrhosis. Currently, off-label use of ribavirin (RBV) and polyethylene glycol-interferon (PEG-IFN) as antiviral therapy has shown promising results in both acute and chronic hepatitis E patients; however, the teratogenicity of RBV limits its use during pregnancy, while alpha IFN (IFN-α) increases the risk of transplant rejections. Experimental data determined with genotype 1 virus in the current study show that miR-122 facilitates HEV replication. These observations present novel opportunities for antiviral therapy and management of hepatitis E.
Collapse
|
97
|
Ma J, Li Y, Wu M, Zhang C, Che Y, Li W, Li X. Serum immune responses in common carp (Cyprinus carpio L.) to paraquat exposure: The traditional parameters and circulating microRNAs. FISH & SHELLFISH IMMUNOLOGY 2018; 76:133-142. [PMID: 29499338 DOI: 10.1016/j.fsi.2018.02.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 06/08/2023]
Abstract
Paraquat (PQ) is a herbicide used worldwide, and it was shown to be a high-risk compound to aquatic organisms. This study was conducted to investigate the effects of PQ on traditional serum parameters and circulating microRNAs (miRNAs) in common carp to further elucidate the mechanism of PQ toxicity in fish. In the current study, a subacute toxicity test of common carp exposed to PQ at 1.596 and 3.192 mg/L for 7 d was conducted under laboratory conditions. The results showed that PQ exposure generally reduced the levels of T-AOC, SOD, CAT, and GST, but significantly increased MDA levels in the serum, indicating that PQ exposure induces oxidative stress and lipid peroxidation in the fish. The results of biochemical assays showed that PQ exposure not only significantly altered the activities of LDH, AST, ALT, ACP, AKP, and lysozyme and the contents of IgM and complement 3 but also promoted the expression of pro-inflammatory cytokines, including IFN-γ, IL-1β, IL-6, IL-8, and TNF-α. Additionally, PQ inhibited the levels of the anti-inflammatory cytokines IL-10 and TGF-β, suggesting that PQ exposure may cause fish tissue injury and promote immune inflammatory responses. Furthermore, we found that serum circulating miRNAs, such as ccr-mir-122, ccr-mir-125b, ccr-mir-146a, and ccr-mir-155, were generally promoted in fish following PQ exposure. Based on our results and reports on miRNA-based diagnosis of tissue damage and inflammatory responses in mammals, we suggest that serum ccr-mir-122, ccr-mir-125b, ccr-mir-146a, and ccr-mir-155 could be new biomarkers of PQ toxicity in fish.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengli Wu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Can Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqing Che
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weiguo Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
98
|
Coptisine from Rhizoma coptidis exerts an anti-cancer effect on hepatocellular carcinoma by up-regulating miR-122. Biomed Pharmacother 2018; 103:1002-1011. [PMID: 29710498 DOI: 10.1016/j.biopha.2018.04.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 01/27/2023] Open
Abstract
With increasing incidence and mortality, hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. In this study, microRNA-122 (miR-122) mimics and relevant control oligonucleotides were transfected into HepG2 cells in vitro, followed by coptisine (COP) and sorafenib treatments. Cell proliferation, migration, and apoptosis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and colony formation assay, wound-healing assay, Hoechst 33258 staining and flow cytometry, respectively. Histopathology and miR-122 were analyzed by haemotoxylin and eosin (H&E) staining and real-time RT-PCR, respectively; whereas, the relevant protein expressions were detected by western blot. In vivo, COP enhanced the expression of miR-122 by 160% compared to control in male BALB/c nude mice; COP not only protected the liver morphology but also showed a significant anti-cancer effect. Further, there was no remarkable difference between the tumor weights in the COP and sorafenib groups, but there was a striking difference to the tumor control group (p < 0.05). Hence, COP inhibited the proliferation, migration and promoted apoptosis of HCC cells; moreover, it inhibited the tumor growth in nude mice by up-regulating the expression of miR-122.
Collapse
|
99
|
Abstract
Alcoholic liver disease (ALD) is a definition encompassing a spectrum of disorders ranging from simple steatosis to cirrhosis and hepatocellular carcinoma. Excessive alcohol consumption triggers a series of metabolic reactions that affect the liver by inducing lipogenesis, increasing oxidative stress, and causing abnormal inflammatory responses. The metabolic pathways regulating lipids, reactive oxygen species (ROS), and immune system are closely related and in some cases cross-regulate each other. Therefore, it must be taken into account that major genetic and epigenetic abnormalities affecting enzymes involved in one of such pathways can play a pivotal role in ALD pathogenesis. However, recent studies have pointed out how a significant predisposition can also be determined by minor variants, such as relatively common polymorphisms, epigenetic modifications, and microRNA abnormalities. Genetic and epigenetic factors can also affect the progression of liver diseases, promoting fibrogenesis, cirrhosis, and ultimately hepatocellular carcinoma. It is noteworthy that some of these factors, such as some of the cytokines involved in the abnormal inflammatory responses, are shared with non-alcoholic liver disease, while other factors are unique to ALD. The study of the genetic and epigenetic components involved in the liver damages caused by alcohol is crucial to identify individuals with high risk of developing ALD, design personalized protocols for prevention and/or treatment, and select the best molecular targets for new therapies.
Collapse
Affiliation(s)
- Luigi Boccuto
- Greenwood Genetic Center, Greenwood, SC, USA. Clemson University School of Health Research, Clemson, SC, USA
| | - Ludovico Abenavoli
- Department of Health Sciences, University "Magna Græcia", Catanzaro, Italy
| |
Collapse
|
100
|
Serum levels of miRNA in patients with hepatitis B virus-associated acute-on-chronic liver failure. Hepatobiliary Pancreat Dis Int 2018; 17:126-132. [PMID: 29602672 DOI: 10.1016/j.hbpd.2018.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 01/05/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatitis B virus (HBV)-associated acute-on-chronic liver failure (HBV-ACLF) is a life-threatening condition and its exact pathophysiology and progression remain unclear. The present study aimed to assess the role of serum miRNAs in the evaluation of HBV-ACLF and to develop a model to predict the outcomes for ACLF. METHODS Serum was collected from 41 chronic hepatitis B and 55 HBV-ACLF patients in addition to 30 chronic asymptomatic HBV carriers as controls. The miRNAs expressions were measured by real-time quantitative PCR (q-PCR). Statistical analyses were conducted to assess the ability of differentially expressed miRNAs and other prognostic factors in identifying ACLF prognosis and to develop a new predictive model. RESULTS Real-time q-PCR indicated that serum miR-146a-5p, miR-122-3p and miR-328-3p levels were significantly upregulated in ACLF patients compared to chronic hepatitis B and chronic asymptomatic HBV carriers patients. In addition, multivariate regression analyses indicated that Na+, INR, gastrointestinal bleeding and miR-122-3p are all independent factors that are reliable and sensitive to the prognosis of HBV-ACLF. Therefore, we developed a new model for the prediction of HBV-ACLF disease state: Y = 0.402 × Na+ - 1.72 × INR - 4.963 × gastrointestinal bleeding (Yes = 0; No = 1)-0.278 × (miR-122-3p) + 50.449. The predictive accuracy of the model was 95.3% and the area under the receiver operating characteristic curve (AUROC) was 0.847. CONCLUSIONS Expression levels of these miRNAs (miR-146a-5p, miR-122-3p and miR-328-3p) positively correlate with the severity of liver inflammation in patients with ACLF and may be useful to predict HBV-ACLF severity.
Collapse
|